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Abstract. In analogy with Almgren’s Theorem for area minimizing currents of general
dimension and codimension, we prove that an m-dimensional semicalibrated current in a
(n + m)-dimensional C3,ε0 manifold, semicalibrated by a C2,ε0 m-form, has singular set
of Hausdorff dimension at most m− 2.

Our goal is to study the dimension of the singular set of semicalibrated currents in any
dimension and codimension.

Definition 0.1. Let Σ ⊂ Rm+n be a C2 submanifold and U ⊂ Rm+n an open set. A
semicalibration (in Σ) is a C1 m-form ω on Σ such that ‖ωx‖c ≤ 1 at every x ∈ Σ, where
‖ · ‖c denotes the comass norm on ΛmTxΣ. An m-dimensional integral current T with

spt(T ) ⊂ Σ is semicalibrated by ω if ωx(~T ) = 1 for ‖T‖-a.e. x.

In what follows, given an integer rectifiable current T , we denote by Reg(T ) the subset of
spt(T )\ spt(∂T ) consisting of those points x for which there is a neighborhood U such that
T U is a (constant multiple of) a regular submanifold. Correspondingly, Sing(T ) is the
set spt(T )\(spt(∂T )∪Reg(T )). Observe that Reg(T ) is relatively open in spt(T )\spt(∂T )
and thus Sing(T ) is relatively closed. The main result of this paper is then the following

Theorem 0.2. Let T be an m-dimensional semicalibrated current. Assume in addition
that Σ is of class C3,ε0 and ω of class C2,ε0 for some positive ε0. Then the Hausdorff
dimension of Sing(T ) is at most m− 2.

A typical example of semicalibrated current is given by almost complex cycles in almost
complex manifolds. An almost complex manifold is a couple (Σ2n, J), where Σ2n is a smooth
manifold and J is an endomorphism of the tangent bundle such that J2 = −Id . An almost
complex cycle is an integral current T ∈ Im(Σ2n) such that ∂T = 0 and Jx ~Tx = ~Tx for
‖T‖-a.e. x ∈ Σ2n. Object of this type where studied by Riviére and Tian in [18, 19],
in the particular case where the almost complex manifold is locally simplectic, and so
almost complex cycles are locally Area Minimizing; our situation is more general since
semicalibrated currents might not be minimizers of the area.

To our knowledge, this is the first result about the regularity of semicalibrated currents
in dimension higher than 2, except for the case of 3-dimensional Lagrangian cones, studied
by Bellettini and Riviere in [4], and for the case of the singular set of J-holomorphic map,
which are stationary harmonic maps and so the m − 2 dimensional bounds follows from
classical theory (cf. [18, 21]). For the two dimensional case several results have been proved
by various authors, cf [19, 3, 21]).
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The starting point of our work is the famous result by Almgren (cf. [2]), where the
same dimensional bound of Theorem 0.2 is proved for the singular set of Area Minimizing
Integral currents in general dimension and codimension. Our proof relies heavily on the
ideas introduced by Almgren, indeed the strategy is the same and the tools used are taken
mainly from the revisitation of Almgren’s work done recently by Camillo De Lellis and
Emanuele Spadaro (cf. [7, 6, 10, 8, 9]). However our result is not a direct consequence
of Almgren’s Theorem, nor it is a generalization of it, since not every Area Minimizing
current can be semicalibrated. On the other hand, the proof of Theorem 0.2 that we give
here could be applied also in the case of Area Minimizing currents, while the opposite is
not true.

Notice that the union of two complex planes in C2 is calibrated and so semicalibrated,
and this shows that Theorem 0.2 is optimal in terms of the dimension of the singular set
(at least in even dimension).

The structure of the singular set and the finiteness of its measure are still open ques-
tions in general, except in the case of surfaces, where it consists of isolated points (cf.
[14, 13, 11, 12]).

Next we briefly describe the proof of Theorem 0.2. The two main steps, which coincide
with the two main parts of this article, are the following.

(CM) In the first half of the paper we show how to construct a C3,γ0 , m-dimensional
surface, called Center Manifold, that carefully approximates the average of the
sheets of the current. This comes together with a multiple valued Lipschitz map
defined on it, called Normal Approximation, that coincides with the current itself,
except on a suitably small set. For a nice explanation of why the center manifold
is essential and how it is constructed see [5].

(BU) In the second part of the paper we prove Theorem 0.2 by contradiction. To do
this, we first observe that it is enough to look at branch points, in particular there
must be a singular point with at least one tangent plane and where the singular set
has positive Hm−2+α-density, for some positive α. Next we construct a sequence of
Center Manifolds and Normal Approximations that converges to a nontrivial Dir-
minimizing function with a singular set of dimension m− 2 + α, which contradicts
the regularity of Dir-minimizing functions. The key to the non-triviality of the blow
up map is the asymptotic behaviour of the Frequency function (see again [5] for an
explanation of this), while the (m− 2 +α)-dimension of its singular set comes from
a ”persistency property” of points of high multiplicity.

The rest of the paper is devoted to these two steps. A big part of it is taken from
previous works by De Lellis and Spadaro, namely [10, 8, 9]. Therefore, whenever possible,
we will skip the proof of those results that are already contained in there and simply give
the precise reference.

However three parts are substantially different with respect to [8, 9], and these are

(i) the construction of the building blocks of the center manifold, called interpolated
functions, which are not obtained via a smoothing procedure, but are required
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to solve a specific second order linear elliptic system coming from the variational
structure of the problem (cf. Definition 2.10 below);

(ii) the persistence of points of maximum multiplicity, which is obtained as a simple
corollary of an improved height bound valid in the neighborhood of any such point,
rather than as a consequence of the monotonicity formula (cf. [10, 8]);

(iii) the asymptotic analysis of the Frequency function, which requires the modification
of its definition with an additional term in order to obtain its almost monotonicity.

We remark that (ii) appears here for the first time, while (i) and (iii), in a simplified form,
were already introduced in [11, 12].

To conclude this introduction, we recall two important results about semicalibrated
currents, whose proofs can be found in [14].

Lemma 0.3 ([14, Lemma 1.1]). Let k ∈ N \ {0}, ε0 ∈ [0, 1], Σ ⊂ Rm+n be a Ck+1,ε0

(m + n̄)-dimensional submanifold, V ⊂ Rm+n an open subset and ω a Ck,ε0 m-form on
V ∩ Σ. If T is a cycle in V ∩ Σ semicalibrated by ω, then T is semicalibrated in V by a
Ck,ε0 form ω̃.

In particular, thanks to this Lemma and the local nature of regularity, we can assume,
without loss of generality, that Σ = Rn. Moreover, whenever we refer the reader to proofs
contained in [8, 9], this identification will be implicitly made.

Lemma 0.4 ([14, Proposition 1.2]). Let T be as in Definition 0.1 with Σ = Rm+n. Then
there is a positive constant Ω ≤ ‖dω‖0 such that

M(T ) ≤M(T + ∂S) + Ω M(S) ∀S ∈ Im+1(Rm+n) with compact support. (0.1)

Moreover, if χ ∈ C∞c (Rm+n \ spt(∂T ),Rm+n), we have

δT (χ) = T (dω χ) . (0.2)

Together with Camillo De Lellis and Emanuele Spadaro, we conscruted a Lipschitz
approximation for integral currents satisfying (0.1), which is superlinear in the excess (cf.
[13]). This is the first key step for the proof of the result. Equation (0.2), on the other
hand, is the key ingredient for the present paper, dictating the equation satisfied by the
center manifold, and the structure of the error in the analysis of the Frequency Function.

0.1. Plan of the paper. The paper is divided in two parts plus a preliminary section.

• In the preliminary section we introduce the main notations and definitions, we
present the Improved Height bound around point of maximal multiplicity and com-
pare it with the usual stratified Height bound. The question of the stratification of
the new Height bound remains open.
• In the first part of the paper we construct the Center Manifold and the associated

Normal Approximation with its estimate. In particular Section 2 contains the con-
struction algorithm for the Center Manifold, while Section 3 states all the main
estimates on the Normal Approximation. The proofs of the statements are all con-
tained in sections 4 & 5.
Many times in this part we will refer the reader to results contained in [8]. We can
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do this because the particular structure of the current T , that is (0.2), enters only
in the proofs of the main estimates for the building blocks of the Center Manifold
in Proposition 4.8, while the rest is essentially a consequence of the construction
algorithm and the Height bounds of Section 1. There is however an additional tech-
nical difficulty, indeed many times we will need to use the harmonic approximation
result in [13, Theorem 4.2], but this is given under different assumptions then the
one used in [8] (i.e., [10, Theorem 1.6]), and this will force us to slightly modify
some proofs.
• In the second part we conclude the proof of Theorem 0.2, by introducing a suit-

able contradiction sequence (Section 6), studying the asymptotic behaviour of the
corresponding Frequency functions (Section 7) and proving its convergence to a
nontrivial Dir-minimizing function (Section 8).
In this part the specific structure of our current enters only in the estimate on the
Frequency function and in proving the minimality of the blow-up map, the rest is
a consequence of the construction algorithm and the Height bounds of Section 1.

The main differences with respect to [8, 9] are due to the variational formula (0.2), which
is more complicate than the one of the Dir-minimizing case. In particular it prevents us
to apply the monotonicity method of [8] to prove the Persistency of Q-points, which is
instead achieved by an Improved Height bound (Theorem 1.5 in Section 1) and a Blow-up
Lemma (Lemma 5.2 in Section 6). Furthermore, it forces us to define the Center Manifold
using an Elliptic sistem (Propositions 4.4 & 4.7 in Section 5), and it is responsible for some
additional errors in the almost monotonicity of the frequency and in the almost minimality
of the Normal approximation (Sections 7 & 8).

0.2. Acknowledgements. The author is particularly grateful to Camillo De Lellis and
Emanuele Spadaro, whose beautiful work made this paper possible, and to Guido De
Philippis, for many useful discussions, especially about the Improved Height bound and its
consequences. The author is also indebted to Philippe Logaritsch and Francesco Ghiraldin,
for helping him out with technical details. This work has been partially supported by the
ERC grant RAM (Regularity for Area Minimizing currents), ERC 306247.

1. Height bounds

In this first section, after introducing some notations, we state and prove the height
bound with improved exponent that will be crucial in the rest of the paper.

1.1. Notation, height and excess. For open balls in Rm+n we use Br(p). For any linear
subspace π ⊂ Rm+n, π⊥ is its orthogonal complement, pπ the orthogonal projection onto
π, Br(q, π) the disk Br(q)∩ (q+π) and Cr(p, π) the cylinder {(x+ y) : x ∈ Br(p), y ∈ π⊥}
(in both cases q is omitted if it is the origin and π is omitted if it is clear from the context).
We also assume that each π is oriented by a k-vector ~π := v1 ∧ . . . ∧ vk (thereby making a
distinction when the same plane is given opposite orientations) and with a slight abuse of
notation we write |π2 − π1| for |~π2 − ~π1| (where | · | stands for the norm associated to the
usual inner product of k-vectors).
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A primary role will be played by the m-dimensional plane Rm × {0} with the standard
orientation: for this plane we use the symbol π0 throughout the whole paper.

Definition 1.1 (Excess and height). Given an integer rectifiable m-dimensional current
T in Rm+n with finite mass and compact support and m-planes π, π′, we define the excess
of T in balls and cylinders as

E(T,Br(x), π) :=
1

2ωm rm

∫
Br(x)

|~T − ~π|2 d‖T‖, (1.1)

E(T,Cr(x, π), π′) :=
1

2ωm rm

∫
Cr(x,π)

|~T − ~π′|2 d‖T‖ , (1.2)

and the height function in a set A ⊂ Rm+m as

h(T,A, π) := sup
x,y ∈ spt(T )∩A

|pπ⊥(x)− pπ⊥(y)| .

In what follows all currents will have compact support and finite mass and will always
be considered as currents defined in the entire Euclidean space. As a consequence their
restrictions to a set A and their pushforward through a map p are well-defined as long as
A is a Borel set and the map p is Lipschitz in a neighborhood of their support.

Definition 1.2 (Optimal planes). We say that an m-dimensional plane π optimizes the
excess of T in a ball Br(x) if

E(T,Br(x)) := min
τ

E(T,Br(x), τ) = E(T,Br(x), π). (1.3)

Observe that in general the plane optimizing the excess is not unique and h(T,Br(x), π)
might depend on the optimizer π. Since for notational purposes it is convenient to define
a unique “height” h(T,Br(x)), we call a plane π as in (1.3) optimal if in addition

h(T,Br(x), π) = min
{
h(T,Br(x), τ) : τ satisfies (1.3)

}
=: h(T,Br(x)) , (1.4)

i.e. π optimizes the height among all planes that optimize the excess. However (1.4) does
not play any further role apart from simplifying the presentation.

In the case of cylinders, instead, E(T,Cr(x, π)) will denote E(T,Cr(x, π), π) (which co-
incides with the cylindrical excess used in [10] when (pπ)]T Cr(x, π) = Q JBr(pπ(x), π)K),
whereas h(T,Cr(x, π)) will be used for h(T,Cr(x, π), π).

1.2. Old and new height bounds. We start by proving that the standard stratified
height bound for area minimizing currents (cf. [8, Theorem A.1]) holds also for semicali-
brated currents.

Lemma 1.3 ([11, Lemma A.1]). There is a positive geometric constant c(m,n) with the
following property. If T is a semicalibrated current, where Ω ≤ c(m,n), then

‖T‖(Bρ(x)) ≥ ωm(Θ(T, p)− 1
4
)ρm ≥ ωm

3
4
ρm ∀p ∈ spt(T ),∀r ∈ dist(p, ∂U) . (1.5)
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Proof. By [14, Proposition 1.2] ‖T‖ is an integral varifold with bounded mean curvature
in the sense of Allard, where CΩ bounds the mean curvature for some geometric constant
C. It follows from Allard’s monotonicity formula that eCΩr‖T‖(Br(x)) is monotone non-
decreasing in r, from which the first inequality in (1.5) follows. The second inequality is
implied by Θ(T, p) ≥ 1 for every p ∈ spt(T ): this holds because the density is an upper
semicontinuous function which takes integer values ‖T‖-almost everywhere. �

For the proof of the next statement we refer to [8, Theorem A.1]: although there T
satisfies the stronger assumption of being area minimizing, a close inspection of the proof
given in [8] shows that the only property of area minimizing currents relevant to the
arguments is the validity of the density lower bound (1.5).

Theorem 1.4 ([11, Theorem A.2]). Let Q, m and n be positive integers. Then there
are ε > 0, c > 0 and C geometric constants with the following property. Assume that
π0 = Rm × {0} ⊂ Rm+n and that:

(h1) T is an integer rectifiable m-dimensional semicalibrated current with U = Cr(x0)
and Ω ≤ c;

(h2) ∂T Cr(x0) = 0, (pπ0)]T Cr(x0) = Q JBr(pπ0(x0))K and E := E(T,Cr(x0)) < ε.

Then there are k ∈ N, points {y1, . . . , yk} ⊂ Rm+n and positive integers Q1, . . . , Qk such
that:

(i) having set σ := CE1/2m, the open sets Si := Rm × (yi+ ] − rσ, rσ[n) are pairwise
disjoint and spt(T ) ∩Cr(1−σ| logE|)(x0) ⊂ ∪iSi;

(ii) (pπ0)][T (Cr(1−σ| logE|)(x0) ∩ Si)] = Qi

q
Br(1−σ| logE|)(pπ0(x0), π0)

y
∀i ∈ {1, . . . , k}.

(iii) for every p ∈ spt(T ) ∩Cr(1−σ| logE|)(x0) we have Θ(T, p) < max{Qi}+ 1
2
.

Next we introduce a sharp version of the height bound for currents with bounded general-
ized mean curvature, around points of maximal multiplicity. A similar result, in a different
context, can be found in [22], while other Poincaré-types inequalities can be found in
[16, 15].

Theorem 1.5 (Improved Height Bound). Let Q, m and n be positive integers. Then
there are ε, c, C > 0 geometric constants with the following property. Assume that π0 =
Rm × {0} ⊂ Rm+n and that:

(ih1) T is an integer rectifiable m-dimensional current with generalized mean curvature
bounded by c in B2r(x) ⊂ Rn+m, that is∫

divTX d‖T‖ = −
∫
X ·H d‖T‖ ∀X ∈ C∞c (B4r) , (1.6)

and A := ‖H‖∞ ≤ c;
(ih2) ∂T C4r(x0) = 0, (pπ0)]T C4r(x0) = Q JB2r(pπ0(x0))K and E := E(T,C4r(x0)) <

ε;

(ih3) π0 is an optimal plane for T and Θ(T, x0) = limr→0
‖T‖(Br(x0))

ωmrm
= Q.

Then the following bound holds

h(T,Cr(x0, π0)) ≤ C(E
1/2 + (rA)

1/2)r. (1.7)
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Remark 1.6. Notice that, thanks to Lemma 0.4, Theorem 1.5 covers the case of semical-
ibrated currents with Ω ≤ c. Indeed, if Ω ≤ c, then the linear functional X 7→ T (dω X)
is bounded and therefore, by the Riesz representation theorem, T has generalized mean
curvature bounded by c.

The proof of this result is obtained combining an L∞ − L2 bound with a Poincaré
inequality. In the sequel we will assume without loss of generality that x0 = 0 and r = 1.
Furthermore we let (ei)i=1...,m+n denote the standard basis of Rm+n and p = (x, y) =
(x1, . . . , xm, y1, . . . , yn) a generic point of Rm+n.

The L∞ − L2 bound follows from the simple observation that the coordinates of the
support of the current solve an elliptic PDE.

Lemma 1.7 (L∞ − L2 bound). There are ε > 0, c > 0 and C > 0 geometric constants
with the following property. Let T be as in Theorem 1.5, then

sup
(x,y)∈C1∩spt(T )

|yj|2 ≤ C
(∫

C2

|y|2 d‖T‖+ A2
)
, j = 1, . . . , n. (1.8)

Proof. Let us fix j ∈ {1, . . . , n} and notice that, from (1.6) with X = ξej, for some
ξ ∈ C∞c (C2), we get ∫

∇yj∇ξ d‖T‖ =

∫
Hj ξ d‖T‖ . (1.9)

where Hj := H · ej. Using this identity it is immediate to see that there exists a geometric
constant C > 0 such that the function |yj| + C‖H‖∞|x|2 is subharmonic on T , therefore
we can apply [1, 7.5 (6) Theorem, pg. 464] to conclude

sup
(x,y)∈C1∩spt(T )

|yj|2 ≤ C

(∫
C2

|y|2 d‖T‖+

∫
C2

|x|4 ‖H‖∞ d‖T‖
)
‖T‖-a.e. (x, y) ∈ C1 ,

from which the lemma follows. �

The Poincaré inequality is actually true only in points of maximal density and comes
from the monotonicity inequality. The precise statement is the following.

Lemma 1.8 (Poincaré inequality). There are ε, c, C > 0 geometric constants such that, if
T is as in Theorem 1.5, then ∫

C2

|y|2 d‖T‖ ≤ C(E + A). (1.10)

Proof. Testing (1.6) with a radial vector field X(p) := γ(|p|) p, and letting γ converge to
the characteristic function of the ball B4 we obtain (cf. [20, 17.3])∫

B4\Bs

1

|p|2

∣∣∣∣p⊥|p|
∣∣∣∣2 d‖T‖(p) =

‖T‖(B4)

ωm 4m
− ‖T‖(Bs)

ωm sm

− 1

2

∫
B4

p ·H(p)

(
1

max{s, |p|}m
− 1

4m

)
d‖T‖(p). (1.11)
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Moreover, for 2−j−1 ≤ s ≤ 2−j, the last term in (1.11) can be estimated by

−1

2

∫
B

2−j

p ·H(p)

(
1

max{s, |p|}m
− 1

2−jm

)
d‖T‖(p) ≤ C 2−j ‖H‖L∞

‖T‖(B2−j)

2−jm
≤ C 2−j A.

(1.12)
Therefore, arguing via a dyadic decomposition we deduce for every 2−J < s < 4∫

B4\Bs

1

|p|m

∣∣∣∣p⊥|p|
∣∣∣∣2 d‖T‖(p) ≤ J−1∑

j=0

∫
B

22−j \B21−j

1

|p|m

∣∣∣∣p⊥|p|
∣∣∣∣2 d‖T‖(p)

≤
J−1∑
j=0

[
‖T‖(B22−j)

ωm (22−j)m
− ‖T‖(B21−j)

ωm (21−j)m
+ C 2−j A

]
≤ ‖T‖(B4)

ωm 4m
− ‖T‖(Bs)

ωm sm
+ C A

where in the second line we used once more (1.12). Letting s→ 0, we get∫
B4

1

|p|m

∣∣∣∣p⊥|p|
∣∣∣∣2 d‖T‖(p) ≤ ‖T‖(B4)

ωm 4m
−Θ(T, 0) + C A.

