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1 Introduction

In this paper we study a class of approximation schemes originally introduced by Bourdin,
Francfort and Marigo in [5] and nowadays widely employed in quasi-static phase field models
for fracture and damage, e.g. [29, 16, 24, 1]|. Following [5] (and the many later developments)
we consider a phase-field energy of Ambrosio-Tortorelli type [2] and the corresponding time-
discrete evolutions obtained by a class of (constrained) alternate minimization algorithms.
Our first and main goal is to prove the convergence of discrete solutions and to derive a
precise characterization of the limit evolution; our second task is the study of its mechanical
properties. By our analysis we obtained the following results: the time-continuous evolution
is characterized ”mathematically” in terms of a (non-degenerate, parametrized) BV -evolution
[17, 19, 23] while "mechanically” it satisfies a phase-field version of Griffith’s criterion, at least
in the regime of stable propagation.

In detail, we employ the energy
1 2 (2 —1)? 2
F(t,u,2) =5 | (2 +1)Ce(u) : e(u) dr + G P +e|Vz|” dx — (b(t),u), (1)
Q Q

where z € Z is the scalar phase field/damage variable (with 0 < z < 1, z = 1 corresponding
to no damage and z = 0 corresponding to maximum damage), u € U is the displacement field
with linearized strain e(u) and elasticity tensor C, b(t) is a linear functional, G. is fracture
toughness while ¢ and 7 are positive parameters (typically very small). It is well known that
(1) provides an approximation of Griffith’s energy for brittle fracture; indeed, the I'-limit [8]
of F(t,-,-) for e — 0, and n = o(e), turns out to be of the form

;/{)Cs(u) ce(u)de + GcHnil(Su) — (b(t), u)
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for w € SBD(Q) [6] and GSBD(R2) [12, 9]. In our work, we are not going to study any limit
as ¢ — 0 (and thus we set for convenience e = 1/2 for the rest of the paper); our interest,
motivated by applications, is instead the evolution obtained by alternate minimization for the
energy JF. We remark that I'-convergence by itself is not enough to provide convergence of
BV-evolutions, as ours; being crafted for global energy minimizers it is more suitable for the
convergence of “energetic evolutions” [10].

Alternate minimization algorithms are descent algorithms which exploit the separate con-
vexity of the energy functional F(¢,-,-), with respect to w and z, to find critical points. In
the context of fracture/damage this idea, applied to approximate a quasi-static evolution,
goes back to [5]. Among the many possible implementations of alternate minimization we
employ the following. Let the time interval [0,7] be discretized by the time-steps t} with
k=0,..,T/n. Known (up_,,2;_;), at time ¢}'_,, in order to calculate the solution (u},z2})
at time ¢y let wp o = up_q, 254 := z;_; and calculate recursively for i € N (until a certain
stopping criterion is satisfied leading to the index i,q4):

up; € argmin { F (¢, u, 2., 1) : w €U }, (2)
2 € argmin { F (¢, up ;,2) + 2 <z, ). (3)

Then we define u}} = Up o R =g (possibly including the case iy,q; = 00 with a limit).
We study the limit as the number of time steps n discretizing the interval [0,7] tends to
infinity. For that purpose, we switch to a parametrized picture and introduce interpolating
curves (tn, Un, zn) @ [0,S,] = [0,7] x U x Z depending on an artificial arc-length parameter
s and study the limiting behavior of these trajectories. This is a convenient “mathematical
description” which allows to easily take into account possible discontinuities in time of the
limit BV-evolutions [18]. We show that the lengths S,, are uniformly bounded and that
(subsequences of ) the curves (¢, uy, 2, ) converge to a Lipschitz continuous limit curve (¢, u, z) :
[0,S] — [0,T] x U x Z with S < oo, t(0) = 0, t(S) = T, s — t(s) non-decreasing and
0<C<t(s)+ ]2 (s)]lz + ||v/ ()]l for almost all s.

Moreover, the limit (parametrized) evolution satisfies the following equilibrium criterion
and an energy balance, respectively:

(8") for every s € [0, 5] with t/(s) >0
|0uF ((s), u(s), Z(S))|z(s) =0, |0 F (t(s), u(s), Z(S))’u(s) =0, (4)

(E") for every s € [0, 5]

S

F(t(s), uls), z(s)) = F(0,u(0),2(0)) — ; |0uF (t(r), u(r), 2(r)) ) 10/ (F)l]2r) dr

- /0 0-F () ), 2Dluiry 170 gy dr
+ [ aF ), )20 ) dr (5)
0

Here, |0, F(t,u, )|, and |0,F (t,u, )|, denote the partial weighted slopes of F with respect to
u and z, respectively, while ||/||, and |[v'||,, are suitable weighted norms (for the definition see
§2). For delicate technical reasons, the analysis is carried out for the two dimensional setting.

It turns out that our solutions are close to the one for vanishing viscosity limits for rate
independent systems [22] and derive an equivalent characterization of (E’) and (S’) in terms
of differential inclusions (a detailed discussion is contained in §6.3). Moreover, we show in
§6.3 that functions satisfying (E’) and (S’) are local solutions, see for instance [18, 31], with
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respect to the physical time ¢. Finally, we show that for every s € [0,.S] with ¢'(s) > 0 it holds
the (parametrized) phase field Griffith’s criterion

G(t(s),2(s) <G (G(t(s), 2(s)) = Ge) L'(v(s)) = 0,

where G(t, 2) is a phase-field energy release rate (defined in §6) while £ denotes the derivative
of the length term £(2) = 3 [,(z — 1)? + |V2|* dx.

The paper is organized as follows: in §2 the notation, the energy F, its slopes, the relevant
function spaces and the weighted norms are introduced. In §3 we study the properties of the
alternate minimization scheme at a fixed time step (with i,,4, = 00) , derive the convergence
properties of the sequence (uy;, 2 ;)ien and prove energy identities valid for a single time-step.
84 is devoted to the analysis of the full time-discrete problem. There, the artificial arc-length
parameter and the corresponding interpolating curves are introduced, uniform estimates for
the arc-length parameters and a uniform non-degeneracy condition for the curves (t,, un, zn)n
are derived and the limits for n — oo are investigated. By lower semicontinuity the limiting
curves satisfy an energy inequality which, by using a chain rule argument, turns out to give the
energy equality. In §5, we review the analysis of §3—84 under the assumption that the maximum
number of iterations in (2)—(3) is a-priori fixed to a finite value M including the case M = 1.
In §6, we give different alternative formulations of the limit model and compare it with other
notions of solutions to rate-independent processes. Finally, in §7 we give a numerical example
showing for a finite dimensional toy problem the different solution curves obtained with: our
algorithm, Bourdin’s algorithm with backtracking, a one-step algorithm, see for instance [27],
and the algorithm based on global minimization, leading to global energetic solutions.
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2 Notation and preliminaries

Assume that © is a bounded Lipschitz connected open set in R?. Its boundary 02 is split into
0pS2 and Oy €2 which are regular in the sense of Groger [11]; this technical assumptions allows
us to obtain a uniform higher integrability of the strain, independent of the phase field state,
and is satisfied for instance when 9p{2 is relatively open with a finite number of connected
components. In the following we assume that dp{) has positive measure. The space for the
phase field variable and the displacement will be respectively

Z=H'Q) U={uecH(QR?):u=0o0ndpN}.

Denote also
Ur = Wyky = {u € W(Q,R? :u=0ondpQ}.

For n > 0 the phase field elastic energy € : U x Z — [0,400] is defined as

E(u,z) = ;/9(22 + )W (Du)dz. (6)

Here Du denotes the gradient of w and W(Du) = e(u) : Ce(u) = e(u) : o(u) where C is
symmetric and positive definite on symmetric 2 x 2 tensors, e(u) is the symmetrized gradient
and o(u) = Ce(u) is the stress tensor.

Assume that the loading term

b e ch([o,T); Wg;ﬁq) for some ¢ > 2, (7)

where Wg;g is the dual of W(;]’Jq;l. For G, > 0 we define the total energy functional F :
[0,T] xU x Z — RU{+400} to be

F(tyu,z) = ;/9(22 + n)W (Du) dx + %GC/Q(Z — 12+ |Vz2dx — (b(t),u) (8)
=E(u,2) + GL(z) — (b(t),u).

Note that the pairing (b(t),u) is well defined since, being ¢ > 2, U C Wg};é and thus b € U’
The choice g > 2 is due to the fact that we will often need higher integrability of the strains.
This is provided by the following result [13].

Lemma 2.1. Let ¢ > 2. Denote
Axw.d) = [ (2 + me(u) s Ce(¢)da, 9)

For every M > 0 there exists p € (2,q] and Cyr > 0 such that for every p € [2,p], every z € Z
with ||| e () < M and every f € Wa_Dlg’f there exists a unique u € W(;’DQ such that

A(u,0) = (f,8)  for every 6 € Wi,

Moreover ||u|ly1.5 < CMHfHWa—I,;?.
D

Let us fix for the rest of the paper p > 2 as the exponent obtained for M = 1 in the
previous Lemma; the choice M =1 is related to the fact that in the evolution the phase field
variable z will always satisfy ||z||p~ < 1.

By [7, Theorem 3.4] and direct calculations the following properties of F hold true.
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Lemma 2.2. The functional F(t,-,-) is sequentially weakly lower semicontinuous w.r.t. Ux Z.
Moreover, for z € ZN L>* and u € U the following partial derivative is well defined

OuF (t,u, 2)[¢] = / (2:2 +n)o(u) : e(p)dx — (b(t), P) for every ¢ € U. (10)

Q

If z€ Z and v € UP for p > 2 then

0.7(t.u2)le) = [

zE W (Du) dx + GC/(Z —1){+Vz - Védr for every £ € Z. (11)
Q Q
Finally, for all w € U we have OF (t,u, z) = —<b(t),u).

Note that the first term in (11) is well defined thanks to the fact that z,£ € L" for every
1 <7 < oo and W(Du) € LP/2,
Throughout the paper we will need the following norms and scalar product in the space Z

1/2

1/2
lzllz = </Q 22 4+ |Vz|? dx) , 2|l = (/Q 22 (Ge + W(Du)) + G.|Vz? dx) , (12)
(z,8)u = /sz(Gc + W (Du)) + G.Vz-VEdz. (13)

In the space U we introduce the following norms and scalar product

folee = ( [ u2+|Du|2dx>1/2, ol = ([ <z2+n>w<Du>d:c)1/2, (14)
(, 0): = /Q (22 + o) : €(6) da. (15)

Under the conditions of Lemma 2.2 the above expressions are all well defined. Moreover, by
the lower semicontinuity of F we obtain the following Corollary.

Corollary 2.3. Ifu, — w inU and z, — z in Z, then ||ul|, < liminf, |uy| ., and ||z|. <
liminf,, ||z ||u, -

Denoting ¢(z) = [ z dx we can rewrite F as quadratic functionals in v and z:
‘F(tv u, Z) = %HUHE - <b(t), u> + ¢z, f(t, u, Z) = %HZH%L - E('Z) + Ctou, (16)

where

c: = G.L(2), Ctu = é/ﬂnW(Du) + Gedr — (b(t),u).
Moreover
8u‘7:(t7u7 Z)[¢] = <U7 ¢>z - <b(t)7 ¢>v az]:(tv U, Z)[f] = <va>u - 6(5)

Lemma 2.4. Provided z € ZN L™ and u € UP for p > 2, the norms || - |y and || - ||z are
equivalent respectively to || - ||, and || - ||4-

Proof. For v € UP and z € Z it holds
Ge|17l1% < |72 = / (G + W(Du))dr + G. V22
Q
< Cu lulZs 21 + GelZI% < Ca (1 + [lullZs ) 1212 (17)

with r = 2p/(p — 2) and C; independent of u. This shows equivalence of norms in Z. Finally,
for z € L*> by Korn’s inequality follows the equivalence of the norms || - ||z and |||, inU. O
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Due to the irreversibility constraint, the natural set of admissible variations for the phase
field variable is
E={¢cH :£<0}.

