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Abstract

We propose notions of BV supersolutions to (the Dirichlet problem for) the 1-Laplace
equation, the minimal surface equation, and equations of similar type. We then establish some
related compactness and consistency results.

Our main technical tool is a generalized product of L∞ divergence-measure fields and gradi-
ent measures of BV functions. This product crucially depends on the choice of a representative
of the BV function, and the proofs of its basic properties involve results on one-sided approxi-
mation and fine (semi)continuity in the BV context.
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1 Introduction

This paper deals with weak supersolutions to the 1-Laplace and minimal surface equations

div
Du

|Du| ≡ 0 and div
Du√

1+|Du|2
≡ 0 on Ω , (1.1)
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where Ω always denotes an open subset of Rn with an arbitrary positive integer n, and where the
unknown u is a real-valued function on Ω. The equations in (1.1) make sense for functions u of
class W1,1 (in the first case for functions without zeroes of Du) and can then be considered as the
Euler-Lagrange equations of the total variation and the non-parametric area, given for u ∈ W1,1(Ω)
by ∫

Ω

|Du| dx and

∫

Ω

√
1+|Du|2 dx , (1.2)

respectively.
However, due to a lack of compactness, the existence problems for both weak solutions to the

equations in (1.1) and minimizers of the functionals in (1.2) cannot be solved, in general, in the
non-reflexive and non-dual space W1,1(Ω). Therefore, one usually treats the existence problem in
the larger space of functions of (locally) bounded variation on Ω, that is, in the space BV(loc)(Ω)
of functions on Ω whose gradients are merely (finite) R

n-valued Radon measures. Clearly, this
approach to existence results requires a suitable reformulation of the problem at hand, and in this
paper we actually focus on the BV reformulation of the equations in (1.1).

In case of the 1-Laplace equation, the basic idea can be understood by rewriting the equation
as the two equalities

σ ·Du = |Du| and div σ ≡ 0 on Ω , (1.3)

for some auxiliary sub-unit vector field σ ∈ L∞(Ω,Rn). Then the second equality is directly
meaningful in D ′(Ω) (i.e. in the sense of distributions), and the first equality can be extended to
the BV setup, in the spirit of Kohn & Temam [16, 17] and Anzellotti [2], as follows. For u ∈ BVloc(Ω)
and σ ∈ L∞

loc(Ω,R
n) with vanishing distributional divergence div σ, one defines the distribution

Jσ,DuK ..= div(uσ) ∈ D
′(Ω) , (1.4)

which, in fact, turns out to be a signed Radon measure on Ω. One then regards Jσ,DuK as a
generalized product of σ and Du (since, in the W1,1 case, it reduces to the ordinary pointwise
product σ ·Du by the product rule), and consequently one uses Jσ,DuK as the BV substitute for the
product in (1.3). All in all, one thus calls u ∈ BVloc(Ω) a BV solution of the 1-Laplace equation or
a weakly 1-harmonic function on Ω if there exists a sub-unit vector field σ ∈ L∞(Ω,Rn) with

Jσ,DuK = |Du| as measures on Ω and div σ ≡ 0 in D
′(Ω)

(where |Du| stands for the variation measure of the gradient measure Du of u).
More generally, the pairing

Jσ,DuK ..= div(uσ)− u divσ ∈ D
′(Ω) (1.5)

has been studied systematically by Anzellotti [2] and is still meaningful in each of the three cases

• u ∈ BVloc(Ω), σ ∈ L∞
loc(Ω,R

n), div σ ∈ Ln
loc(Ω) (since u ∈ L

n
n−1

loc (Ω) by Sobolev’s embedding),

• u ∈ BVloc(Ω) ∩ L∞
loc(Ω), σ ∈ L∞

loc(Ω,R
n), div σ ∈ L1

loc(Ω),

• u ∈ BVloc(Ω) ∩ C0(Ω), σ ∈ L∞
loc(Ω,R

n) such that div σ is a signed Radon measure on Ω.

2



Therefore, the same approach allows to explain BV solutions of

div
Du

|Du| = f on Ω (1.6)

for every f ∈ Ln
loc(Ω), to explain BV ∩ L∞ solutions of (1.6) for every f ∈ L1

loc(Ω), and to explain
BV ∩ C0 solutions of (1.6) even when f is a measure; compare with [10, 11, 12, 5, 18, 19, 23], for
instance.

In this paper, which explicates the considerations of our announcement [20], we are concerned
with notions of BV supersolutions (and BV subsolutions) to the 1-Laplace equation. Thus we are
naturally led to the study of pairings of the type Jσ,DuK when u is possibly discontinuous and
σ ∈ L∞

loc(Ω,R
n) merely satisfies div σ ≤ 0 in D ′(Ω) — and hence the non-positive distribution div σ

is a measure, but not necessarily an L1 function. In this case, in order to make sense of the last term
in (1.5), we need to work with a (−div σ)-a.e. defined representative of u ∈ BVloc(Ω) ∩ L∞

loc(Ω),
and indeed it turns out that in general there is more than just one reasonable choice of such
a representative. In recent literature [19], related problems have been tackled by working with
a standard representative u∗ of u, but here we will demonstrate that the choice of a different

representative u+ is more suitable for the definition of supersolutions. However, in working with
our corresponding pairing Jσ,Du+K and establishing its most basic properties (as, for instance, the
fact that it is a Radon measure) we then encounter the difficulty that u+, in contrast to u∗, is not the
pointwise limit of standard mollifications of u. This is overcome in the present paper by involving
some tools from the theory of BV capacity and some results on one-sided approximation of BV-
functions [15, 9, 6]. With the pairing Jσ,Du+K at hand it is natural to call u ∈ BVloc(Ω) ∩ L∞

loc(Ω)
a BV supersolution to the 1-Laplace equation or a weakly super -1-harmonic function on Ω if there
exists a sub-unit vector field σ ∈ L∞(Ω,Rn) with

Jσ,Du+K = |Du| as measures on Ω and div σ ≤ 0 in D
′(Ω).

Starting from this definition we then establish basic properties of supersolutions. Specifically, a
compactness statement is already contained in the announcement [20], and here we additionally
deal with the (surprisingly non-trivial) question whether functions u ∈ BVloc(Ω) ∩ L∞

loc(Ω) which
are both super-1-harmonic and sub-1-harmonic are necessarily 1-harmonic. We will prove that the
latter property is true if the critical set of u is not too diffuse and thus in particular if u is C1.
Our proof of this fact is related to some ideas of [23] and rests on an application of convex duality,
which — so we believe — may be of some interest in itself.

Following the approach of [4, Definition 5.1] we also introduce a global variant Jσ,Du+Ku0
of

our pairing, which accounts (in a generalized way) for a Dirichlet boundary datum u0 ∈ W1,1(Ω)∩
L∞(Ω), and for u ∈ BV(Ω) ∩ L∞(Ω) and σ ∈ L∞(Ω,Rn) with div σ ≤ 0 in D ′(Ω), we will show
that the global pairing yields a finite Borel measure on Ω. Following once more classical ideas of
Anzellotti [2, 3], we also employ the global pairing to define a normal trace of σ on the boundary
of Ω, which can in turn be used to state a version of the divergence theorem and to describe
the behavior of Jσ,Du+Ku0

on ∂Ω in terms of traces. Notably, all these considerations near the
boundary require only a very mild regularity hypothesis on ∂Ω, which has been introduced in [22]
and is crucial in order to apply the approximation results obtained there. With regard to the
1-Laplace equation, we finally discuss the suitability of yet another modification Jσ,Du+K

∗
u0

of the
pairing in connection with supersolutions with Dirichlet data, and we establish a corresponding
compactness result.
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Towards the end of the paper, we also come back to the case of the minimal surface equation,
and we comment on more general equations which arise as Euler equations of convex variational
integrals

∫
Ω
f( · ,∇u) dx. Postponing the details to the final Sections 5 and 6, at this point we only

briefly mention that most of the previously described results extend without difficulty — and in
case of C1 integrands even with slight simplifications — to BV supersolutions to these equations.

Finally, we stress that a major motivation for our interest in BV supersolutions stems from the
fact that they arise as solutions to obstacle problems for the integrals in (1.2). This issue is discussed
at length in our forthcoming preprint [21], where also a systematic connection with convex duality
will be made and the need for using the representative u+ and the modified up-to-the-boundary
pairing Jσ,Du+K

∗
u0

will be further clarified.

2 Preliminaries

2.1 General notation

In the sequel, Br(x) stands for the open ball in R
n with radius r > 0 and center x ∈ R

n, and we
write ∂A, A, and 1A for boundary, closure, and characteristic function of a set A in R

n. By Ln and
Hn−1 we denote the Lebesgue measure and the (n−1)-dimensional spherical1 Hausdorff measure
on R

n, and we set ωn
..= Ln(B1(0)). The measure-theoretic closure A+ of a Borel set A in R

n is

A+ ..=

{
x ∈ R

n : lim sup
rց0

r−nLn(Br(x) ∩ A) > 0

}
.

Moreover, if ν is a (possibly signed or vector-valued) measure, gν stands for the weighted measure
with (suitably measurable) weight function g and base measure ν, and we abbreviate ν A ..= 1Aν.
If ν is a Radon measure on a subset of Rn, we also write |ν| for the variation measure of ν and νa,
νs for the absolutely continuous and singular parts in the Lebesgue decomposition ν = νa + νs of ν
with respect to Ln. Finally, we use some standard terminology for numbers, functions, derivatives,
integrals, and function spaces, which we do not introduce in detail. We only briefly mention that
D(Ω) stands for the space of smooth and compactly supported real-valued functions on Ω, while
D ′(Ω) denotes the corresponding space of distributions on Ω.

2.2 L∞ divergence-measure fields

The spaces of local and global L∞ divergence-measure fields on Ω are given by

DM∞
loc(Ω,R

n) ..= {σ ∈ L∞
loc(Ω,R

n) : div σ exists as a signed Radon measure on Ω} ,
DM∞(Ω,Rn) ..= {σ ∈ L∞(Ω,Rn) : div σ exists as a finite signed Borel measure on Ω} .

We next record two related lemmas, the first one proved by Chen & Frid [7, Proposition 3.1].

Lemma 2.1 (absolute-continuity property for divergences of L∞ vector fields). Consider σ ∈
DM∞

loc(Ω,R
n). Then, for every Borel set A ⊂ Ω with Hn−1(A) = 0, we have |div σ|(A) = 0.

1Several results in the literature, on which we eventually rely, are usually stated for the standard Hausdorff
measure instead of the spherical one. However, it can be checked that analogous statements are valid for the spherical
measure, and thus there is no inconsistency in our reasoning. In addition, we mostly evaluate these measures on
Hn−1-rectifiable sets, where they coincide anyway by [14, Theorem 3.2.26].
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Lemma 2.2 (finiteness of divergences with a sign). If Ω is bounded with Hn−1(∂Ω) < ∞ and

σ ∈ L∞(Ω,Rn) satisfies div σ ≤ 0 in D ′(Ω), then we necessarily have σ ∈ DM∞(Ω,Rn). Moreover,

there holds (−div σ)(Ω) ≤ nωn

ωn−1
‖σ‖L∞(Ω,Rn)Hn−1(∂Ω).