Next recall that, if assumption (ih2) holds, then

E(T,C4) =
‖T‖(C4)

ωm4m
−Q

and since B4 ⊂ C4 and, by (ih3), Θ(T, 0) = Q, we conclude∫
B4

|p⊥|2 d‖T‖(p) ≤ C(E(T,C4) + A). (1.13)

A simple computation gives

|p⊥|2 = |p− pTpspt(T )(p) + pπ0(p)− pπ0(p)|2

≥ |p− pπ0(p)|2 − |pTyspt(T )(p)− pπ0(p)|2 − 2|p− pπ0(p)| |pTyspt(T )(p)− pπ0(p)|

≥ |y|
2

2
− 2|p|2 · |~T − ~π0|2 ,

and therefore ∫
B4

|y|2 d‖T‖(p) ≤ C

(
E + A +

∫
B4

|~T − ~π0|2 d‖T‖
)

≤ C (E + A).

which concludes the proof of (1.10), since, for ε small enough, Theorem 1.4 ensures that
spt(T ) ∩C2 ⊂ B4. �

Proof of Theorem 1.5. Combining Lemma 1.7 and Lemma 1.8 with a simple scaling argu-
ment we get the desired conclusion. �
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Remark 1.9. In particular, if T is an area minimizing current in a k-dimensional sub-
manifold M ⊂ Rm+n, m < k ≤ m+ n, then

h(T,Cr(x0, π0)) ≤ C(E
1/2 + rA)r.

Notice that it is enough to prove that∫
C2

|y|2 d‖T‖ ≤ C(E + A2). (1.14)

where A is the norm of the second fundamental form of M . To see this, we observe that
in this situation

− 1

2

∫
Br

p ·H(p)

(
1

max{s, |p|}n
− 1

4n

)
d‖T‖(y) =

1

2

∫
B4

|p⊥ ·H(p)|
(

1

max{s, |p|}n
− 1

4n

)
d‖T‖(p)

≤ ε

∫
B4

∣∣∣∣p⊥|p|
∣∣∣∣2 ( 1

max{s, |p|}n
− 1

4n

)
d‖T‖(p) +

C

ε

∫
B4

|p|2 |H(p)|2
(

1

max{s, |p|}n
− 1

4n

)
d‖T‖(p).

Summing over the annuli as above we get∫
B4

1

|p|n

∣∣∣∣p⊥|p|
∣∣∣∣2 d‖T‖(p) ≤ ‖T‖(B4)

ωn 4n
−Θ(T, 0) + C A2 + ε

∫
B4

1

|p|n

∣∣∣∣p⊥|p|
∣∣∣∣2 d‖T‖(p)

that is ∫
B4

|y|2 d‖T‖(p) ≤ C (E + A2).

This last expression is analogous to (1.13), so we conclude as above.
This seems to be the analogous of the improved monotonicity formula of [8, Lemma A.1],

and indeed we took advantage of the same orthogonality property of the mean curvature.

Part 1. Center Manifold and Normal Approximation

2. Center Manifold: Construction algorithm

The goal of this section and the next is to specify the algorithm leading to the center
manifold and the normal approximation, together with their properties, which will be
fundamental in the asymptotic analysis of the frequency function of the third section. The
proofs of the various statements are all deferred to a later section.

The following assumptions will hold in all the statements of this section.

Assumption 2.1. ε0 ∈]0, 1] is a fixed constant and T 0 is an m-dimensional semicalibrated
integral current of Rm+n with finite mass. Moreover

Θ(0, T 0) = Q and ∂T 0 B6
√
m = 0, (2.1)

‖T 0‖(B6
√
mρ) ≤

(
ωmQ(6

√
m)m + ε2

2

)
ρm ∀ρ ≤ 1, (2.2)

E
(
T 0,B6

√
m

)
= E

(
T 0,B6

√
m, π0

)
, (2.3)

m0 := max
{
‖dω‖2

C1,ε0 ,E
(
T 0,B6

√
m

)}
≤ ε2

2 ≤ 1 . (2.4)
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ε2 is a positive number whose choice will be specified in each statement. Notice that Ω of

Lemma 0.4 satisfies Ω ≤m1/2
0 .

Constants which depend only upon m,n and Q will be called geometric and usually
denoted by C0.

The next lemma is a standard consequence of the monotonicity formula and the lower
density bound for semicalibrated currents in Lemma 1.3 (to ensure the convergence of
supports), together with Assumption 2.1. Its proof can be found in [8].

Lemma 2.2 ([8, Lemma 1.6]). There are positive constants C0(m,n,Q) and c0(m,n,Q)
with the following property. If T 0 is as in Assumption 2.1, ε2 < c0 and T := T 0 B23

√
m/4,

then:

∂T C11
√
m/2(0, π0) = 0 , (pπ0)]T C11

√
m/2(0, π0) = Q

q
B11

√
m/2(0, π0)

y
(2.5)

and h(T,C5
√
m(0, π0)) ≤ C0m

1/2m
0 . (2.6)

In particular for each x ∈ B11
√
m/2(0, π0) there is a point p ∈ spt(T ) with pπ0(p) = x.

From now on we will always work with the current T of Lemma 2.2. We specify next some
notation which will be recurrent in the following when dealing with cubes of π0 = Rm×{0}.
For each j ∈ N, C j denotes the family of closed cubes L of π0 of the form

[a1, a1 + 2`]× . . .× [am, am + 2`]× {0} ⊂ π0 , (2.7)

where 2 ` = 21−j =: 2 `(L) is the side-length of the cube, ai ∈ 21−jZ ∀i and we require in
addition −4 ≤ ai ≤ ai + 2` ≤ 4. To avoid cumbersome notation, we will usually drop the
factor {0} in (2.7) and treat each cube, its subsets and its points as subsets and elements
of Rm. Thus, for the center xL of L we will use the notation xL = (a1 + `, . . . , am + `),
although the precise one is (a1 + `, . . . , am + `, 0, . . . , 0). Next we set C :=

⋃
j∈N C j. If H

and L are two cubes in C with H ⊂ L, then we call L an ancestor of H and H a descendant
of L. When in addition `(L) = 2`(H), H is a son of L and L the father of H.

Definition 2.3. A Whitney decomposition of [−4, 4]m ⊂ π0 consists of a closed set Γ ⊂
[−4, 4]m and a family W ⊂ C satisfying the following properties:

(w1) Γ ∪
⋃
L∈W L = [−4, 4]m and Γ does not intersect any element of W ;

(w2) the interiors of any pair of distinct cubes L1, L2 ∈ W are disjoint;
(w3) if L1, L2 ∈ W have nonempty intersection, then 1

2
`(L1) ≤ `(L2) ≤ 2 `(L1).

Observe that (w1) - (w3) imply

sep (Γ, L) := inf{|x− y| : x ∈ L, y ∈ Γ} ≥ 2`(L) for every L ∈ W . (2.8)

However, we do not require any inequality of the form sep (Γ, L) ≤ C`(L), although this
would be customary for what is commonly called a Whitney decomposition in the literature.

2.1. Parameters. The algorithm for the construction of the center manifold involves sev-
eral parameters which depend in a complicated way upon several quantities and estimates.
We introduce these parameters and specify some relations among them in the following
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Assumption 2.4. Ce, Ch, β2, δ2,M0 are positive real numbers and N0 a natural number
for which we assume always

β2 = 4 δ2 = min

{
1

2m
,
β0

100
, ε0

}
, where β0 is the constant of [10, Theorem 1.4], (2.9)

M0 ≥ C0(m,n, n̄, Q) ≥ 4 and
√
mM027−N0 ≤ 1 . (2.10)

As we can see, β2 and δ2 are fixed. The other parameters are not fixed but are subject
to further restrictions in the various statements, respecting the following “hierarchy”. As
already mentioned, “geometric constants” are assumed to depend only upon m,n and Q.
The dependence of other constants upon the various parameters pi will be highlighted using
the notation C = C(p1, p2, . . .).

Assumption 2.5 (Hierarchy of the parameters). In all the statements of the paper

(a) M0 is larger than a geometric constant (cf. (2.10)) or larger than a constant C(δ2),
see Proposition 3.9;

(b) N0 is larger than C(β2, δ2,M0) (see for instance (2.10), Proposition 3.9 and Propo-
sition 3.12);

(c) Ce is larger than C(β2, δ2,M0, N0) (see the statements of Proposition 2.7, Theorem
2.13 and Proposition 3.10);

(d) Ch is larger than C(β2, δ2,M0, N0, Ce) (see Propositions 2.7 and 3.6);
(e) ε2 is smaller than c(β2, δ2,M0, N0, Ce, Ch) (which will always be positive).

The functions C and c will vary in the various statements: the hierarchy above guarantees
however that there is a choice of the parameters for which all the restrictions required in
the statements of the next propositions are simultaneously satisfied. In fact it is such a
choice which is then made in the second part of this work. To simplify our exposition, for
smallness conditions on ε2 as in (e) we will use the sentence “ε2 is sufficiently small”.

2.2. The Whitney decomposition. Thanks to Lemma 2.2, for every L ∈ C , we may
choose yL ∈ π⊥0 so that pL := (xL, yL) ∈ spt(T ) (recall that xL is the center of L). yL is in
general not unique and we fix an arbitrary choice. A more correct notation for pL would
be xL + yL, however, following [8], we abuse the notation slightly in using (x, y) instead of
x+ y and, consistently, π0 × π⊥0 instead of π0 + π⊥0 .

Definition 2.6 (Refining procedure). For L ∈ C we set rL := M0

√
m`(L) and BL :=

B64rL(pL). We next define the families of cubes S ⊂ C and W = We ∪Wh ∪Wn ⊂ C with

the convention that S j = S ∩ C j,W j = W ∩ C j and W j
� = W� ∩ C j for � = h, n, e. We

define W i = S i = ∅ for i < N0. We proceed with j ≥ N0 inductively: if no ancestor of
L ∈ C j is in W , then

(EX) L ∈ W j
e if E(T,BL) > Cem0 `(L)2−2δ2 ;

(HT) L ∈ W j
h if L 6∈ W j

e and h(T,BL) > Chm
1/2m
0 `(L)1+β2 ;

(NN) L ∈ W j
n if L 6∈ W j

e ∪W j
h but it intersects an element of W j−1;
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if none of the above occurs, then L ∈ S j. We finally set

Γ := [−4, 4]m \
⋃
L∈W

L =
⋂
j≥N0

⋃
L∈S j

L. (2.11)

Observe that, if j > N0 and L ∈ S j ∪W j, then necessarily its father belongs to S j−1.

Proposition 2.7 (Whitney decomposition [8, Proposition 1.11]). Let Assumptions 2.1
and 2.4 hold and let ε2 be sufficiently small. Then (Γ,W ) is a Whitney decomposition of
[−4, 4]m ⊂ π0. Moreover, for any choice of M0 and N0, there is C? := C?(M0, N0) such
that, if Ce ≥ C? and Ch ≥ C?Ce, then

W j = ∅ for all j ≤ N0 + 6. (2.12)

Moreover, the following estimates hold with C = C(β2, δ2,M0, N0, Ce, Ch):

E(T,BJ) ≤ Cem0 `(J)2−2δ2 and h(T,BJ) ≤ Chm
1/2m
0 `(J)1+β2 ∀J ∈ S , (2.13)

E(T,BL) ≤ Cm0 `(L)2−2δ2 and h(T,BL) ≤ Cm
1/2m
0 `(L)1+β2 ∀L ∈ W . (2.14)

2.3. Construction algorithm. We will see below that in (a suitable portion of) each BL

the current T can be approximated efficiently with a graph of a Lipschitz multiple-valued
map. The average of the sheets of this approximating map will then be used as a local
model for the center manifold, while the map itself, suitably reparametrized on the center
manifold and extended, will give us the normal approximation.

Definition 2.8 (π-approximations). Let L ∈ S ∪W and π be an m-dimensional plane. If
T C32rL(pL, π) fulfills the assumptions of [13, Theorem 1.1] in the cylinder C32rL(pL, π),
then the resulting map f : B8rL(pL, π) → AQ(π⊥) given by [13, Theorem 1.4] is called a
π-approximation of T in C8rL(pL, π).

Lemma 2.9 ([8, Lemma 1.15]). Let the assumptions of Proposition 2.7 hold and assume
Ce ≥ C? and Ch ≥ C?Ce for a suitably large C?(M0, N0). For each L ∈ W ∪S we choose
a plane πL which optimizes the excess and the height in BL. For any choice of the other
parameters, if ε2 is sufficiently small, then T C32rL(pL, πL) satisfies the assumptions of
[13, Theorem 1.5] for any L ∈ W ∪S .

As in [8], we wish to find a suitable smoothing of the average of the π-approximation
η ◦ f . However the smoothing procedure is more complicated in our case: rather than
smoothing by convolution, we need to solve a suitable elliptic system of partial differential
equations (cf. [11]) and then estimate it carefully.

Definition 2.10 (Smoothing). Let L and πL be as in Lemma 2.9 and denote by fL the
corresponding πL-approximation. We let hL be a solution (provided it exists) of

LLhL = FL

hL|∂B8rL
(pL,πL) = η ◦ fL ,

(2.15)

where LL is a suitable second order linear elliptic operator with constant coefficients and
FL a suitable affine map: the precise expressions for LL and FL depend on a careful
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Taylor expansion of the first variations formulas and are given in Proposition 4.4. The
map hL is the tilted interpolating function relative to L.

In what follows we will deal with graphs of multivalued functions f in several system
of coordinates. These objects can be naturally seen as currents Gf (see [6]) and in this
respect we will use extensively the notation and results of [6] (therefore Gr(f) will denote
the “set-theoretic” graph).

Lemma 2.11. Let the assumptions of Proposition 2.7 hold and assume Ce ≥ C? and Ch ≥
C?Ce (where C? is the constant of Lemma 2.9). For any choice of the other parameters, if ε2

is sufficiently small the following holds. For any L ∈ W ∪S , there is a unique solution hL
of (2.15) and there is a smooth gL : B4rL(zL, π0)→ π⊥0 such that GgL = GhL C4rL(pL, π0).

Fix next a ϑ ∈ C∞c (
[
−17

16
, 17

16

]m
, [0, 1]) which is nonnegative and is identically 1 on

[−1, 1]m. We use ϑ to construct a partition of unity for the Whitney decomposition and
glue all the interpolated functions together.

Definition 2.12 (Interpolating functions). The maps hL and gL in Lemma 2.11 will be
called, respectively, the tilted L-interpolating function and the L-interpolating function.
For each j let Pj := S j ∪

⋃j
i=N0

W i and for L ∈Pj define ϑL(y) := ϑ(y−xL
`(L)

). The map

ϕj :=

∑
L∈Pj ϑLgL∑
L∈Pj ϑL

on ]− 4, 4[m, (2.16)

will be called the glued interpolation at the step j.

Theorem 2.13 (Existence of the center manifold). Assume that the hypotheses of Lemma
2.9 hold and let κ := min{ε0/2, β2/4}. For any choice of the other parameters, if ε2 is
sufficiently small, then

(i) ‖Dϕj‖C2,κ ≤ Cm
1/2
0 and ‖ϕj‖C0 ≤ Cm

1/2m
0 , with C = C(β2, δ2,M0, N0, Ce, Ch).

(ii) if L ∈ W i and H is a cube concentric to L with `(H) = 9
8
`(L), then ϕj = ϕk on H

for any j, k ≥ i+ 2.
(iii) ϕj converges in C3 to a map ϕ and M := Gr(ϕ|]−4,4[m) is a C3,κ submanifold of Σ.

Definition 2.14 (Whitney regions). The manifold M in Theorem 2.13 is called a center
manifold of T relative to π0 and (Γ,W ) the Whitney decomposition associated to M.
Setting Φ(y) := (y,ϕ(y)), we call Φ(Γ) the contact set. Moreover, to each L ∈ W we
associate a Whitney region L on M as follows:

(WR) L := Φ(H ∩ [−7
2
, 7

2
]m), where H is the cube concentric to L with `(H) = 17

16
`(L).

3. Normal Approximation: main estimates

3.1. The M-normal approximation and related estimates. In what follows we as-
sume that the conclusions of Theorem 2.13 apply and denote by M the corresponding
center manifold. For any Borel set V ⊂M we will denote by |V| its Hm-measure and will
write

∫
V f for the integral of f with respect to Hm. Br(q) denotes the geodesic balls inM.

Moreover, we refer to [6] for all the relevant notation pertaining to the differentiation of
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(multiple valued) maps defined onM, induced currents, differential geometric tensors and
so on.

Assumption 3.1. We fix the following notation and assumptions.

(U) U :=
{
x ∈ Rm+n : ∃! y = p(x) ∈M with |x− y| < 1 and (x− y) ⊥M

}
.

(P) p : U→M is the map defined by (U).
(R) For any choice of the other parameters, we assume ε2 to be so small that p extends

to C2,κ(Ū) and p−1(y) = y +B1(0, (TyM)⊥) for every y ∈M.
(L) We denote by ∂lU := p−1(∂M) the lateral boundary of U.

The following is then a corollary of Theorem 2.13 and the construction algorithm.

Corollary 3.2. Under the hypotheses of Theorem 2.13 and of Assumption 3.1 we have:

(i) spt(∂(T U)) ⊂ ∂lU, spt(T [−7
2
, 7

2
]m × Rn) ⊂ U and p](T U) = Q JMK;

(ii) spt(〈T,p,Φ(q)〉) ⊂
{
y : |Φ(q)−y| ≤ Cm

1/2m
0 `(L)1+β2

}
for every q ∈ L ∈ W , where

C = C(β2, δ2,M0, N0, Ce, Ch);
(iii) 〈T,p, p〉 = Q JpK for every p ∈ Φ(Γ).

The main goal of this section is to couple the center manifold of Theorem 2.13 with a
good approximating map defined on it.

Definition 3.3 (M-normal approximation). An M-normal approximation of T is given
by a pair (K, F ) such that

(A1) F : M → AQ(U) is Lipschitz (with respect to the geodesic distance on M) and
takes the special form F (x) =

∑
i Jx+Ni(x)K, with Ni(x) ⊥ TxM for every x and

i.
(A2) K ⊂M is closed, contains Φ

(
Γ ∩ [−7

2
, 7

2
]m
)

and TF p−1(K) = T p−1(K).

The map N =
∑

i JNiK :M→AQ(Rm+n) is the normal part of F .

In the definition above it is not required that the map F approximates efficiently the
current outside the set Φ

(
Γ ∩ [−7

2
, 7

2
]m
)
. However, all the maps constructed in this paper

will approximate T with a high degree of accuracy in each Whitney region: such estimates
are detailed in the next theorem. In order to simplify the notation, we will use ‖N |V‖C0

(or ‖N |V‖0) to denote the number supx∈V G(N(x), Q J0K).

Theorem 3.4 (Local estimates for the M-normal approximation). Let γ2 := β0

4
, with β0

the constant of [10, Theorem 1.4]. Under the hypotheses of Theorem 2.13 and Assump-
tion 3.1, if ε2 is suitably small (depending upon all other parameters), then there is an
M-normal approximation (K, F ) such that the following estimates hold on every Whitney
region L associated to a cube L ∈ W , with constants C = C(β2, δ2,M0, N0, Ce, Ch):

Lip(N |L) ≤ Cmγ2

0 `(L)γ2 and ‖N |L‖C0 ≤ Cm
1/2m
0 `(L)1+β2 , (3.1)

|L \ K|+ ‖TF − T‖(p−1(L)) ≤ Cm1+γ2

0 `(L)m+2+γ2 , (3.2)∫
L
|DN |2 ≤ Cm0 `(L)m+2−2δ2 . (3.3)



ALMGREN’S TYPE REGULARITY FOR SEMICALIBRATED CURRENTS 15

Moreover, for any a > 0 and any Borel V ⊂ L, we have (for C = C(β2, δ2,M0, N0, Ce, Ch))∫
V
|η ◦N | ≤ Cm0

(
`(L)m+3+β2/3 + a `(L)2+γ2/2|V|

)
+
C

a

∫
V
G
(
N,Q Jη ◦NK

)2+γ2 . (3.4)

From (3.1) - (3.3) it is not difficult to infer analogous “global versions” of the estimates.