Next, under the assumptions of Lemma 2.2 we define the slopes

|0uF (t,u, 2)| 2 = max{—0uF (t,u, 2)[¢] : ¢ €U, [|p]l- <1},
|0-F (t, u, 2) | = max{—0.F(t,u, 2)[¢] : £ € E, [|¢]lu < 1}.

Lemma 2.5. Ift, —t, up, > u inl and z, — z in Z with 0 < z, < 1, then

lim [0y F (tn, tn, 2n) |z, = |OuF (t,u, 2)]5.

n—oo
Ift, — t, u, — u in UP with p > 2 and z, — z in Z, then

lim inf |0, F (tn, Un, 2n)|u, = [02F (t,u, )|y

n—o0

Proof. Consider a subsequence with

lim sup [0y F (tn, Un, 2n)|z, = Um  |OuF (tn,,, Un,,, Zn,,)

’Zn :
n—o0o Nm =00 "

In the following we write m instead of n,,. Let ¢, € argmax {—0,F (tm,Um,zm)[P] : ¢ €
U, |||, <1}. Then ¢, is bounded in H' and thus there exists a subsequence (not relabeled)
S.t. dm — doo. By Corollary 2.3, ||psol|» < 1, as well. Extract a subsequence s.t. Du,, and
Zy converge a.e. to Du and z respectively. Then (22, +n)o(un) — (22 + n)o(u) a.e. and is
dominated by ¢(1 +7)|Duy,| which converges in L?. By generalized dominated convergence it
follows that (22, + n)o(um) — (22 +n)o(u) in L2. Since ¢, — ¢ in U we have

O (bt 7)) = /Q (22, 4 )0 (tm) : €(m) Az — (b{tm), G1m)

= [ ) s 0me) do = (6(0),6mc) = O (10 2) [0
Thus
lim sup ’auf(tnyunazn”zn = lim ‘8uf(tm;umyzm)|zm =—1 auf(tmaumazm)[¢m]
n—oo m—00 m—o0

= —OuF(t,u, 2)[boo] < |OuF (t,u, 2)|,.

Let ¢, € argmax {—0,F(t,u,z)[¢] : ¢ € U,|¢||. < 1}. For every subsequence ny there
exists a further subsequence n; s.t. z,, — 2z a.e. in 2. By dominated convergence

/ (22, + )W (D) dr — / (2 + W (Do) da
Q Q

By arbitrariness of the subsequence ny it follows that ||¢u||2, — [|@«]]z < 1.
Now, extract a subsequence 1, s.t. iminf,, o0 [0y F (tn, Un, 2n)|z, = iMoo |OuF (Em, Ums 2m) |z,
and such that (22, + 7)o (um) — (22 +n)o(u) strongly in L?, see above. Then

au]:(tm,uma Zm)[_¢*] — 8uf<tvu7 Z)[_¢*]
and finally

|0u]:(t,u,z)|z = au]:(taua Z)[_CZ’*] = h_l?l 8u~7:(tmaumazm)[_¢*]

< lim inf [0y F (tm, Uy 2m) |2 ||| 2, = Hminf |0y F (tn, Uny 20)| 2, -



Convergence of Alternate Minimization for Phase Field Models, November 2, 2015 7

Next, we discuss the slope with respect to z. Let & € argmax{—0,F(t,u,z)[{] : £ €
Z, |l < 1}. Remember that t, — t and that 2z, — z in H' and thus strongly in L" for
every r < +oo. Note also that u,, € UP for some p > 2. Then W (Du,) — W (Du) strongly in
LP/? for p > 2 while z,£, — 2&, in L” for every r < 4o0. It follows that

/ 2n&sW (Duy) dx + G, / (zn — )& + V2, - V& dx
Q 9)
— / 2&W (Du) dx + G, / (z—=1)é+Vz -V dr
Q Q

and thus 9, F (tn, tn, 2n)[&] = O:F (t, u, 2)[&]. Moreover [, E2W (Duy,) dx — [, &2W (Du) da
and thus ||&lu, — [|&]le < 1. Then,

|0, F (tyu, 2) |y = =0, F (t,u, 2)[€] = — li_)m OuF (tn, Un,y 2n)[Ex]

< lminf |0, F (tn, Un, 2n) lu, [|6xllw,, = Uminf |0, F (tn, tn, 2n)|u,,

and the proof is concluded. ]

3 Alternate minimization scheme

In this section we will collect all the properties of the alternate minimization scheme at a fixed
time £. The time incremental problem will be discussed in §4.

Given t € [0,T], u € U and z € Z with 0 < z < 1, let us consider the sequences u; and z;
generated recursively by the following alternate minimization scheme. Set ug = u, zp = z and
define

(18)

w1 € argmin {F(t,u, z) : u € U},
ziy1 € argmin {F(t, ujt1,2) : 2 € Z with z < z}.

Standard arguments guarantee that for every index ¢ € N there exist unique minimizers
uir1 € U and z;41 € Z with 0 < z;11 < 1. Clearly it holds F (¢, uit1, zi+1) < F(t, wit1,2i) <
./_"(t, Ug Zl)

Lemma 3.1. There exists a constant C independent of t, uy and zg such that for every i > 1
and for every p € [2,p] it holds u; € UP with ||u;|ys < C and ||zi]lz < C(1 + ||20]|2)-

For i > 0 we have Oy F (t,uit1,2i)[¢] = 0 for every ¢ € U, O, F (t,uit1,2i+1)[&] = 0 for
every & € Z and 0, F (t, uit1, zi+1)[zi+1 — 2] = 0. These conditions imply that the slopes satisfy

|OuF (t, uig1, 2i)|2 = 0, |0 F (t, wit1, Zit1)ug s = 0.

Proof. By Lemma 2.1 we know that ||u;|,;5 < C||b(t)

< ngsg for every i > 1. From (16)

Slzilla, = 0(2) + ey = F(t,ui, z) < F(tua, 20) < llzoll, — €(20) + oo, -

By (17) and by the previous estimate for ||u;||;s5, the right hand side is bounded from above
by C(1+]20]|%). Again by (17) and by the previous estimate for |u;||;ss, the left hand side is
bounded from below by C(||z;||% — 1). This proves the uniform estimates.

Since = is a closed, convex cone, minimality of z;; implies the variational inequality and
the equality for 9, F stated in the Lemma. O

Lemma 3.2. The sequence u; converges to us, strongly in UP for p € [2,p); the sequence
z; converges to zso strongly in Z with 0 < 2o < 1. Moreover, 0yF (L, Uoo, 200)[@] = O for
every ¢ € U and 0,F (t, oo, 200)[E] = O for every & € E. These conditions are equivalent to
|OuF (t, Uoo, 200)|20e = 0 and |0, F (t, Uso, Zoo)|us, = 0.
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Proof. Relying on the uniform bound of Lemma 3.1, up to subsequences z; converge a.e. to
Zoo- Oince the sequence z; is monotone non-increasing, it turns out that the whole sequence
converges a.e. t0 2o, and thus in L” for every 1 < r < oco. By standard arguments it follows
that the whole sequence z; — 25 in Z. By Lemma A.1, u; is a Cauchy sequence in UP for
every p < p with limit us,. Thanks to Lemma A.2, z; is again a Cauchy sequence in Z with
Zi — Zoo-

By the same arguments of Lemma 2.5 the properties of the slopes follow. O

Remark 3.3. Note that, given the initial data, the sequence {(u;, z;)}i and its limit (Uoo, Zoo)
are unique.

Lemma 3.4. Consider the sequences {u;}; and {z;}; generated by the alternate minimization

scheme (18). Let p € (2,p) be arbitrary and p=* =p~* —p~t. Then fori > 1

zit1 = zill z < C(luillys + witallys) 120 = zim1ll po o - (19)
The constant C' is independent of i > 1 and t € [0, T].

Proof. Since u;,u;41 € UP, Lemma A.2 with 20 = 2;_1,21 = 2;, 20 = 2zj41, u1 = u; and
Uug = u;4+1 implies

2
lzis1 — 2ill% < Clluiss — willys (il + ltallys ) zien — 2illz
where the continuous embedding Z C L"(2) is exploited. Lemma A.1 yields

[wit1 = willys < C'llzi — ziall (o)

1 1

with =t = p~! — p~!. Combining these estimates leads to (19). O

Using the separate quadratic structure of the energy we will prove the following energy
identities (of normalized gradient flow type).

Lemma 3.5. For every i > 0 and every 7 € [0, 1] it holds
7
F(t, wigr, zi) = F(t, ui, 2i) — / |OuF (t, Uigr, 2i) |2 |wis1 — willz; dr, (20)
0

where Uity = u; + 1r(uir1 — ui). Similarly

5
‘F(ta Ui+1, Zi+f) - f(tvu’i-i-la Zi) - / |8zf(t7u’i+1a Zi+7“)|ui+1 Hzi-i-l - ZiHUiJrl dru (21)
0

where zitr = z; +1(2Zit1 — %i)-

Proof. Without loss of generality we can assume that wu; 1 # wu;. Since u;11 is a minimizer of

F(t,-, z) we have (uiy1,P),, = (b(t), ¢) for every ¢ € U. Write
(wit1 = iy @)z, = — (Ui, @)z + (b(t), @) = —OuF (t, ui, z)[0] Yo € U.
Thus
max{(uiy1 — i, @)z, : ¢ €U, [|¢lls <1} = max{=0uF(t,ui, zi)[9] : ¢ €U, [|D]|-; < 1}
Since (ujy1 — u;)/||wir1 — uill», € U is a maximizer, we get
s = wille; = [0uF (t, iy i) |2y = —O0uF (¢, wiy zi) [uigs — wil /|luits — wil| -
Now we will show that from the quadratic structure it will follow that for s € [0, 1]

lwiv1 — wits|lzy = [OuF (t, Uits, 20)|z; = —OuF (t, Uivs, 2i) [wit1 — wil /llwipr — willo,. (22)
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Indeed, keeping in mind the Euler-Lagrange equation for u; 1,

8uf(t7 Ui+s,y Zz)[¢] = <ui+57 ¢>z1 - <b(t), ¢> = <Uz + S(Ui—I—l - ui)? (z))Zz - <b(t)7 ¢>
= (1—5)((u, )z — (b(t), 9))
= (1 —8)0uF(t,uszi)]0)].

