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Introduction

Many physical systems are modeled mathematically as variational problems, where the
observed con�gurations are expected to be local or global minimizers of a suitable energy. Such
an energy can be very complicated, as well as the physical phenomenon under investigation.
Thus, as a starting point, it is useful to focus on some simple models, which however capture
the main features.

In this thesis we concentrate on two kinds of energies, that can be both viewed as nonlocal
variants of the perimeter functional. The nonlocality consists in a bulk term, that in one case
is given by an elastic energy, while in the other by a long-range interaction of Coulumbic type.
The physical systems modeled by these energies displays a rich variety of observable patterns,
as well as the formation of morphological instabilities of interfaces between di�erent phases.
These phenomena can be mathematically understood as the competition between the local
geometric part of the energy, i.e., the perimeter, and the nonlocal one. Indeed, while the �rst
one prefers con�gurations in which the interfaces are regular and as small as possible, the
latter, instead, favors more irregular and oscillating patterns. Thus, �nding global or local
minima of these energies is a highly nontrivial task, and indeed many big issues about them
are still open. The aim of this thesis is to give a contribution to the investigation of such issues.

In particular, we study the following two energies:

• the Mumford-Shah functional, that is the prototype of the so called free discontinuity
problems. Introduced for the �rst time in [50] in the context of image segmentation,
nowadays is also used in the variational formulation of fracture mechanics;
• a model for diblock copolymer, where the energy is a nonlocal variant of the perimeter
functional, where the nonlocality is given by a long-range repulsive interaction of
Coulumbic type.

A common mathematical feature of these two energies is a deep lack of convexity. Thus,
it is important to look for su�cient conditions for local and global minimality. In this thesis
we undertake such investigation by adopting the point of view introduced by Cagnetti, Mora
and Morini in [9], where a study of second order conditions for free-discontinuity problems
has been initiated (in the case of the Mumford-Shah functional), and by Fusco and Morini in
[27] (for a model of epitaxially growth). See also [1, 6, 10, 35] for other related works.

We now describe in details the obtained results for the two energies we studied.

VII
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A model for diblock copolymer.

Diblock copolymers are a class of two-phase materials extensively used in the applications
for their properties. They are composed by linear-chain macromolecules, each consisting of
two thermodynamically incompatible subchains joined covalently. Due to this imcompatibility,
the two phases try to separate as much as possible; on the other hand, because of the chemical
bonds, only partial separation can occor at a suitable mesoscale. Such a partial segregation of
the two ohases produces very complex patterns, that are experimentally observed to be (quasi)
periodic at an intrinsic scale. The structure of these patterns depends strongly on the volume
fraction of a phase with respect to the other, but they are seen to be very closed to periodic
surfaces with constant mean curvature, as shown in Figure 1. All these diblock copolymers
belong to a broad family of materials, usually called soft materials, which show a high degree
of order at a suitable length scale, although their �uidlike disorder on the molecular scale.
Their complex structures can give these materials many desiderable properties. It is thus
useful to better understand the formation of these patterns.

Figure 1. The typical patterns that are observed according to an increasing
value of the volume fraction.

To model microphase separation of diblock copolymers, Ohta and Kawasaki proposed in
[55] the following energy:

OKε(u) := ε

∫
Ω
|∇u|2dx +

1

ε

∫
Ω

(u2 − 1)2dx

+ γ

∫
Ω

∫
Ω
G(x, y)

(
u(x)−m

)(
u(y)−m

)
dxdy , (0.1)

where Ω ⊂ RN is an open set, G is the Green's function for −4 , u ∈ H1(Ω) , and m :=
∫

Ω u .
The function u is a density distribution, and the two phases of the chain correspond to the
regions where u ≈ −1 and u ≈ +1 respectively. See [13] for a rigorous derivation of the
Ohta-Kawasaki energy from �rst principles, and [52] for a physical background on long-range
interaction energies. According to the theory proposed by Ohta and Kawasaki, we expect
observable con�gurations to be global (or local) minimizers of the energy (0.1).
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Since the parameter ε is usually small, from the mathematical point of view it is more
convenient to consider the variational limit of the energy OKε . If we let the parameter ε
going to zero, we obtain a functional that, in the periodic setting, turns out to be (0.2). If we
also consider the volume of one of the two phases to disappear, it has been proved in [11, 12]
that the resulting variational limit is the functional (0.3). We studied both these functionals,
from di�erent perspectives.

The periodic case. We start by describing the results obtained in the �rst case. We
study some properties of critical points of the functional

Fγ(E) := PTN (E) + γ

∫
TN

∫
TN

GTN (x, y)uE(x)uE(y) dx dy , (0.2)

where γ ≥ 0 , E is a subset of the N -dimensional �at torus TN , PTN (E) denotes the perimeter
of E in TN , uE(x) := χE(x)− χTN\E(x) , and GTN is the unique solution of

−4yGTN (x, ·) = δx(·)− 1 in TN ,
∫
TN

∫
TN

GTN (x, y) dx dy = 0 .

We will refer to the �rst term of (0.2) as the local term, while to the second one as the nonlocal
term. The latter will be denoted with γNL(E) . We notice that the local term favours the
formation of large regions of pure phase, while the nonlocal one prefers to break each phase
into several connected components that tries to separate from each other as much as possible.

Proving analitically that global minimizers of (0.2) or (0.1) are (quasi) periodic is a formi-
dable task. Indeed, so far, the best result in this direction is the work [3] by Alberti, Choksi
and Otto, where it is proved that global minimizers of (0.2) in the whole RN under a volume
constraint, i.e. for a �xed m , present an uniform energy distribution of each component of
the energy, on suitable big cubes. This result has been extended to the case of the functional
(0.1) by Spadaro in [64]. Moreover, the structure of global minimizers has been investigated
by many authors (see, for example, [11, 12, 18, 30, 31, 53, 65, 67]), but only in some
asymptotic regimes, i.e., when the parameter γ is small or m ≈ ±1 .

A more reasonable, but still highly nontrivial, pourpose is to exhibit a class of local
minimizers of the energies (0.2) and (0.1) that look like the observed con�gurations. Among
the results in this direction we would like to recall the works by Ren and Wei ([60, 57, 56, 58,
59]), where they construct explicit critical con�gurations of the sharp interface energy, with
lamellar, cylindrical and spherical patterns. They also provide a regime of the parameters that
ensures the (linear) stability of such con�gurations. The natural notion of stability for (0.2)
has been introduced by Choksi and Strernberg in [15], and it has been subsequently proved by
Acerbi, Fusco and Morini in [1], that critical and strictly stable (namely with strictly positive
second variation) con�gurations are local minimizers in the L1 topology.

The aim of our work is to collect some new observations on critical points of the sharp
interface energy (0.2).

We start by showing, in Proposition 2.32, that critical point are always local minimiz-
ers with respect to perturbations with su�ciently small support. This minimality-in-small-
domains property of critical points is shared by many functional of the Calculus of Variations,
but to the best of our knowledge it has been never been observed before for the Ohta-Kawasaki
energy.

The second result (see Proposition 2.34) shows that the property of being critical and
stable is preserved under small perturbations of the parameter γ . More precisely, we show
that, given γ̄ ≥ 0 and a strictly stable critical point E of the functional F γ̄ , we can �nd a
(unique) family (Eγ) of smoothly varying uniform local minimizers of Fγ for γ ranging in
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a small neighborhood of γ̄ . The procedure to construct such a family is purely variational
and based on showing that the local minimality criterion provided in [1] can be made uniform
with respect to the parameter γ and with respect to critical sets ranging in a su�ciently
small C1 -neighborhood of a given strictly stable set E . Such an observation, which has an
independent interest, is proven in Proposition 2.34.

The above stability property is used to establish the main result of this paper (see The-
orem 2.46): given γ̄ > 0 and ε > 0 and a subset E of the torus TN such that ∂E is a
strictly stable constant mean curvature hypersurface, we show that it is possible to �nd an
integer k = k(γ̄, ε) and a 1/k -periodic critical point of F γ̄TN , whose shape is ε-close (in a

C1 -sense) to the 1/k -rescaled version of E and whose mean curvature is almost constant.
Moreover, such a critical point is an isolated local minimizer with respect to (1/k)-periodic
perturbations. In words, the above result says that it is possible to construct local minimizing
periodic critical points of the energy (0.1), whit a shape closely resembling that of any given
stictly stable periodic constant mean curvature surface.

This result is close in spirit to the aforementioned results by Ren and Wei. There are
however some important di�erences: First of all, they work in the Neumann setting, while
we are in the periodic one. Moreover, while their constructions are based on the Liapunov-
Schmidt reduction method and require rather involved and (ad hoc for each speci�c example)
spectral computations, we use a purely variational approach that works for all possible strictly
stable patterns. However, the price to pay for such a generality is a less precise description of
the parameter ranges for which the existence of the desired critical points can be established.

Another important consequence of our variational procedure is that it allows to show (see
Proposition 2.47) that all the constructed critical points can be approximated by critical points
of the ε-di�use energy (0.1). This is done by Γ-convergence arguments in the spirit of the
Kohn and Sternberg theory, see [40]. We conclude by remarking that numerical and exper-
imental evidence suggest the following general structure for global minimizers: the nonlocal
term determines an intrinsic scale of periodicity (the larger is γ the smaller is the periodicity
scale), while the shape of the global minimizer inside the periodicity cell is dictated by the
perimeter term. Although we are very far from an analytical validation of such a picture, our
result allows to construct a class of (locally minimizing) critical point that display the above
structure.

A nonlocal isoperimetric problem on RN . We now describe the results obtained for
the second type of variational limit of (0.1). For a parameter α ∈ (0, N − 1) , N ≥ 2 , we
consider the following functional de�ned on measurable sets E ⊂ RN :

F(E) := P(E) +

∫
RN

∫
RN

χE(x)χE(y)

|x− y|α
dx dy , (0.3)

where P(E) is the perimeter of the set E and the second term, the so called nonlocal term, will
be hereafter denoted by NLα(E) . We are interested in the study of the volume constrained
minimization problem

min{F(E) : |E| = m} , (0.4)

and in its dependence on the parameters α and m > 0 .
Beyond its relation with the aforementioned model for diblock copolymers, the above

problem is interesting because the energy (0.3) appears in the modeling of many other di�erent
physical phenomena. In particular, the most physically relevant case is in three dimensions
with α = 1 , where the nonlocal term corresponds to a Coulombic repulsive interaction: one
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of the �rst examples is the celebrated Gamow's water-drop model for the constitution of the
atomic nucleus (see [28]).

From a mathematical point of view, functionals of the form (0.3) recently drew the atten-
tion of many authors (see for example [1, 18, 22, 26, 30, 31, 34, 35, 36, 37, 38, 43, 53, 54]).
The main feature of the energy (0.3) is the presence of two competing terms, the sharp inter-
face energy and the long-range repulsive interaction. Indeed, while the �rst term is minimized
by the ball (by the isoperimetric inequality), the nonlocal term is in fact maximized by the
ball, as a consequence of the Riesz's rearrangement inequality (see [42, Theorem 3.7]), and
favours scattered con�gurations.

In order to have an idea of the behaviour we would expect for such a functional, we notice

that, calling Ẽ :=
(
|B1|
|E|

) 1
N
E , where B1 is the unit ball of RN , the functional reads as

F(E) =

(
|E|
|B1|

)N−1
N [
P(Ẽ) +

(
m

|B1|

)N−α+1
N

NLα(Ẽ)
]
.

Hence the parameter m appearing in the volume constraint can be normalized and replaced
by a coe�cient γ in front of the nonlocal energy: one can study the minimization problem,
equivalent to (0.4),

min{Fα,γ(E) : |E| = |B1|} , (0.5)

where we de�ne Fα,γ(E) := P(E) + γNLα(E) . It is clear from this expression that, for small
masses, i.e., small γ 's, the interfacial energy is the leading term and this suggests that in
this case the functional should behave like the perimeter, namely we expect the ball to be the
unique solution of the minimization problem, as in the isoperimetric problem; on the other
hand, for large masses the nonlocal term becomes prevalent and should causes the existence
of a solution to be not guaranteed. But this is just heuristic!

What was proved, in some particular cases, is that the functional F is uniquely minimized
(up to translations) by the ball for every value of the volume below a critical threshold: in the
planar case in [36], in the case 3 ≤ N ≤ 7 in [37], and in any dimension N with α = N − 2
in [34]. Moreover, the existence of a critical mass above which the minimum problem does
not admit a solution was established in [36] in dimension N = 2 , in [37] for every dimension
and for exponents α ∈ (0, 2) , and in [43] in the physical interesting case N = 3 , α = 1 .

In [7] we provide a contribution to a more detailed picture of the nature of the minimization
problem (0.4). In particular, we follow the approach used in [1] for the periodic case with
α = N − 2 , which is based on the positivity of the second variation of the functional, in order
to obtain a local minimality criterion. This allows us to show the following new results: �rst,
we prove that the ball is the unique global minimizer for small masses, for every values of
the parameters N and α (Theorem 1.10); moreover, for α small we also show that the ball
is the unique global minimizer, as long as a minimizer exists (Theorem 1.11), and that in
this regime we can write (0,∞) = ∪k(mk,mk+1] , with mk+1 > mk , in such a way that for
m ∈ [mk−1,mk] a minimizing sequence for the functional is given by a con�guration of at
most k disjoint balls with diverging mutual distance (Theorem 1.12).

Finally, we also investigate the issue of local minimizers, that is, sets which minimize the
energy with respect to competitors su�ciently close in the L1 -sense (where we measure the
distance between two sets by the quantity (1.5), which takes into account the translation
invariance of the functional). We show the existence of a volume threshold below which the
ball is an isolated local minimizer, determining it explicitly in the three dimensional case with
a Newtonian potential (Theorem 1.9). The energy landscape of the functional F , including
the information coming from our analysis and from previous works, is illustrated in Figure 2.
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After our work was completed, a deep analysis comprising also the case of the parameter
α ∈ [N − 1, N) , and including the possibility for the perimeter term to be a nonlocal s-
perimeter, has been performed in the paper [25].

Figure 2. Energy landscape of the functional Fα,γ .

The Mumford-Shah functional.

We present here the �rst part of an ongoing project aimed at providing a local minimality
criterion, based on a second variation approach, for triple point con�gurations of the Mumford-
Shah functional.

The (homogeneous) Mumford-Shah functional in the plane is de�ned as follows:

MS(u,Γ) :=

∫
Ω\Γ
|∇u|2 dx+HN−1(Γ ∩ Ω) , (0.6)

where Ω ⊂ R2 is a Lipschitz domain, HN−1 denotes the (N − 1)-dimensional Hausdor�
measure, and (u,Γ) is a pair where Γ is a closed subset of R2 and u ∈ H1(Ω\Γ) .

The existence of global minimizers in arbitrary dimension has been provided by De Giorgi,
Carrieo and Leaci in [21] (for other proof see, for istance, [44] and, for dimension 2 , [19, 48])
In the seminal paper [51] it has been conjectured that, if (u,Γ) is a minimizing pair, then that
the set Γ is made by a �nite union of C1 arcs. Given this structure for grant, it is not di�cult
to prove (see [51]) that the only possible singularities of the set Γ can be of the following two
types:

• Γ ends in an interior point (the so called crack type),
• three regular arcs meeting in an interion point x0 with equal angles of 2π/3 (the so
called triple point).

Although several results on the regularity of the discountinuity set Γ have been obtained (but
we will not recall them here), the conjecture is still open.

As for the previous case, the deep lack of convexity of the functional (0.6) naturally leads
one to ask what conditions imply that critical con�gurations as above are local minimizers.
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The study of such a conditions has been initiated by Cagnetti, Mora and Morini in [9], where
they deal with the regular part of the discontinuity set. In particular they introduce a suitable
notion of second variation and prove that the strict positivity of the associated quadratic form
is a su�cient condition for the local minimality with respect to small C2 perturbations of the
discontinuity set Γ .

Subsequently, the above result has been strongly improved by Bonacini and Morini in
[8], where it is shown that if (u,Γ) is a critical pair for (0.6) with strictly positive second
variation, then it locally minimizes then it locally minimizes the functional with respet to
small L1 -perturbations of u , namely that there exists δ > 0 such that

MS(u,Γ) < MS(v,Γ′)

for all admissible pairs (v,Γ′) satisfying 0 < ‖u− v‖L1 ≤ δ .
Among other results on local and global minimality criterions, we would like to recall

the important work [2] of Alberti, Bouchitté and Dal Maso, where they introduce a general
calibration method for a family of non convex variational problems. In particular they applied
this method to the case of the Mumford-Shah functional to obtain minimality results for some
particular con�gurations. Moreover, Mora in [46] used that calibration technique to prove that
a critical con�guration (u,Γ) , where Γ is made by three line segments meeting at the origin
with equal angles, is a minimizer of the Mumford-Shah energy in a suitable neighborhood of
the origin, with respect to its Dirichlet boundary conditions. Finally, we recall that the same
method has been used by Mora and Morini in [47], and by Morini in [49] (in the case of the
non homogeneous Mumford-Shah functional), to obtain local and global minimality results in
the case of a regular curve Γ .

Our aim was to continue the investigation of second order su�cient conditions, by con-
sidering for the �rst time the case of con�gurations with a singularity, namely triple point
con�guration.

The plan is the following. In Section 3.3 we compute, as in [9], the second variation of the
functional MS at a triple point con�guration (u,Γ) , with respect to a one-parameter family
of (su�ciently regular) di�eomorphisms (Φt)t∈(−1,1) , where each Φt equals the identity in the
part of ∂Ω where we impose the Dirichlet condition and Φ0 = Id . The idea is then to consider
for each time t ∈ (−1, 1) the pair (ut,Γt) , where Γt := Φt(Γ) , and ut ∈ H1(Ω\Γt) minimizes
the Dirichlet energy with respect to the given boundary conditions.

We show that the second variation can be written as follows:

d2

dt2
MS(ut,Γt)

|t=0
= ∂2MS(u,Γ)

[
(X · ν1, X · ν2, X · ν3)

]
+R , (0.7)

where ∂2MS(u,Γ) is a nonlocal (explicitly given) quadratic form, X is the velocity �eld
at time 0 of the �ow t 7→ Φt (see De�nition 3.4), and νi is the normal vector �eld on
Γi . Moreover, the remainder R vanishes whenever (u,Γ) is a critical triple point. Thus, in
particular, if (u,Γ) is a local minimizer with respect to smooth perturbations of Γ , then the
quadratic form ∂2MS(u,Γ) has to be nonnegative.

Next we address the question as to whether the strict positivity of ∂2MS(u,Γ) , with (u,Γ)
critical, is a su�cient condition for local minimality. The main result (see Theorem 3.24) is
the following: if (u,Γ) is a strictly stable critical pair, then there exists δ > 0 such that

MS(u,Γ) <MS(v,Φ(Γ)) ,

for any W 2,∞ -di�eomorphism Φ : Ω̄ → Ω̄ and any function v ∈ H1
(
Ω\Φ(Γ)

)
satisfying

the proper boundary conditions, provided that ‖Φ − Id‖W 2,∞ ≤ δ , that Φ(Γ) 6= Γ , and
DΦ(x0) = λId for some λ 6= 0 . Here x0 denotes the triple point. We remark that the last
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assumption is just technical and we believe that it can be removed by re�ning our construction.
The above result can be seen as the analog for triple points con�gurations of the minimality
result established in [9] in the case of regular discontinuity sets.

From the technical point of view the presence of the singularity makes the problem con-
siderably more challenging. The main di�culty lies in the construction of a suitable family
of di�eomorphisms (Φt)t∈[0,1] connecting the critical triple point con�guration with the com-
petitor, in such a way that the �tangential� part along Φt(Γ) of the velocity �eld Xt of the
�ow t 7→ Φt is controlled by its normal part. Moreover, one also has to make sure that the
C2 -closeness to the identity is preserved along the way. This turns out to be a highly nontriv-
ial task, due to the presence of the triple junction which poses severe regularity problems (see
also [17] for a related problem in the context of area functional). Once such a construction
is performed, one proceeds in the following way. Let g(t) :=MS(ut,Γt) and notice that, by
criticality, we have g′(0) = 0 . Thus, recalling (0.7), it is possible to write

MS(v,Φ(Γ))−MS(u,Γ) =

∫ 1

0
(1− t)g′′(t) dt

=

∫ 1

0
(1− t)

(
∂2MS(ut,Γt)[Xt · νt] +Rt

)
dt. (0.8)

If Γt is su�ciently C2 -close to Γ , by the strict positivity assumption on ∂2MS(u,Γ) , we
may conclude by continuity that

∂2MS(ut,Γt)[Xt · νt] ≥ C‖Xt · νt‖2 .
Unfortunately, the remainder Rt depends also on the tangential part of Xt . However, if the
family (Φt)t is properly constructed, on can ensure that such a tangential part is controlled
by Xt · νt and

|Rt| ≤ ε‖Xt · νt‖2

for any ε > 0 , provided that the Φt 's are su�ciently C2 -close to the identity. Plugging the
above two estimates into (0.8) one eventually concludes that, for a Φ 's satisfying the above
assumptions, MS(v,Φ(Γ)) >MS(u,Γ) .

We conclude this introduction by observing that the above result represents just the �rst
step of a more general strategy aimed at establishing the local minimality with respect to the
L1 -topology in the spirit of [8], which will be the subject of future investigations.

Organization of the thesis. In Chapter 1 and Chapter 2 and we present the results
about the functionals (0.5) and (0.2) respectively, while those relative to the Mumford-Shah
functional can be found in Chapter 3. Some technical results needed in the presentation
of the main contributions of this thesis will be proved in the Appendix at the end of each
chapter. Moreover, at the beginning of a chapter, we will introduce the needed notations and
the preliminaries.
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CHAPTER 1

A nonlocal isoperimetric problem in RN

The aim of this chapter is to provide some information about the energy landscape of the
family of functionals

F(E) := P(E) +

∫
RN

∫
RN

χE(x)χE(y)

|x− y|α
dx dy ,

where P(E) is the perimeter of the set E and the second term, the so called nonlocal term,
will be hereafter denoted by NLα(E) .

1.1. Statements of the results

We start our analysis with some preliminary observations about the features of the energy
functional (0.3), before listing the main results of this work. For a �nite perimeter set E , we
will denote by νE the exterior generalized unit normal to ∂∗E , and we will not indicate the
dependence on the set E when no confusion is possible.

Given a measurable set E ⊂ RN , we introduce an auxiliary function vE by setting

vE(x) :=

∫
E

1

|x− y|α
dy for x ∈ RN . (1.1)

The function vE can be characterized as the solution to the equation

(−∆)svE = cN,s χE , s =
N − α

2
(1.2)

where (−∆)s denotes the fractional laplacian and cN,s is a constant depending on the di-
mension and on s (see [23] for an introductory account on this operator and the references
contained therein). Notice that we are interested in those values of s which range in the inter-
val (1

2 ,
N
2 ) . We collect in the following proposition some regularity properties of the function

vE .

Proposition 1.1. Let E ⊂ RN be a measurable set with |E| ≤ m . Then there exists a
constant C , depending only on N, α and m , such that

‖vE‖W 1,∞(RN ) ≤ C .

Moreover, vE ∈ C1,β(RN ) for every β < N − α− 1 and

‖vE‖C1,β(RN ) ≤ C ′

for some positive constant C ′ depending only on N, α, m and β .

Proof. The �rst part of the result is proved in [37, Lemma 4.4], but we repeat here the
easy proof for the reader's convenience. By (1.1),

vE(x) =

∫
B1(x)∩E

1

|x− y|α
dy +

∫
E\B1(x)

1

|x− y|α
dy ≤

∫
B1

1

|y|α
dy +m ≤ C.

1



2 1. A NONLOCAL ISOPERIMETRIC PROBLEM IN RN

By di�erentiating (1.1) in x and arguing similarly, we obtain

|∇vE(x)| ≤ α
∫
E

1

|x− y|α+1
dy ≤ α

∫
B1

1

|y|α+1
dy + αm ≤ C.

Finally, by adding and subtracting the term (x−y)|z−y|β
|x−y|α+β+2 −

(z−y)|x−y|β
|z−y|α+β+2 , we can write

|∇vE(x)−∇vE(z)| ≤ α
∫
E

∣∣∣∣ x− y
|x− y|α+2

− z − y
|z − y|α+2

∣∣∣∣ dy
≤ α

∫
E

(
1

|x− y|α+β+1
+

1

|z − y|α+β+1

)∣∣|x− y|β − |z − y|β∣∣ dy (1.3)

+ α

∫
E

∣∣∣∣(x− y)|z − y|β

|x− y|α+β+2
− (z − y)|x− y|β

|z − y|α+β+2

∣∣∣∣dy
Observe now that for every v, w ∈ RN \ {0}∣∣∣∣ v|v| |w|α+2β+1 − w

|w|
|v|α+2β+1

∣∣∣∣ =
∣∣v |v|α+2β − w |w|α+2β

∣∣ ≤ C max{|v|, |w|}α+2β|v − w|

≤ C max{|v|, |w|}α+β+1|v − w|β

where C depends on N, α and β . Using this inequality to estimate the second term in (1.3)
we deduce

|∇vE(x)−∇vE(z)| ≤ α|x− z|β
∫
E

(
1

|x− y|α+β+1
+

1

|z − y|α+β+1
+

C

min{|x− y|, |z − y|}α+β+1

)
dy

which completes the proof of the proposition, since the last integral is bounded by a constant
depending only on N, α, m and β . �

Remark 1.2. In the case α = N−2 , the function vE solves the equation −∆vE = cN χE ,
and the nonlocal term is exactly

NLN−2(E) =

∫
RN
|∇vE(x)|2 dx .

By standard elliptic regularity, vE ∈W 2,p
loc (RN ) for every p ∈ [1,+∞) .

The following proposition contains an auxiliary result which will be used frequently in the
rest of this chapter.

Proposition 1.3 (Lipschitzianity of the nonlocal term). Given ᾱ ∈ (0, N − 1) and m ∈
(0,+∞) , there exists a constant c0 , depending only on N, ᾱ and m such that if E,F ⊂ RN
are measurable sets with |E|, |F | ≤ m then

|NLα(E)−NLα(F )| ≤ c0|E4F |
for every α ≤ ᾱ , where 4 denotes the symmetric di�erence of two sets.

Proof. We have that

NLα(E)−NLα(F ) =

∫
RN

∫
RN

(
χE(x)(χE(y)− χF (y))

|x− y|α
+
χF (y)(χE(x)− χF (x))

|x− y|α

)
dxdy

=

∫
E\F

(
vE(x) + vF (x)

)
dx−

∫
F\E

(
vE(x) + vF (x)

)
dx

≤
∫
E4F

(
vE(x) + vF (x)

)
dx ≤ 2C |E4F |,
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where the constant C is provided by Proposition 1.1, whose proof shows also that it can be
chosen independently of α ≤ ᾱ . �

The issue of existence and characterization of global minimizers of the problem

min
{
F(E) : E ⊂ RN , |E| = m

}
, (1.4)

for m > 0 , is not at all an easy task. A principal source of di�culty in applying the direct
method of the Calculus of Variations comes from the lack of compactness of the space with
respect to L1 convergence of sets (with respect to which the functional is lower semicontinu-
ous). It is in fact well known that the minimum problem (1.4) does not admit a solution for
certain ranges of masses.

Besides the notion of global minimality, we will address also the study of sets which mini-
mize locally the functional with respect to small L1 -perturbations. By translation invariance,
we measure the L1 -distance of two sets modulo translations by the quantity

α(E,F ) := min
x∈RN

|E4(x+ F )| . (1.5)

Definition 1.4. We say that E ⊂ RN is a local minimizer for the functional (0.3) if there
exists δ > 0 such that

F(E) ≤ F(F )

for every F ⊂ RN such that |F | = |E| and α(E,F ) ≤ δ . We say that E is an isolated local
minimizer if the previous inequality is strict whenever α(E,F ) > 0 .

The �rst order condition for minimality, coming from the �rst variation of the functional
(see (1.10), and also [15, Theorem 2.3]), requires a C2 -minimizer E (local or global) to satisfy
the Euler-Lagrange equation

H∂E(x) + 2γvE(x) = λ for every x ∈ ∂E (1.6)

for some constant λ which plays the role of a Lagrange multiplier associated with the volume
constraint. Here H∂E := divτνE(x) denotes the sum of the principal curvatures of ∂E (divτ
is the tangential divergence on ∂E , see [5, Section 7.3]). Following [1], we de�ne critical sets
as those satisfying (1.6) in a weak sense, for which further regularity can be gained a posteriori
(see Remark 1.6).

Definition 1.5. We say that E ⊂ RN is a regular critical set for the functional (0.3) if
E is a bounded set of class C1 and (1.6) holds weakly on ∂E , i.e.,∫

∂E
divτζ dHN−1 = −2γ

∫
∂E
vE 〈ζ, νE〉dHN−1

for every ζ ∈ C1(RN ;RN ) such that
∫
∂E〈ζ, νE〉dH

N−1 = 0 .

Remark 1.6. By Proposition 1.1 and by standard regularity (see, e.g., [5, Proposition 7.56
and Theorem 7.57]) a critical set E is of class W 2,2 and C1,β for all β ∈ (0, 1) . In turn,
recalling Proposition 1.1, by Schauder estimates (see [29, Theorem 9.19]) we have that E is
of class C3,β for all β ∈ (0, N − α− 1) .

We collect in the following theorem some regularity properties of local and global mini-
mizers, which are mostly known (see, for instance, [37, 43, 65] for global minimizers, and
[1] for local minimizers in a periodic setting). The basic idea is to show that a minimizer
solves a suitable penalized minimum problem, where the volume constraint is replaced by a
penalization term in the functional, and to deduce that a quasi-minimality property is satis�ed
(see De�nition 1.26).
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Theorem 1.7. Let E ⊂ RN be a global or local minimizer for the functional (0.3) with
volume |E| = m . Then the reduced boundary ∂∗E is a C3,β -manifold for all β < N − α− 1 ,
and the Hausdor� dimension of the singular set satis�es dimH(∂E \∂∗E) ≤ N−8 . Moreover,
E is (essentially) bounded. Finally, every global minimizer is connected, and every local
minimizer has at most a �nite number of connected components 1.

Proof. We divide the proof into three steps, following the ideas contained in [1, Propo-
sition 2.7 and Theorem 2.8] in the �rst part.

Step 1. We claim that there exists Λ > 0 such that E is a solution to the penalized minimum
problem

min

{
F(F ) + Λ

∣∣|F | − |E|∣∣ : F ⊂ RN , α(F,E) ≤ δ

2

}
,

where δ is as in De�nition 1.4 (the obstacle α(F,E) ≤ δ
2 is not present in the case of a global

minimizer). To obtain this, it is in fact su�cient to show that there exists Λ > 0 such that if
F ⊂ RN satis�es α(F,E) ≤ δ

2 and F(F ) + Λ
∣∣|F | − |E|∣∣ ≤ F(E) , then |F | = |E| .

Assume by contradiction that there exist sequences Λh → +∞ and Eh ⊂ RN such that
α(Eh, E) ≤ δ

2 , F(Eh)+Λh
∣∣|Eh|−|E|∣∣ ≤ F(E) , and |Eh| 6= |E| . Notice that, since Λh → +∞ ,

we have |Eh| → |E| .

We de�ne new sets Fh := λhEh , where λh =
(
|E|
|Eh|

) 1
N → 1 , so that |Fh| = |E| . Then we

have, for h su�ciently large, that α(Fh, E) ≤ δ and

F(Fh) = F(Eh) + (λN−1
h − 1)P(Eh) + γ(λ2N−α

h − 1)NLα(Eh)

≤ F(E) + (λN−1
h − 1)P(Eh) + γ(λ2N−α

h − 1)NLα(Eh)− Λh
∣∣|Eh| − |E|∣∣

= F(E) + |λNh − 1| |Eh|

(
λN−1
h − 1

|λNh − 1|
P(Eh)

|Eh|
+ γ

λ2N−α
h − 1

|λNh − 1|
NLα(Eh)

|Eh|
− Λh

)
< F(E) ,

which contradicts the local minimality of E (notice that the same proof works also in the case
of global minimizers).

Step 2. From the previous step, it follows that E is an (ω, r0)-minimizer for the area functional
for suitable ω > 0 and r0 > 0 (see De�nition 1.26). Indeed, choose r0 such that ωNr

N
0 ≤ δ

2 :

then if F is such that F4E ⊂⊂ Br(x) with r < r0 , we clearly have that α(F,E) ≤ δ
2 and

by minimality of E we deduce that

P(E) ≤ P(F ) + γ
(
NLα(F )−NLα(E)

)
+ Λ

∣∣|F | − |E|∣∣
≤ P(F ) +

(
γc0 + Λ

)
|E4F |

(using Proposition 1.3), and the claim follows with ω := γc0 + Λ .

Step 3. The C1, 1
2 -regularity of ∂∗E , as well as the condition on the Hausdor� dimension of

the singular set, follows from classical regularity results for (ω, r0)-minimizers (see, e.g., [66,
Theorem 1]). In turn, the C3,β -regularity follows from the Euler-Lagrange equation, as in
Remark 1.6.