Corollary 3.5 (Global estimates). Let M′ be the domain Φ
(
[−7

2
, 7

2
]m
)

and N the map of
Theorem 3.4. Then, (again with C = C(β2, δ2,M0, N0, Ce, Ch))

Lip(N |M′) ≤ Cmγ2

0 and ‖N |M′‖C0 ≤ Cm
1/2m
0 , (3.5)

|M′ \ K|+ ‖TF − T‖(p−1(M′)) ≤ Cm1+γ2

0 , (3.6)∫
M′
|DN |2 ≤ Cm0 . (3.7)

3.2. Height bound and separation. We now analyze more in detail the consequences
of the various stopping conditions for the cubes in W . We first deal with L ∈ Wh.

Proposition 3.6 (Separation). There is a constant C](M0) > 0 with the following prop-
erty. Assume the hypotheses of Theorem 3.4 and in addition C2m

h ≥ C]Ce. If ε2 is suffi-
ciently small, then the following conclusions hold for every L ∈ Wh:

(S1) Θ(T, p) ≤ Q− 1
2

for every p ∈ B16rL(pL).

(S2) L ∩H = ∅ for every H ∈ Wn with `(H) ≤ 1
2
`(L);

(S3) G
(
N(x), Q Jη ◦N(x)K

)
≥ 1

4
Chm

1/2m
0 `(L)1+β2 for every x ∈ Φ(B2

√
m`(L)(xL, π0)).

A simple corollary of the previous proposition is the following.

Corollary 3.7. Given any H ∈ Wn there is a chain L = L0, L1, . . . , Lj = H such that:

(a) L0 ∈ We and Li ∈ Wn for all i > 0;
(b) Li ∩ Li−1 6= ∅ and `(Li) = 1

2
`(Li−1) for all i > 0.

In particular, H ⊂ B3
√
m`(L)(xL, π0).

We use this last corollary to partition Wn.

Definition 3.8 (Domains of influence). We first fix an ordering of the cubes in We as
{Ji}i∈N so that their sidelenghts do not increase. Then H ∈ Wn belongs to Wn(J0) (the
domain of influence of J0) if there is a chain as in Corollary 3.7 with L0 = J0. Inductively,
Wn(Jr) is the set of cubes H ∈ Wn \ ∪i<rWn(Ji) for which there is a chain as in Corollary
3.7 with L0 = Jr.

3.3. Splitting before tilting I. The following proposition contains a “typical” splitting-
before-tilting phenomenon: the key assumption of the theorem (i.e. L ∈ We) is that the
excess does not decay at some given scale (“tilting”) and the main conclusion (3.9) implies
a certain amount of separation between the sheets of the current (“splitting”).

Proposition 3.9. (Splitting I) There are functions C1(δ2), C2(M0, δ2) such that, if M0 ≥
C1(δ2), N0 ≥ C2(M0, δ2), if the hypotheses of Theorem 3.4 hold and if ε2 is chosen suffi-
ciently small, then the following holds. If L ∈ We, q ∈ π0 with dist(L, q) ≤ 4

√
m`(L) and
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Ω = Φ(B`(L)/4(q, π0)), then (with C,C3 = C(β2, δ2,M0, N0, Ce, Ch)):

Cem0`(L)m+2−2δ2 ≤ `(L)mE(T,BL) ≤ C

∫
Ω

|DN |2 , (3.8)∫
L
|DN |2 ≤ C`(L)mE(T,BL) ≤ C3`(L)−2

∫
Ω

|N |2 . (3.9)

3.4. Persistence of Q points. We next state two important properties triggered by the
existence of p ∈ spt(T ) with Θ(p, T ) = Q, both related to the splitting before tilting. The
new height bound of Theorem 1.5 enters here, where, combined with a decay statement for
the excess a la De Giorgi, allows us to prove that the approximating maps to the current
inherit points of maximal multiplicity from it.

Proposition 3.10. (Splitting II) Let the hypotheses of Theorem 2.13 hold and assume ε2 is
sufficiently small. For any α, ᾱ, α̂ > 0, there is a constant ε3 = ε3(α, ᾱ, α̂, β2, δ2,M0, N0, Ce, Ch) >
0 as follows. If, for some s ≤ 1

sup
{
`(L) : L ∈ W , L ∩B3s(0, π0) 6= ∅

}
≤ s , (3.10)

Hm−2+α
∞

(
{Θ(T, ·) = Q} ∩Bs

)
≥ ᾱsm−2+α, (3.11)

and Ce ≥ C(α̂,M0, N0, δ2) and min{s,m0} ≤ ε3, then

sup
{
`(L) : L ∈ We and L ∩B19s/16(0, π0) 6= ∅

}
≤ α̂s .

Proposition 3.11. (Persistence of Q-points) Assume the hypotheses of Proposition 3.9
hold. For every η2 > 0 there are s̄, ¯̀ > 0, depending upon η2, β2, δ2,M0, N0, Ce and Ch,
such that, if ε2 is sufficiently small, then the following property holds. If L ∈ We, `(L) ≤ ¯̀,
Θ(T, p) = Q and dist(pπ0(p(p)), L) ≤ 4

√
m`(L), then

−
∫
Bs̄`(L)(p(p))

G
(
N,Q Jη ◦NK

)2 ≤ η2

`(L)m−2

∫
B`(L)(p(p))

|DN |2 . (3.12)

3.5. Comparison between different center manifolds. We list here a final key con-
sequence of the splitting before tilting phenomenon. ι0,r denotes the map z 7→ z

r
.

Proposition 3.12 (Comparing center manifolds). There is a geometric constant C0 and a
function c̄s(β2, δ2,M0, N0, Ce, Ch) > 0 with the following property. Assume the hypotheses
of Proposition 3.9, N0 ≥ C0, cs := 1

64
√
m

and ε2 is sufficiently small. If for some r ∈]0, 1[:

(a) `(L) ≤ csρ for every ρ > r and every L ∈ W with L ∩Bρ(0, π0) 6= ∅;
(b) E(T,B6

√
mρ) < ε2 for every ρ > r;

(c) there is L ∈ W such that `(L) ≥ csr and L ∩ B̄r(0, π0) 6= ∅;
then

(i) the current T ′ := (ι0,r)]T B6
√
m satisfies the assumptions of Theorem 3.4 for some

plane π in place of π0;
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(ii) for the center manifold M′ of T ′ relative to π and the M′-normal approximation
N ′ as in Theorem 3.4, we have∫

M′∩B2

|N ′|2 ≥ c̄s max
{
E(T ′,B6

√
m), ‖dω‖2

C1,ε0

}
. (3.13)

4. Center Manifold: proofs of the main results

4.1. Technical preliminaries and the Whitney decomposition. The proof of Lemma
2.2 is analogous to the one of [8, Lemma 1.6], with Σ = Rn+m and using the height bounds
of Theorem 1.4 (one should observe that the monotonicity formula holds for T , since it is
a varifold with bounded mean curvature by Lemma 0.4).

For what concerns Proposition 2.7, the proof is contained in [8, Proposition 1.11], where
the following, more exhaustive, result is given. Notice that [8, Proposition 1.11] is a
consequnce of the Assumptions 2.1 and of the construction alghoritm for the Whitney
decomposition, in particular no additional assumption on the current is needed.

Proposition 4.1 (Tilting of optimal planes). Assume that the hypotheses of Assumptions
2.1 and 2.4 hold, that Ce ≥ C? and Ch ≥ C?Ce, where C?(M0, N0) is the constant of the
previous section. If ε2 is sufficiently small, then

(i) BH ⊂ BL ⊂ B5
√
m for all H,L ∈ W ∪S with H ⊂ L.

Moreover, if H,L ∈ W ∪S and either H ⊂ L or H ∩L 6= ∅ and `(L)
2
≤ `(H) ≤ `(L), then

the following holds, for C̄ = C̄(β2, δ2,M0, N0, Ce) and C = C(β2, δ2,M0, N0, Ce, Ch):

(ii) |πH − πL| ≤ C̄m
1/2
0 `(L)1−δ2;

(iii) |πH − π0| ≤ C̄m
1/2
0 ;

(iv) h(T,C36rH (pH , π0)) ≤ Cm
1/2m
0 `(H) and spt(T ) ∩C36rH (pH , π0) ⊂ BH ;

(v) h(T,C36rL(pL, πH)) ≤ Cm
1/2m
0 `(L)1+β2 and spt(T ) ∩C36rL(pL, π) ⊂ BL.

In particular, the conclusions of Proposition 2.7 hold.

We finally come to Lemma 2.9, which is a corollary of our assumptions together with
Proposition 4.1. It is the analogous of the first half of [8, Lemma 1.15] and its proof is
contained in the following more general result, when H = L.

Proposition 4.2 (Existence of interpolating functions [8, Proposition 4.2]). Assume the
conclusions of Proposition 4.1 apply. If ε2 is sufficiently small, then the following holds.

Let H,L ∈ W ∪ S be such that either H ⊂ L or H ∩ L 6= ∅ and `(L)
2
≤ `(H) ≤ `(L).

Then, (pπH )]T C32rL(pL, πH) = Q JB32rL(pL, πH))K and T satisfies the assumptions of [10,
Theorem 1.4] in the cylinder C32rL(pL, πH).

We next generalize slightly the terminology given in the previous sections.

Definition 4.3. Let H and L be as in Proposition 4.2. After applying [13, Theorem 1.5]
to TL C32rL(pL, πH) in the cylinder C32rL(pL, πH) we denote by fHL the corresponding
πH-approximation. However, rather then defining fHL on the disk B8rL(pL, πH), by ap-
plying a translation we assume that the domain of fHL is the disk B8rL(pHL, πH) where
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pHL = pH +pπH (pL−pH). Note in particular that Cr(pHL, πH) equals Cr(pL, πH), whereas
B8rL(pHL, πH) ⊂ pH + πH and pH ∈ B8rL(pHL, πH).

In particular observe that fLL = fL.

4.2. From the first variation to the elliptic system. In this paragraph we derive
the elliptic system L by studying which information the first variation of T induces on
the mean of the tilted (H,L)-interpolating function. This part, together with the next
subsection, is different than [8], and closer to [11].

In what follows we will consider elliptic systems of the following form. Given a vector
valued map v : pH + πH ⊃ Ω → π⊥H and after introducing an orthonormal system of
coordinates x1, . . . , xm on πH and y1, . . . , yn on π⊥H , the system is given by the n equations

∆vk + (L1)kij∂jv
i + (L2)ki v

i︸ ︷︷ ︸
=:E k(v)

= (L3)ki (x− xH)i + (L4)k︸ ︷︷ ︸
=:Fk

, (4.1)

where we follow Einstein’s summation convention and the tensors Li have constant coeffi-
cients. After introducing the operator L (v) = ∆v+E (v) we summarize the corresponding
elliptic system (4.1) as

L (v) = F . (4.2)

We then have a corresponding weak formulation for W 1,2 solutions of (4.2), namely v is a
weak solution in a domain D if the integral

I (v, ζ) :=

∫
(Dv : Dζ + (F − E (v)) · ζ) (4.3)

vanishes for smooth test functions ζ with compact support in D.

Proposition 4.4. Let H and L be as in Proposition 4.2 (including the possibility that
H = L) and let fHL be as in Definition 4.3. Then, there exist tensors with constant
coefficients L1, . . . ,L4 and a constant C = C(M0, N0, Ce, Ch), with the following properties:

(i) The tensors depend upon ω and |L1| + |L2| + |L3| + |L4| ≤ Cm
1/2
0 . In particular

‖FH(v)‖C0(B8rL
) ≤ Cm

1/2
0 r1+ε0

L .

(ii) If IH , LH and FH are defined through (4.1), (4.2) and (4.3), then

IH(η ◦ fHL, ζ) ≤ Cm0 r
m+2+β2

L ‖Dζ‖0 (4.4)

for all ζ ∈ C∞c (B8rL(pHL, πH), π⊥H).

Proof. Set for simplicity π = πH , π⊥ := π⊥H r = rL, p = pHL, f = fHL, B = B8r(p, π),
and fix coordinates (x, y) ∈ Rm × Rn such that pH = (0, 0). Set E := E

(
T,C32r(p, π)

)
.

By Proposition 4.1, spt(T ) ∩C32r(p, π) ⊂ BL . Thus, by (2.14) and Proposition 4.1(v) we
have

E ≤ Cm0`(L)2−2δ2 and h(T,C32r(p, π)) ≤ Cm
1/2m
0 `(L)1+β2 .
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Recall that, by [13, Theorem 1.5] we have

|Df | ≤ CEβ0 + Cm
1/2
0 r ≤ Cmβ0

0 rβ0(2−2δ2) (4.5)

|f | ≤ Ch(T,C32r(p, π)) + r E
1/2 ≤ Cm

1/2m
0 r1+β2 , (4.6)∫

B

|Df |2 ≤ C rmE ≤ Cm0 r
m+2−2δ2 , (4.7)

and

|B \K| ≤ CEβ0(E + r2Ω2)rm ≤ Cm1+β0

0 rm+(1+β0)(2−2δ1) , (4.8)∣∣∣∣‖T‖(C8r(p, π))− |B| − 1

2

∫
B

|Df |2
∣∣∣∣ ≤ CEβ0(E + r2Ω2)rm ≤ Cm1+β0

0 rm+(1+β0)(2−2δ2) ,

(4.9)

where K ⊂ B is the set

B \K = pπ ((spt(T )∆spt(Gf )) ∩C8rL(pL, π)) . (4.10)

Consider the vector field χ(x, y) := (0, ζ(x)) for some ζ as in the statement. Using
Lemma 0.4, we infer

δGf (χ) = δT (χ) + Err0 = T (dω χ) + Err0 = Gf (dω χ) + Err0 + Err1

with

|Err0 + Err1| = |δT (χ)− δGf (χ)|+
∣∣T (dω χ)−Gf (dω χ)

∣∣
≤ C

(
‖Dζ‖0 + ‖dω χ‖0

)
‖T −Gf‖(C8r(p, π))

≤ C
(
‖Dζ‖0 + ‖ζ‖0

)
Eβ0 (E + r2m0) rm

≤ C ‖Dζ‖0m
1+β0

0 rm+(2−2δ2)(1+β0). (4.11)

From [6, Theorem 4.1]

δGf (χ) = Q

∫
D(η ◦ f) : Dζ + Err2

with

|Err2| ≤ C

∫
|Dζ| |Df |3 ≤ C ‖Dζ‖0E

1+β0 rm

≤ C ‖Dζ‖0m
1+β0

0 rm+(2−2δ2)(1+β0).

Next we proceed to expand Gf (dw χ). To this aim we write

dω(x, y) =
n∑
l=1

al(x, y) dyl ∧ dx1 ∧ · · · ∧ dxm (4.12)

+
m∑
j=1

∑
l<k

blk,j(x, y) dyl ∧ dyk ∧ dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxm

+ terms with the wedge product of at least three dyl (4.13)
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and get

dω χ =
n∑
l=1

al ζ
l dx1 ∧ · · · ∧ dxm︸ ︷︷ ︸

ω(1)

+
m∑
j=1

∑
l<k

blk,j ζ
ldyk ∧ dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxm︸ ︷︷ ︸

ω(2)

+ω(3).

(4.14)

We consider separately Gf (ω
(1)),Gf (ω

(2)),Gf (ω
(3)). We start with the latter. Using the

decay of the energy in (4.7), we have for ε2 small enough,

Gf (ω
(3)) ≤ C ‖dω‖0 ‖ζ‖0

∫
B

|Df |2 ≤ Cm2
0 r

m+3−2δ2‖Dζ‖0. (4.15)

Next

Gf (ω
(2)) =

m∑
j=1

∑
l<k

Q∑
i=1

(−1)j−1

∫
ζ l(x) blk,j(x, fi(x))

∂fki
∂xj

= Q
m∑
j=1

∑
l<k

∫
ζ l(x) blk,j(0, 0)

∂(η ◦ f)k

∂xj
+ Err3,

=

∫
L1D(η ◦ f) · ζ + Err3 (4.16)

with

|Err3| ≤ C‖ζ‖0 ‖D(dω)‖0

∫
B

(r |Df |+ |f | |Df |) dx

≤ C‖Dζ‖0m0

(
r + osc(f) + h(T,C8r(0, π))

)
rm+1Eβ0

≤ C‖Dζ‖0m
1+β0

0 rm+2+(2−2δ1)β0 (4.17)

and L1 : Rn×m → Rn given by

L1A · el := Q

m∑
j=1

n∑
k=1

blk,j(0, 0)Akj ∀ A = (Akj)
j=1,...,m
k=1,...,n ∈ Rn×m.

Finally

Gf (ω
(1)) =

∑
l

Q∑
i=1

∫
ζ l(x) al(x, fi(x)) dx

= Q
∑
l

∫
ζ l(x) (al(0, 0) +Dxal(0, 0) · x+ Dyal(0, 0) · (η ◦ f)) dx+ Err4,

=

∫ (
L2 (η ◦ f) + L3 x+ L4

)
· ζ + Err4 (4.18)
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where L2 : Rn → Rn, L3 : Rm → Rn L4 ∈ Rn are given by

L2 v · el :=
n∑
k=1

∂al
∂yk

(0, 0) vk ∀ v ∈ Rn, ∀ l = 1, . . . , n (4.19)

L3 p · el :=
2∑
j=1

∂al
∂xj

(0, 0) pj ∀ w ∈ Rn, ∀ l = 1, . . . , n (4.20)

L4 · el := al(0, 0) ∀ l = 1, . . . , n (4.21)

and arguing as above

|Err4| ≤ C‖ζ‖0 [D(dω)]ε0

∫
B

(
r1+ε0 + |f |1+ε0

)
dx ≤ C‖Dζ‖0m0 r

m+2+ε0 . (4.22)

By the choice of our parameters the conclusion immediately follows. In particular, since
FH(p) = L3p+ L4 and ω ∈ C2,ε0 , we have

rL ‖L3‖0 + ‖L4‖0 ≤ C rL ‖D(dω)‖0 + ‖dω‖0 ≤ cm
1/2
0 r1+ε0

L ,

so that the second conclusion of (i) holds. �

4.3. Existence of the tilted interpolating functions and their main estimates.
We start generalizing the definition of the tilted interpolating functions hL. More precisely
we consider

Definition 4.5. Let H and L be as in Proposition 4.2, assume that the conclusions of
Proposition 4.4 applies and let LH and FH be the corresponding operator and map as
given by Proposition 4.4 in combination with (4.1), (4.2) and (4.3). Let fHL be as in
Definition 4.3 and fix coordinates (x, y) ∈ πH × π⊥H as in the proof of Proposition 4.4. We
then let hHL be the solution of

LHhHL = FH

hHL|∂B8rL
(pHL,πH) = η ◦ fHL .

(4.23)

In order to show that the maps hHL are well defined, we recall the following lemma,
proved in [11].

Lemma 4.6 ([11, Lemma 6.6]). Under the assumptions of Definition 4.5, if ε2 is suffi-
ciently small, then the elliptic system

LHv = F

v|∂B8rL
(pHL,πH) = g .

(4.24)

has a unique solution for every F ∈ W−1,2 and every g ∈ W 1,2(B8rL(pHL, πH)). Observe

moreover that ‖Dv‖L2 ≤ C0rL(‖F‖L2 +m
1/2
0 ‖g‖L2) + C0‖Dg‖L2 whenever F ∈ L2.
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Observe that hHH = hH . We next record three fundamental estimates, which regard,
respectively, the L∞ norms of derivatives of solutions of LH(v) = F , the L∞ norm of
hHL − η ◦ fHL and the L1 norm of hHL − η ◦ fHL.

Proposition 4.7. Let H and L be as in Proposition 4.4 and assume the conclusions in
there apply. Then the following estimates hold for a constant C = C(m0, N0, Ce, Ch) for

B̂ := B8rL(pHL, πH) and B̃ := B6rL(pHL, πH):

‖hHL − η ◦ fHL‖L1(B̂) ≤ Cm0 `(L)m+3+β2 (4.25)

‖hHL − η ◦ fHL‖L∞(B̃) ≤ Cm
1/2
0 `(L)3+β2 . (4.26)

Moreover, if LH is the operator of Proposition 4.4, r a positive number no larger than 1
and v a solution of LH(v) = F in B8r(q, πH), then

‖v‖L∞(B6r(q,πH)) ≤
C0

rm
‖v‖L1(B8r(q,πH)) + Cr2‖F‖L∞(B8r(q,πH)) (4.27)

and, for l ∈ N

‖Dlv‖L∞(B6r(q,πH)) ≤
C0

rm+l
‖v‖L1(B8r(q,πH)) + Cr2

l∑
j=0

rj−l‖DjF‖L∞(B8r(q,πH)), (4.28)

where the latter constants depend also upon l.

