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Introduction

Many physical systems are modeled mathematically as variational problems, where the
observed configurations are expected to be local or global minimizers of a suitable energy. Such
an energy can be very complicated, as well as the physical phenomenon under investigation.
Thus, as a starting point, it is useful to focus on some simple models, which however capture
the main features.

In this thesis we concentrate on two kinds of energies, that can be both viewed as nonlocal
variants of the perimeter functional. The nonlocality consists in a bulk term, that in one case
is given by an elastic energy, while in the other by a long-range interaction of Coulumbic type.
The physical systems modeled by these energies displays a rich variety of observable patterns,
as well as the formation of morphological instabilities of interfaces between different phases.
These phenomena can be mathematically understood as the competition between the local
geometric part of the energy, i.e., the perimeter, and the nonlocal one. Indeed, while the first
one prefers configurations in which the interfaces are regular and as small as possible, the
latter, instead, favors more irregular and oscillating patterns. Thus, finding global or local
minima of these energies is a highly nontrivial task, and indeed many big issues about them
are still open. The aim of this thesis is to give a contribution to the investigation of such issues.

In particular, we study the following two energies:

e the Mumford-Shah functional, that is the prototype of the so called free discontinuity
problems. Introduced for the first time in [50] in the context of image segmentation,
nowadays is also used in the variational formulation of fracture mechanics;

e a model for diblock copolymer, where the energy is a nonlocal variant of the perimeter
functional, where the nonlocality is given by a long-range repulsive interaction of
Coulumbic type.

A common mathematical feature of these two energies is a deep lack of convexity. Thus,
it is important to look for sufficient conditions for local and global minimality. In this thesis
we undertake such investigation by adopting the point of view introduced by Cagnetti, Mora
and Morini in [9], where a study of second order conditions for free-discontinuity problems
has been initiated (in the case of the Mumford-Shah functional), and by Fusco and Morini in
[27] (for a model of epitaxially growth). See also [1, 6, 10, 35] for other related works.

We now describe in details the obtained results for the two energies we studied.
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VIII INTRODUCTION

A model for diblock copolymer.

Diblock copolymers are a class of two-phase materials extensively used in the applications
for their properties. They are composed by linear-chain macromolecules, each consisting of
two thermodynamically incompatible subchains joined covalently. Due to this imcompatibility,
the two phases try to separate as much as possible; on the other hand, because of the chemical
bonds, only partial separation can occor at a suitable mesoscale. Such a partial segregation of
the two ohases produces very complex patterns, that are experimentally observed to be (quasi)
periodic at an intrinsic scale. The structure of these patterns depends strongly on the volume
fraction of a phase with respect to the other, but they are seen to be very closed to periodic
surfaces with constant mean curvature, as shown in Figure 1. All these diblock copolymers
belong to a broad family of materials, usually called soft materials, which show a high degree
of order at a suitable length scale, although their fluidlike disorder on the molecular scale.
Their complex structures can give these materials many desiderable properties. It is thus
useful to better understand the formation of these patterns.

g -~~~ 9

FiGure 1. The typical patterns that are observed according to an increasing
value of the volume fraction.

To model microphase separation of diblock copolymers, Ohta and Kawasaki proposed in
[55] the following energy:
1
- / (u? —1)%dx

OK_ (u) ::5/ |Vul?dz +
Q €Ja

+ [ [ Gl ) —m) (ul) = m)dzdy,  (©.)
where Q C R is an open set, G is the Green’s function for —A, u € H'(Q2), and m := fQ Uu.
The function w is a density distribution, and the two phases of the chain correspond to the
regions where u ~ —1 and u &~ +1 respectively. See [13] for a rigorous derivation of the
Ohta-Kawasaki energy from first principles, and [52] for a physical background on long-range
interaction energies. According to the theory proposed by Ohta and Kawasaki, we expect
observable configurations to be global (or local) minimizers of the energy (0.1).
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Since the parameter € is usually small, from the mathematical point of view it is more
convenient to consider the variational limit of the energy OK.. If we let the parameter ¢
going to zero, we obtain a functional that, in the periodic setting, turns out to be (0.2). If we
also consider the volume of one of the two phases to disappear, it has been proved in [11, 12]
that the resulting variational limit is the functional (0.3). We studied both these functionals,
from different perspectives.

The periodic case. We start by describing the results obtained in the first case. We
study some properties of critical points of the functional

FUE) :=Prn(E) + 7/11‘1\’ /]l‘N Gon (2, y)uf (2)u® (y) dz dy, (0.2)

where v > 0, E is a subset of the N-dimensional flat torus TV , Prxy (E) denotes the perimeter
of Ein TV, uf(z):= xp(z) — xtv\g(7), and Gpv is the unique solution of

— NGy () =8 () =1 in TV, / Gywn (z,y) dedy =0.
TN JTN

We will refer to the first term of (0.2) as the local term, while to the second one as the nonlocal
term. The latter will be denoted with YAV L(E). We notice that the local term favours the
formation of large regions of pure phase, while the nonlocal one prefers to break each phase
into several connected components that tries to separate from each other as much as possible.

Proving analitically that global minimizers of (0.2) or (0.1) are (quasi) periodic is a formi-
dable task. Indeed, so far, the best result in this direction is the work [3] by Alberti, Choksi
and Otto, where it is proved that global minimizers of (0.2) in the whole RY under a volume
constraint, i.e. for a fixed m, present an uniform energy distribution of each component of
the energy, on suitable big cubes. This result has been extended to the case of the functional
(0.1) by Spadaro in [64]. Moreover, the structure of global minimizers has been investigated
by many authors (see, for example, [11, 12, 18, 30, 31, 53, 65, 67]), but only in some
asymptotic regimes, ¢.e., when the parameter ~ is small or m ~ +1.

A more reasonable, but still highly nontrivial, pourpose is to exhibit a class of local
minimizers of the energies (0.2) and (0.1) that look like the observed configurations. Among
the results in this direction we would like to recall the works by Ren and Wei (|60, 57, 56, 58,

|), where they construct explicit critical configurations of the sharp interface energy, with
lamellar, cylindrical and spherical patterns. They also provide a regime of the parameters that
ensures the (linear) stability of such configurations. The natural notion of stability for (0.2)
has been introduced by Choksi and Strernberg in [15], and it has been subsequently proved by
Acerbi, Fusco and Morini in [1], that critical and strictly stable (namely with strictly positive
second variation) configurations are local minimizers in the L! topology.

The aim of our work is to collect some new observations on critical points of the sharp
interface energy (0.2).

We start by showing, in Proposition 2.32; that critical point are always local minimiz-
ers with respect to perturbations with sufficiently small support. This minimality-in-small-
domains property of critical points is shared by many functional of the Calculus of Variations,
but to the best of our knowledge it has been never been observed before for the Ohta-Kawasaki
energy.

The second result (see Proposition 2.34) shows that the property of being critical and
stable is preserved under small perturbations of the parameter v. More precisely, we show
that, given 4 > 0 and a strictly stable critical point E of the functional F7, we can find a
(unique) family (E,) of smoothly varying uniform local minimizers of F7 for ~ ranging in
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a small neighborhood of 4. The procedure to construct such a family is purely variational
and based on showing that the local minimality criterion provided in [1]| can be made uniform
with respect to the parameter v and with respect to critical sets ranging in a sufficiently
small C'-neighborhood of a given strictly stable set E. Such an observation, which has an
independent interest, is proven in Proposition 2.34.

The above stability property is used to establish the main result of this paper (see The-
orem 2.46): given ¥ > 0 and ¢ > 0 and a subset E of the torus TV such that OF is a
strictly stable constant mean curvature hypersurface, we show that it is possible to find an
integer k = k(7,e) and a 1/k-periodic critical point of F%N, whose shape is e-close (in a
C'-sense) to the 1/k-rescaled version of E and whose mean curvature is almost constant.
Moreover, such a critical point is an isolated local minimizer with respect to (1/k)-periodic
perturbations. In words, the above result says that it is possible to construct local minimizing
periodic critical points of the energy (0.1), whit a shape closely resembling that of any given
stictly stable periodic constant mean curvature surface.

This result is close in spirit to the aforementioned results by Ren and Wei. There are
however some important differences: First of all, they work in the Neumann setting, while
we are in the periodic one. Moreover, while their constructions are based on the Liapunov-
Schmidt reduction method and require rather involved and (ad hoc for each specific example)
spectral computations, we use a purely variational approach that works for all possible strictly
stable patterns. However, the price to pay for such a generality is a less precise description of
the parameter ranges for which the existence of the desired critical points can be established.

Another important consequence of our variational procedure is that it allows to show (see
Proposition 2.47) that all the constructed critical points can be approximated by critical points
of the e-diffuse energy (0.1). This is done by I'-convergence arguments in the spirit of the
Kohn and Sternberg theory, see [40]. We conclude by remarking that numerical and exper-
imental evidence suggest the following general structure for global minimizers: the nonlocal
term determines an intrinsic scale of periodicity (the larger is 7 the smaller is the periodicity
scale), while the shape of the global minimizer inside the periodicity cell is dictated by the
perimeter term. Although we are very far from an analytical validation of such a picture, our
result allows to construct a class of (locally minimizing) critical point that display the above
structure.

A nonlocal isoperimetric problem on RY. We now describe the results obtained for
the second type of variational limit of (0.1). For a parameter o € (O,N — 1), N > 2, we
consider the following functional defined on measurable sets £ C RV :

xe(@)xe(y)
F(B) = P(E) +/RN/RN ‘x_y‘a dz dy, 0.3)

where P(FE) is the perimeter of the set F and the second term, the so called nonlocal term, will
be hereafter denoted by N L, (F). We are interested in the study of the volume constrained
minimization problem

min{F(E) : |E|=m}, (0.4)

and in its dependence on the parameters o and m > 0.

Beyond its relation with the aforementioned model for diblock copolymers, the above
problem is interesting because the energy (0.3) appears in the modeling of many other different
physical phenomena. In particular, the most physically relevant case is in three dimensions
with o = 1, where the nonlocal term corresponds to a Coulombic repulsive interaction: one
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of the first examples is the celebrated Gamow’s water-drop model for the constitution of the
atomic nucleus (see [28]).

From a mathematical point of view, functionals of the form (0.3) recently drew the atten-
tion of many authors (see for example [1, 18, 22, 26, 30, 31, 34, 35, 36, 37, 38, 43, 53, 54]).
The main feature of the energy (0.3) is the presence of two competing terms, the sharp inter-
face energy and the long-range repulsive interaction. Indeed, while the first term is minimized
by the ball (by the isoperimetric inequality), the nonlocal term is in fact maximized by the
ball, as a consequence of the Riesz’s rearrangement inequality (see [42, Theorem 3.7]), and
favours scattered configurations.

In order to have an idea of the behaviour we would expect for such a functional, we notice

1
that, calling F ::(%) Y E, where B is the unit ball of RY, the functional reads as

% N—a+1
FE) =( 12 [P(E)+ (m>  NLa(B)]
| B1| | B1| B
Hence the parameter m appearing in the volume constraint can be normalized and replaced

by a coefficient v in front of the nonlocal energy: one can study the minimization problem,
equivalent to (0.4),

min{Fo,(E) : |E| = |Bil}, (0.5)

where we define F (E) := P(E) +YNLy(E). It is clear from this expression that, for small
masses, i.e., small y’s, the interfacial energy is the leading term and this suggests that in
this case the functional should behave like the perimeter, namely we expect the ball to be the
unique solution of the minimization problem, as in the isoperimetric problem; on the other
hand, for large masses the nonlocal term becomes prevalent and should causes the existence
of a solution to be not guaranteed. But this is just heuristic!

What was proved, in some particular cases, is that the functional F is uniquely minimized
(up to translations) by the ball for every value of the volume below a critical threshold: in the
planar case in [36], in the case 3 < N <7 in [37], and in any dimension N with a = N —2
in [34]. Moreover, the existence of a critical mass above which the minimum problem does
not admit a solution was established in [36] in dimension N = 2, in [37] for every dimension
and for exponents « € (0,2), and in [43] in the physical interesting case N =3, a = 1.

In [7] we provide a contribution to a more detailed picture of the nature of the minimization
problem (0.4). In particular, we follow the approach used in [1] for the periodic case with
a = N — 2, which is based on the positivity of the second variation of the functional, in order
to obtain a local minimality criterion. This allows us to show the following new results: first,
we prove that the ball is the unique global minimizer for small masses, for every values of
the parameters N and « (Theorem 1.10); moreover, for « small we also show that the ball
is the unique global minimizer, as long as a minimizer exists (Theorem 1.11), and that in
this regime we can write (0,00) = Ug(mg, mgy1], with mgiq > my, in such a way that for
m € [mg_1,my] a minimizing sequence for the functional is given by a configuration of at
most k disjoint balls with diverging mutual distance (Theorem 1.12).

Finally, we also investigate the issue of local minimizers, that is, sets which minimize the
energy with respect to competitors sufficiently close in the L!-sense (where we measure the
distance between two sets by the quantity (1.5), which takes into account the translation
invariance of the functional). We show the existence of a volume threshold below which the
ball is an isolated local minimizer, determining it explicitly in the three dimensional case with
a Newtonian potential (Theorem 1.9). The energy landscape of the functional F, including
the information coming from our analysis and from previous works, is illustrated in Figure 2.
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After our work was completed, a deep analysis comprising also the case of the parameter
a € [N — 1,N), and including the possibility for the perimeter term to be a nonlocal s-
perimeter, has been performed in the paper [25].

m
Mgiop = Mgiop(IN, @) is bounded
Characterization of the infimum
of the energy: A m : Completel
&H——¢m ompletely unknown
inf F(F) is obtained by __n;n & H peey
|E|=m :—_> (just a non existence
% —4— M3
summing the energy of at most ! result for o < 2)
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Here the ball is the
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FIGURE 2. Energy landscape of the functional F .

The Mumford-Shah functional.

We present here the first part of an ongoing project aimed at providing a local minimality
criterion, based on a second variation approach, for triple point configurations of the Mumford-
Shah functional.

The (homogeneous) Mumford-Shah functional in the plane is defined as follows:

MS(u,T) = / Vuf? dz + HY LT A Q) (0.6)

O\l
where Q C R? is a Lipschitz domain, H¥~! denotes the (N — 1)-dimensional Hausdorff
measure, and (u,I") is a pair where I is a closed subset of R? and u € H'(Q\T).

The existence of global minimizers in arbitrary dimension has been provided by De Giorgi,
Carrieo and Leaci in [21] (for other proof see, for istance, [44]| and, for dimension 2, [19, 48])
In the seminal paper [51] it has been conjectured that, if (u,I") is a minimizing pair, then that
the set I' is made by a finite union of C' arcs. Given this structure for grant, it is not difficult
to prove (see [51]) that the only possible singularities of the set I' can be of the following two
types:

e I' ends in an interior point (the so called crack type),
e three regular arcs meeting in an interion point zy with equal angles of 27/3 (the so
called triple point).
Although several results on the regularity of the discountinuity set I' have been obtained (but
we will not recall them here), the conjecture is still open.

As for the previous case, the deep lack of convexity of the functional (0.6) naturally leads
one to ask what conditions imply that critical configurations as above are local minimizers.
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The study of such a conditions has been initiated by Cagnetti, Mora and Morini in [9], where
they deal with the regular part of the discontinuity set. In particular they introduce a suitable
notion of second variation and prove that the strict positivity of the associated quadratic form
is a sufficient condition for the local minimality with respect to small C? perturbations of the
discontinuity set I'.

Subsequently, the above result has been strongly improved by Bomnacini and Morini in
[8], where it is shown that if (u,I) is a critical pair for (0.6) with strictly positive second
variation, then it locally minimizes then it locally minimizes the functional with respet to
small L'-perturbations of u, namely that there exists § > 0 such that

MS(u,T') < MS(v,T")

for all admissible pairs (v,I") satistying 0 < ||u —v||p1 < 9.

Among other results on local and global minimality criterions, we would like to recall
the important work [2] of Alberti, Bouchitté and Dal Maso, where they introduce a general
calibration method for a family of non convex variational problems. In particular they applied
this method to the case of the Mumford-Shah functional to obtain minimality results for some
particular configurations. Moreover, Mora in [46] used that calibration technique to prove that
a critical configuration (u,I'), where I' is made by three line segments meeting at the origin
with equal angles, is a minimizer of the Mumford-Shah energy in a suitable neighborhood of
the origin, with respect to its Dirichlet boundary conditions. Finally, we recall that the same
method has been used by Mora and Morini in [47], and by Morini in [49] (in the case of the
non homogeneous Mumford-Shah functional), to obtain local and global minimality results in
the case of a regular curve I'.

Our aim was to continue the investigation of second order sufficient conditions, by con-
sidering for the first time the case of configurations with a singularity, namely triple point
configuration.

The plan is the following. In Section 3.3 we compute, as in [9], the second variation of the
functional MS at a triple point configuration (u,I'), with respect to a one-parameter family
of (sufficiently regular) diffeomorphisms (®;)¢c(—1,1), where each ®; equals the identity in the
part of 92 where we impose the Dirichlet condition and ®3 = Id. The idea is then to consider
for each time ¢ € (—1,1) the pair (uz,I'y), where T'; := ®(T"), and u; € H'(Q\I'y) minimizes
the Dirichlet energy with respect to the given boundary conditions.

We show that the second variation can be written as follows:
2

%MS(WH Ft)|t = PMSu,T)[(X v, X 12 X V3] +R, (0.7)
where 9?MS(u,T) is a nonlocal (explicitly given) quadratic form, X is the velocity field
at time 0 of the flow t + ®; (see Definition 3.4), and v is the normal vector field on
I'*. Moreover, the remainder R vanishes whenever (u,T') is a critical triple point. Thus, in
particular, if (u,I") is a local minimizer with respect to smooth perturbations of I', then the
quadratic form 9?MS(u,T') has to be nonnegative.

Next we address the question as to whether the strict positivity of 92> MS(u,T'), with (u,T')
critical, is a sufficient condition for local minimality. The main result (see Theorem 3.24) is
the following: if (u,T") is a strictly stable critical pair, then there exists § > 0 such that

MS(U; F) < M’S(Ua @(F)) )

for any W#°°-diffeomorphism ® : @ — Q and any function v € H'(Q\®(I')) satisfying
the proper boundary conditions, provided that ||[® — Id|jy2e < §, that ®(T') # I', and
D®(xp) = Md for some A # 0. Here zy denotes the triple point. We remark that the last
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assumption is just technical and we believe that it can be removed by refining our construction.
The above result can be seen as the analog for triple points configurations of the minimality
result established in [9] in the case of regular discontinuity sets.

From the technical point of view the presence of the singularity makes the problem con-
siderably more challenging. The main difficulty lies in the construction of a suitable family
of diffeomorphisms (®;),c(o,1] connecting the critical triple point configuration with the com-
petitor, in such a way that the “tangential” part along ®.;(I') of the velocity field X; of the
flow t — ®; is controlled by its normal part. Moreover, one also has to make sure that the
C?-closeness to the identity is preserved along the way. This turns out to be a highly nontriv-
ial task, due to the presence of the triple junction which poses severe regularity problems (see
also [17] for a related problem in the context of area functional). Once such a construction
is performed, one proceeds in the following way. Let g(t) := MS(u,I'y) and notice that, by
criticality, we have ¢’(0) = 0. Thus, recalling (0.7), it is possible to write

1
MS(v, () — MS(u, T) = /0 (1—)g" () dt

= /1(1 — t) (82M8(ut, Ft)[Xt : Vt] + Rt) dt. (08)
0

If T'; is sufficiently C2-close to I', by the strict positivity assumption on 9?MS(u,T), we
may conclude by continuity that

82M8(Ut, Ft)[Xt . Vt] 2 CHXt . VtH2 .

Unfortunately, the remainder R; depends also on the tangential part of X;. However, if the
family (®;); is properly constructed, on can ensure that such a tangential part is controlled
by X;- v and
|Re| < el Xe - v

for any € > 0, provided that the ®;’s are sufficiently C?-close to the identity. Plugging the
above two estimates into (0.8) one eventually concludes that, for a ®’s satisfying the above
assumptions, MS(v, ®(I")) > MS(u,T).

We conclude this introduction by observing that the above result represents just the first
step of a more general strategy aimed at establishing the local minimality with respect to the
L'-topology in the spirit of [8], which will be the subject of future investigations.

Organization of the thesis. In Chapter 1 and Chapter 2 and we present the results
about the functionals (0.5) and (0.2) respectively, while those relative to the Mumford-Shah
functional can be found in Chapter 3. Some technical results needed in the presentation
of the main contributions of this thesis will be proved in the Appendix at the end of each
chapter. Moreover, at the beginning of a chapter, we will introduce the needed notations and
the preliminaries.
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CHAPTER 1

A nonlocal isoperimetric problem in RY

The aim of this chapter is to provide some information about the energy landscape of the

family of functionals
F(E) / / xe(@)xe(y) dz dy,
RN JRN |CU -y |°‘

where P(FE) is the perimeter of the set E and the second term, the so called nonlocal term,
will be hereafter denoted by N L, (E).

1.1. Statements of the results

We start our analysis with some preliminary observations about the features of the energy
functional (0.3), before listing the main results of this work. For a finite perimeter set E, we
will denote by vg the exterior generalized unit normal to 0*F, and we will not indicate the
dependence on the set £ when no confusion is possible.

Given a measurable set E C RV, we introduce an auxiliary function vg by setting

1 N
vgp(r) = ——dy for x € R™. 1.1
@ = [ = 1)
The function vg can be characterized as the solution to the equation
N —«
(—A)*vg =cNs XE s=— (1.2)

where (—A)® denotes the fractional laplacian and ¢y s is a constant depending on the di-
mension and on s (see [23] for an introductory account on this operator and the references
contained therein). Notice that we are interested in those values of s which range in the inter-
val (%, %) We collect in the following proposition some regularity properties of the function
VE .

PROPOSITION 1.1. Let E C RN be a measurable set with |E| < m. Then there evists a
constant C, depending only on N, o and m, such that

lvgllwicemyy < C.
Moreover, vg € CYP(RN) for every B < N —a —1 and
lvEllcrs@yy < C7
for some positive constant C' depending only on N, o, m and [3.

PROOF. The first part of the result is proved in [37, Lemma 4.4], but we repeat here the
easy proof for the reader’s convenience. By (1.1),

1 1 1
UE(:L«):/ dy+/ dyg/ — _dy+m<C.
Bi(x)nE [T — y[® B\Bi(x) [T — y[* B lyl®

1
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By differentiating (1.1) in = and arguing similarly, we obtain

1 1
|Vug(z)] < a/ ——dy < a/ ——dy+am < C.
gz —ylett By |ylott
)|yl —)|o—ylB
Finally, by adding and subtracting the term (\jcfZI)‘LZ‘HB% - (\;Zfﬁﬂ?ilz , We can write
r—1y =Y

|Vug(x) — Vug(z)| < a/ dy

E

1 1
B s — B
§¢é<$—wwm1+z—mwﬁuyu yl? =z —yl’|dy  (1.3)

—i—a/
E

Observe now that for every v, w € RV \ {0}

|z — y|a+2 B 2 — y|a+2

(z—ylz—yl° (-—ylz—y/’

|x _ y‘a+ﬁ+2 \z _ y|a+,8+2

dy

U hat+28+1 . W a8+
w| v

[0l

] = [o]o]**? = w[w|***P| < Cmax{[v], |w[}* v —w
w

< Cmax{[o], [w|}* 7 o — w]?

where C depends on N, « and [. Using this inequality to estimate the second term in (1.3)
we deduce

1 1 C
— _ B
[Vvg(z) = Vue(z)| < afz — 2| /E(\l' — ylatB+ T |z — y|o+B+ + min{|z — y|, |z — y‘}a+5+1> dy

which completes the proof of the proposition, since the last integral is bounded by a constant
depending only on N, «, m and . [l

REMARK 1.2. In the case « = N —2, the function vg solves the equation —Avg = ¢y X,
and the nonlocal term is exactly

NLNn_o(E) = /RN |Vog(z)>dz.

By standard elliptic regularity, vg € T/Vli’f(RN) for every p € [1,+00).

The following proposition contains an auxiliary result which will be used frequently in the
rest of this chapter.

PrOPOSITION 1.3 (Lipschitzianity of the nonlocal term). Given & € (0,N —1) and m €
(0, +00), there exists a constant co, depending only on N, & and m such that if E,F C RV
are measurable sets with |E|,|F| < m then

INLo(E) = NLL(F)| < co| EAF|
for every a < &, where /A denotes the symmetric difference of two sets.

ProOOF. We have that

NLo(E) — NLo(F) = /RN /RN (XE(Q«“)(XE(Z/) —xr(y)) + xr(y)(xe(z) — XF($)>> dardy

|z — y|« |z — y|*

~ [ (el +or@) ds = [ (ople) +op(@) d
B\F

F\E

< / (ve(z) 4+ vp(z)) dz < 2C |EAF),
EAF



1.1. STATEMENTS OF THE RESULTS 3

where the constant C is provided by Proposition 1.1, whose proof shows also that it can be
chosen independently of a < &. O

The issue of existence and characterization of global minimizers of the problem
min {F(E) : ECRY, |E|=m} , (1.4)

for m > 0, is not at all an easy task. A principal source of difficulty in applying the direct
method of the Calculus of Variations comes from the lack of compactness of the space with
respect to L' convergence of sets (with respect to which the functional is lower semicontinu-
ous). It is in fact well known that the minimum problem (1.4) does not admit a solution for
certain ranges of masses.

Besides the notion of global minimality, we will address also the study of sets which mini-
mize locally the functional with respect to small L'-perturbations. By translation invariance,
we measure the L!'-distance of two sets modulo translations by the quantity

a(E,F):= min |[EA(z + F)|. (1.5)
zeRN

DEFINITION 1.4. We say that E C RY is a local minimizer for the functional (0.3) if there
exists d > 0 such that
F(E) < F(F)
for every F C RN such that |F| = |E| and o(E, F) < §. We say that E is an isolated local
minimizer if the previous inequality is strict whenever o(FE, F') > 0.

The first order condition for minimality, coming from the first variation of the functional
(see (1.10), and also [15, Theorem 2.3]), requires a C?-minimizer E (local or global) to satisfy
the Euler-Lagrange equation

Hop(x) 4+ 2yvg(x) = A for every x € OF (1.6)

for some constant A which plays the role of a Lagrange multiplier associated with the volume
constraint. Here Hyp := div,vg(z) denotes the sum of the principal curvatures of 0F (div,
is the tangential divergence on OF, see [5, Section 7.3|). Following [1], we define critical sets
as those satisfying (1.6) in a weak sense, for which further regularity can be gained a posteriori
(see Remark 1.6).

DEFINITION 1.5. We say that E C RY is a regular critical set for the functional (0.3) if
E is a bounded set of class C' and (1.6) holds weakly on 0F, i.e.,

/ div,¢dHN ! = —27/ vg (¢ vg) dHY 1
(o)) [2) )

for every ¢ € CY(RY;R¥") such that f8E<C,I/E> dHN-1 = 0.

REMARK 1.6. By Proposition 1.1 and by standard regularity (see, e.g., [5, Proposition 7.56
and Theorem 7.57]) a critical set E is of class W2 and C'# for all 8 € (0,1). In turn,
recalling Proposition 1.1, by Schauder estimates (see [29, Theorem 9.19]) we have that E is
of class C38 for all € (0,N —a —1).