To show the essential boundedness, we use the density estimates for (ω, r0)-minimizers of
the perimeter, which guarantee the existence of a positive constant ϑ0 > 0 (depending only

1Here and in the rest of this chapter connectedness is intended in a measure-theoretic sense: E is said to
be connected (or indecomposable) if E = E1 ∪ E2 , |E| = |E1| + |E2| and P(E) = P(E1) + P(E2) imply
|E1||E2| = 0 . A connected component of E is any connected subset E0 ⊂ E such that |E0| > 0 and
P(E) = P(E0) + P(E \ E0) .
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on N ) such that for every point y ∈ ∂∗E and r < min{r0, 1/(2Nω)}

P(E;Br(y)) ≥ ϑ0r
N−1 (1.7)

(see, e.g., [45, Theorem 21.11]). Assume by contradiction that there exists a sequence of

points xn ∈ RN \ E(0) , where

E(0) :=

{
x ∈ RN : lim sup

r→0+

|E ∩Br(x)|
rN

= 0

}
,

such that |xn| → +∞ . Fix r < min{r0, 1/(2Nω)} and assume without loss of generality that
|xn − xm| > 4r . It is easily seen that for in�nitely many n we can �nd yn ∈ ∂∗E ∩ Br(xn) ;
then

P(E) ≥
∑
n

P(E,Br(yn)) ≥
∑
n

ϑ0r
N−1 = +∞ ,

which is a contradiction.
Connectedness of global minimizers follows easily from their boundedness, since if a global

minimizer had at least two connected components one could move one of them far apart from
the others without changing the perimeter but decreasing the nonlocal term in the energy (see
[43, Lemma 3] for a formal argument).

Finally, let E0 be a connected component of a local minimizer E : then, denoting by Br
a ball with volume |Br| = |E0| , using the isoperimetric inequality and the fact that E is a
(ω, r0)-minimizer for the area functional, we obtain

P(E \ E0) +NωNr
N−1 ≤ P(E \ E0) + P(E0) = P(E)

≤ P(E \ E0) + ω|E0| = P(E \ E0) + ωωNr
N ,

which is a contradiction if r is small enough. This shows an uniform lower bound on the
volume of each connected component of E , from which we deduce that E can have at most
a �nite number of connected components. �

We are now ready to state the main results of this chapter. The central theorem, whose
proof lasts for Sections 1.2 and 1.3, provides a su�ciency local minimality criterion based
on the second variation of the functional. Following [1] (see also [15]), we introduce a qua-
dratic form associated with the second variation of the functional at a regular critical set (see
De�nition 1.18); then we show that its strict positivity (on the orthogonal complement to a
suitable �nite dimensional subspace of directions where the second variation degenerates, due
to translation invariance) is a su�cient condition for isolated local minimality, according to
De�nition 1.4, by proving a quantitative stability inequality. The result reads as follows.

Theorem 1.8. Assume that E is a regular critical set for F with positive second variation,
in the sense of De�nition 1.22. Then there exist δ > 0 and C > 0 such that

F(F ) ≥ F(E) + C
(
α(E,F )

)2
(1.8)

for every F ⊂ RN such that |F | = |E| and α(E,F ) < δ .

The local minimality criterion in Theorem 1.8 can be applied to obtain information about
local and global minimizers of the functional (0.3). In order to state the results more clearly,
we will underline the dependence of the functional on the parameters α and γ by writing Fα,γ
instead of F . We start with the following theorem, which shows the existence of a critical
mass mloc such that the ball BR is an isolated local minimizer if |BR| < mloc , but is no
longer a local minimizer for larger masses. We also determine explicitly the volume threshold
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in the three-dimensional case. The result, which to the best of our knowledge provides the
�rst characterization of the local minimality of the ball, will be proved in Section 1.4.

Theorem 1.9 (Local minimality of the ball). Given N ≥ 2, α ∈ (0, N − 1) and γ > 0 ,
there exists a critical threshold mloc = mloc(N,α, γ) > 0 such that the ball BR is an isolated
local minimizer for Fα,γ , in the sense of De�nition 1.4, if 0 < |BR| < mloc .

If |BR| > mloc , there exists E ⊂ RN with |E| = |BR| and α(E,BR) arbitrarily small
such that Fα,γ(E) < Fα,γ(BR) .

Finally mloc(N,α, γ)→∞ as α→ 0+ , and in dimension N = 3 we have

mloc(3, α, γ) =
4

3
π

(
(6− α)(4− α)

23−αγαπ

) 3
4−α

.

Our local minimality criterion allows us to deduce further properties about global mini-
mizers, which will be proved in Section 1.5. The �rst result states that the ball is the unique
global minimizer of the functional for small masses. We provide an alternative proof of this
fact (which was already known in the literature in some particular cases, as explained in the
introduction), removing the restrictions on the parameters N and α which were present in
the previous partial results (except for the upper bound α < N − 1).

Theorem 1.10 (Global minimality of the ball). Given N ≥ 2 , α ∈ (0, N −1) and γ > 0 ,
let mglob(N,α, γ) be the supremum of the masses m > 0 such that the ball of volume m is a

global minimizer of Fα,γ in RN . Then mglob(N,α, γ) is positive and �nite, and the ball of
volume m is a global minimizer of Fα,γ if m ≤ mglob(N,α, γ) . Moreover, it is the unique
(up to translations) global minimizer of Fα,γ if m < mglob(N,α, γ) .

In the following theorems we analyze the global minimality issue for α close to 0, showing
that in this case the unique minimizer, as long as a minimizer exists, is the ball, and charac-
terizing the in�mum of the energy when the problem does not have a solution. In particular,
we recover the result already proved by di�erent techniques in [36, Theorem 2.7] for N = 2 ,
and we extend it to the general space dimension.

Theorem 1.11 (Characterization of global minimizers for α small). There exists ᾱ =
ᾱ(N, γ) > 0 such that for every α < ᾱ the ball with volume m is the unique (up to translations)
global minimizer of Fα,γ if m ≤ mglob(N,α, γ) , while for m > mglob(N,α, γ) the minimum
problem for Fα,γ does not have a solution.

Theorem 1.12 (Characterization of minimizing sequences for α small). Let α < ᾱ (where
ᾱ is given by Theorem 1.11) and let

fk(m) := min
µ1,...,µk≥0

µ1+...+µk=m

{ k∑
i=1

F(Bi) : Bi ball, |Bi| = µi

}
.

There exists an increasing sequence (mk)k , with m0 = 0, m1 = mglob , such that limkmk =∞
and

inf
|E|=m

F(E) = fk(m) for every m ∈ [mk−1,mk], for all k ∈ N, (1.9)

that is, for every m ∈ [mk−1,mk] a minimizing sequence for the total energy is obtained by a
con�guration of at most k disjoint balls with diverging mutual distance. Moreover, the number
of non-degenerate balls tends to +∞ as m→ +∞.

Remark 1.13. Since mloc(N,α, γ) → +∞ as α → 0+ and the non-existence threshold
is uniformly bounded for α ∈ (0, 1) (see Proposition 1.37), we immediately deduce that, for



1.2. SECOND VARIATION AND W 2,p -LOCAL MINIMALITY 7

α small, mglob(N,α, γ) < mloc(N,α, γ) . Moreover, denoting by m̄(N,α, γ) the value of the
mass for which the energy of a ball of volume m̄ is equal to the energy of two disjoint balls
of volume m̄

2 �at an in�nite distance� (that is, neglecting the interaction term between the
two balls), we clearly have mglob(N,α, γ) ≤ m̄(N,α, γ) . By a straightforward estimate on m̄
(using NLα(B1) ≥ ω2

N2−α ) we obtain the following upper bound for the global minimality
threshold of the ball:

mglob(N,α, γ) ≤ m̄(N,α, γ) < ωN

(
2αN(2

1
N − 1)

ωNγ(1− (1
2)

N−α
N )

) N
N+1−α

.

Hence, by comparing this value with the explicit expression of mloc in the physical interesting
case N = 3 , α = 1 (see Theorem 1.9), we deduce that mglob(3, 1, γ) < mloc(3, 1, γ) . Notice
that a similar comparison between local and global stability is made in [36] for the two-
dimensional case, where the explicit value of m̄ is computed.

Remark 1.14. In the planar case, one can also consider a Newtonian potential in the
nonlocal term, i.e. ∫

E

∫
E

log
1

|x− y|
dxdy .

It is clear that the in�mum of the corresponding functional on R2 is −∞ (consider, for
instance, a minimizing sequence obtained by sending to in�nity the distance between the
centers of two disjoint balls). Moreover, also the notion of local minimality considered in
De�nition 1.4 becomes meaningless in this situation, since, given any �nite perimeter set
E , it is always possible to �nd sets with total energy arbitrarily close to −∞ in every L1 -
neighbourhood of E . Nevertheless, by reproducing the arguments of this chapter one can
show that, given a bounded regular critical set E with positive second variation, and a radius
R > 0 such that E ⊂ BR , there exists δ > 0 such that E minimizes the energy with respect
to competitors F ⊂ BR with α(F,E) < δ .

1.2. Second variation and W 2,p -local minimality

We start this section by introducing the notions of �rst and second variation of the func-
tional F along families of deformations as in the following de�nition.

Definition 1.15. Let X : RN → RN be a C2 vector �eld. The admissible �ow associated
with X is the function Φ : RN × (−1, 1)→ RN de�ned by the equations

∂Φ

∂t
= X(Φ) , Φ(x, 0) = x .

Definition 1.16. Let E ⊂ RN be a set of class C2 , and let Φ be an admissible �ow. We
de�ne the �rst and second variation of F at E with respect to the �ow Φ to be

d

dt
F(Et)|t=0

and
d2

dt2
F(Et)|t=0

respectively, where we set Et := Φt(E) .

Given a regular set E , we denote by Xτ := X − 〈X, νE〉νE the tangential part to ∂E of
a vector �eld X . We recall that the tangential gradient Dτ is de�ned by Dτϕ := (Dϕ)τ , and
that B∂E := DτνE is the second fundamental form of ∂E .

The following theorem contains the explicit formula for the �rst and second variation of
F . The computation, which is postponed to the Appendix, is performed by a regularization
approach which is slightly di�erent from the technique used, in the case α = N−2 , in [15] (for
a critical set, see also [53]) and in [1] (for a general regular set): here we introduce a family
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of regularized potentials (depending on a small parameter δ ∈ R) to avoid the problems in
the di�erentiation of the singularity in the nonlocal part, recovering the result by letting the
parameter tend to 0.

Theorem 1.17. Let E ⊂ RN be a bounded set of class C2 , and let Φ be the admissible
�ow associated with a C2 vector �eld X . Then the �rst variation of F at E with respect to
the �ow Φ is

dF(Et)

dt |t=0

=

∫
∂E

(H∂E + 2γvE)〈X, νE〉 dHN−1 , (1.10)

and the second variation of F at E with respect to the �ow Φ is

d2F(Et)

dt2 |t=0

=

∫
∂E

(
|Dτ 〈X, νE〉|2 − |B∂E |2〈X, νE〉2

)
dHN−1

+ 2γ

∫
∂E

∫
∂E
G(x, y)〈X(x), νE(x)〉〈X(y), νE(y)〉dHN−1(x)dHN−1(y)

+ 2γ

∫
∂E
∂νEvE 〈X, νE〉

2 dHN−1 −
∫
∂E

(2γvE +H∂E) divτ
(
Xτ 〈X, νE〉

)
dHN−1

+

∫
∂E

(2γvE +H∂E)(divX)〈X, νE〉 dHN−1 ,

where G(x, y) := 1
|x−y|α is the potential in the nonlocal part of the energy.

If E is a regular critical set (as in De�nition 1.5) it holds∫
∂E

(2γvE +H∂E)divτ
(
Xτ 〈X, νE〉

)
dHN−1 = 0 .

Moreover if the admissible �ow Φ preserves the volume of E , i.e. if |Φt(E)| = |E| for all
t ∈ (−1, 1) , then (see [15, equation (2.30)])

0 =
d2

dt2
|Et||t=0

=

∫
∂E

(divX)〈X, νE〉 dHN−1 .

Hence we obtain the following expression for the second variation at a regular critical set with
respect to a volume-preserving admissible �ow:

d2F(Et)

dt2 |t=0

=

∫
∂E

(
|Dτ 〈X, νE〉|2 − |B∂E |2〈X, νE〉2

)
dHN−1 + 2γ

∫
∂E
∂νEvE〈X, νE〉

2 dHN−1

+ 2γ

∫
∂E

∫
∂E
G(x, y)〈X(x), νE(x)〉〈X(y), νE(y)〉 dHN−1(x)dHN−1(y) .

Following [1], we introduce the space

H̃1(∂E) :=

{
ϕ ∈ H1(∂E) :

∫
∂E
ϕdHN−1 = 0

}
endowed with the norm ‖ϕ‖

H̃1(∂E)
:= ‖∇ϕ‖L2(∂E) , and we de�ne on it the following quadratic

form associated with the second variation.

Definition 1.18. Let E ⊂ RN be a regular critical set. We de�ne the quadratic form

∂2F(E) : H̃1(∂E)→ R by

∂2F(E)[ϕ] =

∫
∂E

(
|Dτϕ|2 − |B∂E |2ϕ2

)
dHN−1 + 2γ

∫
∂E

(∂νEvE)ϕ2 dHN−1

+ 2γ

∫
∂E

∫
∂E
G(x, y)ϕ(x)ϕ(y) dHN−1(x)dHN−1(y) .

(1.11)
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Notice that if E is a regular critical set and Φ preserves the volume of E , then

∂2F(E)[〈X, νE〉] =
d2F(Et)

dt2 |t=0

. (1.12)

We remark that the last integral in the expression of ∂2F(E) is well de�ned for ϕ ∈ H̃1(∂E) ,
thanks to the following result.

Lemma 1.19. Let E be a bounded set of class C1 . There exists a constant C > 0 ,

depending only on E, N and α , such that for every ϕ,ψ ∈ H̃1(∂E)∫
∂E

∫
∂E
G(x, y)ϕ(x)ψ(y) dHN−1(x)dHN−1(y) ≤ C‖ϕ‖L2‖ψ‖L2 ≤ C‖ϕ‖H̃1‖ψ‖H̃1 . (1.13)

Proof. The proof lies on [29, Lemma 7.12], which states that if Ω ⊂ Rn is a bounded
domain and µ ∈ (0, 1] , the operator f 7→ Vµf de�ned by

(Vµf)(x) :=

∫
Ω
|x− y|n(µ−1)f(y) dy

maps Lp(Ω) continuously into Lq(Ω) provided that 0 ≤ δ := p−1 − q−1 < µ , and

‖Vµf‖Lq(Ω) ≤
( 1− δ
µ− δ

)1−δ
ω1−µ
n |Ω|µ−δ‖f‖Lp(Ω) .

In our case, from the fact that our set has compact boundary, we can simply reduce to the
above case using local charts and partition of unity (notice that the hypothesis of compact
boundary allows us to bound from above in the L∞ -norm the area factor). In particular we
have that µ = N−1−α

N−1 , and applying this result with p = q = 2 we easily obtain the estimate
in the statement by the Sobolev Embedding Theorem. �

Remark 1.20. Using the estimate contained in the previous lemma it is easily seen that

∂2F(E) is continuous with respect to the strong convergence in H̃1(∂E) and lower semicon-

tinuous with respect to the weak convergence in H̃1(∂E) . Moreover, it is also clear from
the proof that, given ᾱ < N − 1 , the constant C in (1.13) can be chosen independently of
α ∈ (0, ᾱ) .

Equality (1.12) suggests that at a regular local minimizer the quadratic form (1.11) must

be nonnegative on the space H̃1(∂E) . This is the content of the following corollary, whose
proof is analogous to [1, Corollary 3.4].

Corollary 1.21. Let E be a local minimizer of F of class C2 . Then

∂2F(E)[ϕ] ≥ 0 for all ϕ ∈ H̃1(∂E) .

Now we want to look for a su�cient condition for local minimality. First of all we notice
that, since our functional is translation invariant, if we compute the second variation of F at
a regular set E with respect to a �ow of the form Φ(x, t) := x+ tηei , where η ∈ R and ei is
an element of the canonical basis of RN , setting νi := 〈νE , ei〉 we obtain that

∂2F(E)[ηνi] =
d2

dt2
F(Et)

|t=0

= 0 .

Following [1], since we aim to prove that the strict positivity of the second variation is a
su�cient condition for local minimality, we shall exclude the �nite dimensional subspace of

H̃1(∂E) generated by the functions νi , which we denote by T (∂E) . Hence we split

H̃1(∂E) = T⊥(∂E)⊕ T (∂E) ,
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where T⊥(∂E) is the orthogonal complement to T (∂E) in the L2 -sense, i.e.,

T⊥(∂E) :=

{
ϕ ∈ H̃1(∂E) :

∫
∂E
ϕνi dHN−1 = 0 for each i = 1, . . . , N

}
.

It can be shown (see [1, Equation (3.7)]) that there exists an orthonormal frame (ε1, . . . , εN )
such that ∫

∂E
〈ν, εi〉〈ν, εj〉dHN−1 = 0 for all i 6= j ,

so that the projection on T⊥(∂E) of a function ϕ ∈ H̃1(∂E) is

πT⊥(∂E)(ϕ) = ϕ−
N∑
i=1

(∫
∂E
ϕ〈ν, εi〉dHN−1

)
〈ν, εi〉

‖〈ν, εi〉‖2L2(∂E)

(notice that 〈ν, εi〉 6≡ 0 for every i , since on the contrary the set E would be translation
invariant in the direction εi ).

Definition 1.22. We say that F has positive second variation at the regular critical set
E if

∂2F(E)[ϕ] > 0 for all ϕ ∈ T⊥(∂E)\{0}.

One could expect that the positiveness of the second variation implies also a sort of coer-
civity; this is shown in the following lemma.

Lemma 1.23. Assume that F has positive second variation at a regular critical set E .
Then

m0 := inf
{
∂2F(E)[ϕ] : ϕ ∈ T⊥(∂E), ‖ϕ‖

H̃1(∂E)
= 1
}
> 0 ,

and

∂2F(E)[ϕ] ≥ m0‖ϕ‖2H̃1(∂E)
for all ϕ ∈ T⊥(∂E) .

Proof. Let (ϕh)h be a minimizing sequence for m0 . Up to a subsequence we can suppose
that ϕh ⇀ ϕ0 weakly in H1(∂E) , with ϕ0 ∈ T⊥(∂E) . By the lower semicontinuity of ∂2F(E)
with respect to the weak convergence in H1(∂E) (see Remark 1.20), we have that if ϕ0 6= 0

m0 = lim
h→∞

∂2F(E)[ϕh] ≥ ∂2F(E)[ϕ0] > 0 ,

while if ϕ0 = 0

m0 = lim
h→∞

∂2F(E)[ϕh] = lim
h→∞

∫
∂E
|Dτϕh|2 dHN−1 = 1 .

The second part of the statement follows from the fact that ∂2F(E) is a quadratic form. �

We now come to the proof of the main result of this chapter, namely that the positivity
of the second variation at a critical set E is a su�cient condition for local minimality (The-
orem 1.8). In the remaining part of this section we prove that a weaker minimality property
holds, that is minimality with respect to sets whose boundaries are graphs over the boundary
of E with su�ciently small W 2,p -norm (Theorem 1.25). In order to do this, we start by
recalling a technical result needed in the proof, namely [1, Theorem 3.7], which provides a
construction of an admissible �ow connecting a regular set E ⊂ RN with an arbitrary set
su�ciently close in the W 2,p -sense.
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Theorem 1.24. Let E ⊂ RN be a bounded set of class C3 and let p > N − 1 . For all
ε > 0 there exist a tubular neighbourhood U of ∂E and two positive constants δ, C with the
following properties: if ψ ∈ C2(∂E) and ‖ψ‖W 2,p(∂E) ≤ δ then there exists a �eld X ∈ C2

with divX = 0 in U such that

‖X − ψνE‖L2(∂E) ≤ ε‖ψ‖L2(∂E) .

Moreover the associated �ow

Φ(x, 0) = 0,
∂Φ

∂t
= X(Φ)

satis�es Φ(∂E, 1) = {x+ ψ(x)νE(x) : x ∈ ∂E} , and for every t ∈ [0, 1]

‖Φ(·, t)− Id‖W 2,p ≤ C‖ψ‖W 2,p(∂E) ,

where Id denotes the identity map. If in addition E1 has the same volume as E , then for
every t we have |Et| = |E| and ∫

∂Et

〈X, νEt〉 dHN−1 = 0 .

We are now in position to prove the following W 2,p -local minimality theorem, analogous
to [1, Theorem 3.9]. The proof contained in [1] can be repeated here with minor changes, and
we will only give a sketch of it for the reader's convenience.

Theorem 1.25. Let p > max{2, N − 1} and let E be a regular critical set for F with
positive second variation, according to De�nition 1.22. Then there exist δ, C0 > 0 such that

F(F ) ≥ F(E) + C0(α(E,F ))2 ,

for each F ⊂ RN such that |F | = |E| and ∂F = {x+ψ(x)νE(x) : x ∈ ∂E} with ‖ψ‖W 2,p(∂E) ≤ δ .

Proof (sketch). We just describe the strategy of the proof, which is divided into two
steps.

Step 1. There exists δ1 > 0 such that if ∂F = {x + ψ(x)νE(x) : x ∈ ∂E} with |F | = |E|
and ‖ψ‖W 2,p(∂E) ≤ δ1 , then

inf

{
∂2F(F )[ϕ] : ϕ ∈ H̃1(∂F ), ‖ϕ‖

H̃1(∂F )
= 1,

∣∣∣ ∫
∂F
ϕνF dHN−1

∣∣∣ ≤ δ1

}
≥ m0

2
,

where m0 is de�ned in Lemma 1.23. To prove this we suppose by contradiction that there exist
a sequence (Fn)n of subsets of RN such that ∂Fn = {x+ψn(x)νE(x) : x ∈ ∂E} , |Fn| = |E| ,
‖ψn‖W 2,p(∂E) → 0 , and a sequence of functions ϕn ∈ H̃1(∂Fn) with ‖ϕn‖H̃1(∂Fn)

= 1 ,

|
∫
∂Fn

ϕnνFn dHN−1| → 0 , such that

∂2F(Fn)[ϕn] <
m0

2
.

We consider a sequence of di�eomorphisms Φn : E → Fn , with Φn → Id in W 2,p , and we set

ϕ̃n := ϕn ◦ Φn − an, an :=

∫
∂E
ϕn ◦ Φn dHN−1.

Hence ϕ̃n ∈ H̃1(∂E) , an → 0 , and since νFn ◦ Φn − νE → 0 in C0,β for some β ∈ (0, 1) and
a similar convergence holds for the tangential vectors, we have that∫

∂E
ϕ̃n〈νE , εi〉dHN−1 → 0
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for every i = 1, . . . , N , so that ‖πT⊥(∂E)(ϕ̃n)‖
H̃1(∂E)

→ 1 . Moreover it can be proved that∣∣∂2F(Fn)[ϕn]− ∂2F(E)[ϕ̃n]
∣∣→ 0.

Indeed, the convergence of the �rst integral in the expression of the quadratic form follows
easily from the fact that B∂Fn ◦ Φn − B∂E → 0 in Lp(∂E) , and from the Sobolev Embed-
ding Theorem (recall that p > max{2, N − 1}). For the second integral, it is su�cient to
observe that, as a consequence of Proposition 1.1, the functions vFh are uniformly bounded
in C1,β(RN ) for some β ∈ (0, 1) and hence they converge to vE in C1,γ(BR) for all γ < β
and R > 0 . Finally, the di�erence of the last integrals can be written as∫
∂Fn

∫
∂Fn

G(x, y)ϕn(x)ϕn(y) dHN−1dHN−1 −
∫
∂E

∫
∂E
G(x, y)ϕ̃n(x)ϕ̃n(y) dHN−1dHN−1

=

∫
∂E

∫
∂E
gn(x, y)G(x, y)ϕ̃n(x)ϕ̃n(y) dHN−1dHN−1

+ an

∫
∂E

∫
∂E
G(Φn(x),Φn(y))Jn(x)Jn(y)

(
ϕ̃n(x) + ϕ̃n(y) + an

)
dHN−1dHN−1

where Jn(z) := JN−1
∂E Φn(z) is the (N − 1)-dimensional jacobian of Φn on ∂E , and

gn(x, y) :=
|x− y|α

|Φn(x)− Φn(y)|α
Jn(x)Jn(y)− 1 .

Thus the desired convergence follows from the fact that gn → 0 uniformly, an → 0 , and from
the estimate provided by Lemma 1.19.

Hence
m0

2
≥ lim

n→∞
∂2F(Fn)[ϕn] = lim

n→∞
∂2F(E)[ϕ̃n] = lim

n→∞
∂2F(E)[πT⊥(∂E)(ϕ̃n)]

≥ m0 lim
n→∞

‖πT⊥(∂E)(ϕ̃n)‖
H̃1(∂E)

= m0,

which is a contradiction.

Step 2. If F is as in the statement of the theorem, we can use the vector �eld X provided
by Theorem 1.24 to generate a �ow connecting E to F by a family of sets Et , t ∈ [0, 1] .
Recalling that E is critical and that X is divergence free, we can write

F(F )−F(E) = F(E1)−F(E0) =

∫ 1

0
(1− t) d2

dt2
F(Et) dt

=

∫ 1

0
(1− t)

(
∂2F(Et)[〈X, νEt〉]−

∫
∂Et

(2γvEt +H∂Et)divτt(Xτt〈X, νEt〉) dHN−1
)

dt,

where divτt stands for the tangential divergence of ∂Et . It is now possible to bound from
below the previous integral in a quantitative fashion: to do this we use, in particular, the
result proved in Step 1 for the �rst term, and we proceed as in Step 2 of [1, Theorem 3.9] for
the second one. In this way we obtain the desired estimate. �

1.3. L1 -local minimality

In this section we complete the proof of the main result of this chapter (Theorem 1.8),
started in the previous section. The main argument of the proof relies on a regularity property
of sequences of quasi-minimizers of the area functional, which has been observed by White in
[68] and was implicitly contained in [4] (see also [62], [66]).
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Definition 1.26. A set E ⊂ RN is said to be an (ω, r0)-minimizer for the area functional,
with ω > 0 and r0 > 0 , if for every ball Br(x) with r ≤ r0 and for every �nite perimeter set
F ⊂ RN such that E4F ⊂⊂ Br(x) we have

P(E) ≤ P(F ) + ω|E4F |.

Theorem 1.27. Let En ⊂ RN be a sequence of (ω, r0)-minimizers of the area functional
such that

sup
n
P(En) < +∞ and χEn → χE in L1(RN )

for some bounded set E of class C2 . Then for n large enough En is of class C1, 1
2 and

∂En = {x+ ψn(x)νE(x) : x ∈ ∂E},

with ψn → 0 in C1,β(∂E) for all β ∈ (0, 1
2) .

Another useful result is the following consequence of the classical elliptic regularity theory
(see [1, Lemma 7.2] for a proof).

Lemma 1.28. Let E be a bounded set of class C2 and let En be a sequence of sets of class
C1,β for some β ∈ (0, 1) such that ∂En = {x + ψn(x)νE(x) : x ∈ ∂E} , with ψn → 0 in
C1,β(∂E) . Assume also that H∂En ∈ Lp(∂En) for some p ≥ 1. If

H∂En(·+ ψn(·)νE(·))→ H∂E in Lp(∂E),

then ψn → 0 in W 2,p(∂E) .

We recall also the following simple lemma from [1, Lemma 4.1].

Lemma 1.29. Let E ⊂ RN be a bounded set of class C2 . Then there exists a constant
CE > 0 , depending only on E , such that for every �nite perimeter set F ⊂ RN

P(E) ≤ P(F ) + CE |E4F |.

An intermediate step in the proof of Theorem 1.8 consists in showing that the W 2,p -local
minimality proved in Theorem 1.25 implies local minimality with respect to competing sets
which are su�ciently close in the Hausdor� distance. We omit the proof of this result, since it
can be easily adapted from [1, Theorem 4.3] (notice, indeed, that the di�culties coming from
the fact of working in the whole space RN are not present, due to the constraint F ⊂ Iδ0(E)).

Theorem 1.30. Let E ⊂ RN be a bounded regular set, and assume that there exists δ > 0
such that

F(E) ≤ F(F ) (1.14)

for every set F ⊂ RN with |F | = |E| and ∂F = {x+ψ(x)νE(x) : x ∈ ∂E} , for some function
ψ with ‖ψ‖W 2,p(∂E) ≤ δ .

Then there exists δ0 > 0 such that (1.14) holds for every �nite perimeter set F with
|F | = |E| and such that I−δ0(E) ⊂ F ⊂ Iδ0(E), where for δ ∈ R we set (d denoting the
signed distance to E )

Iδ(E) := {x : d(x) < δ} .

We are �nally ready to complete the proof of the main result of this chapter. The strategy
follows closely [1, Theorem 1.1], with the necessary technical modi�cations due to the fact
that here we have to deal with a more general exponent α and with the lack of compactness
of the ambient space.
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Proof of Theorem 1.8. We assume by contradiction that there exists a sequence of
sets Eh ⊂ RN , with |Eh| = |E| and α(Eh, E) > 0 , such that εh := α(Eh, E)→ 0 and

F(Eh) < F(E) +
C0

4

(
α(Eh, E)

)2
, (1.15)

where C0 is the constant provided by Theorem 1.25. By approximation we can assume without
loss of generality that each set of the sequence is bounded, that is, there exist Rh > 0 (which
we can also take satisfying Rh → +∞) such that Eh ⊂ BRh .

We now de�ne Fh ⊂ RN as a solution to the penalization problem

min

{
Jh(F ) := F(F ) + Λ1

√(
α(F,E)− εh

)2
+ εh + Λ2

∣∣|F | − |E|∣∣ : F ⊂ BRh
}
, (1.16)

where Λ1 and Λ2 are positive constant, to be chosen (notice that the constraint F ⊂ BRh
guarantees the existence of a solution). We �rst �x

Λ1 > CE + c0γ . (1.17)

Here CE is as in Lemma 1.29, while c0 is the constant provided by Proposition 1.3 corre-
sponding to the �xed values of N and α and to m := |E|+1 . We remark that with this choice

Λ1 depends only on the set E . We will consider also the sets F̃h obtained by translating Fh
in such a way that α(Fh, E) = |F̃h4E| (clearly Jh(F̃h) = Jh(Fh)).

Step 1. We claim that, if Λ2 is su�ciently large (depending on Λ1 , but not on h), then
|Fh| = |E| for every h large enough. This can be deduced by adapting an argument from [24,
Section 2] (see also [1, Proposition 2.7]). Indeed, assume by contradiction that there exist
Λh →∞ and Fh solution to the minimum problem (1.16) with Λ2 replaced by Λh such that
|Fh| < |E| (a similar argument can be performed in the case |Fh| > |E|). Up to subsequences,
we have that Fh → F0 in L1

loc and |Fh| → |E| .
As each set Fh minimizes the functional

F(F ) + Λ1

√(
α(F,E)− εh

)2
+ εh

in BRh under the constraint |F | = |Fh| , it is easily seen that Fh is a quasi-minimizer of the
perimeter with volume constraint, so that by the regularity result contained in [61, Theo-
rem 1.4.4] we have that the (N − 1)-dimensional density of ∂∗Fh is uniformly bounded from
below by a constant independent of h . This observation implies that we can assume without
loss of generality that the limit set F0 is not empty and that there exists a point x0 ∈ ∂∗F0 ,
so that, by repeating an argument contained in [24], we obtain that given ε > 0 we can �nd
r > 0 and x̄ ∈ RN such that

|Fh ∩Br/2(x̄)| < εrN , |Fh ∩Br(x̄)| > ωNr
N

2N+2

for every h su�ciently large (and we assume x̄ = 0 for simplicity).
Now we modify Fh in Br by setting Gh := Φh(Fh) , where Φh is the bilipschitz map

Φh(x) :=


(
1− σh(2N − 1)

)
x if |x| ≤ r

2 ,

x+ σh
(
1− rN

|x|N
)
x if r2 < x < r,

x if |x| ≥ r,

and σh ∈ (0, 1
2N

) . It can be shown (see [24, Section 2], [1, Proposition 2.7] for details) that ε
and σh can be chosen in such a way that |Gh| = |E| , and moreover there exists a dimensional
constant C > 0 such that

JΛh(Fh)− JΛh(Gh) ≥ σh
(
CΛhr

N − (2NN + Cγ + CΛ1)P(Fh;Br)
)
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(where JΛh denotes the functional in (1.16) with Λ2 replaced by Λh ). This contradicts the
minimality of Fh for h su�ciently large.

Step 2. We now show that
lim

h→+∞
α(Fh, E) = 0. (1.18)

Indeed, by Lemma 1.29 we have that

P(E) ≤ P(F̃h) + CE |F̃h4E|,
while by Proposition 1.3

|NL(E)−NL(F̃h)| ≤ c0|F̃h4E|.
Combining the two estimates above, using the minimality of Fh and recalling that |Fh| = |E|
we deduce

P(F̃h) + γNL(F̃h) + Λ1

√(
|F̃h4E| − εh

)2
+ εh = Jh(Fh) ≤ Jh(E)

= P(E) + γNL(E) + Λ1

√
ε2
h + εh

≤ P(F̃h) + γNL(F̃h) + (CE + c0γ)|F̃h4E|+ Λ1

√
ε2
h + εh,

which yields

Λ1

√(
|F̃h4E| − εh

)2
+ εh ≤ (CE + c0γ)|F̃h4E|+ Λ1

√
ε2
h + εh.