Proof. Proof of (4.27). The estimate will be proved for a linear constant coefficient
operator of the form L = ∆ + L1 ·D + L2 when L1 and L2 are sufficiently small. We can
then assume πH = Rm and q = 0. Besides, if we define u(x) := v(rx) we see that u just
satisfies ∆u+ rL1 ·Du+ r2L2 · u = 0 and thus, without loss of generality, we can assume
r = 1. We thus set B = B8(0) ⊂ Rm.

We recall the following interpolation estimate on the ball of radius 1, see [17, Theorem
1]. For 0 ≤ j < k and j

k
≤ a ≤ 1 we have, for a constant C0 = C0(k, j, q, r),

‖Dju‖Lp(B1) ≤ C‖Dku‖aLs(B1) ‖u‖1−a
Lq(B1) + C ‖u‖Lq(B1) , (4.29)

where
1
p

= j
m

+ a
(

1
s
− k

m

)
+ (1− a)1

q
.

We apply the estimate (4.29) for j = 1, k = 2, q = 1 and p = s > m to be fixed later.
Notice in particular that, for p > m,

1

2
≤ a =

mp+ p−m
mp+ 2p−m

< 1 .

Using Young’s inequality and a simple scaling argument, we achieve the inequality

‖Du‖Lp(Bρ(x)) ≤ C0ρ‖D2u‖Lp(Bρ(x)) + C0ρ
−m/p−m−1‖u‖L1(Bρ(x)) . (4.30)

Moreover, by Sobolev embedding:

‖u‖Lp(Bρ(x)) ≤ C0ρ‖Du‖Lp(Bρ(x)) + C0ρ
m/p−m‖u‖L1(Bρ(x)) . (4.31)
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Next, recall the standard Cálderon-Zygmund estimates for second order derivatives of
solutions of the Laplace equations: if B2ρ(x) ⊂ B, then

‖D2u‖Lp(Bρ(x)) ≤ C0‖∆u‖Lp(B2ρ(x)) + C0ρ
m/p−m−2‖u‖L1(B2ρ(x)) . (4.32)

Now, recall that ∆u = −L1 ·Du − L2 · u + F . Using the fact that |L1| + |L2| ≤ C0m
1/2
0 ,

we can combine all the inequalities above to conclude

ρm+2−m/p‖D2u‖Lp(Bρ(x)) ≤ C0ρ
m+2−m/pm0‖D2u‖Lp(B2ρ(x)) + C0‖u‖L1(B8) + C0‖F‖L∞(B8) .

(4.33)
Define next

S := sup{ρm+2−m/p‖D2u‖Lp(Bρ(x)) : B2ρ(x) ⊂ B8} (4.34)

and let % and ξ be such that B2%(ξ) ⊂ B8 and

%m+2−m/p‖D2u‖Lp(B%(ξ)) ≥
S

2
. (4.35)

We can cover B%(ξ) with N̄0 balls B%/2(xi) with xi ∈ B%(ξ), where N̄0 is only a geometric
constant. We then can apply (4.33) to conclude that

S

2
≤ C0N̄0m

1/2
0 S + C0N̄0‖u‖L1(B8) + C0N̄0‖F‖L∞(B8) .

Therefore, when m
1/2
0 is smaller than a geometric constant we conclude S ≤ C0‖u‖L1(B8) +

C0‖F‖L∞(B8). By definition of S, we have reached the estimate

ρm+2−m/p‖D2u‖Lp(Bρ(x)) ≤ C0‖u‖L1(B8) + C0‖F‖L∞(B8) whenever B2ρ(x) ⊂ B8.

Of course, with a simple covering argument, this implies

‖D2u‖Lp(B6) ≤ C0‖u‖L1(B8) + C0‖F‖L∞(B8) . (4.36)

Next, again using the interpolation inequality (4.30) we get

‖Du‖Lp(B6) ≤ C0‖u‖L1(B8) + C0‖F‖L∞(B8) .

So, for every p ≥ m,

‖Du‖Lp(B6) ≤ C0‖Du‖W 1,p(B6) ≤ C0‖u‖L1(B8) + C0‖F‖L∞(B8) .

Choosing p big enough depending on m so that W 1,p(B6) ↪→ C0(B6), we finally achieve

‖u‖L∞(B6) ≤ C0‖u‖W 1,p(B6) ≤ C0‖u‖L1(B8) + C0‖F‖L∞(B8) .

Proof of (4.28). As in the previous step, we can, without loss of generality, assume
r = 1. Note that a byproduct of the argument given above is also the estimate

‖Du‖L1(B6) ≤ C0‖u‖L1(B8) + C0‖F‖L∞(B8) .

In fact, by a simple covering and scaling argument one can easily see that

‖Du‖L1(Bτ ) ≤ C0(τ)‖u‖L1(B8) + C0(τ)‖F‖L∞(B8) for every τ < 8.

We can then differentiate the equation and use the proof of the previous paragraph to show

‖Du‖L∞(Bσ) ≤ C0(σ, τ)‖Du‖L1(Bτ ) + C0(σ, τ)‖DF‖L∞(Bτ ) .
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Again, arguing as above, a byproduct of the proof is also the estimate

‖D2u‖L1(Bσ) ≤ C0(σ, τ)‖Du‖L1(Bτ ) + C0(σ, τ)‖DF‖L∞(Bτ ) .

This can be applied inductively to get estimates for all higher derivatives.

Proof of (4.25). Let B := B8rL(pHL, πH). We use the coordinates introduced in the
proof of Proposition 4.4. We set w := hHL − η ◦ fHL and observe that Lw = FH −LH(η ◦ fHL)

w|∂B = 0

Next, for 1 < p < ∞, we define the continuous (by Calderon-Zygmund theory) linear
operator T : Lp(B)→ W 1,p

0 (B) ∩W 2,p(B) by T (g) = ψ where
−∆ψ = g in B

ψ = 0 on ∂B.

For p big enough depending on m, we can apply the Sobolev embedding W 1,p(B) ↪→ C0(B)
to the derivative of ζ ∈ W 2,p ∩W 1,p

0 to conclude that

‖Dζ − −
∫
Dζ‖0 ≤ C0r

1−m/p
L ‖D2ζ‖Lp .

On the other hand, by interpolation and Poincaré we conclude

‖Dζ‖Lp ≤ ‖ζ‖
1/2
Lp‖D

2ζ‖1/2
Lp ≤

ε

2rL
‖ζ‖Lp +

rL
2ε
‖D2ζ‖Lp ≤ C0ε‖Dζ‖Lp +

rL
2ε
‖D2ζ‖Lp ,

for every positive ε. Choosing the latter accordingly we achieve ‖Dζ‖Lp ≤ C0rL‖D2ζ‖Lp
and thus ‖Dζ‖0 ≤ C0r

1−m/p
L ‖D2ζ‖Lp .

We now use these bounds in (4.4) to get∣∣∣∣∫
B

(Dw : Dζ − L1Dw · ζ − L2w · ζ)

∣∣∣∣ ≤ Cm0 r
m+2+β2

L r
1−m

p

L ‖D2ζ‖Lp .

Then, we can estimate the Lp
′
-norm of w as follows:

‖w‖Lp′ (B) = sup
‖h‖Lp(B)=1

∫
B

w h = − sup
‖h‖Lp(B)=1

∫
B

w∆T (h)

≤ sup
‖h‖Lp(B)=1

∫
B

Dw ·DT (h)

≤ Cm0 r
m+3+β2−m/p
L sup

‖h‖Lp(B)=1

‖D2T (h)‖Lp

+ sup
‖h‖Lp(B)=1

∫
B

(−L1Dw · T (h)− L2w · T (h)) .
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Recalling the Calderon-Zygmund estimates we have

‖D2T (h)‖Lp ≤ C0‖h‖Lp
‖DT (h)‖Lp ≤ C0rL‖h‖Lp
‖T (h)‖Lp ≤ C0r

2
L‖h‖Lp .

Integrating by parts we then achieve

‖w‖Lp′ (B) ≤ Cm0 r
m+3+β2−m/p
L + sup

‖h‖Lp(B)=1

∫
B

w · (L1DT (h)− L2T (h))

≤ Cm0 r
m+3+β2−m/p
L + Cm

1/2
0 ‖w‖Lp′ (B) .

Therefore, if m
1/2
0 is sufficiently small, that is ε2 is sufficiently small, we deduce that

‖w‖L1 ≤ C r
m/p
L ‖w‖Lp′ (B) ≤ Cm0 r

m+3+β2

L .

Proof of (4.26). The estimate follows easily when ε2 is sufficiently small, from (4.25)

and (4.27), recalling that ‖FH(p)‖0 ≤ Cm
1/2
0 r1+ε0

L . �

We are now ready to state the key construction estimates, from which Theorem 2.13
follows easily as in [8, Section 4.4].

Proposition 4.8 (Construction estimates [8, Proposition 4.4]). Assume the conclusions of
Propositions 4.1 and 4.2 apply and set κ = min{β2/4, ε0/2}. Then, the following holds for
any pair of cubes H,L ∈Pj (cf. Definition 2.12), where C = C(β2, δ2,M0, N0, Ce, Ch):

(i) the conclusions of Lemma 2.11 hold;

(ii) ‖gH‖C0(B) ≤ Cm
1/2m
0 and ‖DgH‖C2,κ(B) ≤ Cm

1/2
0 , for B = B4rH (xH , π0);

(iii) if H ∩L 6= ∅, then ‖gH − gL‖Ci(BrL (xL)) ≤ Cm
1/2
0 `(H)3+κ−i for every i ∈ {0, . . . , 3};

(iv) |D3gH(xH)−D3gL(xL)| ≤ Cm
1/2
0 |xH − xL|κ;

(v) ‖gH−yH‖C0 ≤ Cm
1/2m
0 `(H)1+β2 and |πH−T(x,gH(x))GgH | ≤ Cm

1/2
0 `(H)1−δ2 ∀x ∈ H;

(vi) if L′ is the cube concentric to L ∈ W j with `(L′) = 9
8
`(L), then

‖ϕi − gL‖L1(L′) ≤ Cm0 `(L)m+3+β2/3 for all i ≥ j.

Proof. We start by fixing H,L, J so that H ∈ S ∪ W , L is an ancestor of H (possibly
H itself) and J is the father of L. We denote by B′ the ball B8rJ (pHJ , πH), by B the
ball B8rL(pHL, πH), by C′ the cylinder C8rJ (pJ , πH) and by C the cylinder C8rL(pL, πH).
Observe that B ⊂ B′ (this just requires M0 sufficiently large, given the estimate |pJ −
pL| ≤ 2

√
m`(J)) and thus C ⊂ C′. Next, set E := E(T,C32rL(pL, πH)) and E ′ :=

E(T,C32rJ (pJ , πH)) and recalling Proposition 4.1 we record

E ≤ Cm0`(L)2−2δ2 ≤ Cm0`(J)2−2δ2 and E ′ ≤ Cm0`(J)2−2δ2 (4.37)

h(T,C) ≤ Cm
1/2m
0 `(L)1+β2 ≤ Cm

1/2m
0 `(J)1+β2 and h(T,C′) ≤ Cm

1/2m
0 `(J)1+β2 . (4.38)

Next let K̄ be the projection of Gr(fHL) ∩Gr(fHJ) onto pHL + πH . We can estimate

|B \ K̄| ≤ Hm(Gr(fHL) \ spt(T )) +Hm(Gr(fHJ) \ spt(T ))
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and recalling the estimates of [13, Theorem 1.5] we achieve

|B \ K̄| ≤ C0r
m
J (Eβ0(E + C0m0r

2
J) + E ′β0(E ′ + C0m0r

2
J)) ≤ Cm1+β0

0 `(J)m+2 .

In particular K̄ is certainly nonempty, provided ε2 is small enough. Using the estimates of
[13, Theorem 1.5] on the oscillation of fHL and fHJ we conclude that

‖η ◦ fHL − η ◦ fHJ‖L∞(B) ≤ Cm
1/2m
0 `(J)1+β2 .

Set therefore ζ := η ◦ fHL − η ◦ fHJ and conclude that

‖ζ‖L1(B) ≤ ‖η ◦ fHL − η ◦ fHJ‖L∞(B) |B \ K̄| ≤ Cm
1+β0+1/2m
0 `(J)m+3+β2 .

If we define ξ := hHL − hHJ we can use (4.25) of Proposition 4.7 and the triangular
inequality to infer

‖ξ‖L1(B) ≤ Cm0`(J)m+3+β2 .

In turn, again by Proposition 4.7, this time using the fact that LHξ = 0 and (4.28), we
infer

‖Dl(hHL − hHJ)‖C0(B̂) ≤ Cm0`(J)3+β2−l ≤ Cm0`(J)3+2κ−l for l = 0, 1, 2, 3, 4, (4.39)

where B̂ = B6rL(pHL, πH). Interpolating we get easily also

[D3(hHL − hHJ)]0,κ,B̂ ≤ Cm0`(J)κ . (4.40)

Fix now a chain of cubes H = Hj ⊂ Hj−1 ⊂ . . . ⊂ HN0 =: L, where each Hj−1 is the father
of Hj. Summing the estimates above and using the fact that `(Hj) = 2−j, we infer

‖Dl(hHL − hH)‖C0(B̃) ≤ Cm0 `(L)3+2κ−l for l = 0, 1, 2, 3 (4.41)

[D3(hHL − hH)]0,κ,B̃ ≤ Cm0 `(L)κ , (4.42)

where B̃ = B6rH (pH , πH). Observe that, assuming that we have fixed coordinates so that
pH = (0, 0) we also know, arguing as in the proof of Proposition 4.4, that, if we set
B̄ := B8rL(pHL, πH), then

‖η ◦ fHL‖L∞(B̄) ≤ Cm
1/2m
0 `(L)1+β2 .

In particular, applying (4.26) of Proposition 4.7, we conclude

‖hHL‖C0(B̂) ≤ Cm
1/2m
0 `(L)1+β2 .

We next estimate the derivatives of hHL. Let E := E(T,C32rL(pL, πH)) and recall the
discussion above and the estimates of [13, Theorem 1.5] to conclude that∫

B̄

|DfHL|2 ≤ C0r
m
LE ≤ Cm0`(L)m+2−2δ2 . (4.43)

We thus conclude that ‖Dη ◦fHL‖L2(B̄) ≤ Cm
1/2
0 `(L)m/2+1−δ2 . We can now use the Lemma

4.6 to estimate ‖DhHL‖L2 ≤ Cm
1/2
0 `(L)m/2+1−δ2 and thus ‖DhHL‖L1 ≤ Cm

1/2
0 `(L)m+1−δ2 .

If we differentiate the equation defining hHL we then find

LH∂jh
i
HL = (L3)ij
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and we can thus apply (4.27) of Proposition 4.7, with v = DhHL, to conclude that

‖DlhHL‖L∞(B6rL
) ≤ Cm

1/2
0 `(L)2−δ2−l ≤ Cm

1/2
0 for l = 1, 2, 3, 4, (4.44)

where we used that, for the starting cubes L = HN0 , C(M0) ≤ `(L).
Using (4.42) we then get ‖DhH‖C2,κ(B) ≤ ‖DhH − DhHL‖C2,κ(B) + ‖DhHL‖C2,κ(BN0 ) ≤

Cm
1/2
0 , where we used the fact that for the biggest cube L the bound `(L) > C(N0,M0) > 0

holds. This, together with |πH − π0| ≤ Cm
1/2
0 in Proposition 4.1, allows us to apply [8,

Lemma B.1] and achieve the existence of the function gH and the bound ‖DgH‖C2,κ(B) ≤
Cm

1/2
0 . With a similar argument using the bound ‖hHL‖C0(BN0 ) ≤ Cm

1/2m
0 proved above,

we achieve also the bound ‖hH‖C0(B) ≤ Cm
1/2m
0 . Hence again by [8, Lemma B.1] ‖gH‖C0(B) ≤

Cm
1/2m
0 . This shows obviously Proposition 4.8(i)-(ii).

Next, recalling the height estimate (and taking into account that pH = 0 ∈ spt(T )) we
have

‖η ◦ fH‖L∞(B8rH
(pH ,πH)) ≤ Cm

1/2m
0 `(H)1+β2

and thus

‖η ◦ fH‖L1(B8rH
(pH ,πH)) ≤ Cm

1/2m
0 `(H)m+1+β2

Using (4.25) we conclude

‖hH‖L1(B8rH
(pH ,πH)) ≤ Cm

1/2m
0 `(H)m+1+β2

and with the help of (4.27) we achieve

‖hH‖L∞(B6rH
(pH ,πH)) ≤ Cm

1/2m
0 `(H)1+β2 . (4.45)

Combining (4.45) with [8, Lemma B.1] we also get

‖gH − p⊥π0
(pH)‖C0 ≤ Cm

1/2m
0 `(H)1+β2 . (4.46)

Finally, recall that, if E := E(T,C32rH (pH , πH)), then∫
B8rH

(pH ,πH)

|DfH |2 ≤ Cm0`(H)m+2−2δ2 ,

from which clearly we get∫
B8rH

(pH ,πH)

|Dη ◦ fH |2 ≤ Cm0`(H)m+2−2δ1 .

By the last estimate in Lemma 4.6, we deduce∫
B8rH

(pH ,πH)

|DhH |2 ≤ Cm0`(H)m+2−2δ2 .

Thus we conclude the existence of a point p such that

|DhH(p)| ≤ Cm
1/2
0 `(H)1−δ2 . (4.47)
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Using the bound on ‖D2hH‖0, we conclude |DhH(q)| ≤ Cm
1/2
0 `(H)1−δ2 for all q’s in the

domain of hH . This implies the estimate

|TpGhH − πH | ≤ Cm
1/2
0 `(H)1−δ2 ∀p ∈ Gr(hH) ∩C6rH (pH , πH) .

Since however Gr(gH) ⊂ Gr(hH) ∩C6rH (pH , πH), we then conclude (v).
We next come to (iii). Fix therefore two cubes H and L as in the statement and set r :=

rL. Observe that, by the hoelder estimates in (ii) and the interpolation lemma [8, Lemma

C.2], it suffices to show that ‖gH − gL‖L1(B) ≤ Cm
1/2
0 `(H)m+3+κ, where B = Br(xL, π0).

Consider now the two corresponding tilted interpolating functions, namely hL and hH .
Given the estimate upon hL proved in the previous paragraph, we can find a function
ĥL : B7r(pHL, πH) → π⊥H such that GĥL

= GhL C6r(pL, πH) (in this paragraph ·̂ will
always denote the reparametrization on πH). Obviously GĥL

Cr(zL, π0) = GgL . We can
therefore apply [8, Lemma B.1] to conclude that

‖gH − gL‖L1(B) ≤ C‖hH − ĥL‖L1(B5r(pL,πH)) .

Consider next the tilted interpolating function hHL and observe that, by (4.39), we know

‖hH − hHL‖L1(B5r(pH ,πH)) ≤ Cm
1/2
0 `(H)m+3+β2 .

Indeed, by (4.25), it is enough to see that

‖η ◦ fHH − η ◦ fHL‖L1(B5r(pH ,πH)) ≤ ‖η ◦ fHH − η ◦ fHL‖L∞(B5r(pH ,πH)) |B5r(pH , πH) \ K̄|

≤ Cm
1+β0+1/4
0 `(H)m+3+β2 ,

where, as above, we used the estimates of [13, Theorem 1.5] on the oscillation of fHH and
fHL (with K̄ the projection of Gr(fHH) ∩ Gr(fHL) onto pHL + πH) and B5r(pH , πH) ⊂
B8r(pHL, πH). Hence, since β2 ≥ κ, we are reduced to show

‖hHL − ĥL‖L1(B5r(pH ,πH)) ≤ Cm
1/2
0 `(H)m+3+κ . (4.48)

In turn, consider the πH-approximating function fHL and the πL-approximating function
fLL = fL. We set fHL(x) = η ◦ fHL(x) and recall that, by Proposition 4.7, we have

‖hHL − fHL‖L1(B8rL
(pHL,πH)) ≤ Cm

1/2
0 `(L)m+3+β2 . (4.49)

Similarly, we set fL(x) = η ◦ fL(x) and we get

‖hL − fL‖L1(B8rL
(pL,πL)) ≤ Cm

1/2
0 `(L)m+3+β2 .