We collect in the following theorem some regularity properties of local and global mini-
mizers, which are mostly known (see, for instance, [37, 43, 65] for global minimizers, and
[1] for local minimizers in a periodic setting). The basic idea is to show that a minimizer
solves a suitable penalized minimum problem, where the volume constraint is replaced by a
penalization term in the functional, and to deduce that a quasi-minimality property is satisfied
(see Definition 1.26).
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THEOREM 1.7. Let E C RY be a global or local minimizer for the functional (0.3) with
volume |E| =m. Then the reduced boundary 0*E is a C*P -manifold for all 3 < N —a —1,
and the Hausdorff dimension of the singular set satisfies dimy (0FE\0*FE) < N —8. Moreover,
E is (essentially) bounded. Finally, every global minimizer is connected, and every local
mianimizer has at most a finite number of connected components *.

ProoOF. We divide the proof into three steps, following the ideas contained in [1, Propo-
sition 2.7 and Theorem 2.8| in the first part.

Step 1. We claim that there exists A > 0 such that F is a solution to the penalized minimum
problem

min{]—'(F)+AHF| —|E|| : FCRY, o(F,E) < g} :

where ¢ is as in Definition 1.4 (the obstacle a(F, E) < % is not present in the case of a global
minimizer). To obtain this, it is in fact sufficient to show that there exists A > 0 such that if
F C RN satisfies a(F, E) < § and F(F) + A||F| — |E|| < F(E), then |F| = |E|.

Assume by contradiction that there exist sequences A, — +oo and Ej C RY such that
a(Ep, E) < §, F(E)+Mp||Ep|—|E|| < F(E), and |Ey| # |E|. Notice that, since Ay, — +o00,
we have |Ey| — |E].

1

We define new sets Fj, := A\pEjp, where A\, = (%) N 1, so that |Fp| = |E|. Then we
have, for h sufficiently large, that «(F}, E) < ¢ and
F(Fn) = F(En) + (A3~ = DP(ER) + 7" = DN La(En)

< F(B) + (AT = DP(BR) + v = DN La(Ep) — Anl|En| - |E]]
A1 P(E) ., AN 1 N Lo(Ep)
A =1 1Bl A =1 [E

:f(E)—i—])\;Y—lHEh]( —Ah> < F(E),
which contradicts the local minimality of E (notice that the same proof works also in the case
of global minimizers).

Step 2. From the previous step, it follows that F is an (w, rg)-minimizer for the area functional
for suitable w > 0 and ro > 0 (see Definition 1.26). Indeed, choose ry such that riéV < g:
then if F' is such that FAE CC B,(x) with r < ry, we clearly have that a(F, E) < J and
by minimality of £ we deduce that

P(E) < P(F) +7(NLa(F) = NLa(E)) + Al |F| — |E|]
< P(F) + (re0 + A) [BAF
(using Proposition 1.3), and the claim follows with w := yco + A.

Step 3. The C’l’%—regularity of 0*F, as well as the condition on the Hausdorff dimension of
the singular set, follows from classical regularity results for (w,r()-minimizers (see, e.g., [60,
Theorem 1]). In turn, the C3#-regularity follows from the Euler-Lagrange equation, as in
Remark 1.6.

To show the essential boundedness, we use the density estimates for (w,9)-minimizers of
the perimeter, which guarantee the existence of a positive constant 99 > 0 (depending only

Here and in the rest of this chapter connectedness is intended in a measure-theoretic sense: F is said to
be connected (or indecomposable) if E = E1 U E,, |E| = |E1| + |E2| and P(E) = P(E1) + P(E2) imply
|Ei||E2| = 0. A connected component of E is any connected subset Eg C E such that |Eo| > 0 and
P(E) =P(Eo) +P(E\ Eo).
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on N) such that for every point y € 0*E and r < min{rg,1/(2Nw)}
P(E; B, (y)) > dor™ ! (1.7)

(see, e.g., [45, Theorem 21.11]). Assume by contradiction that there exists a sequence of
points z, € RV \ EO) | where

ENB
EO .= {:U eRV: limsupw = O} ,
r—0t r
such that |z,| — +o0o. Fix r < min{rg,1/(2Nw)} and assume without loss of generality that
|zy, — x| > 4r. Tt is easily seen that for infinitely many n we can find y, € 0*E N B,(zy,);
then

P(E) > P(E,Br(ya)) = > dor" " = 400,

which is a contradiction.

Connectedness of global minimizers follows easily from their boundedness, since if a global
minimizer had at least two connected components one could move one of them far apart from
the others without changing the perimeter but decreasing the nonlocal term in the energy (see
[143, Lemma 3] for a formal argument).

Finally, let Ey be a connected component of a local minimizer E: then, denoting by B,
a ball with volume |B,| = |Ep|, using the isoperimetric inequality and the fact that E is a
(w, ro)-minimizer for the area functional, we obtain

P(E\ Eo) + NoyrV ' < P(E\ Ey) + P(Eo) = P(E)
< P(E\ Ey) + w|Eo| = P(E\ Ep) + wwyr”,

which is a contradiction if r is small enough. This shows an uniform lower bound on the
volume of each connected component of F, from which we deduce that F can have at most
a finite number of connected components. O

We are now ready to state the main results of this chapter. The central theorem, whose
proof lasts for Sections 1.2 and 1.3, provides a sufficiency local minimality criterion based
on the second variation of the functional. Following [1] (see also [15]), we introduce a qua-
dratic form associated with the second variation of the functional at a regular critical set (see
Definition 1.18); then we show that its strict positivity (on the orthogonal complement to a
suitable finite dimensional subspace of directions where the second variation degenerates, due
to translation invariance) is a sufficient condition for isolated local minimality, according to
Definition 1.4, by proving a quantitative stability inequality. The result reads as follows.

THEOREM 1.8. Assume that E is a reqular critical set for F with positive second variation,
in the sense of Definition 1.22. Then there exist 0 >0 and C > 0 such that

F(F) > F(E) + C(a(E, F))? (1.8)
for every ' C RN such that |F| = |E| and o(E,F) <34.

The local minimality criterion in Theorem 1.8 can be applied to obtain information about
local and global minimizers of the functional (0.3). In order to state the results more clearly,
we will underline the dependence of the functional on the parameters o and v by writing F,,
instead of F. We start with the following theorem, which shows the existence of a critical
mass Mo such that the ball Bgr is an isolated local minimizer if |Bgr| < mjoc, but is no
longer a local minimizer for larger masses. We also determine explicitly the volume threshold
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in the three-dimensional case. The result, which to the best of our knowledge provides the
first characterization of the local minimality of the ball, will be proved in Section 1.4.

THEOREM 1.9 (Local minimality of the ball). Given N > 2, a € (0,N —1) and v > 0,
there exists a critical threshold myoc = Mioe(N, o, y) > 0 such that the ball Bg is an isolated
local minimizer for Fo , in the sense of Definition 1.4, if 0 < |Bg| < mioc.

If |Br| > mioe, there exists E C RN with |E| = |Br| and o(E, Bgr) arbitrarily small
such that Fo~(E) < Fo~(BR).

Finally mype(N,a,y) — 0o as a — 01, and in dimension N = 3 we have

3

4 6—a)d—a)) "
mloc(B,a,v)zgﬂ(W> :

Our local minimality criterion allows us to deduce further properties about global mini-
mizers, which will be proved in Section 1.5. The first result states that the ball is the unique
global minimizer of the functional for small masses. We provide an alternative proof of this
fact (which was already known in the literature in some particular cases, as explained in the
introduction), removing the restrictions on the parameters N and a which were present in
the previous partial results (except for the upper bound o < N —1).

THEOREM 1.10 (Global minimality of the ball). Given N >2, a € (0,N—1) and v > 0,
let mglob(IV, v, y) be the supremum of the masses m > 0 such that the ball of volume m is a
global minimizer of Fo . in RY. Then Mglob (N, v, ) is positive and finite, and the ball of
volume m is a global minimizer of Fo~ if m < mgion(N,,7y). Moreover, it is the unique
(up to translations) global minimizer of Fo if m < mgiop(N, 7).

In the following theorems we analyze the global minimality issue for « close to 0, showing
that in this case the unique minimizer, as long as a minimizer exists, is the ball, and charac-
terizing the infimum of the energy when the problem does not have a solution. In particular,
we recover the result already proved by different techniques in [36, Theorem 2.7] for N = 2,
and we extend it to the general space dimension.

THEOREM 1.11 (Characterization of global minimizers for « small). There exists a =
a(N,v) > 0 such that for every o < & the ball with volume m is the unique (up to translations)
global minimizer of Fo if m < mgioh(IN, a,7y), while for m > mgon(N, a,7) the minimum
problem for F. .~ does not have a solution.

THEOREM 1.12 (Characterization of minimizing sequences for o small). Let o < & (where
a 1is given by Theorem 1.11) and let

k
fe(m) = min > F(B'): B ball, |B| = #}
Kol 20 -
pitoFpp=m =1
There exists an increasing sequence (my)k, with mo = 0, my = Mmgloh , such that limy, my, = oo
and

uzi|nf F(E) = fr(m) Jor every m € [myp_1,my], for all k € N, (1.9)

that is, for every m € [mg_1, mg] a minimizing sequence for the total energy is obtained by a

configuration of at most k disjoint balls with diverging mutual distance. Moreover, the number
of non-degenerate balls tends to +o0o0 as m — +00.

REMARK 1.13. Since mjoc(N,a,v) — +00 as a — 07 and the non-existence threshold
is uniformly bounded for « € (0,1) (see Proposition 1.37), we immediately deduce that, for
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a small, mgioh(IV, a, ) < Mige(N, @, y). Moreover, denoting by m(N,a, ) the value of the
mass for which the energy of a ball of volume m is equal to the energy of two disjoint balls
of volume % “at an infinite distance” (that is, neglecting the interaction term between the
two balls), we clearly have mgion(V, a,v) < m(N,a, ). By a straightforward estimate on m
(using N'Lo(B1) > w327%) we obtain the following upper bound for the global minimality

threshold of the ball:

1 N

2°N(2~ — 1) ) N+1-a
N—«o :

wny(1—=(3) %)

Hence, by comparing this value with the explicit expression of my,. in the physical interesting

case N =3, a =1 (see Theorem 1.9), we deduce that mgion(3,1,7) < mioe(3,1,7). Notice

that a similar comparison between local and global stability is made in [36] for the two-
dimensional case, where the explicit value of m is computed.

mgon (N, 0,7) < (N, @, 7) < w(

REMARK 1.14. In the planar case, one can also consider a Newtonian potential in the

nonlocal term, i.e.
1
/ / log —— dxdy.
EJE |z =y

It is clear that the infimum of the corresponding functional on R? is —oco (consider, for
instance, a minimizing sequence obtained by sending to infinity the distance between the
centers of two disjoint balls). Moreover, also the notion of local minimality considered in
Definition 1.4 becomes meaningless in this situation, since, given any finite perimeter set
E, it is always possible to find sets with total energy arbitrarily close to —oo in every L!-
neighbourhood of E. Nevertheless, by reproducing the arguments of this chapter one can
show that, given a bounded regular critical set E with positive second variation, and a radius
R > 0 such that F C Bp, there exists 6 > 0 such that F minimizes the energy with respect
to competitors F' C Br with a(F, E) < 9.

1.2. Second variation and W??-local minimality

We start this section by introducing the notions of first and second variation of the func-
tional F along families of deformations as in the following definition.

DEFINITION 1.15. Let X : RY — RN be a C? vector field. The admissible flow associated
with X is the function ® : RN x (—1,1) — R¥ defined by the equations

0P
DErFINITION 1.16. Let E C RY be a set of class C?, and let ® be an admissible flow. We
define the first and second variation of F at E with respect to the flow ® to be
d d?

&f(Et)h:O and @I(Et)

respectively, where we set E; := ®(F).

lt=0

Given a regular set E, we denote by X, := X — (X, vg)vg the tangential part to OE of
a vector field X . We recall that the tangential gradient D, is defined by D,y := (Dy),, and
that Byg := D,vg is the second fundamental form of JF.

The following theorem contains the explicit formula for the first and second variation of
F. The computation, which is postponed to the Appendix, is performed by a regularization
approach which is slightly different from the technique used, in the case « = N—2, in [15] (for
a critical set, see also [53]) and in [1] (for a general regular set): here we introduce a family
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of regularized potentials (depending on a small parameter § € R) to avoid the problems in
the differentiation of the singularity in the nonlocal part, recovering the result by letting the
parameter tend to 0.

THEOREM 1.17. Let E C RY be a bounded set of class C?, and let ® be the admissible
flow associated with a C? wvector field X . Then the first variation of F at E with respect to

the flow @ is
E
dF (B _ / (Hop + 2vvp) (X, vg) dHN 1 (1.10)
dt =0 OE

and the second variation of F at E with respect to the flow ® is

d*F(E _
i t)l O :/M (1D (X, i) 2 = [ Bogl2(X, v)?) dHN~!
t=

+ 27/ Gz, y)(X (), ve() (X (y), ve(y)) AR (2)dH " (y)
OE JOE

—i—2’y/ Dvpvp (X, vp)2dHN 1 —/ (2vvE + Hop) divy (X-(X,vp)) dHY
OFE 0FE

+ / (2yvE + Hyp)(divX (X, vg) dHN T,
OF

where G(z,y) :

= ﬁ 1s the potential in the nonlocal part of the energy.

If E is a regular critical set (as in Definition 1.5) it holds
/ (2yvg + Hyp)div, ()(}-()(7 VE>) dHN-1 = .
OFE

Moreover if the admissible flow ® preserves the volume of E, i.e. if |®4(E)| = |E| for all
€ (—1,1), then (see [15, equation (2.30)])

d2
0= ﬁfEt’|t=0 = / (divX)(X, VE>de,N—1.
dt o

Hence we obtain the following expression for the second variation at a regular critical set with
respect to a volume-preserving admissible flow:
A2 F(E)

e :/ (|DT<X,1/E>2—|B3E|2<X,VE>2)dHN_1+27/ dypor(X,vp)?dHN
° =0 JoE OF

+27 / G(z, y) (X (2), ve(@))(X (), ve(y)) dHY(2)dH " (y) .
OFE JOE

Following [1], we introduce the space

H'(OE) := {(p € H'(9E) : /{)Egod"HN_l = 0}

endowed with the norm H<p||ﬁ1( = [[V¢l|2(aE) » and we define on it the following quadratic

OE)
form associated with the second variation.

DEFINITION 1.18. Let £ C RY be a regular critical set. We define the quadratic form
0?’F(E): HY(OFE) — R by

*F(E)p) :/ (I1D-|?> — |Bag|*¢?) d’HN_l—i-2’y/ (8,,vp)p> dHN !
or oF (1.11)

+27/ Gz, y)p(x)p(y) AR (2)dH " (y) .
oOF JOFE
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Notice that if E is a regular critical set and ® preserves the volume of F, then

d*F(E,
PF(E)(X,vg)] = dF(E . (1.12)
d?2 o
We remark that the last integral in the expression of 92F(E) is well defined for ¢ € H'(OE),
thanks to the following result.

LEMMA 1.19. Let E be a bounded set of class C*. There ezists a constant C' > 0,
depending only on E, N and «, such that for every ¢, € H'(OF)

|| G uelavt) ¥ @)an ) < Clielalldlse < Clel gulldlze - (113)

PROOF. The proof lies on [29, Lemma 7.12], which states that if Q C R™ is a bounded
domain and p € (0, 1], the operator f — V, f defined by

(Vif) (@) == /Q l — y"E D () dy

maps LP(Q) continuously into L()) provided that 0 < 6 :=p~! — ¢! < u, and

1—0\1-0 , B
Vil < (;=5)  wr 101 I fll vy

In our case, from the fact that our set has compact boundary, we can simply reduce to the
above case using local charts and partition of unity (notice that the hypothesis of compact
boundary allows us to bound from above in the L®-norm the area factor). In particular we
have that p =& ]gio‘ , and applying this result with p = ¢ = 2 we easily obtain the estimate
in the statement by the Sobolev Embedding Theorem. U

REMARK 1.20. Using the estimate contained in the previous lemma it is easily seen that
92 F(E) is continuous with respect to the strong convergence in H'(OE) and lower semicon-
tinuous with respect to the weak convergence in H L(OE). Moreover, it is also clear from
the proof that, given @ < N — 1, the constant C' in (1.13) can be chosen independently of
ac(0,a).

Equality (1.12) suggests that at a regular local minimizer the quadratic form (1.11) must

be nonnegative on the space H'(OF). This is the content of the following corollary, whose
proof is analogous to |1, Corollary 3.4].

COROLLARY 1.21. Let E be a local minimizer of F of class C?. Then
PF(E)p] >0  forallpc H(IE).

Now we want to look for a sufficient condition for local minimality. First of all we notice
that, since our functional is translation invariant, if we compute the second variation of F at
a regular set E with respect to a flow of the form ®(z,t) := x + tne;, where n € R and e; is
an element of the canonical basis of RV, setting v; := (vg, e;) we obtain that

d2
PF(E)nw] = —5F(E) =0.
dt |t=0
Following [1], since we aim to prove that the strict positivity of the second variation is a

sufficient condition for local minimality, we shall exclude the finite dimensional subspace of
HY(OE) generated by the functions v;, which we denote by T(0F). Hence we split

HY(OE) = T+(0E) ® T(OE),
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where T+ (9F) is the orthogonal complement to T(OF) in the L?-sense, i.e.,
TH(9F) = {go € H'(9E) : / v dHN 1 =0 for each i = 1,...,N} :
oF

It can be shown (see [1, Equation (3.7)]) that there exists an orthonormal frame (e1,...,en)
such that

/ (v,ei)(v,e;) dHN 1 =0 for all i # j,
oF

so that the projection on T+(9E) of a function ¢ € H*(OE) is

N

mrieny (@) =9 — 3 </8E90<V, ) d”HNl) H(W

2
i=1 v,€illz2(0m)
(notice that (v,e;) # 0 for every i, since on the contrary the set E would be translation
invariant in the direction &;).
DEFINITION 1.22. We say that F has positive second variation at the regular critical set
E if
D’F(E)[p] >0  forall o € TH(IE)\{0}.

One could expect that the positiveness of the second variation implies also a sort of coer-
civity; this is shown in the following lemma.

LEMMA 1.23. Assume that F has positive second variation ot a reqular critical set E.
Then

mo 1= inf{az]:(E)[(p} D p € Tl(aE), H‘P”ﬁl(aE) = 1} >0,
and
PFE)el = mollelF o — for all p € TH(OE).

PROOF. Let (¢p)n be a minimizing sequence for mg. Up to a subsequence we can suppose
that o5, — @o weakly in H'(OF), with ¢o € T+(0E). By the lower semicontinuity of 0?F(E)
with respect to the weak convergence in H'(OF) (see Remark 1.20), we have that if ¢g # 0

mp = lim O*F(E)lpn] = 0°F(E)[po) > 0,
— 00
while if @9 =0
mo = lim 9*°F(E)[epn] = lim / |Dyop|?dHN L =1,
h—o00 h—oo Jop
The second part of the statement follows from the fact that 0?F(E) is a quadratic form. [

We now come to the proof of the main result of this chapter, namely that the positivity
of the second variation at a critical set E is a sufficient condition for local minimality (The-
orem 1.8). In the remaining part of this section we prove that a weaker minimality property
holds, that is minimality with respect to sets whose boundaries are graphs over the boundary
of E with sufficiently small W?P-norm (Theorem 1.25). In order to do this, we start by
recalling a technical result needed in the proof, namely [1, Theorem 3.7|, which provides a
construction of an admissible flow connecting a regular set £ C RN with an arbitrary set
sufficiently close in the W?P-sense.
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THEOREM 1.24. Let E C RY be a bounded set of class C3 and let p > N — 1. For all
€ > 0 there exist a tubular neighbourhood U of OF and two positive constants 6, C' with the
following properties: if ¢ € C*(OF) and U]l w2r@ap)y < 0 then there exists a field X € C?
with divX =0 in U such that

| X —Yveloe) < elvlzon -

Moreover the associated flow

o
B(,0) =0, - =X(2)

satisfies ®(OFE,1) = {z + Y (x)vp(z) : © € IE}, and for every t € [0, 1]

1@ 2) = Idllw2r < CllYllw2roE)

where Id denotes the identity map. If in addition E, has the same volume as E, then for
every t we have |Ey| = |E| and

/ (X, vm,) dHN 1 = 0.
OF;

We are now in position to prove the following W?P-local minimality theorem, analogous
to |1, Theorem 3.9]. The proof contained in 1| can be repeated here with minor changes, and
we will only give a sketch of it for the reader’s convenience.

THEOREM 1.25. Let p > max{2, N — 1} and let E be a regular critical set for F with
positive second variation, according to Definition 1.22. Then there exist §, Co > 0 such that
F(F) > F(E) + Co(a(E, F))?,
for each F C RN such that |F| = |E| and OF = {x+¢(x)vg(z) : © € OE} with ¥l w2r@E) < 6.
PROOF (SKETCH). We just describe the strategy of the proof, which is divided into two
steps.
Step 1. There exists d; > 0 such that if OF = {z + ¢(z)vg(x) : x € OFE} with |F| = |E|
and [[¢|ly2rom) < 61, then

. =~ _ m
nt {2F(F)] o € BOP), ol = 1| [ pvran™| <6} =720

where my is defined in Lemma 1.23. To prove this we suppose by contradiction that there exist

a sequence (F},),, of subsets of R such that dF, = {x + ¢, (2)ve(x) : x € OF}, |F,| = |E|,

l¥nllw2r@r — 0, and a sequence of functions ¢, € HY(OF,) with ||50n”1?1(3Fn) =1,
| f@Fn onvr, dHN ™Y — 0, such that

mo

PF(F)lpn] < 3.

We consider a sequence of diffeomorphisms ®,, : E — F),, with ®,, — Id in W?P? and we set
On = n o Py —ay, ap = ][ on o Py dHN_l.
oFE

Hence ¢, € f[l((?E), an — 0, and since v, o ®,, —vg — 0 in C%° for some B € (0,1) and
a similar convergence holds for the tangential vectors, we have that

/ an<VE75i> d/HNil —0
OFE
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for every i =1,..., N, so that |71 (9p) (Pn) — 1. Moreover it can be proved that

Hfﬂ(aE)
|0*F (Fy)lpn] — 0°F(E)[@nl| — 0.

Indeed, the convergence of the first integral in the expression of the quadratic form follows
easily from the fact that Bsp, o ®, — Bgp — 0 in LP(OF), and from the Sobolev Embed-
ding Theorem (recall that p > max{2, N — 1}). For the second integral, it is sufficient to
observe that, as a consequence of Proposition 1.1, the functions vg, are uniformly bounded
in CYA(RN) for some 8 € (0,1) and hence they converge to vy in C(Bpg) for all v < f8
and R > 0. Finally, the difference of the last integrals can be written as

|| ceae@enman an = || Glaypataen () antant
oF, JoF, oE JoE
~ [ [ aula)Glop)pala)en(y) aHYtan
oE JoE
+ an / G(®@n(2), Pn(y)) (@) I (1) (Gn(2) + Pn(y) + an) dH TR
o JoE
where J,(z) := J); '@, (z) is the (N — 1)-dimensional jacobian of ®, on OE, and

|z —y|*

In(z,y) = 1@, (2) — Py (y)]™ In(@)Jn(y) — 1.

Thus the desired convergence follows from the fact that g, — 0 uniformly, a, — 0, and from
the estimate provided by Lemma 1.19.
Hence
mo . . < . -
5 = Jim O*F(Fy)len] = lim 0°F(E)[@n] = lim 0°F(E)[rrop)(@n)]

n—o0 n—o0

> mo i ||771op) (@n)ll 1o = M0,

which is a contradiction.

Step 2. If F is as in the statement of the theorem, we can use the vector field X provided
by Theorem 1.24 to generate a flow connecting E to F by a family of sets E;, ¢t € [0,1].
Recalling that E is critical and that X is divergence free, we can write

d2

1
F(F) = F(E) = F(B) = F(Bo) = [ (1= 0357 (E)at

1
- [[a-o(@FEim) - [

where div,, stands for the tangential divergence of 0F;. It is now possible to bound from
below the previous integral in a quantitative fashion: to do this we use, in particular, the
result proved in Step 1 for the first term, and we proceed as in Step 2 of |1, Theorem 3.9] for
the second one. In this way we obtain the desired estimate. O

(2vvg, + Hop,)div,, (X (X, vE,)) dHN_l) dt.
Ey

1.3. L'-local minimality

In this section we complete the proof of the main result of this chapter (Theorem 1.8),
started in the previous section. The main argument of the proof relies on a regularity property
of sequences of quasi-minimizers of the area functional, which has been observed by White in
[68] and was implicitly contained in [4] (see also [62], [66]).
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DEFINITION 1.26. A set E C RY is said to be an (w, 70) -minimizer for the area functional,
with w > 0 and 79 > 0, if for every ball B,(z) with r < ry and for every finite perimeter set
F c RV such that EAF CC B,(z) we have

P(E) < P(F)+ w|EAF].
THEOREM 1.27. Let E, C RN be a sequence of (w,rq)-minimizers of the area functional

such that
supP(E,) < +oo and xg, — xg in L'(RY)
n

for some bounded set E of class C?. Then for n large enough E, is of class Ch3 and
OE, = {x + ¢Yn(x)vg(x) : © € OF},
with Y, — 0 in CYP(OE) for all B € (0,3).

Another useful result is the following consequence of the classical elliptic regularity theory
(see [1, Lemma 7.2] for a proof).

LEMMA 1.28. Let E be a bounded set of class C? and let E, be a sequence of sets of class
CYP for some B € (0,1) such that OF, = {x + Yn(z)vp(z) : © € OE}, with ¥, — 0 in
CYP(OF). Assume also that Hyp, € LP(OE,) for some p > 1. If

Hop, (- + ¢Yn()ve()) = Hop  in LP(OE),
then ¥, — 0 in W*P(OF).
We recall also the following simple lemma from |1, Lemma 4.1].

LEMMA 1.29. Let E C RN be a bounded set of class C?. Then there ewists a constant
CEg > 0, depending only on E, such that for every finite perimeter set F C RN

P(E) < P(F) + Cg|EAF).

An intermediate step in the proof of Theorem 1.8 consists in showing that the W?2P-local
minimality proved in Theorem 1.25 implies local minimality with respect to competing sets
which are sufficiently close in the Hausdorff distance. We omit the proof of this result, since it
can be easily adapted from |1, Theorem 4.3| (notice, indeed, that the difficulties coming from
the fact of working in the whole space RY are not present, due to the constraint F' C Zs,(E)).

THEOREM 1.30. Let E C RYN be a bounded regular set, and assume that there exists § > 0
such that

F(F) < F(F) (1.14)
for every set F C RN with |F| = |E| and OF = {x+(x)vp(z) : © € OEY}, for some function
¥ with [[Y]lw2rom) < 0.

Then there exists 09 > 0 such that (1.14) holds for every finite perimeter set F with
|F| = |E| and such that I_5,(E) C F C Is,(E), where for 6 € R we set (d denoting the
signed distance to E)

I5(E) :={z : d(z) < d}.

We are finally ready to complete the proof of the main result of this chapter. The strategy
follows closely [1, Theorem 1.1], with the necessary technical modifications due to the fact
that here we have to deal with a more general exponent « and with the lack of compactness
of the ambient space.
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ProOOF OF THEOREM 1.8. We assume by contradiction that there exists a sequence of

sets By, C RY | with |E),| = |E| and a(Ep, E) > 0, such that ¢, := a(Ey, F) — 0 and
C
F(Br) < F(B) + 1 (a(Bn, B))’, (1.15)

where C) is the constant provided by Theorem 1.25. By approximation we can assume without
loss of generality that each set of the sequence is bounded, that is, there exist Ry > 0 (which
we can also take satisfying Rj — 4o00) such that E} C Bp, .