Passing to the limit as h→ +∞ , we conclude that

Λ1 lim sup
h→+∞

|F̃h4E| ≤ (CE + c0γ) lim sup
h→+∞

|F̃h4E|,

which implies |F̃h4E| → 0 by the choice of Λ1 in (1.17). Hence (1.18) is proved, and this
shows in particular that χ

F̃h
→ χE in L1(RN ) .

Step 3. Each set Fh is an (ω, r0)-minimizer of the area functional (see De�nition 1.26), for
suitable ω > 0 and r0 > 0 independent of h . Indeed, choose r0 such that ωNr0

N ≤ 1 , and
consider any ball Br(x) with r ≤ r0 and any �nite perimeter set F such that F4Fh ⊂⊂
Br(x) . We have

|NL(F )−NL(Fh)| ≤ c0|F4Fh|
by Proposition 1.3, where c0 is the same constant as before since we can bound the volume
of F by |F | ≤ |Fh|+ ωNr0

N ≤ |E|+ 1 . Moreover

P(F )− P(F ∩BRh) =

∫
∂∗F\BRh

1 dHN−1(x)−
∫
∂∗(F∩BRh )∩∂BRh

1 dHN−1(x)

≥
∫
∂∗F\BRh

x

|x|
· νF dHN−1(x)−

∫
∂∗(F∩BRh )∩∂BRh

x

|x|
· νF∩BRh dHN−1(x)

=

∫
∂∗(F\BRh )

x

|x|
· νF\BRh dHN−1(x) =

∫
F\BRh

div
x

|x|
dx ≥ 0.

Hence, as Fh is a minimizer of Jh among sets contained in BRh , we deduce

P(Fh) ≤ P(F ∩BRh) + γ
(
NL(F ∩BRh)−NL(Fh)

)
+ Λ2

∣∣|F ∩BRh | − |E|∣∣
+ Λ1

√(
α(F ∩BRh , E)− εh

)2
+ εh − Λ1

√(
α(Fh, E)− εh

)2
+ εh

≤ P(F ) +
(
c0γ + Λ1 + Λ2

)
|(F ∩BRh)4Fh|

≤ P(F ) +
(
c0γ + Λ1 + Λ2

)
|F4Fh|
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for h large enough. This shows that Fh is an (ω, r0)-minimizer of the area functional with

ω = c0γ + Λ1 + Λ2 (and the same holds obviously also for F̃h ).
Hence, by Theorem 1.27 and recalling that χ

F̃h
→ χE in L1 , we deduce that for h

su�ciently large F̃h is a set of class C1, 1
2 and

∂F̃h = {x+ ψh(x)νE(x) : x ∈ ∂E}
for some ψh such that ψh → 0 in C1,β(∂E) for every β ∈ (0, 1

2) . We remark also that the

sets F̃h are uniformly bounded, and for h large enough F̃h ⊂⊂ BRh : in particular, F̃h solves
the minimum problem (1.16).

Step 4. We now claim that

lim
h→+∞

α(Fh, E)

εh
= 1. (1.19)

Indeed, assuming by contradiction that |α(Fh, E)−εh| ≥ σεh for some σ > 0 and for in�nitely
many h , we would obtain

F(Fh) + Λ1

√
σ2ε2

h + εh ≤ F(Fh) + Λ1

√(
α(Fh, E)− εh

)2
+ εh

≤ F(Eh) + Λ1
√
εh < F(E) +

C0

4
ε2
h + Λ1

√
εh

≤ F(F̃h) +
C0

4
ε2
h + Λ1

√
εh

where the second inequality follows from the minimality of Fh , the third one from (1.15) and
the last one from Theorem 1.30. This shows that

Λ1

√
σ2ε2

h + εh ≤
C0

4
ε2
h + Λ1

√
εh ,

which is a contradiction for h large enough.

Step 5. We now show the existence of constants λh ∈ R such that

‖H
∂F̃h

+ 2γv
F̃h
− λh‖L∞(∂F̃h)

≤ 4Λ1
√
εh → 0. (1.20)

We �rst observe that the function fh(t) :=
√

(t− εh)2 + εh satis�es

|fh(t1)− fh(t2)| ≤ 2
√
εh |t1 − t2| if |ti − εh| ≤ εh. (1.21)

Hence for every set F ⊂ RN with |F | = |E| , F ⊂ BRh and |α(F,E)− εh| ≤ εh we have

F(F̃h) ≤ F(F ) + Λ1

(√(
α(F,E)− εh

)2
+ εh −

√(
α(F̃h, E)− εh

)2
+ εh

)
≤ F(F ) + 2Λ1

√
εh |α(F,E)− α(F̃h, E)| (1.22)

≤ F(F ) + 2Λ1
√
εh |F4F̃h|

where we used the minimality of F̃h in the �rst inequality, and (1.21) combined with the fact

that |α(F̃h, E)− εh| ≤ εh for h large (which, in turn, follows by (1.19)) in the second one.

Consider now any variation Φt , as in De�nition 1.15, preserving the volume of the set F̃h ,

associated with a vector �eld X . For |t| su�ciently small we can plug the set Φt(F̃h) in the
inequality (1.22):

F(F̃h) ≤ F(Φt(F̃h)) + 2Λ1
√
εh |Φt(F̃h)4F̃h|,

which gives

F(Φt(F̃h))−F(F̃h) + 2Λ1
√
εh |t|

∫
∂F̃h

|X · ν
F̃h
| dHN−1 + o(t) ≥ 0
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for |t| su�ciently small. Hence, dividing by t and letting t→ 0+ and t→ 0− , we get∣∣∣∣ ∫
∂F̃h

(
H
∂F̃h

+ 2γv
F̃h

)
X · ν

F̃h
dHN−1

∣∣∣∣ ≤ 2Λ1
√
εh

∫
∂F̃h

|X · ν
F̃h
|dHN−1,

and by density ∣∣∣∣ ∫
∂F̃h

(
H
∂F̃h

+ 2γv
F̃h

)
ϕdHN−1

∣∣∣∣ ≤ 2Λ1
√
εh

∫
∂F̃h

|ϕ|dHN−1

for every ϕ ∈ C∞(∂F̃h) with
∫
∂F̃h

ϕdHN−1 = 0 . In turn, this implies (1.20) by a simple

functional analysis argument.

Step 6. We are now close to the end of the proof. Recall that on ∂E

H∂E = λ− 2γvE (1.23)

for some constant λ , while by (1.20)

H
∂F̃h

= λh − 2γv
F̃h

+ ρh, with ρh → 0 uniformly. (1.24)

Observe now that, since the functions v
F̃h

are equibounded in C1,β(RN ) for some β ∈ (0, 1)

(see Proposition 1.1) and they converge pointwise to vE since χ
F̃h
→ χE in L1 , we have that

v
F̃h
→ vE in C1(BR) for every R > 0. (1.25)

We consider a cylinder C = B′×] − L,L[ , where B′ ⊂ RN−1 is a ball centered at the
origin, such that in a suitable coordinate system we have

F̃h ∩ C = {(x′, xN ) ∈ C : x′ ∈ B′, xN < gh(x′)},
E ∩ C = {(x′, xN ) ∈ C : x′ ∈ B′, xN < g(x′)}

for some functions gh → g in C1,β(B′) for every β ∈ (0, 1
2) . By integrating (1.24) on B′ we

obtain

λhLN−1(B′)− 2γ

∫
B′
v
F̃h

(x′, gh(x′)) dLN−1(x′) +

∫
B′
ρh(x′, gh(x′)) dLN−1(x′)

= −
∫
B′

div

(
∇gh√

1 + |∇gh|2

)
dLN−1(x′) = −

∫
∂B′

∇gh√
1 + |∇gh|2

· x
′

|x′|
dHN−2 ,

and the last integral in the previous expression converges as h→ 0 to

−
∫
∂B′

∇g√
1 + |∇g|2

· x
′

|x′|
dHN−2 = −

∫
B′

div

(
∇g√

1 + |∇g|2

)
dLN−1(x′)

= λLN−1(B′)− 2γ

∫
B′
vE(x′, g(x′)) dLN−1(x′) ,

where the last equality follows by (1.23). This shows, recalling (1.25) and that ρh tends to 0
uniformly, that λh → λ , which in turn implies, by (1.23), (1.24) and (1.25),

H
∂F̃h

(·+ ψh(·)νE(·))→ H∂E in L∞(∂E).

By Lemma 1.28 we conclude that ψh ∈W 2,p(∂E) for every p ≥ 1 and ψh → 0 in W 2,p(∂E) .

Finally, by minimality of F̃h we have

F(F̃h) ≤ F(F̃h) + Λ1

√(
α(F̃h, E)− εh

)2
+ εh − Λ1

√
εh

≤ F(Eh) < F(E) +
C0

4
ε2
h ≤ F(E) +

C0

2

(
α(F̃h, E)

)2
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where we used (1.15) in the third inequality and (1.19) in the last one. This is the desired
contradiction with the conclusion of Theorem 1.25. �

Remark 1.31. It is important to remark that in the arguments of this section we have
not made use of the assumption of strict positivity of the second variation: the quantitative
L1 -local minimality follows in fact just from the W 2,p -local minimality.

1.4. Local minimality of the ball

In this section we will obtain Theorem 1.9 as a consequence of Theorem 1.8, by computing
the second variation of the ball and studying the sign of the associated quadratic form.

1.4.1. Recalls on spherical harmonics. We �rst recall some basic facts about spherical
harmonics, referring to [33] for an account on this topic.

Definition 1.32. A spherical harmonic of dimension N is the restriction to SN−1 of a
harmonic polynomial in N variables, i.e. a homogeneous polynomial p with ∆p = 0 .

We will denote by HNd the set of all spherical harmonics of dimension N that are obtained

as restrictions to SN−1 of homogeneous polynomials of degree d . In particular HN0 is the
space of constant functions, and HN1 is generated by the coordinate functions. The basic
properties of spherical harmonics that we need are listed in the following theorem (see [33,
Chapter 3]).

Theorem 1.33. The following properties hold.

(1) For each d ∈ N , HNd is a �nite dimensional vector space.

(2) If F ∈ HNd , G ∈ HNe and d 6= e , then F and G are orthogonal (in the L2 -sense).

(3) If F ∈ HNd and d 6= 0, then∫
SN−1

F dHN−1 = 0.

(4) If (H1
d , . . . ,H

dim(HNd )

d ) is an orthonormal basis of HNd for every d ≥ 0 , then this

sequence is complete, i.e. every F ∈ L2(SN−1) can be written in the form

F =
∞∑
d=0

dim(HNd )∑
i=1

cidH
i
d , (1.26)

where cid := 〈F,H i
d〉L2 .

(5) If H i
d are as in (4) and F,G ∈ L2(SN−1) are such that

F =

∞∑
d=0

dim(HNd )∑
i=1

cidH
i
d , G =

∞∑
d=0

dim(HNd )∑
i=1

eidH
i
d ,

then

〈F,G〉L2 =

∞∑
d=0

dim(HNd )∑
i=1

cide
i
d.

(6) Spherical harmonics are eigenfunctions of the Laplace-Beltrami operator ∆SN−1 .
More precisely, if H ∈ HNd then

−∆SN−1H = d(d+N − 2)H.
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(7) If F is a C2 function on SN−1 represented as in (1.26), then∫
SN−1

|DτF |2 dHN−1(x) =
∞∑
d=0

dim(HNd )∑
i=1

d(d+N − 2)(cid)
2.

We recall also the following important result in the theory of spherical harmonics.

Theorem 1.34 (Funk-Hecke Formula). Let f : (−1, 1)→ R such that∫ 1

−1
|f(t)|(1− t2)

N−3
2 dt <∞ .

Then if H ∈ HNd and x0 ∈ SN−1 it holds∫
SN−1

f(〈x0, x〉)H(x) dHN−1(x) = µdH(x0) ,

where the coe�cient µd is given by

µd = (N − 1)ωN−1

∫ 1

−1
PN,d(t)f(t)(1− t2)

N−3
2 dt.

Here PN,d is the Legendre polynomial of dimension N and degree d given by

PN,d(t) = (−1)d
Γ(N−1

2 )

2dΓ(d+ N−1
2 )

(1− t2)−
N−3

2

( d

dt

)d
(1− t2)d+N−3

2 ,

where Γ(x) :=
∫∞

0 tx−1e−tdt is the Gamma function.

1.4.2. Second variation of the ball. The quadratic form (1.11) associated with the

second variation of F at the ball BR , computed at a function ϕ̃ ∈ H̃1(∂BR) is

∂2F(BR)[ϕ̃] =

∫
∂BR

(
|Dτ ϕ̃(x)|2 − N − 1

R2
ϕ̃2(x)

)
dHN−1(x)

+ 2γ

∫
∂BR

∫
∂BR

1

|x− y|α
ϕ̃(x)ϕ̃(y) dHN−1(x) dHN−1(y)

+ 2γ

∫
∂BR

(∫
BR

−α
〈x− y, x|x|〉
|x− y|α+2

dy
)
ϕ̃2(x) dHN−1(x).

Since we want to obtain a sign condition of ∂2F(BR)[ϕ̃] in terms of the radius R , we �rst
make a change of variable:

∂2F(BR)[ϕ̃] = RN−3

∫
∂B1

(|Dτϕ(x)|2 − (N − 1)ϕ2(x)) dHN−1(x)

+ 2γR2N−2−α
∫
∂B1

∫
∂B1

1

|x− y|α
ϕ(x)ϕ(x) dHN−1(x) dHN−1(y) (1.27)

+ 2γR2N−2−α
∫
∂B1

(∫
B1

−α 〈x− y, x〉
|x− y|α+2

dy
)
ϕ2(x) dHN−1(x),

where the function ϕ ∈ H̃1(SN−1) is de�ned as ϕ(x) := ϕ̃(Rx) . Since we are only interested
in the sign of the second variation, which is continuous with respect to the strong convergence

in H̃1(SN−1) , we can assume ϕ ∈ C2(SN−1) ∩ T⊥(SN−1) .
The idea to compute the second variation at the ball is to expand ϕ with respect to an

orthonormal basis of spherical harmonics, as in (1.26). First of all we notice that if ϕ ∈
T⊥(SN−1) , then its harmonic expansion does not contain spherical harmonics of order 0 and



20 1. A NONLOCAL ISOPERIMETRIC PROBLEM IN RN

1 . Indeed, harmonics of order 0 are constant functions, that are not allowed by the null
average condition. Moreover HN1 = T (SN−1) , because νSN−1(x) = x , and the functions
xi form an orthonormal basis of HN1 . Hence we can write the harmonic expansion of ϕ ∈
C2(SN−1) ∩ T⊥(SN−1) as follows:

ϕ =
∞∑
d=2

dim(HNd )∑
i=1

cidH
i
d ,

where (H1
d , . . . ,H

dim(HNd )

d ) is an orthonormal basis of HNd for each d ∈ N . We can now com-
pute each term appearing in (1.27) as follows: the �rst term, by property (7) of Theorem 1.33,
is ∫

∂B1

(|Dτϕ|2 − (N − 1)ϕ2) dHN−1 =

∞∑
d=2

dim(HNd )∑
i=1

(
d(d+N − 2)− (N − 1)

)
(cid)

2.

For the second term we want to use the Funk-Hecke Formula to compute the inner integral;
so we de�ne the function

f(t) :=
(

2(1− t)
)−α

2

and we notice that

|x− y|−α = f(〈x, y〉) for x, y ∈ SN−1 ,

and that, for α ∈ (0, N −1) , f satis�es the integrability assumptions of Theorem 1.34. Hence
for each y ∈ SN−1

∫
∂B1

1

|x− y|α
ϕ(x) dHN−1(x) =

∞∑
d=2

dim(HNd )∑
i=1

µN,αd cidH
i
d(y) ,

where the coe�cient

µN,αd := 2N−1−α (N − 1)ωN−1

2

(d−1∏
i=0

(α
2

+ i
))Γ(N−1−α

2 )Γ(N−1
2 )

Γ(N − 1− α
2 + d)

(1.28)

is obtained by direct computation just integrating by parts. Therefore∫
∂B1

∫
∂B1

1

|x− y|α
ϕ(x)ϕ(y) dHN−1(x) dHN−1(y) =

∞∑
d=2

dim(HNd )∑
i=1

µN,αd (cid)
2.

For the last term of (1.27), noticing that the integral

IN,α :=

∫
B1

〈x− y, x〉
|x− y|α+2

dy

is independent of x ∈ SN−1 , we get∫
∂B1

(∫
B1

−α 〈x− y, x〉
|x− y|α+2

dy
)
ϕ2(x) dHN−1(x) = −αIN,α

∞∑
d=2

dim(HNd )∑
i=1

(cid)
2.

Combining all the previous equalities with (1.27) we obtain

∂2F(BR)[ϕ̃] =

∞∑
d=2

dim(HNd )∑
i=1

RN−3(cid)
2
[
d(d+N − 2)− (N − 1) + 2γRN+1−α

(
µN,αd − αIN,α

)]
.
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1.4.3. Local minimality of the ball. From the above expression we deduce that the
quadratic form ∂2F(BR) is strictly positive on T⊥(∂BR) , that is, the second variation of F
at BR is positive according to De�nition 1.22, if and only if

d(d+N − 2)− (N − 1) + 2γRN+1−α
(
µN,αd − αIN,α

)
> 0 (1.29)

for all d ≥ 2 , where the �only if� part is due to the fact that HNd ⊂ T⊥(SN−1) for each d ≥ 2 .

On the contrary, ∂2F(BR)[ϕ̃] < 0 for some ϕ̃ ∈ T⊥(∂BR) if and only if there exists d ≥ 2
such that the left-hand side of (1.29) is negative.

We want to write (1.29) as a condition on R . Since d(d+N −2)− (N −1) > 0 for d ≥ 2 ,

we have that (1.29) is certainly satis�ed if µN,αd −αIN,α > 0 . But this is not always the case,
as the following lemma shows.

Lemma 1.35. The sequence µN,αd strictly decreases to 0 as d→∞.

Proof. First of all we note that

µN,αd+1 =
α
2 + d

N − 1− α
2 + d

µN,αd , (1.30)

hence the sequence (µN,αd )d∈N is decreasing since α < N − 1 . Now

µN,αd+1 =
( d∏
k=1

α
2 + k

N − 1− α
2 + k

)
µN,α1 =

Γ(N − α
2 )Γ(1 + α

2 + d)

Γ(1 + α
2 )Γ(N − α

2 + d)
µN,α1

∼d→∞
Γ(N − α

2 )

Γ(1 + α
2 )
µN,α1

√
α
2 + d

N − 1− α
2 + d

e(α
2

+d)[log(α
2

+d)−1]

e(N−1−α
2

+d)[log(N−1−α
2

+d)−1]
,

where in the second equality we used the well known property Γ(x+ 1) = xΓ(x) , and in the
last step we used the Stirling's formula. Since the previous quantity is in�nitesimal as d→∞ ,
we conclude the proof of the lemma. �

As a consequence of this lemma and of the fact that IN,α > 0 , we have that the number

dN,αA := min{d ≥ 2 : µN,αd < αIN,α}

is well de�ned. This tells us that (1.29) is satis�ed for every R > 0 if d < dN,αA , and for

R <

(
d(d+N − 2)− (N − 1)

2γ
(
αIN,α − µN,αd

) ) 1
N+1−α

=: gN,α(d).

if d ≥ dN,αA . Moreover, by the previous lemma we get that gN,α(d) → ∞ as d → ∞ . The

following lemma tells us something more about the behaviour of the function gN,α .

Lemma 1.36. There exists a natural number dN,αI such that for d < dN,αI the function

gN,α is decreasing, while for d > dN,αI is increasing.

Proof. The condition gN,α(d+ 1) > gN,α(d) is equivalent to

(d+ 1)(d+ 1 +N − 2)− (N − 1)

2γ
(
αIN,α − µN,αd+1

) >
d(d+N − 2)− (N − 1)

2γ
(
αIN,α − µN,αd

) .

Recalling (1.30), the above inequality can be rewritten, after some algebraic steps, as follows:

αIN,α >
d2(N − α+ 1) + d(N2 − αN + α− 1) + α

2 (N − 1)

(N − 1− α
2 + d)(2d+N − 1)

µN,αd . (1.31)
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Using (1.30), it is easily seen that the right-hand side of the above inequality is decreasing
and converges to 0 as d→∞ . Hence the number

dN,αI := min{d ∈ N : (1.31) is satis�ed}
is well de�ned and satis�es the requirement of the lemma. �

We are now in position to prove Theorem 1.9.

Proof of Theorem 1.9. De�ne

R(N,α, γ) := min
d≥dN,αA

gN,α(d) ,

which can be characterized, by the previous lemmas, as

R(N,α, γ) :=

 gN,α(dN,αA ) if dN,αA > dN,αI ,

gN,α(dN,αI ) if dN,αA ≤ dN,αI .

Now, from (1.29), we have that

∂2F(BR)[ϕ̃] > 0 for every ϕ̃ ∈ T⊥(∂BR) ⇐⇒ R < R(N,α, γ),

while
∂2F(BR)[ϕ̃] < 0 for some ϕ̃ ∈ T⊥(∂BR) ⇐⇒ R > R(N,α, γ).

By virtue of Theorem 1.8 and Corollary 1.21, we obtain the �rst part of the theorem, where
mloc(N,α, γ) is the volume of the ball of radius R(N,α, γ) .

In order to show that the critical radius tends to ∞ as α→ 0 , we notice that

∂2F(BR)[ϕ̃] ≥
∞∑
d=2

dim(HNd )∑
i=1

(cid)
2RN−3

(
N + 1− 2γαIN,αRN+1−α).

Since

IN,α α→0+

−→
∫
B1

〈x− y, x〉
|x− y|2

dy <∞ ,

we have that for each R > 0 there exists α(N, γ,R) > 0 such that for each α < α(N, γ,R)

αIN,α < N + 1

2γRN+1−α ,

which immediately implies the claim. To conclude the proof we examine in more details the
special case N = 3 , determining explicitly the critical mass mloc . From (1.28) we have that

µ3,α
d = 22−απ

( d−1∏
j=0

(α
2

+ j
)) Γ(1− α

2 )

Γ(2 + d− α
2 )

= 22−απα

(∏d−1
j=1

(
α
2 + j

))
∏d−1
j=1

(
1− α

2 + j
) 1

d+ 1− α
2

1

2− α
,

where we used the property Γ(x + 1) = xΓ(x) . Moreover, we compute explicitly in the
Appendix the integral I3,α , obtaining (see (1.55))

I3,α = 2π
22−α

(4− α)(2− α)
.

It is now easily seen that d3,α
I = d3,α

A = 2 for every α ∈ (0, 2) . Hence

R(3, α, γ) =

(
(6− α)(4− α)

23−αγαπ

) 1
4−α

,

which completes the proof of the theorem. �
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1.5. Global minimality

This section is devoted to the proof of the results concerning global minimality issues. We
start by showing how the information gained in Theorem 1.9 can be used to prove the global
minimality of the ball for small volumes.

Proof of Theorem 1.10. By scaling, we can equivalently prove that given N ≥ 2 and
α ∈ (0, N − 1) and setting

γ̄ := sup
{
γ > 0 : B1 is a global minimizer of Fα,γ in RN under volume constraint

}
,

we have that γ̄ ∈ (0,∞) and B1 is the unique global minimizer of Fα,γ for every γ < γ̄ .
We start assuming by contradiction that there exist a sequence γn → 0 and a sequence of

sets En , with |En| = |B1| and α(En, B1) > 0 , such that

Fα,γn(En) ≤ Fα,γn(B1). (1.32)

By translating En so that α(En, B1) = |En4B1| , from (1.32) one immediately gets

C(N) |En4B1|2 ≤ P(En)− P(B1) ≤ γn
(
NLα(B1)−NLα(En)

)
≤ γnc0|En4B1|

where the �rst inequality follows from the quantitative isoperimetric inequality and the last
one from Proposition 1.3. Hence, as γn → 0 , we deduce that α(En, B1)→ 0 .

From the results of Section 1.4 it follows that if γ0 > 0 is su�ciently small then the func-
tional Fα,γ0 has positive second variation at B1 : by Theorem 1.8, this implies the existence
of a positive δ such that

Fα,γ0(B1) < Fα,γ0(E) for every E with |E| = |B1| and 0 < α(E,B1) < δ. (1.33)

We now want to show that (1.33) holds for every γ < γ0 , with the same δ . Indeed, assuming
by contradiction the existence of γ < γ0 and E ⊂ RN such that |E| = |B1| , 0 < α(E,B1) < δ
and

Fα,γ(E) ≤ Fα,γ(B1), (1.34)

since P(B1) < P(E) we necessarily have NLα(E) < NLα(B1) . Hence by (1.34)

P(E)− P(B1) ≤ γ
(
NLα(B1)−NLα(E)

)
< γ0

(
NLα(B1)−NLα(E)

)
, (1.35)

that is, Fα,γ0(E) < Fα,γ0(B1) , which contradicts (1.33).
Now, since for n large enough we have that γn < γ0 and 0 < α(En, B1) < δ , the previous

property is in contradiction with (1.32). This shows in particular that γ̄ > 0 .
The fact that γ̄ is �nite follows from Theorem 1.9, which shows that for large masses the

ball is not a local minimizer (and obviously not even a global minimizer).
Finally, assume by contradiction that for some γ < γ̄ the ball is not the unique global

minimizer, that is there exists a set E , with |E| = |B1| and α(E,B1) > 0 , such that
Fα,γ(E) ≤ Fα,γ(B1) . By de�nition of γ̄ , we can �nd γ′ ∈ (γ, γ̄) such that B1 is a global mini-
mizer of Fα,γ′ . Arguing as before, we have that by the isoperimetric inequality P(B1) < P(E) ,
which by our contradiction assumption implies that NLα(E) < NLα(B1) ; this yields

P(E)− P(B1) ≤ γ
(
NLα(B1)−NLα(E)

)
< γ′

(
NLα(B1)−NLα(E)

)
,

which contradicts the fact that B1 is a global minimizer for Fα,γ′ . �

We now want to analyze what happens for small exponents α . Since for α = 0 the
functional is just the perimeter, which is uniquely minimized by the ball, the intuition suggests
that the unique minimizer of Fα,γ , for α close to 0, is the ball itself, as long as a minimizer
exists. In order to prove the theorem, we need an auxiliary result: the non-existence volume
threshold is uniformly bounded for α ∈ (0, 1) . The proof is a simple adaptation of the
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argument contained in [43, Section 2], where just the three-dimensional case with α = 1 is
considered.

Proposition 1.37. There exists m̄ = m̄(N, γ) < +∞ such that for every m > m̄ the
minimum problem

Iαm := inf
{
Fα,γ(E) : E ⊂ RN , |E| = m

}
(1.36)

does not have a solution for every α ∈ (0, 1) .

Proof. During the proof we will denote by C a generic constant, depending only on N
and γ , which may change from line to line.

Step 1. We claim that there exists a constant C0 , depending only on N and γ , such that

Iαm ≤ C0m for every 0 < α < N − 1 and m ≥ 1. (1.37)

Indeed, if B is a ball of volume m , then

Fα,γ(B) = NωN
1/Nm(N−1)/N + γ cα

(
m

ωN

) 2N−α
N

, cα :=

∫
B1

∫
B1

1

|x− y|α
dxdy .

It follows that for every 1 ≤ m < 2 we have Iαm ≤ C0 , for some constant C0 depending only
on N and γ . It is now easily seen that Iαm ≤ Iαm1

+ Iαm2
if m = m1 + m2 (see the proof of

[43, Lemma 3]): hence by induction on k we obtain Iαm ≤ C0k for every m ∈ [k, k + 1) .

Step 2. We claim that there exists a constant C1 , depending only on N and γ , such that for
every 0 < α < N − 1 and m ≥ 1 , if E is a solution to (1.36) then

|E ∩BR(x)| ≥ C1R
N (1.38)

for every R ≤ 1 and for every x ∈ E such that |E ∩Br(x)| > 0 for all r > 0 .
To prove the claim, assume without loss of generality that x = 0 . It is clearly su�cient to

show (1.38) for L1 -a.e. R < ε0 , where ε0 will be �xed later in the proof. In particular, from
now on we can assume without loss of generality that R is such that HN−1(∂E ∩ ∂BR) = 0 .
We compare the energies of E and E′ := λ(E \BR) , where λ > 1 is such that |E′| = m : by
minimality of E we have Fα,γ(E) ≤ Fα,γ(E′) , which gives after a direct computation

HN−1(∂E ∩BR) ≤ (λ2N−α − 1)Fα,γ(E) + λN−1HN−1(∂BR ∩ E).

In turn this implies, by using HN−1(∂(E ∩BR)) = HN−1(∂E∩BR) +HN−1(∂BR∩E) (recall
that HN−1(∂E ∩ ∂BR) = 0),

HN−1(∂(E ∩BR)) ≤ (λ2N−α − 1)Fα,γ(E) + (λN−1 + 1)HN−1(∂BR ∩ E).

Now, choosing ε0 > 0 so small that |E\BR| ≥ 1
2m , we obtain the following estimates:

λ2N−α − 1 =

(
m

|E\BR|

) 2N−α
N

− 1 ≤ C

(
m

|E\BR|
− 1

)
≤ C |E ∩BR|

m
, λN−1 ≤ C .

Hence from the isoperimetric inequality, (1.37), and from the above estimates we deduce that

|E ∩BR|
N−1
N ≤ C|E ∩BR|+ CHN−1(∂BR ∩ E).

Finally, observe that if ε0 is su�ciently small we also have |E ∩BR| ≤ 1
2C |E ∩BR|

N−1
N , hence

we obtain

|E ∩BR|
N−1
N ≤ CHN−1(∂BR ∩ E) = C

d

dR
|E ∩BR|,

which yields
d

dR
|E ∩BR|

1
N ≥ C for L1-a.e. R < ε0.
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By integrating the previous inequality we conclude the proof of the claim.

Step 3. We claim that there exists a constant C2 , depending only on N and γ , such that for
every 0 < α < 1 and m ≥ 1 , if E is a solution to (1.36) then

NLα(E) ≥ C2m logm− C2m (1.39)

(notice that the conclusion of the proposition follows immediately from (1.37) and (1.39)).
In order to prove the claim, we �rst observe that

|E ∩BR(x)| ≥ CR for every x ∈ E and 1 < R < 1
2diam(E). (1.40)

Indeed, as E is not contained in BR(x) and E is connected (see Theorem 1.7), we can �nd
points xi ∈ E ∩ ∂BR−i(x) for i = 1, . . . , bRc such that |E ∩ Br(xi)| > 0 for every r > 0 .
Then by (1.38)

|E ∩BR(x)| ≥
bRc∑
i=1

|E ∩B 1
2
(xi)| ≥ C1

(
1

2

)N
bRc .

Observe now that, if we set ER := {(x, y) ∈ E ×E : |x− y| < R} , we have by (1.40) that
for every 1 < R < 1

2diam(E)

L2N (ER) =

∫
E
|E ∩BR(x)| dx ≥ C|E|R. (1.41)

Hence

NLα(E) =

∫
E

∫
E

1

|x− y|α
dxdy =

1√
2

∫ +∞

0

1

Rα
H2N−1(∂ER) dR

=
1

2

∫ +∞

0

1

Rα
d

dR
L2N (ER) dR ≥ 1

2

∫ +∞

1

1

R

d

dR
L2N (ER) dR

= −1

2
L2N (E1) +

1

2

∫ +∞

1

1

R2
L2N (ER) dR

≥ −Cm+ Cm

∫ 1
2

diam(E)

1

1

R
dR ,

where in the �rst inequality we used the fact that α < 1 , while the second one follows from
(1.41). This completes the proof of the proposition. �

An essential remark for the proof of Theorem 1.11 is contained in the following lemma,
where it is shown that the local minimality neighbourhood of the ball is in fact uniform with
respect to γ and α .

Lemma 1.38. Given γ̄ > 0 , there exist ᾱ > 0 and δ > 0 such that

Fα,γ(B1) < Fα,γ(E)

for every α ≤ ᾱ , for every γ ≤ γ̄ and for every set E with |E| = |B1| and 0 < α(E,B1) < δ .

Proof (sketch). Notice that, by the same argument used in the proof of Theorem 1.10,
it is su�cient to show that, given γ̄ > 0 , there exist ᾱ > 0 and δ > 0 such that

Fα,γ̄(B1) < Fα,γ̄(E)

for every α ≤ ᾱ and for every set E with |E| = |B1| and 0 < α(E,B1) < δ .