Next we denote by f̂L the map f̂L : B6rL(pHL, πH)→ π⊥H such that Gf̂L
= GfL C6rL(pL, πH)

and we use again [8, Lemma B.1] to infer

‖ĥL − f̂L‖L1(B6rL
(pHL,πH)) ≤ C‖hL − fL‖L1(B8rL

(pL,πL) ≤ Cm
1/2
0 `(L)m+3+β2 . (4.50)

In view of (4.49) and (4.50), (4.48) is then reduced to

‖fHL − f̂L‖L1(B5rL
(pHL,πH)) ≤ Cm

1/2
0 d(H)2(1+β0)γ0−β2−2`(H)5+κ . (4.51)
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Consider now the map f̂L : B6rL(pHL, πH)→ AQ(π⊥H) such that Gf̂L
= GfL C6rL(pL, πH).

Let A and Â be the projections on pH +πH = pHL+πH of the Borel sets Gr(fHL))\ spt(T )

and Gr(f̂L) \ spt(T ) ⊂ Gr(fL) \ spt(T ). We know that

|A ∪ A′| ≤‖GfHL − T‖(C8rL(pL, πH)) + ‖GfL − T‖(C8rL(pL, πL))

≤Cm1+β0

0 `(H)m+2 .

On the other hand, it is not difficult to see, thanks to the height bound, that ‖η ◦ fHL −
η ◦ f̂L‖∞ ≤ Cm

1/2m
0 `(H)1+β2 . We thus conclude that

‖η ◦ fHL − η ◦ f̂L‖L1(B6rL
(pHL,πH)) ≤ Cm

1/2
0 `(H)m+3+β2 .

Define the function g(x) := η ◦ f̂L(x), we can thus conclude that

‖fHL − g‖L1(B6rL
(pHL,πL)) ≤ Cm

1/2
0 `(L)m+3+β2 . (4.52)

Thus, (4.51) is now reduced to

‖g − f̂L‖L1(B5rL
(pHL,πH)) ≤ Cm

1/2
0 `(H)m+3+κ . (4.53)

Denoting by An the distance |πH − πL|, by B̂ the ball B6rL(pHL, πH) and by B̃ the ball
B8rL(pL, πL), we then have, by [8, Lemma 5.6]

‖g − f̂L‖L1(B̂) ≤ C0(osc (fL) + rLAn)

(∫
|DfL|2 + r2

L(‖DΨpL‖2
C0(B̃)

+ An2)

)
.

Recall that DΨpL(pL) = 0 and thus ‖DΨpL‖2
C0(B̃)

≤ C0m0r
2
L. Recalling the estimate on

|πH − πL| and upon the Dirichlet energy of fL, we then conclude∫
|DfL|2 + r2

L(‖DΨpL‖2
C0(B̃)

+ An2) ≤ Cm0`(H)4−2δ1 .

On the other hand

osc (fL) + rLAn ≤ Cm
1/2m
0 `(H)1+β2 .

Thus (4.53) follows by our choice of the various parameters, in particular β2−2δ1 ≥ β2/4 = κ.
Next, if L ∈ W j and i ≥ j, consider the subset P i(L) of all cubes in P i which intersect

L. If L′ is the cube concentric to L with `(L′) = 9
8
`(L), we then have by definition of ϕj:

‖ϕi − gL‖L1(L′) ≤ C
∑

H∈Pi(L)

‖gH − gL‖L1(BrL (pL,π0)) ≤ Cm0 `(H)m+3+2κ , (4.54)

which is the claim of (vi).
As for (iv), it is a rather simple consequence of (iii). Indeed fix H and L as in the

statements and consider H = Hi ⊂ Hi−1 ⊂ . . . ⊂ HN0 and L = Lj ⊂ Lj−1 ⊂ . . . ⊂ LN0 so
that Hl is the father of Hl+1 and Ll is the father of Ll+1. We distinguish two cases:

(A) If HN0 ∩ LN0 6= ∅, we let i0 be the smallest index so that Hi0 ∩ Li0 6= ∅;
(B) HN0 ∩ LN0 = ∅.
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In case (A) observe that max{`(Hi0), `(Li0)} ≤ d(xH , xL) := d. On the other hand, by (iii)
with l = 3 we have

|D3gH(xH)−D3gHi0 (xHi0 )| ≤
i−1∑
l=i0

|D3gHl(xHl)−D3gHl+1
(xHl+1

)|

≤ Cm
1/2
0 `(Hi0)κ

i−1∑
l=i0

2(i0−l)κ ≤ Cm
1/2
0 dκ

|D3gL(xL)−D3gLi0 (xLi0 )| ≤
j−1∑
l=i0

|D3gLl(xLl)−D3gLl+1
(xLl+1

)|

≤ Cm
1/2
0 `(Li0)κ

j−1∑
l=i0

2(i0−l)κ ≤ Cm
1/2
0 dκ

|D3gLi0 (zLi0 , wLi0 )−D3gHi0 (zHi0 , wHi0 )| ≤ Cm
1/2
0 d(Hi0)2(1+β0)γ0−β2−2`(Hi0)κ

≤m1/2
0 d(H)2(1+β0)γ0−β2−2dκ .

The triangle inequality implies then the desired estimate.
In case (B) we first notice that by the very same argument we have the estimates

|D3gH(xH)−D3gHN0
(xHN0

)| ≤ Cm
1/2
0 dκ

|D3gL(xL)−D3gLN0
(xLN0

)| ≤ Cm
1/2
0 dκ .

Next we find a chain of cubes HN0 = J0, J1, . . . , JN = LN0 , all distinct and belonging to
S N0 , so that

• Jl ∩ Jl+1 6= ∅ and thus `(HN0) ≤ `(Jl) ≤ `(LN0);
• N is smaller than a constant C(N0, Q̄).

Using again (iii) and arguing as above we conclude

|D3gHN0
(xHN0

)−D3gLN0
(xLN0

)|

≤
N∑
l=1

|D3gJl(xJl)−D3gJl−1
(xJl−1

)| ≤ CNm
1/2
0 dκ .

Again, using the triangular inequality we conclude (iv).
�

Proof of Theorem 2.13. The proof is a simple consequence of the estimates of Proposition
4.8, and it can be found in [8, Section 4.4]. Notice in particular that, since the estimates
of Proposition 4.8 are exactly the same as the ones in [8, Proposition 4.4], and so is
the definition of the ϕj, we can apply the proof of [8] without any change to prove (i).
Analogously (ii) follows directly from the definition of ϕj and the algorithm of the Whitney
decomposition. Finally, (iii) follows from (i) and (ii). �
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5. Normal Approximation: proofs of the main results

5.1. Construction of the normal approximation. The algorithm for the construction
of the normal approximation is analogous to that of [8, Section 6] (in fact it is even simpler,
since Σ = Rn+m). Moreover the resulting estimates are also the same, because they
depend only on the construction and estimates for the Center Manifold (these estimates
are precisely the reason why we built it!).

In particular, the only relevant properties needed for the proofs of [8, Corollary 2.2,
Theorem 2.4 & Theorem 2.5] are [8, Proposition 4.1, Theorem 1.17 & Theorem A.1],
which are identical in their statements to Proposition 4.2, Theorem 2.13 and the Height
Bound Theorem 1.4. As a consequence Corollary 3.2, Theorem 3.4 and Corollary 3.5 then
follow, with exactly the same proofs.

5.2. Vertical separation and splitting before tilting. The proofs of Proposition 3.6
and Corollary 3.7 are analogous respectively to those of [8, Proposition 3.1 & Corollary
3.2]. Indeed, once again, except for the estimates on the Center Manifold and the Normal
approximation, which are the same as in [8], the only other ingredient needed here is the
Height bound of Theorem 1.4.

The proof of Proposition 3.9 is slightly different than the one in [8, Proposition 3.4],
in the sense that we have to choose our parameters more carefully. This is because the
condition for the Lipschitz approximation of T to be close to a Dir-minimizing function is
more delicate when T is semicalibrated (cf. [13, Theorem 4.2]).

Proof of Proposition 3.9. As customary we use the convention that constants denoted by
C depend upon all the parameters but ε2, whereas constants denoted by C0 depend only
upon m,n, n̄ and Q.

Given L ∈ W j
e , let us consider its ancestors H ∈ S j−1 and J ∈ S j−6. Set ` = `(L),π =

π̂H and C := C8rJ (pJ , π), and let f : B8rJ (pJ , π) → AQ(π⊥) be the π-approximation of
Definition 2.8, which is the result of [10, Theorem 1.4] applied to C32rJ (pJ , π) (recall that
Proposition 4.2(i) ensures the applicability of [10, Theorem 1.4] in the latter cylinder). We
let K ⊂ B8rJ (pJ , π) denote the set of [10, Theorem 1.4] and recall that Gf |K = T K×π⊥.
Observe that BL ⊂ BH ⊂ C (this requires, as usual, ε2 ≤ c(β2, δ2,M0, N0, Ce, Ch)). The
following are simple consequences of Proposition 4.1 and the fact that J /∈ W :

E := E(T,C32rJ (pJ , π)) ≤ Cem0 `(J)2−2δ2 ≤ C0Cem0 `
2−2δ2 , (5.1)

h(T,C, π) ≤ C0Chm
1/2m
0 `1+β2 . (5.2)

Moreover, since BL ⊂ C, L ∈ We and rL/rJ = 2−6, we have

cCem0 r
2−2δ
L ≤ E , (5.3)

where c is only a geometric constant. We divide the proof of Proposition 3.9 in three steps.

Step 1: decay estimate for f . Let 2ρ := 64rH −C]m
1/2m
0 `1+β2 : since pH ∈ spt(T ), it

follows from (5.2) that, upon choosing C] appropriately, spt(T ) ∩ C2ρ(pH , π) ⊂ BH ⊂ C
(observe that C] depends upon the parameters β2, δ2,M0, N0, Ce and Ch, but not on ε2).
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Setting B = B2ρ(x, π) with x = pπ(pH), using the Taylor expansion in [6, Corollary 3.3]
and the estimates in [10, Theorem 1.4], we then get

Dir(B, f) ≤ 2|B|E(T,C2ρ(xH , π)) + Cm1+β0

0 `m+2+β0/2

≤ 2ωm(2ρ)mE(T,BH) + Cm1+β0

0 `m+2+β0/2 . (5.4)

Consider next the cylinder C64rL(pL, π) and set x′ := pπ(pL). Recall that |x − x′| ≤
|pH − pL| ≤ C`(H), where C is a geometric constant (cp. Proposition 4.1) and set σ :=
64rL + C`(H) = 32rH + C`(H). If λ is such that (1 + λ)(m+2) < 2δ2 and M0 is chosen
sufficiently large (thus fixing a lower bound for M0 which depends only on δ2) we reach

σ ≤
(

1

2
+
λ

4

)
64 rH ≤

(
1 +

λ

2

)
ρ+ C]m

1/2m
0 `1+β2 .

In particular, choosing ε2 sufficiently small we conclude σ ≤ (1 + λ)ρ and thus also BL ⊂
C64rL(x′, π) ⊂ C(1+λ)ρ(x, π) =: C′. Define B′ := B(1+λ)ρ(x, π), set A := −

∫
B′
D(η ◦ f), let

A : π → π⊥ be the linear map x 7→ A · x and let τ be the plane corresponding to GA.
Using [6, Theorem 3.5], we can estimate

1
2

∫
B′
G(Df,Q JAK)2 ≥ |B′|E(T,C′, τ)− Cm1+β0

0 `m+2+β0/2

≥ |B′|E(T,BL, τ)− Cm1+β0

0 `m+2+β0/2

≥ ωm((1 + λ)ρ)mE(T,BL)− Cm1+β0

0 `m+2+β0/2 . (5.5)

We thus conclude

Dir(B, f) ≤ 2ωm(2ρ)mE(T,BH) + Cm1+β0

0 ρm+2 . (5.6)∫
B′
G(Df,QJAK)2 ≥ 2ωm((1 + λ)ρ)mE(T,BL)− Cm1+β0

0 ρm+2 . (5.7)

Step 2: harmonic approximation. From now on, to simplify our notation, we use
Bs(y) in place of Bs(y, π). Set p := pπ(pJ). From (5.3) we infer that, recall that Ce > 1)

8rJ Ω ≤M0

√
m2−6`(L)m

1/2
0 ≤ C(M0,m)

`(L)δ2

C
1/2
e

C
1/2
e m

1/2
0 `(L)1−δ2 ≤ C(M0,m) 2−N0δ2 E

1/2,

(5.8)
Therefore, for every positive η̄, we can choose N0 big enough depending on M0, so that
`(L)δ2/C1/2

e is small and we can apply [13, Theorem 4.2] to the cylinder C and find a Dir-
minimizing map u : B8rJ (p, π)→ AQ(π⊥) such that

(8 rJ)−2

∫
B8rJ

(p)

G(f, u)2 +

∫
B8rJ

(p)

(|Df | − |Du|)2 ≤ η̄ E (8 rJ)m, (5.9)∫
B8rJ

(p)

|D(η ◦ f)−D(η ◦ u)|2 ≤ η̄ E (8 rJ)m . (5.10)
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Now, since D(η ◦ u) = η ◦Du is harmonic we have D(η ◦ u)(x) = −
∫
B′

(η ◦Du). So we can
combine respectively (5.9) with (5.6) and (5.10) with (5.7) to infer

Dir(B, u) ≤ 2ωm(2ρ)mE(T,BH) + Cm1+β0

0 ρm+2 + C0η̄
1/2Eρm (5.11)∫

B(1+λ)ρ(x)

G
(
Du,QJη ◦Du(x)K

)2 ≥ 2ωm((1 + λ)ρ)mE(T,BL)− Cm1+β0

0 ρm+2 − C0η̄
1/2Eρm .

(5.12)

Next, recall that E(T,BL) ≥ Cem0`(L)2−2δ2 ≥ 22δ2−2E(T,BH) and that, by (5.1), Eρm ≤
C0Cem0 ρ

m+2−2δ2 . Using once again L ∈ We and this last inequality,

m0ρ
m+2 ≤ ρ2δ2

Ce
E(TL,BL)ρm

(5.12)

≤ C0

Ce

∫
B′
|Du|2 +

ρ2δ1

Ce
m1+β0

0 ρm+2 + C0 η̄
1/2m0 ρ

m+2 ,

(5.13)

that is, for N0 sufficiently big, and so η̄ sufficiently small,

m0ρ
m+2 ≤ C0

∫
B′
|Du|2 and Eρm ≤ C0

∫
B′
|Du|2 (5.14)

We can therefore combine (5.11) and (5.12) with (5.14), to achieve∫
B(1+λ)ρ(x)

G
(
Du,QJD(η ◦ u)(x)K

)2 ≥
(
22δ2−2−m − C0η̄

1/2 − C0m
β0

0

) ∫
B2ρ(x)

|Du|2 .

It is crucial that the constant C0 in front of η̄ depends only upon Q,m, n̄ and not on N0.
So, if N0 is chosen sufficiently large, depending only upon λ (and hence upon δ2) and η̄, we
can require that 22δ2−2−m− η̄1/2 ≥ 23δ2/4−2−m. We then require ε2 to be sufficiently small so
that 23δ2/4−2−m−Cmβ0

0 ≥ 2δ2−2−m. We can now apply [8, Lemma 7.1] and [8, Proposition
7.2] to u and conclude

Ĉ−1

∫
B(1+λ)ρ(x)

|Du|2 ≤
∫
B`/8(q)

G(Du,Q JD(η ◦ uK)2 ≤ Ĉ`−2

∫
B`/8(q)

G(u,Q Jη ◦ uK)2 ,

for any ball B`/8(q) = B`/8(q, π) ⊂ B8rJ (p, π), where Ĉ depends upon δ2 and M0. In par-
ticular, being these constants independent of ε2 and N0, we can use the previous estimates
and reabsorb error terms (possibly choosing ε2 even smaller and N0 larger) to conclude

m0 `
m+2−2δ2

(5.13)

≤ C̃

Ce
`m E(T,BL) ≤ C̄

Ce

∫
B`/8(q)

G(Df,Q JD(η ◦ f)K)2

≤ Č

Ce
`−2

∫
B`/8(q)

G(f,Q Jη ◦ fK)2, (5.15)

where C̃, C̄ and Č are constants which depend only upon δ2, M0 and N0, but not on Ce
and ε2.

Step 3: Estimate for the M-normal approximation. Now, consider any ball
B`/4(q, π0) with dist(L, q) ≤ 4

√
m` and let Ω := Φ(B`/4(q, π0)). Observe that pπ(Ω) must

contain a ball B`/8(q′, π), because of the estimates on ϕ and |π0− π̂H |, and in turn it must



34 LUCA SPOLAOR

be contained in B8rJ (p, π). Moreover, p−1(Ω) ∩ spt(T ) ⊃ C`/8(q′, π) ∩ spt(T ) and, for an
appropriate geometric constant C0, Ω cannot intersect a Whitney region L′ corresponding
to an L′ with `(L′) ≥ C0`(L). In particular, Theorem 3.4 implies that

‖TF − T‖(p−1(Ω)) + ‖TF −Gf‖(p−1(Ω)) ≤ Cm1+γ2

0 `m+2+γ2 . (5.16)

Let now F ′ be the map such that TF ′ (p−1(Ω)) = Gf (p−1(Ω)) and let N ′ be the corre-
sponding normal part, i.e. F ′(x) =

∑
i Jx+N ′i(x)K. The region over which F and F ′ differ

is contained in the projection onto Ω of (Im(F ) \ spt(T ))∪ (Im(F ′) \ spt(T )) and therefore
its Hm measure is bounded as in (5.16). Recalling the height bound on N and f , we easily

conclude |N |+ |N ′| ≤ Cm
1/2m
0 `1+β2 , which in turn implies∫

Ω

|N |2 ≥
∫

Ω

|N ′|2 − Cm1+1/m+γ2

0 `m+4+2β2+γ2 . (5.17)

On the other hand, let ϕ′ : B8rJ (p, π) → π⊥ be such that Gϕ′ = JMK and Φ′(z) =
(z,ϕ′(z)); then, applying [6, Theorem 5.1 (5.3)], we conclude

|N ′(Φ′(z))| ≥ 1

2
√
Q
G(f(z), Q Jϕ′(z)K) ≥ 1

4
√
Q
G(f(z), Q Jη ◦ f(z)K) ,

which in turn implies

m0 `
m+2−2δ2

(5.15)

≤ C`−2

∫
B`/8(q′,π)

G(f,Q Jη ◦ fK)2 ≤ C`−2

∫
Ω

|N ′|2

≤ C`−2

∫
Ω

|N |2 + Cm
1+γ2+1/2m
0 `m+2+2β2+γ2 . (5.18)

For ε2 sufficiently small, this leads to the second inequality of (3.9), while the first one
comes from Theorem 3.4 and E(T,BL) ≥ Cem0 `

2−2δ2 .
We next complete the proof showing (3.8). Since D(η ◦ f)(z) = η ◦Df(z) for a.e. z, we

obviously have∫
B`/8(q′,π)

G(Df,Q JD(η ◦ f)K)2 ≤
∫
B`/8(q′,π)

G(Df,Q JDϕ′K)2 . (5.19)

Let now ~Gf be the orienting tangent m-vector to Gf and τ the one to M. For a.e. z we
have the inequality

C0

∑
i

|~Gf (fi(z))− ~τ(ϕ′(z))|2 ≥ G(Df(z), Q JDϕ′(z)K)2 ,

for some geometric constant C0, because |~Gf (fi(z)) − ~τ(ϕ′(z))| ≤ Cmγ2

0 (thus it suffices
to have ε2 sufficiently small). Hence∫

B`/8(q′,π)

G(Df,Q JDϕ′K)2 ≤ C

∫
C`/8(q′,π)

|~Gf (z)− ~τ(ϕ′(pπ(z))|2d‖Gf‖(z)

≤ C

∫
C`/8(q′,π)

|~T (z)− ~τ(ϕ′(pπ(z))|2d‖T‖(z) + Cm1+β0

0 `m+2+β0 . (5.20)



ALMGREN’S TYPE REGULARITY FOR SEMICALIBRATED CURRENTS 35

Now, thanks to the height bound and to the fact that |~τ − π| ≤ |~τ − πH | + |πH − π| ≤
Cm

1/2
0 `1−δ2 in the cylinder Ĉ = C`/8(q′, π), we have the inequality

|p(z)−ϕ′(pπ(z))| ≤ Cm
1/2m+1/2
0 `2+β2−δ2 ≤ Cm

1/2m+1/2
0 `2+β2/2 ∀z ∈ spt(T ) ∩ Ĉ .