Proof. Fix σ ∈ L∞(Ω,Rn) with div σ ≤ 0 in D ′(Ω). The Riesz representation theorem implies that
the non-negative distribution −div σ is actually a Radon measure on Ω. Hence it only remains
to establish the estimate for (−div σ)(Ω). To this end, consider an arbitrary δ > 0. Following
a classical argument (compare [1, Proof of Proposition 3.62]), we exploit the definition of Hn−1

in order to cover ∂Ω by a countable family (Brk(xk))k∈N of balls with radii rk ≤ δ such that∑∞
k=1 ωn−1r

n−1
k ≤ Hn−1(∂Ω) + δ. In view of its compactness, ∂Ω is already covered by finitely

many balls Brk1
(xk1), Brk2

(xk2 ), . . . , Brkm (xkm
), thus the set Ωδ

..= Ω\⋃m
i=1 Brki

(xki
) is compactly

contained in Ω, and we have 1Ωδ
∈ BV(Rn) with

|D1Ωδ
|(Rn) = Hn−1(∂Ωδ) ≤

m∑

i=1

nωnr
n−1
ki

≤ nωn

ωn−1
(Hn−1(∂Ω) + δ) .

Consequently, a mollification ϕδ of 1Ωδ
with a suitably small mollification radius ≤ δ satisfies

0 ≤ ϕδ ∈ D(Ω) and

∫

Ω

|Dϕδ| dx ≤ |D1Ωδ
|(Rn) ≤ nωn

ωn−1
(Hn−1(∂Ω) + δ) . (2.1)

Therefore, we have
∫

Ω

ϕδ d(−div σ) =

∫

Ω

σ ·Dϕδ dx ≤ ‖σ‖L∞(Ω,Rn)

∫

Ω

|Dϕδ | dx ≤ nωn

ωn−1
‖σ‖L∞(Ω,Rn)(Hn−1(∂Ω) + 2δ) .

Finally, we recall that δ is arbitrary, and we observe that limδց0 ϕδ = 1 pointwisely on Ω. Thus,
passing to the limit via Fatou’s lemma, we arrive at

(−div σ)(Ω) ≤ nωn

ωn−1
‖σ‖L∞(Ω,Rn)Hn−1(∂Ω) <∞ ,

and the proof of Lemma 2.2 is complete.

2.3 BV-functions

In connection with BV-functions and sets of finite perimeter, we mostly adopt the terminology
of [1], but we briefly comment on additional conventions and results. For u ∈ BV(Ω), we recall
that Hn−1-a.e. point in Ω is either a Lebesgue point (also called an approximate continuity point)
or an approximate jump point of u; compare [1, Sections 3.6, 3.7]. We write u+ for the Hn−1-
a.e. defined representative of u which takes the Lebesgue values in the Lebesgue points and the
larger of the two jump values in the approximate jump points. Correspondingly, u− takes on the
lesser jump values, and we set u∗ ..= 1

2 (u
++u−). We emphasize in this connection that we strictly

distinguish between superscripts ± and subscripts ±, since the latter are employed, as usual, for the
non-negative and non-positive parts g± of real-valued functions g. Moreover, with regard to the
Lebesgue decomposition of the gradient measure Du, we stick to the convention that Dau stands for
the density of (Du)a, while Dsu ..= (Du)s denotes the singular measure. Thus, the decomposition
is given by Du = (Dau)Ln +Dsu on Ω.
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Finally, if Σ is a set of finite perimeter in R
n, we observe that (1Σ)

+ = 1Σ+ holds Hn−1-a.e. on
R

n. In the case Σ ⊂ Ω, for u ∈ BV(Ω), we moreover write uint∂∗Σ for the Hn−1-a.e. defined interior
trace of u on the reduced boundary ∂∗Σ of Σ; compare [1, Sections 3.3, 3.5, 3.7]. If Hn−1(∂Σ\∂∗Σ)
happens to vanish, we also denote this trace by uint∂Σ (and this will often be used with Σ = Ω).

The following two lemmas are crucial for our purposes. The first one extends [1, Proposition
3.62] and is obtained by essentially the same reasoning.

Lemma 2.3 (BV extension by zero). If we have Hn−1(∂Ω) <∞, then for every u ∈ BV(Ω)∩L∞(Ω)
we have 1Ωu ∈ BV(Rn) and |D(1Ωu)|(∂Ω) ≤ nωn

ωn−1
‖u‖L∞(Ω)Hn−1(∂Ω). In particular, Ω is a set of

finite perimeter in R
n, and uint∂∗Ω is well-defined.

Proof. Assuming that Ω is bounded, we rely once more on the functions ϕδ ∈ D(Ω) constructed in
the proof of Lemma 2.2. Then ϕδu converges for δ ց 0 to 1Ωu in L1(Rn), and via the product rule
and (2.1) we get the bound

|D(ϕδu)− ϕδDu|(Rn) ≤ nωn

ωn−1
‖u‖L∞(Ω)(Hn−1(∂Ω) + δ) .

By lower semicontinuity of the variation we infer 1Ωu ∈ BV(Rn) and

|D(1Ωu)−Du Ω|(Rn) ≤ nωn

ωn−1
‖u‖L∞(Ω)Hn−1(∂Ω) .

Since Du Ω vanishes on ∂Ω, the claimed estimate follows immediately.

The next lemma follows by combining [6, Theorem 2.5] and [9, Lemma 1.5, Section 6]; compare
also [15, Sections 4, 10].

Lemma 2.4 (Hn−1-a.e. approximation of a BV function from above). For every u ∈ BVloc(Ω) ∩
L∞
loc(Ω) there exist vℓ ∈ W1,1

loc(Ω)∩L∞
loc(Ω) such that v1 ≥ vℓ ≥ u holds Ln-a.e. on Ω for every ℓ ∈ N

and such that v∗ℓ converges Hn−1-a.e. on Ω to u+.

2.4 1-capacity

In the sequel we adopt the following notion of 1-capacity, which is equivalent to [6, Definition 2.1].

Definition 2.5 (1-capacity). The 1-capacity of an arbitrary set E ⊂ R
n is defined as the number

inf

{∫

Rn

|Du| dx : u ∈ W1,1(Rn) , u ≥ 1 holds Ln-a.e. on an open set U with E ⊂ U

}
∈ [0,∞] .

In the next three auxiliary lemmas we summarize properties of 1-capacity which are relevant
for the proof of the later Lemma 3.3. The three auxiliary statements can be inferred, for instance,
from [6, Theorem 2.1, Proposition 2.2, Theorem 2.5]; for the second one see also [15, Section 4].

Lemma 2.6 (perimeter characterization of 1-capacity). The 1-capacity of an arbitrary set E ⊂ R
n

is equal to

inf

{
P(H) : H is a Borel set in R

n with Ln(H) <∞ and E ⊂ H+

}
.
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Lemma 2.7 (zero capacity and Hausdorff measure). The 1-capacity of a set E ⊂ R
n vanishes if

and only if E is a null set for Hn−1.

Lemma 2.8 (u+ is 1-capacity quasi upper semicontinuous). For every u ∈ BV(Rn), the represen-

tative u+ is 1-capacity quasi upper semicontinuous on R
n, that is, for every ε > 0 there exists an

open set Eε ⊂ R
n of 1-capacity smaller than ε such that u+ is pointwisely well-defined and lower

semicontinuous on R
n\Eε. Clearly, u

− is 1-capacity quasi lower semicontinuous in the same sense.

2.5 Strict approximation results

Next we collect some preliminaries, which are later relevant for the global statement of Lemma
3.3 and for Proposition 3.5. Given u ∈ BV(Ω), we write |(Ln,Du)| for the variation measure of
the R

1+n-valued Radon measure (Ln,Du) on Ω. For u ∈ W1,1(Ω), this measure coincides with√
1+|Du|2Ln, so that one may view |(Ln,Du)|(Ω) as the generalized area of the graph of u. In the

sequel, we use a corresponding type of convergence.

Definition 2.9 (strict convergence in BV). Assume Ln(Ω) < ∞, and consider functions uk, u ∈
BV(Ω). We say that uk converges strictly to u in BV(Ω) if we have

lim
k→∞

[
‖uk−u‖L1(Ω) +

∣∣|(Ln,Duk)|(Ω)− |(Ln,Du)|(Ω)
∣∣] = 0 .

In many subsequent statements we impose a mild regularity assumption on ∂Ω, namely we
require

Hn−1(∂Ω) = P(Ω) <∞ , (2.2)

where P stands for the perimeter in R
n. For a detailed discussion of (2.2) we refer to [22], where

the relevance of this condition for certain approximation results has been pointed out. Here, we
briefly remark that the condition (2.2) is equivalent to having P(Ω) <∞ and Hn−1(∂Ω \ ∂∗Ω) = 0
and also to having 1Ω ∈ BV(Rn) and |D1Ω| = Hn−1 ∂Ω. In particular, (2.2) thus implies that
∂Ω is Hn−1-finite and countably Hn−1-rectifiable. Beyond that we only need (2.2) in connection
with the subsequent lemma, which is a slight variant of [22, Proposition 4.1].

Lemma 2.10 (strict interior approximation of a BV function). If Ω is bounded with (2.2), then,
for u ∈ BV(Rn,RN ) ∩ L∞(Rn,RN), there exist open sets of finite perimeter Ω1 ⋐ Ω2 ⋐ Ω3 ⋐ . . .
in R

n with
⋃∞

k=1 Ωk = Ω such that 1Ωk
u converges strictly to 1Ωu in BV(Rn,RN).

Notice, in particular, that we have 1Ωk
u,1Ωu ∈ BV(Rn,Rn) by a standard estimate for the

product of two (BV ∩ L∞)-functions; see [1, formula (3.10)], for instance.
Lemma 2.10 is a direct consequence of [22, Proposition 4.1] and [1, Theorem 3.84] except for

the two additional claims that the subsets Ωk form an increasing sequence and that their union
is all of Ω. Since these additional claims require only marginal modifications of the arguments in
[22], we do not discuss the proof of the lemma in full detail, but we only point out these relevant
modifications.

Indeed, the reasoning in [22, Section 4] is based on coverings of the compactum ∂Ω with suitable
open balls and cylinders and obtains each Ωk by removing the closure of a finite subcover from Ω.
For our purposes, carrying out this construction iteratively (first for Ω1, then for Ω2, Ω3, and so
on), it suffices to choose the diameters of all relevant balls and cylinders in the construction of Ωk

smaller than min{1/k, dist(Ωk−1, ∂Ω)/2}. Such an additional smallness condition for the diameters
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does not at all affect the line of argument in [22, Section 4]. Since this has already been worked
out in case of the closely related reasoning in [22, Section 3], we here omit all further details.