In order to prove this property, we start by observing that there exists α1 > 0 such that

m0 := inf
α≤α1

inf
{
∂2Fα,γ̄(B1)[ϕ] : ϕ ∈ T⊥(∂B1), ‖ϕ‖

H̃1(∂B1)
= 1
}
> 0 . (1.42)
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In fact, assuming by contradiction the existence of αn → 0 and ϕn ∈ T⊥(∂B1) , with
‖ϕn‖H̃1 = 1 , such that ∂2Fαn,γ̄(B1)[ϕn] → 0 , we have by compactness that, up to subse-

quences, ϕn ⇀ ϕ0 weakly in H1 for some ϕ0 ∈ T⊥(∂B1) . It is now not hard to show that the
last two integrals in the quadratic form ∂2Fαn,γ̄(B1)[ϕn] converge to 0 as n → ∞ : indeed,
the second integral in (1.11) converges to 0 , since it is equal to

−αn
∫
∂B1

(∫
B1

x− y
|x− y|αn+2

dy

)
·xϕ2

n(x) dHN−1(x) ≤ Cαn
∫
∂B1

ϕ2
n dHN−1 → 0 as n→∞ .

For the last integral in (1.11), denoting by Gαn(x, y) := |x− y|−αn , we write∫
∂B1

∫
∂B1

Gαn(x, y)ϕn(x)ϕn(y) dHN−1(x)dHN−1(y)

=

∫
∂B1

∫
∂B1

Gαn(x, y)ϕn(x)(ϕn(y)− ϕ0(y)) dHN−1(x)dHN−1(y)

+

∫
∂B1

∫
∂B1

Gαn(x, y)(ϕn(x)− ϕ0(x))ϕ0(y) dHN−1(x)dHN−1(y)

+

∫
∂B1

∫
∂B1

Gαn(x, y)ϕ0(x)ϕ0(y) dHN−1(x)dHN−1(y) ;

the potential estimates provided by Lemma 1.19, where the constant can be chosen indepen-
dently of αn by Remark 1.20, guarantee that the �rst two integrals in the above expression
converge to zero, while also the third one vanishes in the limit by the Lebesgue's Dominate
Convergence Theorem, recalling that

∫
∂B1

ϕ0 = 0 and αn → 0 . Moreover, for the �rst integral

in the quadratic form ∂2Fαn,γ̄(B1)[ϕn] , we have that∫
∂B1

|Dτϕ0|2 ≤ lim inf
n→∞

∫
∂B1

|Dτϕn|2 ,
∫
∂B1

|B∂B1 |2ϕ2
n →

∫
∂B1

|B∂B1 |2ϕ2
0 .

Hence, if ϕ0 = 0 we conclude that
∫
∂B1
|Dτϕn|2 → 0 , which contradicts the fact that

‖ϕn‖H̃1 = 1 for every n . On the other hand, if ϕ0 6= 0 , we obtain∫
∂B1

|Dτϕ0|2 dHN−1 −
∫
∂B1

|B∂B1 |2ϕ2
0 dHN−1 ≤ 0 ,

that is, the second variation of the area functional computed at the ball B1 is not strictly
positive, which is again a contradiction.

With condition (1.42), it is straightforward to check that the proof of Theorem 1.25 pro-
vides the existence of δ1 > 0 and C1 > 0 such that

Fα,γ̄(E) ≥ Fα,γ̄(B1) + C1

(
α(E,B1)

)2
for every α ≤ α1 and for every E ⊂ RN with |E| = |B1| and ∂E = {x + ψ(x)x : x ∈ ∂B1}
for some ψ with ‖ψ‖W 2,p(∂B1) < δ1 .

In turn, having proved this property one can repeat the proofs of Theorem 1.30 and
Theorem 1.8 to deduce that there exist α2 > 0 , δ2 > 0 and C2 > 0 such that

Fα,γ̄(E) ≥ Fα,γ̄(B1) + C2

(
α(E,B1)

)2
for every α ≤ α2 and for every E ⊂ RN with |E| = |B1| and α(E,B1) < δ2 . The only
small modi�cations consist in assuming, in the contradiction arguments, also the existence of
sequences αn → 0 , instead of working with a �xed α . Then the essential remark is that the
constant c0 provided by Proposition 1.3 is independent of αn . In addition, some small changes
are required in the last part of the proof, since the functions vFn associated, according to (1.1),
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with the sets Fn constructed in the proof are de�ned with respect to di�erent exponents αn ,
but observe that the bounds provided by Proposition 1.1 are still uniform. The easy details
are left to the reader.

These observations complete the proof of the lemma. �

We are now in position to complete the proof of Theorem 1.11.

Proof of Theorem 1.11. We assume by contradiction that there exist αn → 0 , mn > 0
and sets En ⊂ RN , with |En| = mn , α(En, Bn) > 0 (where we denote by Bn a ball with
volume mn ), such that En is a global minimizer of Fαn,γ under volume constraint. Note
that, as the non-existence threshold is uniformly bounded for α ∈ (0, 1) (Proposition 1.37),
we can assume without loss of generality that mn ≤ m̄ < +∞ .

By scaling, we can rephrase our contradiction assumption as follows: there exist αn → 0 ,
γn > 0 with γ̄ := supn γn < +∞ , and Fn ⊂ RN with |Fn| = |B1| , α(Fn, B1) > 0 such that

Fαn,γn(Fn) = min{Fαn,γn(F ) : |F | = |B1|} ,

and in particular

Fαn,γn(Fn) ≤ Fαn,γn(B1). (1.43)

We now claim that, since αn → 0 ,

lim
n→+∞

|NLαn(B1)−NLαn(Fn)| = 0. (1.44)

Indeed, we observe that by adapting the �rst step of the proof of Theorem 1.7, we have
that there exists Λ > 0 (independent of n) such that Fn is also a solution to the penalized
minimum problem

min
{
Fαn,γn(F ) + Λ

∣∣|F | − |B1|
∣∣ : F ⊂ RN

}
(for n large enough). In turn, this implies that each set Fn is an (ω, r0)-minimizer for the
area functional (see De�nition 1.26) for some positive ω and r0 (independent of n): in fact
for every �nite perimeter set F with F4Fn ⊂⊂ Br0(x) we have by minimality of Fn

P(Fn) ≤ P(F ) + γn
(
NLαn(F )−NLαn(Fn)

)
+ Λ

∣∣|F | − |B1|
∣∣

≤ P(F ) +
(
γ̄c0 + Λ

)
|F4Fn|,

where we used Proposition 1.3 and the fact that the constant c0 can be chosen independently
of αn . We can now use the uniform density estimates for (ω, r0)-minimizers (see [45, The-
orem 21.11]), combined with the connectedness of the sets Fn (see Theorem 1.7), to deduce
that (up to translations) they are equibounded: there exists R̄ > 0 such that Fn ⊂ BR̄ for
every n . Using this information, it is now easily seen that, since αn → 0 ,

NLαn(Fn) =

∫
Fn

∫
Fn

1

|x− y|αn
dxdy → |B1|2 ,

from which (1.44) follows.
By (1.43), (1.44) and using the quantitative isoperimetric inequality we �nally deduce

CN
(
α(Fn, B1)

)2 ≤ P(Fn)− P(B1) ≤ γn
(
NLαn(B1)−NLαn(Fn)

)
≤ γ̄

∣∣NLαn(B1)−NLαn(Fn)
∣∣→ 0,

that is, Fn converges to B1 in L1 . Hence (1.43) is in contradiction with Lemma 1.38 for n
large enough. �

We conclude this section with the proof of Theorem 1.12.
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Proof of Theorem 1.12. First of all we notice that, since for masses smaller than
mglob the ball is the unique global minimizer, for each m > 0 there exists km ∈ N such that
fkm(m) = mini fi(m) . Setting m0 = 0 , m1 = mglob , we have by Theorem 1.11 that (1.9)
holds for k = 1 . In the following, we denote by EmR a solution to the constrained minimum
problem

min{F(E) : E ⊂ BR, |E| = m}.
We remark that

F(EmR )→ inf
{
F(E) : E ⊂ RN , |E| = m

}
as R→∞ , (1.45)

and that each set EmR is an (ω, r0)-minimizer for some constant ω independent of R (this
conclusion can be obtained by arguing as in the proof of Theorem 1.7).

We now de�ne

m2 := sup
{
m ≥ m1 : f2(m′) = inf |E|=m′F(E) for each m′ ∈ [m1,m)

}
and we show that m2 > m1 . Indeed, �x ε > 0 and m ∈ (m1,m1 + ε) . Observe that the sets
(EmR )R cannot be equibounded, or otherwise they would converge (as R → ∞) to a global
minimizer of F with volume m , whose existence is excluded by Theorem 1.11. The fact
that the diameter of EmR tends to in�nity, combined with the uniform density lower bound
satis�ed by EmR (which, in turn, follows from the quasiminimality property), guarantees that
for all R large enough the set EmR is not connected; moreover, if ε is small enough, each of
its connected component has mass smaller than mglob , again as a consequence of the lower
bound. Then we can write EmR = F1 ∪ F2 , with |F1|, |F2| < mglob and F1 ∩ F2 = Ø , so
that we can decrease the energy of EmR by replacing each Fi by a ball of the same volume,
su�ciently far apart from each other, obtaining that f2(m) ≤ F(EmR ) . By (1.45) we easily
conclude that f2(m) = inf |E|=mF(E) for every m ∈ (m1,m1 + ε) , from which follows that
m2 > m1 . Moreover, by de�nition of m2 , we have that (1.9) holds for k = 2 .

We now proceed by induction, de�ning

mk+1 := sup
{
m ≥ mk : fk+1(m′) = inf |E|=m′F(E) for each m′ ∈ [mk,m)

}
and showing that mk < mk+1 . Arguing as before, we consider m ∈ (mk,mk + ε) , for some
ε > 0 small enough, and we observe that for R su�ciently large the set EmR is not connected,
and each of its connected components has volume belonging to an interval (mi−1,mi] for some
i ≤ k . By the inductive hypothesis we can obtain a new set FmR , union of a �nite number
of disjoint balls, such that F(FmR ) ≤ F(EmR ) , simply by replacing each connected component
of EmR by a disjoint union of balls. We can also assume that at least one of these balls, say
B , has volume larger than ε (if we choose for instance ε < m1

2 ); in this way |FmR \ B| < mk

and we can decrease the energy of FmR by replacing FmR \ B by a �nite union of at most
k balls. With this procedure we �nd a disjoint union of at most k + 1 balls whose energy
is smaller than F(FmR ) , so that, recalling (1.45) and that F(FmR ) ≤ F(EmR ) , we conclude
that fk+1(m) = inf |E|=mF(E) for every m ∈ (mk,mk + ε) . This completes the proof of the
inequality mk < mk+1 , and shows also, by de�nition of mk , that (1.9) holds.

Now, assume by contradiction that mk → m̄ < ∞ as k → ∞ . Since each interval
(mk,mk+1) is not degenerate, the de�nition of mk as a supremum ensures that we can �nd
an increasing sequence of masses m̄k → m̄ such that an optimal con�guration for mini fi(m̄k)
is given by exactly k+ 1 balls. As, for k large enough, at least two of these balls have volume
smaller than m1

2 , they can be replaced by a single ball in a way that the energy decreases,
contradicting the previous assertion and showing that limk→∞mk = ∞ . Finally, it is clear
that the number of non-degenerate balls tends to ∞ as m → ∞ , since the volume of each
ball in an optimal con�guration for mini fi(m) must be not larger than m1 . �
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1.6. Appendix

1.6.1. Computation of the �rst and second variations.

Proof of Theorem 1.17. The �rst and the second variations of the perimeter of a
regular set E are standard calculations (see, e.g., [63]) and lead to

d

dt
P(Et)|t=0

=

∫
∂E
H∂E〈X, νE〉HN−1 (1.46)

and

d2

dt2
P(Et)|t=0

=

∫
∂E

(
|Dτ 〈X, νE〉|2 − |B∂E |2〈X, νE〉2

)
dHN−1

+

∫
∂E
H∂E

(
〈X, νE〉divX − divτ

(
Xτ 〈X, νE〉

))
dHN−1 . (1.47)

This particular form of the second variation is in fact obtained in [9, Proposition 3.9], and we
rewrote the last term according to [1, equation (7.5)].

So now on we will focus on the calculation of the �rst and the second variation of the
nonlocal part. In order to compute these quantities we introduce the smoothed potential

Gδ(a, b) :=
1

(|a− b|2 + δ2)
α
2

for δ > 0 , and the associated nonlocal energy

NLδ(F ) :=

∫
F

∫
F
Gδ(a, b) dadb.

We remark that the following identities hold:

∇x
(
Gδ(Φt(x),Φt(y))

)
= ∇aGδ(Φt(x),Φt(y)) ·DΦt(x), (1.48)

∇bGδ(a, b) = ∇aGδ(b, a). (1.49)

Step 1: �rst variation of the nonlocal term. The idea to compute the �rst variation of the
nonlocal part is to prove the following two steps:

(1) NLδ(Et)
δ→0−→ NL(Et) uniformly for t ∈ (−t0, t0) ,

(2) ∂
∂tNLδ(Et) converges uniformly for t ∈ (−t0, t0) to some function H(t) as δ → 0 ,

where t0 < 1 is a �xed number. From (1) and (2) it follows that

d

dt
NL(Et)|t=0

= H(0) = lim
δ→0

∂

∂t
NLδ(Et)|t=0

. (1.50)

We prove (1). We have that

|NLδ(Et)−NL(Et)| =
∣∣∣∣ ∫

Et

∫
Et

(
Gδ(x, y)−G(x, y)

)
dxdy

∣∣∣∣ ≤ ∫
BR

∫
BR

|Gδ(x, y)−G(x, y)|dxdy ,

where we have used the fact that E is bounded and hence Et ⊂ BR for some ball BR . It is
now easily seen that the last integral in the previous expression tends to 0 as δ → 0 , thanks
to the Lebesgue's Dominated Convergence Theorem, hence

sup
t∈(−t0,t0)

|NLδ(Et)−NL(Et)| → 0 as δ → 0.
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We now prove (2). By a change of variables and using (1.48) and (1.49) we have

∂

∂t
NLδ(Et) = 2

∫
E

∫
E

∂JΦt

∂t
(x)JΦt(y)Gδ(Φt(x),Φt(y)) dxdy

+ 2

∫
E

∫
E
JΦt(x)JΦt(y)〈∇x

(
Gδ(Φt(x),Φt(y))

)
· (DΦt(x))−1, X(Φt(x))〉 dxdy

=

∫
E

∫
E
f(t, x, y)Gδ(Φt(x),Φt(y)) dxdy

+

∫
∂E

(∫
E
g(t, x, y)Gδ(Φt(x),Φt(y)) dy

)
dHN−1(x) ,

where JΦt := det(DΦt) is the jacobian of the map Φt ,

f(t, x, y) := 2
∂JΦt

∂t
(x)JΦt(y)− 2divx

(
JΦt(x)JΦt(y)X(Φt(x)) · (DΦt(x))−T

)
,

g(t, x, y) := JΦt(x)JΦt(y)〈X(Φt(x)) · (DΦt(x))−T , ν(x)〉
and in the last step we used integration by parts and Fubini's Theorem. Now since f and g
are uniformly bounded on (−t0, t0)×E ×E and (−t0, t0)× ∂E ×E respectively, it is easily
seen that

∂

∂t
NLδ(Et)

δ→0−→ H(t) uniformly for t ∈ (−t0, t0) ,

where

H(t) :=

∫
E

∫
E
f(t, x, y)G(Φt(x),Φt(y)) dxdy+

∫
∂E

(∫
E
g(t, x, y)G(Φt(x),Φt(y)) dy

)
dHN−1(x).

We �nally compute (1.50). Recalling that

∂JΦt

∂t |t=0

= divX , (1.51)

we have

∂

∂t
NLδ(Et)|t=0

= 2

∫
E

∫
E

(
divX(x)

(|x− y|2 + δ2)
α
2

− α 〈X(x), x− y〉
(|x− y|2 + δ2)

α+2
2

)
dxdy

= 2

∫
E

∫
E

divx

(
X(x)

(|x− y|2 + δ2)
α
2

)
dxdy

= 2

∫
∂E

(∫
E

〈X(x), ν(x)〉
(|x− y|2 + δ2)

α
2

dy

)
dHN−1(x)

(where we used the divergence Theorem and Fubini's Theorem in the last equality), and hence
by letting δ → 0 we conclude that

H(0) = 2

∫
∂E

(∫
E

〈X(x), ν(x)〉
|x− y|α

dy

)
dHN−1(x) = 2

∫
∂E
vE 〈X, ν〉dHN−1 .

This, combined with (1.46), concludes the proof of the formula for the �rst variation of F .

Step 2: second variation of the nonlocal term. We will compute the second variation of the
nonlocal term by showing that

∂2

∂t2
NLδ(Et)

δ→0−→ K(t) uniformly in t ∈ (−t0, t0)

for some function K , hence getting

d2

dt2
NL(Et)|t=0

= K(0) = lim
δ→0

∂2

∂t2
NLδ(Et)|t=0

. (1.52)
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First of all we have that

∂2

∂t2
NLδ(Et) =

∂

∂t

[
2

∫
E

∫
E

∂JΦt

∂t
(x)JΦt(y)Gδ(Φt(x),Φt(y)) dxdy

+ 2

∫
E

∫
E
JΦt(x)JΦt(y)〈∇aGδ(Φt(x),Φt(y)), X(Φt(x))〉dxdy

]
= 2

∫
E

∫
E

∂

∂t

(∂JΦt

∂t
(x)JΦt(y)

)
Gδ(Φt(x),Φt(y)) dxdy

+ 2

∫
E

∫
E
JΦt(x)

∂

∂t
JΦt(y)

(
〈∇aGδ(Φt(x),Φt(y)), X(Φt(x))〉

+ 〈∇bGδ(Φt(x),Φt(y)), X(Φt(y))〉
)

dxdy

+ 2

∫
E

∫
E
〈 ∂
∂t

(
JΦt(x)JΦt(y)X(Φt(x))

)
,∇aGδ(Φt(x),Φt(y))〉 dxdy

+ 2

∫
E

∫
E
JΦt(x)JΦt(y)

( N∑
i,j=1

∂2Gδ
∂ai∂aj

(Φt(x),Φt(y))Xi(Φt(x))Xj(Φt(x))

+
N∑

i,j=1

∂2Gδ
∂ai∂bj

(Φt(x),Φt(y))Xi(Φt(x))Xj(Φt(y))

)
dxdy . (1.53)

Using identity (1.48) and integrating by parts, we can rewrite this expression as

∂2

∂t2
NLδ(Et) =

∫
E

∫
E
f(t, x, y)Gδ(Φt(x),Φt(y)) dxdy

+

∫
E

∫
E

(
〈∇aGδ(Φt(x),Φt(y)), g1(t, x, y)〉+ 〈∇bGδ(Φt(x),Φt(y)), g2(t, x, y)〉

)
dxdy

+

∫
E

∫
∂E

(
〈∇aGδ(Φt(x),Φt(y)), h1(t, x, y)〉+ 〈∇bGδ(Φt(x),Φt(y)), h2(t, x, y)〉

)
dHN−1(x)dy ,

for some functions f, g1, g2, h1, h2 uniformly bounded in (−t0, t0) × E × E . It is then easily
seen that

∂2

∂t2
NLδ(Et)

δ→0−→ K(t) uniformly in t ∈ (−t0, t0) ,

where K(t) is simply obtained by replacing Gδ by G in the previous expression.

We �nally compute (1.52). Setting Z := ∂2Φ
∂t2 |t=0

we have that

∂2JΦt

∂t2 |t=0

= divZ + (divX)2 −
N∑

i,j=1

∂Xi

∂xj

∂Xj

∂xi
= div

(
(divX)X

)
.

Therefore, computing (1.53) at t = 0 , from this identity and recalling (1.51) we obtain

∂2

∂t2
NLδ(Et)|t=0

= 2

∫
E

∫
E

[
div
(
(divX)X

)
(x)Gδ(x, y) + divX(x)divX(y)Gδ(x, y)

]
dxdy

+ 4

∫
E

∫
E

divX(y)
N∑
i=1

(∂Gδ
∂xi

(x, y)Xi(x) +
∂Gδ
∂yi

(x, y)Xi(y)
)

dxdy

+ 2

∫
E

∫
E

N∑
i,j=1

(
∂Gδ
∂xi

(x, y)
∂Xi

∂xj
(x)Xj(x) +

∂2Gδ
∂xi∂xj

(x, y)Xi(x)Xj(x)



32 1. A NONLOCAL ISOPERIMETRIC PROBLEM IN RN

+
∂2Gδ
∂xi∂yj

(x, y)Xi(x)Xj(y)

)
dxdy =: I1 + I2 + I3 .

By integrating by parts in I1 , the sum of the �rst two integrals is equal to

I1 + I2 = 2

∫
E

∫
E
〈∇xGδ(x, y), X(x)〉

(
divX(x) + divX(y)

)
dxdy

+ 2

∫
E

∫
∂E
Gδ(x, y)

(
divX(x) + divX(y)

)
〈X(x), ν(x)〉 dHN−1(x)dy .

Hence

∂2

∂t2
NLδ(Et)|t=0

= 2

∫
E

∫
∂E
Gδ(x, y)

(
divX(x) + divX(y)

)
〈X(x), ν(x)〉dHN−1(x)dy

+ 2

∫
E

∫
E

(
divx

(
〈∇xGδ(x, y), X(x)〉X(x)

)
+ divy

(
〈∇xGδ(x, y), X(x)〉X(y)

))
dxdy

= 2

∫
E

(∫
∂E

divx
(
Gδ(x, y)X(x)

)
〈X(x), ν(x)〉 dHN−1(x)

)
dy

+ 2

∫
E

(∫
∂E

divx
(
Gδ(x, y)X(x)

)
〈X(y), ν(y)〉 dHN−1(y)

)
dx

= 2

∫
∂E

(∫
E

divx
(
Gδ(x, y)X(x)

)
dy

)
〈X(x), ν(x)〉 dHN−1(x)

+ 2

∫
∂E

∫
∂E
Gδ(x, y)〈X(x), ν(x)〉〈X(y), ν(y)〉dHN−1(x)dHN−1(y) ,

where the second equality follows after having applied the divergence theorem, and the last
one by Fubini's Theorem and the divergence theorem. Thus, using the Lebesgue's Dominated
Convergence Theorem to compute the limit of the previous quantity as δ → 0 , and recalling
that α ∈ (0, N − 1) , we obtain

∂2

∂t2
NLδ(Et)|t=0

= 2

∫
∂E

(∫
E

divx
(
G(x, y)X(x)

)
dy

)
〈X(x), ν(x)〉dHN−1(x)

+ 2

∫
∂E

∫
∂E
G(x, y)〈X(x), ν(x)〉〈X(y), ν(y)〉 dHN−1(x)dHN−1(y) .

(1.54)

We can rewrite the �rst integral in the previous expression as

2

∫
∂E

(∫
E

divx
(
G(x, y)X(x)

)
dy

)
〈X(x), ν(x)〉 dHN−1(x) = 2

∫
∂E

div
(
vEX

)
〈X, ν〉 dHN−1

= 2

∫
∂E

(
vE(divX)〈X, ν〉+ 〈∇vE , Xτ 〉〈X, ν〉+ ∂νvE 〈X, ν〉2

)
dHN−1

= 2

∫
∂E

(
vE(divX)〈X, ν〉 − vE divτ

(
Xτ 〈X, ν〉

)
+ ∂νvE 〈X, ν〉2

)
dHN−1 .

Finally, combining this expression with (1.54) and (1.47), we obtain the formula in the state-
ment. �

1.6.2. Computation of IN,α . Here we want to get an explicit expression of the integral

IN,α :=

∫
B1

〈x− y, x〉
|x− y|α+2

dy
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appearing in Section 1.4, at least in the case N = 3 . First of all, since IN,α is independent
of x ∈ SN−1 , we �x x = e1 . By Fubini's Theorem we get

IN,α =

∫
B1

1− y1

|e1 − y|α+2
dy =

∫ 1

−1

(∫
Bt

1− t(
(1− t)2 + |z|2

)α+2
2

dLN−1(z)

)
dt ,

where Bt := BN−1(0,
√

1− t2) denotes a (N − 1)-dimensional ball of radius
√

1− t2 cen-
tered at the origin. To treat the inner integral, we apply the co-area formula (see [5,

equation (2.74)]), by integrating on the level sets of the function ft(z) :=
√

(1− t)2 + |z|2 ,
z ∈ RN−1 : setting δ(r) =

√
r2 − (1− t)2 , we get∫

Bt

1(
(1− t)2 + |z|2

)α+2
2

dLN−1(z) =

∫ √2(1−t)

1−t

(∫
∂BN−1(0,δ(r))

1

rα+1
√
r2 − (1− t)2

dHN−2

)
dr

= (N − 1)ωN−1

∫ √2(1−t)

1−t

(r2 − (1− t)2)
N−3

2

rα+1
dr.

Therefore

IN,α = (N − 1)ωN−1

∫ 1

−1
(1− t)

(∫ √2(1−t)

1−t

(r2 − (1− t)2)
N−3

2

rα+1
dr

)
dt.

From real analysis we know that we can write the inner integral in term of simple functions if
and only if N is odd or α is an integer. Since we are interested in the physical case (N = 3 ,
α = 1), we just compute the above integral for N = 3 , obtaining

I3,α = 2π
22−α

(4− α)(2− α)
. (1.55)





CHAPTER 2

Periodic critical points of the Otha-Kawasaki functional

In this chapter we construct local minimizing periodic critical points of the sharp interface
of the Otha-Kawasaki energy (0.1), whose shape closely resembles that of any give stictly sta-
ble periodic constant mean curvature surface. Moreover, we also establish some observations,
of independent interest, about local minimziers of the sharp Otha-Kawasaki enery.

2.1. Preliminaries

In this section we introduce the objects and we �x the notation we will need in the
following. Given k ∈ N \ {0} , we will denote by TNk the N -dimensional �at torus rescaled by

a factor 1/k , i.e., the quotient of RN under the equivalence relation

x̂ ∼k ŷ ⇔ k(x̂− ŷ) ∈ ZN .

For simplicity, TN1 will be denoted by TN . Points in TNk will be denoted by x , y . A set

E ⊂ TNk can be naturally identify with the 1/k -periodic set of RN (or TN ) that equals E

is a periodicity cell. When we speak about the regularity of a set E ⊂ TNk , we will always

refer to the regularity of the 1/k -periodic set E ⊂ RN . Finally, for β ∈ (0, 1) and r ∈ N , we
de�ne the functional space Cr,β(TNk ) as the space of 1/k -periodic functions in Cr,β(RN ) .

Definition 2.1. Given a set E ⊂ TN and k ∈ N \ {0} , we de�ne the set Ek ⊂ TNk as
follows:

Ek := {x ∈ TNk : kx ∈ E} .

Figure 1. A set E ⊂ TN on the left, and the set Ek , with k = 3 , seen as a
subset of TN , on the right.

Remark 2.2. Notice that
∫
TN u

E dx =
∫
TNk

uEkk dx , where we recall uFk := χF − χTNk \F
.

35
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We now introduce the notion of perimeter in TNk .

Definition 2.3. Let E ⊂ TNk . We say that E is a set of �nite perimeter in TNk if

sup
{∫

E
div ξ dx : ξ ∈ C1(TNk ;RN ) , |ξ| ≤ 1

}
<∞ .

In this case we denote by Pk(E) the above quantity.

We now introduce two kind of ways for saying how two sets in TN are closed from each
other. The �rst one takes into account the fact that our functional is invariant under transla-
tions.

Definition 2.4. Given two sets E,F ⊂ TNk we de�ne the following distance between
them:

α(E,F ) := min
x∈TNk

|E4(x+ F )| .

Moreover, given E ⊂ TNk and β ∈ (0, 1) , for sets F ⊂ TNk such that

∂F = {x+ ψ(x)νE(x) : x ∈ E} ,
for some function ψ ∈ Cr,β(∂E) , we de�ne

dCr,β (E,F ) := ‖ψ‖Cr,β .
Finally, to write the formulas for the �rst and the second variation of our functional Fγ

(see Theorem 2.27), we need to reacall the following geometric de�nitions: given a set E ⊂ TN
of class C2 , we will denote by Dτ the tangential gradient operator, by divτ the tangential
divergence, by νE the normal vector �eld on ∂E , by B∂E its second fundamental form, and
by |B∂E |2 its Euclidean norm, that coincides with the sum of the squares of the principal
curvatures of ∂E . Finally, H∂E will denotes the mean curvature of ∂E .

2.1.1. The area functional. We recall some results about the area functional.

Definition 2.5. We say that a set E ⊂ TNk is a local minimizer of the area functional if
there exists δ > 0 such that

Pk(E) ≤ Pk(F ) ,

for all F ⊂ TNk with |E| = |F | , such that α(E,F ) ≤ δ .
Definition 2.6. A set E ⊂ TNk is said to be an (ω, r0)-minimizer for the area functional,

with ω > 0 and r0 > 0 , if, for every ball Br(x) with r ≤ r0 , we have

Pk(E) ≤ Pk(F ) + ω|E4F |,
whenever F ⊂ TNk is a set of �nite perimeter such that E4F ⊂⊂ Br(x) .

We recall an improved convergence theorem for (ω, r0)-minimizers of the area functional.
This result is well-known to the experts (see, for istance, [68]). One can �nd a complete proof
of it in [16].

Theorem 2.7. Let En ⊂ TNk be a sequence of (ω, r0)-minimizers of the area functional
such that

sup
n
Pk(En) < +∞ and α(En, E)→ 0 as n→∞ ,

for some bounded set E of class C2 . Then for n large enough En is of class C1,β for all
β ∈ (0, 1), and

∂En = {x+ ψn(x)νE(x) : x ∈ ∂E},
with ψn → 0 in C1,β(∂E) for all β ∈ (0, 1).
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2.1.2. The functional Fγk . We �rst de�ne the functionals we are interested in.

Definition 2.8. Given γ ≥ 0 and k ∈ N , we de�ne, for sets E ⊂ TNk , the functional

Fγk (E) := Pk(E) + γNLk(E)

:= Pk(E) + γ

∫
TNk

∫
TNk

Gk(x, y)uEk (x)uEk (y) dx dy , (2.1)

where uEk (x) := χE(x)− χTNk \E
(x) and Gk is the unique solution of

−4yGk(x, ·) = δx(·)− 1

|TNk |
in TNk ,

∫
TNk

Gk(x, y) dy = 0 .

For simplicity, we will denote by Fγ and uE the functional Fγ1 and the function uE1 respec-
tively.

Remark 2.9. Notice that the area functional corresponds to the choice of γ = 0 .

We now introduce the main objects under investigation in this paper: critical points and
local minimizers.

Definition 2.10. A set E ⊂ TN will be called a critical set for the functional Fγ if it is
a set of class C2 satisfying

H∂E + 4γvE = λ ,

for some constant λ ∈ R .

Remark 2.11. The above de�nition is motivated by the fact that (as one could expect)
on critical sets, the �rst variation of the functional F vanishes (see Theorem 2.27).

Definition 2.12. We say that a set E ⊂ TNk is a local minimizer of the the functional
Fγk , if there exists δ > 0 such that

Fγk (E) ≤ Fγk (F ) ,

for all F ⊂ TNk with |E| = |F | , such that α(E,F ) ≤ δ . Moreover, we say that E is an
isolated local minimizer if, in the above inequality, equality holds only when F = E .

We now want to derive some regularity properties of local minimizers of Fγk . In order to
do this, we observe that local minimizers of Fγk are in fact (ω, r)-minimizer, and then we will
rely on the well-known regularity theory for (ω, r)-minimizer.

First of all one can see that the nonlocal term turns out to be Lipschitz (see [1, Lemma
2.6] for a proof).

Proposition 2.13 (Lipschitzianity of the nonlocal term). There exists a constant c0 ,
depending only on N , such that if E,F ⊂ TNk are measurable sets, then

|NLk(E)−NLk(F )| ≤ c0α(E,F ) .

The following lemma is a re�nement of a result already present in [1] and [24].

Lemma 2.14. Fix constants γ̄ > 0 , δ0 > 0 , m0 ∈ (0, |TNk |) and M > 0 . Take a set

E ⊂ TNk , with Pk(E) ≤M , solution of

min
{
Pk(F ) + γNLk(F ) :

∫
k
uFk = m, α(E,F ) ≤ δ

}
, (2.2)
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where γ ≤ γ̄ , δ ∈ [δ0,+∞] and m ∈ [−m0, |TNk | − m0]. Then we can �nd a constant
Λ0 = Λ0(c0,m0, γ̄, δ0,M) > 0 (where c0 is the constant given by Proposition 2.13) such that
E is a solution of the unconstrained minimum problem

min
{
Pk(F ) + γNLk(F ) + Λ

∣∣∣ ∫
k
uFk −m

∣∣∣ : α(E,F ) ≤ δ/2
}
,

for all Λ ≥ Λ0 .