Using ‖ϕ′‖C2 ≤ Cm
1/2
0 we then easily conclude from (5.20) that∫

B`/8(p,π)

G(Df,Q JDϕ′K)2 ≤ C0

∫
Ĉ

|~T (z)− ~τ(p(z))|2d‖T‖(z) + Cm1+β0

0 `m+2+β2/2

≤ C0

∫
p−1(Ω)

|~TF (z)− ~τ(p(z))|2d‖TF‖(z) + Cm1+γ2

0 `m+2+γ2 ,

where we used (5.16).

Since |DN | ≤ Cmγ2

0 `
γ2 , |N | ≤ Cm

1/2m
0 `1+β2 on Ω and ‖AM‖2 ≤ Cm0, applying now [6,

Proposition 3.4] we conclude∫
p−1(Ω)

|~TF (x)− τ(p(x))|2d‖TF‖(x) ≤ (1 + Cm2γ2

0 `2γ2)

∫
Ω

|DN |2 + Cm
1+1/m
0 `m+2+2β2 .

Thus, putting all these estimates together we achieve

m0 `
m+2−2δ2 ≤ C(1 + Cm2γ2

0 `2γ2)

∫
Ω

|DN |2 + Cm1+γ2

0 `m+2+γ2 . (5.21)

Since the constant C might depend on the various other parameters but not on ε2, we
conclude that for a sufficiently small ε2 we have

m0`
m+2−2δ2 ≤ C

∫
Ω

|DN |2 . (5.22)

But E(T,BL) ≤ Cm0 `
2−2δ2 and thus (3.8) follows.

�

5.3. Persistence of Q-points. We start with the following Proposition, which is the
analogous of [10, Theorem 1.7], but its proof is new.

Proposition 5.1 (Persistence of Q-points). For every δ̂, there is s̄ ∈]0, 1
4
[ such that, for

every s < s̄, there exist ε̂(s, δ̂) > 0 and ε̃ > 0 with the following property. If T is a
semicalibrated current as in [13, Theorem 1.5], E := E(T,C4 r(x)) < ε̂, r2Ω2 ≤ ε̃ E and
Θ(T, (p, q)) = Q at some (p, q) ∈ Cr/2(x), then the approximation f of [13, Theorem 1.5]
satisfies ∫

Bsr(p)

G(f,Q Jη ◦ fK)2 ≤ δ̂smr2+mE . (5.23)

The proof of this Proposition will be achieved combining the new height bound of Theo-
rem 1.5 with the following blow up lemma. We remark that this approach is different from
the one in [8].
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Lemma 5.2 (Blow up lemma). Let T be a semicalibrated current such that Ω2 ≤ C?E
and Θ(T, 0) = Q. For every s ∈ (0, 1/4) there exist ε = ε(s), C, γ > 0 and ε̃ > 0 such that
if E := E(T,C1) < ε and Ω ≤ ε̃E1/2 then

s2−γ E(T,Cs) ≤ C E. (5.24)

Proof. Suppose (5.24) is not true, then for every γ, C > 0 we can find some s ∈]0, 1/4[ such
that there exists a sequence of currents Tk such that Ek := E(Tk,C1) → 0, Ωk ≤ ε̃k Ek,
with ε̃k → 0, and

s2−γ−meTk(Cs) = s2−γ E(Tk,Cs) ≥ C Ek = CeTk(C1) , (5.25)

where eT (A, π) := 1
2

∫
A
|~T − π|2 d‖T‖ and eT (A) := minπ eT (A, π). By hypothesis we can

apply [13, Theorem 1.5] to each Tk to find Lipschitz maps fk : Bs ⊂ π0 → AQ(π⊥0 ) with
the following estimates

‖fk‖L∞(Bs) ≤ C h(Tk, B1) + CsE
1/2
k ≤ CsE

1/2 (5.26)

1

sm

∫
Bs

|Dfk|2 = 2ωmEk + C E1+β0

k (5.27)

‖Tk −Gfk‖(Cs) ≤ C sm E1+β0

k , (5.28)

where in the first estimate we used the improved height bound Theorem 1.5 and in all the
estimates we used Ω2

k ≤ Ek. Next we divide the proof in two steps.

Step 1. We claim that, up to a subsequence, the rescaled maps uk := fk

E
1/2
k

converge

weakly in W 1,2
loc to a locally Dir-minimizing function u ∈ W 1,2(Bs,AQ) and

lim
k→∞

∫
Bs

|Duk|2 =

∫
Bs

|Du|2 (5.29)

Indeed, by the bounds (5.26) and (5.27), the weak convergence in W 1,2
loc immediately follows

(we will not relabel the subsequences). For what concerns the second half of the claim,
thanks to the new height bound it is a simplified version of the arguments in [10, Sections
3 & 4] with the additional errors coming from the almost minimality of T . Therefore, set
Ds := lim infk

∫
Bs
|Duk|2 and suppose by contradiction that there exists ρ < s such that

(i) either
∫
Bρ
|Du|2 < Ds

(ii) or u|Brho is not Dir-minimizing.
Then we can find ρ0 > 0 such that, for every ρ > ρ0, there exists a function v ∈
W 1,2(Bs,AQ) such that

v|∂Bρ = u|∂Bρ and γρ := Dρ −
∫
Bρ

|Dv|2 > 0 . (5.30)

Consider the function ψk given by

ψk(r) :=
M((Tk −Gfk) ∂Cr)

Ek
+

∫
∂Br

|Duk|2 +

∫
∂Br

|Du|2 +

∫
∂Br
G(uk, u)2∫

Bs
G(uk, u)2
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Using (5.28), we deduce that lim infk
∫ s
ρ0
ψk(r) dr <∞ and so by Fatou’s Lemma, there is

ρ ∈ (ρ0, s) and a subsequence such that limk ψk(ρ) <∞. It follows that
(a)

∫
∂Bρ
G(uk, u)2 → 0,

(b)
∫
∂Bρ
|Duk|2 +

∫
∂Bρ
|Du|2 ≤M for some M <∞,

(c) ‖(Tk −Gfk) ∂Cρ‖ ≤ C Ek.
Next, using [10, Lemma 3.5], for every η > 0 we can find a Lipschitz function vη on Bρ

such that∫
Bρ

(
G(v, vη)

2 + (|Dv| − |Dvη|)2
)

+

∫
∂Bρ

(
G(v, vη)

2 + (|Dv| − |Dvη|)2
)
≤ η

By [10, Lemma 3.6], for every θ > 0, we linearly interpolate between vη and uk, to achieve
new Lipschitz functions ξk satisfying∫

Bρ

|Dξk|2 ≤
∫
Bρ

|Dvη|2 + θ

∫
∂Bρ

(
|Duk|2 + |Dvη|2

)
+
C0

θ

∫
∂Bρ

G(uk, vη)
2

(a),(b)

≤
∫
Bρ

|Dv|2 + C0 η + C0 θM + C0 η θ
−1 .

We first choose θ and then η to guarantee that

lim sup
k

∫
Bρ

|Dξk|2 ≤
∫
Bρ

|Dv|2 +
γρ
2
. (5.31)

Finally set zk := E
1/2
k ξk and consider the currents Gzl . Since zk|∂Bρ = fk|∂Bρ , ∂Zk =

Gfk ∂Cρ, and therefore from (c), ‖∂(Tk Cρ − Zk)‖ ≤ C Ek. From the Isoperimetric
Inequality there exists an m-dimensional Integral current Rk such that

∂Rk = ∂(Tk Cρ − Zk) and ‖Rk‖ ≤ C E
m/m− 1

k .

Set finally Wk := Tk (Cs \Cρ) + Zk +Rk and observe that, by construction, ∂Wk = ∂Tk.
Using the various estimates proved above together with the Taylor expansion for the area
of a graph (cf. [6]) we achieve

lim sup
k

‖Wk‖ − ‖Tk‖
Ek

(5.28)

≤ lim sup
k

‖Wk‖ − ‖Gfk‖+ CE1+β0

k

Ek

≤ lim sup
k

1

Ek

(
‖Rk‖+

∫
Bρ

|Dzk|2

2
−
∫
Bρ

|Dfk|2

2

)

≤ lim sup
k

∫
Bρ

|Dξk|2

2
−Dρ

(5.31)

≤
∫
Bρ

|Dv|2 +
γρ
2
−Dρ

(5.30)

≤ −γρ
2
.
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On the other hand, using [13, Lemma 3.1] we deduce that

lim sup
k

‖Wk‖ − ‖Tk‖
Ek

≥ −CΩk E
1/2
k ≥ −C ε̃k

which, for k sufficiently big gives a contradiction.

Step 2. We can now conclude the proof of the Lemma. Recall that, by [13, Theorem 1.5],∣∣∣∣∫
Bs

|Dfk|2 − eTk(Cs, π0)

∣∣∣∣ ≤ C smE1+β0

k (5.32)

Let uk, u be as in Step 1, and observe that (5.32) and (5.27) imply∫
Bs

|Du|2 = lim
k→∞

∫
Bs

|Duk|2 = lim
k→∞

eTk(Cs)
Ek

≥ C

s2−γ > 0 .

In particular Du is not identically 0. Analogously, from (5.28), we have∫
B1

|Du|2 ≤ 2ωm .

and so, using once again (5.32), we conclude∫
Bs

|Dfk|2 + smE1+β0

k = eTk(Cs, π0) ≥ C

s2−γ−mEk 2ωm

∫
B1

|Du|2 . (5.33)

Rescaling by Ek and taking the limit as k →∞, we achieve∫
Bs

|Du|2 ≥ C

s2−γ−m

∫
B1

|Du|2 ,

which contradicts the decay estimate for Dir-minimizing functions of [7, Theorem 3.9]. �

Proof of Proposition 5.1. We can assume r = 1. Choose s̄ such that Cs̄ = δ̂1/γ. Then for
every s ∈]0, s[ choose ε̂, ε̃ such that Lemma 5.2 holds. Then we have by Theorem 1.5 and
the estimate on the oscillation of f in [13, Theorem 1.5]∫

Bs(p)

G(f,Q Jη ◦ fK)2 ≤ C sn sup
Bs(p)

|f |2 ≤ Csm+2E(T,C4s(p))

≤ Csm+γE(T,C 1
4
(p)) ≤ δ̂smE

�

The proof of Proposition 3.10 is very similar to that of [8, Proposition 3.5]. Since there
is however a difference in the choice of the parameters (as in Proposition 3.9), we prefer to
give it.

Proof of Proposition 3.10. We argue by contradiction. Assuming the proposition does not
hold, there is a sequence Tk satisfying the Assumption 2.1 and radii sk for which

(a) either m0(k) := max{E(Tk,B6
√
m), ‖dωk‖2

C2,ε0
} → 0 and 1 ≥ s̄ = limk sk > 0; or

sk ↓ 0;
(b) the sets Λk := {Θ(x, Tk) = Q} ∩Bsk satisfy Hm−2+α

∞ (Λk) ≥ ᾱsm−2+α
k ;
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(c) denoting by W (k) and S (k) the families of cubes in the Whitney decompositions
related to Tk with respect to π0, sup

{
`(L) : L ∈ W (k), L ∩B3s(0, π0) 6= ∅

}
≤ sk;

(d) there exists Lk ∈ We(k) with Lk ∩B19s/16(0, π0) 6= ∅ and α̂sk < `(Lk) ≤ sk.

It is not difficult to see that E(Tk,B6
√
msk) ≤ C Cem0(k)s2−2δ2

k , where the constant C
depends only on β2, δ2,M0, N0. Indeed this follows obviously if sk ≥ c(M0, N0) > 0.
Otherwise there is some ancestorH ′k of Lk with sk ≤ `(H ′k) ≤ C0sk for which B6

√
msk ⊂ BH′k

and E(T,BH′k
) ≤ Cem0 `(H

′
k)

2−2δ2 .
Consider now the ancestors Hk and Jk of Lk as in the proof of Proposition 3.9, and the

corresponding Lipschitz approximations fk. Consider next the radius ρk := 5/4sk + 2rLk
and observe that [13, Theorem 1.5] can be applied to the cylinder Ĉk := C5ρk(0, πHk):
again as above, either sk ≥ c(M0, N0), and the theorem can be applied using the estimates
on the height of T in C5

√
m(0, π0) and of its excess in B6

√
m, or sk is smaller and then we

can use the ancestor H ′k of the argument above. We thus have

E(Tk, Ĉk, πHk) ≤ C Cem0(k) s2−2δ2
k and h(Tk, Ĉk(0, πHk), πHk) ≤ C Chm0(k)

1/2ms1+β2

k .
(5.34)

We denote by gk the πHk approximation in the cylinder Ck := Cρk(0, πHk). With a slight
abuse of notation, we assume that fk and gk are defined on the same plane and we also
denote by Bk be the ball on which fk is defined. On Bk, which is contained in the domain
of definition of gk, the two maps gk and fk coincide outside of a set of measure at most

C C1+β0
e m0(k)1+β0s

m+(2−2δ2)(1+β0)
k and their oscillation is estimated with Cm

1/2m
0 s1+β2

k . We
can therefore conclude that∫

Bk

G(fk, gk)
2 ≤ C C1+β0

e m0(k)1+β0+1/2ms
m+4+2β2−2δ2(1+β0)
k

where C doe not depend on Ce. Since Lk ∈ We, we have

Ek := E(Tk,Ck, πHk) ≥ c0E(Tk,BLk) ≥ c0Cem0(k)`(Lk)
2−2δ2 ≥ c0(α̂)m0(k)s2−2δ2

k . (5.35)

Moreover, applying Proposition 3.9 and arguing as in Step 1 and Step 2 in its proof, we
find a ball B′k ⊂ πHk contained in B5sk/4 and with radius at least `(Lk)/8 such that∫

B′k

G(fk, Q Jη ◦ fkK)2 ≥ c̄ Cem0(k) `(Lk)
m+4−2δ2 ≥ c1(α̂)Cem0(k) sm+4−2δ2

k (5.36)

where c1(α̂) depends only upon M0, N0, δ2 and α̂ (cf. (5.15)). From (5.34) we conclude
that ∫

B′k

G(gk, Q Jη ◦ gkK)2 ≥ c(α̂) sm+2
k Ek , (5.37)

where the constant c(α̂) is positive and depends also upon β2, δ2,M0, N0, but not on Ce.
Next note that by (5.35), we have that

Ω2
k s

2
k ≤ c0(α̂)−1 2−N0δ2

Ce
Ek



40 LUCA SPOLAOR

with c0(α̂) depending only on α̃. In particular, for any given η > 0, we can choose N0 big
enough depending only on α̂ and η, so that we can apply [13, Theorem 4.2]. We thus find
a sequence of multivalued maps uk on B5sk/4 so that each uk is Dir-minimizing and

s−2
k

∫
B5sk/4

G(gk, uk)
2 +

∫
B5sk/4

(|Dgk| − |Duk|)2 = o(Ek)s
m
k . (5.38)

Up to rotations (so to get πHk = π0) and dilations (of a factor sk) of the system of
coordinates, we then end up with a sequence of area-minimizing currents Sk in Rm+n,
functions hk and uk with the following properties:

(1) the excess Ek := E(Sk,C5(0, π0)) and the height h(Sk,C5(0, π0), π0) converge to 0;
(2) Ω2

k := ‖dωk‖2
C2,ε0

≤ C?Ek and hence it also converges to 0;

(3) Lip(hk) ≤ CEβ0

k ;

(4) ‖Ghk − Sk‖(C5/4(0, π0)) ≤ CE1+β0

k ;
(5) there exists a Dir-minimizing function uk in B5/4(0, π0) such that∫ (

(|Dhk| − |Duk|)2 + G(hk, uk)
2
)

= o(Ek) . (5.39)

(6) for some positive constant c(α̂) (depending also upon β2, δ2,M0, N0),∫
B5/4

G(hk,η ◦ hk)2 ≥ cEk ; (5.40)

(7) Ξk := {Θ(Sk, y) = Q}∩B1 has the property that Hm−2+α
∞ (Ξk) ≥ ᾱ > 0 and 0 ∈ Ξk.

Consider the projections Ξ̄k := pπ0(Ξk). We are therefore in the position of applying
Proposition 5.1 to conclude that, for every $ > 0 there is a s̄($) > 0 (which depends also
upon the various parameters α, ᾱ, α̂, β2, δ2,M0, N0, Ce and Ch) such that

lim sup
k→∞

max
x∈Ξ̄k

−
∫
Bρ(x)

G(hk, Q Jη ◦ hkK)2 ≤ $Ek ∀ρ < s̄($) . (5.41)

Up to subsequences we can assume that Ξ̄k (and hence also Ξk) converges, in the Hausdorff
sense, to a compact set Ξ, which is nonempty. Moreover, by the compactness of Dir-

minimizers, the maps x 7→ ûk(x) = E
−1/2
k

∑
i Juk)i(x)− η ◦ uk(x)K converge, strongly in

L2(B5/4), to a Dir-minimizing function u with η ◦ u = 0. Thus (5.39) and (5.40) easily
imply that

lim inf
k

∫
B5/4

G(ûk, Q J0K)2 ≥ lim inf E−1
k

∫
B5/4

G(uk,η ◦ uk)2 ≥ c > 0 . (5.42)

From the strong L2 convergence of ûk we then conclude that u does not vanish identically.
On the other hand, by (5.41), (5.39) and the strong convergence of ûk we conclude that,
for any given δ > 0 there is a s̄ > 0 such that

−
∫
Bρ(x)

G(u,Q J0K)2 ≤ $ ∀x ∈ Ξ and ∀ρ < s̄($) .
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Since u is Dir-minimizing and hence continuous, the arbitrariness of $ implies u ≡ Q J0K
on Ξ. On the other hand, Hm−2+α

∞ (Ξ) ≥ lim supkHm−2+α
∞ (Ξk) ≥ ᾱ > 0. Then, by [7,

Theorem 0.11] and the unique continuation for Dir-minimizers [8, Lemma 7.1] we conclude
Ξ̄ = B5/4, which contradicts u 6≡ 0.

�

For what concerns the proof of Proposition 3.11, we observe that it follows from Propo-
sition 5.1 combined with the estimates on N of Theorem 3.4, exactly as in [8, Proposition
3.6]. There is however one subtle point, that is the validity of the assumption r2Ω2 ≤ ε̃E,
which is guaranteed on a cube of type We by our choice of N0 as in (5.8).

5.4. Comparison between different center manifolds. The proof of Proposition 3.12
is analogous to that of [8, Proposition 3.7], since, except for the various estimates of the
previous sections, the only property of the current needed here is the Height bound of
Theorem 1.4 combined with the stopping condition on cubes ot type Wh.

Part 2. Proof of Theorem 0.2: the contradiction argument

6. The contradiction sequence

We now come to the final blow up argument. In this section we will follow very closely
[9], pointing out where the main differences are and just referring to results there whenever
possible. For a nice outline of the argument, see the introduction to [9] and [5].

In order to prove Theorem 0.2, we will proceed by contradiction; let us therefore assume
the following

Assumption 6.1 (Contradiction). There exist m ≥ 2 and T a compactly supported
semicalibrated current such that Hm−2+α(Sing(T )) > 0 for some α > 0.

6.1. A good contradiction sequence. The first step in our contradiction argument is
to prove the existence of a singular point and a blow-up sequence of the current around
that point which converges to a flat m-plane with multiplicity Q and with a uniform bound
from below on the Hm−2+α

∞ -measure of the singular set.

Definition 6.2 (Q-points). For Q ∈ N, we denote by DQ(T ) the points of density Q of
the current T , and set

RegQ(T ) := Reg(T ) ∩DQ(T ) and SingQ(T ) := Sing(T ) ∩DQ(T ).

For any r > 0 and x ∈ Rm+n, the blow-up map ιx,r : Rm+n → Rm+n is the map y 7→ y−x
r

and Tx,r := (ιx,r)]T .

Proposition 6.3 (Contradiction sequence [9, Proposition 1.3]). Under Assumption 6.1,
there are m,n,Q ≥ 2 and T , reals α, η > 0, and a sequence rk ↓ 0 such that 0 ∈ DQ(T )
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and the following holds;

lim
k→+∞

E(T0,rk ,B6
√
m) = 0, (6.1)

lim
k→+∞

Hm−2+α
∞ (DQ(T0,rk) ∩B1) > η, (6.2)

Hm
(
(B1 ∩ spt(T0,rk)) \DQ(T0,rk)

)
> 0 ∀ k ∈ N. (6.3)

The proof of this result is analogous to the one of [9, Proposition 1.3]. Indeed, by (0.2)
in Lemma 0.4, we know that T is a varifold with bounded generalized mean curvature and
therefore the following conclusions hold.

(i) eΩΘ(x, T ) is nondecreasing, so that the density Θ(x, T ) exists at every point and
is upper semicontinuous (cf [20, Section 17]).