The following one-sided approximation result is due to Carriero & Dal Maso & Leaci & Pascali
[6, Theorem 3.3].

Lemma 2.11 (strict W1,1 approximation of a BV function from above). For bounded Ω and

u ∈ BV(Ω), there exist uk ∈ W1,1(Ω) such that uk converges strictly to u in BV(Ω) and such that

uk ≥ u holds Ln-a.e. on Ω for every k ∈ N.

We remark that the strict convergence of uk to u in the above sense implies also that |Duk|(Ω)
converges to |Du|(Ω). Notice moreover that the Ln-a.e. inequality uk ≥ u implies the Hn−1-a.e.
inequality u∗k ≥ u+. Finally, observe that in case of a bounded function u one can also find uniformly
bounded approximations uk (just replace possibly unbounded ones by min{uk, supΩ u} and rely on
a short reasoning with the lower semicontinuity of the total variation).

For Lipschitz domains Ω, it is well known that the trace operator on BV(Ω) is continuous
with respect to strict convergence; see [1, Theorem 3.88]. The following lemma establishes a similar
continuity property— only for (uniformly) bounded functions, but under a much weaker assumption
on Ω.

Lemma 2.12 (strict continuity of the trace operator). Suppose that Ω is bounded with (2.2), and
consider uk, u ∈ BV(Ω) ∩ L∞(Ω). If uk converges strictly in BV(Ω) and weakly∗ in L∞(Ω) to u,
then (uk)

int
∂Ω weak∗ converges in L∞(∂Ω;Hn−1) to uint∂Ω.

Proof. Via Lemma 2.3 we deduce that 1Ωuk weak∗ converges to 1Ωu in BV(Rn) and thus D(1Ωuk)
weak∗ converges to D(1Ωu) in the space of finite R

n-valued Borel measures on R
n. Taking into

account the assumed strict convergence, we also know that Duk Ω weak∗ converges to Du Ω in
the same sense, i.e. as measures on all of Rn. Thus we infer that D(1Ωuk) ∂Ω = (uk)

int
∂ΩD1Ω

weak∗ converges to D(1Ωu) ∂Ω = uint∂ΩD1Ω (where the equalities result from [1, Theorem 3.84]).
Since the uk are uniformly bounded, we can now conclude that (uk)

int
∂Ω weak∗ converges to uint∂Ω in

L∞(∂Ω;Hn−1).

3 Anzellotti type pairings for L∞ divergence-measure fields

3.1 Definitions

We first introduce a local pairing of divergence-measure fields and gradient measures.

Definition 3.1 (local pairing). Consider u ∈ BVloc(Ω) ∩ L∞
loc(Ω) and σ ∈ DM∞

loc(Ω,R
n). Then

— since Lemma 2.1 guarantees that u+ is |div σ|-a.e. defined — we can define the distribution

Jσ,Du+K ..= div(uσ)− u+div σ ∈ D
′(Ω) .

Written out this definition means

Jσ,Du+K(ϕ) = −
∫

Ω

uσ ·Dϕdx −
∫

Ω

ϕu+ d(div σ) for ϕ ∈ D(Ω) . (3.1)

We find it worth remarking that Jσ,Du+K is bilinear in (σ, u+), but does not depend linearly on u
itself (since already the mapping of BV-functions u to their u+-representative is non-linear).
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Next we define a global version of this pairing, which incorporates Dirichlet boundary values
given by a function u0.

Definition 3.2 (up-to-the-boundary pairing). Consider u0 ∈ W1,1(Ω) ∩ L∞(Ω), u ∈ BV(Ω) ∩
L∞(Ω), and σ ∈ DM∞(Ω,Rn). Then we define the distribution Jσ,Du+Ku0

∈ D ′(Rn) by setting

Jσ,Du+Ku0
(ϕ) ..= −

∫

Ω

(u−u0)σ·Dϕdx−
∫

Ω

ϕ(u+−u∗0) d(div σ)+
∫

Ω

ϕσ·Du0 dx for ϕ ∈ D(Rn) .

(3.2)

We emphasize that the pairings in Definitions 3.1 and 3.2 coincide on ϕ with compact support
in Ω (since an integration-by-parts then eliminates u0 in (3.2)). However, the up-to-the-boundary
pairing stays well-defined even if ϕ does not vanish on ∂Ω. Both pairings can be explained analo-
gously for other representatives of u. Though we mostly stick to Jσ,Du+Ku0

in the sequel, for later
usage we record that in the case div σ ≤ 0 we have Jσ,Du−Ku0

≤ Jσ,Du∗Ku0
≤ Jσ,Du+Ku0

(in the
sense that these inequalities hold whenever a non-negative test function is plugged in).

In the sequel we show that our pairing exhibits essentially the same basic properties, which
Anzellotti [2] obtained for the more classical pairing in (1.5).

3.2 The pairing trivializes on W1,1-functions

A first vital property of the pairing is recorded in the next statement.

Lemma 3.3 (the pairing trivializes on W1,1-functions).

• (local statement) For u ∈ W1,1
loc(Ω) ∩ L∞

loc(Ω) and σ ∈ DM∞
loc(Ω,R

n), we have

Jσ,Du+K(ϕ) =

∫

Ω

ϕσ ·Du dx for all ϕ ∈ D(Ω) . (3.3)

• (global statement with fixed boundary values) For u, u0 ∈ W1,1(Ω) ∩ L∞(Ω) with

u−u0 ∈ W1,1
0 (Ω) and σ ∈ DM∞(Ω,Rn), we have

Jσ,Du+Ku0
(ϕ) =

∫

Ω

ϕ(σ ·Du) dx for all ϕ ∈ D(Rn) . (3.4)

• (global statement with general traces) If Ω is bounded with (2.2), then for every σ ∈
DM∞(Ω,Rn) there exists a uniquely determined normal trace σ∗

n ∈ L∞(∂Ω;Hn−1) with

‖σ∗
n‖L∞(∂Ω;Hn−1) ≤ ‖σ‖L∞(Ω,Rn) (3.5)

such that for u, u0 ∈ W1,1(Ω) ∩ L∞(Ω) there holds

Jσ,Du+Ku0
(ϕ) =

∫

Ω

ϕ(σ ·Du) dx+

∫

∂Ω

ϕ(u−u0)int∂Ωσ
∗
n dHn−1 for all ϕ ∈ D(Rn) . (3.6)

In particular, by taking u0 ≡ 0 and ϕ ≡ 1 in the last statement, we infer the following identity.
If Ω is bounded with (2.2), then, for all u ∈ W1,1(Ω) and σ ∈ DM∞(Ω,Rn), we have

∫

Ω

σ ·Du dx+

∫

Ω

u∗ d(div σ) +

∫

∂Ω

uint∂Ωσ
∗
n dHn−1 = 0 . (3.7)
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Before proving the preceding claims, we record a basic lemma, which has been established in
[15, Sections 4, 10] by a capacity method. The statements in [15] are made for Ω = R

n, but by
localization one easily passes over to any open subset.

Lemma 3.4 (strong convergence in W1,1 implies convergenceHn−1-a.e.). Suppose that uk converges

to u strongly in W1,1(Ω). Then, some subsequence u∗kℓ
converges Hn−1-a.e. on Ω to u∗.

Now we are ready to prove (3.3)–(3.6).

Proof of Lemma 3.3. We first treat the case of fixed boundary values, which clearly comprises the
local statement, and in view of Jσ,Du+Ku0

= Jσ,D(u−u0)+K0 + (σ ·Du0)Ln Ω, we assume u0 ≡ 0.

Then we have u ∈ W1,1
0 (Ω)∩L∞(Ω) and there exist uniformly bounded approximations uk ∈ D(Ω)

such that uk converges to u in W1,1(Ω). By Lemma 3.4 we can assume that uk converges to u∗ also
Hn−1-a.e. on Ω, and then via Lemma 2.1, the dominated convergence theorem, and integration by
parts we get

Jσ,Du+K(ϕ) = −
∫

Ω

u(σ ·Dϕ) dx −
∫

Ω

u∗ϕd(div σ)

= lim
k→∞

[
−

∫

Ω

uk(σ ·Dϕ) dx −
∫

Ω

ukϕd(div σ)

]

= lim
k→∞

∫

Ω

(σ ·Duk)ϕdx =

∫

Ω

(σ ·Du)ϕdx .

This establishes the claim (3.4).
Now we turn to the statement for general boundary values, and we assume once more u0 ≡ 0.

We start with a construction of σ∗
n which satisfies (3.6) up to an ε-error for a given u and ε and

which also satisfies (3.6) for the constant 1 in place of u without any error. We directly observe
that σ∗

n is already determined by the latter requirement and is thus unique and independent of u
and ε. For the construction we now fix u ∈ C∞(Ω) ∩ W1,1(Ω) ∩ L∞(Ω) and ε > 0. Relying on
Lemma 2.8, we choose an open subset Eε of Rn with 1-capacity smaller than ε such that u, when
understood as uint∂Ω on ∂Ω, is pointwisely defined and continuous on Ω \ Eε. (In more detail, this
claim on 1-capacity quasi continuity up to the boundary can be justified by applying Lemma 2.8
to the extensions of u with values supΩ u and infΩ u on R

n \Ω; by Lemma 2.3 these extensions are
in BV(Rn) and uint∂Ω coincides on ∂Ω with their 1-capacity quasi lower and upper semicontinuous
representative, respectively.) By the characterization of 1-capacity in Lemma 2.6 we can also find
a Borel set Hε ⊂ R

n with Eε ⊂ H+
ε , Ln(Hε) < ∞, and P(Hε) < ε. Now we apply Lemma

2.10 with the R
2-valued function (1,1Hε

) in place of u. We thus find open sets of finite perimeter
Ωℓ ⋐ Ω with Ω1 ⋐ Ω2 ⋐ Ω3 ⋐ . . . such that (1Ωℓ

,1Ωℓ
1Hε

) converges strictly in BV(Rn,R2)
and pointwisely to (1Ω,1Ω1Hε

). By (a simple case of) Reshetnyak continuity it follows that the
single components also converge strictly in BV(Rn), and in particular |D1Ωℓ

| = Hn−1 ∂∗Ωℓ weak∗
converges to |D1Ω| = Hn−1 ∂Ω in the space of signed Radon measures on R

n. Next we consider
mollifications ηℓ,m ∈ D(Ω) which converge Hn−1-a.e. on Ω to (1Ωℓ

)∗ and strictly in BV(Rn) to
1Ωℓ

so that in particular |Dηℓ,m|Ln converges to Hn−1 ∂∗Ωℓ. Possibly passing to subsequences, it
follows that also (σ · Dηℓ,m)Ln weak∗ converges to a limit νℓ with |νℓ| ≤ ‖σ‖L∞(Ω,Rn)Hn−1 ∂∗Ωℓ

and that νℓ weak∗ converges to a limit ν with |ν| ≤ ‖σ‖L∞(Ω,Rn)Hn−1 ∂Ω in the space of finite
signed Borel measures on R

n. By the Radon-Nikodým theorem we can write ν = σ∗
nHn−1 ∂Ω for

some σ∗
n ∈ L∞(∂Ω;Hn−1) with (3.5).
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Next we establish (3.6), momentarily still for u ∈ C∞(Ω) ∩ W1,1(Ω) ∩ L∞(Ω). Testing the
definition of the distributional divergence with ηℓ,mϕu ∈ D(Ω), we initially find

−
∫

Ω

ηℓ,mu(σ ·Dϕ) dx −
∫

Ω

ηℓ,mϕu d(div σ) =

∫

Ω

ηℓ,mϕ(σ ·Du) dx+

∫

Rn

ϕuσ ·Dηℓ,m dx .