Thus (ui+1 — wi)/||wit1 — wil|z, € U is again a maximizer and
|OuF (t, Wigs, 2i)|z; = —OuF (t, Wigs, 2i) [wivr — wil /|| wiv1 — wil|

by definition of the slope. Thus, by the chain rule, for 0 <7 < 1,
" d
J_"(t, Ujt-7, Zi) = f(t, Us, Zi) -+ / Ef(t, Ujdr, Zi) dr
0
= f(t, Us, Zz) + / 6u]:(t, Uitr, zi)[uiﬂ — ul] dr
0

= F(t,uj, 2;) — /07“ |OuWF (t, Witr, 2i)|z; ||wis1 — willz, dr.
For the phase field variable z the argument is similar but not identical due to the irre-
versibility constraint. Let Z; = {z € Z: z < z;}. By minimality, for all £ € =2
0, F (ty,uiv1, ziy1)[€] > 0, O, F (tywis1, ziv1)[zi — zix1) = 0. (23)
Let us write
O F (b, wiv1, 20)[8] = (26 E)uiy — (&) = (Zit1, Quiyr — UE) + (20 — 2it1, Quips
= 0 F (t, uit1, 2i41) ] + (2i — 2i41, Quis
By (23) and Cauchy-Schwarz inequality
max{—0. F (t, i1, 2)[¢] : € € B, [l€lluiry <1} < lziv1 — zillugp
Choosing & = (ziy1 — 2)/||zi+1 — Zillu,1» again by (23), yields
0. F (b, wiv1, 2i)[Zit1 — zil/12iv1 — Zilluy = —112i41 — Zillus o

Therefore £ = (zi11 — 2:)/||%i4+1 — Zillu,,, is again a maximizer for the slope in (¢, u;11, 2;).
Next we will show that for every s € [0, 1] we have

”Zi-‘rl - Zi+$”’%+1 = ‘aZ]:(tﬂ Wit1, Zi+5)’ui+1 = _azf(t?ui-‘rlv Zi+5)[zi+1 - Zi]/HZiJ,—l - ZiHui+1'
Indeed, again by the quadratic structure of F(,u,-), we find for all { € =
OF (uirr, zivs)[§] = (Zits, Quipr — UE) = (zi + 5(2it1 — 2i)s Quiyy — UE)
= S [<Zi+1a£>ui+1 - f(&)] + (1 - S) [<Zia§>u¢+1 - 6(5)]
= 80 F(t,uitr1, zi41)[€] + (1 — 8) O F (t, uit1, 2i) [€]
For £ = (ziy1 — 2i)/||%i+1 — Zillusyr» Dy Lemma 3.1,
O-F (t,wis1, zigs)[§] = (1 — 8) O F (¢, wis1, 1) [€].
Since § = (zi41 — 2)/||2i+1 — Zillu,,, is a maximizer of the slope in (¢, u;11, 2;) we get
|02 F (t, Uit 1, Zis)uips = —OuF (t, Wit 1, Zivs)[ziv1 — 2l /|| Ziv1 — Zilluiss
Thus, by the chain rule,
F(t, wiv1, Zivr) = F(t, viv1, i) +/ O F (t, wig1, Zivr)[2ie1 — 2] dr
0

.
= F(t, vit1, 2i) —/ |0, F (i1, Zitr)lugyy 1Zit1 = Zillug o dr.
0

and the proof is concluded. O
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4 (Quasi-static evolution

4.1 Discrete evolution by the alternate minimization scheme

We now turn to the time discrete evolution, where each incremental update is provided by the
alternate minimization scheme. Given z(0) = zp € Z, with 0 < 29 < 1, and u(0) = ug € U we
assume that

up € argmin { F(0,u,20) : w € U}, 2o € argmin{ F(0,up,2) : z€ Z, 2<z0}. (24)

Observe that initial data that are stable in the sense of energetic solutions, i.e. with (ug, z) €
Argmin{ F(0,u,2) : u€ U,z € Z,z < z }, in particular satisfy (24).

Let At" = T/n and set t} = kAt"” for k = 0,...,n. Set uff = up and 2 = z9. Given u}}_,
and z; ; consider the alternate minimization scheme at time ¢t = ¢} ; 4+ At" with initial
conditions uy_; and z_;, viz. set “Z,o = uy_; and z,’;o = z;_,; and then define by induction
(for ¢ > 0)

uj ;1 € argmin {F (¢}, u, 21;) 1 u € U}
Zpiy1 € argmin {F (7, up 1, 2) 1 2 € Z with 2 < 277, 1.
The updates uy and 2}’ are respectively the limits of the above sequences, i.e.
Up == Hm ol 2 = o = Jim o
Existence of such limits has been proven in Lemma 3.2. Observe that the alternate mini-
mization procedure might lead to a fixed point already after a finite number of iterations. In

this case the sequences (uzz, zgl)Z will be constant starting form a certain index. The case in
which the algorithm is stopped at a finite index %4, Will be treated in §5.

4.2 Length of the alternate minimizing path

For convenience we introduce, for n € N and 0 < k£ < n, the notation

o0

ot = 30 (o — ol + et — 2l ). )
=0

which corresponds to the length of the alternate minimizing path at time ¢} with respect to
the standard I/ x Z-norm.

Theorem 4.1. There exists C > 0 such that for alln € N
n
d < (26)
k=0
Proof. We first estimate 7} from (25). By Lemma 3.1 there exists a constant C' > 0 such that
for every p € [2,p) and for alln > 1, 0 < k <mn, i >0 it holds
lafills < - (27)

By Lemma 3.4 there exists a further constant C7 > 0 such that foralln > 1,0<k<n,7>1
we have

2ie1 = 2all 5 < Cr kit = Zill e (28)
with p=! = p~1 — p7L. Since Z C LH(Q) C LY(Q) with continuous embeddings, by the
Gagliardo-Nirenberg inequality the right hand side can further be estimated as follows: fixing
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6 € (0,1) according to the Gagliardo-Nirenberg conditions and choosing § > 0 a posteriori it
holds

Ci |21 — Z]?,iHL,u(Q) < (6 ][2hi-1 — 2l 5 )1_6)0”59_1 281 — Zg,iuil(g)
<(1-6) Hzl?,i—l - Zl?,iHZ + 90;1/95171/0 \}ZQ,i_l - Z]Z:L,iHLl(Q) ;
where in the second line we applied Young’s inequality. With § = 1/(2(1 —6)), we arrive at

1
C1 |51 = ZE,?;HL/,L(Q) <3 [2kio1 = 2l 5 + C2 |21 — Zg,iHLl(Q)

with Cy = 00}/0(2(1 —6))~*1/9. Joining this estimate with (28) yields

1
HZI?,iH - ZZzHZ < 9 Hzl?,i—l — 21 zTC Hzg,i—l - Z?JHLI(Q)

forn >1,0<k <n,i>1. Summing up this inequality for m <i < N (m > 1) leads to

N 1 N N
D Mk =2l < 5 D0 Maits = 2hicall s + Co Y llzkios = #ill 11 - (29)
2 ()

Absorbing the first term on the right hand side into the left hand side (except for the term
i = m) and neglecting the term i = N on the left hand side we get for all N € N:

N N
1 1
5 E , HZ?@ - ZE,HHZ <3 Hz}jm - ZE,mleg + G2 E , HZZ,H - ZZ,i“Ll Q)" (30)
2 2 ()

i=m-+1 i=m

Observe that due to the relations 0 < 23’ < z7’, | < 1 the following series is finite

oo
S lletis = Aillay = [ 2o = Focde < 0. (31)
=1

Let now m = 1 in (30). The first term on the right hand side of (30) can be estimated with
Lemma A.2 by choosing zg = z1 = Zpor 22 = 201 and w1 = uy ), up = up; and by taking into
account (27):

HZI?,O - 221‘@ <C HUZ,O - UZ,lHMﬁ HZI?,O - Zl?l‘ L <C HUZ,O - Uz,lnuﬁ HZI?,O - Zl?,l”g'
Applying Lemma A.1 with up o = Umin (E7_1, zg’o) and uy, = Umin (17, 21?,0) gives
HZI?,O - Z£1HZ <C ‘tZA - t};”‘ .

Adding this inequality to (30) finally yields (with m = 1)

= o
; 2 — 2riall; < Clthy — ] + Co 2_; [ o (32)

Again thanks to Lemma A.1, this estimate immediately carries over to the corresponding
estimate for the displacement fields:

o0 [ee]
St — ol < O <\tz_1 T H)

i=1 =1

< Cy (\t;gl |+ > ||k - zgﬂ.HLl(m> . (33)

i=1
This implies that v}’ from (25) is finite and that

Sk <O@+ S e — Fullpae) < CT 1),
k=0 k=0 i=1

where the last term has been estimated as in (31). O
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Figure 1: Notation and interpolating curves

4.3 Arc-length parametrization of the graph

Now we provide the interpolation and parametrization (with respect to the arc length pa-
rameter s) of the discrete solutions u ; and z; given by the alternate minimization scheme.
Remember that uZ_LOO =up_, = ug,o and similarly for z;}_;.

Let ¢t = 0 and define s;j = 0. For each k > 1, given s}!_; and 7 > 0 we define

Sk—1= Sk—1> Sko = Sg_1 T A" =sp_1 + At", (34)
Shiv12 = Sk T up i —upllp Skivt = Skiv1y2 T 121 — Zhallup - (35)

We define s}! = lim; o SZ’Z- and know from Theorem 4.1 that this quantity is finite. Note that
it may happen that Sz’i+1/2 = SZ,Z- and SZ’H_I = SZ’,H_I/? We refer to Figure 1 for the notation.
In the time update interval [s} _;,s} ] = [s}_q, ¢ 1 + At"] we define

un(s) = ug g for s € [s}_, SZ’O],
zn(s) = 2k 0 for s € [s}_, 32’0],

tn(s) =151+ (s —sp_q) fors€[sp_q,sp],

so that t" (s} ) = t}. Next, for s € [s, SZ,¢+1/2] for i > 0 we define the affine interpolates as
follows:

n n
) Ugit1 — Uk
n

n n n n 3 n n
up; + (s — Shi for s € [sk’i, Sk,i+1/2} if Shit1/2 ~ Sk > 0

un(s) = Shit1/2 ~ Sk ,
Up ;= Up g for s = SZ,¢+1/2 =Sk,

2n(8) = 214

tn(s) = t}.

Similarly, for s € [s}; 1 /9; 5% ;49 and i >0

. n
Un(s) = Uk, i4+15
n J— n J— n J— n
Phi = Phitl for s = s = 83,010

zn(8) = ZLit1 ~ Pl
" 2+ (s — 32,i+1/2) : :

n n 3 n n
S — st ) for s € [sk,i+1/27sk,i+1] if sp g > Skit+1/2
A+l T Skit1/2

tn(s) =ty.
Denoting S,, = s]: the total length of the parametrization interval, we have constructed a
curve (ty, Un, zn) : [0, S,] = [0,T] x U x Z with ¢,(S,) = T. In Theorem 4.1 we proved that

Sy is uniformly bounded.
Note that with this definition in the time update interval (sy_;, s} ;) we have

(s)=1 forse (SZ_pSZ,o)-
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Figure 2: Definition of o7 (o).

In each interval (s} ;, s} ;. ;) for i > 0 we have

1 forse
, _
[ (8)]2,(5) = {0 for s €

(
(
0 forse (s, s?.
HZ’;L(S)HUTL(S) _ { ( K k,z+1ri2)
1 forse(s it1/2) Sk,i_s_l)

t(s)=0 forse (S Shit1) -

n
Skt 3k,i+1/2)

n

k

n n
Sk,it1/20 Shit1)
n

k

n

k

Observe that (sy;, sy, /2) might be the empty set. Observe further that thanks to the
uniform equivalence of the norms |[-[|;, and [|-[|,, ) on ¢ and of the norms |||z and |-

Un (S)

on Z there exists a constant C € (0, 1] (independently of n, s) such that
[ ($)llee > C for s € (s, 87 5110) (36)
|20 (s)||z > C for s € (SZ,HI/T SZ,i+1) (37)

provided that the respective interval is not empty.

Corollary 4.2. There exists C > 0 such that for all n € N the interpolating functions u,, zp,
t, satisfy S, < C and

[unllwioo(0,8,),200 T 12nllwroe (0,5, 2) + tnllwrco 0,80, 10,27 < C- (38)

Estimate S, < C and (38) are a direct consequence of (26) in combination with the fact
that by (27) the standard norms in ¢/ and Z and the corresponding weighted norms |||, on
U and |-||, on Z are uniformly equivalent, see Lemma 2.4.

4.4 Uniform non degeneracy of the interpolating curves

The next technical Lemma shows that the curves s — (,,(s), un($), 2, (s)) enjoy a uniform non-
degeneracy property. The proof uses estimates from the previous Theorem and in particular
exploits the unidirectionality of the curve s — z,(s). The following definitions will be used
for o € [0,5,);

n

ot (o) =min{sg,; : sp; >0,0<k<n, i€ NU{-1,0}},
o"(0) =max{sy,; : sp,;, <0o,0<k<n,ie NU{-1,0}}.