We now define Fj, C RY as a solution to the penalization problem

min {jh(F) = F(F) + Al\/(a(F, E)—en)’ +en+ Mof|F|— |E|| : FC BRh} . (1.16)

where A; and Ay are positive constant, to be chosen (notice that the constraint F' C Bp,
guarantees the existence of a solution). We first fix

A >CE—|—C()7. (1.17)

Here CE is as in Lemma 1.29, while ¢g is the constant provided by Proposition 1.3 corre-
sponding to the fixed values of N and « and to m := |E|+1. We remark that with this choice
A1 depends only on the set E. We will consider also the sets ﬁh obtained by translating Fj
in such a way that a(Fj,, E) = |FRAE| (clearly Ju(Fp) = Jn(Fp)).

Step 1. We claim that, if Ay is sufficiently large (depending on Aj, but not on h), then
|Fp,| = |E| for every h large enough. This can be deduced by adapting an argument from [24,
Section 2] (see also [1, Proposition 2.7]). Indeed, assume by contradiction that there exist
A — oo and Fj, solution to the minimum problem (1.16) with As replaced by Ay such that
|Fp| < |E| (asimilar argument can be performed in the case |F}| > |E|). Up to subsequences,
we have that Fj, — Fp in L{ . and |F}| — |E|.

As each set Fj, minimizes the functional

F(F) + Ay (o, B) — ) + 2

in Bp, under the constraint |F| = |[F}/, it is easily seen that F}, is a quasi-minimizer of the
perimeter with volume constraint, so that by the regularity result contained in [61, Theo-
rem 1.4.4| we have that the (/N — 1)-dimensional density of 0*Fj, is uniformly bounded from
below by a constant independent of h. This observation implies that we can assume without
loss of generality that the limit set Fp is not empty and that there exists a point zg € 0* Fy,
so that, by repeating an argument contained in [24], we obtain that given ¢ > 0 we can find
r >0 and € RY such that

OJN’I“N

|Fn N Bya(7)] < er™,  |Fun B(Z)] > SNTZ

for every h sufficiently large (and we assume T = 0 for simplicity).
Now we modify Fy, in B, by setting G}, := ®,(F},), where @, is the bilipschitz map

(1-0,2Y = 1))z if |2| < §,

N

Oy (x) = :c—i—oh(l—l;‘N)x if g <<,
x if |x| >,
and oy, € (0, QLN) It can be shown (see [24, Section 2|, [1, Proposition 2.7| for details) that e
and o}, can be chosen in such a way that |G| = |E|, and moreover there exists a dimensional

constant C' > 0 such that
Iny (Fn) — JIp, (Gr) > o, (CAhTN — (2NN + Cy + CA1)P(Fy; Br))
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(where Jp, denotes the functional in (1.16) with Ag replaced by Ap). This contradicts the
minimality of F}j for h sufficiently large.

Step 2. We now show that
li Fy, E) =0. 1.18

h—1>r—ir-looa( ho ) ( )

Indeed, by Lemma 1.29 we have that
P(E) < P(F)) + Cp|FWAE|,
while by Proposition 1.3 B B
|N£(E) - Nﬁ(Fh)‘ < CO‘FhAE|.

Combining the two estimates above, using the minimality of Fj, and recalling that |F,| = |E|
we deduce

P(En) + ANL(F) + Ay (BB — 24)* + 2 = Ti(Fy) < Ja(E)

=P(E) +yNL(E) + A1/} +ep

< P(Fy) + yNL(F) + (Cp + cov)|[FRAE| + Ay \/%Tfh

which yields

Al\/(]ﬁhAE\ - sh)2 +en < (Ci + con)|FAAE] + Ay \/%

Passing to the limit as A — +o00, we conclude that

Ay limsup |[FR,AE| < (Cg + coy) limsup |, AE|,
h——4o00 h——o00
which implies |F,AE| — 0 by the choice of A; in (1.17). Hence (1.18) is proved, and this
shows in particular that x — xp in LY (RY).

Step 3. Each set Fj, is an (w,7p)-minimizer of the area functional (see Definition 1.26), for
suitable w > 0 and rg > 0 independent of h. Indeed, choose rg such that wyrelY < 1, and
consider any ball B,(z) with r < rp and any finite perimeter set F' such that FAF, CC
B, (z). We have

INL(E) = NL(FR)| < co| FAF|
by Proposition 1.3, where cy is the same constant as before since we can bound the volume
of F by |F| < |Fy| +wnro < |E|+ 1. Moreover

P(F) — P(F N Bg,) = / AR () — / LdHN 1 (2)
8*F\BRh a*(FﬂBRh)ﬂaBRh
> [ Dan e - [ D e, @)
o*F\Bg, |7| &*(FNBr, )N9Bpg, 1| "

_ / L VF\Bn, dHN " (z) = / div = dz > 0.
9*(F\Br,,) |z F\Bg,, |z|
Hence, as Fj, is a minimizer of J, among sets contained in Bg, , we deduce
P(Fy) < P(F N Bg,) +v(NL(F N Bg,) — NL(Fp)) + As||[F N Bg, | — |E||

+ Al\/(o‘(F N Br,, E) - Eh)z tén— Al\/(a(Fh,E) — €h)2 +ep
P(F) + (cov + A1 + As)|(F N Br, ) AF},|
P(F) + (Co’)/ + A1 + A2)|FAFh‘

<
<
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for h large enough. This shows that F} is an (w,rp)-minimizer of the area functional with
w = coy + A1 + A2 (and the same holds obviously also for Fj,).
Hence, by Theorem 1.27 and recalling that Xf, — XE in L', we deduce that for h

sufficiently large F}, is a set of class '3 and
OF, = {x + ¢p(z)ve(z) : € OEY}
for some 1y, such that ¢, — 0 in CYP(OF) for every 8 € (0,1). We remark also that the

sets F}, are uniformly bounded, and for h large enough F} CC Bg, : in particular, ﬁ’h solves
the minimum problem (1.16).
Step 4. We now claim that
lim oFi B)
h—4-00 Eh
Indeed, assuming by contradiction that |« (Fy, E)—ep| > o€y, for some o > 0 and for infinitely
many h, we would obtain

F(Fp) +A1\/O’2€% +ep < F(Fy) +A1\/(Oz(Fh,E) — Eh)2 + €p

C
< F(Ep) + AMiye, < F(E) + ZOE% + A1yER

=1. (1.19)

~ C
< F(Fp) + Ioez + A1vEn

where the second inequality follows from the minimality of F},, the third one from (1.15) and
the last one from Theorem 1.30. This shows that

C
Aiy/o?e} e, < ZOE% + Aiv/en,

which is a contradiction for h large enough.
Step 5. We now show the existence of constants A, € R such that

||Haﬁh + 2’7Uﬁh — )‘hHL‘X’((S‘Fh) < 4A1\/€7h — 0. (1.20)
We first observe that the function f5(t) := \/(t —ep)? + €, satisfies
[fu(t1) = fr(t2)l < 2veEnlts —ta|  if [t —en] < en (1.21)

Hence for every set FF C RY with |F| = |E|, F C Bg, and |a(F,E) — &3] < &), we have

F(F) < FF) + M (y (@(F.B) — 1) + o1~ (alFa. B) — 1) + 1)
< F(F) + 2A1+/z, |o(F, E) — a( Fy,, E)| (1.22)
< F(F) + 2A1\/e, |[FAF)

where we used the minimality of F), in the first inequality, and (1.21) combined with the fact
that |o(Fy, E) — ep| < e, for h large (which, in turn, follows by (1.19)) in the second one.
Consider now any variation ®;, as in Definition 1.15, preserving the volume of the set ﬁh,
associated with a vector field X . For |¢| sufficiently small we can plug the set ®;(F},) in the
inequality (1.22):
F(Fn) < F(@u(Fp)) + 2M1/En |9 (Fr) AFy],
which gives

F(®u(Fy)) — F(Fp) + 2M1+/z | /~ X v [dHY T 4 o(t) > 0
OFy,
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for |t| sufficiently small. Hence, dividing by t and letting t — 07 and ¢t — 0™, we get

< 2/\1\/5/~ X v [dHN L
oF, h

N—-1
/~ (Haﬁh +2’}/Uﬁh)X . I/Z::h dH
OF}y,

and by density
‘/~ (Haf, + 270, ) dH" | < 21\1\/671/~ [l M
th 8Fh

for every ¢ € C"o(@ﬁh) with fafh @dHN=1 = 0. In turn, this implies (1.20) by a simple
functional analysis argument.
Step 6. We are now close to the end of the proof. Recall that on OF

H()E =A— 2’}/1)E (1.23)

for some constant A, while by (1.20)
Hyp = An =205 + phs with pp, — 0 uniformly. (1.24)

Observe now that, since the functions Uf, are equibounded in C14(RM) for some 8 € (0,1)

see Proposition 1.1) and they converge pointwise to vg since y= — xg in L', we have that
( y 8 XF, — X

VF, VB in C1(Bpg) for every R > 0. (1.25)

We consider a cylinder C = B'x] — L, L[, where B’ ¢ R¥~! is a ball centered at the
origin, such that in a suitable coordinate system we have

FonC={(,zy) e C:2' € B, xn < gn(z)},
ENC={(2',zny) € C:2' € B, zy < g(2)}

for some functions g, — g in C1#(B’) for every B € (0,3). By integrating (1.24) on B’ we
obtain

MENB) =2y [ g, (@) AL @) + [l an(a)) ALY @)

’

. Van > N—1/./ / Vg ' N-2
/’ <\/1+|V9h|2 &) o8’ \/1+ |[Vgp2 |2']

and the last integral in the previous expression converges as h — 0 to

Vg z N—2 / . < Vg > N—1/,/
— — . —— dH = — div] ———— 1] dL x
o' \/1+ Vg2 || ' V1+[Vgl? )
—ACNUB) -2y [ up(agla)) AL ).
B/

where the last equality follows by (1.23). This shows, recalling (1.25) and that p;, tends to 0
uniformly, that Ay, — A, which in turn implies, by (1.23), (1.24) and (1.25),

Hyp (- +Yn()ve() = Hop in L*(0F).

By Lemma 1.28 we conclude that v, € W2P(OE) for every p > 1 and ¢, — 0 in W2P(OE).
Finally, by minimality of F} we have

./_"(ﬁh) < F(ﬁh) +A1\/(a(fh7E) — 5h)2 +Ep — A1\/5

< F() < FE) + L < F) + L (ol By )’
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where we used (1.15) in the third inequality and (1.19) in the last one. This is the desired
contradiction with the conclusion of Theorem 1.25. U

REMARK 1.31. It is important to remark that in the arguments of this section we have
not made use of the assumption of strict positivity of the second variation: the quantitative
L'-local minimality follows in fact just from the W?2®-local minimality.

1.4. Local minimality of the ball

In this section we will obtain Theorem 1.9 as a consequence of Theorem 1.8, by computing
the second variation of the ball and studying the sign of the associated quadratic form.

1.4.1. Recalls on spherical harmonics. We first recall some basic facts about spherical
harmonics, referring to [33] for an account on this topic.

DEFINITION 1.32. A spherical harmonic of dimension N is the restriction to SN~1 of a
harmonic polynomial in N variables, i.e. a homogeneous polynomial p with Ap = 0.

We will denote by Hév the set of all spherical harmonics of dimension N that are obtained
as restrictions to SV~ of homogeneous polynomials of degree d. In particular Hév is the
space of constant functions, and H{' is generated by the coordinate functions. The basic

properties of spherical harmonics that we need are listed in the following theorem (see [33,
Chapter 3]).

THEOREM 1.33. The following properties hold.

(1) For each d € N, Hév 15 a finite dimensional vector space.
(2) If FeHY, GeHY and d+ e, then F and G are orthogonal (in the L?-sense).
(3) If F € HY and d #0, then

/ FdHN T =0
SN-1

(4) If (Hd,...,H ) 4s an orthonormal basis of Hév for every d > 0, then this
sequence is complete, i.e. every F € L2(SN™1) can be written in the form

dlm('HéV)

so dim HN)

F = Z Z L HY (1.26)

where ¢y = (F,HY) .
(5) If HY are as in (4) and F,G € L>(SN~1) are such that

00 dim('HfiV) 00 dim('Hé\,)

F=3 > i G=) > e,
d=0 =1 d=0 =1

then
0o dim(HY)

F G L2 Z Z Cded
(6) Spherical harmonics are ezgenfunctzons of the Laplace-Beltrami operator Agn-1.
More precisely, if H € ’Hfiv then
—ASN—IH = d(d+ N — 2)H.
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(7) If F is a C? function on SN~ represented as in (1.26), then

oo dim HN)

/ |D-F[2dHN " (z) Z Z d(d + N — 2)(cg)*.
SNI

We recall also the following important result in the theory of spherical harmonics.

THEOREM 1.34 (Funk-Hecke Formula). Let f:(—1,1) — R such that

1
[ sl -8 e <o,

-1
Then if H € ’Hév and xo € SN it holds

/S (o, ) H ) AN w) = puaH (o)
where the coefficient ug is given by
pa = (N — Lwny—1 /11 Pya(t)f(H)(1 37" dt.
Here Py 4 is the Legendre polynomial of dimension N and degree d given by
-2 () e

where D(z) := [~ t*"te~'dt is the Gamma function.

Pya(t) = (1)

1.4.2. Second variation of the ball. The quadratic form (1.11) associated with the
second variation of F at the ball Bg, computed at a function ¢ € H'(OBR) is

PFBRE = [ (106l - T )

+ 27/OBR/OBR |x_y‘a~ £)3(y) AHY (@) AV (y)
+ 2y /833 </BR aWdy)@Z(x) AHN ().

Since we want to obtain a sign condition of 92F(Bgr)[] in terms of the radius R, we first
make a change of variable:

PFRBIE = RV | (Drpla)? - (V= D) a0

+ 2yRIN 2 (x)p(x) AHN M (z) dHN N y)  (1.27)

oB, Jop, |t — y\a

+ 2yR2N-27a /831 </31 O‘|<;U_y|a+>2 dy) 2(z) dHN (),

where the function ¢ € H*(SV~1) is defined as ¢(z) := @(Rz). Since we are only interested
in the sign of the second variation, which is continuous with respect to the strong convergence
in HY(SN-1), we can assume ¢ € C2(SN-1)nTL(SN-1).

The idea to compute the second variation at the ball is to expand ¢ with respect to an
orthonormal basis of spherical harmonics, as in (1.26). First of all we notice that if ¢ €
T+(SN=1), then its harmonic expansion does not contain spherical harmonics of order 0 and
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1. Indeed, harmonics of order 0 are constant functions, that are not allowed by the null
average condition. Moreover HY = T(SN~1), because vgn-1(x) = z, and the functions
z; form an orthonormal basis of H1. Hence we can write the harmonic expansion of ¢ €
C?(SN=1) N T (SN-1) as follows:

i My . .
where (Hé, e ,Hj m(H )) is an orthonormal basis of Hév for each d € N. We can now com-

pute each term appearing in (1.27) as follows: the first term, by property (7) of Theorem 1.33,
is
oo dim( 'Hd )

/BB(|DT<,02—(N—1) YA = Z Z (d(d+ N —2) — (N —1))(c))>.

For the second term we want to use the Funk—Hecke Formula to compute the inner integral;
so we define the function

1= (20-0) "
and we notice that
o —y[7* = f((z,y))  foraz,ye sV,
and that, for « € (0, N —1), f satisfies the integrability assumptions of Theorem 1.34. Hence
for each y € N1

oo dim HN)

1 N-1(g) —
/aBl g P A 2D eai).

where the coefficient
N—1—«

D d—1 o r (&=L
Mév’a — 2N—1—a(N12)N1 <H (5 + z)) FEN i . 1 é jd§ (1.28)

1=
is obtained by direct computation just integrating by parts. Therefore

0o dlm(HN)

N-1 N-1( i)
i g B @ =3 5 e

For the last term of (1.27), noticing that the integral

INa . / mdy
B ’x_y|a+2

is independent of x € SV, we get

o dim(HY)
(z —y,z) 2 N-1 N i \2
—a——Ldy x)dH x)=—al"" c
L (] e an)et @an > X @

Combining all the previous equalities with (1.27) we obtain

oo dim 'HN)

92 F Z Z RN=3( [d(d+N 2) — (N—1)+27RN+1_°‘<M$V’Q—aIN*")}.
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1.4.3. Local minimality of the ball. From the above expression we deduce that the
quadratic form 9?F(Bpg) is strictly positive on T-(0Bg), that is, the second variation of F
at Bp is positive according to Definition 1.22, if and only if

ﬂd+aN——%——UV—J)+27RN+L“(M5”——aIN@):>O (1.29)

for all d > 2, where the “only if” part is due to the fact that H) C T+(SV~!) for each d > 2.
On the contrary, 9>F(Bg)[¢] < 0 for some ¢ € T+(0Bg) if and only if there exists d > 2
such that the left-hand side of (1.29) is negative.

We want to write (1.29) as a condition on R. Since d(d+ N —2)— (N —1) > 0 for d > 2,

we have that (1.29) is certainly satisfied if ,uﬁlv’a —oZ™® > 0. But this is not always the case,
as the following lemma shows.

LemMA 1.35. The sequence uév’a strictly decreases to 0 as d — co.
PRrOOF. First of all we note that

24 d
Noa 2 N (1.30)

Hagy1 = 2%
N-1-2+d

hence the sequence (,ufiv’a)deN is decreasing since « < N — 1. Now

d
MN’OC: (H g +k )HN@: (N -1 +$+d
d+1 LN -—1-2+k% 1 L1+ )N -5 +d

I'(N-2) ya 2 +d (5 +d)[log(F +d)—1]
T T )M\ NC1-8 1 d (N5 dlos(N-1-5+d-1]’

where in the second equality we used the well known property I'(z + 1) = 2I'(z), and in the
last step we used the Stirling’s formula. Since the previous quantity is infinitesimal as d — oo,
we conclude the proof of the lemma. O

As a consequence of this lemma and of the fact that ZV® > 0, we have that the number
dg’o‘ :=min{d > 2 : ,uilv’a < o™}
is well defined. This tells us that (1.29) is satisfied for every R > 0 if d < de’a, and for

1

dd+ N —-2)— (N —1)\ -« o

R<(( e )) =: g™ (d).
QW(aI =y’ )

if d> dﬁ’a. Moreover, by the previous lemma we get that ¢™**(d) — oo as d — co. The
following lemma tells us something more about the behaviour of the function ™.
LeEMMA 1.36. There exists a natural number dév’a such that for d < dﬁv’a the function

N,«

g is decreasing, while for d > d;"" is increasing.

PROOF. The condition gV%(d + 1) > g™%(d) is equivalent to
(d+1)(d+1+N—-2)—(N-1) - dd+ N —-2)— (N —-1)
N, N,
2y (a2 — 1y 1) 2y (a2 — 1)

Recalling (1.30), the above inequality can be rewritten, after some algebraic steps, as follows:
PN -—a+1)+d(N*>—aN+a—-1)+$(N-1) y,
(N—1-2+d)(2d+N—1) Ha -

TN > (1.31)
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Using (1.30), it is easily seen that the right-hand side of the above inequality is decreasing
and converges to 0 as d — oo. Hence the number

dY :=min{d € N : (1.31) is satisfied}
is well defined and satisfies the requirement of the lemma. ([l
We are now in position to prove Theorem 1.9.

PRrROOF OF THEOREM 1.9. Define
R(N7O‘7’Y) = min g (d)a

a>dh e
which can be characterized, by the previous lemmas, as
B gNe@l ™y it dy > dy
R(N,a,) :=
gve(dy ™) it dy < dle.
Now, from (1.29), we have that
O*F(Br)[@] > 0 for every ¢ € TH(0Br) <= R < R(N,a,7),
while
O*F(Br)[@] < 0 for some ¢ € TH(OBR) <<= R > R(N,a,”).
By virtue of Theorem 1.8 and Corollary 1.21, we obtain the first part of the theorem, where

Mioc(N, @, ) is the volume of the ball of radius R(N, a, 7).
In order to show that the critical radius tends to oo as o — 0, we notice that

oo dim(HE)
0> F(Bg)[¢ Z Z DPRNT3(N 41— 2yazM RN T,

Since

IN.a aio>+/ <ﬂf—y,9§> dy < oo,

B ’33 - y’
we have that for each R > 0 there exists @(NV,v, R) > 0 such that for each o < @(N,~, R)
N+1
N,«
al < Q,YRNJrlfa’

which immediately implies the claim. To conclude the proof we examine in more details the
special case N = 3, determining explicitly the critical mass myo.. From (1.28) we have that

_ d1{a . -
B0 ora (TT( . ) FA—9%) 2-a (Hj:l (§+‘7>> 1 1
Ha o =2 ”(H(§ j))l“(2+d—9):2 [ —m— Nd+1-22—a’
=0 2 5= (1 -3 +J) 2 @

where we used the property I'(z + 1) = zI'(xz). Moreover, we compute explicitly in the
Appendix the integral Z3®, obtaining (see (1.55))

22—a
4—a)2—a)
It is now easily seen that do® = d%* = 2 for every a € (0,2). Hence

(6 - a)4—a)\T=
23—~y > ’

73 = o

R(3,a,7) = (

which completes the proof of the theorem. O
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1.5. Global minimality

This section is devoted to the proof of the results concerning global minimality issues. We
start by showing how the information gained in Theorem 1.9 can be used to prove the global
minimality of the ball for small volumes.

Proor or THEOREM 1.10. By scaling, we can equivalently prove that given N > 2 and
a € (0, N —1) and setting

= sup{v > 0 : By is a global minimizer of F, , in RY under volume constraint},

we have that 5 € (0,00) and Bj is the unique global minimizer of F, , for every v < 7.
We start assuming by contradiction that there exist a sequence v, — 0 and a sequence of
sets E,, with |E,| = |B1| and «a(FE,, B1) > 0, such that

Fanyn(En) < Fapm, (B1)- (1.32)
By translating FE,, so that «(FE,, B1) = |E,ABi|, from (1.32) one immediately gets
C(N) |E,AB|? < P(Ep) — P(B1) < (NLa(B1) = NLo(En)) < ynco| EnAB:|

where the first inequality follows from the quantitative isoperimetric inequality and the last
one from Proposition 1.3. Hence, as v, — 0, we deduce that «(E,, B;) — 0.

From the results of Section 1.4 it follows that if 9 > 0 is sufficiently small then the func-
tional Fq 4, has positive second variation at Bi: by Theorem 1.8, this implies the existence
of a positive § such that

Fonro(B1) < Fanqo(E) for every E with |E| = |Bi| and 0 < a(E, By) < 0. (1.33)

We now want to show that (1.33) holds for every v < 7, with the same 0. Indeed, assuming
by contradiction the existence of v < 79 and E C R¥ such that |E| = |By|, 0 < a(E, B;) < 6
and

Fary(E) < Fonry(Br), (1.34)
since P(B1) < P(E) we necessarily have N L,(FE) < NL,(B1). Hence by (1.34)
P(E) — P(B1) < y(NLa(B1) = NLL(E)) < v (NLay(B1) —NLL(E)), (1.35)

that is, Fa o (E) < Faqo(B1), which contradicts (1.33).

Now, since for n large enough we have that v, < v9 and 0 < «(E,, B1) < §, the previous
property is in contradiction with (1.32). This shows in particular that 5 > 0.

The fact that 4 is finite follows from Theorem 1.9, which shows that for large masses the
ball is not a local minimizer (and obviously not even a global minimizer).

Finally, assume by contradiction that for some v < 4 the ball is not the unique global
minimizer, that is there exists a set F, with |E| = |By| and «(F,B;) > 0, such that
Fany(E) < Forn(B1). By definition of 4, we can find 4’ € (v, 7) such that B is a global mini-
mizer of F, .. Arguing as before, we have that by the isoperimetric inequality P(B;) < P(E),
which by our contradiction assumption implies that N Ly (E) < N L, (B1); this yields

P(E) — P(B1) < y(NLa(B1) = NLL(E)) <~ (NLay(B1) = NLL(E)),
which contradicts the fact that By is a global minimizer for F .. O

We now want to analyze what happens for small exponents «. Since for a = 0 the
functional is just the perimeter, which is uniquely minimized by the ball, the intuition suggests
that the unique minimizer of F, ., for o close to 0, is the ball itself, as long as a minimizer
exists. In order to prove the theorem, we need an auxiliary result: the non-existence volume
threshold is uniformly bounded for o« € (0,1). The proof is a simple adaptation of the
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argument contained in [43, Section 2|, where just the three-dimensional case with o = 1 is
considered.

PROPOSITION 1.37. There exists m = m(N,~y) < +oo such that for every m > m the
minimum problem
12 = inf {For(E) : ECRY,|E|=m} (1.36)
does not have a solution for every o € (0,1).
PRrROOF. During the proof we will denote by C' a generic constant, depending only on N
and «, which may change from line to line.
Step 1. We claim that there exists a constant Cj, depending only on N and +, such that

I < Com for every 0 <a< N —1 and m > 1. (1.37)
Indeed, if B is a ball of volume m, then
2N1\7a 1
Farny(B) = Nwy /Ny WN-D/N Y Ca <m) , Co 1= / / —— dady.
wWN By J By ‘l' - y‘()é

It follows that for every 1 < m < 2 we have I}, < Cp, for some constant Cy depending only
on N and ~. It is now easily seen that I, < I +I7 if m = my + ma (see the proof of
[43, Lemma 3]): hence by induction on k we obtain Ig < Cok for every m € [k, k+1).

Step 2. We claim that there exists a constant C1, depending only on N and +, such that for
every 0 <a< N —1and m > 1,if E is a solution to (1.36) then

|E N Bg(z)| > C1RY (1.38)

for every R <1 and for every x € E such that |[E'N B,(z)| > 0 for all r > 0.

To prove the claim, assume without loss of generality that x = 0. It is clearly sufficient to
show (1.38) for L'-a.e. R < eg, where gy will be fixed later in the proof. In particular, from
now on we can assume without loss of generality that R is such that HV~'(0F NdBg) = 0.
We compare the energies of F and E’ := A\(E \ Bg), where A > 1 is such that |E'| = m: by
minimality of E we have Fo (E) < Fan~(E'), which gives after a direct computation

HYN"YOE N Br) < WY — 1) For(E) + NN WY (OBRr N B).

In turn this implies, by using XY~ (O(ENBg)) = HN"HOENBR) + HN"Y(OBRNE) (recall
that HN"1(OE N OBR) =0),

HN"YA(ENBg)) < AWV — D) For (B) + AL+ )YHYN 1 OBRrNE).
Now, choosing €9 > 0 so small that |E\Bpg| > $m, we obtain the following estimates:
|E'N Bg

2N —« n m N-1
— 1= —- —1< _— — < (—— < .

Hence from the isoperimetric inequality, (1.37), and from the above estimates we deduce that

N1 N—1
|[ENBgr| ~ <C|ENBg|+CH (0BRNE).

2N—«a

Finally, observe that if £ is sufficiently small we also have |[E N Bg| < 5=|EN BR]% , hence
we obtain

- d
|ENBg|'~ < CHYN Y (0BRrNE) = C 15BN Brl,
which yields
d 1 1
— > -a.e. .
dR|EﬂBR|N_C for L*-ae. R <¢g
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By integrating the previous inequality we conclude the proof of the claim.