(ii) Allard’s regularity theorem applies (cf. [20, Chapter 5] and [9, Theorem A.1]).
(iii) For every x ∈ spt(T ) \ spt(∂T ), consider the sequence of blow-ups Tx,r. By the

almost monotonicity of the density, there exists a subsequence (Tx,rk)k which con-
verges to S. Moreover, it is a standard contradiction argument using (0.1) in
Lemma 0.4, to prove that S is locally area minimizing in Rm+n, ∂S = 0 and the
convergence is strong. It follows that S is a cone (i.e., S0,r = S for all r > 0 and
∂S = 0), called a tangent cone to T at x.

(iv) Thanks to (iii), Almgren’s stratification holds for T (cf. [9, Theorem A.3]).

Since (i)-(iv) are the only properties of T used in the proof of [9, Proposition 1.3], the same
result follows also in our case.

6.2. Intervals of flattening. For the sequel we fix the constant cs := 1
64
√
m

and notice

that 2−N0 < cs, where N0 is the parameter introduced in Assumption 2.5. It is always
understood that the parameters β2, δ2, γ2, ε2, κ, Ce, Ch,M0, N0 are fixed in such a way that
all the theorems and propositions of Section 2 are applicable. In particular, all constants
which will depend upon these parameters will be called geometric and denoted by C0.
On the contrary, we will highlight the dependence of the constants upon the parameters
introduced in this part p1, p2, . . . by writing C = C(p1, p2, . . .).

By Proposition 6.3 and simple rescaling arguments, we assume in the sequel the following.

Assumption 6.4. Let ε3 ∈]0, ε2[. Under Assumption 6.1, there exist m,n,Q ≥ 2, α, η > 0
and T for which:

(a) there is a sequence of radii rk ↓ 0 as in Proposition 6.3;
(b) the following holds:

spt(∂T ) ∩B6
√
m = ∅, 0 ∈ DQ(T ), (6.4)

‖T‖(B6
√
mr) ≤ rm

(
Qωm(6

√
m)m + ε2

3

)
for all r ∈ (0, 1), (6.5)

‖dω‖C1,ε0 (B7
√
m) ≤ ε3 . (6.6)

We set

R :=
{
r ∈]0, 1] : E(T,B6

√
mr) ≤ ε2

3

}
. (6.7)
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Observe that, if {sk} ⊂ R and sk ↑ s, then s ∈ R. We cover R with a collection F = {Ij}j
of intervals Ij =]sj, tj] defined as follows. t0 := max{t : t ∈ R}. Next assume, by induction,
to have defined tj (and hence also t0 > s0 ≥ t1 > s1 ≥ . . . > sj−1 ≥ tj) and consider the
following objects:

- Tj := ((ι0,tj)]T ) B6
√
m; moreover, consider for each j an orthonormal system of co-

ordinates so that, if we denote by π0 the m-plane Rm×{0}, then E(Tj,B6
√
m, π0) =

E(Tj,B6
√
m) (alternatively we can keep the system of coordinates fixed and rotate

the currents Tj).
- LetMj be the corresponding center manifold constructed in Theorem 2.13 applied

to Tj with respect to the m-plane π0; the manifold Mj is then the graph of a map
ϕj : π0 ⊃ [−4, 4]m → π⊥0 , and we set Φj(x) := (x,ϕj(x)) ∈ π0 × π⊥0 .

Then, we consider the Whitney decomposition W (j) of [−4, 4]m ⊂ π0 as in Definition 2.6
and Proposition 2.7 (applied to Tj) and we define

sj := max
(
{c−1
s `(L) : L ∈ W (j) and c−1

s `(L) ≥ dist(0, L)} ∪ {0}
)
. (6.8)

We will prove below that sj/tj < 2−5. In particular this ensures that [sj, tj] is a (nontrivial)
interval. Next, if sj = 0 we stop the induction. Otherwise we let tj+1 be the largest element
inR∩]0, sj] and proceed as above. Note moreover the following simple consequence of (6.8):

(Stop) If sj > 0 and r̄ := sj/tj, then there is L ∈ W (j) with

`(L) = cs r̄ and L ∩ B̄r̄(0, π0) 6= ∅ (6.9)

(in what follows Br(p, π) and B̄r(p, π) will denote the open and closed disks Br(p)∩
(p+ π), B̄r(p) ∩ (p+ π));

(Go) If ρ > r̄ := sj/tj, then

`(L) < csρ for all L ∈ W j(k) with L ∩Bρ(0, π0) 6= ∅. (6.10)

In particular the latter inequality is true for every ρ ∈]0, 3] if sj = 0.

The following is an easy consequence of this construction whose proof can be found in
[9].

Proposition 6.5 (Intervals of flattening [9, Proposition 2.2]). Assuming ε3 sufficiently
small, then the following holds:

(i) sj <
tj
25 and the family F is either countable and tj ↓ 0, or finite and Ij =]0, tj] for

the largest j;
(ii) the union of the intervals of F cover R, and for k large enough the radii rk in

Assumption 6.4 belong to R;

(iii) if r ∈]
sj
tj
, 3[ and J ∈ W (j)

n intersects B := pπ0(Br(pj)), with pj := Φj(0) and Br(pj)
the geodesic ball of M of radius r and centered in pj, then J is in the domain of

influence W (j)
n (H) (see Definition 3.8) of a cube H ∈ W (j)

e with

`(H) ≤ 3 cs r and max {sep (H,B), sep (H, J)} ≤ 3
√
m`(H) ≤ 3r

16
;

(iv) E(Tj,Br) ≤ C0ε
2
3 r

2−2δ2 for every r ∈]
sj
tj
, 3[.
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(v) sup{dist(x,Mj) : x ∈ spt(Tj)∩p−1
j (Br(pj))} ≤ C0 (mj

0)
1

2m r1+β2 for every r ∈]
sj
tj
, 3[,

where mj
0 := max{‖ω‖2

C2,ε0
,E(Tj,B6

√
m)}.

7. Frequency function and first variations

Consider the following Lipschitz (piecewise linear) function φ : [0 +∞[→ [0, 1] given by

φ(r) :=


1 for r ∈ [0, 1

2
],

2− 2r for r ∈ ]1
2
, 1],

0 for r ∈ ]1,+∞[.

For every interval of flattening Ij =]sj, tj], let Nj be the normal approximation of Tj on
Mj in Theorem 3.4.

Definition 7.1 (Frequency functions). For every r ∈]0, 3] we define:

Dj(r) :=

∫
Mj

φ

(
dj(p)

r

)
|DNj|2(p) dp and Hj(r) := −

∫
Mj

φ′
(
dj(p)

r

)
|Nj|2(p)

d(p)
dp ,

where dj(p) is the geodesic distance on Mj between p and Φj(0). Furthermore, let

ξj1(p), . . . , ξjm(p) be an orthonormal frame for TpMj, and consider

Γj(r) := Dj(r)+Lj(r) := Dj(r)+(−1)l−1

Q∑
i=1

m∑
l=1

∫
Mj

φ

(
dj(p)

r

)
〈DξlN

i
j∧ξ̂l∧N i

j , dω〉(p) dp

where ξ̂l := ξ1 ∧ · · · ∧ ξl−1 ∧ ξl+1 ∧ · · · ∧ ξm. Then if Hj(r) > 0, we define the frequency

function Ij(r) :=
rΓj(r)

Hj(r)
.

The following is the main analytical estimate of the paper, which allows us to exclude
infinite order of contact among the different sheets of a minimizing current.

Theorem 7.2 (Main frequency estimate). If ε3 is sufficiently small, then there exists a
geometric constant C0 such that, for every [a, b] ⊂ [

sj
tj
, 3] with Hj|[a,b] > 0, we have

Ij(a) ≤ C0(1 + Ij(b)). (7.1)

To simplify the notation, in this section we drop the index j and omit the measure Hm in
the integrals over regions ofM. The proof exploits four identities collected in Proposition
7.5, which will be proved in the next subsection.

Definition 7.3. We let ∂r̂ denote the derivative with respect to arclength along geodesics
starting at Φ(0). We set

E(r) := −
∫
M
φ′
(
d(p)
r

) Q∑
i=1

〈Ni(p), ∂r̂Ni(p)〉 dp , (7.2)

G(r) := −
∫
M
φ′
(
d(p)
r

)
d(p) |∂r̂N(p)|2 dp and Σ(r) :=

∫
M
φ
(
d(p)
r

)
|N |2(p) dp . (7.3)
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Remark 7.4. Observe that all these functions of r are absolutely continuous and, therefore,
classically differentiable at almost every r. Moreover, the following rough estimate easily
follows from Theorem 3.4 and the condition (Go):

D(r) ≤ C0m0 r
m+2−2δ2 for every r ∈

]
s
t
, 3
[
. (7.4)

Indeed, since N vanishes identically on the set K of Theorem 3.4, it suffices to sum the esti-
mate of (3.3) over all the different cubes L (of the corresponding Whitney decomposition)
for which Φ(L) intersects the geodesic ball Br.

Proposition 7.5 (First variation estimates). For every γ3 sufficiently small there is a
constant C = C(γ3) > 0 such that, if ε3 is sufficiently small, [a, b] ⊂ [ s

t
, 3] and I ≥ 1 on

[a, b], then the following inequalities hold for a.e. r ∈ [a, b]:∣∣H′(r)− m−1
r

H(r)− 2
r
E(r)

∣∣ ≤ CH(r), (7.5)∣∣Γ(r)− r−1E(r)
∣∣ ≤ CD(r)1+γ3 + Cε2

3 Σ(r), (7.6)∣∣D′(r)− m−2
r

D(r)− 2
r2 G(r)

∣∣ ≤ CD(r) + CD(r)γ3D′(r) + Cr−1D(r)1+γ3 , (7.7)

Σ(r) + rΣ′(r) ≤ C r2 D(r) ≤ Cr2+mε2
3, (7.8)

|L(r)| ≤ Cm
1/2
0 rD(r) and |L′(r)| ≤ Cm

1/2
0 (r−1 D′(r) H(r))

1/2 . (7.9)

We assume for the moment the proposition and prove the theorem.

Proof of Theorem 7.2. Set Ω(r) := log
(

max{I(r), 1}
)
. Fix a γ3 > 0 and an ε3 sufficiently

small so that the conclusions of Proposition 7.5 hold. We can thus treat the correspond-
ing constants in the inequalities as geometric ones, but to simplify the notation we keep
denoting them by C.

To prove (7.1) it is enough to show Ω(a) ≤ C + Ω(b). If Ω(a) = 0, then there is nothing
to prove. If Ω(a) > 0, let b′ ∈]a, b] be the supremum of t such that Ω > 0 on ]a, t[. If
b′ < b, then Ω(b′) = 0 ≤ Ω(b). Therefore, by possibly substituting ]a, b[ with ]a, b′[, we can
assume that Ω > 0, i.e. I > 1, on ]a, b[. By Proposition 7.5, if ε3 is sufficiently small, then

D(r)

4

(7.9)

≤ Γ(r)

2

(7.6) & (7.8)

≤ E(r)

r

(7.6) & (7.8)

≤ 2 Γ(r)
(7.9)

≤ 4 D(r), (7.10)

from which we conclude that both Γ,E > 0 over the interval ]a, b′[. Set for simplicity
F(r) := Γ(r)−1 − rE(r)−1, and compute

−Ω′(r) =
H′(r)

H(r)
− Γ′(r)

Γ(r)
− 1

r

(7.5)

≤
(
m− 1

r
+ C

)
+

2E(r)

rH(r)
− Γ′(r)

Γ(r)
.

Then we have two possibilities: either the RHS of this expression is nonpositive, so that
−Ω′(r) ≤ 0, or (

m− 1

r
+ C

)
+

2E(r)

rH(r)
− Γ′(r)

Γ(r)
≥ 0 (7.11)

Let us assume to be in this second case, then by (7.11)

D′(r)

Γ(r)
≤ |L

′(r)|
Γ(r)

+

(
m− 1

r
+ C

)
+

2E(r)

rH(r)
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that is, since H,Γ > 0 and H(r) ≤ rΓ(r), by I(r) ≥ 1,

D′(r) H(r) ≤ 2

r
E(r) Γ(r) + |L′(r)|H(r) +

(
m− 1

r
+ C

)
Γ(r) H(r)

≤ 2

r
E(r) Γ(r) + Cm

1/2
0 (r−1D′(r) H(r))

1/2H(r) + C Γ2(r)

(7.10)

≤ 1

2
D′(r) H(r) + C Γ2(r) (7.12)

which, combined with (7.9), implies |L′(r)| ≤ C Γ(r)/r1/2. Next, set for simplicity F(r) :=
Γ(r)−1 − rE(r)−1, and compute

−Ω′(r) =
H′(r)

H(r)
− Γ′(r)

Γ(r)
− 1

r

(7.6)
=

H′(r)

H(r)
− rΓ′(r)

E(r)
− Γ′(r)F(r)− 1

r
.

Again by Proposition 7.5 and using |L′(r)| ≤ CΓ(r)/r1/2 ≤ C D(r)/r1/2 in (7.16) and in
(7.15),

H′(r)

H(r)

(7.5)

≤ m− 1

r
+ C +

2

r

E(r)

H(r)
, (7.13)

|F(r)|
(7.6)

≤ C
r(D(r)1+γ3 + Σ(r))

Γ(r) E(r)

(7.10)

≤ C D(r)γ3−1 + C
Σ(r)

D(r)2
, (7.14)

−Γ′(r)F(r) ≤ CD(r)γ3−1D′(r) + C
Σ(r)D′(r)

D(r)2
+ CD(r)γ3 + C

Σ(r)

D(r)
(7.15)

−rΓ
′(r)

E(r)

(7.7)

≤
(
C − m− 2

r

)
rD(r)

E(r)
− 2

r

G(r)

E(r)
+ C

rD(r)γ3D′(r) + D(r)1+γ3

E(r)
+
r|L′(r)|
E(r)

≤ C

r1/2
− m− 2

r
+
C

r
Γ(r)|F(r)| − 2

r

G(r)

E(r)
+ CD(r)γ3−1D′(r) + C

D(r)γ3

r
+
rL(r)

E(r)
(7.8), (7.14), (7.4)&(7.10)

≤ C − m− 2

r
− 2

r

G(r)

E(r)
+ CD(r)γ3−1D′(r) + C rγ3m−1. (7.16)

Furthermore, since by Cauchy-Schwartz, we have

E(r)

rH(r)
≤ G(r)

rE(r)
. (7.17)

Thus, by (7.4), (7.13), (7.15), (7.16) and (7.17), we conclude

−Ω′(r) ≤ C + C rγ3 m−1 + CrD(r)γ3−1D′(r)−D′(r)F(r)

(7.14)

≤ C rγ3 m−1 + CD(r)γ3−1D′(r) + C
Σ(r)D′(r)

D(r)2
. (7.18)

Integrating (7.18) we conclude:

Ω(a)−Ω(b) ≤ C + C (D(b)γ3 −D(a)γ3) + C

[
Σ(a)

D(a)
− Σ(b)

D(b)
+

∫ b

a

Σ′(r)

D(r)
dr

]
(7.8)

≤ C. �
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7.1. Proof of Proposition 7.5. The proof of (7.5) can be found in [9, Subsection 3.1],
while for (7.9) we observe that, since H(r) ≤ C rΓ(r) ≤ C rD(r) by assumption,

|L(r)| ≤ Cm
1/2
0

∫
M
φ

(
dj(p)

r

)
|N | |DN | ≤ Cm

1/2
0

(∫ r

0

H(t) dt

) 1
2

D
1
2 (r)

≤ Cm
1/2
0

(
C

∫ r

0

tD(t) dt

) 1
2

D
1
2 (r) ≤ Cm

1/2
0 rD(r) , (7.19)

and similarly

|L′(r)| ≤ −Cm1/2
0

∫
M

1

r2
φ′
(
dj(p)

r

)
|N | |DN | ≤ Cm

1/2
0

(
r−1 D′(r) H(r)

) 1
2 . (7.20)

For what concerns (7.8), we recall the following result

Lemma 7.6 ([9, Lemma 3.6]). There exists a dimensional constant C0 > 0 such that

Σ(r) ≤ C0 r
2 D(r) + C0rH(r) and Σ′(r) ≤ C0H(r), (7.21)∫
Br(q)
|N |2 ≤ C0 Σ(r) + C0 rH(r) , (7.22)∫

Br(q)
|DN |2 ≤ C0 D(r) + C0 rD

′(r). (7.23)

In particular, if I ≥ 1, then (7.8) holds and∫
Br(q)
|N |2 ≤ C0 r

2D(r). (7.24)

Finally we come to (7.6) and (7.7). Their proof is very similar to the one in [9], so we
give only an outline of it [9, Section 4]. We exploit the first variation of T along some
vector fields X. The variations are denoted by δT (X). We fix a neighborhood U of M
and the normal projection p : U→M as in Assumption 3.1. Observe that p ∈ C2,κ and
[6, Assumption 3.1] holds. We will consider:

• the outer variations, where X(p) = Xo(p) := φ
(
d(p(p))

r

)
(p− p(p)).

• the inner variations, where X(p) = Xi(p) := Y (p(p)) with

Y (p) :=
d(p)

r
φ

(
d(p)

r

)
∂

∂r̂
∀ p ∈M

( ∂
∂r̂

is the unit vector field tangent to the geodesics emanating from Φ(0) and
pointing outwards).

Note that Xi is the infinitesimal generator of a one parameter family of bilipschitz home-
omorphisms Φε defined as Φε(p) := Ψε(p(p)) + p − p(p), where Ψε is the one-parameter
family of bilipschitz homeomorphisms of M generated by Y .

Consider now the map F (p) :=
∑

i Jp+Ni(p)K and the current TF associated to its
image (cf. [6] for the notation). Observe that Xi and Xo are supported in p−1(Br(q))
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but none of them is compactly supported. However, recalling Proposition 6.5 (v) and the
almost minimizing property of T in Lemma 0.4, we deduce that

δT (X) = T (dω X) = (T −TF )(dω X) + TF (dω X) .

Then, we have

|δTF (X)−TF (dω X)| ≤ |δTF (X)− δT (X)|+ |(T −TF )(dω X)|

≤
∫

spt(T )\Im(F )

(|X|+ |div~TX|) d‖T‖+

∫
Im(F )\spt(T )

(|X|+
∣∣div~TFX

∣∣) d‖TF‖︸ ︷︷ ︸
Err4

. (7.25)

Set now for simplicity ϕr(p) := φ
(
d(p)
r

)
. We wish to apply [6, Theorem 4.2] to conclude

δTF (Xo) =

∫
M

(
ϕr |DN |2 +

Q∑
i=1

Ni ⊗∇ϕr : DNi

)
+

3∑
j=1

Erroj , (7.26)

where the errors Erroj correspond to the terms Errj of [6, Theorem 4.2]. This would imply

Erro1 = −Q
∫
M
ϕr〈HM,η ◦N〉, (7.27)

|Erro2| ≤ C0

∫
M
|ϕr||A|2|N |2, (7.28)

|Erro3| ≤ C0

∫
M

(
|N ||A|+ |DN |2

)(
|ϕr||DN |2 + |Dϕr||DN ||N |

)
, (7.29)

where HM is the mean curvature vector of M. Note that [6, Theorem 4.2] requires the
C1 regularity of ϕr. We overcome this technical obstruction applying [6, Theorem 4.2] to
a standard smoothing of φ and then passing into the limit (the obvious details are left to
the reader). Furthermore we observe that

TF (dω X) =

∫
M
ϕr

Q∑
i=1

〈(ξ1 +Dξ1N
i) ∧ · · · ∧ (ξm +DξmN

i) ∧N i , dω(p+N i(p)) .

Clearly ∣∣∣TF (dω X)−
∫
M
ϕr

Q∑
i=1

〈(ξ1 +Dξ1N
i) ∧ · · · ∧ (ξm +DξmN

i) ∧N i , dω(p)〉
∣∣∣

≤ C‖dω‖1

∫
ϕr|N |2

and we can therefore conclude∣∣∣TF (dω X)− L(r)
∣∣∣ ≤ C‖dω‖0

∫
ϕr|N ||DN |2 + C‖dω‖0

∫
ϕr|η ◦N |+ C‖dω‖1

∫
ϕ|N |2 .
(7.30)
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Plugging (7.26) and (7.30) into (7.25) and using the triangular inequality, we then conclude∣∣Γ(r)− r−1E(r)
∣∣ ≤ 4∑

j=1

∣∣Erroj
∣∣ , (7.31)

where Erro4 corresponds to Err4 of (7.25) when X = Xo. With the same argument, but
applying this time [6, Theorem 4.3] to X = Xi, we get

δTF (Xi) =
1

2

∫
M

(
|DN |2divMY − 2

Q∑
i=1

〈DNi : (DNi ·DMY )〉
)

+
3∑
j=1

Errij , (7.32)

where this time the errors Errij correspond to the error terms Errj of [6, Theorem 4.3], i.e.