In other words, among the discrete points s}, 07} (0) is the smallest that is greater or equal
to o, while 0" (o) is the largest that is less than or equal to 0. Let o € [0,Sy). By definition,
there exist unique indices k£ € {0,...,n}, m € NU {-1,0} such that o7 (o) = s}},,. We
define o'} , (o) to be the next discrete point, i.e. o' | (0) = Sk.ma 1+ See Figure 2. Moredver, the
Heaviside function H : R — {0,1} is defined by H(s) =1 if s > 0 and H(s) = 0 otherwise.
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Lemma 4.3. There exists a constant C' > 0 such that for every n € N and 01,09 € [0,5),)
with o1 < o9 it holds

Cloz — 01) < (tnlo2) — ta(01)) + [|2n(02) = 2n(01)l| z + [[un(o2) — un(o1)lly (39)
+ H(0" (02) — 01(01))( |2n(02) = 20 (0™ (02))]| 5 + || 2n(01) — 20 (0"t (01))]| 5

+ [[un(02) = a0 (@2)) |y + [un(on) = (ot (@)l )

+ H(0"(02) = 0 (00) |20 (01)) = 2a(0t i (00)]| + [un(o(01)) = un(o (@) ) -

Proof. In this proof we assume that for each k € {0,...,n} the alternate minimization al-
gorithm does not have a fixed point at finite indices 4, the latter case is very similar and is
discussed in Remark 4.4.

Let 01 < 09 € [0,5,]. By definition there exist indices k£ < ¢ and minimal indices m, N €
NU{-1,0} such that

0 (01) = 7 s 0" (02) = 7. (40)

Remember that for N = —1 we have s} _; = s} | ., = s}/, cf. (34), and similar for the case
m = —1. Observe that m = —1 may oniy oceur if o1 € {sg_1 : 0<k<n}.

We distinguish two cases. 7

Case 1, o' (01) > 0" (02): In this case, o'} (01) > 03, because otherwise, by the definition
of 0", we would have ¢ (02) > o (01), which is excluded in Case 1. Similarly, 6" (02) < 07.
Moreover, m > —1, because otherwise o1 = k1 and o™ (02) > o1, which is a contradiction.
Hence, 0" (02) = S m_1 and (01,09) C (sz’m_l,s’g,m).

If now m = 0, then #,(r) = 1 on (s}, 1, g ,,), While s = 2,(s), s > uy(s) are constant
on this interval. Hence, we have

Cloz2 = 01) <tn(02) = tn(01) + [[2n(02) = zn(01) |z + lun(o2) —unlon)lly,  (41)

with the constant C from (36)—(37). This is (39). If m > 0, then by (36)—(37) the estimate
(41) is valid, as well.

Case 2, o' (01) < 0" (02): Having in mind (40) we write o9 — 01 = (02 — 0" (02)) +
(s{n — Skm) + (0% (01) — 01) and estimate each of the differences separately. Observe that
(0" (02),02) C (s]'n» 8]’ n11)- Hence, arguing like in the first case we obtain

Clog — 0" (02)) < tu(02) = tn(0™(02)) + || 2n(02) — 2n(0” (02))]| ; +
+ ||u”(02) B u”(ojl(o-Q))Hu ) (42)

again with C' from (36)—(37). Moreover, with the same constant C' we have

Clolt(o1) = 01) < ta(0%(01)) = tu(o1) + ||z (0% (01)) = 2za(o)]  +
+ [|un(0t(01)) = wn(01) - (43)

Indeed, if 0’} (01) > 01, then (see above) m > —1 and (01,07 (01)) C (s}, 1, Sk ) Now we
can argue similarly to Case 1.

In order to estimate the missing term s} 5y — si, we assume that & < /; the modifications
for the case k = ¢ are then obvious. Observe first that with C' from (36)—(37) it holds (with
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n — n n P n
Zl—1 = k00 k-1 T Zk,o)

SZN
Cshx = k) = C( [ 1)+ 120 + ] 05)
sk,m
ZN / ! /
< [ ]+ )+ ]y ds
S m
" o
=tn(syn) — tn(Skm) + Z (|l — ZIZL,FlHZ + [Jug; — UZ,quU)
i=m-+1
/-1 oo
+ Y s = zicall s+ s = upially,)
p=k+1i=1
N
+ 3 (2t = 2l 5 + s — wically,)
=1

=: tn(SZN) — tn(s};m) + My + My + Msy.

By (32) and (33), we have

/-1 oo
M,y < ‘tN<SZN) - tn(SZm)\ + Cy Z Z Hzg,zel - Zl?,iHLl(Q)
p=k+1i=1

< Jtn(02) = ta(00)] + Ca [120(01) = 20(02) 10y

where for the last estimate we exploited the monotonicity of z, and t,, compare also (31) and
the fact that 2,(02) < 2y = 271 o < 21110 = 2hee < #n(01). Since Z C LY(), we finally
obtain

Mj < [tn(02) — ta(o1)| + C3 ||zn(o1) — zn(02)| 2

with a constant C'3 that is independent of o1, 09 and n.

Since the arguments for estimating M; and M3 are similar, we give here the estimate for
M, only. We start from estimate (30) with ¢ = m + 2 on the left hand side and N = oo, add
the term HZZm 1 zgmH ~ on both sides and obtain after multiplying by 2:

[e's) )
Z Hzlrcl,i - ZI?,Z'-lHZ < 2 Hzl?,m—s—l - Zl?,mHZ + 2C2 Z Hzlzl,i—l - zl::L,iuLl(Q) .
i=m-+1 i=m-+1

Again thanks to Lemma A.1, in a similar way as in (33), we obtain

o0 (e o]

U — U i1, < || Ukmt1 — Ukm n(02) —tn(01 Zhic1 ~ kil -
Do ks = ukially, < Folly + C((tn(o2) = talo)) + > |2 Fill proy)
i=m+1 i=m+1

Adding both estimates, with arguments similar to those for Ms we finally arrive at
M < Ca((tn(02) = tn(01) + 12n(02) = 2(01)]2
+|[zn (0’ (01)) = zn(0% 1 (01)) ]| 7 + [lun(0’t (01)) = un(o 4 (01))]],, ) -
Joining all estimates finishes the proof of the Lemma. O

Remark 4.4. If for some t} the alternate minimization algorithm arrives at o fized point at
some finite index imqy, the above proof has to be modified as we will describe below. However,
this modification is basically a matter of notation rather than a mathematical issue.



Convergence of Alternate Minimization for Phase Field Models, November 2, 2015 16

Let (n, k) be a pair with 0 < k < n such that there exists ipq,; € No with one of the following
three properties: If imar = 0, then (uZ’O,z}j’O) is a fized point of the alternate minimization
algorithm with t = t3. If imee > 1, then either (ug, —.zp, ) is a fized point of the
alternate mzmmzzatwn algomthm with ), fimaa—1 Fug; oor(ug, zp ) is a fived point
with z mmu—l #* z mWw and u m"m—l #+ u mmu' (For the latter observe that u;;i_l = UZ,Z'

implies that 2}, | = 2}.;.)

Let (u? MI, m2) denote this ﬁxed point (with the indices i1, ia minimal). Observe that the
identities Uy q g = Uy o = Uy ;s Ziig1,0 = 24, hold. Moreover, the slopes of F satisfy
|8‘F H117ZIZ’LQ)‘ X :07 ‘8‘F I<L7,17ZIT€LZQ)‘ :0
n,z2 U, Ji1
Coming back to the proof of Lemma 4.3 we have to be more careful with the cases m = —1

or N =iy — 1. Let 01,09 € [0,S,) with 01 < o2. Let further the indices k,{,m,N be given
according to (40) with (k,m) and (¢, N) being minimal for o'}, o” in lexicographical order.

Now, the case m = —1 can occur if either (A) or (B) hold, where

(A) o1 = sy _y and the alternate minimization at time tj}_, does not reach a fized point after
a finite number of iterations,

B) the alternate minimization procedure at t7_, reaches a fixed point after a finite number
k—1
of steps.

In case (B), 01(01) = s}, _y implies o1 € (s}_y ;1 8% _4]-

Case 1, 0" (02) < ol (01): As in the proof of Lemma 4.3 we conclude that o™ (o2) <
o1 < 03 < olt(o1). In case (A) we conclude as in the proof of Lemma 4.3, while in case (B)
we have o™ (o) = SZ—LZ&—I' But now we can conclude in the same way as in case (A) and
obtain (41).

Case 2, 0" (02) > 0%} (01):  Similarly to the modified Case 1 here above and the arguments
of Case 2 in the proof of Lemma 4.3, we find (43). Concerning estimate (42) observe that
0" (02) € {s)Ny1:5011,_1} depending on whether N = iy — 1 (in case (B)) or not (i.e. in
case (A)). Hence, estimate (42) now can be concluded in the usual way. The estimates for
SZN — s?m do not have to be modified.

4.5 Discrete stationarity and energy balance

Lemma 3.1 and Lemma 3.2 prove the following stationarity and energy equality for the
parametrized evolution (cf. Lemma 3.1 and 3.5).

Lemma 4.5. For every indexn € N, 0 < k < n, it holds

|0uF (tn(sE), un(sE), 2n (85 )zn(spy = 05 10 (tn(sk), un(sk); 2n(5E)) lun(sp) = 0-

Lemma 4.6. For every s € [s}, s} ,,] it holds

f(tn(§),un(§),zn(§)) tn (s%), un(sy), Zn(sk)) =+
) 008, s 1955 +

/ |0:F (tn(5), tn(5), 2n(5))lun(s) 20(8)lun(s) ds +

/ O F un(s), zn(8)) t,(s) ds.
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Proof. Since 1 — F(tn(r), un(r), 2n(r)) is absolutely continuous, we have
S

.F(tn(s), Un($), zn(s)) = .F(tn(sﬁ), un(sy), zn(sZ)) + § dir]-"(tn(r), Un (1), 2n (1)) dr

and by the chain rule

L F () un(r)s (1)) = AF bal1), (1), 20(1)) (1)) + 0uF (b (), (1), 20 () ()]

dr
+ O F (tn(r), un(r), 2n(r)) [z ()]

: . : noon n n . ..
The following arguments are valid for intervals [s} ;, Sk,i-{—%} and [sk7i+% , Sk i11] With positive

length.

Consider an interval [s} ;, s} +1] where ¢}, = 0 and z/, = 0. We will invoke (20) with the
) N2 3
i)

change of variable r = (s — s ;)/ (SZJ.JF 1 sy.¢) and with

uj = un(sg;), Uit1 = un(s) Hl)u Uity = Un(S).
’ 2

Note that (since they are constant) we have t = t,(s), z; = zn(s) for every s € [s},, SZZ.JFI}.
k) ) 5

Thus we obtain for 5 € [s} ;, SZ,H%]
F(tn (), un(5), 2n(5)) = F(tn(si ), un(si ), 2n(sk ) —

5 Un(S]. '+1) — un(sy, '+1)

b [ 10T tns)unls) (o)) | ds
ST S, 1 sk .
ki kit3 " 2n(s)

= Ftn(s)s un(sy)s 2n(sy,)) +

S

- |8u]:(tn(s)7un(s)vzn(s))‘zn(s) Hu;z(s)”zn(s) ds +

Sk

S

- |8Z‘F(tn(5)vun(s)aZn(s))’un(s) HZ:’L(S)H’an(S) ds +

n
Sk

+ /j WF (tn(5), un(s), zn(s)) t,(s) ds.

n

Invoking (21) leads to the same energy equality in the intervals [s hit 1o
T

Sy.ip1) wheret;, =0
and u], = 0.

It remains to consider the time update interval [s} ,sf _; + At"] where u;, = 0 and
z), = 0. In this case it sufficient to apply the chain rule reﬁlembering that z, and u, are
constant.