Step 8. We claim that there exists a constant Cs, depending only on N and <, such that for
every 0 < a <1 and m > 1,if E is a solution to (1.36) then

NLL(E) > Cymlogm — Cam (1.39)

(notice that the conclusion of the proposition follows immediately from (1.37) and (1.39)).
In order to prove the claim, we first observe that

|EN Br(z)| >CR  forevery x € E and 1 < R < 3diam(E). (1.40)

Indeed, as E is not contained in Bgr(z) and E is connected (see Theorem 1.7), we can find
points xz; € EN0Br_i(x) for i = 1,...,|R] such that |E N B,(z;)| > 0 for every r > 0.
Then by (1.38)

LR N

|E N Br(z |>§:Em34%n>04:> |R]|.
i=1
Observe now that, if we set Fr := {(z,y) € E X E: |z —y| < R}, we have by (1.40) that

for every 1 < R < idiam(E)

£V (Ep) = / B Br(z)|dz > C|E|R. (1.41)
E
Hence
NLo(E) = / / rdy = / L 31 0E) ar
m—wa V2
te 1 d ],+w1d
== — —L*N(E dR>/ —L*N(ER)dR
2/0 Re ag” (PR =2), RAdR (Er)
= —EEQN(E ) + ! /m iﬁ"'N(E )dR
T2 VTa ) R R
dlam 1
> —Cm+ C’m/ —dR,
R
where in the first inequality we used the fact that o < 1, while the second one follows from
(1.41). This completes the proof of the proposition. O

An essential remark for the proof of Theorem 1.11 is contained in the following lemma,
where it is shown that the local minimality neighbourhood of the ball is in fact uniform with
respect to v and «.

LEMMA 1.38. Given 4 > 0, there exist & > 0 and § > 0 such that
Fany(B1) < Fay(E)
Jor every o < @, for every v <7 and for every set E with |E| = |Bi| and 0 < a(E,By) < 9.

PROOF (SKETCH). Notice that, by the same argument used in the proof of Theorem 1.10,
it is sufficient to show that, given 5 > 0, there exist & > 0 and § > 0 such that
Faz(B1) < Fay(E)
for every a < @& and for every set F with |E| =|B;| and 0 < a(F, By) < 9.
In order to prove this property, we start by observing that there exists a1 > 0 such that

mo = inf inf{PFaz (Bl 1 ¢ € THOB), ¢l om,) =1} > 0. (1.42)

a<ai
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In fact, assuming by contradiction the existence of a, — 0 and ¢, € T(9B;), with
lonllz: = 1, such that 8*F,, 5(B1)l¢n] — 0, we have by compactness that, up to subse-
quences, @, — g weakly in H' for some ¢o € T+(0B1). It is now not hard to show that the
last two integrals in the quadratic form 9%F,, 5(B1)[pn] converge to 0 as n — oo: indeed,
the second integral in (1.11) converges to 0, since it is equal to

—an/ </ %dy) w2 (x) dHYN Y (z) < C’an/ 2 dHN 1 =0 as n — 00.
831 Bl “’B - y’ " 8Bl

For the last integral in (1.11), denoting by Ga,, (z,y) := |z — y|~*", we write

/ G, (2, 1) n (@) on(y) AR 1 (z)dHN 1 (y)
831 8B1
= / Ga, (2,9)0n () (n(y) — @o(y)) dHY " (2)dHN " (y)
aBl 831
i / Ga, (@,9) (en(w) = wo(@))po(y) dHN " (2)dHV ! (y)
dBl 831

s [ Gl Y @) y);
0B, JOB1

the potential estimates provided by Lemma 1.19, where the constant can be chosen indepen-
dently of «;,, by Remark 1.20, guarantee that the first two integrals in the above expression
converge to zero, while also the third one vanishes in the limit by the Lebesgue’s Dominate
Convergence Theorem, recalling that |, op, $0 =10 and «a,, — 0. Moreover, for the first integral

in the quadratic form 02F,,, ~(B1)[¢n], we have that

/ Drol? < limin / Drnl?, / Bog, P62 — / Bog, ’2
0B, n—=oo JoBy 8B, 8B

Hence, if @9 = 0 we conclude that faBl |D;¢n|?> — 0, which contradicts the fact that
[¢nllg: = 1 for every n. On the other hand, if g # 0, we obtain

/ |Dypol? dHN 1 — / |Bop, o2 dHN 1 < 0,
831 aBl

that is, the second variation of the area functional computed at the ball By is not strictly
positive, which is again a contradiction.

With condition (1.42), it is straightforward to check that the proof of Theorem 1.25 pro-
vides the existence of §; > 0 and C7 > 0 such that

Far(B) > Fay(B1) + Ci (a(B, B))”
for every a < a; and for every E C RY with |E| = |By| and 0FE = {x +¢(2)x : © € OBy}
for some 1 with [[9[[w2r@58,) < d1-

In turn, having proved this property one can repeat the proofs of Theorem 1.30 and
Theorem 1.8 to deduce that there exist ag > 0, d9 > 0 and Cy > 0 such that

Far(E) 2 For(Br) + Co(a(E, By))?

for every a < as and for every E C RV with |E| = |By| and a(E,B;) < 6. The only
small modifications consist in assuming, in the contradiction arguments, also the existence of
sequences a, — 0, instead of working with a fixed «. Then the essential remark is that the
constant ¢y provided by Proposition 1.3 is independent of «,. In addition, some small changes
are required in the last part of the proof, since the functions v, associated, according to (1.1),
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with the sets F;, constructed in the proof are defined with respect to different exponents ay,,
but observe that the bounds provided by Proposition 1.1 are still uniform. The easy details
are left to the reader.

These observations complete the proof of the lemma. O

We are now in position to complete the proof of Theorem 1.11.

PrROOF OF THEOREM 1.11. We assume by contradiction that there exist o, — 0, m,, > 0
and sets E, C RV, with |E,| = m,, a(E,, B,) > 0 (where we denote by B, a ball with
volume my, ), such that E, is a global minimizer of F,, , under volume constraint. Note
that, as the non-existence threshold is uniformly bounded for a € (0,1) (Proposition 1.37),
we can assume without loss of generality that m, < m < +oo.

By scaling, we can rephrase our contradiction assumption as follows: there exist a,, — 0,
Y > 0 with 4 := sup,, v, < 400, and F, C RY with |Fy| = |B1|, a(F,, B1) > 0 such that

fan,%(Fn) = min{fam%(F) D |F| =B},

and in particular

Fon o (Fn) < Fon ya (B1)- (1.43)
We now claim that, since a,, — 0,
ll)r_iI_l INLa, (B1) — NLg, (F,)| =0. (1.44)

Indeed, we observe that by adapting the first step of the proof of Theorem 1.7, we have
that there exists A > 0 (independent of n) such that F,, is also a solution to the penalized
minimum problem

min { Fa, . (F) + A||F| = |By|| : F c RV}

(for n large enough). In turn, this implies that each set F,, is an (w,ro)-minimizer for the
area functional (see Definition 1.26) for some positive w and 79 (independent of n): in fact
for every finite perimeter set F' with FAF,, CC By,(x) we have by minimality of F,

P(Fn) < P(F) +’Yn(N»Can(F) _N['oan(Fn)) +A“F| - |Bl|’
<P(F) + (yeo + A) |[FAF,],

where we used Proposition 1.3 and the fact that the constant ¢y can be chosen independently
of a,. We can now use the uniform density estimates for (w,rp)-minimizers (see [45, The-
orem 21.11]), combined with the connectedness of the sets F), (see Theorem 1.7), to deduce
that (up to translations) they are equibounded: there exists R > 0 such that F,, C By for
every n. Using this information, it is now easily seen that, since o, — 0,

1

from which (1.44) follows.
By (1.43), (1.44) and using the quantitative isoperimetric inequality we finally deduce

Cn ((Fn, B1))? < P(Fy) — P(B1) < Yn(N Loy (B1) — N La, (Fp))
<Y|NLa, (B1) = NLa, (Fa)| =0,

that is, ), converges to By in L'. Hence (1.43) is in contradiction with Lemma 1.38 for n
large enough. O

We conclude this section with the proof of Theorem 1.12.
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PrROOF OF THEOREM 1.12. First of all we notice that, since for masses smaller than
Mglob the ball is the unique global minimizer, for each m > 0 there exists k,, € N such that
Jrm(m) = min; f;(m). Setting mg = 0, my = mgiep, we have by Theorem 1.11 that (1.9)
holds for k = 1. In the following, we denote by E}? a solution to the constrained minimum
problem

min{F(E) : E C Bg, |E| =m}.
We remark that
F(ER) —»inf {F(E): ECRY,|E|=m} as R — o0, (1.45)

and that each set E}} is an (w,rp)-minimizer for some constant w independent of R (this
conclusion can be obtained by arguing as in the proof of Theorem 1.7).
We now define

my :=sup{m > my : fo(m') = inf|g_,y F(E) for each m’ € [my,m)}

and we show that mg > my. Indeed, fix ¢ > 0 and m € (my1, m; + £). Observe that the sets
(ER)r cannot be equibounded, or otherwise they would converge (as R — o) to a global
minimizer of F with volume m, whose existence is excluded by Theorem 1.11. The fact
that the diameter of E% tends to infinity, combined with the uniform density lower bound
satisfied by Ep (which, in turn, follows from the quasiminimality property), guarantees that
for all R large enough the set E% is not connected; moreover, if € is small enough, each of
its connected component has mass smaller than mgop, again as a consequence of the lower
bound. Then we can write Ef = Fy U Fy, with |Fi|,|Fb] < mgep and F1 N Fy = O, so
that we can decrease the energy of E7 by replacing each F; by a ball of the same volume,
sufficiently far apart from each other, obtaining that fo(m) < F(ER). By (1.45) we easily
conclude that fa(m) = inf|g—,, F(E) for every m € (my,m1 + ¢), from which follows that
mg > my. Moreover, by definition of mgy, we have that (1.9) holds for k£ = 2.
We now proceed by induction, defining

M1 = sup{m > my, : frp1(m') = inf| g, F(E) for each m' € [my, m)}

and showing that my < mpyy1. Arguing as before, we consider m € (my, my + ¢), for some
€ > 0 small enough, and we observe that for R sufficiently large the set E%’ is not connected,
and each of its connected components has volume belonging to an interval (m;_1,m;] for some
¢ < k. By the inductive hypothesis we can obtain a new set F3', union of a finite number
of disjoint balls, such that F(Fg') < F(E}), simply by replacing each connected component
of B by a disjoint union of balls. We can also assume that at least one of these balls, say
B, has volume larger than e (if we choose for instance e < %% ); in this way [F3'\ B| < my
and we can decrease the energy of F7' by replacing Fp' \ B by a finite union of at most
k balls. With this procedure we find a disjoint union of at most k + 1 balls whose energy
is smaller than F(Fp'), so that, recalling (1.45) and that F(Fp') < F(Eg), we conclude
that fry1(m) = inf|g—, F(E) for every m € (mg,my, +¢). This completes the proof of the
inequality my < mgy1, and shows also, by definition of my, that (1.9) holds.

Now, assume by contradiction that my — m < oo as kK — oo. Since each interval
(mg, mry1) is not degenerate, the definition of my as a supremum ensures that we can find
an increasing sequence of masses my — m such that an optimal configuration for min; f;(myg)
is given by exactly k41 balls. As, for k large enough, at least two of these balls have volume
smaller than "', they can be replaced by a single ball in a way that the energy decreases,
contradicting the previous assertion and showing that limg_,., mr = co. Finally, it is clear
that the number of non-degenerate balls tends to co as m — oo, since the volume of each
ball in an optimal configuration for min; f;(m) must be not larger than m; . O
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1.6. Appendix

1.6.1. Computation of the first and second variations.

PROOF OF THEOREM 1.17. The first and the second variations of the perimeter of a

regular set E are standard calculations (see, e.g., [63]) and lead to
d -
EP(Et)lt:O = | Hyp(X,vp)HN ! (1.46)
OF
and
d2

@P(Et)h:o _/ (1D+(X,vp) > — |Bop|*(X,vE)?) dHN
oFE

+/ Hop (X, vg) divX — div, (X (X,vg))) dHN 1. (1.47)
OFE

This particular form of the second variation is in fact obtained in [9, Proposition 3.9], and we
rewrote the last term according to [1, equation (7.5)].

So now on we will focus on the calculation of the first and the second variation of the
nonlocal part. In order to compute these quantities we introduce the smoothed potential

1
(la— b +52)3

Gs(a,b) ==
for § > 0, and the associated nonlocal energy

NLs(F):= / / Gs(a,b) dadb.
FJF
We remark that the following identities hold:
Va(Gs(®e(x), ©4(y))) = VaGs(Dt(x), Pe(y)) - Dy (), (1.48)
VbG(s(CL, b) = VaGg(b, a). (1.49)

Step 1: first variation of the nonlocal term. The idea to compute the first variation of the
nonlocal part is to prove the following two steps:

(1) NLs(E:) =9 NL(E;) uniformly for t € (—to, o),

(2) %/\/’L(;(Et) converges uniformly for ¢ € (—to,to) to some function H(t) as § — 0,

where ¢y < 1 is a fixed number. From (1) and (2) it follows that
d

— E
SNL(E)

We prove (1). We have that

— H(0) = lim QNE(;(Et)

50 Ot (1.50)

lt=0 l¢e=0"

N L5(E) — NL(E) = \ [ [ @sten ~ ) dmdy‘ <[ ] 165t~ Glolardy,

where we have used the fact that E is bounded and hence E; C Br for some ball Bg. It is
now easily seen that the last integral in the previous expression tends to 0 as 6 — 0, thanks
to the Lebesgue’s Dominated Convergence Theorem, hence

sup  |NLs(Ey) —NL(E)| — 0 as 0 — 0.

tE(—to,to)
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We now prove (2). By a change of variables and using (1.48) and (1.49) we have
0J®
O NLAE) = / | 25 @) T 0)Gi(1(a). (1) oy

" 2/ / T04(2) @4 (y)(Va (Gs(@1(x), D1(y))) - (D ()™, X (D4(x))) dady
EJE
_ / / F(t,2,9)Gs(®4(x), By(y)) dady
EJE

o ( / g(t,w,y)Gé(‘I’t(UC)a‘I’t(y))dy) aHY (),

where J®, := det(D®;) is the jacobian of the map Py,

8J d : _
F(t 2, y) = 270 () Ty (y) — 2dive (T (1) TB(y) X (1)) - (DBi(2))7T)
gtz y) = Ty (2) J P (y) (X (Pe()) - (DPy(2)) ", v())
and in the last step we used integration by parts and Fubini’s Theorem. Now since f and g
are uniformly bounded on (—tg,t9) x E x E and (—tg,t9) X OF x E respectively, it is easily
seen that

%Nﬁg(Et) =9 H(t) uniformly for t € (—tg,to),

where

_ N—-1
— /E /E F(t 3, 9)G(®1(), By(y)) dardy-+ /8 ) ( /E g(t,m,wa@t(x),@(y))dy) AN (z).
We finally compute (1.50). Recalling that

0J P, _
=divX 1.51
A s ivX, (1.51)
we have
9 divX (z X(z),7 —
7N£5(Et)\t:0 = //( 1V2 et (X(z),z yzH)dxdy
ot (e =yl + 052 (o — g2 +6%)

_ //dwx('xyé}ré?)g) dady

_ 2/6E </E (é}i(;); :(??)2 dy> a1 ()

(where we used the divergence Theorem and Fubini’s Theorem in the last equality), and hence
by letting § — 0 we conclude that

H(0) = 2/8E (/Ewdy> dHN " (2) = 2/31; vp (X, v)dHN L.

|z —y|*

This, combined with (1.46), concludes the proof of the formula for the first variation of F.

Step 2: second variation of the nonlocal term. We will compute the second variation of the
nonlocal term by showing that

8t2/\/£5(Et) =9 K(t) uniformly in ¢t € (—tg, to)

for some function K, hence getting
d2

@Nﬁ(Et)

= K(0) = hm Nﬁg(Et)

lim = (1.52)

lt=0 lt=0 °
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First of all we have that

O NLs(Br) = ‘9{2 [ [ 5 @20 Gs(@ua), 24 oy

at2 ot ot

2 / / TB,(2) T () (VaGa(P1 (), Boly)), X (B(2))) drdy

Sy EIC e
()

+2//J<I>t 0 e

+ (V,G5(@u(), @uly)), X (@:(y)))) dady

1 / / (Fu() TR () X (@0l)) ), Tus (1), B1(y))) dircy

G5(®4(2), Pi(y)) dedy
(P4 ()

)
((VaGs(@1(x), @u(y)), X (@1(a))

Y. 9%Gs
+2/E/EJq)t(CU)J<I>t(y) <§::1 Darda, (®4(x), De() X (P () X;(B4(x))

N 52
* Z;l 88aiggj (@e(2), ‘I’t(y)>Xi(‘I’t(x))Xj(‘I%(y))) dzdy . (1.53)

Using identity (1.48) and integrating by parts, we can rewrite this expression as

2
5D = [ [ Fit.e.)Gs(i(a), 1) dody
[ (19uGo(@1(), ), 01t . 9)) + (FGs(00). Bu(0). (8, 7,3)) ) oy
EJE

[ ((VaGs(@1la), Ba0)) s () + (T4Gis(i), )l ,) ) AV (),
E JOE

for some functions f, g1, g2, h1, b2 uniformly bounded in (—tg,to) X E x E. It is then easily
seen that

@Nﬁg(Et) =9 K(t) uniformly in ¢t € (—to, to),
where K(t) is simply obtained by replacing Gs by G in the previous expression.

We finally compute (1.52). Setting Z := %t;p‘ _, We have that

2
0T Z 0X0X; _ = div((divX)X).

= divZ + (divX)?
oo, AvZ (v dz; Oz
1,7=1

Therefore, computing (1.53) at ¢ = 0, from this identity and recalling (1.51) we obtain

2
aatz./\/’[,g(Et)hO = 2/ / [div((divX)X)(x)G(g(:c,y) + divX(m)divX(y)Gg(m,y)} dzdy

+4/ / divX(y %Gj( ) Xi(z) + %G(S (,y)Xi(y )) dazdy

P Yi

; 2
i 2/ / Z (%if ]Z(m)XJ(ﬂ?) + éiigjzj(x’y)Xi(x)Xj(x)
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9*Gs
8xi8yj

(5D Xi@) X)) dady = o+ T+ o,
By integrating by parts in I7, the sum of the first two integrals is equal to

L+ 1= 2/ / (V2Gs(z,y), X (2)) (divX (z) + divX (y)) dedy

/ . Gs(z,y) (divX (z) + divX (y)) (X (z), v(z)) dHY Y (z)dy .

R 2/ Gg(:c,y)(divX(:c) + divX(y))(X(x), v(x)) d’HN_l(:r:)dy
EJoE
+2 /E /E (dive ((V2Gs (2, ), X (2)) X (2)) + divy (V2 Gs (2, ), X (2)) X (1)) ) dady
= / (/ divm(G(;(x,y)X(m))(X(x),u(m))d?—lN_l(ac)> dy
E \JoE
2 [ (] aiva(Galenn) X (@) (X0, v(0) 4 0)) o
= 2/8E </E div, (G5(J:,y)X(x)) dy> (X(z),v(x)) dHN_l(:c)

+2 / Gis i, y) (X (), () (X (9), v(y)) dHY L () dHN L (y)
oOF JOFE

where the second equality follows after having applied the divergence theorem, and the last
one by Fubini’s Theorem and the divergence theorem. Thus, using the Lebesgue’s Dominated
Convergence Theorem to compute the limit of the previous quantity as 6 — 0, and recalling
that o € (0, N — 1), we obtain

2
gtzNﬁé(Et)lto =7 /8E (/E divz (G(z, )X (2)) dy) (X (2),v(z)) dH " (2)

(1.54)
12 / G, y) (X (), (@) (X (4), 1)) AHY (@) dHN " (3).
oFE JOFE

We can rewrite the first integral in the previous expression as
2/ (/ div, (G(z,y) X (z)) dy) (X (z),v(z)) dHN Yz) = 2/ div(vpX ) (X, v) dHN
dE\JE OE
_9 / (v (VX)X ) + (o, X) (X,0) + Dy (X)) ai !
OFE

= 2/{9}3 (UE(diVX)<X, V) —vg diVT(XT<X7 y>) + d,vp (X, 1/>2) AHN-1

Finally, combining this expression with (1.54) and (1.47), we obtain the formula in the state-
ment. (I

1.6.2. Computation of ZV:*. Here we want to get an explicit expression of the integral

IN’a — / <x — y,x> dy
B ‘x _ y‘a+2
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appearing in Section 1.4, at least in the case N = 3. First of all, since ZV'® is independent
of z € SN~! we fix x = e;. By Fubini’s Theorem we get

1-— 1 1 —
IN"":/ 7‘1’;“ dy:/ </ ! — dEN‘l(z)>dt,
B, ler =y \JB (A= t)2 4 22) T

where B; := BY71(0,v/1 —2) denotes a (N — 1)-dimensional ball of radius v/1 — 2 cen-
tered at the origin. To treat the inner integral, we apply the co-area formula (see [5,
equation (2.74)]), by integrating on the level sets of the function fi(z) := /(1 —t)% + |2|?,
z € RV=1: setting 0(r) = /72 — (1 — £)2, we get

1 N-1 200 1 N-2
/ a+2d£_(z):/ </ dH_>dT
B (1—1)2+22) 2 1t aBN-1(0,6(r)) TOT1 /12 — (1 —t)?
V20 (42 _ (1 - y2)"F

=(N-1 _ dr.
( Jwn 1/” ot r
Therefore
1 V2=t (2 _ (1 _ )2 N-3
e — (N — 1)wN_1/ (1—-1) </ (r (ra+1) )= dr) dt.
-1 1-t

From real analysis we know that we can write the inner integral in term of simple functions if
and only if NV is odd or « is an integer. Since we are interested in the physical case (N = 3,
a = 1), we just compute the above integral for N = 3, obtaining

227a

e

(1.55)






CHAPTER 2

Periodic critical points of the Otha-Kawasaki functional

In this chapter we construct local minimizing periodic critical points of the sharp interface
of the Otha-Kawasaki energy (0.1), whose shape closely resembles that of any give stictly sta-
ble periodic constant mean curvature surface. Moreover, we also establish some observations,
of independent interest, about local minimziers of the sharp Otha-Kawasaki enery.

2.1. Preliminaries

In this section we introduce the objects and we fix the notation we will need in the
following. Given k € N\ {0}, we will denote by T the N-dimensional flat torus rescaled by
a factor 1/k, i.e., the quotient of RY under the equivalence relation

Trpgek@—7) ez .
For simplicity, ’JI‘{V will be denoted by TV . Points in TkN will be denoted by x, y. A set
E C TY can be naturally identify with the 1/k-periodic set of RY (or TV) that equals F
is a periodicity cell. When we speak about the regularity of a set E C ’]I‘fCV , we will always

refer to the regularity of the 1/k-periodic set E C RV . Finally, for 8 € (0,1) and r € N, we
define the functional space C™#(T¥) as the space of 1/k-periodic functions in C™#(RY).

DEFINITION 2.1. Given a set £ C TV and k € N\ {0}, we define the set E¥ C TY as
follows:

EF:={zecT) : kzc E}.

Ek:

FIGURE 1. A set E C TN on the left, and the set E¥, with k = 3, seen as a
subset of TV, on the right.

REMARK 2.2. Notice that fTN uP dz = JFTN uf’“ dx, where we recall uf = XF ~ XTME -
k

35
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We now introduce the notion of perimeter in T{CV .

DEFINITION 2.3. Let E C ']I‘{CV. We say that FE is a set of finite perimeter in ']I‘fcv if

sup{/ dive dz : € e CHTY;RY), €| < 1} < 00.
E
In this case we denote by Px(E) the above quantity.

We now introduce two kind of ways for saying how two sets in TV are closed from each
other. The first one takes into account the fact that our functional is invariant under transla-
tions.

DEFINITION 2.4. Given two sets E,F C ']T{CV we define the following distance between

them:
a(E,F):= min |[EA(x + F)|.

mETg
Moreover, given E C ']Ti.v and 8 € (0,1), for sets F C ’]I‘fgv such that
OF = {x + ¢Y(z)vg(x) : © € E},
for some function ¢ € C™#(9E), we define
dors (B, F) := [[¢]lcrs -

Finally, to write the formulas for the first and the second variation of our functional F,
(see Theorem 2.27), we need to reacall the following geometric definitions: given aset £ C TV
of class C?, we will denote by D, the tangential gradient operator, by div, the tangential
divergence, by vg the normal vector field on OF, by Byg its second fundamental form, and

by |Bsyg|? its Euclidean norm, that coincides with the sum of the squares of the principal
curvatures of OF. Finally, Hyg will denotes the mean curvature of OF.

2.1.1. The area functional. We recall some results about the area functional.

DEFINITION 2.5. We say that a set £ C ngv is a local minimizer of the area functional if

there exists ¢ > 0 such that
Pi(E) < Pr(F),

for all F C TY with |E| = |F|, such that a(E,F) <.

DEFINITION 2.6. A set E C T¥ is said to be an (w, r¢) -minimizer for the area functional,
with w > 0 and ro > 0, if, for every ball B,(x) with r < rg, we have

Pr(E) < Pr(F) + w|EAF],

whenever F' C T is a set of finite perimeter such that EAF CC B,(z).

We recall an improved convergence theorem for (w,rg)-minimizers of the area functional.

This result is well-known to the experts (see, for istance, [68]). One can find a complete proof
of it in [16].
THEOREM 2.7. Let E, C T{CV be a sequence of (w,ro)-minimizers of the area functional

such that
supPr(E,) < +oo0 and «(E,, E) — 0 asn — oo,

for some bounded set E of class C*. Then for n large enough E, is of class C™P for all
B €(0,1), and

OE, = {z + ¢Yn(x)vp(x) : x € OF},
with Y, — 0 in CYP(OE) for all B € (0,1).
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2.1.2. The functional ]-"]Z . We first define the functionals we are interested in.

DEFINITION 2.8. Given 7 > 0 and k € N, we define, for sets £ C T{cv, the functional
FR(E) = Pr(E) + YN Ly(E)

= Pu(E) +1 /T ) /T Cule @ () dr dy. (2.1)

where uf (z) := xp(z) — XTIIC\I\E(.’L') and Gy, is the unique solution of

1

—Aka($, ) = 63:() - M

in Ty, /TNG;C(x,y)dy:U
k

For simplicity, we will denote by F? and u the functional F; and the function u¥ respec-

tively.
REMARK 2.9. Notice that the area functional corresponds to the choice of v = 0.

We now introduce the main objects under investigation in this paper: critical points and
local minimizers.

DEFINITION 2.10. A set E C TV will be called a critical set for the functional F7 if it is
a set of class C? satisfying
Hpp + 40 = X,
for some constant A € R.

REMARK 2.11. The above definition is motivated by the fact that (as one could expect)
on critical sets, the first variation of the functional F vanishes (see Theorem 2.27).

DEFINITION 2.12. We say that a set £ C T]kv is a local minimizer of the the functional
JF,, if there exists 6 > 0 such that

FR(B) < F(F),

for all F C TY with |E| = |F|, such that a(E,F) < §. Moreover, we say that E is an
i1solated local minimizer if, in the above inequality, equality holds only when F = FE.

We now want to derive some regularity properties of local minimizers of ]-",Z . In order to
do this, we observe that local minimizers of F; are in fact (w,r)-minimizer, and then we will
rely on the well-known regularity theory for (w,r)-minimizer.

First of all one can see that the nonlocal term turns out to be Lipschitz (see [1, Lemma
2.6] for a proof).

PROPOSITION 2.13 (Lipschitzianity of the nonlocal term). There exists a constant cg,
depending only on N, such that if E, F C T{CV are measurable sets, then

INLK(E) = NLk(F)] < coa( B, F).
The following lemma is a refinement of a result already present in [1] and [24].
LEMMA 2.14. Fiz constants ¥ > 0, &y > 0, mg € (0,|T¥|) and M > 0. Take a set
E C TV, with Py(E) < M, solution of

min{ Py(F) + N Lx(F) - ][kug —m. o(B.F) <6}, (2.2)
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where v < 7, § € [8o,+o0] and m € [—mg,|T| — mg]. Then we can find a constant
Ao = Ao(co, mo, 7,00, M) > 0 (where cq is the constant given by Proposition 2.13) such that
E is a solution of the unconstrained minimum problem

min{Pk(F)—l—fy./\/’Ek(F) —|—A) ][uf—m‘ alBE F) < 5/2},
k
for all A > Ag.