Now we first send m → ∞. Relying heavily on the fact that u is continuous in the interior of Ω,
we then infer

−
∫

Ω

1Ωℓ
u(σ ·Dϕ) dx −

∫

Ω

(1Ωℓ
)∗ϕu d(div σ) =

∫

Ω

1Ωℓ
ϕ(σ ·Du) dx +

∫

Rn

ϕu dνℓ . (3.8)

In order to send ℓ → ∞, we take a closer look at the limit behavior of the last term. Since νℓ
weak∗ converges to ν and since u coincides outside Eε ⊂ H+

ε with some ũε ∈ C0(Ω) such that
‖ũε‖L∞(Ω) ≤ ‖u‖L∞(Ω), we find

lim sup
ℓ→∞

∣∣∣∣
∫

Rn

ϕu dνℓ −
∫

Rn

ϕuint∂Ω dν

∣∣∣∣

≤ lim sup
ℓ→∞

‖ϕ‖L∞(Ω)‖u‖L∞(Ω)

[
|ν|(H+

ε )+|νℓ|(H+
ε )

]

≤ lim sup
ℓ→∞

‖ϕ‖L∞(Ω)‖u‖L∞(Ω)‖σ‖L∞(Ω,Rn)

[
Hn−1(H+

ε ∩ ∂Ω) +Hn−1(H+
ε ∩ ∂∗Ωℓ)

]
.

Now we first take into account 1H+
ε
= (1Hε

)+ ≤ (1Hε
)int∂∗Ωℓ

+ 1∂∗Hε
on ∂∗Ωℓ, and then we exploit

that, as a consequence of the strict convergence of 1Ωℓ
1Hε

, also (1Hε
)int∂∗Ωℓ

Hn−1(∂∗Ωℓ) converges

to (1Hε
)int∂ΩHn−1(∂Ω). Finally, we also use (1Hε

)int∂Ω ≤ (1Hε
)+ = 1H+

ε
on ∂Ω in order to infer

lim sup
ℓ→∞

∣∣∣∣
∫

Rn

ϕu dνℓ −
∫

∂Ω

ϕuint∂Ωσ
∗
n dHn−1

∣∣∣∣

≤ ‖ϕ‖L∞(Ω)‖u‖L∞(Ω)‖σ‖L∞(Ω,Rn)

[
2Hn−1(H+

ε ∩ ∂Ω) + lim sup
ℓ→∞

Hn−1(∂∗Hε ∩ ∂∗Ωℓ)
]
.

Here, in view of
∑∞

ℓ=1 Hn−1(∂∗Hε ∩ ∂∗Ωℓ) ≤ Hn−1(∂∗Hε), the last lim sup is actually zero, and
then, using the last estimate to pass ℓ→ ∞ in (3.8), we arrive at

∣∣∣∣Jσ,Du
+K0(ϕ)−

∫

Ω

ϕ(σ ·Du) dx −
∫

∂Ω

ϕuint∂Ωσ
∗
n dHn−1

∣∣∣∣

≤ 2‖ϕ‖L∞(Ω)‖u‖L∞(Ω)‖σ‖L∞(Ω,Rn)Hn−1(H+
ε ∩ ∂Ω) .

Now we observe that for u ≡ 1 the same argument actually works in a simpler way (without using
the exceptional sets Eε and Hε) and gives the claimed equality. Thus, as explained above, we can
assume that σ∗

n is independent of u and ε. Using this fact, we deduce from the last estimate

∣∣∣∣Jσ,Du
+K0(ϕ)−

∫

Ω

ϕ(σ ·Du) dx −
∫

∂Ω

ϕuint∂Ωσ
∗
n dHn−1

∣∣∣∣

≤ 2‖ϕ‖L∞(Ω)‖u‖L∞(Ω)‖σ‖L∞(Ω,Rn)Hn−1

( ∞⋂

i=1

∞⋃

j=i

H+
1/j2

)
.
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Finally, observing that
⋃∞

j=iH
+
1/j2 has 1-capacity smaller than

∑∞
j=i 1/j

2 and recalling that 1-

capacity zero implies Hn−1-measure zero by Lemma 2.7, we arrive at (3.6) (with u0 ≡ 0).
Finally, in order to drop the assumption u ∈ C∞(Ω) and assume only u ∈ W1,1(Ω) ∩ L∞(Ω),

we use uniformly bounded Meyers-Serrin approximations uk ∈ C∞(Ω) which converge strongly in
W1,1(Ω) and by Lemma 3.4 also Hn−1-a.e. on Ω to u (possibly after passing to a subsequence). It
follows via Lemma 2.12 that moreover (uk)

int
∂Ω weak∗ converges to uint∂Ω in L∞(∂Ω;Hn−1). In view of

all these convergences it is now straightforward to carry over (3.6) (with u0 ≡ 0) from uk to u.

3.3 The pairing is a bounded measure

Next we focus on bounded vector fields σ with non-positive (distributional) divergences, and we
record that in view of Lemma 2.2 the pairings stay well-defined in this case. We can then state the
most important property of the pairing on arbitrary BV functions.

Proposition 3.5 (the pairing is a bounded measure). Fix σ ∈ L∞(Ω,Rn) with div σ ≤ 0 in D ′(Ω).

• (local estimate) For u ∈ BVloc(Ω) ∩ L∞
loc(Ω), the distribution Jσ,Du+K is a signed Radon

measure on Ω with

|Jσ,Du+K| ≤ ‖σ‖L∞(Ω,Rn)|Du| on Ω . (3.9)

• (global estimate with equality at the boundary) If Ω is bounded with (2.2), then for

u0 ∈ W1,1(Ω)∩L∞(Ω) and u ∈ BV(Ω)∩L∞(Ω), the distribution Jσ,Du+Ku0
is a finite signed

Borel measure on R
n with

∣∣Jσ,Du+Ku0
− (u−u0)int∂Ωσ

∗
nHn−1 ∂Ω

∣∣ ≤ ‖σ‖L∞(Ω,Rn)|Du| Ω . (3.10)

Here, the estimate (3.10) contains the interior inequality (3.9), the equality Jσ,Du+Ku0
∂Ω =

(u−u0)int∂Ωσ
∗
nHn−1 ∂Ω at the boundary, and the fact that Jσ,Du+Ku0

is supported in Ω.

Proof of Proposition 3.5. We only prove the global statement, which then implies the local one.
By Lemma 2.11 and the remark following it, we can find uniformly bounded approximations uk ∈
W1,1(Ω) such that uk converges to u strictly in BV(Ω) and such that uk ≥ u holds Ln-a.e. on Ω
for every k ∈ N. Fixing a non-negative test function ϕ ∈ D(Rn), we then rely on the definition in
(3.2). We control the first term in the definition via the L1-convergence of uk and the second one
via the assumption div σ ≤ 0 and the Hn−1-a.e. inequality u∗k ≥ u+ on Ω. In this way we infer

Jσ,Du+Ku0
(ϕ) ≤ lim sup

k→∞
Jσ,Du+k Ku0

(ϕ) .

Moreover, from (3.6) we get

Jσ,Du+k K
u0
(ϕ) =

∫

Ω

ϕ(σ ·Duk) dx +

∫

∂Ω

ϕ(uk−u0)int∂Ωσ
∗
n dHn−1

≤ ‖σ‖L∞(Ω,Rn)

∫

Ω

ϕ|Duk| dx+
∫

∂Ω

ϕ(uk−u0)int∂Ωσ
∗
n dHn−1 .

The first term on the right-hand side is now controlled via the strict convergence of uk in BV(Ω). In
order to deal with the second term, we involve Lemma 2.12 and record that (uk)

int
∂Ω weak∗ converges

to uint∂Ω in L∞(∂Ω;Hn−1). All in all, we thus conclude

Jσ,Du+Ku0
(ϕ) ≤ ‖σ‖L∞(Ω,Rn)

∫

Ω

ϕd|Du|+
∫

∂Ω

ϕ(u−u0)int∂Ωσ
∗
n dHn−1 whenever 0 ≤ ϕ ∈ D(Rn) .
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Applying the last estimate with −u and −u0 in place of u and u0, we also get

Jσ,Du−Ku0
(ϕ) ≥ −‖σ‖L∞(Ω,Rn)

∫

Ω

ϕd|Du|+
∫

∂Ω

ϕ(u−u0)int∂Ωσ
∗
n dHn−1 whenever 0 ≤ ϕ ∈ D(Rn) ,

and taking into account Jσ,Du−Ku0
≤ Jσ,Du+Ku0

the last two inequalities yield indeed
∣∣∣∣Jσ,Du

±Ku0
(ϕ)−

∫

∂Ω

ϕ(u−u0)int∂Ωσ
∗
n dHn−1

∣∣∣∣ ≤ ‖σ‖L∞(Ω,Rn)

∫

Ω

|ϕ| d|Du| for all ϕ ∈ D(Rn) .

Consequently, the Riesz-Markov representation theorem implies that Jσ,Du+Ku0
is a finite signed

Borel measure with (3.9) and (3.10) (and the same for Jσ,Du−Ku0
and Jσ,Du∗Ku0

).

3.4 The absolutely continuous part of the pairing is a pointwise product

Finally, we record a last property of the pairing, which is later exploited in the proofs of Theorem
4.5 and Lemma 5.5.

Lemma 3.6 (the absolutely continuous part of the pairing is a pointwise product). For u ∈
BVloc(Ω) ∩ L∞

loc(Ω) and σ ∈ L∞
loc(Ω,R

n) with div σ ≤ 0 in D ′(Ω), we have

Jσ,Du+K
a
= (σ ·Dau)Ln on Ω .

The following argument is an adaption of the proof of [2, Theorem 2.4], but also partially
resembles the preceding reasoning.