O]

4.6 Compactness

By Theorem 4.1 we know that (t,,un, z,) € WH*([0,5,],[0,T] x U x Z) where S, is uni-
formly bounded. Denote S = liminf, . S, and consider that t, € Wh*([0,S],[0,T]),
u, € Wh([0,5],U) and z, € WhH*([0, 5], Z) using (if necessary) a constant extension in
the set (Sp, S]. Note that 0 <7 < S < +00.

Lemma 4.7. Up to subsequences (not relabeled) (ty,un,zn) converge to (t,u,z) weakly™ in
Whee([0,5],[0,T] x U x Z). Moreover, if s, — s then tn(sn) — t(s), un(sn) — u(s) in
UP (for p € [2,p]) and z,(sn) — 2(s) in Z. Finally, t(S) = T and s — z(s) is monotone
non-increasing.
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Proof. By Corollary 4.2, weak* convergence in W1>°([0,5],[0,7] x U x Z) is standard, as
well as the convergence of t,(s,) and the weak convergence of u,(s,) in U and z,(s,) in Z.
Since z,(s) — z(s) strongly in L!(£2) and thus a.e. (up to subsequences) it follows that z(-) is
monotone non-increasing. Moreover, by definition t,(S) = T and thus ¢(S) = T.

It remains to show the strong convergence of u,(s,) to u(s) in UP if s, — s. Let us
pick up a subsequence (not relabeled) of w,(s,). Choose k,i (depending on n) such that
Sp € [sz,i, szb’iJrl]. Assume that ¢ > 1 (the cases ¢ = —1,0 are slightly different). Then in the
point s, for some A} ; € [0,1] we have

Un(8p) = AZ,iun(b’Z,i) +(1— /\Z,i)un(s}i,m) .

Remember that u, (s}, ) = u”(SZ,i+1/2) and that

Un () ;41/2) € argmin {f(t"(sZ’iJrl/g),u, Z"(SZ,¢+1/2)) tu €U

Similarly, un (s} ;) = un(s}, 1/2) with

Un () ;_1/2) € argmin {F@" (Ski—1/2)> u,z"(szyifl/z)) tu €U

Since 0 < sk _1/2 < sy i+1/2 < 5, is uniformly bounded, cf. Theorem 4.1, we can extract
a subsequence (not relabeled) s.t.

Sgio1/2 5 Spit1/2 S
As a consequence tn(szi—l/z) — t(s) and Zn(527¢_1/2) — z(s) strongly in LY for every ¢ < oo
(by compact embedding). Hence t,(s}, , /2) and z, (s}, /2) are Cauchy sequences with
respect to n and thus by Lemma A.1 u, (s} ;) = un(szvi_lm) is a Cauchy sequence in UP. The
same holds for u, (s}, ;) = un(s’g’iﬂﬂ).

Clearly s, — s € [s, 5]. Up to subsequences A}l ; — A and thus up(sn) — Au(s)+(1—A)u(s)
strongly in UP. Since uy,(s,) — u(s) in U it follows that u,(s,) — u(r) = Au(s) + (1 — N)u(3)
in UP. Since the limit is independent of the subsequences the whole sequence converges.

Finally, in the cases s € [s},, s}, +1] for i = —1,0 it is sufficient to use the above argument,

. n . n n 3 n
replacing Shi1/2 with sp _; and Skit1/2 with Sk,1/2°
O

4.7 Convergence to a quasi-static parametrized evolution

Theorem 4.8. Let (t,u,z) be a weak™ limit of (tn,un,zn) provided by Lemma 4.7. Then
(t,u, z) satisfies (u(0),2(0)) = (ug, 20), t(0) =0, t(S) =T and

(S') for every s € [0, S] with t'(s) > 0
OLF () u(s). 2] =0, [F(HS) u(s). 2Dy =0, (44)
(E') for every s € [0, 9]
F(t(s),u(s).2(5)) =F(0,u(0 / LT (H(r),u(r). ) sy 1 ()l +
/ 0. F(H(r), u(r), 2Dty 112 (o) dr +
+/0 OF (t(r),u(r), z(r)) t'(r) dr. (45)
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Moreover, for almost all s € [0,S] it holds

0.7 (1), u(s), 25Dy [12/65) o
[0uF (t(s), u(s), 2(5))] o) [0/ ()| o) = —OuF (t(5), uls), 2(s)) [ (5)]- (47)
Definition 4.9. A triple (t,u,z) € WH*°([0,S];[0,T] x U x Z) is called a parametrized BV -
solution for the functional F : [0,T] xU x Z — R with initial data (ug, 20) € U X Z if s +— t(s)

is non decreasing with t(0) = 0, t(S) = T, u(s) € WHP(Q) uniformly in s € [0, 5] for some
D> 2, s — z(s) is non increasing and (S") and (E') (i.e. (44) and (45)) are satisfied.

Proof. Let us start with property (S). Let ¢/(r) > 0. Then, by [23, Theorem 3.4], there exists
a sequence s} (with k depending on n) such that s} — s and with

OuF (b5, wlsp), 20D |y = 0 [0 F(bn(sp), (), 251 gy = 0

By Lemma 4.7 we have: t,(s?) — t(s), un(s?) — u(s) in UP and z,(s) — z(s) in Z. It is
then sufficient to pass the limit and use the lower semi-continuity of the slopes provided in
Lemma 2.5.

Let us prove (E’). Taking the sum over all the subintervals of [0, s] from Lemma 4.6 we
obtain

F(tn(s),un(s), zn(s)) = ]-'(0 u(0),2(0)) +
/ 0uF (b 1) (). 2070y 1) )l +

_A ’azf(tn(r)vun(r)aZn(r))’un(r) ||Z;1(r)Hun(T) dr +
+ /0 D0 F (ta(r), tn(r), zn(r)) £(r) dr.

Taking the limsup we obtain

lim sup F (¢n(s),un(s), zn(s)) < F(0,u(0),2(0)) +

n—o0

—liminf/ |0uT (b (1), un (1), 20 (1) 2 () Nt (P2, () dr +
0

n—0o0

—liminf/ |0:=F (b (1), un (1), 20 (1)) lur (r) 11207 [l () A +
0

n—oo

+ lim sup /05 O F (tn (1), un (1), 2n(1)) t;L(T) dr.

n—oo

Now, by the lower semi-continuity of the integrand, cf. Appendix A.1, we obtain
/0 |0uF (¢(r), u(r), 2(r)) Loy W/ (7)o dr <

< liminf / 0 F (b () (7, 20()) ooy I (1)1 . (48)
0

n—oo

/ C0.F ), u(r), 2Dty 170 gy dr <

< timint [ 10.F (b () n (1) 21y 1250 . (49
0

n—00

Let us see the convergence of the power Remember that O, F(t,u,z) = —(b(t),u) where
(-,+) denotes the duality between I/V8 7 and Wa for ¢ > 2. By the regularity (7) in time of
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b we have b(t,(r)) — b(t(r)) in Wngg’;J. By Lemma 4.7 u,(r) — u(r) in U? and thus in Walggz
for ¢’ < 2.
Hence Oy F (tn (1), un (1), 2n(1)) = OLF (t(r), u(r), 2(r)) pointwise in [0, S]. Moreover

|00 F (tn (1), wn(r), 20(r)| = [(b(tn(r)), un(r))] < Hi?(tn(r))HWB—;SgH%(?“)nggg2 <C

again by (7) and by (38). Thus by dominated convergence, 0;F (t,(7), un(r), 2,(r)) converge
to Oy F (t(r),u(r), z(r)) in L'(0,8). Since ¢/, = ' in L>(0,S) we obtain the convergence of
the work, i.e.

lim satf(tn(r),un(r),zn(r)) t(r)dr = /OS OWF(t(r),u(r), z(r)) t'(r) dr.

n—oo 0

Therefore

limsup F (£n(s), un(s), zn(s)) < F(0,u(0), 2(0))+

n—oo

_ /0 0uF () u(r), 2Dy T (Pl dr +

_ /0 0.F () (), 2 Dluiry 170y dr +

+ / COF(t(r), ulr), 2(r) £ (r) dr (50)
0

By definition of the slope
—\8u.7-“(t(r),u(r),z(r))\z(r) ||u/(r)"z(r) <0 ]:( (T),U(T),Z(T))[UI(T)], (51)
—|0:F (t(r), u(r), 2(r)luery 12/ (M)llury < 0=F(t(r), u(r), 2(r))) [ (r)]- (52)
Hence by the chain rule

lim sup F (tn(s), un(s), zn(s)) < F(0,u(0), 2(0))+

n—oo

+ [ OuF(t(r), ulr), 2(r) (W' (r)] + 0-F (t(r), u(r), z(r)) [ (r)]dr

= F(t(r), u(r), 2(s)
By Lemma 2.2 F is also sequentially lower semi-continuous, thus
F(t(s),u(s),z(s)) < linrr_1>i£f]:(tn(s), Un(s), zn(s))
Thus (E’) holds. Finally, a proof by contradiction using (E’) shows that (51)-(52) in fact hold
with equality. O
The next Corollary is a consequence of the proof of the previous Theorem.

Corollary 4.10. F(ty,un,2zn) — F(t,u, z) pointwise in [0,S] and thus z,(s) converges to
z(s) strongly in Z for every s € [0, S].

Proposition 4.11. Under the assumptions of Theorem 4.8 the limit curve (t,u,z) is non
degenerate, i.e. there exists a constant C > 0 such that for almost every s € [0, S] we have

0<C<t(s +Hz Hz-l-Hu,(S) (53)

-
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Proof. Let o1 < o9 € [0,5]. Due to the strong convergence stated in Corollary 4.10 and the
upper semicontinuity of the function H, passing to the limit in estimate (39) we obtain for
the limit curve

C < (o2 —o1)™" ((t(02) —t(o1)) + [|z(02) = 2(01) |z + [lu(o2) = u(o1)lly (54)

+ H(oz— —o14)([|2(02) = 2(02, )|l 5 + [|2(01) = z(01,4)ll
+ [[u(oa) — (o2, )l + llulor) = u(or)ll;,)

+ H(og,— — o144) ([12(01,4) = 2(01,44)ll 2 + lu(or,4) = u(o1,44)], )) :

Here, 01 4,01,44,02 are cluster points of the sequences 0% (01),0%  (01),0"(02). Let now
s € [0,5) be a point of differentiability of the triple (¢,u, z) and let (h,),eny be a sequence
with h, N\, 0 for v — co. With o1 = s, 02, = s + h,, the first three terms on the right hand
side of (54) tend to t/(r) + ||2/(7)|| z + ||v/(7)]ly-

Moreover, let o_(02,) be a cluster point of the sequence (0" (02,,))nen. Assume first that
01,4+ > 01 = s. Then, for v large enough, we have 02, = s+ h, < 01+ < 01 44+ and hence the
term involving the factor H (o2 - — 01 4) in (54) vanishes.

If 014+ = 01 = s, then

H(o_(02) — 014) 020 —0—(02) < P (55)

Indeed, if 0_(02,) < 01 4, then H(o_(02,) —01,+) =0. If 6_(02,) > 014, then the following
chain of inequalities holds: s = 014 < 0_(02,) =0_(s+ hy) < s+ h, = 03, from which we
deduce (55). Altogether we obtain

limsup H(o—(02,) — 01,4 )b, ( [2(o2,) = 2(0—(02,0))ll z + [I2(01) — 2(01,4) | 2

V—00

+lu(02) = ulo-(02))ly + (@) = u(r )l )
<Oz + 1w @)l -

With the same arguments the term involving H (o2 - — 01,44 ) can be treated. This finishes
the proof. 0

5 A variant: the M-step algorithm

In this section we analyze the convergence of curves (t,,un, 2n)nen that, contrarily to the
previous section, are generated by a time incremental M-step algorithm with iteration number
M € N fixed for all n € N.