Proof. The idea is to prove that we can �nd a constant Λ0 as in the statement of the

lemma, such that if F̃ solves

min
{
Pk(F ) + γNLk(F ) + Λ

∣∣∣ ∫
k
uFk −m

∣∣∣ : α(E,F ) ≤ δ/2
}
,

where γ ≤ γ̄ and Λ ≥ Λ0 , then α(F̃ , E) = 0 , where E is a solution of (2.2). To prove it,
suppose for the sake of contradiction that there exist sequences γn ≤ γ , Λn → ∞ , sets En
solutions of

min
{
Pk(F ) + γnNLk(F ) :

∫
k
uFk = mn , α(E,F ) ≤ δ

}
,

where δ ≥ δ0 , mn :=
∫
k u

En
k ∈ [−m0, |TNk | −m0] , Pk(En) ≤M , and sets Fn solutions of

min
{
Pk(F ) + γnNLk(F ) + Λn

∣∣∣ ∫
k
uFk −mn

∣∣∣ : α(En, F ) ≤ δ/2
}
,

but with mn 6=
∫
TNk

uFnk (suppose
∫
TNk

uFnk < mn ). From now on we will suppose |Fn4En| =
α(En, Fn) . The idea is to modify the sets Fn 's in such a way that

∫
TNk

uFnk = mn (notice that,

since we are not working in the entire RN but in TN , we need to modify the Fn 's in a more
careful way than just rescaling them!). This idea has been developed in [24]. Set

F̃n(F ) := Fγnk (F ) + Λn

∣∣∣ ∫
k
uFk −m

∣∣∣ .
First of all we notice that supn Pk(Fn) <∞ . Indeed

Pk(Fn) + Λn

∣∣∣ ∫
k
uFnk −mn

∣∣∣ ≤ F̃n(En)− γnNLk(Fn)

= Pk(En) + γn
(
NLk(En)−NLk(Fn)

)
≤M + γ̄c0 .

Thus, up to a not relabelled subsequence, it is possible to �nd a set F0 ⊂ TNk with
∫
k v

F0
k ∈

[−m0, |TNk | −m0] , such that Fn → F0 in L1 . Moreover α(En, Fn) → 0 . We now sketch the
argument presented in [24]. Given ε > 0 , it is possible to �nd a radius r > 0 such that (up
to translations)

|Fn ∩Br/2| ≤ εrN , |Fn ∩Br| ≥
TNk Nr

N

2N+2
,

for n su�ciently large. Let σn ∈ (0, 1/2N ) , that will be choosen later, and de�ne

Φn(x) :=


(1− σn(2N − 1))x if |x| ≤ r

2 ,

x+ σn
(
1− rN

|x|N
)
x if r2 ≤ |x| < r ,

x if |x| ≥ r .

Let F̃n := Φn(Fn) . It is possible to prove that

Pk(Fn ∩Br)− Pk(F̃n ∩Br) ≥ −2NNσnPk(Fn ∩Br) ,
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and that, for ε > 0 su�cienlty small,∫
k
uF̃nk −

∫
k
uFnk ≥ σnr

N
[
c
TNk N
2N+2

− ε
(
c+ (2N − 1)N

)]
≥ cσnrN

TNk N
2N+3

=: C1σnr
N ,

where c and C1 are constants depending only on the dimension N . Then it is possible to
choose the σn 's in such a way that |Fn| = |En| for all n . In particular we obtain, from the
above inequality, that σn → 0 . Finally, it is also possible to prove that

α(F̃n, Fn) ≤ C2σnPk(Fn ∩Br) .

Combining all these estimates we have that

F̃n(F̃n) ≤ F̃n(Fn) + σn
[
(2NN + C2c0γ̄)Pk(Fn ∩Br)− ΛnC1r

N
]
< F̃n(Fn) ≤ F̃n(En) .

Since σn → 0 , we have that, for n large enough, α(F̃n, En) ≤ δn . Thus the above inequality
is in contradiction with the local minimality property of En . �

Corollary 2.15. Let E ⊂ TNk be a local minimizers of Fγk . Then E is an (ω, r)-
minimizer of the area functional. Moreover the parameter ω depends on the constants c0,m0, γ̄, δ0

and M of the previous lemma.

Proof. From the above result, it follows that local minimizers of Fγk are in fact (ω, r)-

minimizer, providing we take ω := c0 + Λ and we choose r > 0 such that ωNr
N ≤ δ/2 . �

The regularity theory for (ω, r)-minimizers allows us to say something about the regularity
of local minimizers of Fγk .

Proposition 2.16. Let E ⊂ TNk be a local minimizer of Fγk . Then we can write ∂E =
∂∗E∪Σ , where the reduced boundary ∂∗E is of class C3,α for all α ∈ (0, 1), and the Hausdor�
dimension of Σ is less than or equal to N − 8 .

Remark 2.17. Using the equation satis�ed by a critical set E , it is also possible to prove
(see [35]) the C∞ regularity of ∂∗E , in every dimension N . In particular, in dimension
N ≤ 7 , we obtain the C∞ -regularity for the entire boundary ∂E .

In the remaining part of this section we would like to investigate some properties of the
nonlocal term, as well as the relation between the functionals F and Fk .

Definition 2.18. For a set E ⊂ TNk , we de�ne the function:

vEk (x) :=

∫
TNk

Gk(x, y)uEk (y) dy .

For simplicity, we wil denote by vE the function vE1 .

Remark 2.19. We �rst want to investigate some properties of the nonlocal term. Notice
that vEk is the unique solution to

−4vEk = uEk −mE in TNk ,
∫
TNk

uEk dx = 0 , (2.3)

where we recall that mE :=
∫
TN u

E
TN dx =

∫
k u

Ek

k dx . Moreover, vEk is 1/k -periodic. Thus,
it is possible to rewrite the nonlocal in the following way:

NLk(E) =

∫
TNk

uEk v
E
k dx = −

∫
TNk

vEk 4vEk dx =

∫
TNk
|∇vEk |2 dx .
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By standard elliptic regularity we know that vEk ∈W 2,p(TNk ) for all p ∈ [1,+∞) . In particular
it holds that

‖vEk ‖W 2,p(TNk ) ≤ C ,
where p > 1 and C is a constant depending only on TNk .

Finally, we investigate the relation between the functionals Fγ and Fγk .
Lemma 2.20. Let E ⊂ TN . Then it holds

Fγk (Ek) = k1−N
[
PTN (E) + γk−3NLTN (E)

]
. (2.4)

Proof. We claim that, if E ⊂ TN we have

vE
k

k (x) = k−2vE(kx) .

Indeed, noticing that
∫
TNk

uEkk =
∫
TN u

E , we have

−4
(
k−2vE(kx)

)
= −4vE(kx) = uE(kx)−m = uE

k

k (x)−m,

and ∫
TNk

k−2vE(kx) dx = k−N−2

∫
TN

vE(y)dy = 0 .

By uniqueness of the solution of problem (2.3), we obtain our claim. Now, noticing that∫
TNk
|∇vEkk (x)|2 dx = k−2−N

∫
TN
|∇vE(x)|2 dx ,

we conclude. �

Remark 2.21. It is also easy to see that the function vE
k
is 1/k -periodic (where here we

see Ek as a subset of TN , i.e., as k copies of the 1/k -rescalded of E ). Thus

Fγ(Ek) = kNFγk (Ek) . (2.5)

This means that the energy of Ek in TN is just the sum of the energies of each of its pieces
in each TNk .

2.1.3. Results about Γ-convergence. In this section we would like to recall an ap-
proximation theorem for isolated local minimizer of the area functional. For we need to write
the functional FγTN in the language of Γ-convergence.

Definition 2.22. Let (X,d) be a metric space, and let Fn : X → R ∪ {+∞} be a
sequence of functionals. We say that the sequence Fn ,Γ(d)-converges to the functional

F : X → R ∪ {+∞} , Fn
Γ(d)→ F , if the following two conditions are satis�ed

• for every xn
d→ x , F (x) ≤ lim infn Fn(xn) ,

• for every x̄ ∈ X there exists xn
d→ x̄ such that F (x) ≥ lim supn Fn(xn) .

Definition 2.23. Consider the space where X := L1(TN )/ ∼ , where f1 ∼ f2 ⇔ there
exists v ∈ TN such that f1(x + v) = f2(x) , for each x ∈ TN . Endow this space with the
distance

α(u, v) := min
x∈TN

‖u− v(· − x)‖L1(TN ) .

Given γ ∈ [0,+∞) and �xed a constant m ∈ (−1, 1) , we de�ne the functional F̃γ : X →
R ∪ {+∞} as

F̃γ(u) :=

{
Fγ(E) if u = uE , for some set E with

∫
TN u

E dx = m,
+∞ otherwise .
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Remark 2.24. Notice that the functionals F̃γ are equi-coercive and lower semicontinuous.

Morever F̃γ Γ(α)−→ F̃0 as γ → 0+ .

Although the Γ-convergence has been designed for the convergence of global mininimizers,
one can says also something about the convergence of local minimizers. The following result
is a particular application of [40].

Theorem 2.25. Let E ⊂ TN be a smooth isolated local minimizer of the area functional.
Then there exists a sequence (Eγ)γ>0 , with |Eγ | = |E|, such that Eγ is a local minimizer of

Fγ in TN and α(Eγ , E)→ 0 as γ → 0+ .

2.2. Variations and local minimality

In the following we will use a local minimality criterion provided in [1], that we recall here
for reader's convenience. This criterion is based on the positivity of the second variation. We
thus need to introduce what do we mean by variation.

Definition 2.26. Let E ⊂ TN be a set of class C2 . Take a smooth vector �eld X ∈
C∞(TN ;RN ) and consider the associated �ow Φ : TN × (−1, 1)→ TN given by

∂Φ

∂t
= X(Φ) ,

such that Φ(x, 0) = x for all x ∈ TN . Let Et := Φ(E, t) and suppose |Et| = |E| for each
time t . We de�ne the �rst and the second variation of Fγ at a set E with respect to the
�ow Φ , respectively as

d

dt
Fγ(Et)

|t=0

,
d2

dt2
Fγ(Et)

|t=0

.

We recall here the result present in [1, Theorem 3.1] for the computation of the �rst and
the second variations.

Theorem 2.27. Let E , X and Φ as above. Then the �rst variation of Fγ at E with
respect to the �ow Φ is

d

dt
Fγ(Et)

|t=0

=

∫
∂E

(H∂E + 4γvE)(X · νE) dHN−1 , (2.6)

while the second variation of Fγ at E with respect to the �ow Φ reads as

d2

dt2
Fγ(Et)

|t=0

=

∫
∂E

(
|Dτ (X · νE)|2 − |B∂E |2(X · νE)2

)
dHN−1

+ 8γ

∫
∂E

∫
∂E
GTN (x, y)(X(x) · νE(x))(X(y) · νE(y)) dHN−1(x) dHN−1(y)

+ 4γ

∫
∂E
∂νEv

E (X · νE)2 dHN−1 −
∫
∂E

(4γvE +H∂E) divτ
(
Xτ (X · νE)

)
dHN−1 .

Remark 2.28. Notice that the last term of the second variation vanishes whenever E is
a critical set.

We now follow the ideas contatined in [1]. We introduce the space

H̃1(∂E) :=

{
ϕ ∈ H1(∂E) :

∫
∂E
ϕ dHN−1 = 0

}
,
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endowed with the norm ‖ϕ‖
H̃1(∂E)

:= ‖∇ϕ‖L2(∂E) , and we de�ne on it the following quadratic

form associated with the second variation.

Definition 2.29. Let E ⊂ TN be a regular critical set. We de�ne the quadratic form

∂2Fγ(E) : H̃1(∂E)→ R by

∂2Fγ(E)[ϕ] :=

∫
∂E

(
|Dτϕ|2 − |B∂E |2ϕ2

)
dHN−1 + 4γ

∫
∂E

(∂νEv
E)ϕ2 dHN−1

+ 8γ

∫
∂E

∫
∂E
GTN (x, y)ϕ(x)ϕ(y) dHN−1(x) dHN−1(y)

=: ∂2PTN (E)[ϕ] + γ∂2NLTN (E)[ϕ] ,

(2.7)

where ∂2PTN (E) denotes the �rst integral, while γ∂2NLTN (E) the other two.

Since our functional is translation invariant, if we compute the second variation of Fγ at
a regular set E with respect to a �ow of the form Φ(x, t) := x+ tηei , where η ∈ R and ei is
an element of the canonical basis of RN , setting νi := 〈νE , ei〉 we obtain that

∂2Fγ(E)[ηνi] =
d2

dt2
Fγ(Et)

|t=0

= 0 .

Hence we split

H̃1(∂E) = T⊥(∂E)⊕ T (∂E) ,

where T⊥(∂E) is the orthogonal complement to T (∂E) in the L2 -sense, i.e.,

T⊥(∂E) :=

{
ϕ ∈ H̃1(∂E) :

∫
∂E
ϕνi dHN−1 = 0 for each i = 1, . . . , N

}
.

It can be shown (see [1, Equation (3.7)]) that there exists an orthonormal frame (ε1, . . . , εN )
such that ∫

∂E
(ν · εi)(ν · εj) dHN−1 = 0 for all i 6= j . (2.8)

Definition 2.30. We say that Fγ has strictly positive second variation at the regular
critical set E if

∂2Fγ(E)[ϕ] > 0 for all ϕ ∈ T⊥(∂E) \ {0}.

Finally, we recall the local minimality result proved in [1].

Theorem 2.31. Let E ⊂ TN be a regular critical set such that Fγ has strictly positive
second variation at E . Then, there exist constants C, δ > 0 , such that

Fγ(F ) ≥ Fγ(E) + C
(
α(E,F )

)2
,

whenever F ⊂ TN with |F | = |E| is such that α(E,F ) ≤ δ .

2.3. The results

2.3.1. Minimality in small domains. The �rst result we would like to prove is a local
minimality property of critical points with respect to su�ciently small perturbations.

Proposition 2.32. Let E ⊂ TN be a critical point for the functional Fγ . Then there
exists ε > 0 with the following property: for any set F ⊂ TN di�erent from E we have that

Fγ(E) ≤ Fγ(F ) ,

whenever E4F b Bε(x) , for some x ∈ Ē ,
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Sketch of the proof. Part one. We �rst want to prove that we can �nd ε̃ > 0 such
that

Fγ(E) ≤ Fγ(F ) ,

whenever F ⊂ TN is a set di�erent from E , having E4F b Bε̃(x) , for some x ∈ ∂E . So,
�x x̄ ∈ ∂E . The idea is to follow the proofs of the various step leading to the proof of [1,
Theorem 1.1], and adapt them to our case.
Step 1. For any ε > 0 su�ciently small, we have the following Poincaré inequality∫

∂E∩Bε(x̄)
|Dτϕ|2 dHN−1 ≥ Cε

∫
∂E∩Bε(x̄)

ϕ2 dHN−1 ,

for any ϕ ∈ H1(∂E) with support contained in Bε(x) . We know that Cε → +∞ as ε → 0 .
Let M > 0 such that

|B∂E | < M , |∂νvE | < M ,

and take ε > 0 such that C2ε > M(1 + 4γ) . Notice that it is possible to write∫
∂E

∫
∂E
GTN (x, y)ϕ(x)ϕ(y) dHN−1(x) dHN−1(y) =

∫
TN
|∇z|2 dx ,

where −4z = ϕHN−1 ¬ ∂E . Thus, we have that

∂2Fγ(E)[ϕ] > 0 , (2.9)

for any ϕ ∈ H1(∂E)\{0} with support contained in B2ε(x̄) .

Step 2. We claim that it is possible to �nd constants δ > 0 and C0 > 0 such that

Fγ(E) + C0

(
α(E,F )

)2 ≤ Fγ(F ) ,

whenever F ⊂ TN , with |F | = |E| , is such that ∂F = {x + ψ(x)νE(x) : x ∈ ∂E} , for
some ‖ψ‖W 2,p(∂E) ≤ δ with support contained in B2ε(x̄) , for p > max{2, N − 1} . We use the
two step technique of [1, Theorem 3.9]. We �rst prove that we can �nd constants δ > 0 and
m > 0 such that

inf
{
∂2Fγ(F )[ϕ] : ϕ ∈ H̃1(∂F ) , ‖ϕ‖H1(∂F ) = 1 ,

supp(ϕ) ⊂ B2ε(x) ,
∣∣∣∫
∂F
ϕνF dHN−1

∣∣∣ ≤ δ } ≥ m,

whenever F ⊂ TN , with |F | = |E| , is such that

∂F = {x+ ψ(x)νE(x) : x ∈ ∂Eγ} ,

for some ψ ∈ W 2,p(∂E) with ‖ψ‖W 2,p(∂E) ≤ δ . To prove it, we reason by the sake of
contradiction as in the �rst step of the proof of [1, Theorem 3.9].

Now consider the �ow Φ , given by Lemma 2.36, connecting the sets E and F , and let
Et := Φt(E) . Then it is possible to write

Fγ(F )−Fγ(E) =

∫ 1

0
(1− t)

(
∂2F(Et)[X · νEt ]−

∫
∂Et

(4γvEt +Ht)divτt(Xτt(X · νEt))
)

dt ,

where divτt is the tangential divergence on ∂Et and Xτt := (X · τEt)τEt . It is possible to
estimate from below of the integral, as it is done in the second step of the proof of [1, Theorem
3.9]. Namely, it is possible to �nd δ > 0 such that∣∣∣∫

∂Et

(4γvEt +Ht)divτt(Xτt(X · νEt))dt
∣∣∣ ≤ m

2
‖X · νEt‖2

H(∂Et)
,
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Figure 2. An example of the set Iδ .

for all t ∈ [0, 1] . Thus, with the above uniform coercivity property of ∂2F(Et) in force, we
conclude.

Step 3. For any ε > 0 , let Iε ⊂ B2ε(x̄) be a smooth open set with the following properties:
the curvature of Iε are uniformly bounded with respect to ε , the sets E ∪ Iε and E\Iε are
smooth, Bε(x̄) ⊂ Iε (see Figure 2). We claim that it is possible to �nd ε > 0 such that

Fγ(E) ≤ Fγ(F ) ,

for every set F ⊂ TN with |F | = |E| , such that E4F b Iε . The proof of such a result is
similar to those of [1, Theorem 4.3], where we reason by the sake of contradiction as follows:
suppose there exist a sequence εn → 0 and sets Fn with |Fn| = |E| and E\Iεn ⊂ Fn ⊂ E∪Iεn ,
such that

Fγ(Fn) < Fγ(E) .

Using the uniform bound on the curvatures of the Iεn 's, it is possible to prove, as in the �rst
step of the proof of [1, Theorem 4.3], that we can �nd a sequence of sets En with |En| = |E| ,
and En4E b Iεn , Fγ(En) < Fγ(E) and the En 's are uniform (ω, r)-minimizers of the area
functional. Thus, the improved convergence result stated in Theorem 2.7 allows us to say
that the En 's converge to E in the C1,β -topology. Finally, using the Euler-Lagrange equation
satis�ed by the En 's, it is also possible to prove that the En 's actually converge to E in the
W 2,p -topology. This is in contradiction with the result of the previous step.

Step 4. We now have to prove that the above constants can be made uniform with re-
spect to x ∈ ∂E . Reason as follows: for any point x ∈ ∂E , consider the ball Bε(x)(x) ,
where ε(x) > 0 is the radius found in Step 3 above. Then it is possible to cover ∂E with
a �nite family of such a balls, let us say (Bε(xi)(xi))

L
i=1 . It is thus possible to �nd ε̃ > 0

with the following property: for any point x ∈ ∂E , there exists i ∈ {1, . . . , L} such that
Bε̃(x) ⊂ Bε(xi)(xi) . We can also suppose ε̃ < ε(xi) for each i = 1, . . . , L .

Second part. We now want to prove that we can �nd ε ∈ (0, ε̃/2) such that

Fγ(E) < Fγ(F ) , (2.10)
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whenever F ⊂ TN is a set di�erent from E , having E4F b Bε(x) , for some x ∈ E\(∂E)ε̃/2 .
The key point is to observe that

|NL(F )−NL(E)| ≤ c0|E4F | ≤ CP(E4F )
N
N−1 = C

(
P(F )− P(E)

) N
N−1 , (2.11)

where we have used the Lipschitzianity of the nonlocal term (Proposition 2.13), the isoperi-
metric inequality, and the fact that E4F b Bε(x) , with x in the interior of E , respectively.

Now, (2.10) can be written as

P(F )− P(E) ≥ γ
(
NL(E)−NL(F )

)
.

Using (2.11) and the fact that t
N
N−1 < Ct for t small, we know that the above inequality is

satis�ed if P(F )− P(E) < δ , for some δ > 0 . If P(F )− P(E) ≥ δ , noticing that

|NL(F )−NL(E)| ≤ c0|E4F | ≤ CεN ,

we obtain the validity of (2.10) by taking ε su�ciently small. This concludes the proof. �

2.3.2. Uniform local minimizers. We start by proving a lemma that will be used
several times. The proof can be found in [1] (Step 4 of the proof of Theorem 3.4), but we
prefer to report it here for reader's convenience.

Lemma 2.33. Let E ⊂ TN be a critical set for F γ̄ , with γ̄ ≥ 0. Then for any ε > 0
it is possible to �nd ε̃ > 0 with the following property: if Eγ is a critical point of Fγ , with
γ ∈ (γ̄ − ε, γ̄ + ε) such that dC1(E,Eγ) < ε, then dC3,β (E,Eγ) < ε̃, for all β ∈ (0, 1).

Proof. Suppose for the sake of contradiction that there exists a sequence γn → γ̄ and a
sequence (En)n of critical points Fγn with dC1(E,Eγ)→ 0 such that dC3,β (E,Eγ) ≥ C > 0 .
We recall that on ∂E

H∂E = λ− 4γ̄vE , (2.12)

for some constant λ , while on ∂Eγn

H∂Eγn = λγn − 4γnv
Eγn . (2.13)

Thanks to the C1 -convergence of Eγn to E and by standard elliptic estimates, it is easy to
see that

vEγn → vE in C1,β(TN ) , (2.14)

for all β ∈ (0, 1) . Now we would like to prove that λγn → λ , thus obtaining the desired
contradiction. We work locally, by considering a cylinder C = B′×(−L,L) , where B′ ⊂ RN−1

is a ball centered at the origin, such that in a suitable coordinate system we have

Eγn ∩ C = {(x′, xN ) ∈ C : x′ ∈ B′, xN < gγn(x′)},
E ∩ C = {(x′, xN ) ∈ C : x′ ∈ B′, xN < g(x′)}

for some functions gγn → g in C1,β(B′) . By integrating (2.13) on B′ we obtain

λγnHN−1(B′)− 4γn

∫
B′
vEγn (x′, gγn(x′)) dHN−1(x′)

= −
∫
B′

div

(
∇gγn√

1 + |∇gγn |2

)
dHN−1(x′) = −

∫
∂B′

∇gγn√
1 + |∇gγn |2

· x
′

|x′|
dHN−2 ,



46 2. PERIODIC CRITICAL POINTS OF THE OTHA-KAWASAKI FUNCTIONAL

and the last integral in the previous expression converges, as n→∞ , to

−
∫
∂B′

∇g√
1 + |∇g|2

· x
′

|x′|
dHN−2 = −

∫
B′

div

(
∇g√

1 + |∇g|2

)
dHN−1(x′)

= λHN−1(B′)− 4γ̄n

∫
B′
vEγ̄n (x′, gγn(x′)) dHN−1(x′) ,

where the last equality follows by (2.12). This shows, recalling (2.14), that

λγn → λ ,

for n→∞ . Thus, by standard elliptic estimates, we get that Eγn → E in C3,β . �

We now present a uniform local minimality result for strictly stable critical points of Fγ .
Proposition 2.34. Let E ⊂ TN be a strictly stable critical point for F γ̄ , γ̄ ≥ 0 . Then

there exist constants δ2 > 0 , ε2 > 0, γ2 > 0 and C2 > 0 with the following property: take
γ ∈ (γ̄ − γ2, γ̄ + γ2) and let Eγ be a critical point for Fγ with dC1(E,Eγ) < ε2 ; then

Fγ(Eγ) + C2

(
α(Eγ , F )

)2 ≤ Fγ(F ) ,

for every set F ⊂ TN with |F | = |Eγ |, such that α(Eγ , F ) ≤ δ2 .

The proof of Proposition2.34 follows the same strategy as [1]. The di�culty is to check
that all the estimates permormed there can be made uniform with respct to the C1 closeness
of Eγ to E . Checking this, we in fact simplify the general argument, by replacing [1, Lemma
3.8] by a penalization argument that was inspired to us by [20].

Definition 2.35. Let F ⊂ TN be a set of class C∞ . We will denote by Nµ(F ) , with
µ > 0 , a tubular neighborhood of F where the signed distance dF from F and the projection
πF on ∂F are smooth in Nµ(F ) .

Lemma 2.36. Let E ⊂ TN be a strictly stable critical point for F γ̄ , γ̄ ≥ 0 , and let
p > max{2, N − 1} . Then there exist constants µ > 0 , γ3 > 0, ε3 > 0 and C > 0
with the following property: for any critical point Eγ of Fγ , with γ ∈ (γ̄ − γ3, γ̄ + γ3) and
dC1(E,Eγ) < ε3 , and any ψ ∈ C∞(Eγ) with ‖ψ‖W 2,p(∂Eγ) ≤ ε3 , there exists a vector �eld

X ∈ C∞ with divX = 0 in Nµ(F ) such that, if we consider its �ow, i.e., the solution of

∂Φ

∂t
= X(Φ) , Φ(0, x) = x , (2.15)

we have Φ(1, x) = x+ ψ(x)νEγ (x) , for any x ∈ ∂Eγ . Moreover, the following estimate holds
true

‖Φ(t, ·)− Id‖W 2,p(∂Eγ) ≤ C‖ψ‖W 2,p(∂Eγ) .

Finally, denote by Etγ the set such that ∂E1
γ = {x+ tψ(x)νEγ (x) : x ∈ ∂Eγ}. If |E1

γ | = |Eγ | ,
then |Etγ | = |Eγ | for all t ∈ [0, 1] and∫

∂Etγ

X · νEtγ dHN−1 = 0 .

Proof. First of all take 0 < ε3 < ε0 , where ε0 > 0 is the constant given by Lemma 2.33.
Then, possibly reducing ε3 , we can �nd µ > 0 such that Nµ(Eγ) is a tubular neighborhood
of Eγ as in De�nition 2.35, for every Eγ critical point of Fγ , with γ ∈ (γ̄ − γ3, γ̄ + γ3) , for
γ3 ∈ (0, ε) , and dC1(E,Eγ) < ε . Fix γ ∈ (γ̄ − γ3, γ̄ + γ3) .

For every x ∈ ∂Eγ consider the function fx : (−µ, µ)→ R solution of{
(fx)′(t) + fx(t)4dEγ (x+ tνEγ (x)) = 0 ,
fx(0) = 1 .
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Set

ξ(x+ tνEγ (x)) := fx(t) = exp
(
−
∫ t

0
4dEγ (x+ sνEγ (x))ds

)
.

Using again the C3,β -closeness of Eγ to E , it is possible to �nd a constant C > 0 such that
‖ψ‖L∞(∂Eγ) ≤ C‖ψ‖W 2,p(∂Eγ) < Cε for any set Eγ as above. Take 0 < ε < µ/C . So, let X
be a smooth vector �eld such that

X(z) :=
(∫ ψ(πEγ (z))

0

ds

ξ
(
πEγ (x) + sνEγ (πEγ (z))

))ξ(z)∇dEγ (z) for z ∈ Nµ(Eγ) .

Notice that the above integral represents the time needed to go from a point x ∈ ∂Eγ to the
point x+ Ψ(x)νEγ (x) along the trajectory of the vector �eld ξ∇dEγ . Thus, if we move along
the trajectory of the vector �eld X , the time needed to go from a point x ∈ ∂Eγ to the point
x+ Ψ(x)νEγ (x) is always one. Moreover that integral does not change for points z ∈ Nµ(Eγ)
in the trajectory of the vector �eld ξ∇dEγ . This ensure that divX = 0 in Nµ(Eγ) .

We now prove the estimates on Φ . First of all notice that we can �nd a constant C > 0
such that, for every set Eγ as above, it holds

‖X‖W 2,p(Nµ(Eγ)) ≤ C‖ψ‖W 2,p(∂Eγ) .

Thus, by the de�nition of the �ow Φ , we have that

‖Φ− Id‖C0(Nµ(Eγ)) ≤ C‖ψ‖W 2,p(∂Eγ) .

To estimate the other norms, we just di�erentiate in (2.15) to obtain

‖∇xΦ(t, ·)− Id‖C0(Nµ(Eγ)) ≤ Cµ‖∇X‖C0(Nµ(Eγ)) ≤ Cµ‖ψ‖W 2,p(∂Eγ) .

Since this shows that the (N − 1)-dimensional Jacobian of Φ(t, ·) is uniformly closed to 1 on
∂Eγ , deriving again in (2.15), we obtain also the following estimate:

‖∇2
xΦ(t, ·)‖Lp(∂Eγ) ≤ Cµ‖∇2X‖Lp(Nµ(Eγ)) .

Finally, if |E1
γ | = |Eγ | , then

d2

dt2
|Et| =

∫
Etγ

(divX)(X · νEγ ) dHN−1 = 0 for all t ∈ [0, 1] .

This follows from [15, Equation (2.30)]. Thus, the function t 7→ |Etγ | is a�ne in [0, 1] , and

since |Eγ | = |Etγ | , we have that it is constant. So

0 =
d

dt
|Et| =

∫
Etγ

divX dHN−1 =

∫
∂Etγ

X · νEtγdh .

This concludes the proof of the lemma. �

Definition 2.37. Let E ⊂ TN . Take a smooth function f : TN → RN such that f = νE
on ∂E , and consider the functional

PenE(F ) :=
∣∣∣∫
F
f(x)dx−

∫
E
f(x)dx

∣∣∣2 .
Moreover de�ne the penalized functional

FγE(F ) := Fγ(F ) + PenE(F ) .

for sets F ⊂ TN .
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Lemma 2.38. Let E,F ⊂ TN , and (Φt)t be an admissible family of di�eomorphisms.
Then we have

d

ds
PenE(Fs)

|s=t
= 2
(∫

Ft

fdx−
∫
E
fdx

)
·
∫
∂Ft

f(X · νFt) dHN−1 ,

and

d2

dt2
PenE(Et)

|t=0
= 2
∣∣∣∫
∂E
νE(X · νE) dHN−1

∣∣∣2
+ 2
(∫

F
fdx−

∫
E
fdx

)
·
∫
∂F
f [(X · ν)divX − divτ (Xτ (X · ν))] dHN−1 .

Proof. Consider the vector function F : (−1, 1)→ R given by

F (t) :=

∫
Et

fi(x)dx ,

for some i = 1, . . . , N . Then

F ′(t) =

∫
Ft

(
∇fi ·X + fidivXt

)
dx =

∫
∂Ft

fi(X · νFt) dHN−1 .

Moreover

F ′′(0) =
d

dt

(∫
∂Ft

fi(X · νFt) dHN−1
)
t=0

=

∫
∂F

(∇fi ·X)(X · νF ) dHN−1 +

∫
∂F
f

d

dt

(
(X ◦ Φt) · (νFs ◦ Φt)J

N−1Φt

)
|t=0

dHN−1

=

∫
∂F

(∇fi ·X)(X · νF ) dHN−1

+

∫
∂F
fi
[
divτ (X(X · νF )) + Z · ν − 2Xτ · ∇τ (X · ν) +DνF [Xτ , Xτ ]

]
dHN−1

=

∫
∂F
fi
[
(X · ν)divX − divτ (Xτ(X · ν))

]
dHN−1 ,

where in the last step we have used the same computations as in [1, Theorem 3.1]. �

Remark 2.39. Let E be a stricly stable critical point for Fγ . Then the quadratic form
∂2FγE associated with the second variation of FγE computed at E satis�es

∂2FγE(E)[ϕ] > 0 for all ϕ ∈ H̃1(∂E)\{0} .

Indeed, the non-negative term due to the second variation of the penalization vanishes only
for ϕ ∈ T⊥(∂E) , where we know, by the strict stability of E , that ∂2Fγ is strictly positive
(except, of course, for ϕ ≡ 0).

We state a technical lemma, whose simle proof is left to the reader.

Lemma 2.40. Let E ⊂ TN be a regular set, and let M > ‖νE‖C1(∂E) . Then there exists

a constant ε > 0 such that for every set F ⊂ TN with dC2(E,F ) < ε, there exists a function
fF : TN → RN with fF = νF on ∂F and ‖fF ‖C1(TN ;RN ) < M .

Moreover, for every δ > 0 there exists η > 0 such that∣∣∣∫
∂Fψ

fFϕ dHN−1
∣∣∣ ≤ δ ⇒

∣∣∣∫
∂Fψ

νFψϕ dHN−1
∣∣∣ ≤ η, ,
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for any set Fψ ⊂ TN with ∂Fψ = {x + ψ(x)νF (x) : x ∈ ∂F} for some ‖ψ‖W 2,p(∂F ) ≤ η ,

where F ⊂ TN is a set such that dC2(E,F ) < ε, and any function ϕ ∈ H̃1(∂Fψ) with
‖ϕ‖H1(∂Fψ) = 1.

We now prove a uniform W 2,p -local minimality result for the penalized functional.