Proof of Lemma 3.6. Since the claim is local, we can assume that Ω is bounded and that we have
u ∈ BV(Ω) ∩ L∞(Ω) and σ ∈ L∞(Ω,Rn). Via Lemma 2.11 we can then find uniformly bounded
approximations uk ∈ W1,1(Ω) such that uk converges to u strictly in BV(Ω) and such that uk ≥ u
holds Ln-a.e. on Ω for every k ∈ N. By a version of the Reshetnyak continuity theorem we infer

lim
k→∞

∫

Ω

ϕ|Duk−Dau| dx =

∫

Ω

ϕd|Dsu| whenever 0 ≤ ϕ ∈ D(Ω) . (3.11)

Indeed, if Dau is locally bounded on Ω, (3.11) follows directly from [4, Theorem 3.10], applied
with the integrand f(x, z) ..= ϕ(x)|z−Dau(x)|. In the general case Dau ∈ L1(Ω,Rn), the same
statement is not directly applicable, since the continuity assumption in [4] need not be satisfied.
However, even in this generality, we can still apply [4, Theorem 3.10] with the cut-off integrands
fℓ(x, z) ..= ϕ(x)|z−ψℓ(x)|, where ψℓ are bounded functions with limℓ→∞ ‖ψℓ − Dau‖L1(Ω,Rn) = 0.
Passing ℓ→ ∞ we then conclude that (3.11) is generally valid.

In the next estimate we make use of the L1-convergence uk → u and the Hn−1-a.e. inequality
u+ ≤ u∗k to control the first and second terms in the definition (3.1), respectively. Also involving
Lemma 3.3 and (3.11), for 0 ≤ ϕ ∈ D(Ω), we hence find

Jσ,Du+K(ϕ) −
∫

Ω

ϕ(σ ·Dau) dx ≤ lim sup
k→∞

Jσ,Du+k K(ϕ) −
∫

Ω

ϕ(σ ·Dau) dx

= lim sup
k→∞

∫

Ω

ϕσ · (Duk−Dau) dx

≤ ‖σ‖L∞(Ω,Rn) lim sup
k→∞

∫

Ω

ϕ|Duk−Dau| dx

= ‖σ‖L∞(Ω,Rn)

∫

Ω

ϕd|Dsu| .
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Applying this estimate with −u in place of u, we also deduce

Jσ,Du−K(ϕ)−
∫

Ω

ϕ(σ ·Dau) dx ≥ −‖σ‖L∞(Ω,Rn)

∫

Ω

ϕd|Dsu| whenever 0 ≤ ϕ ∈ D(Ω) ,

and combining the last two estimates with the observation Jσ,Du−K ≤ Jσ,Du+K we arrive at

∣∣∣∣Jσ,Du
+K(ϕ)−

∫

Ω

ϕ(σ ·Dau) dx

∣∣∣∣ ≤ ‖σ‖L∞(Ω,Rn)

∫

Ω

|ϕ| d|Dsu| for all ϕ ∈ D(Ω) .

Since Proposition 3.5 guarantees that Jσ,Du+K is a Radon measure, we can rewrite this estimate
as the inequality of measures

|Jσ,Du+K − (σ ·Dau)Ln| ≤ ‖σ‖L∞(Ω,Rn)|Dsu| on Ω .

By Lebesgue decomposition of the measure on the left-hand side, we then read off that the absolutely
continuous part

∣∣Jσ,Du+K
a − (σ ·Dau)Ln

∣∣ necessarily vanishes on Ω.

4 Weakly super-1-harmonic functions

4.1 Weakly super-1-harmonic functions

We now give a definition of weakly super-1-harmonic functions, which employs the convenient
notation

S∞(Ω,Rn) ..= {σ ∈ L∞(Ω,Rn) : |σ| ≤ 1 holds Ln-a.e. on Ω}
for the class of sub-unit vector fields on Ω.

Definition 4.1 (weakly super-1-harmonic function). We call u ∈ BVloc(Ω)∩L∞
loc(Ω) weakly super-

1-harmonic on Ω if there exists some σ ∈ S∞(Ω,Rn) with div σ ≤ 0 in D ′(Ω) and Jσ,Du+K = |Du|
on Ω.

We next provide a compactness result for weakly super-1-harmonic functions. We directly
remark that the assumed type of convergence is very natural, and indeed the statement applies to
every increasing sequence of weakly super-1-harmonic functions which is bounded in BVloc(Ω) and
L∞
loc(Ω).

Theorem 4.2 (convergence from below preserves super-1-harmonicity). Consider a sequence of

weakly super-1-harmonic functions uk on Ω. If uk locally weak∗ converges to a limit u both in

BVloc(Ω) and L∞
loc(Ω) and if uk ≤ u holds on Ω for all k ∈ N, then u is weakly super-1-harmonic

on Ω.

Theorem 4.2 has already been established in [20, Theorem 4.2], and we do not repeat the proof
here. However, later on we adapt the same line of argument in order to establish the more general
Theorem 4.7.

We emphasize that Theorem 4.2 does not hold anymore if one replaces Jσ,Du+K with the
analogous pairing Jσ,Du♯K which involves another representative u♯ of u — at least if the choice
of u♯ is reasonable in the sense that u− ≤ u♯ ≤ u+. This can be seen, already in dimension
n = 1 (where weak super-1-harmonicity on an interval means that the function is increasing up
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to a certain point and decreasing afterwards), from the following example. For Ω ..= (−2, 2) and
uk(x) ..= (min{kx, 1−x})+, it is easily checked that uk ∈ W1,∞

0 (Ω) are weakly super-1-harmonic on
Ω and that the limit u ∈ BV(Ω)∩L∞(Ω) satisfies u(x) = (1−x)1(0,1)(x) and |Du| = L1 (0, 1)+δ0.

If a non-increasing σ ∈ S∞(Ω) satisfies Jσ,Du♯K = |Du| on Ω, one first infers σ ≡ −1 on (0, 2), and
then an integration by parts on (0, 2) shows

Jσ,Du♯K = L1 (0, 1) + u♯(0)(−σ′ {0})− δ0 .

Consequently, the equality Jσ,Du♯K {0} = |Du| {0} requires u♯(0)(−σ′({0})) = 2, and in view of
−σ′({0}) ≤ 2 this can only hold if the reasonable representative u♯ satisfies u♯(0) = 1 and thus
coincides with u+.

4.2 Simultaneously super-1-harmonic and sub-1-harmonic functions are

1-harmonic

Next we aim at establishing a consistency result for the notion introduced in Definition 4.1. To this
end we need the following duality result, which is essentially a restatement of [13, Theorem III.4.1].
More precisely, [13] covers the non-trivial case that the infimum in (4.1) does not equal −∞; the
other case and indeed the inequality ‘≥’ in (4.1) follow directly from the definitions of F ∗ and T ∗.

Theorem 4.3 (abstract convex duality). Consider normed spaces X and Y , a bounded linear

operator T : X → Y , and a convex functional F : X × Y → (−∞,∞]. If there exists some u0 ∈ X
such that F [u0, T u0] is finite and F [u0, · ] is continuous at Tu0, then there holds

inf
u∈X

F [u, Tu] = sup
ζ∈Y ∗

(
− F ∗[T ∗ζ,−ζ]

)
∈ [−∞,∞) , (4.1)

where T ∗ : Y ∗ → X∗ denotes the adjoint of T and where the lower semicontinuous and convex

functional F ∗ : X∗×Y ∗ → (−∞,∞] is given by F ∗[τ,−ζ] ..= sup(u,w)∈X×Y

(
〈τ, u〉−〈ζ, w〉−F [u,w]

)
.

Moreover, if the common target value in (4.1) is finite, then the supremum on the right-hand side

is, in fact, a maximum.

Next we specialize Theorem 4.3 in order to deduce a duality correspondence in a less abstract
setting. This statement has been partially inspired by the considerations in [23], and in the case
Γ = ∂Ω it is essentially contained in [23, Theorem 1.1].

Theorem 4.4 (a concrete duality result). Suppose that Ω is bounded with Lipschitz boundary, and

consider a boundary datum β ∈ L∞(Γ;Hn−1) on a Borel boundary portion Γ ⊂ ∂Ω. Abbreviating

W1,1
∂Ω\Γ(Ω)

..= {u ∈ W1,1(Ω) : u has zero trace Hn−1-a.e. on ∂Ω \ Γ}
L∞
div;Γ,β(Ω,R

n) ..= {σ ∈ L∞(Ω,Rn) : div σ ≡ 0 in D
′(Ω) and σ∗

n = β holds Hn−1-a.e. on Γ} ,
we then have

sup
u∈W

1,1
∂Ω\Γ

(Ω)

Du6≡0

1

‖Du‖L1(Ω,Rn)

∫

Γ

uβ dHn−1 = inf
L∞
div;Γ,β

(Ω,Rn)
‖σ‖L∞(Ω,Rn) ∈ (−∞,∞] , (4.2)

where u is evaluated on Γ in the sense of trace. If, moreover, we have
∫
∂C

β dHn−1 = 0 for every

connected component C of Ω with Hn−1(∂C \ Γ) = 0, then the common target value in (4.2) is

finite (in particular L∞
div;Γ,β(Ω,R

n) 6= ∅), and the infimum on the right-hand side of (4.2) is, in

fact, a minimum.
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Proof. We will identify the equality

inf
u∈W

1,1
∂Ω\Γ

(Ω)

‖Du‖
L1(Ω,Rn)

≤1

(
−
∫

Γ

uβ dHn−1

)
= sup

L∞
div;Γ,β

(Ω,Rn)

(
−‖σ‖L∞(Ω,Rn)

)
(4.3)

as a special case of (4.1) in Theorem 4.3. Once (4.3) is available, all the claims of Theorem 4.4 follow
quickly. Indeed, if the extra assumption fails and thus there exists some connected component C
of Ω with Hn−1(∂C \ Γ) = 0 and

∫
∂C

β dHn−1 6= 0, then one readily checks that the supremum
in (4.2) and the infimum in (4.3) equal ∞ and −∞, respectively (just consider functions u which
are constant on ∂C). Thus, in this case, (4.2) follows trivially from (4.3). If, however, the extra
assumption is at hand, then it suffices to observe that on the left-hand side of (4.3) we can restrict2

to functions u with Du 6≡ 0, and (4.2) follows from (4.3) by exploiting the 1-homogeneity of the
left-hand functionals in u. Moreover, in order to deduce the finiteness of the left-hand side in (4.3),
respectively (4.2), we note that due to the extra assumption, we may restrict ourselves to functions
u with

∫
C u dx = 0 on every connected component C of Ω with Hn−1(∂C \ Γ) = 0. Applying

the Poincaré inequality for vanishing mean values on these components and a version of Poincaré’s
inequality for zero boundary values on the remaining components (which can be established, for
instance, by the usual contradiction argument), we deduce ‖u‖W1,1(Ω) ≤ c‖Du‖L1(Ω,Rn) for some
constant c = c(Ω,Γ). Then the boundedness of the trace operator W1,1(Ω) → L1(∂Ω;Hn−1) yields
the finiteness of the target value in (4.3) and in (4.2). The attainment of the supremum in (4.3)
and the infimum in (4.2) follows from the corresponding statement in Theorem 4.3.