Given M € N, z(0) = 2zp € Z, with 0 < zp < 1, and u(0) = ug € U, let for n € N
At" = T'/n and set t} = kAt" for k = 0,...,n. Set uf = up and 2§ = 2. Given u}_; and
2, consider the M-step alternate minimization scheme at time ¢} =t _; + At™ with initial
conditions uy_; and z_;, viz. set uj, = uy_; and 2}’ = z;_; and then define by induction
(for 0 <i< M —1) ’ ’

uy 4y € argmin {F (47, u, 2p7;) 1 u € U}
Zp g1 € argmin{F ({7, uy 1, 2) 1 2 € Z with 2 < 277, 1.

The updates uj and z; are respectively defined as uj = Ug A 2l = Zga As in the case
M = oo discussed in the previous sections, the algorithm might reach a fixed point after
1 < M — 1 iterations. In this case, similar arguments as were described in detail in the
previous sections apply.
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As before, for 1 < k < n let

M
vear =D (i = wiacally + 2t = il ). (56)
i=1
which again corresponds to the length of the alternate minimizing path at time 7.
Similarly to Theorem 4.1 it holds

Theorem 5.1. Suppose the initial data satisfy (24).
There exists C > 0 such that for all n, M € N

Y vm<C. (57)
=0

Proof. The proof is very similar to the one of Theorem 4.1 and we describe here the necessary
changes, only. Let us start with an estimate for the first iteration step. For convenience, we
also define 2 ;1 = 2 )y := 2zg. For 1 <k < n we have due to Lemma A.2 and taking into
account (27), which is valid also for the M- step algorithm:

21 — ZZ,OHZ < Clako — 2k Lr(Q [ uk o — Uz,lnuﬁ

with a suitable r € [2,00) independently of n, M. Since Z is embedded in L"(€2) this reduces
to

HZI?,U - ZZ,IHZ <C HUZL,O - uZ,lHuﬁ . (58)

Next, applying Lemma A.1 with u};o = Umin (t}_1, ZQ_LM_l) and u}él = Umin (1}, z,?_LM) gives

Lr(Q) )

with a suitable 1 € [2,00) that again is independent of n, M. Applying Gagliardo-Nirenberg
estimates in the same way as in the proof oh Theorem 4.1 we arrive at

|uf 1 — up OHLf < C( th =t |+ | 2h i — 281001

1
220 — 2kl < C(JtF = tia| + |20 — 21?—1,M—1HL1(Q) ) + 5 2100 — 20t 5 - (59)
If M =1, this can be rewritten as follows for 1 < k <n (with z_9 1= 2_1 1= 2):
n n n n n n 1 n n
l2ioy = 2kl 2 < CCIEE = tima| + 201 = 2iall o)) + 5 (150 —2iellz - (60)

Summing up this estimate with respect to k we find

n n 1 n

Dol =zl <O+ lla —akalligy) +5 2 I~z (6D
() 2

k=1 k=1 k=1

Absorbing the last term on the right hand side into the left hand side and taking into account
the monotonicity of the sequence (2}')ren we finally arrive at

1 n
B Dol =zl <O+ Nz = Zllig)) <C-- (62)
k=1

Now, (57) is an immediate consequence.
If M > 2 we proceed similarly to the arguments leading to (30). We obtain for 1 < k <n

M-1 M-1
HZ/?,M—ZZ,MAHZ Z szz Zkz 1”2 = szl ZkoHZ‘i‘CZ Z szz 1 ZszL1 Q)
2 (V)

1=2 =1

(63)
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where the constant C5 is independent of n, M. Adding (59) yields after rearranging the terms

1Mfl

1
HZZ,M - ZITCL,M—IHZ + B Z Hzlrclz - Zl?,i-lHZ < B HZI?—LM - ZZ—I,M—IHZ
i=1

M-1
+C (ItZ —tp |+ || s — Z?A,MAHD(Q) + Z 2% i1 — 21 L1(Q)> :
=1

Summing up this estimate with respect to k we finally obtain

n M 1 n M
33 et~ sl < § e el +€ (74 33 s~ il )

k=1i=1 k=1 i=1
Again, (57) now is an immediate consequence. O

Next, following §4.3 let us define the discrete values si and sy ; (for i = —1,..., M) which
will provide the interpolation points in the parametrization interval [0, S,,] whit S, uniformly
bounded. More precisely, let sg =0 and s} = s}, (for k > 1) where for 0 <i < M — 1

n n n n n
Sk—1 = Sk—1, ko = Sh—1 + AL,
n _ n n n n _ n n n
Skit+1/2 = Sk + ”uk,i—i-l - uk,iHZ,’J}iv Skit+1 = Skit1/2 + ||Zk,z'+1 - Zm”u};iﬂ-
Then, we can define the piecewise affine interpolation (¢, un, z5) : [0, Sn] = [0,T] xU x 2
in the discrete points s} ; exactly as in §4.3.

The next two Lemmas provide equilibrium and energy balance, for the proof see respec-
tively Lemma 4.5 and 4.6.

Lemma 5.2. For everyn € N and 0 < k < n denote 5} = SZ7M71/2, then it holds

‘8uf(tn<32)7 un(SZ), Zn(éz»‘zn(sz) =0, lazf(tn(SZ)v un(82)7 zn(SZ))’un(sg) =0. (64)

Lemma 5.3. For every 5 € [s}, s, ] it holds
F (tn(5); un(5), 2n(5)) = F (tn(si), un(si), zn(sk)) +

B /: |8uf(tn(7“),un(7“),Zn(T))’zn(r) HU;Z(T)HZ”(T) dr +
- /: 0. F (tn(r), un(r), 20 () unr) 120 (7) |, @y dr +
s [ OF ) (), 20(0) 1)

It is important to remark that in Lemma 5.2 equilibrium of the displacement field does
not hold in z,(s}) since the number of iterations is finite; as we will see, this will not affect
the limit evolution.

Theorem 5.1 guarantees similar uniform bounds for the interpolating curves as in the case
M = oo. The resulting compactness of the sequence (t,,un, z,) is stated in the next Lemma,
whose proof substantially coincides with that of Lemma 4.7.

Lemma 5.4. Up to subsequences (not relabeled) (ty,un,zn) converge to (t,u,z) weakly™ in
Whee([0,5],[0,T] x U x Z). In particular if s, — s then t,(s,) — t(s), un(sn) — u(s) in
UP (for p € [2,p]) and z,(sp) — 2(s) in Z. Finally, t(S) = T and s — z(s) is monotone
NnoN-iNcreasing.
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Finally, let us see that the limit parametrized evolution (¢,u, z) : [0, 5] — [0,T] xU x Z is
a parametrized BV -evolution in the sense of Definition 4.9.

Theorem 5.5. Let (t,u,z) be a weak™ limit of (tn,un,2,) provided by Lemma 5.4. Then
(t,u, z) satisfies (u(0), z(0)) = (uo, 20), t(0) =0, t(S) =T and

(S") for every s € [0, S] with t'(s) >0
|8u]:(t(5)7u(5)7 Z(S))|z(s) =0, ‘az}-(t(s)vu(s)v Z(S))’u(s) =0, (65)

(E') for every s € [0, 9]
F(t(s), u(s), 2(s)) =F(0. / OuF (), u(r), )]y 16/ dr +
/ 0. F (), u(r), 2Dl 120) ey dr +
—i—/o WF(t(r),u(r),z(r) t'(r)dr. (66)

Moreover, for almost all s € [O, S| it holds
\83.7:(t(s),u(s),z Hz H = —0,F(t(s),u(s), z(s))[2'(s)],
|0 F (t(s),u(s), z( Hu H F(t(s),u(s), z(s))[u'(s)].

Proof. In this case the proof of (65) is slightly different from that of (44) because the configura-
tion (tn(s}), un(s}), zn(s})) is not in equilibrium (cf. Lemma 5.4). Given s € [0, S) with ¢'(s) >
0 let s € [s}, s, ) (for k depending on n). Equivalently we can write s € [s 1 1,85, 1)
Since sy ; € [0, 5,] with S, uniformly bounded, we can extract a subsequence (not relabeled)
such that sp — s and sj ), —'s. As a consequence Sh41,0 = Sk41,-1 T At™ — s. In general we
will have s < s <3.

We claim that s = s = 5. Assume by contradiction that s <S. Since ¢" is constant (by
definition) in the interval [s}, ; o, 83, 1 /) it follows that its limit ¢ is constant in [s, 3] and thus
t'(s) = 0, which contradicts the assumption t'(s) > 0.

It follows that sji,; ; — s for every index i € {—1,.., M}. In particular, by Lemma 5.4,

tn(sy) — t(s), un(s) — u(s) inUP,

2 (87) — 2(8), zn(sp) — z(s), in Z.

Using the lower semi-continuity of the slopes (cf. Lemma 2.5) we can pass to the limit in (64)
and obtain (65).
The rest of the proof is instead identical to that of Theorem 4.8. O

Remark 5.6. All the results of this section remain valid if for each n € N and time step 1 <
k < n one chooses an individual M’ € N that gives the number of iterations of the alternate
minimization algorithm at time step ti. Hence, the following "adaptive” algorithm leads to
curves (tn, Un, 2n)neN, where for n — oo subsequences converge to quasistatic parametrized
solutions in the sense of Definition 4.9: for a given n € N choose a stopping criterion STOP,.
Then, given (u}_y,z;_,) at the previous time step t7_, determine (uy,z}) at time step t} as
follows: with (u, o, 23 o) = (ug_y1,25_,) determine recursively for i >0

up ;4 € argmin {F (1, u, 2;) ru € U}
2 iy1 € argmin{F(t, uy ;. 2) 1 2 € Z with z < 2}

as long as STOP, is not satisfied. Then let (u},z}}) = (“Z,imaﬁl’ z]?’l'maz+1); Where imay 18 the
number of iterations that are carried out. Defining the interpolating curves (tn, Un, Zn)neN @S
in §4.3 leads to the desired result.
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6 Properties of solutions

6.1 Phase-field energy release rate

In analogy with the classic way of introducing the energy release rate for a sharp crack, let us
define the reduced energy

E(t,z) = E(t,us,2) for wu, €argmin{E(L,-,2) :u e U}.

By [13] the energy £ is differentiable (as a function of z) and for every ¢ € Z it holds
0.E(t, 2)[€] = 0.£(t,uz, 2)[€] = / €W (Dus) d.
Q

It follows that 9,€(t,2)[¢] < 0 for every & € Z. In order to define the energy release, let us
introduce the set of normalized admissible variations with respect to the ”phase-field crack
length”, i.e.

Z={¢cT:dL(2)[f] =1}
First, note that £(2) = ||z — 1||% and thus dC(z)[z — 1] = (z — 1,2 — 1)z > 0 unless z # 1.
In the sequel we will assume that z #Z 1, so that = # (). Under this assumption we define the
phase-field energy release G(t, z) as

~

G(t, 2) = sup{ — 0.€(t, 2)[€] € e é} = —inf {8%‘3(75,2)[5] €€ é} (67)

Clearly G(t,z) > 0 since .£(t, z)[€] < 0 for every & € 2

6.2 Behavior in continuity points

In the phase field approach the irreversibility of the crack is usually modeled by the mono-
tonicity of the phase field variable z; this is a natural hypothesis which in general does not
imply the monotonicity of the dissipated energy. Actually, for our evolution (obtained as the
limit of alternate minimization) it turns out that £(z(:)) is monotone non-decreasing in the
continuity points.

Moreover, even if the alternate minimization algorithm does not employ explicitly an
energy release, the limit evolution satisfies some kind of Karush-Kuhn-Tucker conditions in
terms of the phase-field energy release defined above.

Proposition 6.1. If t'(s) > 0 then, with £ from (8) and G from (67), we have
o dL(z(s))[#'(s)] =
e G(t(s),2(s)) <
* (G(t(s), 2(s)) — Ge) dL(2(5))[z'(s)] = 0.