Lemma 2.41. Let p > max{2, N − 1}, and let E ⊂ TN be a strictly stable critical point
for F γ̄ . Then there exist constants γ4 > 0 , δ4 > 0 , ε4 > 0 and C4 > 0 with the following
property: take γ ∈ (γ̄−γ4, γ̄+γ4) and let Eγ be a critical point for Fγ with dC1(E,Eγ) < ε4 ;
then

FγEγ (F ) ≥ FγEγ (Eγ) + C4|Eγ4F |2 ,

for every set F ⊂ TN with |F | = |Eγ | and ∂F = {x + ψ(x)νEγ (x) : x ∈ ∂Eγ} for some
‖ψ‖W 2,p(∂Eγ) ≤ δ4 .

Proof. Step 1. We claim that is possible to �nd a constants γ4 > 0 , δ4 > 0 , ε4 > 0
and m > 0 such that,for any γ ∈ (γ̄ − γ4, γ̄ + γ4) , any critical set Eγ ⊂ TN for Fγ , with
|Eγ | = |E| and dC1(E,Eγ) < ε4 , we have that

inf
{
∂2FγEγ (F )[ϕ] : ϕ ∈ H̃1(∂F ) , ‖ϕ‖H1(∂F ) = 1

}
≥ m, (2.16)

whenever F ⊂ TN , with |F | = |E| , is such that

∂F = {x+ ψ(x)νEγ (x) : x ∈ ∂Eγ} ,

for some ψ ∈W 2,p(∂Eγ) with ‖ψ‖W 2,p(∂Eγ) ≤ δ4 .

We �rst prove that (2.16) by supposing∣∣∣∫
∂F
νFϕ dHN−1

∣∣∣ < δ4 . (2.17)

To prove it we reason as follows: suppose for the sake of contradiction that there exists a
sequence γn → γ̄ , a sequence of sets Eγn ⊂ TN with |Eγn | = |E| and Eγn → E in C1 (and

thus, by Lemma 2.33, in C3,β ), a sequence of sets Fn ⊂ TN with |Fn| = |E| and
∂Fn = {x+ ψn(x)νEγn (x) : x ∈ ∂Eγn} ,

for ψn ∈W 2,p(∂Eγn) with ‖ψn‖W 2,p(∂Eγn ) ≤ 1/n , and a sequence of functions ϕn ∈ H̃1(∂Fn)

with ‖ϕn‖H1(∂Fn) = 1 and
∫
∂Fn

ϕnνFn → 0 , such that

∂2Fγn(Fn)[ϕn]→ 0 as n→∞ .

One can see that Eγn → E in C3,β implies that Fn → E in W 2,p . Then there exist
di�eomorphisms Φn : E → Fn converging to the identity in W 2,p(∂E) . The idea is to

consider the functions ϕ̃n ∈ H̃1(∂E) de�ned as

ϕ̃n := ϕn ◦ Φn − an ,
where , an :=

∫
∂E ϕn ◦ Φn dHN−1 , and to prove that

∂2Fγn(Fn)[ϕn]− ∂2Fγn(E)[ϕ̃n]→ 0 , (2.18)

and that

∂2Fγn(E)[
(
ϕ̃n
)⊥

]− ∂2Fγn(E)[ϕ̃n]→ 0 . (2.19)

The above convergences are proved exactly as in Step 1 of [1, Theorem 3.9], where we notice
that the convergence of the term of the quadratic form due to the penalization, is easily seen
to converge.
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This allows to conclude: indeed, from the fact that

∂2Fγn(E)[
(
ϕ̃n
)⊥

]− ∂2F γ̄(E)[
(
ϕ̃n
)⊥

]→ 0 , (2.20)

we obtain a contradiction with

inf
{
∂2F γ̄(E)[ϕ] : ϕ ∈ T⊥(∂E) \ {0}, ‖ϕ‖H1(∂E) = 1

}
≥ C > 0 .

This last fact follows from the strict positivity of the second variation (see [1, Lemma 3.6]).
In order to prove (2.18) and (2.19) we have just to repeat the same computation as in step 1
of [1, Theorem 3.9]. Finally (2.20) is easily seen to be true.

Let η be the constant given by Lemma 2.40 associated with δ4 . Then, if∣∣∣∫
∂F
fEγϕ dHN−1

∣∣∣ > η ,

where fEγ is the function associated to the set Eγ given by Lemma 2.40. Then, from the

explicit expression of ∂2FγEγ (F )[ϕ] , we get that (2.16) holds with m = η Otherwise, thank to

Lemma 2.40, we know that (2.17) holds, and thus we conclude by the the previous computa-
tions.

Step 2. To conclude, we have to check that all the estimates needed in the second step of
[1, Theorem 3.9] can be made uniform with respect to γ ∈ (γ̄ − γ4, γ̄ + γ4) . For any pair of
sets Eγ and F as in the statement, consider the vector �eld Xγ and its �ow Φγ(·, t) , provided
by Lemma 2.36. Let Etγ := Φγ(Eγ , t) . Fixed ε > 0 , it is possible to �nd ε4 > 0 and δ4 > 0
such that

‖νEγ − νEtγ
(
Φn(·, t)

)
‖L∞ < ε , ‖JN−1

(
Φγ(·, t)

)
− 1‖L∞ < ε .

Moreover, thanks to the C1 -closeness of Etγ to E , we can also suppose

‖4γvEtγ +HEtγ
− λγ‖L∞ < ε ,

where 4γvEγ + HEγ = λγ . Finally, thanks to the uniform control on the gradient of the
functions fEγ , up to take smaller ε4 > 0 and δ4 > 0 , we have∣∣∣∫

Etγ

fEγdx−
∫
Eγ

fEγdx
∣∣∣ < ε ,

for every t ∈ [0, 1] . Thus, we can write

FγEγ (F )−FγEγ (Eγ) =

∫ 1

0
(1− t)

[
∂2FEγ (Etγ)[Xγ · νEtγ ]

−
∫
∂Etγ

(4γvE
t
γ +HEtγ

)divτt(X
τt
γ (Xγ · νEtγ )) dHN−1

− 2
(∫

Eγt

fEγdx−
∫
Eγ

fEγdx
)
·
∫
∂Etγ

fEγdivτt(X
τt
γ (Xγ · νEtγ )) dHN−1

]
dt .

Since the vector �elds Xγ 's are uniformly closed in the C1 -topology, it is possible to �nd a
constant C > 0 such that

‖divτt(X
τt
γ (Xγ · νEtγ ))‖

L
p
p−1 (∂Etγ)

≤ C‖Xγ · νEtγ‖
2
H1(∂Etγ) ,

for every γ ∈ (γ̄ − γ4, γ̄ + γ4) . Thus, the above uniform estimates allow us to conclude, as in
[1, Theorem 3.9]. �
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Lemma 2.42. Let E and Eγ as in the statement of Lemma 2.41, and consider the
functions fγ given by Lemma 2.40. Then there exists ε > 0 with the following property:

for any F ⊂ TN with dC1(Eγ , F ) < ε, there exists v ∈ RN such that∫
F+v

fγdx =

∫
Eγ

fγdx .

Proof. Fix γ ∈ (γ̄ − γ2, γ̄ + γ2) . Consider the function Tγ : RN → RN given by

Tγ(v) :=

∫
Eγ

fγ(x− v)dx .

Then

DTγ(0) = −
∫
Eγ

Dfγ(x)dx .

In particular
(
DTγ(0)

)
ij

= −
∫
∂Eγ

νi · νj dHN−1 . By (2.8), we know that there exists an

orthonormal frame, where the expression of DTγ(0) is the identity. Thus, it is invertible.
Now, take a set F ⊂ TN such that there exists a di�eomorphism Φ : Eγ → F of class C1 ,
and consider the map TΦ

γ : RN → RN given by

TΦ
γ (v) :=

∫
Eγ

fγ
(
Φ−1(x)− v

)
JΦ(x)dx .

Then

DTΦ
γ (0) = −

∫
Eγ

Dfγ
(
Φ−1(x)

)
JΦ(x)dx .

So, �xed µ > 0 , there exists ε > 0 such that

‖DTΦ
γ (0)−DTγ(0)‖C0 ≤ µ ,

whenever dC1(Eγ , F ) < ε , for all γ ∈ (γ̄ − γ2, γ̄ + γ2) (thanks to the uniform control on
the C1 -norm of the functions fγ 's). Since the function TΦ

γ is closed in C1 to the function
Tγ , it is possible to �nd ε > 0 and δ > 0 such that for each Φ with ‖Φ − Id‖ < ε , it
holds TΨ

γ (Bε) ⊃ Bδ(TΨ
γ (0)) . This follows, for istance, from the proof of the Inverse Function

Theorem. This allows to conclude. �

Lemma 2.43. Let p > max{2, N−1} , and let E ⊂ TN be a strictly stable critical point for
F γ̄ . Then, for any γ ∈ (γ̄ − γ4, γ̄ + γ4) and Eγ critical point for Fγ with dC1(E,Eγ) < ε4 ,
we have that

Fγ(F ) ≥ Fγ(Eγ) + C2

(
α(Eγ , F

)2
,

for every set F ⊂ TN with |F | = |Eγ | and ∂F = {x + ψ(x)νEγ (x) : x ∈ ∂Eγ} for some
‖ψ‖W 2,p(∂Eγ) ≤ δ4 .

Proof. Let ε4 ∈ (0, ε) , where ε > 0 is the constant given by the previous result. We
know that we can �nd a vector v ∈ RN such that

PenEγ (F + v) = 0 .

Thus, by using the result of Lemma 2.41 we can write

Fγ(F ) = Fγ(F + v) = FγEγ (F + v) ≥ FγEγ (Eγ) + C2|Eγ4F |2

≥ Fγ(Eγ) + C2

(
α(Eγ , F )

)2
.

�
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We now prove the uniform L∞ -local minimality result, i.e., the uniform version of [1,
Theorem 4.3].

Lemma 2.44. Let E ⊂ TN be a strictly stable critical point for F γ̄ . Then it is possible to
�nd δ > 0 , γ5 > 0 and ε5 > 0 such that, for any γ ∈ (γ̄ − γ5, γ̄ + γ5) and Eγ critical point
for Fγ with dC1(E,Eγ) < ε5 , it holds

Fγ(Eγ) ≤ Fγ(F ) ,

for every set F ⊂ TN with |F | = |Eγ | , such that Eγ4F b Nδ(Eδ) , where Nδ(Eγ) is a
tubular neighborhood of ∂Eγ of thickness δ .

Proof. Suppose for the sake of contradiction that there exists a sequence γn → γ̄ ,
Eγn → E in C1 , with |Eγ | = |E| , a sequence δn → 0 and a sequence of sets Fn with
|Fn| = |Eγn | , Eγ4Fn b Nδ(Eδn) , such that

Fγn(Eγn) > Fγn(Fn) .

Let En be a solution of the following constrained minimum problem

min
{
Fγn(F ) + Λ

∣∣|F | − |Eγ |∣∣ : F4Eγ ⊂ Nδ(Eδn)
}
.

By using the C3,β convergence of the Eγn 's to E , and reasoning as in the proof of [1,
Theorem 4.3], it is possible to �nd a constant Λ > 0 independent of γn such that the sets
En 's are (4Λ, r0)-minimizers of the area functional, for some r0 > 0 independent of γn , and
|En| = |Eγ | . This is because, if we set νn := ∇dn (de�ned in (∂E)µ , for some µ > 0), where
dn is the signed distance from En , we have that ‖div νn‖L∞ ≤ C for some constant C > 0
independent of n .

Since (En)n is a sequence of uniform (ω, r)-minimizers converging to E in the L1 topology,
by Theorem 2.7 we have that indeed En → E in the W 2,p -topology. By using again the C3,β

convergence of the Eγn 's to E and the Euler-Lagrange equation satis�ed by each En , we
obtain that dW 2,p(En, Eγn) → 0 as n → ∞ . Since, by de�nition, Fγ(En) < Fγ(Eγn)we
obtain a contradiction with the result of Lemma 2.43. �

Finally, we prove the uniform L1 -local minimality result.

Proof of Proposition 2.34. Suppose for the sake of contradiction that there exists a
sequence γn → γ̄ , Eγn → E in C1 , with |Eγ | = |E| , a sequence δn → 0 and a sequence of
sets Fn with |Fn| = |Eγn | , and 0 < εn → 0 , where εn := α(Fn, Eγn) , such that

Fγn(Fn) ≤ Fγn(Eγn) +
C

4

(
α(Eγn , Fn)

)2
.

Let En be a solution of the following constrained minimum problem

min
{
Fγn(F ) + Λ

√(
α(F,Eγn)− εn

)2
+ εn : |F | = |Eγ |

}
.

Then, by usign a Γ-convergence argument it is possible to prove that the En 's converge (up
to a subsequence) in the L1 topology to a solution of the limiting problem

min
{
F γ̄(F ) + Λ|α(F,E)| : |F | = |E|

}
.

Reasoning as in the proof of [1, Theorem 1.1] and by using the C3,β convergence of the Eγn 's
to E (see Lemma 2.33), it is possible to prove that there exists a constant Λ , such that, the
unique solution to the limiting problem is E itself. Moreover, reasoning again as in the proof
of [1, Theorem 1.1] and using Lemma 2.14 we can also infer that En is a sequence of uniform
(ω, r)-minimizers, and that En → E in the W 2,p -topology, and thus dW 2,p(En, Eγn) → 0 as
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n → ∞ . Using the previous uniform L∞ -local minimality result is it also possible to prove

that
α(En,Eγn )
α(Fn,Eγn ) → 1 (see [1, equation (4.17)]). Thus we may conclude

Fγn(En) ≤ Fγn(Fn) ≤ Fγn(Eγn) +
C

4

(
α(Eγn , Fn)

)2 ≤ Fγn(Eγn) +
C

2

(
α(Eγn , En)

)2
.

This yelds the contradiction with the result of Lemma 2.43.
�

2.3.3. Continuous family of local minimizers. We now prove a uniqueness result for
critical points of Fγ close enough to a regular critical stable point of the area functional. We
also prove that these critical points are isolated local minimizers.

Proposition 2.45. Let γ̄ ≥ 0 and let E ⊂ TN be a strictly stable critical point for
F γ̄ . Then there exist constants γ6 > 0 and ε6 > 0 and a unique family γ 7→ Eγ , for
γ ∈ (γ̄ − γ6, γ̄ + γ6) , with |Eγ | = |E| , such that

• dC1(Eγ , E) < ε6 ,
• Eγ is a critical point for Fγ .

Moreover γ 7→ Eγ is continuous in C3,β , for all β ∈ (0, 1), and Eγ is an isolated local
minimizer of Fγ .

Proof. Step 1. Since E is a strictly stable critical point for F γ̄ , by Theorem 2.31 we
can infer that it is an isolated local minimizer of the same functional. Thus, by Theorem 2.25,
we can �nd a sequence (Eγ)γ , with |Eγ | = |E| , such that Eγ is a local minimizer of Fγ , and
α(Eγ , E)→ 0 as γ → γ̄ . By Corollary 2.15, we know that the sequence (Eγ)γ is a sequence
of (ω0, r0)-minimizers, where the parameter ω can be choosen uniformly with respect to γ
(see Lemma 2.14). Hence, Theorem 2.7 allows to say that the Eγ 's converge to E in the

C1,β -topology.

Step 2. Take ε6 < ε2 and γ6 < γ2 such that

dC1(Eγ , E) < ε6 ,

for any γ ∈ (γ̄ − γ6, γ̄ + γ6) . By Proposition 2.34, we know that the Eγ 's are uniform local
minimizers with respect to sets F with |F | = |Eγ | such that α(F,Eγ) ≤ δ2 . In particular,
we have that

Fγ(Eγ) < Fγ(F ) ,

for any set F 6= Eγ with |F | = |Eγ | and α(F,Eγ) ≤ δ2 . By taking a smaller ε6 (and a
smaller γ6 ) if necessary, we can assume that

dC1(F,E) < ε6 ⇒ α(F,Eγ) ≤ δ2 ,

for any set F ⊂ TN and any γ ∈ (γ̄ − γ6, γ̄ + γ6) . This allows to infer that Eγ is the unique
critical point of Fγ with |Eγ | = |E| and dC1(Eγ , E) < ε6 . Indeed, if F is another critical
point of Fγ , with |F | = |E| with dC1(F,E) < ε6 , by using again Proposition 2.34, we would
obtain that F is an isolated local minimizer of Fγ with respect to sets G with |G| = |F | and
α(G,F ) ≤ δ2 . But this contradicts the isolated local minimality property of Eγ .

Step 3. Finally, we can deduce the continuity in the C3,β -topology of the family γ 7→ Eγ
as follows: �x γ̃ ∈ (γ̄−γ, γ̄+γ) , and let γ → γ̃ . Then, up to a subsequence, the sets Eγ → F
in the L1 topology. By the uniqueness property just proved, we have that F = Eγ̃ . Since Eγ
is a sequence of uniform (ω, r0)-minimizers, we infer from Lemma 2.7, that Eγ → F in the
C1,α topology. Then, by the Euler-Lagrange equation satis�ed by the Eγ 's, we obtain the

convergence of Eγ to Eγ̃ in the C3,β -topology. �
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Figure 3. An example of strictly stable periodic surface with constant mean curvature.

2.3.4. Periodic local minimizers with almost constant mean curvature. The
main result of this chapter is the following.

Theorem 2.46. Let E ⊂ TN be a smooth set that is critical and strictly stable for the
area functional, i.e., there exists λ ∈ R such that

H∂E = λ on ∂E ,

and ∫
∂E

(
|Dτϕ|2 − |B∂E |2ϕ2

)
dHN−1 > 0 for every ϕ ∈ T⊥(∂E)\{0} .

Fix constants γ̄ > 0 , ε > 0 . Then it is possible to �nd k̄ = k̄(γ̄, ε) ∈ N and C = C(γ̄) > 0
such that for all k ≥ k̄ there exists a unique set F ⊂ TN that is 1/k -periodic and with

• dC0(F,Ek) < ε
k , where E

k is as De�nition 2.1,

• dC1(F,Ek) < ε,
• ‖∇τHF ‖L∞(∂F ) <

C
k , where HF is the mean curvature of ∂F .

Moreover F is an isolated local minimizer of F γ̄ with respect to 1/k -periodic sets, i.e., there
exists δ > 0 such that, for any set G ⊂ TN that is 1/k -periodic and with |G| = |F | , it holds

F γ̄(F ) < F γ̄(G) ,

whenever 0 < α(G,F ) ≤ δ .

Proof. Consider the sequence

(γk)k := (γ̄k−3)k∈N\{0} .

Let γk 7→ Eγk be the unique family provided by Proposition 2.45 applied to E . Take k̄ such
that, for all k ≥ k̄ , dC1(Eγk , E) < ε and Eγk is an isolated local minimizer of Fγ . This can
be done by using the results of Proposition 2.45. Let F := Ekγk . Now, it is easy to see that

dC0(F,Ek) =
1

k
dC0(Eγk , E) <

ε

k
, dC1(F,Ek) = dC1(Eγk , E) < ε .
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Moreover, by (2.5) and (2.4), we have that

F γ̄(F ) = kNF γ̄k (Eγk) = k
[
PTN (Eγk) + γkNLTN (Eγk)

]
= kFγkTN (Eγk) .

Since Eγk is an isolated local minimizer for Fγk , we obtain that F satis�ed the isolated local
minimimality property of the theorem.

Finally, we have that

H∂F (x) = kH∂Eγk
(kx) = k

(
λk − 4γkv

Eγk (kx)
)
,

where in the last step we have used the Euler-Lagrange equation satis�ed by Eγk . Thus, using
the de�nition of γk , we obtain that

‖∇τHF ‖L∞(∂F ) ≤
4γ̄

k
‖∇vEγk‖L∞(∂Eγk ) .

Since vEγk → vE in C1,β , up to choose a bigger k̄ , we also have the desired estimate for
‖∇τHF ‖L∞(∂F ) . �

We �nally show that the critical points constructed in the above theorem can be approx-
imated with local minimizers of the ε-di�use energy OK γ̄

ε .

Corollary 2.47. Let F be a periodic critical point constructed in the above theorem.
De�ne the function u := χF −χTN\F . Then it is possibile to �nd ε̄ > 0 and a family (uε)ε∈(0,ε̄)

of local minimizers of the energy OK γ̄
ε (see (0.1)) with prescibed volume m :=

∫
TN u, such

that uε → u in L1(TN ) as ε→ 0 .

Proof. The proof follows by the Kohn and Sternberg's theorem [40] (see also [14, Propo-
sition 8]), thanks to the Γ-convergence of OK γ̄

ε to F γ̄ and thanks to the fact that F is an
isolated local minimizer with respect to 1/k -periodic perturbations. �





CHAPTER 3

A local minimality criterion for the triple point con�guration of

the Mumford-Shah functional

In this section we prove a local minimality result, based on a second variation approach,
for triple point con�gurations of the Mumford-Shah functional. This is the �rst step of an
ongoing project aimed at proving the local minimality result in the L1 -topology.

3.1. Setting

Here we collect the terminology and we introduce all the objects we will need in the rest
of the chapter. First of all, we need to specify the class of triple points we are interested in.

Definition 3.1. We say that a pair (u,Γ) is regular admissible triple point (in brief triple
point) if

• Γ = Γ1 ∪ Γ2 ∪ Γ3 , where the Γi 's are three disjoint relatively open curves in Ω that
are of class C3 and C2,α up to their clousure. We also suppose ∂Γi = {x0, x

i} , where
x0 ∈ Ω and xi ∈ ∂Ω with xi 6= xj for i 6= j ,
• denting by νi the normal vector to Γi , we require the angle between νi(x0) and
ν(i+1)mod3(x0) to be less than or equal to π ; moreover we require each Γ̄i to does
not intersect ∂Ω tangentially,
• there exists ∂DΩ ⊂⊂ ∂Ω\Γ , relatively open in ∂Ω , such that u solves∫

Ω\Γ
∇u · ∇z dx = 0 , (3.1)

for every z ∈ H1(Ω\Γ) with z = 0 on ∂DΩ .

Remark 3.2. The regularity we impose on the curves Γi 's is not so restrictive as it may
seems: indeed we will work with critical triple points (see De�nition 3.14), and it was proved
in [39] that, for critical con�gurations, each Γi is analitic as soon as it is of class C1,α , and
the regularity theory tells us that each curve is of class C2,α up to its clousure. The second
condition we asked for the Γi 's is to avoid pathological cases.

We would like to point out that the assumption that each curve Γi is relatively open has
been made just for convenience, and do not prevent the use of (u,Γ) , where u ∈ H1(Ω\Γ) ,
as an admissible pair in which to compute the Mumford-Shah functional.

It is possible to rephrase the third condition above by saying that u is a weak solition of
4v = 0 in Ω\Γ̄ ,
v = u on ∂DΩ ,
∂ν∂Ω

v = 0 on ∂Ω\∂DΩ ,
∂νv = 0 on Γ̄ .

From the results on elliptic problems in domains with corners (see [32]) and from the regularity
of ∂Ω , we know that u can have a singularity near S , the relative boundary of ∂DΩ in ∂Ω :

57
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Figure 1. An admissible subdomain U . The bold part represents ∂DΩ .

namely, u can be H1 but not H2 in a neighborhood of S . Moreover, the gradient of u may
not be bounded in that region. In a future application of the present work we will need to
impose a bound on the L∞ -norm of the gradient of the admissible competitors. But this
can be done only far from S . So, we are forced to consider competitors equals to u in a
neighborhood of S .

Definition 3.3. Given a regular triple point (u,Γ) , we say that an open set U ⊂ Ω is
an admissible subdomain if Γ ⊂ U and U ∩ S = Ø . In this case we de�ne

MS
(
(u,Γ);U

)
:=

∫
U\Γ
|∇u|2 dx+HN−1(Γ) .

Moreover, given an open set A ⊂ Ω , we denote by H1
U (A) the space of functions z ∈ H1(A)

such that z = 0 on (Ω\U) ∪ ∂DΩ .

Our strategy requires to perform the �rst and the second variation of our functional MS .
So, we need to specify the perturbations of the set Γ and of the function u we want to consider.

Definition 3.4. Let (u,Γ) be a regular admissible triple point and let U be an admis-
sible subdomain. We say that a family of di�eromorphisms of Ω onto itself, (Φt)t∈(−1,1) , is
admissible for (u,Γ) in U , if the following conditions are satis�ed:

• Φ0 is the identity map Id ,
• Φt = Id in (Ω\U) ∪ ∂DΩ ,
• Φ is of class C2 with respect to the variable t and of class C3 with respect to the
variable x .

In this case, we de�ne:

XΦt := Φ̇t ◦ Φ−1
t , ZΦt := Φ̈t ◦ Φ−1

t ,

where with Φ̇t we denote the derivative with respect to the variable s of the map (s, x) →
Φs(x) computed at (t, x) . Moreover we also introduce the following abbreviations

Xt := XΦt , Zt := ZΦt , X := X0 , Z := Z0 ,



3.2. PRELIMINARY RESULTS 59

where no risk of confusion can occur.

The above variations will a�ect only the set Γ , i.e., at every time t we will consider the
set Γt := Φt(Γ) . Since our functional depends also on a function u , we have to choose, for
each time t , a suitable function ut related to the set Γt in which compute our functional
MS . The idea, as in [9], is to choose the function that minimizes the Dirichlet energy.

Definition 3.5. Let Φ : Ω̄→ Ω̄ be a di�eomorphism such that Φ = Id on (Ω\U)∪∂DΩ ,
and set ΓΦ := Φ(Γ) . We de�ne uΦ as the unique solution of:

∫
Ω\ΓΦ

∇uΦ · ∇z dx = 0 for each z ∈ H1
U (Ω\ΓΦ) ,

uΦ = u in (Ω\U) ∪ ∂DΩ ,
uΦ ∈ H1(Ω\ΓΦ) .

Moreover, given a family of admissible di�eomorphisms (Φt)t , we set ut := uΦt , and we de�ne
the function u̇t(x) as the derivative with respect to the variable s of the map (s, x) 7→ us(x) ,
computed in (t, x) . For simplicity, set u̇ := u̇0 .

We are now in position to describe the admissible variations.

Definition 3.6. We de�ne the �rst and the second variation of the functional MS
at a regular admissible triple point (u,Γ) in U , with respect to the family of admissible
di�eomorphisms (Φt)t∈(−1,1) , as

d

dt
MS

(
(ut,Γt);U

)
|t=0

,
d2

dt2
MS

(
(ut,Γt);U

)
|t=0

,

respectively.

3.2. Preliminary results

3.2.1. Geometric preliminaries. We collect here some geometric de�nitions and iden-
tities that will be useful later. First of all, we will use the following matrix notation: if
A : R2 → R2 and v1, v2 ∈ R2 , we set

A[v1, v2] := A[v1] · v2 .

Let γ ⊂ R2 be a curve of class C2 and let τ : γ → S1 be the tangent vector �eld on
γ . Given an orientation on γ it is possible to de�ned a signed distance function from γ as
follows:

dγ(x+ tν(x)) := t ,

where ν(x) is the normal vector to γ at the point x . This signed distance turns out to be of
class C2 in a tubular neighborhood U of γ ; moreover, its gradiend coincides with ν on γ . In
the following we will use the extension of the normal vector �eld given by the gradient of the
signed distance from γ , that we will denote by ν : U → S1 .

Given a smooth vector �eld g : U → Rk , we de�ne the tangential di�erential Dγg (∇γg
if k = 1) by Dγg(x) := dg(x) ◦ πx , where dg(x) is the classical di�erential of g at x and πx
is the orthogonal projection on Txγ , the tangent line to γ at x . If g : U → R2 we de�ne its
tangential divergence as divγg := τ · ∂τg .

We de�ne the curvature of γ as the function H : U → R given by H := divν . Notice
that, since ∂νν = 0 on Γ , we can write H = divγν = Dν[τ, τ ] .
For every smooth vector �eld g : U → R2 the following divergence formula holds:∫

γ
divγg dHN−1 =

∫
γ
H(g · ν) dHN−1 +

∫
∂γ
g · η dH0 , (3.2)
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Figure 2. An admissible triple point with the choosen orientation.

where η is a unit tangent vector pointing out of γ in each point of ∂γ . Moreover, if Φ : U → U
is an orientation preserving di�eomorphism, and we denote by γΦ := Φ(γ) , a possible choice
for the orientation of γΦ is given by:

νΦ :=
(DΦ)−T [ν]∣∣(DΦ)−T [ν]

∣∣ ◦ Φ−1 .

In this case, the vector η of the divergence formula (3.2) becomes

ηΦ :=
DΦ[η]∣∣DΦ[η]

∣∣ ◦ Φ−1 .

In particular, for an admissible �ow (Φt)t∈(−1,1) , we will use the following notation: νt := νΦt ,
ηt := ηΦt , and we will denote by Ht the curvature of γt .

Finally, setting JΦ :=
∣∣(DΦ)−T [ν]

∣∣ detDΦ , for every Φ ∈ L1(γΦ) the following area
formula holds (see [5, Theorem 2.91]):∫

γΦ

Φ dHN−1 =

∫
γ
(Φ ◦ Φ) JΦ dHN−1 .

We now treat triple points. Fix for ∂Ω the clockwise orientation and orient the curvers
Γi 's in such a way that νi(xi) = τ∂Ω(xi) for each i = 1, 2, 3 (see Figure 2), where νi is the
normal vector on Γi .

For the sake of simplicity we will use the following notation: given ϕ : Γ → Rk , we will
denote by ϕi its restriction to Γi , and we will write∫

∂Γ
ϕ dH0 :=

3∑
i=1

(
ϕi(x0) + ϕi(x

i)
)
.

In the following we will also need to use the trace of a function on Γ . Notice that, since
each Γi is relatively open, xi 6∈ Γi , for each i = 0, 1, 2, 3 .
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Definition 3.7. Let Γ be a regular admissible triple point, and let z ∈ H1(Ω\Γ̄) . We
de�ne the traces z+, z− of z on Γ as follows: let x ∈ Γ and de�ne

z±(x) := lim
r→0+

1∣∣Br(x) ∩ V ±x
∣∣ ∫

Br(x)∩V ±x
z(y) dy ,

where V ±x := {y ∈ R2 : ±(y − x) · νi(x) ≥ 0} , if x ∈ Γi .

In the computation of the second variation we will need some geometric identities, that
we collect in the following lemma. The proofs of the �rst bloch of identities are the same as
those of [9, Lemma 3.8], and hence we will not repeat them here. We just need to prove the
last three.

Lemma 3.8. The following identities hold on each Γi :

(1) D2u±[νi, νi] = −4Γiu
± ;

(2) D2u±[X, νi] = −(X · νi)4Γiu
± −Dνi[∇Γiu

±, X] ;
(3) divΓi [(X · νi)∇Γiu

±] = (DΓiX)T [νi,∇Γiu
±]−∇2u±[X, νi] ;

(4) ∂νiH
i = −|Dνi|2 = −(H i)2 ;

(5) D2u±[νi,∇Γiu
±] = −Dνi[∇Γiu

±,∇Γiu
±] = −Hi|∇Γiu

±|2 ;
(6) ν̇i = −(DΓiX)T [νi]−DΓiν

i[X] = −∇Γ(X · ν);

(7) ∂
∂t

(
Φ̇t · (νit ◦ Φt)JΦt

)
|t=0

= Z ·νi−2X || ·∇Γi(X ·νi)+Dνi[X ||, X ||]+divΓi((X ·νi)X) .

Moreover, the following identities are satis�ed:

(i) ∂
∂t(η

i
t ◦ Φt)|t=0 = (DΓiX)T [νi, ηi]νi , on ∂Γi ;

(ii) X · ∂∂t(η
i
t ◦ Φt)|t=0 = −(X · νi)ν̇i · ηi −H i(X · νi)(X · ηi) , on ∂Γi ;

(iii) Z · ν∂Ω +Dν∂Ω[X,X] = 0 on ∂Γi ∩ ∂Ω .

Proof. Proof of (i). Let wt := DΦt(x)[tau(x)] . Then

∂

∂t
(ηit ◦ Φt)|t=0 =

∂

∂t

wt
|wt|

.

Since ẇ0 = DΓiΦ̇[τ i] = DΓiX[τ i]DΓiτ , we obtain

∂

∂t
(ηit ◦ Φt)|t=0 = DΓiX[τ ]− (DΓiX)T [τ, τ ] ,

we conclude.
Proof of (ii). This identity follows by taking the scalar product of identity (6) with (X · ν)η ,
and by using (i).
Proof of (iii). This one follows by deriving with respect to the time the identity

(Xt ◦ Φt) · (ν∂Ω ◦ Φt) = 0 ,

that holds on ∂Γi ∩ ∂Ω . �

3.2.2. Properties of the function u̇. In the computations of the �rst and the second
variation we need to know some properties of the sequence of functions (ut)t that we state
here. First of all we need to prove that the function u̇ actualy exists. This is provided by the
following result, whose proof is just the same as those of [9, Proposition 8.1], where the elliptic
estimates in W 2,p for p < 4 , needed to prove the second part are, in our case, provided by
Theorem 3.33.