In order to verify (4.3) we now take X = W1,1
∂Ω\Γ(Ω), Y = L1(Ω,Rn)×L1(Γ;Hn−1) and identify

Y ∗ with L∞(Ω,Rn) × L∞(Γ;Hn−1) via the Riesz representation theorem. In addition, we choose
T as the bounded linear operator X → Y whose components are the gradient and the trace on Γ
(where the boundedness of the trace operator results from the Lipschitz assumption on ∂Ω; compare
[1, Theorem 3.87]). We then observe that for (σ, χ) ∈ L∞(Ω,Rn)× L∞(Γ;Hn−1) we have

T ∗(σ, χ) = 0 in W1,1
∂Ω\Γ(Ω)

∗ ⇐⇒
∫

Ω

σ ·Du dx+
∫

Γ

χu dHn−1 = 0 for all u ∈ W1,1
∂Ω\Γ(Ω)

⇐⇒ div σ ≡ 0 in D
′(Ω) and σ∗

n = χ holds Hn−1-a.e. on Γ .

(4.4)

Setting

F [u, (v, w)] ..=




−
∫

Γ

wβ dHn−1 if ‖v‖L1(Ω,Rn) ≤ 1

∞ otherwise

for u ∈ W1,1
∂Ω\Γ(Ω) and (v, w) ∈ L1(Ω,Rn) × L1(Γ;Hn−1) we find that the left-hand sides of (4.1)

and (4.3) coincide. In addition from the definition of F ∗ one readily checks, for τ ∈ W1,1
∂Ω\Γ(Ω)

∗

and (σ, χ) ∈ L∞(Ω,Rn)× L∞(Γ;Hn−1),

F ∗[τ,−(σ, χ)] =

{
‖σ‖L∞(Ω,Rn) if τ equals 0 and χ = β holds Hn−1-a.e. on Γ

∞ otherwise
.

2Indeed, for û ∈ W1,1

∂Ω\Γ
(Ω) with Dû ≡ 0 on Ω, consider any connected component C of Ω. Then we have û ≡ c

on C for some c ∈ R, in the case Hn−1(∂C \ Γ) > 0 we infer c = 0, and in the case Hn−1(∂C \ Γ) = 0 we have
assumed

∫
∂C

β dHn−1 = 0. Thus, in both cases we arrive at −
∫
Γ∩∂C

ûβ dHn−1 = 0 while clearly there exist also

u ∈ W1,1(Ω) with Du 6≡ 0 on C and −
∫
Γ∩∂C

uβ dHn−1 ≤ 0.
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Taking into account (4.4), from this formula for F ∗ we infer that also the right-hand sides of (4.1)
and (4.3) coincide, and thus we have identified (4.3) as a special case of (4.1).

Now we are ready to prove that — under an extra assumption which is generally satisfied at least
for C1 functions — simultaneous super-1-harmonicity and sub-1-harmonicity imply 1-harmonicity.
Somewhat surprisingly this seems to require a non-trivial argument, and in particular we will rely
on the preceding Theorem 4.4. We remark that the same issue becomes much simpler in case of
the minimal surface equation; see Section 5 and, in particular, Proposition 5.3.

Theorem 4.5 (simultaneously super-1-harmonic and sub-1-harmonic functions are 1-harmonic).
Consider u ∈ BVloc(Ω) ∩ L∞

loc(Ω) and suppose that there exists an open set U ⊂ Ω with Dau 6= 0
Ln-a.e. on U and |Du|(Ω \ U) = 0. If both u and −u are weakly super-1-harmonic on Ω, then u is

also weakly 1-harmonic on Ω (i.e. there exists some σ ∈ S∞(Ω,Rn) with div σ ≡ 0 in D ′(Ω) and

Jσ,DuK = |Du| on Ω, where Jσ,DuK denotes the classical Anzellotti pairing from (1.4)).

We remark that the set U in the assumptions of Theorem 4.5 is essentially determined by u,
and in fact these assumptions are equivalent to the requirements that, for some pointwisely defined
representative of the density Dau, the set U = Ω ∩ {Dau 6= 0} is open with |Dsu|(Ω \ U) = 0.

Proof of Theorem 4.5. By assumption there exist σ, σ ∈ S∞(Ω,Rn) with

div σ ≤ 0 ≤ div σ in D
′(Ω) (4.5)

such that Jσ,Du+K = |Du| = Jσ,Du−K holds on Ω. Via Lemma 3.6 we infer that σ = Dau
|Dau| = σ holds

Ln-a.e. on U . We now choose increasing sequences of smooth open sets Ωk ⋐ Ω and Uk ⋐ U ∩ Ωk

with
⋃∞

k=1 Ωk = Ω and
⋃∞

k=1 Uk = U . We set βk ..= −σ∗
n = −σ∗

n ∈ L∞(∂Uk;Hn−1) (where the
normal traces are taken with respect to Uk). Then, if C is a connected component of Ωk \Uk with
Hn−1(∂C \ ∂Uk) = 0, it follows that

∫
∂C

βk dHn−1 vanishes (since the application of (3.7) with the

constant 1 in place of u, once with the domain Ωk \ C and once with Ωk, shows that this integral
equals both the non-negative quantity (−div σ)

(
C
)
and the non-positive quantity (−div σ)

(
C
)
).

Moreover, exploiting (3.7), (4.5), and σ, σ ∈ S∞(Ω,Rn), for w ∈ W1,1
∂Ωk

(Ωk \ Uk) we find

∫

∂Uk

wβk dHn−1

=

∫

∂Uk

w+βk dHn−1 −
∫

∂Uk

w−βk dHn−1

= −
∫

Ωk\Uk

(w+)
∗ d(div σ)−

∫

Ωk\Uk

σ ·Dw+ dx−
∫

Ωk\Uk

(w−)
∗ d(−div σ) +

∫

Ωk\Uk

σ ·Dw− dx

≤ −
∫

Ωk\Uk

σ ·Dw+ dx+

∫

Ωk\Uk

σ ·Dw− dx

≤ ‖Dw+‖L1(Ωk\Uk,Rn) + ‖Dw−‖L1(Ωk\Uk,Rn) = ‖Dw‖L1(Ωk\Uk,Rn) ,

and thus we can apply Theorem 4.4 on Ωk \ Uk in order to deduce

min
τ∈L∞

div;∂Uk,βk
(Ωk\Uk,Rn)

‖τ‖L∞(Ωk\Uk,Rn) ≤ 1 . (4.6)
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In particular, if we set σk ..= σ = σ on Uk and extend σk to all of Ωk by using on Ωk \Uk the values
of a minimizing τ in (4.6), then we have σk ∈ S∞(Ωk,R

n), and we claim that div σk vanishes on
Ωk. Indeed, keeping in mind the preceding choices and applying (3.7) on the smooth bounded open
sets Ωk \ Uk and Uk, for every ϕ ∈ D(Ωk), we find

∫

Ωk

σk ·Dϕdx =

∫

Ωk\Uk

τ ·Dϕdx +

∫

Uk

σ ·Dϕdx = −
∫

∂Uk

ϕβk dHn−1 −
∫

∂Uk

ϕσ∗
n dHn−1 = 0 .

Thus, we have verified div σk ≡ 0 in D ′(Ωk). Possibly passing to a subsequence and recalling that
Ω is the increasing union of the Ωk, it now follows that σk locally weak∗ converges in L∞

loc(Ω,R
n)

to some σ ∈ S∞(Ω,Rn) with div σ ≡ 0 in D ′(Ω). In order to finalize the reasoning we recall that
σ = σk = σ holds Ln-a.e. on Uk, and as a consequence we observe Jσ,DuK Uk = Jσ,Du+K Uk =
|Du| Uk. Since the open set U is the union of the Uk and since (3.9) and the assumption on U
give |Jσ,DuK| (Ω \U) ≤ |Du| (Ω \U) = 0, this suffices to establish the equality Jσ,DuK = |Du| on
all of Ω.

4.3 Weakly super-1-harmonic functions with respect to boundary data

Finally, we introduce a concept of weakly super-1-harmonic functions with respect to generalized
Dirichlet boundary data. In [21] we will show that this notion is useful in connection with obstacle
problems.

Concretely, consider a bounded Ω with (2.2), u0 ∈ W1,1(Ω) ∩ L∞(Ω), and u ∈ BV(Ω) ∩ L∞(Ω).
We then extend the measure Du on Ω to a measure Du0u on Ω which takes into account the possible
deviation of uint∂Ω from the boundary datum (u0)

int
∂Ω. To this end, writing νΩ for the inward unit

normal of Ω (which is defined on ∂∗Ω and thus Hn−1-a.e. on ∂Ω), we set

Du0u
..= Du Ω + (u−u0)int∂ΩνΩHn−1 ∂Ω . (4.7)

Now, for some σ ∈ S∞(Ω,Rn) with div σ ≤ 0 in D ′(Ω), one may first attempt to work with the up-
to-the-boundary coupling condition Jσ,Du+Ku0

= |Du0u| on Ω. Since by Lemma 3.5 this condition

contains the Hn−1-a.e. equality (u−u0)int∂Ωσ
∗
n = |(u−u0)int∂Ω| on the boundary ∂Ω, it is then natural

to take the viewpoint that σ∗
n should typically equal the constant 1 (notice that the constant −1 is

incompatible with div σ ≤ 0). However, we can even allow that σ∗
n differs from 1, if we compensate

for this defect by extending (−div σ) to a non-negative measure on Ω with

(−div σ) ∂Ω ..= (1−σ∗
n)Hn−1 ∂Ω . (4.8)

Then we define a modified pairing Jσ,Du+K
∗
u0

by interpreting u+ as max{uint∂Ω, (u0)
int
∂Ω} on ∂Ω and

extending the (div σ)-integral in (3.2) from Ω to Ω. In other words, this means that we define the
signed measure Jσ,Du+K

∗
u0

by setting

Jσ,Du+K
∗

u0

..= Jσ,Du+Ku0
+

[
(u−u0)int∂Ω

]
+
(−div σ) ∂Ω . (4.9)

For σ ∈ S∞(Ω,Rn) with div σ ≤ 0 in D ′(Ω), u0 ∈ W1,1(Ω) ∩ L∞(Ω), and u ∈ BV(Ω) ∩ L∞(Ω),
we get from (3.10), (4.8), (4.9)

Jσ,Du+K
∗

u0
∂Ω =

([
(u−u0)int∂Ω

]
+
−
[
(u−u0)int∂Ω

]
−
σ∗
n

)
Hn−1 ∂Ω , (4.10)
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and in particular we read off the basic estimate

∣∣Jσ,Du+K
∗

u0

∣∣ ≤ |Du0u| on Ω . (4.11)

With these conventions, we now complement Definition 4.1 as follows.