Proof. Since t'(s) > 0, equation (44) implies that
0. F(t(s),u(s), z(s))[&] > 0 for every € € E,

and thus 0,F (t(s),u(s), z(s))[z'(s)] > 0, i.e.

/ 2(s) 2'(s) W(Du(s)) dx + GC/ (2(s) = 1)2'(s) + Vz(s) - VZ'(s)dx > 0.
Q Q

Since the first integral is non-positive the second one, which is indeed the derivative of the
“phase-field” length, must be non-negative.
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Next, by (S') we know that
O F(t(s),u(s), 2(s))[¢] =0 for every ¢ € U
and thus u(s) € argmin {F(¢(s),u, 2(s)) : u € U}. Hence (S') reads
D.E(t(5), Uz () 2())[€] + GedL(2(5))[€] > 0 for every € € Z.

In particular, B R .
Ge > —0.E(t(s),2(s))[¢] for every £ € =

and thus . o
Ge = sup { = 0:£(t(s), 2(5))[¢] : € € E} = G(t(s), 2(s))-
Finally, assume now that d£(z(s))[2/(s)] > 0. By the chain rule

F'(t(s),u(s), 2(s)) = O F (t(s), u(s), 2(s)) '(s) + OuF (t(s), u(s), 2(s)) [t/ (s)]
+ 0:-F(t(s), u(s), 2(5))[2 ()] (68)

while by (45) for a.e. s € [0, 5]
F'(t(s), u(s), 2(s)) = OF (t(s),u(s), 2(s)) t'(s) — [0uF (t(s), u(s), 2(5))]2(s) 10 (5) ]l 2(s)
—[0:F (t(s), u(s), 2(5)lu(s) 112'(5)llus)- (69)
Since #/(s) > 0 by (44) we have |9, F(¢(s), u(s), 2(5))|s(s) = 0 and thus
OuF (t(s),u(s), z(s))[u'(s)] = 0.
Again by (44) we have [0, F(t(s), u(s), 2(s))|u(s) = 0, thus comparing (68) and (69) we get
O F (t(s), u(s), 2(s))[2(s)] = =0 F (t(s),u(s), 2(8))|u(s) 12'(8)lu(sy = 0-

Thus for every A > 0
. F (t(s),u(s), 2(s))[N'(s)] = 0.

On the other hand
0, F (t(s),u(s),2(s))[¢] >0 for every £ € =

and thus for every A > 0

A2/ (s) € argmin {9, F (t(s),u(s), z(s))[¢] : € € =}
€ argmin {9:E (t(s), 2(s))[€] + GedL(2(s))[€] : € € E}.

Choosing A in such a way that d(z)[Az'] = 1 we get
A7 (s) € argmin {9.€(t(s), z(s))[€] : € € B}
and thus 0,&(t(s), 2(s))[A2'(s)] = —G(t(s), z(s)). Hence
0-F (t(s),u(s), 2(s))[A(s)] = =G (t(s), 2(s)) + G = 0,

which concludes the proof. O
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6.3 Local characterization of the evolution as differential inclusion and con-
nection with other types of solutions

We will now derive an equivalent characterization for functions (¢, z, u) that satisfy (44) and
(46)—(47). This opens the possibility to compare solutions obtained in Theorem 4.8 to other
solution concepts in the literature.

Proposition 6.2. Let (t,u,z) € WH([0,5],[0,T] x U x Z) with u € L>®(0, S;UP) for some
p>2. For g €U, £ € Z define (cf. the notation introduced in (12)—(15) and (9))

Ti(#:8) = 3 l0lle = 34(6,0),  Ta(&0) = 3 €5
(with 03 J1(¢; &) (Y] = (d,9)¢). Then the following statements (a) and (b) are equivalent.

(a) For almost all s € [0,S], (t(s),u(s), z(s)) satisfies (44) and (46)—(47).

(b) There exist functions A1, A2 : [0,S] — [0,00) such that for almost all s € [0, S] we have

t'(s)(A1(s) + Az(s)) = 0
() + |1 (5)]| o)) (BuF (1(5), u(s), 2(5)) + M ()0 (o ()3 2(5)) ) = 0, (71)
(t'(s) + HZ (s Hu(s))(azf( (s), u (8), (8)) + X2(5)9 2 (2 () u(s))) [ — 2/(s)] = 0

where the last inequality holds for every € € E.

Proof. Proposition 6.2 is an immediate application of the Karush-Kuhn-Tucker theory, see for
instance [32, Theorem 47.E], to the functionals Z;(¢) = 0,F (t(s),u(s), z(s))[¢] and Zs(§) =
0, F(t(s),u(s), z(s))[¢] that are minimized with respect to the constraints H¢H2 < 1 and

z(s)
f 6 = with H§|| < 1, respectively. (') and (46)—(47) imply that 0, u'(s)/ [[u'(s)]|,(5) and

"(s)/ [12'(8)l4(s) (When they make sense) are minimizers of the above mentioned minimization

’LLS —

problems. O

Let us give an interpretation of (70)—(72). If (t,u,z) € W1°([0,5],[0,T] x U x Z) is
a solution that is obtained as a limit of time-discrete alternate minimization curves as in
Theorem 4.8, then according to Proposition 4.11, (¢, u, z) is a nondegenerate curve, i.e. (53) is
valid for a.e. s € [0,S]. From (70)—(72) we therefore deduce that for all s € [0, S], which are
points of differentiability of (t,u, z):

if t'(s) > 0 then

O F(t(s),u(s), z(s)) = 0 and 9, F(t(s),u(s), z(s))[§ — 2'(s)] > 0 VEE€E, (73)
if t/(s) = 0 then u/(s) # 0 or 2/(s) # 0 (due to the nondegeneracy) and

OuF (t(s), u(s), 2(5)) + A ()0 T2 (' (s); 2(5)) = 0 (if w'(s) # 0), (74)
0-F (t(5), u(s), 2(s)) + Aa(5)0e Ja('(s); u(s))[§ = 2'(s)] 2 0 VE € E (if #'(s) #0).  (75)

In order to give a mechanical interpretation and to compare (73)—(75) with results from
[26, 14, 19], we split the functional F in the following way: for v € U, £ € Z let

1 G,
I(t,0,6) = S Ac(v,0) + 22 €1 — (b(t),v),

00 if ¢ e Z2\E

In [30, 14], Z is interpreted as a stored energy functional with % IS H%z as a regularization
term, while R is interpreted as a dissipation pseudo potential. Observe that R is positively
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homogeneous of degree one. With these functionals, (73)—(75) are equivalent to the following
conditions:

if t'(s) > 0 then
0L (t(s),u(s),2(s)) =0 and 0 € IR(Z'(s)) + 0.Z(t(s),u(s), z(s)), (76)
if t/(s) = 0 then

OuL(t(s), u(s), 2(s)) + M(8)As() (W'(s)) =0 (if u'(s) # 0), (77)
0 € OR(2'(s)) + Ao (s)By(s) (2'(5)) + 0=Z(t(s), u(s), 2(s))  (if 2'(s) # 0), (78)

where A ) : I/Va1 29 — VV8 2 denotes the operator associated to the bilinear form A, from
Lemma 2.1, while B, : Z — Z' is the operator defined by (B,(5)2,&)z = (2,&)y(s) for all
2z, € Z.

This shows that for ¢/(s) > 0 the damage component z of the solution given by Theorem 4.8
follows a rate-independent process, while the displacement field u satisfies the static balance
of linear momentum. If ¢'(s ) = 0 then (77) and (78) can also be rewritten more explicitly as
follows in strong form (if (b = [ b(t) - vdx):

div (DO (5), z(s))e(u’(s)) ¥ <c<z<s>>a<u<s>>) FHH) =0 (i u(s) £0),
0 € OR(Z'(s)) + Ao(s)( — div(Ge V') + (Ge + W(Duw))z') + 0.Z(t(s), u(s), 2(s))  (if 2/(s) # 0),

where we have set C(z) = (22 + 7)C and D(A1,z) = A\ C(z). The first equation can be
interpreted as a viscoelastic model of Kelvin-Voigt type with damage dependent elasticity
tensor C(z) and viscosity tensor D(\1, z) together with corresponding Dirichlet and Neumann
conditions on 0f). Relation (78) describes a damage evolution, where also a viscous (damage-)
dissipation is active provided that A2(s) > 0. Observe that the viscous part of the dissipation
involves spatial derivatives of z.

Now, let us compare with vanishing viscosity solutions and other solution concepts from
literature. Exploiting the convexity of Z with respect to the variable z, from (76) we obtain
in the same way as for instance in [17] that the solution (¢, u, z) satisfies the following semi-
stability inequality for ¢'(s) > 0:

I(t(s), u(s), 2(s)) < Z(t(s), u(s), &) + R(E — 2(s)) Ve € Z.

Moreover, from the energy identity (45), one obtains the following energy estimate (by ne-
glecting the terms with the slope), rewritten in terms of Z and R and taking into account the
irreversibility of z for every 0 < 51 < 50 < S

Z(t(s2),u(s2),z(s2))+R(z(s2)—=2(s1)) < Z(t(s1),u(s1), 2(81))+/S2 L (t(s),u(s),2(s))t'(s) ds.

This shows that the solution according to Theorem 4.8 is a local solution (see [31], where the
notion of local solutions was introduced in the context of crack propagation) that satisfies an
additional semi-stability property in the sense of [26] (so-called semi energetic solutions). In
the papers [28, 25], for rate independent problems local solutions were obtained as the limit of
time-discrete solutions that are constructed by an alternate minimization procedure at each
time step but only with one minimization step for each variable (fractional step methods
or semi-implicit Rothe methods). The paper [15] treats the same damage model but in the
context of visco-elasticity with inertia terms. There it is shown that time discrete solutions
obtained on the basis of a one-step alternate minimization algorithm in the limit, as the time
step size tends to zero, converge to solutions (u, z) that are Lipschitz-continuous with respect
to the physical time.

In [13, 14] the authors studied the vanishing viscosity limit for different generalizations
of the Ambrosio-Tortorelli damage model. Adapted to the present two-dimensional setting
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with energy Z and dissipation R from above, for every £ > 0 the existence of weak solutions
(ue, ze) € HY(0,T;U x Z) was shown for the system

OuIL(t,uc(t), z-(t)) = 0 and 0 € OR(2L(t)) + e2L(t) + O, Z(t, uc(t), z(t)).

Furthermore it was shown that a subsequence of (u., z: )~ converges to a parameterized curve
(t,u,z2) € Cgp([O, 51510, T) x U x Z), for which there exists a function A : [0,.5] — [0, 00) such
that for a.e. s € [0, 9]

t'(5)A(s) =0, O Z(t(s),u(s),2(s)) =0, (79)

0 € OR(2'(5)) + A(5)2'(s) + 0.Z(t(s),u(s), z(s)). (80)

Comparing with (78), the viscous term in (80) is a linear and bounded operator on L?(Q2), and
for t'(s) = 0 the limit model contains viscous damage, only, whereas viscoelastic dissipation is
not present.