PrROOF. The idea is to prove that we can find a constant Ag as in the statement of the
lemma, such that if ' solves

min{Pk(F) +YNL(F) —I—A) fkuf —m‘ (B F) < 5/2},

where v < 4 and A > Ay, then a(ﬁ’, E) = 0, where E is a solution of (2.2). To prove it,
suppose for the sake of contradiction that there exist sequences v, < v, A, — 00, sets E,
solutions of

min{Pu(F) + N C(F) + f uf =mn . a(B,F) <5},
k

where 6 > 0g, my, = Jfk uE” € [—my, ]']I‘11€V| —myg)], Pr(E,) < M, and sets F,, solutions of

fﬁ—m
k

but with m,, # kaN uf" (suppose kaN uf” < my, ). From now on we will suppose |F,AE,| =

min{ Py(F) + 1N Lx(F) + Ay

s (B, F) < 5/2},

a(Ey, Fy,). The idea is to modify the sets F},’s in such a way that fTN uf” = my, (notice that,
k

since we are not working in the entire RY but in TV, we need to modify the F},’s in a more
careful way than just rescaling them!). This idea has been developed in [24]. Set

ﬁug_my

Fu(F) = F"(F) + Ay

First of all we notice that sup,, Pr(F,) < co. Indeed
][ukF” — My
k

Thus, up to a not relabelled subsequence, it is possible to find a set Fy C '[[‘kN with fk v,fo €
[—mo, [T | — my], such that F, — Fy in L*. Moreover a(E,, F,) — 0. We now sketch the
argument presented in [24]. Given ¢ > 0, it is possible to find a radius r > 0 such that (up
to translations)

= Pk(En) + 'Yn(N»Ck(En) _ch(Fn)) < M + Yo -

T N
|Fyy N By jo| <er?, |F,, N B,| > % ,
for n sufficiently large. Let o, € (0,1/2"), that will be choosen later, and define
(L= 0u@¥ — )z i o] <,
o, (x) = x+an(1—%)x if § <lzf <7,
x if |z| > r.

Let F, := ®,,(F,). It is possible to prove that
Pi(Fn N B,) — Pe(F, N B,) > =2V No, Pr(F, N B,),
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and that, for € > 0 sufficienlty small,

_ TN N
][ufn — ][u}:” > O'nT‘N [02]632 — E(c+ (2N — 1)]\7)} > canrN2]€£ —: ClO'nTN,
k k

where ¢ and Cj are constants depending only on the dimension N. Then it is possible to
choose the o,’s in such a way that |F,| = |E,| for all n. In particular we obtain, from the
above inequality, that ¢, — 0. Finally, it is also possible to prove that

a(Fy, F,) < Co0,Py(F, N By).
Combining all these estimates we have that

FulFn) < Fu(Fp) + 00 [(2N N + Coco7)Pr(Fo N B,) — AyCi7N] < Fo(Fy) < Fu(En).

Since 0, — 0, we have that, for n large enough, a(fn, E,) < §,. Thus the above inequality
is in contradiction with the local minimality property of E,,. O

COROLLARY 2.15. Let E C T} be a local minimizers of F. Then E is an (w,r)-
minimizer of the area functional. Moreover the parameter w depends on the constants cy, mg, 7, dg
and M of the previous lemma.

PROOF. From the above result, it follows that local minimizers of F; are in fact (w,r)-
minimizer, providing we take w := co + A and we choose r > 0 such that wyr™ <4§/2. O

The regularity theory for (w,r)-minimizers allows us to say something about the regularity
of local minimizers of F}!.

ProroSITION 2.16. Let E C Té_v be a local minimizer of ]-',;Y Then we can write OF =
0* EUY, where the reduced boundary 0*E is of class C3% for all a € (0,1), and the Hausdorff
dimension of ¥ is less than or equal to N — 8.

REMARK 2.17. Using the equation satisfied by a critical set F, it is also possible to prove
(see |35]) the C™° regularity of 0*FE, in every dimension N. In particular, in dimension
N < 7, we obtain the C*-regularity for the entire boundary OF.

In the remaining part of this section we would like to investigate some properties of the
nonlocal term, as well as the relation between the functionals F and Fj,.

DEFINITION 2.18. For a set £ C ngv, we define the function:

vE(x) = | Grlz,y)ul(y) dy.

N
Tk’

For simplicity, we wil denote by v¥ the function v{.

REMARK 2.19. We first want to investigate some properties of the nonlocal term. Notice
that v,f is the unique solution to

—ANvE =uf —mP  in T, / uf dz =0, (2.3)
Ty

where we recall that m? := fTN U%N dr = fk ukEk dz. Moreover, vf is 1/k-periodic. Thus,
it is possible to rewrite the nonlocal in the following way:

Nﬁk(E):/ ub v dx:/ vf Aof dx:/ Vo | dz.
T T T
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By standard elliptic regularity we know that v € W*P(TY) for all p € [1,400). In particular
it holds that
”UI;EHWQW('JI‘{Q\’) <C,

where p > 1 and C is a constant depending only on ']Tg.

Finally, we investigate the relation between the functionals F7 and ]—"]Z .

LeMMA 2.20. Let E C TV . Then it holds

FI(ER) = k=N [PTN (B) + 7k 3N Lo (E)} . (2.4)
PROOF. We claim that, if £ C TV we have
’U,fk(x) = k20 (kx).
Indeed, noticing that sziV uf’“ = fpn uf, we have
A (k2P (k) = —A0P (kx) = u (kz) = m = uf* (z) —m,

and

TN
By uniqueness of the solution of problem (2.3), we obtain our claim. Now, noticing that

/ ]VvkEk(x)\Q dz = kZN/ ]VUE(a;)|2 dz,
T ™

we conclude. O
Ek

/ k%0 (kx) do = k:NQ/ vE (y)dy = 0.
T

REMARK 2.21. Tt is also easy to see that the function v™" is 1/k-periodic (where here we
see ) as a subset of TV, i.c., as k copies of the 1/k-rescalded of E). Thus

FU(E*) = kN FL(EY). (2.5)

This means that the energy of E¥ in TV is just the sum of the energies of each of its pieces
in each quv .

2.1.3. Results about I'-convergence. In this section we would like to recall an ap-
proximation theorem for isolated local minimizer of the area functional. For we need to write
the functional .F%N in the language of I'-convergence.

DEFINITION 2.22. Let (X,d) be a metric space, and let F,, : X — RU {+o0o} be a

sequence of functionals. We say that the sequence F, ,I'(d)-converges to the functional

(4)

r(d
F:X - RU{+o0}, F, = F, if the following two conditions are satisfied

e for every x, 4, F(z) < liminf, F,(z,),
o for every Z € X there exists a, > Z such that F(z) > limsup,, Fy,(zy).
DEFINITION 2.23. Consider the space where X := LY(TV)/ ~, where f; ~ fo < there
exists v € TV such that fi(z 4+ v) = fa(x), for each x € TV. Endow this space with the

distance

a(u,v) = min u— o= 2)] o).

Given 7y € [0,400) and fixed a constant m € (—1,1), we define the functional ]?7 X =
RU {400} as
Fr(u) = FUE) ifu u’, for some set £ with fpyu” dz=m,
+00 otherwise .
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REMARK 2.24. Notice that the functionals F7 are equi-coercive and lower semicontinuous.
~ 1" ~
Morever F7 Lo FYas vy —07F.

Although the T'-convergence has been designed for the convergence of global mininimizers,
one can says also something about the convergence of local minimizers. The following result
is a particular application of [40)].

THEOREM 2.25. Let E C TN be a smooth isolated local minimizer of the area functional.
Then there exists a sequence (Ey)y~o, with |E,| = |E|, such that E, is a local minimizer of
F1in TN and o(E,, E) =0 as v — 0%,

2.2. Variations and local minimality

In the following we will use a local minimality criterion provided in [1], that we recall here
for reader’s convenience. This criterion is based on the positivity of the second variation. We
thus need to introduce what do we mean by variation.

DEFINITION 2.26. Let E C TV be a set of class C?. Take a smooth vector field X €
C>=(TN;RY) and consider the associated flow ® : TV x (~1,1) — TV given by
0P
— =X(®
= X(@),
such that ®(z,0) = z for all x € TV. Let E; := ®(FE,t) and suppose |E;| = |E| for each
time t. We define the first and the second variation of F7 at a set F with respect to the
flow @, respectively as
d d?
—F(E —F(E :
dt ( t)lt:O Y dt2 ( t)‘t:(]
We recall here the result present in |1, Theorem 3.1] for the computation of the first and
the second variations.

THEOREM 2.27. Let E, X and ® as above. Then the first variation of F7 at E with
respect to the flow ® is

d
— F(Ey) :/ (Hop + 4yP) (X -vg) dHN 7, (2.6)
de =0 OF

while the second variation of F7 at E with respect to the flow ® reads as

d? B
e’ B, = /aE (ID-(X - vp)[? = [ Bop (X - vp)?) dHN~!

+ 87/ / Gon (2,9) (X () - vp(2) (X (y) - ve(y)) dHN L(z) dHY(y)
O0E JOE

+ 47/ Do (X -vp)? dHN ! —/ (490" + Hyp) div, (X+(X -vg)) dHN L.
oF oF

REMARK 2.28. Notice that the last term of the second variation vanishes whenever E is
a critical set.

We now follow the ideas contatined in [1]. We introduce the space

H'(E) := {gp € H'(9E) : /8Eg0 ARV = o} ,
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endowed with the norm HWH?P(@E) = V¢l L2(aE) , and we define on it the following quadratic
form associated with the second variation.
DEFINITION 2.29. Let E C TV be a regular critical set. We define the quadratic form
0?FV(E): HY(OE) — R by
PF(E)p] = / (IDrol” = | Bogl*®) dHY ! + 4y / (0p0") e dHN
oF oFE

487 [ [ Govlee@ety) dn ) aH ) 2.7
oE JoE
=: O*Prn (E)[p] +70°N Lyn (E)|¢]
where 0?Ppy (E) denotes the first integral, while y0?N Ly (E) the other two.

Since our functional is translation invariant, if we compute the second variation of F7 at
a regular set E with respect to a flow of the form ®(x,t) := x + tne;, where n € R and e; is
an element of the canonical basis of RV, setting v; := (vg, e;) we obtain that

O*F(B)wi] = —5
Hence we split

H'(OE) = T+(0E) ® T(9E)
where T+ (9E) is the orthogonal complement to T(OF) in the L?-sense, i.e.,

T+(OE) := {cpeﬁl(é?E) : / v dHN"1 =0 for eachizl,...,N} .
oE

It can be shown (see [1, Equation (3.7)]) that there exists an orthonormal frame (e1,...,en)
such that
/ (v-e)v-g;) dHN 1 =0 for all i # j. (2.8)
oF
DerINITION 2.30. We say that F7 has strictly positive second variation at the regular

critical set E if
*FUE)g] >0  forall o € THIE)\ {0}.

Finally, we recall the local minimality result proved in [1].

THEOREM 2.31. Let E C TN be a regular critical set such that FY has strictly positive
second variation at E. Then, there exist constants C,d > 0, such that

FIUF) = FI(E) + C(a(E, F))?,

whenever F C TN with |F| = |E| is such that a(E,F) < 6.

2.3. The results

2.3.1. Minimality in small domains. The first result we would like to prove is a local
minimality property of critical points with respect to sufficiently small perturbations.

PROPOSITION 2.32. Let E C TN be a critical point for the functional FY. Then there
exists € > 0 with the following property: for any set F C TV different from E we have that

FUE) < FI(F),
whenever EAF € B.(x), for some v € E,
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SKETCH OF THE PROOF. Part one. We first want to prove that we can find € > 0 such
that

FIE) < FI(F),
whenever F© C TV is a set different from F, having EAF € Bz(x), for some = € JE. So,
fix £ € OF. The idea is to follow the proofs of the various step leading to the proof of |1,
Theorem 1.1|, and adapt them to our case.
Step 1. For any € > 0 sufficiently small, we have the following Poincaré inequality

/ ‘DTQO|2 dHN*l > Ce SDQ d.?_[]\ffl7
OENB:(Z) OENB:(T)

for any ¢ € H'(OF) with support contained in B.(x). We know that C. — 400 as ¢ — 0.
Let M > 0 such that

|Bog| < M, 0,05 < M,
and take £ > 0 such that Co. > M (1 + 4~). Notice that it is possible to write

/ Gyn (2, y)e(x)oly) dHYH(z) dHN " (y) =/ Vz[? da,
oE JOE TN
where —Az = HN"1LOE. Thus, we have that

PFV(E)g] >0, (2.9)
for any ¢ € H'(OE)\{0} with support contained in Bo.(Z).

Step 2. We claim that it is possible to find constants é > 0 and Cy > 0 such that
FUE) + Co(a(E, F))* < FI(F),

whenever F' C TV, with |F| = |E|, is such that 0F = {z + ¥ (2)vg(z) : = € OE}, for
some ||9|[y2.p9p) < 0 with support contained in Ba.(7), for p > max{2, N —1}. We use the
two step technique of [1, Theorem 3.9]. We first prove that we can find constants 6 > 0 and
m > 0 such that

nf{Q2F (F)lg] : € HYOF), I¢lmom =1,

supp(p) C Ba:(z),

/ (pVFdHNfl‘ Sé} >m,
oF

whenever F C TV, with |F| = |E|, is such that
OF ={x+¢Y(x)vp(x) : © € OE,},

for some ¢ € W?P(QE) with |[¢|ly2s@9r) < 6. To prove it, we reason by the sake of
contradiction as in the first step of the proof of [1, Theorem 3.9].

Now consider the flow @, given by Lemma 2.36, connecting the sets £ and F', and let
E; := ®(F). Then it is possible to write

p(F)—ﬁ(E):/01(1—t)<(92]:(Et)[X-yEt}_/8

where div,, is the tangential divergence on dF; and X, := (X - 7g,)7g,. It is possible to
estimate from below of the integral, as it is done in the second step of the proof of [1, Theorem
3.9]. Namely, it is possible to find 6 > 0 such that

. m
[ o Hiier, (X (X )] < X0,

(dyvB + Hy)dive, (X, (X - yEt))) dt,
Ey
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FIGURE 2. An example of the set Zs.

for all ¢ € [0,1]. Thus, with the above uniform coercivity property of 9?F(FE;) in force, we
conclude.

Step 3. For any € > 0, let Z. C B2.(Z) be a smooth open set with the following properties:
the curvature of Z. are uniformly bounded with respect to ¢, the sets EUZ, and E\Z. are
smooth, B.(Z) C Z. (see Figure 2). We claim that it is possible to find € > 0 such that

FUE) < FI(F),

for every set F C TV with |F| = |E|, such that EAF € I.. The proof of such a result is
similar to those of [1, Theorem 4.3|, where we reason by the sake of contradiction as follows:
suppose there exist a sequence €, — 0 and sets F,, with |F,,| = |F| and E\Z., C F,, C EUZL,,,
such that
FUE,) < FI(E).

Using the uniform bound on the curvatures of the Z.  ’s, it is possible to prove, as in the first
step of the proof of [1, Theorem 4.3], that we can find a sequence of sets E,, with |E,| = |E|,
and E,AFE €I, , F'(E,) < FY(E) and the E,’s are uniform (w,r)-minimizers of the area
functional. Thus, the improved convergence result stated in Theorem 2.7 allows us to say
that the E,,’s converge to E in the C'#-topology. Finally, using the Euler-Lagrange equation
satisfied by the FE,’s, it is also possible to prove that the FE,,’s actually converge to F in the
W?2P-topology. This is in contradiction with the result of the previous step.

Step 4. We now have to prove that the above constants can be made uniform with re-
spect to © € OF. Reason as follows: for any point x € JF, consider the ball B, (),
where e(x) > 0 is the radius found in Step 3 above. Then it is possible to cover 0F with
a finite family of such a balls, let us say (Bg(xi)(mi))le. It is thus possible to find € > 0
with the following property: for any point x € OF, there exists ¢ € {1,...,L} such that
Bz(z) C B.(,)(z;). We can also suppose € < &(w;) for each i =1,..., L.

Second part. We now want to prove that we can find e € (0,£/2) such that
FIE) < FI(F), (2.10)
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whenever F' C TV is a set different from E, having EAF € B.(z), for some = € E\(0E)z/.
The key point is to observe that

N

IWL(F) — NL(E)| < co| EAF| < CP(EAF)YT = C(P(F) — P(E)) 51, (2.11)

where we have used the Lipschitzianity of the nonlocal term (Proposition 2.13), the isoperi-
metric inequality, and the fact that EAF € B.(x), with x in the interior of E, respectively.
Now, (2.10) can be written as

P(F)—P(E) > v(NL(E) — NL(F)) .
Using (2.11) and the fact that tNT < Ot for ¢ small, we know that the above inequality is
satisfied if P(F) — P(E) < ¢, for some 6 > 0. If P(F) —P(E) > §, noticing that

INL(F) = NL(E)| < ¢o| EAF| < CeN |

we obtain the validity of (2.10) by taking e sufficiently small. This concludes the proof. [

2.3.2. Uniform local minimizers. We start by proving a lemma that will be used
several times. The proof can be found in [1] (Step 4 of the proof of Theorem 3.4), but we
prefer to report it here for reader’s convenience.

LEMMA 2.33. Let E C TV be a critical set for F7, with 4 > 0. Then for any € > 0
it is possible to find € > 0 with the following property: if E, is a critical point of F7, with
v € (¥ —e,7+¢) such that den (E, Ey) < €, then dess(E, Ey) <&, for all € (0,1).

PROOF. Suppose for the sake of contradiction that there exists a sequence v, — % and a
sequence (), of critical points F7* with dei1(E, Ey) — 0 such that dgs,s(E, E,) > C > 0.
We recall that on OF

Hyp = ) — 4307 | (2.12)
for some constant A, while on 0F,,
Hop, = Ay, — 4y (2.13)

Thanks to the C'-convergence of E,, to E and by standard elliptic estimates, it is easy to
see that

vPm P in ATV, (2.14)

for all 8 € (0,1). Now we would like to prove that \,, — A, thus obtaining the desired
contradiction. We work locally, by considering a cylinder C' = B’ x (—L, L), where B’ ¢ RV ~!
is a ball centered at the origin, such that in a suitable coordinate system we have

E, NC={(,zy) € C:2" € B', xn < gy, (2)},
ENnC={(2',2n) e C:2' € B, any < g(2)}

for some functions g, — g in CY#(B’). By integrating (2.13) on B’ we obtain

M MY B~ [ 0Pl g, (01) dHY )
B/

/
_ _/ d1V< vg"{n ) dHN_l(CL'/) — _/ vg'Yn X L[dHN—2’
: V14 Vg, 2 o' \/1+ Vg2 17|
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and the last integral in the previous expression converges, as n — 00, to

Vg iﬂl N—2 / . < v.g ) N—-1/_/
— —— —dH =— div| ———=) dH x
/83’ V1+|Vg)2 |7 ' V14 |Vg|? (@)
=N B) — [ g, @) AR ).

where the last equality follows by (2.12). This shows, recalling (2.14), that
A = A,
for n — oo. Thus, by standard elliptic estimates, we get that £, — E in C38. (]

We now present a uniform local minimality result for strictly stable critical points of F7.

PROPOSITION 2.34. Let E C TN be a strictly stable critical point for F¥, 4 > 0. Then
there exist constants do > 0, €0 > 0, o > 0 and Co > 0 with the following property: take
v € (¥ —72,7+72) and let E, be a critical point for F7 with de1(E, E,) < €2; then

FI(Ey) + Ca(a(By, F)” < F(F),
for every set F C TV with |F| = |E,|, such that a(E., F) < ;.

The proof of Proposition2.34 follows the same strategy as [1]. The difficulty is to check
that all the estimates permormed there can be made uniform with respct to the C! closeness
of E, to E. Checking this, we in fact simplify the general argument, by replacing |1, Lemma
3.8] by a penalization argument that was inspired to us by [20].

DEFINITION 2.35. Let F' C TV be a set of class C*°. We will denote by Nu(F), with
u > 0, a tubular neighborhood of F' where the signed distance dp from F' and the projection
mp on OF are smooth in N,(F).

LEMMA 2.36. Let E C TV be a strictly stable critical point for F7, 5 > 0, and let
p > max{2,N — 1}. Then there exist constants © > 0, v3 > 0, e3 > 0 and C > 0
with the following property: for any critical point E, of F7, with v € (¥ —v3,7 + 73) and
dei (B, Ey) < e3, and any ¢ € C®(Ey) with |[Y|weror,) < €3, there exists a vector field
X € C™ with divX =0 in N,(F) such that, if we consider its flow, i.e., the solution of

P
?915 = X(9), ®(0,2) =z, (2.15)
we have ®(1,r) =z + Y (z)ve, (v), for any v € OE,. Moreover, the following estimate holds
true
|2(¢, ) — Id|lw2rm,) < CllYllweror,) -
Finally, denote by E!, the set such that OEL = {z+ty(x)vp, () : x € OB}, If |El| = |E,],
then |EL| = |E,| for all t € [0,1] and

X v ANt =0.
OBt K
ProoF. First of all take 0 < €3 < g9, where g9 > 0 is the constant given by Lemma 2.33.
Then, possibly reducing e3, we can find g > 0 such that N, (E,) is a tubular neighborhood
of E, as in Definition 2.35, for every E, critical point of 7, with v € (¥ — 73,5 +73), for
v3 € (0,¢), and dei(E, E,) <e. Fix y € (7 — 3,7 +73).-
For every « € OF, consider the function f; : (—u, u) — R solution of

{ (f2)' @) + fo()AdE, (z + tve, (z)) =0,
f2(0) =1.



2.3. THE RESULTS 47

Set
G+ tup, (1)) = [2(t) = exp (- /0 ' Ad, (0 + 55, (2))ds)

Using again the C3#-closeness of E, to E, it is possible to find a constant C' > 0 such that
[l (or,) < CllYllwerer,) < Ce for any set E, as above. Take 0 <& < u/C. So, let X
be a smooth vector field such that

Vi (2)) ds
X(z2) = (/0 CE >)§(Z)VdE7(z) for z € N,y (E,).

+ SZ/EW (7TE7 (Z))

Notice that the above integral represents the time needed to go from a point x € 0E, to the
point x + ¥(x)vg (z) along the trajectory of the vector field {Vdg, . Thus, if we move along
the trajectory of the vector field X, the time needed to go from a point x € OE, to the point
x+V(z)vg, (x) is always one. Moreover that integral does not change for points z € N, (E,)
in the trajectory of the vector field {§Vdg, . This ensure that divX =0 in N,(E,).

We now prove the estimates on ®. First of all notice that we can find a constant C' > 0
such that, for every set E. as above, it holds

[ X lw2ow, (e, < CllYllweeom,) -
Thus, by the definition of the flow ®, we have that

[ —Id|lcow, (&) < ClYlweror,) -

To estimate the other norms, we just differentiate in (2.15) to obtain

[V2@(t, ) — Idllcow, () < Cull VX llcow,(e,) < Culldllwzeor,) -

Since this shows that the (N — 1)-dimensional Jacobian of ®(¢,-) is uniformly closed to 1 on
OFE.,, deriving again in (2.15), we obtain also the following estimate:

IV20(t, )| 1o or,) < Cull VX Lo(rs, (5,)) -
Finally, if |E}| = |E,|, then

d2
Bl = / (divX)(X -vg)dHN =0  forallte0,1].
B

This follows from [15, Equation (2.30)]. Thus, the function ¢ ~— |E%| is affine in [0, 1], and

since |E,| = |EL|, we have that it is constant. So
d
0= 7‘Et‘ = / divX dHN_l = X - VEtdh.
dt E! OE! "
This concludes the proof of the lemma. O

DEFINITION 2.37. Let E ¢ TV, Take a smooth function f: TV — RY such that f = vg
on OF, and consider the functional

2
Peng(F) := )/ f(z)dx — / f(x)dx‘ .
F E
Moreover define the penalized functional
F(F) :=F(F)+ Peng(F).

for sets F ¢ TV,
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LEMMA 2.38. Let E,F C TV, and (®;); be an admissible family of diffeomorphisms.
Then we have

iPenE(F5)|s:t = 2</Ft fdx — /Efda:> . - f(X -vg) dHN L,

and
2

d
—Peng(FE = 2)/ ve(X - vg du N1
dt? ( t)|t 0 OF ( )

‘ 2

+2(/ fdz —/ fdm) ] FIX )iV — dive (X (X - v))] dHV L
F E OF
PrOOF. Consider the vector function F': (—1,1) — R given by
F(t) := fi(x)dz,
E
for some i1 =1,...,N. Then

F’(t):/F(Vfi~X+fidivXt)d:v: . Fi(X -vp) ARV

Moreover

F(0) = %( fi(X - vp) a )

OF, t=0

N / (Vi X)(X -vp) dHN T+ fg((X 0 @) - (vp, 0 @)V 1Dy) o AR
oF

or " dt [t=0

= [ (95 XK ) an
oF
+ / i [diVT(X<X vp))+Z-v—2X, -V (X -v)+ DVF[XT,XTH auN-1
oF
— / fz [(X . l/)diVX — diVT(XT(X . y))] deN—l ’
oFr

where in the last step we have used the same computations as in [1, Theorem 3.1]. U

REMARK 2.39. Let E be a stricly stable critical point for F7. Then the quadratic form
(92]-'2C associated with the second variation of ]-21 computed at E satisfies

PFLE)gl >0  forall p e HY(JE)\{0}.

Indeed, the non-negative term due to the second variation of the penalization vanishes only
for ¢ € TH(OE), where we know, by the strict stability of E, that 0?F is strictly positive
(except, of course, for ¢ =0).

We state a technical lemma, whose simle proof is left to the reader.

LEMMA 2.40. Let E C TV be a regular set, and let M > lvellc1or). Then there exists

a constant € > 0 such that for every set F C TV with de2(E,F) < e, there exists a function
fr: TN = RN with fr =vp on OF and [ frller v myy < M.
Moreover, for every § > 0 there exists 7 > 0 such that

[ teean <o = | vppan | <n,
OFY OFY
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for any set F¥ C TN with OFY = {x + Y (x)vr(z) : = € OF} for some Pl w2r@r) < 1,
where F C TN s a set such that de2(E,F) < ¢, and any function o € H*(OFY) with
”SDHHl(aFw) =1

We now prove a uniform W?P-local minimality result for the penalized functional.