Definition 4.6 (super-1-harmonic function with respect to a Dirichlet datum). For bounded Ω
with (2.2) and u0 ∈ W1,1(Ω)∩L∞(Ω), we say that u ∈ BV(Ω)∩L∞(Ω) is weakly super-1-harmonic

on Ω with respect to u0 if there exists some σ ∈ S∞(Ω,Rn) with div σ ≤ 0 in D ′(Ω) such that the

equality of measures Jσ,Du+K
∗
u0

= |Du0u| holds on Ω.

From (4.10) we infer that the boundary condition in Definition 4.6 is equivalent to the Hn−1-a.e.
equality σ∗

n ≡ −1 on the boundary portion {uint∂Ω < (u0)
int
∂Ω} ∩ ∂Ω, while no requirement is made on

{uint∂Ω ≥ (u0)
int
∂Ω} ∩ ∂Ω. We believe that this is very natural, in particular in the case n = 1, where

super-1-harmonicity of u on an interval [a, b] just means that u is increasing up to a certain point
and decreasing afterwards, and where σ∗

n can take the value −1 at most at one endpoint and only
if u is monotone on the full interval (a, b).

Another indication that Definition 4.6 is meaningful is provided by the next statement. We
emphasize that the statement does not hold anymore (not even for n=1, u0;k = u0 ≡ 0, and

uk ∈ W1,∞
0 (Ω)) if one replaces Jσ,Du+K

∗
u0

with Jσ,Du+Ku0
in the definition; this can be seen

by considering once more the example presented after Theorem 4.2 — but now on the domain
Ω = (0, 2), for which the critical point 0 is at the boundary.

Theorem 4.7 (convergence from below preserves super-1-harmonicity). Suppose that Ω is bounded

with (2.2), and consider weakly super-1-harmonic functions uk ∈ BV(Ω)∩L∞(Ω) on Ω with respect

to boundary data u0;k ∈ W1,1(Ω) ∩ L∞(Ω). If u0;k converges strongly in W1,1(Ω) and weakly∗ in

L∞(Ω) to some u0, and if uk weak∗ converges to a limit u in BV(Ω) and L∞(Ω) such that uk ≤ u
holds on Ω for all k ∈ N, then u is weakly super-1-harmonic on Ω with respect to u0.

Remark 4.8. In the situation of the theorem, it follows from the previously recorded reformulation

of the boundary condition that u is also weakly super-1-harmonic on Ω with respect to every ũ0 ∈
W1,1(Rn) ∩ L∞(Ω) such that Hn−1({u∗0 ≤ uint∂Ω < ũ∗0} ∩ ∂Ω) = 0. Roughly speaking, this means

that the boundary values can always be decreased and that they can even be increased as long as the

trace of u is not traversed. In view of the 1-dimensional case, we believe that this behavior is very

reasonable.

In order to prove Theorem 4.7 we will use the following global variant of Lemma 2.4.

Lemma 4.9 (Hn−1-a.e. approximation of a BV function from above). For bounded Ω with (2.2)
and u ∈ BV(Ω)∩L∞(Ω) there exist vℓ ∈ W1,1(Ω) such that vℓ ≥ u holds Ln-a.e. on Ω and such that

v∗ℓ converges Hn−1-a.e. on Ω to u+. If also u0 ∈ W1,1(Ω) ∩ L∞(Ω) is given, one can additionally

achieve that (vℓ)
int
∂Ω ≥ (u0)

int
∂Ω holds Hn−1-a.e. on ∂Ω and that (vℓ)

int
∂Ω converges Hn−1-a.e. on ∂Ω

to max{uint∂Ω, (u0)
int
∂Ω}.

Proof. As a consequence of Lemma 2.3 we have 1Ω(u−u0) ∈ BV(Rn) ∩ L∞(Rn). By Lemma
2.4 and a cut-off procedure far away from Ω we can thus find wℓ ∈ W1,1(Rn) ∩ L∞(Rn) such
that wℓ ≥ 1Ω(u−u0) holds Hn−1-a.e. on R

n and such that w∗
ℓ converges Hn−1-a.e. on R

n to
[1Ω(u−u0)]+. We now define vℓ ..= u0+wℓ on Ω, and since [1Ω(u−u0)]+ coincides with (u+−u∗0)
on Ω and with

[
(u−u0)int∂Ω

]
+
on ∂Ω, we straightforwardly deduce the claims.
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Proof of Theorem 4.7. By Definition 4.6 there exist σk ∈ S∞(Ω,Rn) with div σk ≤ 0 in D ′(Ω) and
Jσk,Du

+
k K

∗

u0;k
= |Du0;k

uk| on Ω. Possibly passing to a subsequence, we can assume that σk weak∗
converges in L∞(Ω,Rn) to σ ∈ S∞(Ω,Rn) with div σ ≤ 0 in D ′(Ω). We now work with the approx-
imations vℓ of Lemma 4.9, and after a cut-off argument we also assume that these approximations
are uniformly bounded. Relying on (3.2), Lemma 2.1, and the dominated convergence theorem, we
then infer

Jσ,Du+K
∗

u0

(
Ω
)
=

∫

Ω

(u+−u∗0) d(−div σ) +

∫

∂Ω

[
(u−u0)int∂Ω

]
+
d(−div σ) +

∫

Ω

σ ·Du0 dx

= lim
ℓ→∞

[ ∫

Ω

(v∗ℓ−u∗0) d(−div σ) +

∫

∂Ω

(vℓ−u0)int∂Ω d(−div σ) +

∫

Ω

σ ·Du0 dx
]

= lim
ℓ→∞

Jσ,Dv+ℓ K
∗

u0

(
Ω
)
.

Since the pairing exhibits the boundary behavior (4.10) and since we have (vℓ)
int
∂Ω ≥ (u0)

int
∂Ω and

(σk)
∗
n ≥ −1 on ∂Ω, at the boundary we moreover get

Jσ,Dv+ℓ K
∗

u0
(∂Ω) ≥ Jσk,Dv

+
ℓ K

∗

u0;k
(∂Ω)

+

∫

∂Ω

([
(vℓ−u0)int∂Ω

]
+
−
[
(vℓ−u0;k)int∂Ω

]
+
−
[
(vℓ−u0;k)int∂Ω

]
−

)
dHn−1 .

Since |u0;k−u0| converges to 0 strongly in W1,1(Ω) and weakly∗ in L∞(Ω), we infer from Lemma 2.12
that |(u0;k−u0)int∂Ω| weak∗ converges to 0 in L∞(∂Ω;Hn−1), and then it also follows that (u0;k)

int
∂Ω

converges to (u0)
int
∂Ω strongly in L1(∂Ω;Hn−1). Therefore, the Hn−1-integral in the last formula

vanishes in the limit k → ∞. We next exploit Lemma 3.3 (on Ω) and the weak∗ convergence of σk
in L∞(Ω,Rn) to arrive at

Jσ,Dv+ℓ K
∗

u0

(
Ω
)
=

∫

Ω

σ ·Dvℓ dx+ Jσ,Dv+ℓ K
∗

u0
(∂Ω)

≥ lim inf
k→∞

[ ∫

Ω

σk ·Dvℓ dx+ Jσk,Dv
+
ℓ K

∗

u0;k
(∂Ω)

]
= lim inf

k→∞
Jσk,Dv

+
ℓ K

∗

u0;k

(
Ω
)
.

Via the definition of the modified pairing and the inequalities v∗ℓ ≥ u+ ≥ u+k on Ω and (vℓ)
int
∂Ω ≥

uint∂Ω ≥ (uk)
int
∂Ω on ∂Ω , we moreover get

lim inf
k→∞

Jσk,Dv
+
ℓ K

∗

u0;k

(
Ω
)

= lim inf
k→∞

[ ∫

Ω

(vℓ−u0;k)∗ d(−div σk) +

∫

∂Ω

[
(vℓ−u0;k)int∂Ω

]
+
d(−div σk) +

∫

Ω

σk ·Du0;k dx
]

≥ lim inf
k→∞

[ ∫

Ω

(u+k −u∗0;k) d(−div σk) +

∫

∂Ω

[
(uk−u0;k)int∂Ω

]
+
d(−div σk) +

∫

Ω

σk ·Du0;k dx
]

= lim inf
k→∞

Jσk,Du
+
k K

∗

u0;k

(
Ω
)
.

Next we record that, since 1Ω(uk−u0;k) converges to 1Ω(u−u0) in L1(Rn) and the estimate of
Lemma 2.3 is at hand, also D

[
1Ω(uk−u0;k)

]
weak∗ converges to D

[
1Ω(u−u0)

]
in the space of finite

R
n-valued Borel measures on R

n. Involving [1, Theorem 3.84] we thus find that also Du0;k
uk =
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D
[
1Ω(uk−u0;k)

]
+Du0;kLn weak∗ converges to Du0u = D

[
1Ω(u−u0)

]
+Du0Ln in the same space.

Relying on the coupling Jσk,Du
+
k K

∗

u0;k
= |Du0;k

uk| and on a lower semicontinuity property of the

total variation, we hence deduce

lim inf
k→∞

Jσk,Du
+
k K

∗

u0;k

(
Ω
)
= lim inf

k→∞
|Du0;k

uk|
(
Ω
)
≥ |Du0u|

(
Ω
)
.

Collecting the preceding estimates, we arrive at the inequality Jσ,Du+K
∗
u0

(
Ω
)
≥ |Du0u|

(
Ω
)
. In

view of (4.11), this gives in fact equality Jσ,Du+K
∗
u0

= |Du0u| on Ω, and thus u is weakly super-1-

harmonic on Ω with respect to u0.

5 Weak supersolutions to the minimal surface equation

In this section we turn to the minimal surface equation

div
Du√

1+|Du|2
≡ 0 on Ω , (5.1)

and we discuss the adaption of our ideas to this case. In order to mimic the approach of the
previous section, in the following we aim at introducing a dual quantity σ which takes over the role
of Du√

1+|Du|2
. To this end, we rely on the inequality

z∗ · z ≤
√
1+|z|2 −

√
1−|z∗|2 for all z, z∗ ∈ R

n with |z∗| ≤ 1 , (5.2)

which becomes an equality if and only if z∗ equals z√
1+|z|2

. Here, (5.2) and the characterization

of its cases of equality can either be checked by an elementary computation or can be obtained by
specializing the general inequality z∗ ·z ≤ f(z)+f∗(z) with the convex conjugate f∗ of a real-valued
function f on R

n. In any case, for u ∈ W1,1
loc(Ω) and σ ∈ S∞(Ω,Rn), one infers

σ =
Du√

1+|Du|2
⇐⇒ σ ·Du =

√
1+|Du|2 −

√
1−|σ|2 . (5.3)

With the help of the pairing Jσ,Du+K, the relation on the right-hand side of (5.3) can be formulated
for functions u ∈ BVloc(Ω) ∩ L∞

loc(Ω), and then one may introduce BV supersolutions of (5.1) as
follows.