Erri1 = −Q
∫
M

(
〈HM,η ◦N〉 divMY + 〈DYHM,η ◦N〉

)
, (7.33)

|Erri2| ≤ C0

∫
M
|A|2

(
|DY ||N |2 + |Y ||N | |DN |

)
, (7.34)

|Erri3| ≤ C0

∫
M

(
|Y ||A||DN |2

(
|N |+ |DN |

)
+ |DY |

(
|A| |N |2|DN |+ |DN |4

))
. (7.35)

Straightforward computations (again appealing to [9, Proposition A.4]) lead to

DMY (p) = φ′
(
d(p)

r

)
d(p)

r2

∂

∂r̂
⊗ ∂

∂r̂
+ φ

(
d(p)

r

)(
Id

r
+O(1)

)
, (7.36)

divM Y (p) = φ′
(
d(p)

r

)
d(p)

r2
+ φ

(
d(p)

r

) (m
r

+O(1)
)
. (7.37)

Plugging (7.36) and (7.37) into (7.32) and using (7.25) we then conclude∣∣D′(r)− (m− 2)r−1D(r)− 2r−2G(r)
∣∣ ≤ C0D(r) +

4∑
j=1

∣∣Errij
∣∣+ |TF (dω X)| . (7.38)

Let ξ1, . . . , ξm, ν1, . . . , νn be an orthonormal basis of Rm+n such that ξ1(p), . . . , ξm(p) ∈
TpM, and let dx1, . . . , dxm, dy1, . . . , dyn be its dual basis. Since Y ∈ TM, we can write

Y (p) =
m∑
l=1

al(p) ξk(p) and dω(p) =
n∑
k=1

bk(p)dy
k ∧ dx1 ∧ · · · ∧ dxm + ω̂ ,

〈Z, ω̂〉 = 0, for every vector field Z tangent toM. Observe that |dω(p+N i(p))− dω(p)| ≤
m

1/2
0 |N | so that∣∣∣TF (dω X)−

m∑
j=1

(−1)j−1

∫
M
〈Dξj(η ◦N)) ∧ ξ̂j ∧ Y, dω(p)〉︸ ︷︷ ︸

=:E

∣∣∣ ≤ Cm
1/2
0

∫
M
|Y ||N | |DN |
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where ξ̂j = ξ1 ∧ · · · ∧ ξj−1 ∧ ξj+1 ∧ · · · ∧ ξm and we used ξ1 ∧ · · · ∧ ξn ∧ Y = 0. Next, using
the above expressions for Y and dω, and the property of ω̂ together with Y (p) ∈ TpM for
every p ∈M, we achieve

E = (−1)m−1

n∑
k=1

m∑
j=1

∫
M
bk aj〈Dξj(η ◦N), dyk〉

= (−1)m−1

n∑
k=1

m∑
j=1

∫
M
bk aj

(
Dξj(η ◦N)k − 〈η ◦N, Dξjν

k〉
)

≤ Cm
1/2
0

(∫
M

(|DY |+ |Y |) |η ◦N |+
∫
M
|Y | |AM| |η ◦N |

)
(7.39)

where in the second and third inequalities we used integration by parts. Therefore, in
oreder to estimate |TF (dω X)| it is enough to estimate Erri1, Erri2 and Erri3 above.

Proposition 7.5 is then proved by the estimates of the errors terms done in [9, Section
4].

Remark 7.7. It is important to notice that we can apply [9, Section 4] verbatim because
the estimates of Part 1 on the center manifold and the normal approximation are the same
as the ones used in [8]. In particular, Theorem 2.13 and Theorem 3.4 allow us to estimate
our errors in terms of powers of the sidelength of the Whitney cubes, and conversely,
Proposition 3.6 and Proposition 3.9 imply a bound on these powers in terms of D,H and
Σ. This is achieved by a suitable covering, which handles the fact that on cubes of type
Wn, the estimate on the sidelenght can only come from cubes of type We, and is also one
of the reason for introducing the cut-off function φ.

7.2. Boundedness of the frequency. In this section we recall two corollaries of the
previous analysis: the boundedness of the frequency function Ij along the different center
manifolds corresponding to the intervals of flattening and a Reverse Sobolev inequality. To
simplify the notation, we set pj := Φj(0) and write simply Bρ in place of Bρ(pj) .

Theorem 7.8 (Boundedness of the frequency functions [9, Theorem 5.1]). Let T be as in
Assumption 6.4. If the intervals of flattening are j0 <∞, then there is ρ > 0 such that

Hj0 > 0 on ]0, ρ[ and lim sup
r→0

Ij0(r) <∞ . (7.40)

If the intervals of flattening are infinitely many, then there is a number j0 ∈ N and a
geometric constant J1 ∈ N such that

Hj > 0 on ]
sj
tj
, 2−j13[ for all j ≥ j0 and sup

j≥j0
sup

r∈]
sj
tj
,2−j13[

Ij(r) <∞ . (7.41)

sup

{
min

{
Ij(r) ,

r
∫
Br |DNj|2∫
∂Br |Nj|2

}
: j ≥ j0 and max

{
sj
tj
,

3

2j1

}
≤ r < 3

}
<∞ (7.42)

where in the latter inequality we understand Ij(r) = 1 when Hj(r) = 0.
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Proof. Same as [9, Theorem 5.1], using 1/2Γ(r) ≤ D(r) ≤ 2Γ(r). In particular, we use here
Proposition 3.12. �

Corollary 7.9 (Reverse Sobolev [9, Corollary 5.2]). Let T be as in Assumption 6.4. Then,
there exists a constant C > 0 which depends on T but not on j such that, for every j and
for every r ∈]

sj
tj
, 1], there is s ∈]3

2
r, 3r[ such that∫

Bs(Φj(0))

|DNj|2 ≤
C

r2

∫
Bs(Φj(0))

|Nj|2 . (7.43)

Proof. Same as [9, Corollary 5.2], using 1/2Γ(r) ≤ D(r) ≤ 2Γ(r).
�

8. Final Blow Up and Dir-minimality of the limit

8.1. Blow-up maps. Let T be a current as in the Assumption 6.4. By Proposition 6.5
we can assume that for each radius rk there is an interval of flattening Ij(k) =]sj(k), tj(k)]
containing rk. We define next the sequence of “blow-up maps” which will lead to the
proof Theorem 0.2. To this aim, for k large enough, we define s̄k so that the radius
s̄k
tj(k)
∈
]

3
2
rk
tj(k)

, 3 rk
tj(k)

[ is the radius provided in Corollary 7.9 applied to r = rk
tj(k)

. We then

set r̄k := 2s̄k
3tj(k)

and rescale and translate currents and maps accordingly:

(BU1) T̄k = (ι0,r̄k)]Tj(k) = ((ι0,r̄ktj(k)
)]T ) B6

√
m/r̄k and M̄k := ι0,r̄k(Mj(k));

(BU2) N̄k : M̄k → Rm+n are the rescaled M̄k-normal approximations given by

N̄k(p) =
1

r̄k
Nj(k)(r̄kp). (8.1)

Since 1
2
< rk

r̄ktj(k)
< 1, it follows from Proposition 6.3 that

E(T̄k,B 1
2
) ≤ CE(T,Brk)→ 0.

By the standard regularity theory of area minimizing currents and Assumption 6.4, this
implies that T̄k locally converge (and supports converge locally in the Hausdorff sense) to
(a large portion of) a minimizing tangent cone which is an m-plane with multiplicity Q,
which we can assume to be Rm × {0}, that is without loss of generality, we can assume
that T̄k locally converge to Q Jπ0K. Moreover, from Proposition 6.3 it follows that

Hm−2+α
∞ (DQ(T̄k) ∩B1) ≥ C0r

−(m−2+α)
k Hm−2+α

∞ (DQ(T ) ∩Brk) ≥ η > 0 , (8.2)

where C0 is a geometric constant.
In the next lemma, we show that the rescaled center manifolds M̄k converge locally to

the flat m-plane π0, thus leading to the following natural definition for the blow-up maps
N b
k : B3 ⊂ Rm → AQ(Rm+n):

N b
k(x) := h−1

k N̄k(ek(x)) , (8.3)
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where hk := ‖N̄k‖L2(B 3
2

) and ek : B3 ⊂ Rm ' Tp̄kM̄k → M̄k denotes the exponential

map at p̄k = Φj(k)(0)/r̄k (here and in what follows we assume, w.l.o.g., to have applied a
suitable rotation to each T̄k so that the tangent plane Tp̄kM̄k coincides with Rm × {0}).

Lemma 8.1 (Vanishing lemma). Under the Assumption 6.4, the following hold:

(i) we can assume, without loss of generality, r̄km
j(k)
0 → 0;

(ii) the rescaled center manifolds M̄k converge (up to subsequences) to Rm × {0} in
C3,κ/2(B4) and the maps ek converge in C2,κ/2 to the identity map id : B3 → B3;

(iii) there exists a constant C > 0, depending only on T , such that, for every k,

∫
B 3

2

|DN b
k|2 ≤ C. (8.4)

Proof. To show (i), note that, if lim infk r̄k > 0, we can extract a further subsequence

and assume that limk r̄k > 0. Observe that then r̄ := lim supk
tj(k)

rk
< ∞. Since rk ↓ 0, we

necessarily conclude that tj(k) ↓ 0 and hence ‖dωj(k)‖C1,ε0 → 0. Moreover E(T,B6
√
mtj(k)

) ≤
C(r̄)E(T̄k,B6

√
mr̄−1

k
) → 0 because T̄k converges to Q Jπ0K. We conclude r̄km

j(k)
0 → 0. On

the other hand if limk r̄k = 0 then (i) follows trivially from the fact that mj
0 is a bounded

sequence.

Next, using r̄km
j(k)
0 → 0 and the estimate of Theorem 2.13, it follows easily that M̄k−p̄k

converge (up to subsequences) to a plane in C3,κ/2(B4). By Proposition 6.5 (v) we deduce
easily that such plane is in fact π0. Since 0 belongs to the support of Tj(k) we conclude for
the same reason that M̄k is converging to π0 as well. Therefore, by [9, Proposition A.4]
the maps ek converge to the identity in C2,κ/2 (indeed, by standard arguments they must
converge to the exponential map on the – totally geodesic! – submanifold Rm × {0}).
Finally, (iii) is a simple consequence of Corollary 7.9. �

The main result about the blow-up maps N b
k is the following.

Theorem 8.2 (Final blow-up). Up to subsequences, the maps N b
k converge strongly in

L2(B 3
2
) to a function N b

∞ : B 3
2
→ AQ({0} × Rn̄ × {0}) which is Dir-minimizing in Bt for

every t ∈]5
3
, 3

2
[ and satisfies ‖N b

∞‖L2(B 3
2

) = 1 and η ◦N b
∞ ≡ 0.

Proof. We divide the proof in steps.
Step 1: First estimates. Without loss of generality we might translate the manifolds M̄k

so that the rescaled points p̄k = r̄−1
k Φj(k)(0) coincide all with the origin. Let F̄k : B 3

2
⊂

M̄k → AQ(Rm+n) be the multiple valued map given by F̄k(x) :=
∑

i

q
x+ (N̄k)i(x)

y
and,

to simplify the notation, set pk := pM̄k
. We claim the existence of a suitable exponent
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γ > 0 such that

Lip(N̄k|B3/2
) ≤ Chγk and ‖N̄k‖C0(B3/2) ≤ C(m

j(k)
0 r̄k)

γ, (8.5)

M((TF̄k − T̄k) (p−1
k (B 3

2
)) ≤ Ch2+2γ

k , (8.6)∫
B 3

2

|η ◦ N̄k| ≤ Ch2
k . (8.7)

These are a consequence of the estimates of Theorem 3.4, Propositions 3.6 and 3.9 and
Corollary 7.9, as shown in [9, Section 7].

It is then clear that the strong L2 convergence of N b
k is a consequence of these bounds

and of the Sobolev embedding (cf. [7, Proposition 2.11]); whereas, by (8.7),∫
B 3

2

|η ◦N b
∞| = lim

k→+∞

∫
B 3

2

|η ◦N b
k| ≤ C lim

k→+∞
hk = 0 .

Finally, note that N b
∞ must take its values in {0} × Rn, by the convergence of M̄k to

Rm × {0}.
Step 2: A suitable trivialization of the normal bundle. By Lemma 8.1, we can consider

for every M̄k an orthonormal frame of (TM̄k)
⊥, νk1 , . . . , ν

k
n with the property that (cf. [6,

Lemma A.1])

νkj → em+j in C2,κ/2(M̄k) as k ↑ ∞
(for every j: here e1, . . . , em+n is the standard basis of Rm+n). Furthermore we let ξk1 , . . . , ξ

k
m

be an orthonormal bases of TM̄k, which is orthogonal to νk1 , . . . , ν
k
n.

Step 3: Competitor function. We now show the Dir-minimizing property of N b
∞. Clearly,

there is nothing to prove if its Dirichlet energy vanishes. We can therefore assume that
there exists c0 > 0 such that

c0h
2
k ≤

∫
B 3

2

|DN̄k|2 . (8.8)

Assume there is a radius t ∈
]

5
4
, 3

2

[
and a function f : B 3

2
→ AQ(Rn) such that

f |B 3
2
\Bt = N b

∞|B 3
2
\Bt and Dir(f,Bt) ≤ Dir(N b

∞, Bt)− 2 δ,

for some δ > 0. We can apply [10, Proposition 3.5] to the functions N b
k = h−1

k N̄k and find
competitors vbk such that, for k large enough,

vbk|∂Br = N̄k|∂Br , Lip(vbk) ≤ Chγk, |vbk| ≤ C(mk
0 r̄k)

γ,∫
B 3

2

|η ◦ vbk| ≤ Ch2
k and

∫
B 3

2

|Dvbk|2 ≤
∫
|DN̄k|2 − δ h2

k ,

where C > 0 is a constant independent of k and γ the exponent of (8.5)-(8.7). Clearly, by
Lemma 8.1 and the estimate on the regluarity of M̄k, the maps

Ñk(x) =
∑
i

q
((vbk)i)

j(e−1
k (x))νkj (x)

y
,
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where we set ((vbk)i)
j := 〈(vbk)i(x), em+j〉, (again we use Einstein’s summation convention),

satisfy again

Ñk ≡ N̄k in B 3
2
\ Bt, Lip(Ñk) ≤ Chγk, |Ñk| ≤ C(mk

0 r̄k)
γ,∫

B 3
2

|η ◦ Ñk| ≤ Ch2
k and

∫
B 3

2

|DÑk|2 ≤
∫
B 3

2

|DN̄k|2 − δh2
k.

and Ñk(x) ∈ (TxM̄k)
⊥.

Step 4: Competitor current and conclusion. Consider finally the map F̃k(x) =
∑

iJx +

(Ñi)k(x)K. The current TF̃k
coincides with TF̄k on p−1

k (B 3
2
\ Bt). Define the current

Zk := T −TF̄k + TF̃k
. If Sk is any current such that

∂Sk = Tk − Zk = TF̄k −TF̃k

then the semicalibrated condition gives

M(Tk) ≤M(Zk) + Sk(dωk) ,

where ωk is the calibrating form. Define H i
k : [0, 1]× Bt → AQ(Rm+n) for i = 1, 2 by

[0, 1]× Bt 3 (t, p) 7→ H1
k(t, p) :=

Q∑
i=1

q
p+ t (N̄k)i(p)

y
∈ AQ(R2+n)

[0, 1]× Bt 3 (t, p) 7→ H2
k(t, p) :=

Q∑
i=1

r
p+ (1− t) (Ñk)i(p)

z
∈ AQ(R2+n) .

We choose Sk := S1
k + S2

k , where Sik := THi
k

for i = 1, 2. Thanks to the homotopy formula

in [6], we get

∂S1
k = TFk|Bt −Q JMK−TH1|[0,1]×∂Bt)

,

∂S2
k = Q JMK−TF̃k|Bt

+ TH2|[0,1]×∂Bt
.

On the other hand since N̄k = Ñk on ∂Bt, we conclude ∂Sk = ∂(S1
k + S2

k) = Tk − Zk.
We next estimate |S1

k(dωk)| and |S2
k(dωk)|. Since the estimates are analogous, we give

the details only for the first. Moreover we drop the index k just for these computations.
We start from the formula

S1(dω) =

∫
Bt

∫ 1

0

Q∑
i=1

〈
~ζi(t, p), dω((H1)i(t, p))

〉
dH2(p) dt,

with

~ζi(t, p) =
(
ξ1 + t∇ξ1N̄i(p)

)
∧ · · · ∧

(
ξm + t∇ξmN̄i(p)

)
∧ N̄i(p)

=: ξ1 ∧ · · · ∧ ξm ∧ N̄i(p) + ~Ei(t, p) ,

and

| ~Ei(t, p)| ≤ C
(
|DN̄ |(p) + |DN̄ |2(p)

)
|N̄ |(p). (8.9)
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Next we note that

dω((H1)i(t, p)) = dω(p) + I(t, p), (8.10)

where I(t, p) can be estimated by

|I(t, p)| = |dω((H1)i(t, p))− dω(p)| ≤ C ‖D2ω‖L∞ |N̄ |(p). (8.11)

Therefore, we have∣∣∣ Q∑
i=1

〈
~ζi(t, p), dω((H1)i(t, p))

〉∣∣∣ ≤ Q∑
i=1

〈ξ1 ∧ · · · ∧ ξm ∧ N̄i(p), dω(p)〉+ ‖dω‖L∞
Q∑
i=1

| ~Ei(t, p)|

+ C

Q∑
i=1

(
(|N̄i|+ | ~Ei|) |I|

)
(t, p)

≤ C‖dω‖C1

(
|η ◦ N̄ |+ C|N̄ |2(p) + C|DN̄ |(p) |N̄ |(p) + Cr|DN̄ |2(p)

)
,

since |N̄ | ≤ C(m0r̄)
γ on Bt. Arguing similarly for S2

k (observe that we have the bound

|Ñk|(p) ≤ C(mk
0 r̄k)

γ) and estimating |N̄ ||DN̄ |+ |Ñ ||DÑ | ≤ C(|N̄ |2 + |Ñ |2) +C(|DN̄ |2 +
|DÑ |2), we achieve

|S1
k(dωk)|+ |S2

k(dωk)| ≤ C ‖dωk‖C1

(∫
Bt

(
|η ◦ N̄k|+ |η ◦ Ñk|

)
+ C r−1

∫
Bt)

(
|N̄k|2 + |Ñk|2

)
+ Cr

∫
Bt

(
|DN̄k|2 + |DÑk|2

))
,

and, using 8.4 and the estimates on N̄k and Ñk, we conclude that

Sk(dωk) ≤ o(h2
k) (8.12)

Finally observe that, taking into account (8.6), we conclude that

M(TFk|Bt ) ≤M(Tk p−1
k (Bt)) + ‖T −TFk|Bt‖(p

−1
k (Bt))

≤M(TF̃k
) + 2 ‖T −TFk|Bt‖(p

−1
k (Bt))

≤M(TF̃k
) + o(hk)

2 . (8.13)

so that

0 ≤M(TF̃k
)−M(TF̄k) ≤

1

2

∫
Bρ

(
|DÑk|2 − |DN̄k|2

)
+ C‖Hk‖C0

∫ (
|η ◦ N̄k|+ |η ◦ Ñk|

)
+ ‖Ak‖2

C0

∫ (
|N̄k|2 + |Ñk|2

)
+ o(h2

k) ≤ −
δ

2
h2
k + o(h2

k) ,

(8.14)

where in the last inequality we have taken into account Lemma 8.1. For k large enough
this gives a contradiction and concludes the proof. �
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Proof of Theorem 0.3. Let N b
∞ be as in Theorem 8.2, and

Υ := {x ∈ B1 : N b
∞(x) = Q J0K} .

Since η ◦ N b
∞ ≡ 0 and ‖N b

∞‖L2(B3/2
= 1, from the regularity of Dir-minimizing Q-valued

functions (cf. [7, Proposition 3.22]), we know that Hm−2+α
∞ (Υ) = 0. The same capacitary

argument as in [9, Subsection 6.2] shows that this is a contradiction with Assumptions 6.1,
which proves the result. �
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