The interplay between viscoelastic dissipation and viscous dissipation of the internal vari-
ables was investigated in [20] in the finite dimensional setting. There, for different scalings be-
tween the viscosity parameters the corresponding limit models were identified. With &/ = R",
Z=R™ TecCY[0,T]xUxZ)and R € C°(Z,]0,00)) convex and positively homogeneous of
degree one, the authors studied the vanishing viscosity limit of a slightly more general version
of the following system: For a > 0, & > 0

e (s) + OuZ(t,u(t), 2(t)) =0,
eZ'(t) + OR('(t)) + 0,Z(t, u(t), 2(t)) 2 0.
With suitable technical assumptions on Z and R, the authors proved that (subsequences of)

solutions to this system converge for ¢ — 0 to parametrized solutions of the following system,
[20, Theorem 5.3]:

Ou(s)u'(s) + (1 — 0,(8))0.Z(t(s),u(s), 2(s)) =0, (81)
0.(s)2'(s) + (1 — 0,(s)) (87%(2/(5)) + 9. Z(t(s),u(s), z(s))) 50, (82)
where 0,,0, : [0,S] — [0, 1] are Borel functions satisfying for a.e. s € [0, 5]
t'(s)(0u(s) + 0:(s)) =0, (83)
ifa>1: 60,(s)(1—6,(s)) =0; (84)
ifa=1: 0,(s)=0,(s); if0<a<l: 6,(s)(1—04s)) =0. (85)

Observe the similarity between (81)-(82) and the system obtained in our case, i.e. (76)—(78).
However, more information on possible strong couplings between the functions A1, Ao from
(77)—(78) as in (85) is missing.

Summarizing, the solution approximated by the time-discrete alternate minimization scheme
is closely related to solutions that are obtained as simultaneous viscosity limits of visco-elastic
systems that are coupled to viscously regularized rate independent systems. However, it
remains open whether also in our limit model the functions A1, Ao satisfy additional comple-
mentarity or compatibility conditions as it is the case in [20], see (85) from above. Moreover,
it is not clear whether one should expect in the case t'(s) = 0 that (74) and (75) are valid also
if u/(s) = 0 and 2/(s) = 0 respectively, or whether it is possible to sharpen the nondegeneracy
property such that min{||w'(s)[l, ), [[2'(s) ][y} = C > 0if t'(s) = 0.

7 A finite dimensional numerical example

The aim of this Section is to reveal similarities and differences between different solution
concepts for damage models of Ambrosio—Tortorelli type for an explicit example. Since here
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the focus lies on the temporal behavior of the solutions the example deals with the finite
dimensional case, i.e. Y = Z = R. For t,u, z € R, the energy functional is chosen as

1
F(t,u,z) = 5(22 + 8)u’ + %(,u —2)? —tu
with 6 = 0.1, = 10,0 = 1,290 = 1,u9 = 0 and T = 1.5. The calculations documented
below are carried out for different choices of n, which is the number of time steps, and of
M, which is the number of steps in the alternate minimization problem at a fixed time step.

To be more precise, for 7 = T'/n and initial values uj = up = 0, 2§ := 29 = 1, the time

incremental solutions are obtained as follows: for k € {0,...,n — 1} let u}, 2}! be given; then
set 2/, 1 o 1= 2%, Uy o = uy and for i € {1,..., M} define recursively

Up iy ;o= argmin { F(tp, 1,0, 2541,-1) + v €RY, (86)

z£+1,i = argmin{F(tZH, UZH,z‘v z) 1z < Zl?ﬂ,z‘q)} (87)

U yq 1= UZ—H,Ma 1 1= Z!?—i—l,M' (88)

Observe that due to the special structure of the energy, the values uj 41, can be calculated
explicitly, while for the minimization in z, the Mathematica—routine ArgMin was used. The
following algorithms were tested.

Alternate minimization Ia. This corresponds to the M-step alternate minimization
algorithm analyzed in this paper. The alternate minimization loop is stopped at M = 40.

Alternate minimization Ib. This corresponds to an alternate minimization algorithm
with a stopping criterion of the following type: at ¢} define res(u’,;i) = [0 F'(t], Uy i z,?’l-)|. If
res(uzvi) < Ostop then terminate the internal minimization loop and go to the next time step.
According to Remark 5.6, (a subsequence of) the corresponding interpolating curves converge
(for n — o0) to a parametrized BV-solution. In the numerical example we chose n = 100 and
dstop = 10~°. The maximum number of iterations that appeared within one time-step was 56,
the total number of internal minimization steps was 622.

Alternate minimization II. Here, M = 1, which means that at each time step only one
minimization with respect to « and one minimization with respect to z is done. This algorithm
corresponds to those investigated for instance in [27, 25]. For n = 600, the numerical effort of
this algorithm is comparable to the one described in Ib.

Alternate minimization III, with backtracking. Here, we chose M = 40 and intro-
duced the backtracking criterion from [4, Theorem 3|. Adapted to our example the backtrack-
ing is initiated at time step ¢} if there exists ¢! <t} for which the inequality

Ft), ut, 20) > F(t), ug, 2)
is satisfied. In this case go back to the smallest ¢ with this property and restart the time
discrete algorithm replacing (u;, ;") with (u, 27}).

Algorithm IV: Global energetic solutions. Global energetic solutions are obtained

as the limit of the following time incremental procedure

(Upy1s 2py1) € Argmin{ F(t},,v,2) :vel,z <z }.

See for instance [17, 21, 30], where global energetic solutions of damage models were investi-
gated.

Table 1 summarizes the tests that were carried out. Since the results of Algorithm Ta and
Ib with the values from the table are nearly identical, we plot here those of Ib, only.

Figure 3 shows the evolution of the damage-type variable z according to the different
algorithms. The gray region contains points with 9,F(t, uept(t,2),2) < 0, i.e. stable points
in the sense of the Griffith criterion. Here, uopt(t,2) = argmin{ F'(t,v,z) : v € R}. In
the white region we have 0,F (¢, uopt(t,2),2) > 0. According to the Griffith criterion, in
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n M color
Algorithm Ta 100 40 -
Algorithm Ib 100 stop = 107> Dlue
Algorithm 1T 100 1 red
600 1 green
Algorithm IIT (backtracking) 100 40 purple
Algorithm IV (global energetic solution) | 100 - dark red

Table 1: Table of performed tests

10 10
z z
. \ o8-
06 os

Figure 3: Left: Damage evolution for the different algorithms, all with n = 100. Blue:
Algorithm Ib; Red: Algorithm IT with M = 1; Dark red: Global energetic solution; Purple:

Algorithm with backtracking. Right: Comparison of Algorithm Ib (blue, n = 100) with
Algorithm II (red, n = 100; green, n = 600)

the interior of the gray region, the damage variable z should be constant in time, while
the interior of the white region is not admissible. The calculations reveal that the global
energetic solution (dark red) and the solution of the alternate minimization algorithm with
backtracking (purple) develop a jump although a stable/ time-continuous damage propagation
is still possible. The alternate minimization algorithms Ia/Ib discussed in this paper (blue
curve) detect quite precisely the exact point in time where the jump should take place, while
the alternate minimization algorithm IT with M = 1 “smears out” the jump. In the right plot
in Figure 3, the result of Algorithm IT with M = 1 and number of time steps n = 600 (green)
is plotted against the result of Algorithm Ib with n = 100. Now, the point of discontinuity
predicted by Algorithm II is sharper.

Figure 4 shows the evolution of the energy F'(t,u(t),z(t)) with respect to ¢. Here, the
results for the global energetic solution (Alg. IV) and for Alg. III (backtracking) are nearly
identical so that we plot those for the global energetic solution, only.

Finally, Figure 5 shows the trajectory of s — (u(s), 2(s)) in the (u, z)-plane for Algorithm
Ib. Blue points indicate the points (u}, z}'), i.e. the limit points of the alternate minimization
scheme at time ¢}/ for n = 500, while red points mark also the intermediate points (u} ;, 2} ;)
for n = 500, and green points mark the intermediate points (“ZN zgl) for n = 100. In both
cases we chose Ostop = 1075, For n = 100 the maximum number of iterations that appeared is
56, while for n = 500 the maximum number of iterations that appeared was 151. The starting
point of the jump of the evolution of (u, z) with respect to the time ¢ is approximately given
by (u—_,z_) ~ (2.3,0.7), while the end point is given by (u4, z1) ~ (11.6,0.08). It is not clear
from the plot whether increasing the number of time-steps and decreasing dgop leads to a
"finer resolution” of the trajectory connecting (u_, z_) with (uy,zy).
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02 S —

Figure 4: Evolution of the energy F' for Algorithm Ib (blue), Algorithm II (red) and the
global energetic solution (dark red). In all cases, n = 100.
2 1.06

02 -

u

Figure 5: Plot of the trajectory of (u,z) in the (u, z)-plane for n = 100 (green) and n = 500
(red, blue) for Algorithm Ib with dgtop = 1075,

A Appendix

A.1 Lower semi-continuity

The lower semicontinuity inequalities (48) and (49) follow from [3, Theorem 3.1]. Let us see
how our setting fits into the framework and notation of [3]. We set X = [0,T] x H! x {z €
H' : ||z|lg» < R} where the ball in H! is endowed with the weak topology, = = H' x H!,
T =(0,5), H =R and n = 1. Note that X is a metric (actually metrizable) space. For
x = (t,u,z) and for £ = (u/,2’) the integrand is

U7, 8) = [0uF (t,u, 2)| [[v']]2 + 10:F (¢, u, 2)] [[2']|

By Lemma 2.5 and Corollary 2.3 we know that (7 -, ) is sequentially lower semi-continuous
in X x 2. Clearly I(7,x,-) is convex in E and [ > 0.

Then, by Lemma 4.7 we know that x,, = (¢, un, 2,) converges to x = (t,u,z) in the
topology of X, pointwise in (0, S) and thus in measure (up to subsequences). Moreover, again
by Lemma 4.7, we have that &, = (ul,, 2},) converges to & = (u/, 2’) weakly* in L®°((0,S); H! x

H') and thus in L'((0,9); H' x H').

A.2 Continuous dependence

Lemma A.1. Fort € [0,T] and z € Z let umin(t, z) denote the minimizer of F(t,-,z) over
U. There exists C > 0 s.t. for every ty,ty € [0,T] and every z1,2z9 € Z

[wmin(t2, 22) — Umin(t1, 21)|l1,5 < Clt2 — t1| + Cll22 — 21|,
for1/r=1/p—1/p and p € [2,p). In particular

|wmin (t2, 22) — Umin(t1, 21) |12 < Clta — t1| + Cllz2 — 21|12 -
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For the proof, see [13].
Lemma A.2. Letp > 2, t € [0,T], vi,va € W'P(Q), 29 € Z with 0 < 29 < 1 and
z1 = argmin { F(t,v1,2) : 2z € Z,2< z },
zo = argmin { F(t,v9,2) : 2 € Z,2< 21 }.

Then for r—t =1—2p~!

2
21 = 22[Z < Cllor = vallywrsgay (lo1llwrsg) + lvallwisg) ) 121 = 22l e (89)
and the constant C is independent of v;, z;, t.

Proof. Let z; = argmin{ F(t,v;,2) : z € Z,2 < z_1}, 1 € {1,2}. Then, by Lemma 3.1, z
satisfies

VEe=Z: 02> —82]-"(t, (N Zz)[f], (90)
0= —82]:(t, Vi, zz)[zl — zi—l]- (91)

Furthermore, it holds z; > 0. Subtracting (91) with ¢ = 2 from (90) withi =1 and { = 25— 21
we obtain

0 2 <azf(t7v27 ZQ) - 8Z‘F(t7 U1, zl)v z9 — Z1>
which, after adding and subtracting the term 0,F (¢, vz, 2z1) can be rewritten as
<8Z]:(t, V2, 22) - az]:(t, V2, Zl), 22 — Zl> < <8Z]-'(t, V1, Zl) - az]:(t, V2, Zl), 22 — Zl>. (92)

Observe that (0,F(t, v, 22) — 0.F (t,v2,21),22 — z1) = |lz2 — Zl”iw > ||z — 21|%, while for
the right hand side of (92) we obtain

rhs. = / 1 (W(Dvy) — W(Du)) (2 — 21) da
Q

< Cllor - UQHWLIH(Q) (HUIHWLE(Q) + HUIHWM?(Q)) 21 — Z2HLT(Q) ;

where we exploited the quadratic structure of the density W and applied Holder inequality
with 2p~' 4+ r—! = 1. This finishes the proof. O
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