Definition 5.1 (supersolution to the minimal surface equation). We call u ∈ BVloc(Ω)∩L∞
loc(Ω) a

weak supersolution to the minimal surface equation on Ω if there exists some σ ∈ S∞(Ω,Rn) with

div σ ≤ 0 in D ′(Ω) and

Jσ,Du+K = |(Ln,Du)| −
√
1−|σ|2Ln on Ω (5.4)

(where |(Ln,Du)| is understood as in Section 2.5).

As in Definition 4.6 we can also employ the modified pairing Jσ,Du+K
∗
u0

from (4.9) to define BV
supersolutions to the Dirichlet problem for the minimal surface equation.
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Definition 5.2 (supersolution to the minimal surface equation with respect to a boundary datum).
For bounded Ω with (2.2) and u0 ∈ W1,1(Ω) ∩ L∞(Ω), we say that u ∈ BV(Ω) ∩ L∞(Ω) is a

weak supersolution to the minimal surface equation on Ω with respect to u0 if there exists some

σ ∈ S∞(Ω,Rn) with div σ ≤ 0 in D ′(Ω) such that we have

Jσ,Du+K
∗

u0
= |(Ln,Du0u)| −

√
1−|σ|2Ln on Ω . (5.5)

It follows from Lemma 3.3 and the equivalence (5.3) that the requirements of Definitions 5.1 and
5.2 are consistently formulated in the sense that they are certainly satisfied for W1,1 supersolutions
u, that is for u ∈ W1,1

loc(Ω) ∩ L∞
loc(Ω) and u ∈ (u0+W1,1

0 (Ω)) ∩ L∞(Ω), respectively, with

div
Du√

1 + |Du|2
≤ 0 in D

′(Ω) .

However, the minimal surface case crucially differs from the 1-Laplace case insofar as σ ∈
S∞(Ω,Rn) is uniquely determined by u (and even by Dau) via (5.4). Indeed, relying on Lemma
3.6 and the Lebesgue decomposition |(Ln,Du)| =

√
1+|Dau|2Ln+ |Dsu|, we can split (5.4) into the

two relations

σ ·Dau =
√
1+|Dau|2 −

√
1−|σ|2 Ln-a.e. on Ω ,

Jσ,Du+K
s
= |Dsu| as measures on Ω ,

and then the first relation uniquely determines

σ =
Dau√

1+|Dau|2
Ln-a.e. on Ω .

In view of this observation, an analog of Theorem 4.5 in the minimal surface case can now be
established by much simpler means.

Proposition 5.3 (simultaneous supersolutions and subsolutions are solutions). If u ∈ BVloc(Ω) ∩
L∞
loc(Ω) is such that both u and −u are weak supersolutions to the minimal surface equation on Ω,

then u is a BV solution to the minimal surface equation on Ω (i.e. σ ..= Dau/
√
1+|Dau|2 satisfies

Jσ,DuK
s
= |Dsu| on Ω and div σ ≡ 0 in D ′(Ω)).

Proof. The supersolution property of u means that σ = Dau/
√
1+|Dau|2 satisfies div σ ≤ 0 in

D ′(Ω) and Jσ,Du+K
s
= |Dsu| on Ω. The supersolution property of −u means that the same σ also

satisfies div σ ≥ 0 in D ′(Ω) and Jσ,Du−K
s
= |Dsu| on Ω. Thus, we have div σ ≡ 0 in D ′(Ω), and

the pairings Jσ,Du±K reduce to the classical Anzellotti pairing Jσ,DuK in (1.4), so that we arrive
at the claim.

Moreover, we have compactness results which resemble Theorems 4.2 and 4.7. We only state
the global version which contains the local one as a special case.

Theorem 5.4 (convergence from below preserves the supersolution property). Suppose that Ω is

bounded with (2.2), and consider weak supersolutions uk ∈ BV(Ω) ∩ L∞(Ω) to the minimal surface

equation on Ω with respect to boundary data u0;k ∈ W1,1(Ω)∩ L∞(Ω). If u0;k converges strongly in

W1,1(Ω) and weakly∗ in L∞(Ω) to some u0, and if uk weak∗ converges to a limit u in BV(Ω) and

L∞(Ω) such that uk ≤ u holds on Ω for all k ∈ N, then u is a weak supersolution to the minimal

surface equation on Ω with respect to u0.
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In order to prove Theorem 5.4 we first record that (5.2) leads to estimates on the level of the
pairing which (partially) substitute Proposition 3.5 in the present situation.

Lemma 5.5. Fix σ ∈ S∞(Ω,Rn) with div σ ≤ 0 in D
′(Ω).

• (local estimate) For u ∈ BVloc(Ω) ∩ L∞
loc(Ω) we have

|Jσ,Du+K| ≤ |(Ln,Du)| −
√
1−|σ|2Ln on Ω .

• (global estimate) If Ω is bounded with (2.2), then for u0 ∈ W1,1(Ω) ∩ L∞(Ω) and u ∈
BV(Ω) ∩ L∞(Ω) we have

∣∣Jσ,Du+K
∗

u0

∣∣ ≤ |(Ln,Du0u)| −
√
1−|σ|2Ln on Ω .

Proof. We employ in turn Lebesgue decomposition, Lemma 3.6, Proposition 3.5, and (5.2). Arguing
in this way, we get the following (in)equalities of measures on Ω:

|Jσ,Du+K| = |Jσ,Du+K
s|+ |Jσ,Du+K

a|
= |Jσ,Du+K|s + (σ ·Dau)Ln

≤ |Du|s +
√
1+|Dau|2Ln −

√
1−|σ|2Ln

= |(Ln,Du)s|+ |(Ln,Du)a| −
√
1−|σ|2Ln

= |(Ln,Du)| −
√
1−|σ|2Ln .

Thus, we have established the local estimate. The global estimate then follows by taking into
account Jσ,Du+K

∗
u0

= Jσ,Du+K on Ω and (4.11) on ∂Ω.

Proof of Theorem 5.4. By Definition 5.2 there exist σk ∈ S∞(Ω,Rn) with div σk ≤ 0 in D ′(Ω) such
that the coupling condition (5.5) holds with (σk, uk, u0;k) in place of (σ, u, u0). Possibly passing
to a subsequence, we assume that σk weak∗ converges in L∞(Ω,Rn) to some σ ∈ S∞(Ω,Rn) with
div σ ≤ 0 in D ′(Ω). Arguing exactly as in the proof of Theorem 4.7 and then using the modified
coupling condition, we end up with

Jσ,Du+K
∗

u0

(
Ω
)
≥ lim inf

k→∞
Jσk,Du

+
k K

∗

u0;k

(
Ω
)
= lim inf

k→∞

[
|(Ln,Du0;k

uk)|
(
Ω
)
−
∫

Ω

√
1−|σk|2 dx

]
.

Since Du0;k
uk weak∗ converges to Du0u for the reasons also detailed in the proof of Theorem 4.7,

by lower semicontinuity of the total variation, we get

lim inf
k→∞

|(Ln,Du0;k
uk)|

(
Ω
)
≥ |(Ln,Du0u)|

(
Ω
)
.

By weak∗ lower semicontinuity of the convex functional τ 7→ −
∫
Ω

√
1−|τ |2 dx (see [8, Theorem

3.20, Remark 3.25(ii)]), we moreover have

lim sup
k→∞

∫

Ω

√
1−|σk|2 dx ≤

∫

Ω

√
1−|σ|2 dx .

Thus, all in all we end up with

Jσ,Du+K
∗

u0

(
Ω
)
≥

[
|(Ln,Du0u)| −

√
1−|σ|2Ln

](
Ω
)
.

This suffices to guarantee that equality occurs in the global estimate of Lemma 5.5 and that
Jσ,Du+K

∗
u0

is non-negative. Hence the coupling condition (5.5) holds, and u is a weak superso-

lution to the minimal surface equation on Ω with respect to u0.
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6 Brief remarks on more general variational equations

Last but not least we point out that our approach can be adapted in order to define BV superso-
lutions of more general equations. Specifically, we can deal with Euler equations of functionals

F [u] ..=

∫

Ω

f( · ,Du) dx ,

where the Borel integrand f : Ω×R
n → R is convex in the second variable and satisfies the growth

condition
|f(x, z)| ≤ Ψ(x) + L|z| for (x, z) ∈ Ω×R

n

with an L1 function Ψ on Ω and a constant L ∈ [0,∞).
In this situation, if Ω is bounded with (2.2), it makes sense to call u ∈ BV(Ω) ∩ L∞(Ω) a weak

supersolution to the Euler equation of F with respect to a Dirichlet datum u0 ∈ W1,1(Ω) ∩ L∞(Ω)
if there exists some σ ∈ L∞(Ω,Rn) with div σ ≤ 0 in D ′(Ω) which satisfies the coupling condition

Jσ,Du+K
∗

u0
= f( · ,Du0u) + f∗( · , σ)Ln on Ω . (6.1)

Here the first term on the right-hand side is understood as a convex functional of a measure

on Ω, that is f( · ,Du0u)
..= f( · ,Dau)Ln + f∞

(
· , d(Du0u)

s

d|Du0u|
s

)
|Du0u|s with the recession function3

f∞ of f . Moreover, the convex conjugate f∗ : Ω × R
n → (−∞,∞] of f is given by f∗(x, z∗) ..=

supz∈Rn

[
z∗·z−f(x, z)

]
. If f is C1 in the second variable, a pointwise connection between f , f∗, Dzf

(see [4, formula (3.1)]) implies that the vector field σ in (6.1) is fully determined by u (and f) and in
fact is given by σ = Dzf( · ,Dau) on Ω. Moreover, still under the differentiability assumption on f ,
it follows via Lemma 3.3 that the above definition is satisfied for every u ∈ (u0+W1.1

0 (Ω))∩L∞(Ω)
with div

[
Dzf( · ,Du)

]
≤ 0 in D ′(Ω). Thus, our definition is consistent with the standard notion

of W1,1 supersolutions. We find it worth remarking, however, that — thanks to convex duality —
our notion is still meaningful if f is not C1 in the second variable and the usual formulation of the
Euler equation cannot be written down even for smooth solutions u.

Finally, we suppose that f is convex in z, lower semicontinuous in (x, z) and admits, in addition
to the above growth condition, a lower bound

f(x, z) ≥ −ℓ(z) for (x, z) ∈ Ω×R
n

with a linear function ℓ : Rn → R. Then the Reshetnyak semicontinuity theorem applies to the
quantity f( · ,Du0u) (compare [4, Appendix B]), and most of our results extend to supersolutions
defined via (6.1), with analogous proofs. Specifically, we believe that this is true for Theorems 4.2,
4.7, 5.4, and when f is C1 in z also for Proposition 5.3. Analoga to Theorem 4.5 for non-differentiable
integrands f may require assumptions on the set Ω ∩ {Dau ∈ Nf}, with the non-differentiability
set Nf of f . Anyway, this last issue is likely to be more delicate and will not be discussed here.
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