LEMMA 2.41. Let p > max{2,N — 1}, and let E C TV be a strictly stable critical point
for F7. Then there exist constants 4 > 0, 64 > 0, €4 > 0 and Cy > 0 with the following
property: take v € (Y —74,7+74) and let E be a critical point for F7 with der (E, E,) < €4;
then

Fi, (F) > Fp (Ey) + Co|E;AFP,

for every set F C TV with |F| = |E,| and OF = {z + ¢(a)vg (z) : x € OE,} for some
[Yllw2e@om,) < 04

PROOF. Step 1. We claim that is possible to find a constants v4 > 0, 4 > 0, ¢4 > 0
and m > 0 such that,for any v € (¥ — v4,% + v4), any critical set E, C TN for F7, with
|Ey| = |E| and dei(E, Ey) < €4, we have that

int{ 27 (F)lg)] + @ € H'OF), lpllamom =1} > m, (2.16)
whenever F C TV, with |F| = |E|, is such that
OF = {z+yY(x)ve, (x) : x € OB, },

for some ¢ € W*P(OE,) with [[¢|w2ror,) < da-
We first prove that (2.16) by supposing

‘/ veo dHN | < 5, (2.17)
OF

To prove it we reason as follows: suppose for the sake of contradiction that there exists a
sequence 7, — ¥, a sequence of sets E,, C TV with |E,, | =|E| and E,, — E in C! (and
thus, by Lemma 2.33, in C3#), a sequence of sets F,, C TV with |F,| = |E| and

OF, ={z + Yn(z)vg, (v) : x € OF,,},
for ¢, € W*P(JE,,) with [ llw2r@p,,) < 1/n, and a sequence of functions ¢y, € HY(OF,)
with [lon|[ g1 or,) =1 and fapn enVrE, — 0, such that
ann(Fn)[Qpn]—)0 as n — 0.

One can see that E, — E in C%F implies that F,, — E in W2P. Then there exist
diffeomorphisms ®,, : E — F, converging to the identity in W?2P(9F). The idea is to
consider the functions @, € H'(OF) defined as

On = ppo®, —ay,,
where , ap := [, on o ®n dHN !, and to prove that
O*F 1 (Fy)[n] — O F 1 (E)[@n] — 0, (2.18)
and that
2Fm(E)(Gn) "] = *Fm(E)[@n] = 0. (2.19)
The above convergences are proved exactly as in Step 1 of [1, Theorem 3.9], where we notice

that the convergence of the term of the quadratic form due to the penalization, is easily seen
to converge.
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This allows to conclude: indeed, from the fact that
~ L 5 ~ L
*F(E)(@n) 7] = O*F1(E)(¢n) "] = 0, (2.20)
we obtain a contradiction with
inf{?FI(E)lg] : ¢ € THOE)\ {0}, ¢l om =1} = C >0.

This last fact follows from the strict positivity of the second variation (see |1, Lemma 3.6]).
In order to prove (2.18) and (2.19) we have just to repeat the same computation as in step 1
of [1, Theorem 3.9]. Finally (2.20) is easily seen to be true.

Let n be the constant given by Lemma 2.40 associated with d4. Then, if

‘/ fe o dHN T >0,
oOF

where fp is the function associated to the set E, given by Lemma 2.40. Then, from the
explicit expression of (’92]-"277 (F)[¢], we get that (2.16) holds with m = 1 Otherwise, thank to

Lemma 2.40, we know that (2.17) holds, and thus we conclude by the the previous computa-
tions.

Step 2. To conclude, we have to check that all the estimates needed in the second step of
[1, Theorem 3.9] can be made uniform with respect to v € (¥ — v4,5 + 74). For any pair of
sets £, and F as in the statement, consider the vector field X, and its flow ®,(-,t), provided
by Lemma 2.36. Let Eg =&, (E,,t). Fixed ¢ > 0, it is possible to find ¢4 > 0 and d4 > 0
such that

lve, — Vet ((I>n(-,t))HLoo <eg, HJN_I((I),Y(-,t)) — 1= < €.
Moreover, thanks to the C'-closeness of Ef/ to F, we can also suppose
4905 + Hpe — Al <<,

where 4yvPr + H E, = Ay. Finally, thanks to the uniform control on the gradient of the
functions fg_, up to take smaller 4 > 0 and d4 > 0, we have

‘/ wad:c—/ vada;’ <e,
23 £,

for every t € [0,1]. Thus, we can write
1
() -7 ) = [ [WEAEMXW v

- / (49055 + Hpg )divs, (XT(X, - e )) dHV !
ot

—2( / fodz — / wad:c>- / S, dive, (X1 (X ) dHN | dt.
E] E, OE!

Since the vector fields X, ’s are uniformly closed in the C'-topology, it is possible to find a
constant C > 0 such that

v, (X7 (X - )| < Oy vy s oy -

_Dp_
L7-T(9EL)

for every v € (¥ — 44,7 + 74). Thus, the above uniform estimates allow us to conclude, as in
[1, Theorem 3.9]. O
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LEMMA 242. Let E and E, as in the statement of Lemma 2.41, and consider the
functions f, gwen by Lemma 2.40. Then there exists ¢ > 0 with the following property:
for any F C TN with dea (E,, F) < e, there exists v € RN such that

f,ydx:/E fyda.

F+4v

ProOOF. Fix v € (¥ — 72,5 + 72). Consider the function T, : RY = RN given by

T,(v) = /E fy(x —v)de.
Then
DT, (0) = —/E Df,(x)dx.

In particular (DTW(O))M = —faEV v -v; dHN"L. By (2.8), we know that there exists an

orthonormal frame, where the expression of DT,(0) is the identity. Thus, it is invertible.
Now, take a set F C TV such that there exists a diffeomorphism @ : E, — F of class Cct,
and consider the map Tg’ ‘RN — RV given by

T;D(U) = /E f,y(q)_l(x) —v)J®(z)dz.

Then
DT?(0) = —/ Dfy (@ Hz))JO(z)dx .

Ey

So, fixed p > 0, there exists € > 0 such that
| DT (0) = DT, (0) o < .

whenever dei(E,, F) < €, for all v € (¥ — 72,5 + 72) (thanks to the uniform control on
the C'-norm of the functions f,’s). Since the function T;I’ is closed in C! to the function
T, it is possible to find € > 0 and 6 > 0 such that for each ® with ||® —Id|| < e, it
holds T$ (B:) D Bs(T. ,;I’ (0)). This follows, for istance, from the proof of the Inverse Function
Theorem. This allows to conclude. O

LEMMA 2.43. Let p > max{2, N —1}, and let E C TV be a strictly stable critical point for
F7. Then, for any v € (¥ —va,7 +74) and E, critical point for F¥ with dc1(E, E,) < €4,
we have that

FUF) = FU(Ey) + Co(a(E,, F)?,
for every set F C TN with |F| = |E,| and OF = {z + ¢(z)vg (z) : x € OE,} for some
[Yllw2eom,) < 64

PROOF. Let ¢4 € (0,e), where £ > 0 is the constant given by the previous result. We
know that we can find a vector v € RY such that

Peng (F+v)=0.
Thus, by using the result of Lemma 2.41 we can write
FUF) = FI(F +v) = Fp (F +v) > Fp (Ey) + Co| B, AF|?
> FV(E,) + Ca(a(E,, F))”.
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We now prove the uniform L°°-local minimality result, i.e., the uniform version of [1,
Theorem 4.3].

LEMMA 2.44. Let E C TV be a strictly stable critical point for F7. Then it is possible to
find 6 >0, v5 >0 and €5 > 0 such that, for any v € (¥ — 5,5 +v5) and E, critical point
for FY with dea (E, Ey) < €5, it holds

FIEy) < FI(F),

for every set F C TN with |F| = |E,|, such that E,AF € N3(Es), where N3(E,) is a
tubular neighborhood of OE, of thickness 0.

PROOF. Suppose for the sake of contradiction that there exists a sequence ~, — 7,
E,, — E in C', with |E,| = |E|, a sequence §, — 0 and a sequence of sets F, with
|Fn| = ‘E’Yn‘7 E,\AF, € Njs(FEs, ), such that

F(E,,) > F(F,).
Let E, be a solution of the following constrained minimum problem
min{F"(F) + A||F| - |E,|| : FAE, C N5(Es,)} .

By using the C3# convergence of the E,. ’s to E, and reasoning as in the proof of |1,
Theorem 4.3], it is possible to find a constant A > 0 independent of ~, such that the sets
E,’s are (4A,rg)-minimizers of the area functional, for some o > 0 independent of -, , and
|En| = |E,|. This is because, if we set v, := Vd,, (defined in (OF),, for some p > 0), where
dy,, is the signed distance from E,, we have that ||divvy| e~ < C for some constant C > 0
independent of n.

Since (E,)y, is a sequence of uniform (w, r)-minimizers converging to E in the L' topology,
by Theorem 2.7 we have that indeed E,, — E in the W2P-topology. By using again the C3
convergence of the E, ’s to I and the Euler-Lagrange equation satisfied by each FE,, we
obtain that dy2,(En, E,,) — 0 as n — oo. Since, by definition, FY(E,) < FY(E,,)we
obtain a contradiction with the result of Lemma 2.43. (]

Finally, we prove the uniform L!'-local minimality result.

PROOF OF PROPOSITION 2.34. Suppose for the sake of contradiction that there exists a
sequence v, — ¥, E,, — E in C!, with |E,| = |E|, a sequence &, — 0 and a sequence of
sets F,, with |F,,| =|E,,|, and 0 <&, — 0, where ¢, := a(F},, E,,), such that

Fin(F,) < F™(Ey,) + %(O‘(E%’ Fn))2 .

Let E, be a solution of the following constrained minimum problem

min{F(F) + M/ (a(F, By,) — ) + 20 ¢ [F| = | By}

Then, by usign a I'-convergence argument it is possible to prove that the FE,’s converge (up
to a subsequence) in the L' topology to a solution of the limiting problem

min{ 7 (F) + Ala(F, E)| : |F|=|E|}.

Reasoning as in the proof of [1, Theorem 1.1] and by using the C3# convergence of the E, s
to E (see Lemma 2.33), it is possible to prove that there exists a constant A, such that, the
unique solution to the limiting problem is F itself. Moreover, reasoning again as in the proof
of [1, Theorem 1.1] and using Lemma 2.14 we can also infer that E,, is a sequence of uniform
(w,7)-minimizers, and that E, — E in the W?P-topology, and thus dyy2.»(Ey, E,,) — 0 as
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n — oo. Using the previous uniform L°°-local minimality result is it also possible to prove

that 2ZnEm)

ey 1 (see [1, equation (4.17)]). Thus we may conclude

Fr(Ey) < F(F,) < F'(Ey,) + %(Q(E%, F))? < F(B,,) + %(Q(EW En))*.

This yelds the contradiction with the result of Lemma 2.43.
O

2.3.3. Continuous family of local minimizers. We now prove a uniqueness result for
critical points of F7 close enough to a regular critical stable point of the area functional. We
also prove that these critical points are isolated local minimizers.

PROPOSITION 2.45. Let ¥ > 0 and let E C TN be a strictly stable critical point for
FY. Then there exist constants v > 0 and g6 > 0 and a unique family v — E, for
vye (¥ —.7+), with |E,| = |E|, such that

e doi(E4, E) < ¢g,

o E, is a critical point for F7.
Moreover v — E, is continuous in C3B, for all B € (0,1), and E, is an isolated local
minimizer of F7.

PROOF. Step 1. Since E is a strictly stable critical point for F7, by Theorem 2.31 we
can infer that it is an isolated local minimizer of the same functional. Thus, by Theorem 2.25,
we can find a sequence (E),, with |E,| = |E|, such that E, is a local minimizer of 77, and
a(Ey,E) = 0 as v — 7. By Corollary 2.15, we know that the sequence (£, ), is a sequence
of (wg,rp)-minimizers, where the parameter w can be choosen uniformly with respect to ~
(see Lemma 2.14). Hence, Theorem 2.7 allows to say that the E,’s converge to E in the
C1B_topology.

Step 2. Take €6 < €9 and ~g < 2 such that

dcl (EW/? E) < &g,
for any v € (¥ — 6,7 + 76). By Proposition 2.34, we know that the E,’s are uniform local
minimizers with respect to sets F with |F| = |E,| such that a(F,E,) < d2. In particular,
we have that

FU(B,) < FU(F),
for any set F' # E, with [F| = |E,| and o(F, E,) < §;. By taking a smaller ¢ (and a
smaller -4 ) if necessary, we can assume that

dcl(F,E) < €g :>OJ(F,E,Y) < 09,

for any set ' C TV and any v € (¥ — 6,5 + v6). This allows to infer that E, is the unique
critical point of F7 with |E,| = |E| and dei(E,, E) < €¢. Indeed, if F' is another critical
point of F7, with |F| = |E| with dc1(F, E) < €6, by using again Proposition 2.34, we would
obtain that F is an isolated local minimizer of F7 with respect to sets G with |G| = |F| and
a(G, F) < 02. But this contradicts the isolated local minimality property of E, .

Step 3. Finally, we can deduce the continuity in the C3#-topology of the family v E,
as follows: fix ¥ € (¥ —v,5+7), and let v — 7. Then, up to a subsequence, the sets E, — F
in the L' topology. By the uniqueness property just proved, we have that F = E5. Since E,
is a sequence of uniform (w,79)-minimizers, we infer from Lemma 2.7, that £, — F in the
CH® topology. Then, by the Euler-Lagrange equation satisfied by the E,’s, we obtain the
convergence of £, to E5 in the C3:8 -topology. O
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FicURE 3. An example of strictly stable periodic surface with constant mean curvature.

2.3.4. Periodic local minimizers with almost constant mean curvature. The
main result of this chapter is the following.

THEOREM 2.46. Let E C TN be a smooth set that is critical and strictly stable for the
area functional, i.e., there exists A € R such that

Hyp = A on OF

and
/ (ID7¢l* — |Bap*¢?) dHN 1 >0 for every p € TH(OE)\{0}.
OFE

Fix constants ¥ > 0, € > 0. Then it is possible to find k = k(3,e) € N and C = C(3) > 0
such that for all k > k there exists a unique set F C TN that is 1/k-periodic and with

e deo(F,EF) < =, where EF* is as Definition 2.1,

° dcl(F,Ek) <eg,

o |V Hr|lp~@or) < & where Hp is the mean curvature of OF .

Moreover F is an isolated local minimizer of F7 with respect to 1/k-periodic sets, i.e., there
exists § > 0 such that, for any set G C TN that is 1/k-periodic and with |G| = |F|, it holds

FIF) < F(G),
whenever 0 < a(G, F) <.
Proor. Consider the sequence
(V)& == (Y&~ kem (o} -

Let ~ — E,, be the unique family provided by Proposition 2.45 applied to E. Take k such

that, for all k >k, dei(E,,, E) < e and E,, is an isolated local minimizer of 7. This can

be done by using the results of Proposition 2.45. Let F' := Effk Now, it is easy to see that

1
deo(F, EF) = cdeo (B, B) <+, dai(F, E") =dei (B, E) <e.

o™
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Moreover, by (2.5) and (2.4), we have that
FIF) = kNF(Ey,) = k[Ppx (Ey,) + N Ly (Ey,)] = kF & (Ey,) -

Since E,, is an isolated local minimizer for /7%, we obtain that I satisfied the isolated local
minimimality property of the theorem.
Finally, we have that

Hyp(z) = kHop,, (kx) = k(X — 4ypvEn (kz)),

where in the last step we have used the Euler-Lagrange equation satisfied by E., . Thus, using
the definition of +x, we obtain that

4
IVrHp| L= or) < ?HV’UE%”L‘”@E%)-

Since v®% — vF in OV up to choose a bigger k, we also have the desired estimate for
IV-HE| Lo aF) - O

We finally show that the critical points constructed in the above theorem can be approx-
imated with local minimizers of the e-diffuse energy OKY .

COROLLARY 2.47. Let F be a periodic critical point constructed in the above theorem.
Define the function u:= xp—xmg. Then it is possibile to find € > 0 and a family (Ue)ec(0,5)
of local minimizers of the energy OKZ (see (0.1)) with prescibed volume m := Jpn w, such
that ue — u in L*(TN) as ¢ — 0.

PROOF. The proof follows by the Kohn and Sternberg’s theorem [40] (see also [14, Propo-
sition 8]), thanks to the I'-convergence of OK/ to F7 and thanks to the fact that F' is an
isolated local minimizer with respect to 1/k-periodic perturbations. O






CHAPTER 3

A local minimality criterion for the triple point configuration of
the Mumford-Shah functional

In this section we prove a local minimality result, based on a second variation approach,
for triple point configurations of the Mumford-Shah functional. This is the first step of an
ongoing project aimed at proving the local minimality result in the L'-topology.

3.1. Setting

Here we collect the terminology and we introduce all the objects we will need in the rest
of the chapter. First of all, we need to specify the class of triple points we are interested in.

DEFINITION 3.1. We say that a pair (u, ') is reqular admissible triple point (in brief triple
point) if

o I' =T1UT?UTI?, where the I'"’s are three disjoint relatively open curves in Q that
are of class C3 and C?® up to their clousure. We also suppose 9I'; = {xo, z'}, where
xo € Q and z¢ € 00 with z? # 27 for i # j,

e denting by ¢ the normal vector to I';, we require the angle between v%(z¢) and
V(i +1)m0d3($0) to be less than or equal to m; moreover we require each I'; to does
not intersect 0§2 tangentially,

e there exists dpQ CC IN\T, relatively open in 9, such that u solves

Vu-Vzder =0, (3.1)
o\r

for every z € HY(Q\TI') with z =0 on 9pQ.

REMARK 3.2. The regularity we impose on the curves I'’s is not so restrictive as it may
seems: indeed we will work with critical triple points (see Definition 3.14), and it was proved
in [39] that, for critical configurations, each I'; is analitic as soon as it is of class C1®, and
the regularity theory tells us that each curve is of class C?® up to its clousure. The second
condition we asked for the I'’s is to avoid pathological cases.

We would like to point out that the assumption that each curve I'; is relatively open has
been made just for convenience, and do not prevent the use of (u,T), where u € HY(Q\T),
as an admissible pair in which to compute the Mumford-Shah functional.

It is possible to rephrase the third condition above by saying that u is a weak solition of

Av=0 in Q\T,
v=1u on dpfl,
Ovpv =0 on 0Q\0pQ2,
o,v =0 onT.

From the results on elliptic problems in domains with corners (see [32]) and from the regularity
of 002, we know that u can have a singularity near S, the relative boundary of dp§2 in 9€:

57
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FiGURE 1. An admissible subdomain U. The bold part represents 0p{2.

namely, u can be H' but not H? in a neighborhood of S. Moreover, the gradient of u may
not be bounded in that region. In a future application of the present work we will need to
impose a bound on the L% -norm of the gradient of the admissible competitors. But this
can be done only far from §. So, we are forced to consider competitors equals to u in a
neighborhood of §.

DEFINITION 3.3. Given a regular triple point (u,I'), we say that an open set U C Q is
an admissible subdomain if ' C U and UNS = @. In this case we define

MSE((w,T);U) == /U\F Vu)|? dz + HN (D) .

Moreover, given an open set A C , we denote by H{;(A) the space of functions z € H'(A)
such that z =0 on (Q\U) U IdpQ2.

Our strategy requires to perform the first and the second variation of our functional MS.
So, we need to specify the perturbations of the set I and of the function u we want to consider.

DEFINITION 3.4. Let (u,I') be a regular admissible triple point and let U be an admis-
sible subdomain. We say that a family of differomorphisms of € onto itself, (Pe)ie(-1,1), 18
admissible for (u,T') in U, if the following conditions are satisfied:

o ®g is the identity map Id,

e &, =1Id in (2\U) U Ip12,

e & is of class C? with respect to the variable ¢t and of class C® with respect to the
variable x .

In this case, we define:
X@t::d)toq)t_l, Z(I,t::@toét_l,
where with ®; we denote the derivative with respect to the variable s of the map (s,z) —
& () computed at (¢, ). Moreover we also introduce the following abbreviations
X = Xo, , Zy =Ly, , X =Xy, Z = Zy,
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where no risk of confusion can occur.

The above variations will affect only the set T', 7.e., at every time ¢ we will consider the
set Iy := ®4(I"). Since our functional depends also on a function u, we have to choose, for
each time t, a suitable function wu; related to the set I'; in which compute our functional
MS. The idea, as in [9], is to choose the function that minimizes the Dirichlet energy.

DEFINITION 3.5. Let @ : Q2 — Q be a diffeomorphism such that ® = Id on (Q\U)Udp,
and set T'g := ®(I"). We define ug as the unique solution of:

fQ\rq, Vug - Vzdr =0 foreach z € H;(Q\I'sp),
up = u in (Q\U)U9dp,
Uy € Hl(Q\Pq)) .

Moreover, given a family of admissible diffeomorphisms (®;);, we set u; := ug, , and we define
the function i (z) as the derivative with respect to the variable s of the map (s,z) — us(x),
computed in (¢,x). For simplicity, set @ := .

We are now in position to describe the admissible variations.

DEFINITION 3.6. We define the first and the second wvartation of the functional MS
at a regular admissible triple point (u,I") in U, with respect to the family of admissible
diffeomorphisms (®¢);c(—1,1), as

d2

d
aMS((ut7Ft);U)‘t:07 @

MS((ut,Ft); U)

|t=0

respectively.

3.2. Preliminary results

3.2.1. Geometric preliminaries. We collect here some geometric definitions and iden-
tities that will be useful later. First of all, we will use the following matrix notation: if
A:R? - R? and vy, vs € R?, we set

Alvy,va] := Alvy] - va.

Let v € R? be a curve of class C? and let 7 : v — S' be the tangent vector field on
~v. Given an orientation on < it is possible to defined a signed distance function from ~ as
follows:

dy(z +tv(z)) :=t,
where v(z) is the normal vector to v at the point x. This signed distance turns out to be of
class C? in a tubular neighborhood U of v; moreover, its gradiend coincides with v on . In
the following we will use the extension of the normal vector field given by the gradient of the
signed distance from +, that we will denote by v : U — S!.

Given a smooth vector field g : U — R¥, we define the tangential differential D,g (Vg
if k=1) by D,g(x) :=dg(x) o m,, where dg(z) is the classical differential of ¢ at « and 7,
is the orthogonal projection on 7,7, the tangent line to v at x. If g : U — R? we define its
tangential divergence as divyg := 7 - 0;g.

We define the curvature of v as the function H : Y — R given by H := divv. Notice
that, since 9,v =0 on I', we can write H = div,v = Dv|r,7].

For every smooth vector field g : U/ — R? the following divergence formula holds:

/dmg ARV ! :/H(g-u) ARV +/ g dHO, (3.2)
¥ ¥ oy
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Q

x1

x2

€3

FIGURE 2. An admissible triple point with the choosen orientation.

where 7 is a unit tangent vector pointing out of 7 in each point of 0y. Moreover, if & : U — U
is an orientation preserving diffeomorphism, and we denote by v := ®(), a possible choice
for the orientation of v is given by:

(D) "[v]

Vp i — ———— O 71.
= ey T °°

In this case, the vector n of the divergence formula (3.2) becomes

Do[n]

od 1,
| D®[n)|

Ne ‘=
In particular, for an admissible flow (®;)yc(—1,1), we will use the following notation: v; := vg,,
N = No, , and we will denote by H; the curvature of ;.
Finally, setting Jop := |(D®) T[v]|det D®, for every ® € L'(vp) the following area
formaula holds (see [5, Theorem 2.91]):

/ ® AHN Tt = /(<I>o<I>) Jp dHN L.
e Y

We now treat triple points. Fix for 9€) the clockwise orientation and orient the curvers
I';’s in such a way that v%(z%) = 75q(z’) for each i = 1,2,3 (see Figure 2), where v is the
normal vector on I';.

For the sake of simplicity we will use the following notation: given ¢ : I' = R¥, we will
denote by (; its restriction to I';, and we will write

3

/8F p dH" =" (pi(0) + pila’)) .

i=1

In the following we will also need to use the trace of a function on I'. Notice that, since
each T'; is relatively open, x* € I';, for each i1 =0,1,2, 3.
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DEFINITION 3.7. Let T' be a regular admissible triple point, and let z € H'(Q\T). We

define the traces 27,2z~ of z on I' as follows: let z € I' and define
1
+ .
z7(x) = lim ——— z(y) dy,
( ) r—0+ ‘Br(x) ﬁVzi| Br(x)ﬂVzi ( )

where V.5 :={y € R? : £(y — ) -vi(x) > 0}, if z € I;.

In the computation of the second variation we will need some geometric identities, that
we collect in the following lemma. The proofs of the first bloch of identities are the same as
those of |9, Lemma 3.8], and hence we will not repeat them here. We just need to prove the
last three.

LEMMA 3.8. The following identities hold on each T :
(1) D*u* V', v = =D
(2) D*u*[X, V'] = —(X - v))Ar,u® — Dvi[Vpiu™, X];
(3) divr,[(X - V) Vpiu®] = (Dps X)W, Viiu®] — V2ut (X, v
(5) D?ui[lﬂ,vpiui} = —Du’[Vriui,Vpiui] = —H;|Vru*|?;
(6) v' = —(DriX)T[VZ] — Dpu/[X]A: -Vr(X-v); A A
(7) 2(®- (o 1) Jo, ) g = Z- v —2X .V (X )+ D X X 4 divps (X -07) X))
Moreover, the following identities are satisfied:
(1) (0 © ®i)yg = (D, X)T [, o o'y |
(i6) X 8(rf o B1)y_g = —(X w5t o — H(X /)X ), on OL;
(i) Z - vaq + Drga[X, X]| =0 on 0T N 0.
PROOF. Proof of (i). Let wy := D®y(z)[tau(z)]. Then
; 0 Wt
—(njo® = ——.
ot (nt o t)‘t:O ot |wt|
Since 1y = Dpi®[r?] = Dpi X [7/] Dpi7, we obtain
0,
a(m © ‘I’t)|t:o = Dr: X[r] - (DriX)T[T, 7],
we conclude.
Proof of (ii). This identity follows by taking the scalar product of identity (6) with (X - v)n,
and by using (i).
Proof of (iii). This one follows by deriving with respect to the time the identity

(Xt o®t) - (vano®y) =0,
that holds on O N ON. O

3.2.2. Properties of the function . In the computations of the first and the second
variation we need to know some properties of the sequence of functions (u;); that we state
here. First of all we need to prove that the function @ actualy exists. This is provided by the
following result, whose proof is just the same as those of [9, Proposition 8.1], where the elliptic
estimates in W?2P for p < 4, needed to prove the second part are, in our case, provided by
Theorem 3.33.

PROPOSITION 3.9. Let (®¢); be an admissible family of diffeomorphisms, and let (u); be
the functions defined in Definition 3.5. Set up := uzo Py and vy := up —u. Then the following
properties hold true:
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(i) the map t — vy belongs to C((—1,1); HL(Q\T)) ;
(ii) for every T € T, let B be a ball centered in T such that B\I' has two (or, if T = o,
three) connected components By, By (and Bsz). For every t € (—1,1), let u; be

the restriction of Uy to B;. Then we have that the map u'(t,x) := uj(x) belongs to
CH((-1,1) x By).

Using the above proposition it is possible to prove the following result, whose proof is just
the same as those of [9, (3.6) of Theorem 3.6].

PROPOSITION 3.10. The function U ezists, it is a well defined function of HL(Q\T).
Moreover, it is harmonic in Q\I' and satisfies the following Neumann boundary conditions:

Oppqt =0 on (0Q\0pQ)NU,

Oyu* = divp ((X - v)Vru®) onT. (3.3)

In particular, the following equation holds:
/ Vi -Vzder = / [dive ((X - v)Vrut) 2™ — dive (X - v)Veu™ )27 dHV L, (3.4)
Q T

for each z € Hj(Q\T).

REMARK 3.11. First of all we notice that the right-hand side of (3.3) is well defined.
Indeed, by Theorem 3.33 that u is of class H? in a neighborhood of T', and thus Vpu® €

H%(I_“) So, since T' and X are regular, we get that (X - v)Vru® € H%(f)

3.3. First and second variation

The aim of this section is to compute the first and the second variation of the functional
MS at a regular admissible triple point (u,T").