Proposition 3.9. Let (Φt)t be an admissible family of di�eomorphisms, and let (ut)t be
the functions de�ned in De�nition 3.5. Set ũt := ut ◦Φt and vt := ũt−u. Then the following
properties hold true:
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(i) the map t 7→ vt belongs to C1
(
(−1, 1);H1

U (Ω\Γ)
)
;

(ii) for every x̄ ∈ Γ̄, let B be a ball centered in x̄ such that B\Γ has two (or, if x̄ = x0 ,
three) connected components B1 , B2 (and B3 ). For every t ∈ (−1, 1), let ũit be
the restriction of ũt to Bi . Then we have that the map ûi(t, x) := ũit(x) belongs to
C1
(
(−1, 1)× B̄i

)
.

Using the above proposition it is possible to prove the following result, whose proof is just
the same as those of [9, (3.6) of Theorem 3.6].

Proposition 3.10. The function u̇ exists, it is a well de�ned function of H1
U (Ω\Γ) .

Moreover, it is harmonic in Ω\Γ̄ and satis�es the following Neumann boundary conditions:

∂ν∂Ω
u̇ = 0 on (∂Ω\∂DΩ) ∩ U ,

∂ν u̇
± = divΓ

(
(X · ν)∇Γu

±) on Γ . (3.3)

In particular, the following equation holds:∫
Ω
∇u̇ · ∇z dx =

∫
Γ

[
divΓ

(
(X · ν)∇Γu

+
)
z+ − divΓ

(
(X · ν)∇Γu

−)z−] dHN−1 , (3.4)

for each z ∈ H1
U (Ω\Γ) .

Remark 3.11. First of all we notice that the right-hand side of (3.3) is well de�ned.
Indeed, by Theorem 3.33 that u is of class H2 in a neighborhood of Γ , and thus ∇Γu

± ∈
H

1
2 (Γ̄) . So, since Γ and X are regular, we get that (X · ν)∇Γu

± ∈ H
1
2 (Γ̄) .

3.3. First and second variation

The aim of this section is to compute the �rst and the second variation of the functional
MS at a regular admissible triple point (u,Γ) .

Theorem 3.12. Let (u,Γ) be a regular admissible triple point, U an admissible subdomain
and (Φt)t∈(−1,1) an admissible family of di�eomorphisms for (u,Γ) in U . Set f := |∇Γu

−|2−
|∇Γu

+|2 +H . Then the �rst variation of the functional MS computed at (u,Γ) , with respect
to (Φt)t∈(−1,1) , is given by:

d

dt
MS

(
(ut,Γt);U

)
|t=0

=

∫
Γ
f(X · ν) dHN−1 +

∫
∂Γ
X · η dH0 , (3.5)

while the second variation reads as:

d2

dt2
MS

(
(ut,Γt);U

)
|t=0

= −2

∫
U
|∇u̇|2 dx+

∫
Γ
|∇Γ(X · ν)|2 dHN−1 +

∫
Γ
H2(X · ν)2 dHN−1

+

∫
Γ
f
[
Z · ν − 2X || · ∇Γ(X · ν) +Dν[X ||, X ||]−H(X · ν)2

]
dHN−1 +

∫
∂Γ
Z · η dH0 .

(3.6)

Proof. Computation of the �rst variation. In order to compute the �rst variation, we
consider

MS
(
(ut,Γt);U

)
=

∫
U\Γt
|∇ut|2 dx+HN−1(Γt) ,



3.3. FIRST AND SECOND VARIATION 63

and we treat the two terms separately. For the �rst one we have that

d

ds

(∫
U\Γs

|∇us|2 dx

)
|s=t

=
d

ds

(∫
U\Γ
|∇us ◦ Φs|2 detDΦs dx

)
|s=t

=

∫
U\Γ

[
2(∇ut ◦ Φt) ·

(
(∇u̇t ◦ Φt) + (D2ut ◦ Φt)Φ̇t

)
+ |∇ut ◦ Φt|2divXt ◦ Φt

]
detDΦt dx

= 2

∫
U\Γt
∇ut · ∇u̇t dx+

∫
U\Γt

(
2D2ut[∇ut, Xt] + |∇ut|2divXt

)
dx .

Recalling that u̇t ∈ H1
U (U \Γt) by Proposition 3.10, from (3.1) we get that the �rst integral

vanishes. Moreover, since it is possible to write

2D2ut[∇ut, Xt] + |∇ut|2divXt = div
(
|∇ut|2Xt

)
,

integrating by parts in each connected component of Ω\Γt , and recalling that Xt · ν∂Ω = 0 ,
we get

d

ds

(∫
U\Γs

|∇us|2 dx

)
|s=t

=

∫
Γt

(
|∇u−t |2 − |∇u

+
t |2
)
(Xt · νt) dHN−1 .

Finally we also notice that in the last expression, we can substitute the operator ∇ with the
operator ∇Γt , since ∂νtut = 0 .

For the second term, it is well known (see, e.g., [63]) that

d

dt

(
HN−1(Γs)

)
|s=t

=

∫
Γt

divΓtXt dHN−1 =

∫
Γt

Ht(Xt · νt) dHN−1 +

∫
∂Γt

Xt · ηt dH0 .

Hence, de�ning the function ft on Γt as ft := |∇Γtu
−
t |2 − |∇Γtu

+
t |2 +Ht , we obtain

d

ds
MS

(
(us,Γs);U

)
|s=t =

∫
Γt

ft(Xt · νt) dHN−1 +

∫
∂Γt

Xt · ηt dH0 . (3.7)

Notice that the functions ft are weel de�ned C1 functions in a normal tubular neighborhood
of Γt . In particular, for t = 0 , we deduce the following expression for the �rst variation:

d

dt
MS

(
(ut,Γt);U

)
|t=0

=

∫
Γ

(
|∇Γu

+|2 − |∇Γu
−|2 +H

)
(X · ν) dHN−1 +

∫
∂Γ
X · η dH0 .

Computation of the second variation. Now we want to compute

d2

ds2
MS

(
(us,Γs);U

)
|s=t ,

for s ∈ (−1, 1) . The derivative of the �rst term of (3.7) can be computed as follows:

d

dt

(∫
Γt

ft(Xt · νt) dHN−1

)
|t=0

=
d

dt

(∫
Γ
(ft ◦ Φt)(Xt ◦ Φt) · (νt ◦ Φt)JΦt dHN−1

)
|t=0

=

∫
Γ
(ḟ +∇f ·X)(X · ν) dHN−1 +

∫
Γ
f
∂

∂t

(
Φ̇t · (νt ◦ Φt)JΦt

)
|t=0

dHN−1 .
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Now, using equality (7) of Lemma 3.8 to rewrite the second integral, we get

d

dt

(∫
Γt

ft(Xt · νt) dHN−1

)
|t=0

=

∫
Γ
(ḟ +∇f ·X)(X · ν) dHN−1

+

∫
Γ
f
(
Z · ν − 2X || · ∇Γ(X · ν) +Dν[X ||, X ||] + divΓ

(
(X · ν)X

))
dHN−1

=

∫
Γ
f
(
Z · ν − 2X || · ∇Γ(X · ν) +Dν[X ||, X ||]

)
dHN−1

+

∫
Γ
(ḟ +∇f · ν(X · ν))(X · ν) dHN−1 +

∫
Γ

divΓ

(
f(X · ν)X

)
dHN−1

=

∫
Γ
(ḟ +∇f · ν(X · ν))(X · ν) dHN−1 +

∫
∂Γ
f(X · ν)(X · η)dH0

+

∫
Γ
Hf(X · ν)2 dHN−1 +

∫
Γ
f
(
Z · ν − 2X || · ∇Γ(X · ν) +Dν[X ||, X ||]

)
dHN−1 ,

where the last equality follows from integration by parts, while the previous one by writing
X = (X · ν)ν +X || . Now, recalling that f = |∇Γu

−|2 − |∇Γu
+|2 +H , we have that

∇f = 2∇Γu
+D2u− − 2∇Γu

−D2u+ +∇H ,

ḟ = 2∇Γu
+ · ∇Γu̇

− − 2∇Γu
− · ∇Γu̇

+ + Ḣ .

Using the above identities and (2), (4) and (5) of Lemma 3.8 we can write∫
Γ
(∇f · ν)(X · ν)2 dHN−1 =

∫
Γ
(X · ν)2

[
2D2u−[∇Γu

−, ν]− 2D2u+[∇Γu
+, ν] + ∂νH

]
dHN−1

=

∫
Γ
(X · ν)2

[
2Dν[∇Γu

+,∇Γu
+]− 2Dν[∇Γu

−,∇Γu
−]− |Dν|2

]
dHN−1

=

∫
Γ
(H2 − 2fH)(X · ν)2 dHN−1 ,

where the identity Dν[τ, τ ] = H has been used in the last step.

Now we would like to treat the term
∫

Γ ḟ(X · ν) dHN−1 . First of all we recall that

H = divΓν and ∂ν ν̇ = 0 (since |νt|2 ≡ 1). Thus Ḣ = divΓν̇ , and hence∫
Γ
Ḣ(X · ν) dHN−1 =

∫
Γ
(divΓν̇)(X · ν) dHN−1

= −
∫

Γ
ν̇ · ∇Γ(X · ν) dHN−1 +

∫
∂Γ

(ν̇ · η)(X · ν) dH0

=

∫
Γ
|∇Γ(X · ν)|2 dHN−1 +

∫
∂Γ

(ν̇ · η)(X · ν) dH0 ,

where in the last line we have used (6) of Lemma 3.8. Moreover∫
Γ
(∇Γu

±·∇Γu̇
±)(X·ν) dHN−1 = −

∫
Γ
u̇±divΓ

(
∇Γu

±(X·ν)
)

dHN−1+2

∫
∂Γ
u̇±(X·ν)(∇Γu

±·η) dH0 ,

Hence, recalling (3.4), we obtain∫
Γ
ḟ(X · ν) dHN−1 =− 2

∫
U
|∇u̇|2 dx+

∫
Γ
|∇Γ(X · ν)|2 dHN−1 +

∫
∂Γ

(ν̇ · η)(X · ν) dH0

+ 2

∫
∂Γ

[
u̇+(X · ν)(∇Γu

+ · η)− u̇−(X · ν)(∇Γu
− · η)

]
dH0 .
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Finaly, we have to compute the derivative of the second integral of (3.5). Using (ii) of
Lemma 3.8, we have that

d

dt

(∫
∂Γt

Xt · ηt dH0

)
|t=0

=
d

dt

(∫
∂Γ

(Xt ◦ Φt) · (ηt ◦ Φt) dH0

)
|t=0

=

∫
∂Γ

(
Z · η +X · ∂

∂t
(ηt ◦ Φt)|t=0

)
dH0

=

∫
∂Γ

(
Z · η − (X · ν)(ν̇ · η)−H(X · ν)(X · η)

)
dH0 .

We now observe that some integrals vanishes for regular admissible triple points. Indeed,
by the Neumann conditions satis�ed by u , we know that ∂νu

± = 0 on Γ and that ∂ν∂Ω
u± = 0

on ∂NΩ∩ Ū . The admissibility conditions we required on regular admissible triple points tell
us that ν∂Ω(xi) and νi(xi) are linear independent for every i = 1, 2, 3 , as well as ν1(x0)
and ν2(x0) . Using the fact that ∇u± is continuous up to the closure of Γ , we can infer that
∇u±(xi) = 0 for each i = 0, 1, 2, 3 .

Combining all the above identities, we obtain the desired formula for the second variation
of our functional MS at a regular admissible triple point (u,Γ) . �

Remark 3.13. The above expression for the second variation can be also used to compute
the second variation at a generic time t ∈ (−1, 1) . Indeed, �x t ∈ (−1, 1) , and consider the
family of di�eomorphisms

Φ̃s := Φt+s ◦ Φ−1
t .

It is easy to see that this family is admissible for (u,Γ) in U , and that

d2

ds2
MS

(
(us,Γs);U

)
|s=t =

d2

dh2
MS

(
(ut+h, Φ̃h(Γt));U

)
|h=0

.

Hence, mutatis mutandis, the same expression as in (3.6) holds true for the second variation
at a generic time t ∈ (−1, 1) .

The expression (3.5) of the �rst variation suggests the following de�nition.

Definition 3.14. Let (u,Γ) be a regular admissible triple point and U an admissible
subdomain. We say that (u,Γ) is critical if the following three conditions are satis�ed:

• H = |∇Γu
−|2 − |∇Γu

+|2 on Γ ,
• the Γi 's meet in x0 at 2

3π ,
• each Γi meets ∂Ω orthogonally .

Remark 3.15. Notice that a critical triple point is such that Hi = 0 on ∂Γi .

Now we want to rewrite the second variation in a critical triple point.

Proposition 3.16. Let (u,Γ) be a regular critical triple point. Then the second variation
of MS at (u,Γ) in U can be written as follows:

d2

dt2
MS

(
(ut,Γt);U

)
|t=0

= −2

∫
U
|∇u̇|2 dx+

∫
Γ
|∇Γ(X · ν)|2 dHN−1

+

∫
Γ
H2(X · ν)2 dHN−1 −

3∑
i=1

(H∂Ω(X · νi)2)(xi) .
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Proof. We notice that for a regular admissible critical triple point f = 0 on Γ , ∇u± ≡ 0
on ∂Γ , X · η = X · ν∂Ω = 0 on Γ̄ ∩ ∂Ω and, thanks to (iii) of Lemma 3.8, that

Z · η = −Dν∂Ω[X,X] = −(X · ν)2Dν∂Ω[ν, ν] = −H∂Ω(X · ν)2 .

Recalling that the Γi 's meet in x0 at 2
3π , we also have that

∑3
i=1 Z · νi(x0) = 0 . This allows

to conclude. �

The above result suggests to introduce the following de�nition.

Definition 3.17. We introduce the space

H̃1(Γ) := {ϕ : Γ→ R : ϕi ∈ H1(Γi) ,
(
ϕ1 + ϕ2 + ϕ3

)
(x0) = 0} ,

endowed with the norm given by:

‖ϕ‖
H̃1(Γ)

:=

3∑
i=1

‖ϕi‖H1(Γi) .

Then, we de�ne the quadratic form ∂2MS
(
(u,Γ);U

)
: H̃1(Γ)→ R as

∂2MS
(
(u,Γ);U

)
[ϕ] := −2

∫
U
|∇vϕ|2 dx+

∫
Γ
|∇Γϕ|2 dHN−1 +

∫
Γ
H2ϕ2 dHN−1

−
3∑
i=1

(
ϕ2
iDν∂Ω[ν, ν]

)
(xi) ,

where vϕ ∈ H1
U (Ω\Γ) is the solution of∫

Ω
∇vϕ · ∇z dx = 〈divΓ

(
ϕ∇Γu

+
)
, z+〉

H−
1
2 (Γ)×H

1
2 (Γ)
− 〈divΓ

(
ϕ∇Γu

−), z−〉
H−

1
2 (Γ)×H

1
2 (Γ)

,

(3.8)
for every z ∈ H1

U (Ω\Γ) .

The following lemma ensures that the right-hand side of (3.9) makes sense.

Lemma 3.18. Let ϕ ∈ H̃1(Γ) and let Φ ∈ H
1
2 (Γ) ∩ C0(Γ). Then ϕΦ ∈ H

1
2 (Γ).

Proof. We need to estimate the Gagliardo seminorm. So

[ϕΦ]2
H1/2 :=

∫
Γ

∫
Γ

|ϕ(x)Φ(x)− ϕ(y)Φ(y)|2

|x− y|2
dHN−1(x) dHN−1(y)

≤
∫

Γ

∫
Γ
|Φ(y)|2 |ϕ(x)− ϕ(y)|2

|x− y|2
dHN−1(x) dHN−1(y)

+

∫
Γ

∫
Γ
|ϕ(x)|2 |Φ(x)− Φ(y)|2

|x− y|2
dHN−1(x) dHN−1(y)

≤ ‖Φ‖2C0 [ϕ]2
H1/2 + ‖ϕ‖2L∞ [Φ]2

H1/2 .

Using the Sobolev embedding H1(Γ) ⊂ H
1
2 (Γ) ∩ L∞(Γ) , we obtain that the above quantity

is �nite, and hence we conclude. �

Remark 3.19. The above result holds just requiring Φ ∈ H
1
2 (Γ) , but the proof is longer.

Since in our case we already know that ∇Γu
± ∈ H

1
2 (Γ) ∩ C0,α(Γ) for α ∈ (0, 1/2) , we prefer

to give just this simpli�ed version of the result.
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Remark 3.20. Notice that it is possible to write

d2

dt2
MS

(
(ut,Γt);U

)
|t=s = ∂2MS

(
(us,Γs);U

)[
(X · ν1, X · ν2, X · ν3)

]
+Rs , (3.9)

where R0 vanishes whenever (u,Γ) is a critical triple point.

We now introduce the space where we will prove the local minimimality result.

Definition 3.21. Given δ > 0 , we denote by the symbol Dδ(Ω, U) the space of all the
di�eomorphisms Φ : Ω̄ → Ω̄ , with Φ = Id in (Ω\U) ∪ ∂DΩ and DΦ(x0) = λId for some
λ 6= 0 , such that ‖Φ− Id‖W 2,∞(Ω̄;Ω̄) < δ .

As one would expect, the non negativity of the second variation is a necessary condition
for local minimality, as shown in the following result. Since the proof is just technical, it will
be postponed in the appendix.

Proposition 3.22. Let (u,Γ) be a critical triple point such that there exists δ > 0 with
the following property:

MS
(
(u,Γ);U

)
≤MS

(
(v,ΓΦ);U

)
,

for every ‖Φ− Id‖C2(Ω̄;Ω̄) < δ with Φ = Id on ∂DΩ∪ (Ω\U) , and every v ∈ H1(Ω\ΓΦ) such

that v = u in (Ω\U) ∪ ∂DΩ . Then

∂2MS
(
(u,Γ);U

)
[ϕ] ≥ 0 , for every ϕ ∈ H̃1(Γ) .

The following strict stability condition will be shown to imply the local minimality result
(see 3.24).

Definition 3.23. We say that a critical triple point (u,Γ) is strictly stable in an admissible
subdomain U if

∂2MS
(
(u,Γ);U

)
[ϕ] > 0 for every ϕ ∈ H̃1(Γ)\{0} .

3.4. A local minimality result

The aim of this section is to prove the following result.

Theorem 3.24. Let (u,Γ) be a strictly stable critical triple point. Then there exists δ̄ > 0
such that

MS
(
(v,ΓΦ);U

)
≥MS

(
(u,Γ);U

)
,

for every Φ ∈ Dδ̄(Ω;U) and every v ∈ H1(Ω\ΓΦ) such that v = u in (Ω\U)∪∂DΩ . Moreover
equality holds true only when ΓΦ = Γ and v = u.

The rest of this section is devoted to the proof of the above result.

3.4.1. Construction of the family of di�eomorphisms. The aim of this section is
to construct the family of di�eomorphisms of the Step 1 described above.

Proposition 3.25. Let (u,Γ) be a critical triple point and �x ε > 0. Then it is possible
to �nd a constant δ̄1 = δ̄1(Γ, ε) > 0 and constants C1 > 0 , C2 > 0 , depending only on Γ and
δ̄1 , with the following property:

let Φ ∈ C3(Ω̄; Ω̄) be a di�eomorphism satisfying the following properties:

• there exist ξ > 0 and v ∈ R2 such that Φ
(
Γ̄ ∩Bξ(x0)

)
= Γ̄ ∩Bξ(x0) + v ,

• Φ(x0) 6= x0 ,
• ‖Φ− Id‖C2(Ω̄;Ω̄) < δ̄1 .
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Then it is possible to �nd an admissible family of di�eomorphisms (Φt)t∈[0,1] with ‖Φt −
Id‖C2(Ω̄;Ω̄) < ε, such that

Φ1(Γ) = Φ(Γ) .

Moreover the following estimates hold true for each time t ∈ [0, 1]:

‖Xt · τt‖L2(Γt) ≤ C1‖Xt · νt‖L2(Γt) , (3.10)

‖Zt · νt‖L1(Γt) ≤ C2‖Xt · νt‖L2(Γt) , (3.11)

where we recall that Xt := Φ̇t ◦ Φ−1
t , Zt := Φ̈t ◦ Φ−1

t , and νt and τt are the normal and the
tangent vector �eld on Γt respectively.

Heuristics. We use two di�erent strategies to construct the di�eomorphisms Φt 's on Γ̄ ,
accordingly that we are closed to x0 or not. Far from x0 we just consider the �ow of a
suitable vector �eld that is (closed to) an extension of the normal vector �eld of Γ̄ . This part
of the construction is easy. The di�cult part is when we are closed to x0 . Our idea is the
following: we �rst construct a vector �eld Y on Γ̄∩Bµ(x0) , for some µ > 0 , such that Y has
null tangential component on Γ ∩ Bµ(x0)\Bµ/2(x0) . This last condition will be used to glue
together the two constructions. Then we de�ne our di�eomorphisms Φt 's as

Φt(x) := x+ tY (x) ,

for x ∈ Γ̄∩Bµ(x0) . Thus, we need our vector �eld Y to satisfy the following two conditions:

(i) Y ∈ C2(Γ̄) (see De�nition 3.35), with ‖Y ‖C2(Γ̄) su�ciently small,

(ii) ‖Y · ν‖L2(Γ) ≥M‖Y · τ‖L2(Γ) , for some M > 0 .

The second condition suggests us to consider the sets

Ci :=
{
v ∈ Bµ :

∣∣∣ v|v| · τ i(x0)
∣∣∣ ≥ 3

5

∣∣∣ v|v| · νi(x0)
∣∣∣ } ,

and to distinguish whether Y (x0) := Φ(x0) − x0 ∈ Ci for some i = 1, 2, 3 , or not. In the
latter case we just let Y to be a vector �eld such that |Y · ν| ≥ C|Y · τ | . Then (ii) is clearly
satis�ed, while (i) follows from the assumption on Φ near x0 .

If, instead, Y (x0) ∈ Ci for some i = 1, 2, 3 , then we have to estimate the tangential
part of our vector �eld on Γi with its normal component on Γj , where j 6= i . Are we sure
that we can do it? The really bad case is when the curve Φ(Γi) is completely over Γi , and

Φ(Γj) is over Γj out of a ball Br(x0) . We prove that r can be at least of order
√
|Y (x0)| ,

and that |Y · νj | ≥ 4|Y (x0)| in a ball of radius of the same order of r . Thus, on Γi , we
have to make our vector �eld Y to have small tangential part out of a ball whose radius is
comparable with

√
|Y (x0)| . The idea is to look at Γi and Φ(Γi) near x0 as the graph, with

respect to the axes given by τ i(x0) and νi(x0) , of functions hi and h̃i respectively. Write
Y (x0) = Y1(x0)τ i(x0) + Y2(x0)νi(x0) , and let s be the coordinate with respect to τ i(x0) .
Notice that |Y (x0)| and |Y1(x0)| are of the same order. Then we de�ne our vector �eld Y as
follows

Y
(
s, hi(s)

)
:=
(
s−G(s), h̃i

(
G(s)

)
− hi(s)

)
,

where L > 2 is a �xed constant, and G : [0, L
√
Y1(x0)] → [Y1(x0), L

√
Y1(x0)] is a di�eo-

morphism with ‖G − Id‖C2 su�ciently small, and such that G is equal to the identity in

[(L− 1)
√
Y1(x0), L

√
Y1(x0)] . Thanks to this last condition we have that |Y · νi| ≥ C|Y · τ i|

in the last part of the interval. Then, as in the previous case, we can let the tangential part
of Y vanish on Y i , thus having (ii) in force out of the ball B centered at x0 where G is not
the identity. Since the tangential component of Y in Γi ∩B is of order |Y1(x0)| , we can have
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estimate (ii) in force also in this case.

Proof. The proof is divided in three parts: we �rst de�ne our di�eomorphisms on Γ̄ ,
then we extend them to admissible ones de�ned in the whole Ω̄ and �nally we will show that
our construction is such that estimate (3.10) holds true. We start with some preliminaries.

Preliminaries. The constants C > 0 that will appear in the following computations may
change from line to line, but we will keep the same notation. Fix µ > 0 such that

• νi(x) · νi(x0) ≥ 2
3 , for x ∈ Γi ∩Bµ(x0) ,

• B4µ b Ω ,
• (Γi)µ is a tubular neighborhood of Γi ,
• the sets (Γi)µ\B3µ are disjoint,
• Γi ∩Bµ(x0) is a graph with respect to the axes given by τ i(x0) and νi(x0) .

We will take δ̄1 <
µ
2 . Moreover we will denote by χ : R → [0, 1] a smooth cut-o� function

such that χ ≡ 0 on [1,+∞) and χ ≡ 1 on (−∞, 1
2 ] .

Step 1: construction of the di�eomorphisms near x0 . We de�ne the di�eomorphisms ΦO
t

as
ΦO
t (x) := x+ tN(x) ,

for x ∈ Γ̄ ∩Bµ(x0) , where the vector �eld N will be constructed as follows.

Case 1: x0 6∈ Ci . Write

Φ(x)− x
|Φ(x)− x|

= ai(x)τ i(x) + bi(x)νi(x) ,

for some functions ai, bi : Γ̄i ∩ Bµ(x0) → R . Up to take a smaller µ , we can suppose
|bi(x)− bi(x0)| < 1

4 and |ai(x)− ai(x0)| < 1
4 for x ∈ Γi ∩Bµ(x0) . Notice that, since x0 6∈ Ci ,

we have |bi(x0)| ≥ 3
4 , |ai(x0)| ≤

√
5

4 .

Consider the unitary vector �eld Y i on Γ̄i ∩B3µ(x0) given by

Y i(x) :=
Ỹ i

|Ỹ i|
.

where, if we de�ne χ̃(x) := χ
(
|x−x0|2
µ2

)
, we set

Ỹ i := χ̃(x)
(
ai(x)τ i(x) + bi(x)νi(x)

)
+ (1− χ̃(x))νi(x) .

Then there exists a constant C > 0 such that |Y i · νi| ≥ C|Y i · τ i| on Γi ∩B3µ(x0) . Indeed,
we have that

|χ̃(x)ai(x)| ≤ |χ̃(x)(ai(x)− ai(x0))|+ |χ̃(x)ai(x0)| ≤ 1

4
+ |ai(x0)|

≤ C ≤ 1− |bi(x)− 1| ≤ |1 + χ̃(x)(bi(x)− 1)| ,
where in the second to last inequality we have used the fact that |bi(x) − 1| ≤ 1

2 . More-
over, it is possible to �nd a constant C > 0 independent of ai(x0) , bi(x0) , such that
‖Y i‖C3(Γ̄i∩B3µ(x0)) ≤ C . Since the vector Y i is constant in a neighborhood of x0 , it is

possible to represent (a piece of) Φ(Γ̄i) as a graph of class C3 over Γ̄i , with respect to the
vector �eld Y i . Namely, it is possible to �nd a function ϕi ∈ C3(Γ̄i ∩B3µ(x0)) such that

x 7→ x+ ϕi(x)Y i(x)
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is a di�eomorphisms of class C3 from Γ̄i ∩ B3µ(x0) to its image, that is contained in Φ(Γ̄i) .
Finally, or any ξ > 0 it is possible to �nd δ̄1 > 0 such that if ‖Φ − Id‖C2(Ω̄;Ω̄) < δ̄1 , then

‖ϕ‖C3(Γ̄i∩B3µ(x0)) ≤ ξ . De�ne N := ϕY i .

Case 2: x0 ∈ Ci . Consider the axes given by τ i(x0) and νi(x0) centered at x0 , and
denote by s the coordinated with respect to τ i(x0) . Our assumptions on µ allow us to write
Γi in a neighborhood of x0 as a graph of a function hi , with respect to the above axes. We
can suppose δ̄1 > 0 so small such that the same is true also for Φ(Γi) , i.e., we can represent

Φ(Γi) in a neigborhood of Φ(x0) as the graph of a function h̃i with respect to the same axes.
Now write

Φ(x0)− x0 = s0τ
i(x0) + t0ν

i(x0)

for some s0, t0 ∈ R , where we can also suppose s0 < 1 , if δ̄1 is su�ciently small. Since
x0 ∈ Ci , we have that C1s0 ≤ |Φ(x0)− x0| ≤ C2s0 , for some C1, C2 > 0 .

Fix L > 1 and de�ne the di�eomorphism GL : [0, (L + 1)
√
s0] → [s0, (L + 1)

√
s0] given

by

GL(s) := s+ χ
( s

L
√
s0

)
s0 .

Notice that

|G′L(s)− 1| ≤ C
√
s0

L
, |G′′L(s)| ≤ C

L2
. (3.12)

Moreover GL is the identity in [L
√
s0, (L+ 1)

√
s0] .

Now de�ne the vector �eld

Si
(
(s, hi(s))

)
:=
(
GL(s)− s, h̃i(GL(s))− hi(s)

)
.

Then, by a direct computation, we have

‖Si‖C2 ≤
((
C‖h′‖C0 + L2(‖h′‖C0 + ‖h̃′‖C0)

)
s0

+
(C
L

+
(

1 +
C

L

)
‖h̃′i‖C0 + ‖h′i‖C0

)
+

( C
L2

+
(

1 +
C

L

)2
‖h̃′′i ‖C0 +

C

L2
‖h̃′i‖C0 + ‖h′′i ‖C0

))
.

Notice that Si
(
(s, h(s))

)
= λ(s)νi(x0) , for λ(s) ∈ R and s ∈ [L

√
s0, (L+ 1)

√
s0] .

We now want to extend the de�nition of the vector �eld Si to the whole Γ̄i ∩ Bµ(x0) .
Write

νi(x0) = ai(x)τ i(x) + bi(x)νi(x) ,

for some functions ai, bi : Γ̄i∩Bµ(x0)→ R . Let x̄ ∈ Γi the point given by ((L+1)
√
s0, h((L+

1)
√
s0)) , and let r > 0 such that the ball Br(x0) intersect the curve Γi in the point x̄ . Up to

take a smaller µ , we can suppose |bi(x)−bi(x̄)| < 1
4 and |ai(x)−ai(x̄)| < 1

4 for x ∈ Γi∩Bµ(x0) .

Up to decreasing the value of δ̄1 , we can also suppose |bi(x̄)| ≥ 3
4 , |ai(x̄)| ≤ 1

4 .
As done in the previous step, let us consider the vector

Y i(x) :=
Ỹ i

|Ỹ i|
.

where
Ỹ i := χ̃(x)

(
ai(x)τ i(x) + bi(x)νi(x)

)
+ (1− χ̃(x))νi(x) .

Using the same computation of the previous step, we have that |Y i · νi| ≥ C|Y i · τ i| on
Γi ∩ B3µ(x0)\Br(x0) , for some constant C > 0 . Moreover, it is possible to represent (a
piece of) Φ(Γi) as a graph of a function ϕ of class C3 over Γi ∩ B3µ(x0)\Br(x0) , with
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respect to the vector �eld Y i . Notice that the vector �eld Y i turns out to be of clas C3 .
Finally, for any ξ > 0 it is possible to �nd δ̄1 > 0 such that if ‖Φ − Id‖C2(Ω̄;Ω̄) < δ̄1 , then

‖ϕ‖C3(Γ̄i∩B3µ(x0)\Br(x0)) ≤ ξ . De�ne

N :=

{
Si on Γ̄i ∩Br(x0)
ϕY i on Γ̄i ∩B3µ(x0)\Br(x0)

Notice that N turns out to be a well de�ned C3 vector �eld.

Step 2: construction of the di�eomorphisms far from x0 . Let R ∈ C3(Ω̄;R2) be a vector
�eld with the following properties

• |R| ≤ 1 ,
• R(x+ tνi(x)) = νi(x) for any |t| < µ and any x ∈ (Γi)µ\(Bµ(x0) ∪ (∂Ω)µ) ,
• |R · νi| ≥ 1

2 on Γi ,
• R is tangential to ∂Ω ,
• R ≡ 0 on ∂DΩ ∪ (Ω\U) .

Then, it is possible to �nd a function ψ ∈ C3((Γi)µ\(Bµ(x0)∪ (∂Ω)µ) (extended in a constant
way along the trajectories of R) such that, if we consider the �ow ΦB

t of the vector �eld ψR ,
we have ΦB

t ((Γi)µ\(Bµ(x0) ∪ (∂Ω)µ) ∈ Φ(Γi) . Moreover, for any ξ > 0 it is possible to �nd
δ̄1 > 0 such that if ‖Φ− Id‖C2(Ω̄;Ω̄) < δ̄1 , then ‖ψ‖C2 < ξ .

Step 3: de�nition of the di�eomorphisms in Γ̄ . We de�ne our family of di�eomorphisms
(Φt)t∈[0,1] as follows:

Φt(x) := χ
( |x|2

(3µ)2

)
ΦO
t (x) +

(
1− χ

( |x|2
(3µ)2

))
ΦB
t (x) .

Notice that the two �ows ΦO
t and ΦB

t are the same for points x ∈ Γ\(B2µ(x0) ∪ (∂Ω)µ) .
Moreover the above di�eomorphisms are of class C3 and Φ1(Γ̄) = ΓΦ .

We claim that it is possible to �nd δ̄1 > 0 and L > 1 (where L is the constant usend in the
construction of the di�eomorphism GL in the previous step) such that if ‖Φ−Id‖C2(Ω̄;Ω̄) < δ̄1 ,

then (up to take a smaller µ)
‖Φt − Id‖C2 ≤ ε . (3.13)

Indeed, we �rst L > 1 such that C
L < ε

4 (where C is the constant appearing in (3.12)), and

then we choose δ̄1 such that the desired estimate holds true.