THEOREM 3.12. Let (u,I") be a regular admissible triple point, U an admissible subdomain
and (®1),c(—1,1) an admissible family of diffeomorphisms for (u,T') in U. Set f := |Vru~|? -
|Vru™|?>+ H. Then the first variation of the functional MS computed at (u,T), with respect
to (Pt)ie(—1,1), 18 given by:

d/\/lS((ut,I‘t);U)tO_/f(X-u) dHN P+ [ X .ndH°, (3.5)
di r or

while the second variation reads as:
d2
@MS((ut,rt); U)jmp = —Q/U |Va|? dz + /F V(X - )2 duN 1 +/FH2(X )2 dHN Tt

+/Ff[z-u—2X|-VF(X-V)+DV[X|,X']—H(X-y)2] dHN1+/6FZ-77d’H°-
(3.6)

ProOOF. Computation of the first variation. In order to compute the first variation, we
consider

MS ((ug, T1); U) :/ Vel do + HNN(TY) .
U\Ls
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and we treat the two terms separately. For the first one we have that

d d
— / \VUS\Q dx = — / |Vus o <I>S|2det Dd, dx
ds \ Jinr, ds \ Jur

|s=t |s=t

= / [Q(VUt o (I)t) : ((Vut o q)t) + (DQut o q)t)q)t) + |Vut o (I)t|2diVXt o (I)t] det D‘I)t dzx
U\I'

=2 Vut~V11tdx+/

(2D2ut[Vut, Xt] + \VutIQdivXt) dx .
U\I't U\T't

Recalling that i, € H};(U\I'y) by Proposition 3.10, from (3.1) we get that the first integral
vanishes. Moreover, since it is possible to write

2D u, [Vug, Xyi] + |V [*divXy = div(|Vue*Xy)

integrating by parts in each connected component of Q\T'y, and recalling that X; - vgq = 0,
we get

d _ .
d(/ | V| d;v) :/ (‘V“t 2 - ‘VUT‘Q)(Xt'Vt) dHN
S\ JU\r;

|s=t Tt

Finally we also notice that in the last expression, we can substitute the operator V with the
operator Vr,, since dy,u; = 0.
For the second term, it is well known (see, e.g., [63]) that

d
(;L[N—l(rs)> _ / dive, X, dHN " = [ Hy(X;-v) dHN T+ [ X dHO.
dt |S=t I'; It oIt

Hence, defining the function f; on I'y as f; := |Vru; |2 — |Vr,u; |2 + Hy, we obtain

d
L MS((us, 7)), :/ X)) dHY [ Xy dHO. (3.7)
ds =t Jp, aT,

Notice that the functions f; are weel defined C'' functions in a normal tubular neighborhood
of T'y. In particular, for ¢t = 0, we deduce the following expression for the first variation:

d

a/\/l‘s((u,f,rt); U)jeo = /(vmﬁP —|Vru P+ H)(X -v)dHY P+ [ X o dHC.
r or

Computation of the second variation. Now we want to compute

d2

@MS((US, Fs), U)

[s=t’
for s € (—1,1). The derivative of the first term of (3.7) can be computed as follows:

i( I, ft(Xt . Vt) d?—[N—1> — jt(/r(ft o q)t)(Xt o (I)t) . (Vt o (I)t>Jqu dHN—l)

[t=0 |t=0

. -~ 0 . _
= [+ 91X ) @i [ (b (0 @) g Y
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Now, using equality (7) of Lemma 3.8 to rewrite the second integral, we get
d .
dt( fi(Xe ) dHN_1> = /(f +VfX)(X-v) dHN !
r

I [t=0

+/f(Z~y2X” Vr(X - v) + Dy[X I, X + dive (X - v) X)) dHN !
T
:/f(Z-V—2X| V(X -v) + Dy[x!], x17) and-!
r
+/(f+Vf~y(X-u))(X-z/) dHN_1+/divF(f(X-u)X) dHN !
r r

= /F(f +Vfu(X-v)(X-v)dHY T + . F(X -v)(X - n)dH°

+/Hf(X-y)2 dHN_1+/f(Z~V—2X”-VF(X-V)+DV[X||,X||]) dHN L,
r r

where the last equality follows from integration by parts, while the previous one by writing
X = (X -v)v+ XII. Now, recalling that f = |Vru~|? — |[Vrut|> + H, we have that

Vf =2Vrut D*u~ —2Vru~ D*ut +VH,

f =2Vrut - Vru~ —2Vpru™ - Vput + H.

Using the above identities and (2), (4) and (5) of Lemma 3.8 we can write

/ (V- ) (X -v)2duN-t = / (X -v)?[2D*u” [Vru~,v] — 2D*u " [Vru™,v] + 9, H] dHN
r r

= /(X -v)?[2Dv[Vrut, Vrut] — 2Dv[Viu™, Veu™| — [Dy)?] dHN !
r

= /(H2 —2fH)(X -v)? aHN !,
T

where the identity Dv[r, 7] = H has been used in the last step.
Now we would like to treat the term [ f(X - v) dHN=1. First of all we recall that
H = divrv and 8,7 = 0 (since |14]? = 1). Thus H = divp, and hence

/ H(X -v)duNt = / (divpo) (X - v) dHN !
T I

=~ [Vt W [ () an?
r or

= [ Ve P @ [ () ane,
I or

where in the last line we have used (6) of Lemma 3.8. Moreover

/ (Vru®-Vieat) (X v) dHN L = — / a*divp (Vru® (X v)) dHY 142 / ot (X-v)(Vputn) dHO,
r r ar
Hence, recalling (3.4), we obtain

X ) au Nl — -2 2 gy N1 5 ) dHO
/Ff(X ) dH 2/Uvu\ dx—i—/F!Vr(X )2 dn +/8F( D)X - v) dH

+ 2/6F [iﬁ(X ) (Vrut o) —a (X - v)(Vru~ -n)} d#H°.
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Finaly, we have to compute the derivative of the second integral of (3.5). Using (i) of
Lemma 3.8, we have that

d d
dt( X dHO) @ (/ (X0 ®y) - (o Py) dHO)
or |t=0 or |t=0

- /8F<Z.n+x.§t(ntoqut)t0> dn’
_ /8F<Z-n—(x.y)(p.n)—H(X-u)(x-n)> dHO.

We now observe that some integrals vanishes for regular admissible triple points. Indeed,

by the Neumann conditions satisfied by u, we know that d,u™ = 0 on T' and that &,mui =0

on ONQNU. The admissibility conditions we required on regular admissible triple points tell
us that vpQ(z") and v'(z') are linear independent for every ¢ = 1,2,3, as well as vq(zo)
and v(wg). Using the fact that Vu® is continuous up to the closure of ', we can infer that

Vut(2?) = 0 for each i = 0,1,2,3.

Combining all the above identities, we obtain the desired formula for the second variation
of our functional MS at a regular admissible triple point (u,I’). O

REMARK 3.13. The above expression for the second variation can be also used to compute
the second variation at a generic time ¢ € (—1,1). Indeed, fix t € (—=1,1), and consider the
family of diffeomorphisms

EI;s =Py g0 <I>;1 .
It is easy to see that this family is admissible for (u,I") in U, and that
d? d? ~
2z MS (s, T)s U)oy = G MS (e @r(T0)) U)oy
Hence, mutatis mutandis, the same expression as in (3.6) holds true for the second variation
at a generic time t € (—1,1).
The expression (3.5) of the first variation suggests the following definition.
DEFINITION 3.14. Let (u,I') be a regular admissible triple point and U an admissible
subdomain. We say that (u,I") is critical if the following three conditions are satisfied:
e H=|Vru >~ |Vrut|? on T,
e the I';’s meet in zg at %7[',
e ecach I'; meets 002 orthogonally .
REMARK 3.15. Notice that a critical triple point is such that H; =0 on OI;.

Now we want to rewrite the second variation in a critical triple point.

PROPOSITION 3.16. Let (u,I') be a regular critical triple point. Then the second variation
of MS at (u,T") in U can be written as follows:

d? . _
@MS((Ut,Ft);U)ltZO = —2/vau|2 dx—l—/F|Vr(X'V)|2 dHN !

3
+/FH2(X )2 AHN T =N (Hpa(X - v')?)(a).

=1
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PROOF. We notice that for a regular admissible critical triple point f =0 on T', Vut =0
on ', X -n=X-vpqg =0 on I'NIN and, thanks to (ii7) of Lemma 3.8, that

Z -1 = —DvpalX,X] = —(X -v)*Dvalv,v] = —Hao(X - v)?.

Recalling that the T';’s meet in zo at 2 sm, we also have that ZZ | Z -Vi(zg) = 0. This allows
to conclude. O

The above result suggests to introduce the following definition.

DEFINITION 3.17. We introduce the space

H'():={p:T =R : ¢ € H'(T), (¢' +¢"+¢")(z0) = 0},
endowed with the norm given by:
3 .
el = 316 ey
i=1
Then, we define the quadratic form 92MS((u,T);U) : HY(T) - R as

PMS((u,T);U)[g] = —2/ |Vo,|? dx+/|Vp<,0|2 dHN_1+/H2<p2 dHN 1
r

Z (97 Dvgg v, v]) ("),
where v, € H(Q\T) is the solution of

/ Vo, - Vzdz = (divp (¢Vru®),27) . — (divp (¢Vru™),2z7)
Q

for every z € HL(Q\D).
The following lemma ensures that the right-hand side of (3.9) makes sense.
LEMMA 3.18. Let ¢ € HY(T) and let & € H2(T) N CO(T). Then ¢® € Hz(T).

PrOOF. We need to estimate the Gagliardo seminorm. So

[QD‘I) 22 _// |(10 ( ) (y)|2 dHN_l(.T) drHN—l(y)

\fc—y\Q

//|Q) |2|30 ‘( )‘ drHN 1( )drHNfl(y)

// ‘2‘(1) j( )| dHN 1( )dzHN71<y)

< J@lZoly ]H1/2+Hs0||Loo[ T -

Using the Sobolev embedding H*(I") C H%(I‘) N L*(T"), we obtain that the above quantity
is finite, and hence we conclude. O

REMARK 3.19. The above result holds just requiring ¢ € H%(I‘), but the proof is longer.

Since in our case we already know that Vpu® € H%(F) N CY%(T) for o € (0,1/2), we prefer
to give just this simplified version of the result.
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REMARK 3.20. Notice that it is possible to write

d2
@MS((ut, L);U) ey = PMS ((us, T); U)[(X -0, X -2, X 1)) + Rs, (3.9)
where R vanishes whenever (u,T’) is a critical triple point.
We now introduce the space where we will prove the local minimimality result.

DEFINITION 3.21. Given 0 > 0, we denote by the symbol Ds(Q2,U) the space of all the
diffeomorphisms ® : Q@ — Q, with ® = Id in (Q\U) U 9pQ and DP(zy) = Ald for some
A # 0, such that [|® —Id|[y2.000.0) < 0-

As one would expect, the non negativity of the second variation is a necessary condition
for local minimality, as shown in the following result. Since the proof is just technical, it will
be postponed in the appendix.

PROPOSITION 3.22. Let (u,I') be a critical triple point such that there exists 6 > 0 with
the following property:
MSE((w,T);U) < MS((v,Te);U),
for every [[® —Id| 2 (q,0) < 6 with ® =1d on OpQLU (Q\U), and every v € HY(O\T'g) such
that v=u in (Q\U)UIpQ. Then

82M8((U,F); U)le] >0, for every o € HY(T') .

The following strict stability condition will be shown to imply the local minimality result
(see 3.24).

DEFINITION 3.23. We say that a critical triple point (u,I") is strictly stable in an admissible
subdomain U if

OQMS((U, I);U)[e] >0 for every o € H'(I')\{0}.

3.4. A local minimality result
The aim of this section is to prove the following result.

THEOREM 3.24. Let (u,T") be a strictly stable critical triple point. Then there exists § > 0
such that
MS((v,Te);U) > MS((u,T);U),
for every ® € D5(Q;U) and every v € HY(Q\I'a) such that v =u in (Q\U)UIpQ. Moreover
equality holds true only when I'e =1 and v =u.

The rest of this section is devoted to the proof of the above result.

3.4.1. Construction of the family of diffeomorphisms. The aim of this section is
to construct the family of diffeomorphisms of the Step 1 described above.

PROPOSITION 3.25. Let (u,I') be a critical triple point and fix € > 0. Then it is possible
to find a constant 61 = 61(I',e) > 0 and constants C; > 0, Cy > 0, depending only on I' and
01, with the following property:

let ® € C3(;Q) be a diffeomorphism satisfying the following properties:

o there exist £ >0 and v € R? such that ® (I N Be(xo)) = [ N Be(wo) + v,
[} @(ﬂfo) 75 Zo, 3
° ||(I) — Id”CQ(Q’Q) < 0.
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Then it is possible to find an admissible family of diffeomorphisms (®)icio1) with [|®; —
Id|| 2.0y < €, such that

o (T) = o(I).
Moreover the following estimates hold true for each time t € [0,1]:
1 Xt - 7ell 2y < CrllXe - vl 2y (3.10)
12t - vill ey < Coll X - vill 2y (3.11)

where we recall that X; := Cbt o <I>t_1, Ly = <.I.)t o <I>t_l, and vy and 1 are the normal and the
tangent vector field on I'y respectively.

Heuristics. We use two different strategies to construct the diffeomorphisms ®;’s on T,
accordingly that we are closed to zg or not. Far from xy we just consider the flow of a
suitable vector field that is (closed to) an extension of the normal vector field of I'. This part
of the construction is easy. The difficult part is when we are closed to zg. Our idea is the
following: we first construct a vector field Y on I'N By, (z0), for some u > 0, such that Y has
null tangential component on I' N By, (w0)\ B, 2(z0). This last condition will be used to glue
together the two constructions. Then we define our diffeomorphisms ®;’s as

Oy(x) =z +tY(x),
for x € I'N B, (x0). Thus, we need our vector field Y to satisfy the following two conditions:
(i) Y € C*T) (see Definition 3.35), with 1Y |lc2(ry sufficiently small,
(i) 1Y -vlz2@y = MY - 7| p2(ry, for some M > 0.
The second condition suggests us to consider the sets
v

o),

vl

C = {U B, : ‘i

BRI
and to distinguish whether Y (x¢) := ®(z¢) — 9 € C? for some i = 1,2,3, or not. In the
latter case we just let Y to be a vector field such that |Y -v| > C|Y - 7|. Then (ii) is clearly
satisfied, while (i) follows from the assumption on ® near xg.

If, instead, Y (z¢) € C* for some i = 1,2,3, then we have to estimate the tangential
part of our vector field on I'" with its normal component on IV, where j # i. Are we sure
that we can do it? The really bad case is when the curve ®(I'") is completely over I'*, and
®(I7) is over IV out of a ball B,(x¢). We prove that  can be at least of order +/|Y (z0)],
and that |Y - 7] > 4|Y(z0)| in a ball of radius of the same order of 7. Thus, on T, we
have to make our vector field Y to have small tangential part out of a ball whose radius is
comparable with \/|Y (2¢)|. The idea is to look at I'* and ®(I'!) near zo as the graph, with
respect to the axes given by 7¢(zg) and v¢(zq), of functions A and % respectively. Write
Y(x9) = Yi(z0)7 (z0) + Ya(z0)*(20), and let s be the coordinate with respect to 7¢(xg).
Notice that |Y'(zo)| and |Y1(zo)| are of the same order. Then we define our vector field Y as
follows

. 3
2

Y (s, h'(s)) = (s — G(s), h*(G(s)) — h'(s)) ,

where L > 2 is a fixed constant, and G : [0, L/Y1(x0)] — [Y1(20), L/ Y1(x0)] is a diffeo-
morphism with |G — Id||c2 sufficiently small, and such that G is equal to the identity in
[(L —1)4/Y1(z0), L\/Y1(z0)]. Thanks to this last condition we have that |Y - vi| > C|Y - 7|
in the last part of the interval. Then, as in the previous case, we can let the tangential part
of Y vanish on Y thus having (ii) in force out of the ball B centered at xg where G is not
the identity. Since the tangential component of Y in T'* N B is of order |Y;(x0)|, we can have
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estimate (ii) in force also in this case.

PRrROOF. The proof is divided in three parts: we first define our diffeomorphisms on T,
then we extend them to admissible ones defined in the whole € and finally we will show that
our construction is such that estimate (3.10) holds true. We start with some preliminaries.

Preliminaries. The constants C' > 0 that will appear in the following computations may
change from line to line, but we will keep the same notation. Fix p > 0 such that
Vi(z) - V(o) > 2, for @ € T; N By(wo),
B4N €N,
(I';),, is a tubular neighborhood of T';,
the sets (I';),\ B3, are disjoint,
I N B,(z0) is a graph with respect to the axes given by 7¢(z) and v'(xzp).

We will take 6 < 4. Moreover we will denote by x : R — [0,1] a smooth cut-off function
such that x =0 on [1,+00) and y =1 on (—oo0, 3].

Step 1: construction of the diffeomorphisms near xo. We define the diffeomorphisms ®¢
as
9 (x) ==z +tN(z),
for z € I'N By,(z0), where the vector field N will be constructed as follows.

Case 1: xo & C*. Write
O(x) -z
@(2) —af
for some functions a;,b; : ' N By(zg) — R. Up to take a smaller u, we can suppose
|bi(x) — bi(z0)| < 1 and |a;(z) — a;(w)| < L for z € [N B, (). Notice that, since zg & C?,
we have [b;(z0)] > 2, [a(zo)| < 2.

Consider the unitary vector field Y* on I'" N Bs,(z0) given by

Yi(z) := i

a;(z)7T(z) + bi(z)' (),

|z—x0)2

where, if we define y(z) := X( 2 ), we set

Y= X (@) (ai(2)r (@) + bi(2)r' (@) + (1 = X(@))v' ().
Then there exists a constant C' > 0 such that |Y?- ! > C|Y"- 7% on I N By, (7). Indeed,
we have that

IX(@)ai(x)] < [X(x)(ai(z) — ai(xo))| + [x(2)ai(zo)| < i+ |ai(xo)|

< O <1 —bi(x) = 1] < |1+ X(2) (bi(z) = 1),
where in the second to last inequality we have used the fact that |b;j(z) — 1] < 3. More-
over, it is possible to find a constant C' > 0 independent of a;(xg), bi(xo), such that

”Yiuc?,(fimBBM(xo)) < C. Since the vector Y is constant in a neighborhood of wg, it is

possible to represent (a piece of) ®(I') as a graph of class c3 over ", with respect to the
vector field Y. Namely, it is possible to find a function ¢* € C3(I'* N Bs,(z0)) such that

1z + ¢ (2)Y'(z)
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is a diffeomorphisms of class C® from TN Bsu(xo) to its image, that is contained in ().
Finally, or any § > 0 it is possible to find 6; > 0 such that if ||® —Id[|c2g,q) < 61, then

1@l (FinBs, (z)) < & Define N := oY*.

Case 2: xz¢9 € C*. Consider the axes given by 7¢(zo) and v*(z¢) centered at z, and
denote by s the coordinated with respect to 7¢(xg). Our assumptions on p allow us to write
I'¥ in a neighborhood of zy as a graph of a function h;, with respect to the above axes. We
can suppose 0; > 0 so small such that the same is true also for ®(I'"), i.e., we can represent
®(I') in a neigborhood of ® () as the graph of a function h; with respect to the same axes.

Now write

P () — wo = so7"(z0) + tov' (x0)
for some sp,tg € R, where we can also suppose so < 1, if §; is sufficiently small. Since
zo € C*, we have that Cysg < |®(x0) — 20| < Ca50, for some Cp,Cy > 0.

Fix L > 1 and define the diffeomorphism Gy, : [0, (L + 1)/so] — [s0, (L + 1),/s0] given

by

Gr(s) :=s +x( i )50.
Notice that
Cs) — 1) <0V G s)] <
Moreover G, is the identity in [Ly/so, (L + 1)./50]-
Now define the vector field
S*((s,h¥(5))) := (Gr(s) — 5, hi(GL(5)) — hi(s)) -

Then, by a direct computation, we have

155 < ((CI oo + Z2(IR lew + 7o) ) 50

c C T !
+ (F+ (14 5) I Rilco + IRl )
C CN\2 ~ C ~
+ (g (142 ) IR lco + 5 lFilloo + 1 llew ) )
Notice that S*((s,h(s))) = A(s)v'(z0), for A(s) € R and s € [Ly/So, (L + 1)4/50).

We now want to extend the definition of the vector field S* to the whole I'" N B, (o).
Write

(3.12)

Vi(xg) = a;(z)7T(x) + bi(x)'(x),
for some functions a;,b; : I*N B, (z) — R. Let € I'" the point given by ((L+1),/S, h((L+
1)\/s0)), and let 7 > 0 such that the ball B, (zg) intersect the curve I'"* in the point Z. Up to
take a smaller 11, we can suppose |b;(2)—b;(Z)| < § and |a;(z)—a;(z)| < I for z € T'NBy,(20).
Up to decreasing the value of &1, we can also suppose |b;(z)| > 2, [a;(z)| < L.
As done in the previous step, let us consider the vector

T
Yi(z):= Vi

where . ' ' '

Y= X(@) (ai(z)7 (@) + bi(z)v' (@) + (1 = X(2))v' (2).
Using the same computation of the previous step, we have that Y. v > ClY?- 7% on
I' N Bz, (xo) \ Br(zg), for some constant C' > 0. Moreover, it is possible to represent (a
piece of) ®(I') as a graph of a function ¢ of class C® over I'' N Bs,(x0)\ Br(x0), with
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respect to the vector field Y?. Notice that the vector field Y? turns out to be of clas C3.
Finally, for any £ > 0 it is possible to find d1 > 0 such that if [[® — Id|c2(g,q) < 01, then

HSOHC“(TMBM(Q;O) +(20)) < 5 Define

N { St ~on 1:” N By(x0)
' eY"*  on I N Bs,(zo)\Br(xo)

Notice that N turns out to be a well defined C3 vector field.

Step 2: construction of the diffeomorphisms far from xo. Let R € C3(Q2;R?) be a vector

field with the following properties

e R <1,
R(x + tv'(x)) = V() for any |t| < p and any z € (T?),\ (Bu(zo) U (09),),

e |[R-v|>1onTy,

e R is tangential to 02,

e R=0on 0pQ U (Q\U).
Then, it is possible to find a function ¢ € C3((T'%),\(B(xo) U (09),) (extended in a constant
way along the trajectories of R) such that, if we consider the flow ® of the vector field ¥R,
we have ®F((I'),\ (By(zo) U (09),) € ®(T*). Moreover, for any £ > 0 it is possible to find
81 > 0 such that if [|[® —Id||c2q.q) < 01, then [[¢]c2 < €.

Step 3: definition of the diffeomorphisms in I'. We define our family of diffeomorphisms
(@t)tepo,1) as follows:
jz?

o) = () a0 + (1= () o).

Notice that the two flows ®Y and ®F are the same for points x € I'\ (Bayu(zo) U (09),).
Moreover the above diffeomorphisms are of class C® and ®1(T) = I's.

We claim that it is possible to find §; > 0 and L > 1 (where L is the constant usend in the
construction of the diffeomorphism G, in the previous step) such that if ||® —Id|c2(g.q) < o1,

then (up to take a smaller u)

||<I)t — Id”cz <e. (313)
Indeed, we first L > 1 such that % < £ (where C is the constant appearing in (3.12)), and
then we choose d; such that the desired estimate holds true.

Step 4: extension of the diffeomorphisms. First of all we extend our diffeomorphisms on
0. For a point x € 9 we just consider the flow given by the vector field YR, where v is
the function found in Step 2. The fact that R is tangential to 02 ensures that if we start
from a point x € 9L, its evolution with respect to the above flow remains in 0f2.

Now consider the function
f_ (I)t*Id OHFUOQ,
70 in Q\U.
It is easy to see that f; € C3 (f uoNU (Q\U); Rz) and that

||ft||02(f‘U89U(Q\U);R2) < ||(I)t - Id”CQ(Q,Q) < €,

Without loss of generality, we can suppose € < % Use Whitney’s extension theorem (see Sec-
tion 3.6.2) to extend the functions f; to functions u; € C3(R?;R?) such that |utllc2(rerey < €
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Define the functions (denoted with an abuse of notation) ®; : R? — R? as
Dy i=1d + uy .

Notice that || ®; —Id||c2(ge;rey < 3., and hence ®; are diffeomorphisms of R?. Moreover, since
. (002) = 99, we infer that ®;(Q) = Q and thus that ®; is a diffeomorphism of Q onto itself.

Step 5: estimates. First of all we prove estimate (3.10). By definition we have that
|z

Z() = (1 —x((;)Q))Z%),

where ZB(z) := ¢2DRI[R] (where 1 is the function given by Step 2). Since |R-v| > % in the
region where we consider the flow of the vector field 1R, we can take d; so small such that
|R(®P (z)) - 4 (PP (2))| > § for x € T\ By(zo). Thus

/ | Z-v| dHN L = / V?DR[R, v dHN " < C | ¢*Ry|> aHN T = C’/ | X v dHN L.
Ft Ft Ft Ft

To prove estimate (3.11) we first need to notice the following fact: let a;, a2 > 0 be small
parameters, and take a,b € R small such that b # 0 and |b] > Clal| for some constant C' > 0.
Consider the two parabola given by

y=—as(z—a)’+b, , and y = ajz?.

Then the distance between these two parabola are greater than b if z € [0, CVb] (or x €

[a, CV/b] if a < 0), for some constant C' > 0 depending on a; and as. '

We use the above observation in this way: suppose xo ¢ C" and represent the curves I
and ®(I") in a neighborhood of xy as the graphs, with respect to the axes given by 7'(z0)
and v/(zq) centered at z, of h; and h; respectively. Up to change v(zg) with —v'(zg) we
can suppose EZ > 0. Thus, it is possible to find a7, as > 0 such that

hi(s) < ais?, hi(s) > —as(s —a)>+b,
where we write ®(z0) — 20 = ati(x0) + bvi(x), for some a,b € R with b # 0 and |b| > Cla.
Set d : |®(x9) — xo| =. Thanks to the above observation we can say that
, 1
Vi) > 5.

for z € TP N Bp./i(®o), for some constant D > 0 depending on I and 6;.

We are now in the position to prove estimate (3.11). Suppose xg & U?ZlC’i. Thanks to
the definition of the vector field N and the properies of R, we know that on I' it holds

X v > COIX -7, (3.14)

for some constant C' > 0. Thus, a similar inequaity holds on I'; providing &; sufficiently
small. Hence the integral estimate follows directly.
If instead zo € C* we have, for j # ¢, the following estimate in force

/ X ARduN < ods < © REZIEN VAR (3.15)

For &; sufficiently small, the same estimate continue to hold also for the curves I and F{
(with 7/ and 1}). Notice that in T N Bs,(z0) \Br(xo) we have estimate (3.14) in force.
By using (3.14) and (3.15) we obtain estimate (3.11). O
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REMARK 3.26. From the above proof, it is easy to see that the following property holds: if
(®.). is a family of diffeomorphisms of class C? with the same properties as in the statement
of the theorem, such that ®. — ® in the C' topology, where @ is a diffeomorphism satisfying
®(I') #I', then there exists a constant C' > 0 such that

X7 vl p2rg) 2 C

where X¢ is the vector field associated to ®., and I'¢ := ®L(T"), where ®! is the flow generated
by X°¢.

3.4.2. Uniform coercivity of the quadratic form. The second technical result we
prove is a sort of continuity of the quadratic form 9?MS ((u, r);U ) in a stable critical triple
point (u,T). This result is the fundamental estimate needed in order to prove Theorem 3.24.

~ PROPOSITION 3.27. Let (u,T) be a strictly stable critical triple point. Then there exists
o >0 and C > 0 such that

PMS((ua,Ta); U)[p] > ||90HH1 (Ta)

for each ® € Ds(Q,U), where § € (0,05), and each ¢ € H'(Tp).

In order to prove the above proposition, we first need to prove that if (u,I) is strictly
stable, then 0?MS((u,I);U) is coercive.

LEMMA 3.28. Let (u,I") be a strictly stable critical triple point. Then there exists M > 0
such that

PMS((w.T:U)el = Mgl . Vo€ H'D).
ProoF. It is sufficient to show that

M = mf{PMS((u,T):U)[] = el gy =1} > 0.

Suppose for the sake of contradiction that M = 0, and let (), be a minimizing sequence for
M, i.e., ”(anij(F) =1 and °MS((u,T');U)[¢n] — 0. Then there exists ¢ € H'(I') such

that, up to a not relabelled subsequence, @l — ' in fIl(F) and, by the Sobolev embeddings,
©n — ¢ in C%P(T) for each B € (0,3), and ¢, — ¢ in H%(F) We claim that

PMS((u,T);U)[g] < lim inf PMS((u,T);U)[pn] = 0. (3.16)
Indeed, it is easy to see that

/ |VF‘P‘2 dHNt < liminf/ ‘VF(;OnF AHN-1,
r n—oo  Jp

/H2g0721 ANt = / HchQ dHN_l,
I I

and
3 3

Z(@%DV@Q[V, V])(:L’l) — Z(@?DV@Q[V, V])(asl) .

i=1 i=1
Thus, we are left to prove that

/Zidin(tanpui) dHN & / ZEdivp (eVrut) dHN L,
r r
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for all z € H;(Q\T). Notice that ¢, Viut € H%(F;RQ) thanks to Lemma 3.18. To prove
the above convergence we will show that ¢, Vrut — ¢VruT in H%(F; R?):

/ / |(S0nv1—‘ui - @vrui)(m) - (ganpui - @VFUi)(y)’ drHNfl(x) d/HNfl(y)
rJr lz —yl?

412 2 2 412
< IV ey lom = 1% )+ o = D3y IV
Now we have two cases: if ¢ # 0 then (3.16) gives the desired contradiction. On the other
hand, if ¢ =0, then v, = 0, and hence again by (3.16) we obtain that

[ e an¥ = 0,
r
and this contradicts the fact that Hcanﬁl(F) =1. O

Before proving Proposition 3.27 we need to observe the following fact, similar to [&,
Lemma 5.1].

REMARK 3.29. Consider the function ug (see Definition 3.5). We claim that, for every

a < %, the following convergence holds true:
sup || Vr(ug o ®) — VI"UJ:‘:Hco,a(fw;RQ) —0,
@GD&(Q,U)
as & — 0. First of all we notice that, what we are really claiming, is that, denoting by
Ay, Ag, A3 the three connected components of Q\I'; and letting u' be the function u restricted
to A;, we have that
sup || V(i 0 @) — Vet || coa(rnaame) — 0,
PED;(QLU)

as & — 01, where @' is the trace of u' on I' N dA;. This can be proved by using the

estimate of the H%-norm of %% o ® in a neighborhood of T' (that turns out to be uniform for
® € Ds(Q,U)) and by the Ascoli-Arzela theorem.

PROOF OF PROPOSITION 3.27. Suppose for the sake of contradiction that there exist a
family of diffeomorphisms ®,, : @ — Q with &, =1Id in (Q\U) U 0p such that &, — Id in

C2(€;Q), and functions ¢, € H'(I'y, ) with HSDn”ﬁl(pq) y =1, such that
PPMS((ua,,Ta,);U)pn] — 0. (3.17)

Let @, := cppn 0 @y, where ¢, := ||, © (I)n||1_§11(p) — 1. Then it is not difficult to prove that

Hg, p dHN ! — / H?@% dHN ! =0,
Ta, r
/ Vi, pul? dHN 1 / Va2 dHN | 0,
Ty, r
and
S ((0n)? Draly 1)) (®a(e) = 32 ((E)Droalv, ) )] - 0.
i=1 i=1

We also claim that the following convergence holds

/ Vvg, — V(vy, 0 ®,)]* dz — 0. (3.18)
U
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To prove it we proceed as in the proof of [9, Lemma 5.4] that, for the reader’s convenience,
we report here. Our argument only changes from the original one in the proof of the last
convergence, where we take advantange of the fact that in dimension 2 functions in H'(T) are
bounded in L>. Otherwise we would have needed that Vr(u®o®,) — Vru® in C%¢(T;R?)
for some a > %, while in our case, due to the singularity given by the triple point, we only
have the above convergence for a < % So, setting 2z, 1= vz, — vy, © Py, we obtain that z,
solves the problem

/ ApVz, Vz] dz — / (Ap, —1d)[Vep, Vz] do + /(hf{z+ —h,z ) dHN Tt =0,
U U r

for all z € Hj(Q\T), where hf := divp($,Vru®) — (dive,, (©nVr,, uq) ))Jo, and A, =
(Jp, D710, DT®,) 0 ®,. Since A, — Id in C! and the sequence (Ugon)n is bounded in
HY(Q\T), we have that (A, —Id)[V@,] — 0 in H'(Q\T). Thus (3.18) follows by showing
that hf — 0 in H 7%(11). First of all we want to write the last term of h,, in a divergence
form. For let £ € C°(I") and write

/F(dqu) ((anp%mb ) Jo, & duN 1 /F dinq)n((anr%uéfn)(go(I);l) duN-t
(2%

_ / on Vg Uk Vr, (€0 @1) dHY!
Fd’n

_ / on(Drd,) T 0 0 Vr(ud 0®,) 021« (Dr, ®,) T[(Vré) o &5 dHV !
F(pn

_ / e B (Dry) (Dpd,) T [Vi(ud 0 @), VrelJp, € AHN
I

— / ¢y 'dive (Gn (Dr®y) " (Dr®y) ") [V (ug, o ®p)]Je, )¢ dHN !
I

Thus we have that
hiy = dive (@n Vru™ — ¢, ' @n(Dr®n) (Dr®,) " [Vr(ug, © ®n)lJe,) =: dive ¥,

and hence, in order to prove that hr — 0 in Hfé(lj) we will prove that WX — 0 in H%(F)
In order to estimate the Gagliardo H %—seminorm, we first simplify our notation by setting

A i= ;Y (Dr®,) Y (Dr®,) T Js, and u, := uin o ®,,. Then we can proceed as follows:
(&n)‘nvFuril)(x) - (&nvFui)(m) - (&n)‘nvFuril)(y) + (%Vrui)(y)
= [($n(An — 1) Vruy)(@) = (Pn(An — 1d) Vg ) (2)]
+ [(Bn(Vruy, — Veub)) (@) = (@a(Vrus, — Veub))(y)]-

The first term can be rewritten as folows
(@n(An = 1d)Vrug ) (2) = (@n(An — 1d)Vruy ) (z)

= ($n(An —10))(2)[Vrug ) (2) = Vru) (9)] + Gn(@)[(hn — 1d)(2) — (An —1d)(y)]
+ (@n(2) = on(Y)(An = 1d)(y),
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while the last one as
(‘Zn(vl“u?jzE - VFui))@) - (@H(erf - VFUi))(?J)
= &n(2)[Vruy, — Veut)(z) — (Veuy, — Veu™) ()] + [2n(2) — @n(0)][Vruy, — Viu©)(y)] .

Thus the Gagliardo H 2 seminorm of ®,, can be estimated as follows:

x)— Wy 2 _ _
/F/F’\I/n(|;_;y|2(y>‘ drHN 1(3]) dHN 1(y)

SH¢%H%quAn—JHHZWQRM)WV%UfHZ%w)+H¢%H2%w
+H (O)18allEom An —1d120 6 502
+1alleo) I Veur = Vea™ Iy
+ ||85n||2%(r)||V1“U7jlE - VFUiH%O(r) : (3.19)

]

)

To estimate the terms on the right-hand side we will use the following facts:

e (Pn)n is bounded in H%(F) and in CO(T),

e A\, = Id in CHQ;R™),

e u, > u in H*((Q\T) N V), where V is a neighborhood of I' in Q such that

VNopQl=0.

Indeed the first fact follows directly from the Sobolev embeddings, since (), is bounded in
H!(T'), the second convergence is easy from the fact that ®, — Id in C?, while the last claim
is a consequence of the continuity property of elliptic boundary value problems: writing the
equation satisfied by w, on €2 we notice that the coefficients of the elliptic operator converge
to those of the laplacian. Thus, by Theorem 3.34 we get that u, — u in H'(Q) and by the
estimate 3.34 that the convergence is actually in H?((Q2\I') N V) (notice that we have to
restrict ourselves to a neighborhood of I' in order to avoid the singularities of u where the
Neumann boundary condition transforms into a Dirichlet one).
Thus we conclude from (3.19) that ¥,, — 0 in H%(F)

Combining all the above convergence, one gets that
‘82M5((U¢,n, Tg,); U) [pn] — 62MS((u,F); U) [(,Zn]’ -0,
and hence, by (3.17), that
PMS((u,T);U)[@n] — 0
But this is in contradiction with the result of Lemma 3.28. U

3.4.3. Proof of Theorem 3.24. We are now ready to prove Theorem 3.24.

PROOF OF THEOREM 3.24. Let ® a in the statement of the theorem.
Step 1. Suppose @ satisfies the following additional hypothesis: ® € C3(;Q), ®(x0) # 20
and @ (T N Be(x)) =T N Be(wo) + v for some € > 0 and v € R2.

First step. Consider the diffeomorphisms (®;); given by Proposition 3.25. Define the
function g(t) := MS((ug,Ty);U). Since (u,T') is a critical point we have that ¢/(0) = 0.
Hence we can write

1
MS (e, Pa)sU) = MS((w D) 0) =9(1) = 0) = [ (1= 01" (00,



3.4. A LOCAL MINIMALITY RESULT 7

We claim that there exists d; > 0, and a constant C' > 0 such that
J"(t) > C||IX - VtH%Il(Ft) , (3.20)

whenever [[® —Id||c2(q.0) < § < 61. This allows us to conclude. Indeed the local minimality
follows directly from (3.20), while the isolated local minimality can be deduce from the fact
that MS((u,T);U) = MS((v,Te);U) implies g”(t) = 0 for each ¢ € [0,1]. In particular
g"(0) = 0, and this implies that X -4 = 0 on T';. Looking at the construction of the vector
field X (see Proposition 3.27) this implies that X =0 on I', that is I'¢ = I". Since now the
curve I' is fixed and we already know that w minimizes the Dirichlet integral over Q\T', we
obtain the isolated local minimality of (u,I') as wanted.

Let us now prove (3.20). First of all we notice that, by criticality of (u,I'), I' intersects
0Q orthogonally and v*(zo), 27 (z0) are linear independent for 7 # j. Thus it is possible to
take ¢ sufficiently small in order to have the that I'; intersects 92 in a non tangent way and
that v (xg), ] (zo) are still linear independent for i # j. By the definition of u; we have that
dyuf =0 on Ty and d,,,u™ =0 on (9Q\dpQ) NU. Then

Vrut (i) =0 for i =0,1,2,3.
In particular f; — Hy =0 on 0I';. Thus, by Remark 3.13, we can write

d2

Jg"'(t) = @MS((US,FS); U),_, = 82M5((ut,f‘t); U)X -]

|
+ / £l Z v = 2X1- V(X - v) + DX, XT) — Hy(X - 1)?] dHY !
I

3

+ Z(X - 1) Dugq e, v (x8) + Z -ny dHO, (3.21)
i=1 oL

where we set 2! := ®;(2%) for i = 0,1,2,3. Now we need to estimate each of the above terms.
Fix ¢ > 0. For the first one we appeal to Proposition 3.27 to obtain
PMS ((ug, T1); U)[X - 14) > C|| X - VtH%l(rt) : (3.22)
To estimate the second term of (3.21) we recall that Remark 3.29 and the continuity of
the map ® — Hg assert that the map

—(O- +12 -2
® € D, (% U) = ||[Vrgugl? — [Vrgug|® + H<1>HL<>°(F4,)
is continuous with respect to the CQ—nc_)rm. Since by the criticality condition that quantity
vanishes for ® = Id, possibly reducing 67, it is possible to have
+12 -2
H|Vr¢u¢| — |Vryug|” + Hq)HLOO(Fq>) <G,
for each ® € D5 (Q;U). Hence

£i[Z v —2X11- V(X - v) + D[ X1, X — Hy(X - 1)?] RV
Iy

> ()| Z v —2X -V, (X - w) + Dy XX — Hy (X v)? 1y
2
2 C”X : Vt”ﬁl(rt) ’ (323)
(3.24)
where in the last step we have used estimates (3.10) and (3.11) provided by Proposition 3.25.
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To estimate the last term we recall that Z = 0 in a neighborhood of xy. Thus, we can
rewrite the last term as
3 3

S (X Dol il(ai) + [ 2 dH0= SO [CXv* Dunln ] + 2 - (o)
i=1 or i=1

3
= Z[(X -)?Dvgavy, vi] + Z - (e — voa) + Z - vaa) (z})
=1

= Z (X - n)*Dvaq[me, ) + Z - (n — Vﬁﬂ)] (1)

where we have used equality (#4) of Lemma 3.8. We claim that it is possible to choose 01 in
such a way that

X - ne(2))]? < X - w2 (3.25)
Ine — voal(z}) < ¢, (3.26)

and
1Z(2y)] < CIX - vl e,y » (3.27)

for all i = 1,2,3. Indeed, (3.26) follows easy by noticing that n(z%) = vgqo(2*) and by the
identity

_ Dd4[n]

"= Thr
| D [n]|
To obtain (3.25) we notice that from X = v on 92N Al we get X - n(z’) = 0. Then we
conclude thank to the continuity of the maps
G; : {(z,v,w) € (00N Bs(z")) x (Bs(n(z)) N Sl) x (Bs(v(z))n S} = R,

given by

_ |F(x) vl
Gi(z,v,w) = F(2) w|’

Finally, in order to obtain (3.27), we notice that, by construction of the vector field X, there
exists a function ® € C?((I');) that is constant along the trajectories of F', such that X = ®F
near 0f2 (see Proposition 3.25). Hence

Z(x;) = DX[X](x}) = ®(«')*DF[F](x}).
Reasoning in a similar way as above, taking a d; sufficiently small, we have that [F-v(z)| > 3,
and hence ®(2%)? < 2(X - 14)(z)? for x € Bs(x'). Thus, we obtain the estimate

1Z()] < CIX -l < CollX -l gy

where C' > 0 depends only on F and § and the last inequality follows by the Sobolev
embedding. Using (3.25), (3.26) and (3.27) we obtain

3

> [=(X - m)*Dvpalne, m) + Z - (0 — voa)| (z}) = —Ca||X - vl % ) - (3.28)
=1

Now, combining the estimates (3.22), (3.23) and (3.28), we get that:

1
/g//(t)dtZ(C (C1+ Ca)¢ /HX VtHHl(F
0
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Thus, by taking ¢ sufficiently small, we finally have the claimed bound (3.20).

Step 2.1t is easy to see that, given ® as in Step 1, but with ®(xg) = zo, it is possible to
construct a family of dlffeomorphlsms U, : (') — Q such that W.(xg) # z¢ and ¥, — Id
in the C? norm, as ¢ — 0. This implies that

MS ((ug,, ¥o(®(T));U) = MS((us, (B(1); U) .

Thus the result follows by passing to the limit in the inequality proved in the previous case.

Step 3. We now drop the assumption ®(I'N Be(z0)) = I'N Be(zo) + v for some £ > 0 and
v € R2. It is easy to see that the condition D®(xg) = Md, for some A # 0, allows to construct
a family of triple points I'c such that T'. is a traslation of T" in a ball B.(xg). Moreover there
exist diffeomorphisms W, : ®(I') — I'. with U, — Id in the C? norm, as € — co. Roughly
speaking, we define the curve T'L as follows: consider the parametrized curve T'. : [0,1] — R?
having curvature equal to those of I'* in [0,¢), and equal to those of ®(T') in [2¢,1]. In [e, 2¢]
we just define the curvature as a linear function. The claim the follows directly.

Thus the result follows again by passing to the limit in the previous estimate.

Step 4. Since all the previous steps have been done just by usign the closeness of ® to
the identity in the C?-norm, given ® € C?(2;) such that ||® — Id|[c2(qu0) < §, we can find
(®.). C C3(Q;Q) such that . — & in C%(Q;Q) and such that ®. = Id in IpQ U (Q\U'),
where U C U’, with U’ an admissible subdomain. Using Remark 3.31, we know that, if U’
is close to U in the Hausdorff sense, then (u,I") is stable also in U’. Hence, the result follows
by passing to the limit.

Step 5. Finally, the local minimality with respect to W{Q"io—perturbations follows again by
approximating an admissible diffeomorphism ® € W2°°(Q; ) with a sequence of diffeomor-
phisms of class C? converging to ® in the W2 -topology.

Thank to Remark 3.26 we also obtain the isolated local minimality result. O

3.5. Application

In this section we would like to give some examples of critical and strictly stable triple
points.

3.5.1. Local minimality in a tubular neighborhood. Here we want to prove that,
under an additional assumption (similar to those of [9] and [8]), every critical triple point is
strictly stable in a suitable tubular neighborhood, and hence a local minimizer with respect
to W?2P-variations contained in that tubular neighborhood.

PROPOSITION 3.30. Let (u,I) be a critical triple point, and suppose that
Haq(x') <0, (3.29)

for each i =1,2,3. Then there exists i > 0 such that, for all p < i, (u,T') is strictly stable
in (I'),,.

PROOF. Step 1. First of all we prove that there exists a constant C' > 0 such that:

[ 1o anv o [ - Zsol Y Hoa(a') > Cllgl % -
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for all ¢ € H(T'). Indeed, it is easy to see that
[ Vel an - o) = € [ ol an
I T

Step 2. The only thing we have to prove now is that

lim  sup / \va|2 dz =0, (3.30)
p=0 peH(T), Y)u
H‘P”[T[l(p)zl

where v}, € H}

(F)H(Q\F) is the solution of

/QVUg -Vzdx = (divy (¢Vpu+),z+) 1 — (divp ((pvru_),z_>

H—f(r)xH%(r) H—%(F)xH%(F)’
(3.31)

for every z € H(lF (Q\I). For each > 0, let @* € H(T'), with H@“Hﬁl(r) = 1, be such

)
that
/ |vau|2d$ = sup / |Vv$\2dx.
™) weHY(), My

o
”‘PHITII(F):l

Consider, for p > 0, the following minimum problem:

min{F*(v) : v € H(IF)M(Q\F)}v

1 9 . . N
mw ::/(r)ﬂ‘w’ de —{dive (P*Vru®), o1 gy b oy TR (@ V), 0T) g o -

Clearly, vgu is the solution of the above minimum problem. We claim that

1
FF(v) > / |Vo|?dz — C, (3.32)
4w,
for a suitable constant C' > 0. Taking (3.32) for grant, we conclude. Indeed, noticing that
. 1
min{F*(v) : v € H(lr)u(Q\F)} =-3 /(F) \va#Ide, (3.33)
I3

from (3.32) we get that

sup/ Vol |?dz < M,
w>0J(T),

for some M > 0. So, up to a not relabelled subsequence, vgu — w weakly in HY(Q\T), as
i — 0. It is easy to see that w = 0. Then, using equation (3.31) where we take as a test
function z itself, the uniform bound on ||divr (¢*Viu®) ||H7%(F), and the compactenss of the
trace operator, we finally get:

/(F) \vaulzd:z:%o, as u — 0.
o
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We are now left to prove estimate (3.32). Fix f > 0 and let @, := @*Vpu'. Then:

. —1 + + : 2 +12
(ive (PVre)s o) g oyt oy = IVTRalG g 07y

<

22
g2 C

S CEHVUHLZ((F);]) + 2782 .

Thus, taking € > 0 sufficiently small, we obtain the desired estimate. O

m

€2
< O lolla (ya) +

REMARK 3.31. In view of the result of Theorem 3.24, it is not restrictive to suppose an
admissible set U to be of class C°°, meeting 99 orthogonally. Indeed, by (3.33), it follows
that

- Vo,|?dr > — |V, |?dr,
U1 U2
for every ¢ € H 1(I“), whenever U; and Uy are admissible subdomains such that Uy C Us.
Hence, given a regular critical and strictly stable triple point (u,I") and generic admissible
subdomain U, we can write U = (), U,, whith U,, admissible subdomains where (u,I) is
strictly stable, that are of class C*° meeting 02 orthogonally.

3.6. Appendix

PROOF OF PROPOSITION 3.22. Step 1. Without loss of generality, we can suppose ¢' €
C>(T;). Indeed, if we take ¢ € HY(I'), we can consider approximation by convolution (p!).
of each ; (where we have previously extended each ¢’ to an H' function defined in a regular
extension of g;). Now let h. := (¢! + ¢? + ¢?)(20) and define

P2 =2 —h..

Then ¢, := (oL, @2, &) € HY(T), ¢! — ¢ in HY(T;) for i = 1,2 and 3 — ¢® in HY(T'3).
By the continuity of the quadratic form 82MS((u, I); U) with respect to the H' convergence,
we obtain that

O MS((u,T); U)[g] = lim 0* MS((u, 1); U)[pe] -
Step 2. Let ¢ € h'(T') such that o' € C(I;). For = € T';, define

Y () = ¢! ()" (2) + ' ()7 (2)

for some function b* € C'(I';) such that b = 0 if |z — 29| > d1. The functions b* have to be
choosen in such a way that the vector Y is well defined in xg and that DY (x¢)[ri+712+73] = 0.
The first condition requires to impose that

1, V3.
i~ _(i+1)mod3 7b(z+1)mod3> -0
(«p + 59 5 (z0) =0,
while the other one leads to
3
Z [ViDFi‘Pi + TiDFibi] (z0) =0,
i=1

where we have use the fact that H;(xg) = 0, and hence Dr,v*(x¢) = Dr,7'(x9) = 0. Now
define
Y (z) ifrel,
Y :={ a(x)ma(r) ifz€oQ,
0 in Q\U,
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where a € C1(9Q) is such that a = 1 in a neighborhood of T'NIN, a =0 in IpQU (U NON).
Thanks to Lemma 3.37, Y € CHTUQU(Q\U); R?). Then, use Whitney’s extension theorem
to extend it to a vector field Y € C1(€;R?). Using convolutions, we can approximate Y with
vector fields X. € C(;R?) such that X. — Y in C}(Q;R2). Notice that supp X. CC
U\OpQ, where U’ D U is an admissible subdomain. Now define

Xe(a) = { Ko@) = x(3) (e von)von) () if @ =y +svoaly) s <6,

X, otherwise.

In this way X©-vpg = 0 on 99, and still X° — Y in C1(Q;R?). This allows to conclude.
Indeed, call (®¢); the flow generated by the vector field X, with ®] =Id, and let I'{ be the
evolution of I'" through this flow. Then, we have that

d2
2 . _ 1 )
PMS((u,T);U) ] = ill% dtQMS((ua,FE), U)\tzo >0,
where the last inequality follows from the local minimality of (u,I"). O

3.6.1. Results on elliptic problems. The following theorem collects some regularity
results on elliptic problems in domains with corners we will need in the following. All these
results can be found in the book of Grisvard (see [32]).

Notation. In this section we will consider operators L written in the form

2 2
Lu=— Z Di(aiiju) + Z a; D;u + agu,

i,j=1 i=1
where D; denotes the partial derivatives with respec to the variable z°.

DEFINITION 3.32. We say that an open and bounded set A C R? is a curvilinear polygon
of class C™*, with » € N and s € (0,1], if OA is a simple and connected curve that can be
written as

0A = U?:l:yi )
where each ~; is a relatively open curve of class C™*, and k € N.

Moreover we will denote by P; the common boundary point of ~; and 7;41 (or 7% and

~1), and by w; the angle in P; internal to A.

THEOREM 3.33. Let A be a curvilinear polygon of class C%', and let L be an elliptic
operator defined on A, with coefficients of class C%'. Then, the following a priori estimate
holds true:

lull 24y < Cr(l| Lull 24y + [1Ovull y Tt i + Collull g (ay » (3.34)

H3 (04 H%(@A))
for suitable constants C1,Cy > 0 and for all u € H%(A).

Given f € L*(A), let w € H'(A) be a weak solution of the problem

Lu=f inA,
ou=0 on-~y, forieN,
u=0 on v, fori e D,

where N, D is a partition of {1,...,N}. Then u can be written as

N
u= ureg + using )
i=1
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where Uy € H*(A) and u

sing € HY(A) are such that u!
such that P; & V.

sing

€ H%(V;) for each open set V;

Finally, suppose that

wiﬁ{

Then u € H?(A). Moreover, if D is not empty, (3.34) holds with Cy = 0.

ifj,j+1€D, orjj+1eN,
otherwise .

ISERE]

Finally, we need a continuity theorem for elliptic problems (see, e.g., [41, Remark 2.2|).

THEOREM 3.34. Let (Ls)sc(—s5) be a family of uniformly elliptic operators defined on a

curvilinear polygon A of class CY', and let N',D be a partition of {1,...,N}, with D # Q.
Suppose that, for s € (—0,9), the functions

s — a;j(-, s) s+ a;(+,s), s+ ag(+,8),
belong to L>®(A),
s fo € H1(A)
are continuous and that there exists a constant M > 0 such thal
laij(z,s)| <M, ai(z,s)| <M, ao(x,s)| <M,

for all x € A and for all s € (=6,9). Given v € H'(A) let us consider the operator

T: (6,8 — H!

s U

where us 15 a weak solution of the problem

Liu=fs inA,
ou=0 on~y, forie N,
Us =V on;, forieD.

Then T is continuous.

3.6.2. Whitney’s extension theorem. Here we state the version of the Whitney’s
extension theorem needed in the chapter. But we first need to set some notation. Given
k= (ki,...,kn) € N> and v € R?, let

k| := k1 + ko, vk = oFhe
If fisa |k|-times differentiable function, we set
olklf olklf
= €Tr) =
dak 8x]f1x§2

D¥f(a) :

where D0 = f.

DEFINITION 3.35. Let X be a compact subset of R?. We define the space C*(X) as the
space of functions f : X — R for which there exists a family F := {Fk}|k|§h of continuous
functions on X, with FO = £, such that, for every |k| < h, it holds

h—|k|

sip|FR@) - PR = S Py — o)< = ot M) (3.35)
zyeX, 0<|z—y|<r i=1
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Moreovere, we define

[Fllen(x) = Z 1F* )| cox) -
|k|<h

THEOREM 3.36 (Whitney’s extension theorem). For every h > 1 and L > 0 there exists a
constant Co > 0, depending on h and L, with the following property: of X C By, is a compact
set of R? and f € CM(X), then there exists a function f € C®(R?\X)N CM"(R?) such that

DFf=FF on X, forevery |kl <h,
and _
[fllenmzy < CollFllenix) -
We now prove a technical result we needed to use several times in this chapter.

LEMMA 3.37. Let v C Q be a simple curve of class C' meeting 0Q orthogonally in a
point T. Let X € C*(v;R?) be such that X (%) = 790(Z). Then, the vector field defined as

s | X on v,
X'_{Tag on 00,

belongs to C1(T' U 00; R?).
PRrROOF. Denote by 7 the tangent vector field on . Define

|z — 7|

DX (2)[r(@)) == DX(@)[r(a)], DX(@)lv(a)] = x(— ) Dron(@)lron(@)],
for z € v, and

~ ~ xr —T|?

DX (@)[ron@)] == Dron(a)fron@)]. DX (@)won(@)] == x(250) DX (@)l @),
for x € 09, for a constant € > 0. Then condition (3.35) is easily satisfied if z,y € ~ or
x,y € 0. In the case x € v and y € 9, we simply write y —x = (y — Z) — (x — Z) and we
use the triangular inequality te get the desired estimate. O
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