Step 4: extension of the di�eomorphisms. First of all we extend our di�eomorphisms on
∂Ω . For a point x ∈ ∂Ω we just consider the �ow given by the vector �eld ψR , where ψ is
the function found in Step 2. The fact that R is tangential to ∂Ω ensures that if we start
from a point x ∈ ∂Ω , its evolution with respect to the above �ow remains in ∂Ω .

Now consider the function

ft =

{
Φt − Id on Γ̄ ∪ ∂Ω ,
0 in Ω̄\U .

It is easy to see that ft ∈ C3
(
Γ̄ ∪ ∂Ω ∪ (Ω̄\U);R2

)
and that

‖ft‖C2
(

Γ̄∪∂Ω∪(Ω̄\U);R2
) ≤ ‖Φt − Id‖C2(Ω̄;Ω̄) ≤ ε ,

Without loss of generality, we can suppose ε < 1
2 . Use Whitney's extension theorem (see Sec-

tion 3.6.2) to extend the functions ft to functions ut ∈ C3(R2;R2) such that ‖ut‖C2(R2;R2) < ε



72 3. A LOCAL MINIMALITY CRITERION FOR THE TRIPLE POINT

De�ne the functions (denoted with an abuse of notation) Φt : R2 → R2 as

Φt := Id + ut .

Notice that ‖Φt− Id‖C2(R2;R2) <
1
2 , and hence Φt are di�eomorphisms of R2 . Moreover, since

Φt(∂Ω) = ∂Ω , we infer that Φt(Ω̄) = Ω̄ and thus that Φt is a di�eomorphism of Ω̄ onto itself.

Step 5: estimates. First of all we prove estimate (3.10). By de�nition we have that

Z(x) =
(

1− χ
( |x|2

(3µ)2

))
ZB(x) ,

where ZB(x) := ψ2DR[R] (where ψ is the function given by Step 2). Since |R · ν| ≥ 1
2 in the

region where we consider the �ow of the vector �eld ψR , we can take δ̄1 so small such that
|R(ΦB

t (x)) · νt(ΦB
t (x))| ≥ 1

4 for x ∈ Γ\Bµ(x0) . Thus∫
Γt

|Z·νt| dHN−1 =

∫
Γt

ψ2DR[R, νt] dHN−1 ≤ C
∫

Γt

ψ2|R·νt|2 dHN−1 = C

∫
Γt

|X·νt|2 dHN−1 .

To prove estimate (3.11) we �rst need to notice the following fact: let α1, α2 > 0 be small
parameters, and take a, b ∈ R small such that b 6= 0 and |b| ≥ C|a| for some constant C > 0 .
Consider the two parabola given by

y = −α2(x− a)2 + b , , and y = α1x
2 .

Then the distance between these two parabola are greater than 1
2b if x ∈ [0, C

√
b] (or x ∈

[a,C
√
b] if a < 0), for some constant C > 0 depending on α1 and α2 .

We use the above observation in this way: suppose x0 6∈ Ci and represent the curves Γi

and Φ(Γi) in a neighborhood of x0 as the graphs, with respect to the axes given by τ i(x0)

and νi(x0) centered at x0 , of hi and h̃i respectively. Up to change νi(x0) with −νi(x0) we

can suppose h̃i ≥ 0 . Thus, it is possible to �nd α1, α2 > 0 such that

hi(s) ≤ α1s
2 , h̃i(s) ≥ −α2(s− a)2 + b ,

where we write Φ(x0)− x0 = aτ i(x0) + bνi(x0) , for some a, b ∈ R with b 6= 0 and |b| ≥ C|a| .
Set d : |Φ(x0)− x0| = . Thanks to the above observation we can say that

|Y i(x)| ≥ 1

2
d ,

for x ∈ Γi ∩BD√d(x0) , for some constant D > 0 depending on Γi and δ̄1 .

We are now in the position to prove estimate (3.11). Suppose x0 6∈ ∪3
i=1C

i . Thanks to
the de�nition of the vector �eld N and the properies of R , we know that on Γ it holds

|X · ν| ≥ C|X · τ | , (3.14)

for some constant C > 0 . Thus, a similar inequaity holds on Γt providing δ̄1 su�ciently
small. Hence the integral estimate follows directly.

If instead x0 ∈ Ci we have, for j 6= i , the following estimate in force∫
Γi∩Br√d(x0)

|X · τ i|2 dHN−1 ≤ Cd
3
2 ≤ C

∫
Γj∩BD√d(x0)

|X · νj |2 dHN−1 . (3.15)

For δ̄1 su�ciently small, the same estimate continue to hold also for the curves Γit and Γjt
(with τ it and νit ). Notice that in Γi ∩B3µ(x0)\Br(x0) we have estimate (3.14) in force.

By using (3.14) and (3.15) we obtain estimate (3.11). �
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Remark 3.26. From the above proof, it is easy to see that the following property holds: if
(Φε)ε is a family of di�eomorphisms of class C2 with the same properties as in the statement
of the theorem, such that Φε → Φ in the C1 topology, where Φ is a di�eomorphism satisfying
Φ(Γ) 6= Γ , then there exists a constant C > 0 such that

‖Xε · νεt ‖L2(Γεt )
≥ C ,

where Xε is the vector �eld associated to Φε , and Γεt := Φt
ε(Γ) , where Φt

ε is the �ow generated
by Xε .

3.4.2. Uniform coercivity of the quadratic form. The second technical result we
prove is a sort of continuity of the quadratic form ∂2MS

(
(u,Γ);U

)
in a stable critical triple

point (u,Γ) . This result is the fundamental estimate needed in order to prove Theorem 3.24.

Proposition 3.27. Let (u,Γ) be a strictly stable critical triple point. Then there exists
δ̄2 > 0 and C̄ > 0 such that

∂2MS
(
(uΦ,ΓΦ);U

)
[ϕ] ≥ C̄‖ϕ‖2

H̃1(ΓΦ)
,

for each Φ ∈ Dδ(Ω, U) , where δ ∈ (0, δ̄2) , and each ϕ ∈ H̃1(ΓΦ).

In order to prove the above proposition, we �rst need to prove that if (u,Γ) is strictly
stable, then ∂2MS

(
(u,Γ);U

)
is coercive.

Lemma 3.28. Let (u,Γ) be a strictly stable critical triple point. Then there exists M > 0
such that

∂2MS
(
(u,Γ);U

)
[ϕ] ≥M‖ϕ‖2

H̃1(Γ)
, ∀ϕ ∈ H̃1(Γ) .

Proof. It is su�cient to show that

M := inf{∂2MS
(
(u,Γ);U

)
[ϕ] : ‖ϕ‖

H̃1(Γ)
= 1} > 0 .

Suppose for the sake of contradiction that M = 0 , and let (ϕn)n be a minimizing sequence for

M , i.e., ‖ϕn‖H̃1(Γ)
= 1 and ∂2MS

(
(u,Γ);U

)
[ϕn] → 0 . Then there exists ϕ ∈ H̃1(Γ) such

that, up to a not relabelled subsequence, ϕin ⇀ ϕi in H̃1(Γ) and, by the Sobolev embeddings,

ϕn → ϕ in C0,β(Γ̄) for each β ∈ (0, 1
2) , and ϕn → ϕ in H

1
2 (Γ) . We claim that

∂2MS
(
(u,Γ);U

)
[ϕ] ≤ lim inf

n→∞
∂2MS

(
(u,Γ);U

)
[ϕn] = 0 . (3.16)

Indeed, it is easy to see that∫
Γ
|∇Γϕ|2 dHN−1 ≤ lim inf

n→∞

∫
Γ
|∇Γϕn|2 dHN−1 ,∫

Γ
H2ϕ2

n dHN−1 →
∫

Γ
H2ϕ2 dHN−1 ,

and
3∑
i=1

(
ϕ2
iDν∂Ω[ν, ν]

)
(xi)→

3∑
i=1

(
ϕ2
iDν∂Ω[ν, ν]

)
(xi) .

Thus, we are left to prove that∫
Γ
z±divΓ(ϕn∇Γu

±) dHN−1 →
∫

Γ
z±divΓ(ϕ∇Γu

±) dHN−1 ,
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for all z ∈ H1
U (Ω\Γ) . Notice that ϕn∇Γu

± ∈ H
1
2 (Γ;R2) thanks to Lemma 3.18. To prove

the above convergence we will show that ϕn∇Γu
± → ϕ∇Γu

± in H
1
2 (Γ;R2) :∫

Γ

∫
Γ

|(ϕn∇Γu
± − ϕ∇Γu

±)(x)− (ϕn∇Γu
± − ϕ∇Γu

±)(y)|
|x− y|2

dHN−1(x) dHN−1(y)

≤ ‖∇Γu
±‖2L∞(Γ̄;R2)‖ϕn − ϕ‖

2

H
1
2 (Γ)

+ ‖ϕn − ϕ‖2L∞(Γ̄)‖∇Γu
±‖2

H
1
2 (Γ;R2)

.

Now we have two cases: if ϕ 6= 0 then (3.16) gives the desired contradiction. On the other
hand, if ϕ = 0 , then vϕ = 0 , and hence again by (3.16) we obtain that∫

Γ
|∇Γϕn|2 dHN−1 → 0 ,

and this contradicts the fact that ‖ϕn‖H̃1(Γ)
= 1 . �

Before proving Proposition 3.27 we need to observe the following fact, similar to [8,
Lemma 5.1].

Remark 3.29. Consider the function uΦ (see De�nition 3.5). We claim that, for every
α < 1

2 , the following convergence holds true:

sup
Φ∈Dδ(Ω,U)

‖∇Γ(u±Φ ◦ Φ)−∇Γu
±‖C0,α(Γ̄;R2) → 0 ,

as δ → 0+ . First of all we notice that, what we are really claiming, is that, denoting by
A1, A2, A3 the three connected components of Ω\Γ̄ , and letting ui be the function u restricted
to Ai , we have that

sup
Φ∈Dδ(Ω,U)

‖∇Γ(ũiΦ ◦ Φ)−∇Γũ
i‖C0,α(Γ̄∩∂Ai;R2) → 0 ,

as δ → 0+ , where ũi is the trace of ui on Γ̄ ∩ ∂Ai . This can be proved by using the
estimate of the H2 -norm of ũiΦ ◦Φ in a neighborhood of Γ (that turns out to be uniform for
Φ ∈ Dδ(Ω, U)) and by the Ascoli-Arzelá theorem.

Proof of Proposition 3.27. Suppose for the sake of contradiction that there exist a
family of di�eomorphisms Φn : Ω̄→ Ω̄ with Φn = Id in (Ω\U) ∪ ∂DΩ such that Φn → Id in

C2(Ω̄; Ω̄) , and functions ϕn ∈ H̃1(ΓΦn) with ‖ϕn‖H̃1(ΓΦn )
= 1 , such that

∂2MS
(
(uΦn ,ΓΦn);U

)
[ϕn]→ 0 . (3.17)

Let ϕ̃n := cnϕn ◦ Φn , where cn := ‖ϕn ◦ Φn‖−1

H̃1(Γ)
→ 1 . Then it is not di�cult to prove that∣∣∣∣∫

ΓΦn

H2
Φnϕ

2
n dHN−1 −

∫
Γ
H2ϕ̃2

n dHN−1

∣∣∣∣→ 0 ,∣∣∣∣∫
ΓΦn

|∇ΓΦn
ϕn|2 dHN−1 −

∫
Γ
|∇Γϕ̃n|2 dHN−1

∣∣∣∣→ 0 ,

and ∣∣∣ 3∑
i=1

(
(ϕn)2

iDν∂Ω[ν, ν]
)
(Φn(xi))−

3∑
i=1

(
(ϕ̃n)2

iDν∂Ω[ν, ν]
)
(xi)

∣∣∣→ 0 .

We also claim that the following convergence holds∫
U
|∇vϕ̃n −∇(vϕn ◦ Φn)|2 dx→ 0 . (3.18)
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To prove it we proceed as in the proof of [9, Lemma 5.4] that, for the reader's convenience,
we report here. Our argument only changes from the original one in the proof of the last
convergence, where we take advantange of the fact that in dimension 2 functions in H1(Γ) are
bounded in L∞ . Otherwise we would have needed that ∇Γ(u± ◦Φn)→ ∇Γu

± in C0,α(Γ̄;R2)
for some α > 1

2 , while in our case, due to the singularity given by the triple point, we only

have the above convergence for α < 1
2 . So, setting zn := vϕ̃n − vϕn ◦ Φn , we obtain that zn

solves the problem∫
U
An[∇zn,∇z] dx−

∫
U

(An − Id)[∇ϕ̃n,∇z] dx+

∫
Γ
(h+
n z

+ − h−n z−) dHN−1 = 0 ,

for all z ∈ H1
U (Ω\Γ) , where h±n := divΓ(ϕ̃n∇Γu

±) −
(
divΓΦn

(ϕn∇ΓΦn
u±Φn)

)
JΦn and An :=

(JΦnD
−1ΦnD

−TΦn) ◦ Φn . Since An → Id in C1 and the sequence (vϕ̃n)n is bounded in
H1(Ω\Γ) , we have that (An − Id)[∇ϕ̃n] → 0 in H1(Ω\Γ) . Thus (3.18) follows by showing

that h±n → 0 in H−
1
2 (Γ) . First of all we want to write the last term of hn in a divergence

form. For let ξ ∈ C∞c (Γ) and write∫
Γ

(
divΓΦn

(ϕn∇ΓΦn
u±Φn)

)
JΦnξ dHN−1 =

∫
ΓΦn

divΓΦn
(ϕn∇ΓΦn

u±Φn)(ξ ◦ Φ−1
n ) dHN−1

= −
∫

ΓΦn

ϕn∇ΓΦn
u±Φn∇ΓΦn

(ξ ◦ Φ−1
n ) dHN−1

= −
∫

ΓΦn

ϕn(DΓΦn)−T ◦ Φ−1
n [∇Γ(u±Φn ◦ Φn) ◦ Φ−1

n ] · (DΓΦn
Φn)−T [(∇Γξ) ◦ Φ−1

n ] dHN−1

= −
∫

Γ
c−1
n ϕ̃n(DΓΦn)−1(DΓΦn)−T [∇Γ(u±Φn ◦ Φn),∇Γξ]JΦnξ dHN−1

=

∫
Γ
c−1
n divΓ

(
ϕ̃n(DΓΦn)−1(DΓΦn)−T )[∇Γ(u±Φn ◦ Φn)]JΦn

)
ξ dHN−1

Thus we have that

h±n = divΓ

(
ϕ̃n∇Γu

± − c−1
n ϕ̃n(DΓΦn)−1(DΓΦn)−T [∇Γ(u±Φn ◦ Φn)]JΦn

)
=: divΓΨ±n ,

and hence, in order to prove that h±n → 0 in H−
1
2 (Γ) we will prove that Ψ±n → 0 in H

1
2 (Γ) .

In order to estimate the Gagliardo H
1
2 -seminorm, we �rst simplify our notation by setting

λn := c−1
n (DΓΦn)−1(DΓΦn)−TJΦn and un := u±Φn ◦ Φn . Then we can proceed as follows:

(ϕ̃nλn∇Γu
±
n )(x)− (ϕ̃n∇Γu

±)(x)− (ϕ̃nλn∇Γu
±
n )(y) + (ϕ̃n∇Γu

±)(y)

= [(ϕ̃n(λn − Id)∇Γu
±
n )(x)− (ϕ̃n(λn − Id)∇Γu

±
n )(x)]

+ [(ϕ̃n(∇Γu
±
n −∇Γu

±))(x)− (ϕ̃n(∇Γu
±
n −∇Γu

±))(y)] .

The �rst term can be rewritten as folows

(ϕ̃n(λn − Id)∇Γu
±
n )(x)− (ϕ̃n(λn − Id)∇Γu

±
n )(x)

= (ϕ̃n(λn − Id))(x)[∇Γu
±
n )(x)−∇Γu

±
n )(y)] + ϕ̃n(x)[(λn − Id)(x)− (λn − Id)(y)]

+ (ϕ̃n(x)− ϕ̃n(y))(λn − Id)(y) ,
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while the last one as

(ϕ̃n(∇Γu
±
n −∇Γu

±))(x)− (ϕ̃n(∇Γu
±
n −∇Γu

±))(y)

= ϕ̃n(x)[∇Γu
±
n −∇Γu

±)(x)− (∇Γu
±
n −∇Γu

±)(y))] + [ϕ̃n(x)− ϕ̃n(y)][∇Γu
±
n −∇Γu

±)(y)] .

Thus the Gagliardo H
1
2 -seminorm of Φn can be estimated as follows:∫

Γ

∫
Γ

|Ψn(x)−Ψn(y)|2

|x− y|2
dHN−1(x) dHN−1(y)

≤ ‖ϕ̃n‖2C0(Γ)‖λn − Id‖2
C0(Ω̄;Rn2 )

[
‖∇Γu

±
n ‖2

H
1
2 (Γ)

+ ‖ϕ̃n‖2
H

1
2 (Γ)

]
+H1(Γ)‖ϕ̃n‖2C0(Γ)‖λn − Id‖2

C0(Ω̄;Rn2 )

+ ‖ϕ̃n‖2C0(Γ)‖∇Γu
±
n −∇Γu

±‖2
H

1
2 (Γ)

+ ‖ϕ̃n‖2
H

1
2 (Γ)
‖∇Γu

±
n −∇Γu

±‖2C0(Γ) . (3.19)

To estimate the terms on the right-hand side we will use the following facts:

• (ϕ̃n)n is bounded in H
1
2 (Γ) and in C0(Γ) ,

• λn → Id in C1(Ω;Rn2
) ,

• un → u in H2
(
(Ω\Γ) ∩ V

)
, where V i s a neighborhood of Γ in Ω such that

V ∩ ∂DΩ = Ø .

Indeed the �rst fact follows directly from the Sobolev embeddings, since (ϕ̃n)n is bounded in
H1(Γ) , the second convergence is easy from the fact that Φn → Id in C2 , while the last claim
is a consequence of the continuity property of elliptic boundary value problems: writing the
equation satis�ed by un on Ω we notice that the coe�cients of the elliptic operator converge
to those of the laplacian. Thus, by Theorem 3.34 we get that un → u in H1(Ω) and by the
estimate 3.34 that the convergence is actually in H2((Ω\Γ) ∩ V ) (notice that we have to
restrict ourselves to a neighborhood of Γ in order to avoid the singularities of u where the
Neumann boundary condition transforms into a Dirichlet one).

Thus we conclude from (3.19) that Ψn → 0 in H
1
2 (Γ) .

Combining all the above convergence, one gets that∣∣∂2MS
(
(uΦn ,ΓΦn);U

)
[ϕn]− ∂2MS

(
(u,Γ);U

)
[ϕ̃n]

∣∣→ 0 ,

and hence, by (3.17), that
∂2MS

(
(u,Γ);U

)
[ϕ̃n]→ 0 .

But this is in contradiction with the result of Lemma 3.28. �

3.4.3. Proof of Theorem 3.24. We are now ready to prove Theorem 3.24.

Proof of Theorem 3.24. Let Φ a in the statement of the theorem.
Step 1. Suppose Φ satis�es the following additional hypothesis: Φ ∈ C3(Ω̄; Ω̄) , Φ(x0) 6= x0

and Φ
(
Γ̄ ∩Bξ(x0)

)
= Γ̄ ∩Bξ(x0) + v for some ξ > 0 and v ∈ R2 .

First step. Consider the di�eomorphisms (Φt)t given by Proposition 3.25. De�ne the
function g(t) := MS

(
(ut,Γt);U

)
. Since (u,Γ) is a critical point we have that g′(0) = 0 .

Hence we can write

MS
(
(uΦ,ΓΦ);U

)
−MS

(
(u,Γ);U

)
= g(1)− g(0) =

∫ 1

0
(1− t)g′′(t) dt .
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We claim that there exists δ̄1 > 0 , and a constant C > 0 such that

g′′(t) ≥ C‖X · νt‖2H̃1(Γt)
, (3.20)

whenever ‖Φ− Id‖C2(Ω̄;Ω̄) < δ̄ < δ̄1 . This allows us to conclude. Indeed the local minimality

follows directly from (3.20), while the isolated local minimality can be deduce from the fact
that MS

(
(u,Γ);U

)
= MS

(
(v,ΓΦ);U

)
implies g′′(t) = 0 for each t ∈ [0, 1] . In particular

g′′(0) = 0 , and this implies that X · νt ≡ 0 on Γt . Looking at the construction of the vector
�eld X (see Proposition 3.27) this implies that X ≡ 0 on Γ , that is ΓΦ = Γ . Since now the
curve Γ is �xed and we already know that u minimizes the Dirichlet integral over Ω\Γ , we
obtain the isolated local minimality of (u,Γ) as wanted.

Let us now prove (3.20). First of all we notice that, by criticality of (u,Γ) , Γ intersects
∂Ω orthogonally and νi(x0), νj(x0) are linear independent for i 6= j . Thus it is possible to
take δ̄ su�ciently small in order to have the that Γt intersects ∂Ω in a non tangent way and

that νit(x0), νjt (x0) are still linear independent for i 6= j . By the de�nition of ut we have that
∂νtu

±
t = 0 on Γt and ∂ν∂Ω

u± = 0 on (∂Ω\∂DΩ) ∩ Ū . Then

∇Γu
±(xit) = 0 for i = 0, 1, 2, 3 .

In particular ft −Ht = 0 on ∂Γt . Thus, by Remark 3.13, we can write

g′′(t) =
d2

ds2
MS

(
(us,Γs);U

)
|s=t = ∂2MS

(
(ut,Γt);U

)
[X · νt]

+

∫
Γt

ft
[
Z · νt − 2X || · ∇Γt(X · νt) +Dνt[X

||, X ||]−Ht(X · νt)2
]

dHN−1

+
3∑
i=1

(X · νt)2Dν∂Ω[νt, νt](x
i
t) +

∫
∂Γt

Z · ηt dH0, (3.21)

where we set xit := Φt(x
i) for i = 0, 1, 2, 3 . Now we need to estimate each of the above terms.

Fix ζ > 0 . For the �rst one we appeal to Proposition 3.27 to obtain

∂2MS
(
(ut,Γt);U

)
[X · νt] ≥ C̄‖X · νt‖2H̃1(Γt)

. (3.22)

To estimate the second term of (3.21) we recall that Remark 3.29 and the continuity of
the map Φ 7→ HΦ assert that the map

Φ ∈ Dδ̄1(Ω;U) 7→
∥∥|∇ΓΦ

u+
Φ |

2 − |∇ΓΦ
u−Φ |

2 +HΦ

∥∥
L∞(ΓΦ)

is continuous with respect to the C2 -norm. Since by the criticality condition that quantity
vanishes for Φ = Id , possibly reducing δ̄1 , it is possible to have∥∥|∇ΓΦ

u+
Φ |

2 − |∇ΓΦ
u−Φ |

2 +HΦ

∥∥
L∞(ΓΦ)

≤ ζ ,

for each Φ ∈ Dδ̄1(Ω;U) . Hence∫
Γt

ft
[
Z · νt − 2X || · ∇Γt(X · νt) +Dνt[X

||, X ||]−Ht(X · νt)2
]

dHN−1

≥ −ζ‖Z · νt − 2X || · ∇Γt(X · νt) +Dνt[X
||, X ||]−Ht(X · νt)2‖L1(Γt)

≥ C‖X · νt‖2H̃1(Γt)
, (3.23)

(3.24)

where in the last step we have used estimates (3.10) and (3.11) provided by Proposition 3.25.
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To estimate the last term we recall that Z ≡ 0 in a neighborhood of x0 . Thus, we can
rewrite the last term as

3∑
i=1

(X · νt)2Dν∂Ω[νt, νt](x
i
t) +

∫
∂Γ
Z · ηt dH0 =

3∑
i=1

[
(X · νt)2Dν∂Ω[νt, νt] + Z · ηt

]
(xit)

=

3∑
i=1

[
(X · νt)2Dν∂Ω[νt, νt] + Z · (ηt − ν∂Ω) + Z · ν∂Ω

]
(xit)

=
3∑
i=1

[
−(X · ηt)2Dν∂Ω[ηt, ηt] + Z · (ηt − ν∂Ω)

]
(xit) ,

where we have used equality (iii) of Lemma 3.8. We claim that it is possible to choose δ̄1 in
such a way that

|X · ηt(xit)|2 ≤ ζ|X · νt(xit)|2 , (3.25)

|ηt − ν∂Ω|(xit) ≤ ζ , (3.26)

and

|Z(xit)| ≤ C‖X · νt‖2H1(Γi)
, (3.27)

for all i = 1, 2, 3 . Indeed, (3.26) follows easy by noticing that η(xi) = ν∂Ω(xi) and by the
identity

ηt =
DΦt[η]

|DΦt[η]|
.

To obtain (3.25) we notice that from X = ν on ∂Ω ∩ ∂Γ we get X · η(xi) = 0 . Then we
conclude thank to the continuity of the maps

Gi :
{

(x, v, w) ∈
(
∂Ω ∩Bδ̄(xi)

)
×
(
Bδ̄(η(x)) ∩ S1

)
×
(
Bδ̄(ν(x)) ∩ S1

)}
→ R ,

given by

Gi(x, v, w) :=
|F (x) · v|
|F (x) · w|

.

Finally, in order to obtain (3.27), we notice that, by construction of the vector �eld X , there
exists a function Φ ∈ C2((Γ)δ̄) that is constant along the trajectories of F , such that X = ΦF
near ∂Ω (see Proposition 3.25). Hence

Z(xit) = DX[X](xit) = Φ(xi)2DF [F ](xit) .

Reasoning in a similar way as above, taking a δ̄1 su�ciently small, we have that |F ·νt(xit)| ≥ 1
2 ,

and hence Φ(xi)2 ≤ 2(X · νt)(x)2 for x ∈ Bδ̄(xi) . Thus, we obtain the estimate

|Z(xit)| ≤ C|X · νt|2 ≤ C2‖X · νt‖2H̃1(Γ)
,

where C > 0 depends only on F and δ̄ and the last inequality follows by the Sobolev
embedding. Using (3.25), (3.26) and (3.27) we obtain

3∑
i=1

[
−(X · ηt)2Dν∂Ω[ηt, ηt] + Z · (ηt − ν∂Ω)

]
(xit) ≥ −C2ζ‖X · νt‖2H̃1(Γ)

. (3.28)

Now, combining the estimates (3.22), (3.23) and (3.28), we get that:∫ 1

0
g′′(t)dt ≥

(
C̄ − (C1 + C2)ζ

) ∫ 1

0
‖X · νt‖2H̃1(Γ)

dt .
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Thus, by taking ζ su�ciently small, we �nally have the claimed bound (3.20).

Step 2.It is easy to see that, given Φ as in Step 1, but with Φ(x0) = x0 , it is possible to
construct a family of di�eomorphisms Ψε : Φ(Γ̄) → Ω̄ such that Ψε(x0) 6= x0 and Ψε → Id
in the C2 norm, as ε→ 0 . This implies that

MS
(
(uΨε ,Ψε(Φ(Γ));U

)
→MS

(
(uΦ, (Φ(Γ);U

)
.

Thus the result follows by passing to the limit in the inequality proved in the previous case.

Step 3. We now drop the assumption Φ
(
Γ̄∩Bξ(x0)

)
= Γ̄∩Bξ(x0) + v for some ξ > 0 and

v ∈ R2 . It is easy to see that the condition DΦ(x0) = λId , for some λ 6= 0 , allows to construct
a family of triple points Γε such that Γε is a traslation of Γ in a ball Bε(x0) . Moreover there
exist di�eomorphisms Ψε : Φ(Γ) → Γε with Ψε → Id in the C2 norm, as ε → ∞ . Roughly
speaking, we de�ne the curve Γiε as follows: consider the parametrized curve Γε : [0, 1]→ R2

having curvature equal to those of Γi in [0, ε) , and equal to those of Φ(Γ) in [2ε, 1] . In [ε, 2ε]
we just de�ne the curvature as a linear function. The claim the follows directly.

Thus the result follows again by passing to the limit in the previous estimate.

Step 4. Since all the previous steps have been done just by usign the closeness of Φ to
the identity in the C2 -norm, given Φ ∈ C2(Ω̄; Ω̄) such that ‖Φ− Id‖C2(Ω̄;Ω̄) < δ̄ , we can �nd

(Φε)ε ⊂ C3(Ω̄; Ω̄) such that Φε → Φ in C2(Ω̄; Ω̄) and such that Φε = Id in ∂DΩ ∪ (Ω\U ′) ,
where U ⊂ U ′ , with U ′ an admissible subdomain. Using Remark 3.31, we know that, if U ′

is close to U in the Hausdor� sense, then (u,Γ) is stable also in U ′ . Hence, the result follows
by passing to the limit.

Step 5. Finally, the local minimality with respect to W 2,∞ -perturbations follows again by
approximating an admissible di�eomorphism Φ ∈ W 2,∞(Ω̄; Ω̄) with a sequence of di�eomor-
phisms of class C2 converging to Φ in the W 2,∞ -topology.

Thank to Remark 3.26 we also obtain the isolated local minimality result. �

3.5. Application

In this section we would like to give some examples of critical and strictly stable triple
points.

3.5.1. Local minimality in a tubular neighborhood. Here we want to prove that,
under an additional assumption (similar to those of [9] and [8]), every critical triple point is
strictly stable in a suitable tubular neighborhood, and hence a local minimizer with respect
to W 2,p -variations contained in that tubular neighborhood.

Proposition 3.30. Let (u,Γ) be a critical triple point, and suppose that

H∂Ω(xi) < 0 , (3.29)

for each i = 1, 2, 3 . Then there exists µ̄ > 0 such that, for all µ < µ̄ , (u,Γ) is strictly stable
in (Γ)µ .

Proof. Step 1. First of all we prove that there exists a constant C > 0 such that:∫
Γ
|∇Γϕ|2 dHN−1 +

∫
Γ
H2ϕ2 dHN−1 −

3∑
i=1

ϕ2
i (x

i)H∂Ω(xi) ≥ C‖ϕ‖2
H̃1(Γ)

,
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for all ϕ ∈ H̃1(Γ) . Indeed, it is easy to see that∫
Γi

|∇Γϕi|2 dHN−1 − ϕ2
i (x

i)H∂Ω(xi) ≥ C
∫

Γi

|ϕi|2 dHN−1 .

Step 2. The only thing we have to prove now is that

lim
µ→0

sup
ϕ∈H̃1(Γ),
‖ϕ‖

H̃1(Γ)
=1

∫
(Γ)µ

|∇vµϕ|2 dx = 0 , (3.30)

where vµϕ ∈ H1
(Γ)µ

(Ω\Γ) is the solution of∫
Ω
∇vµϕ · ∇z dx = 〈divΓ

(
ϕ∇Γu

+
)
, z+〉

H−
1
2 (Γ)×H

1
2 (Γ)
− 〈divΓ

(
ϕ∇Γu

−), z−〉
H−

1
2 (Γ)×H

1
2 (Γ)

,

(3.31)

for every z ∈ H1
(Γ)µ

(Ω\Γ) . For each µ > 0 , let ϕ̄µ ∈ H̃1(Γ) , with ‖ϕ̄µ‖
H̃1(Γ)

= 1 , be such

that ∫
(Γ)µ

|∇vµϕ̄µ |2 dx = sup
ϕ∈H̃1(Γ),
‖ϕ‖

H̃1(Γ)
=1

∫
(Γ)µ

|∇vµϕ|2 dx .

Consider, for µ > 0 , the following minimum problem:

min{Fµ(v) : v ∈ H1
(Γ)µ

(Ω\Γ)} ,

where

Fµ(v) :=
1

2

∫
(Γ)µ

|∇v|2 dx−〈divΓ

(
ϕ̄µ∇Γu

+
)
, v+〉

H−
1
2 (Γ)×H

1
2 (Γ)

+〈divΓ

(
ϕ̄µ∇Γu

−), v−〉
H−

1
2 (Γ)×H

1
2 (Γ)

.

Clearly, vµϕ̄µ is the solution of the above minimum problem. We claim that

Fµ(v) ≥ 1

4

∫
(Γ)µ

|∇v|2 dx − C , (3.32)

for a suitable constant C > 0 . Taking (3.32) for grant, we conclude. Indeed, noticing that

min{Fµ(v) : v ∈ H1
(Γ)µ

(Ω\Γ)} = −1

2

∫
(Γ)µ

|∇vµϕ̄µ |2 dx , (3.33)

from (3.32) we get that

sup
µ>0

∫
(Γ)µ

|∇vµϕ̄µ |2 dx ≤M ,

for some M > 0 . So, up to a not relabelled subsequence, vµϕ̄µ ⇀ w weakly in H1(Ω\Γ) , as
µ → 0 . It is easy to see that w = 0 . Then, using equation (3.31) where we take as a test
function z itself, the uniform bound on ‖divΓ

(
ϕ̄µ∇Γu

±)‖
H−

1
2 (Γ)

, and the compactenss of the

trace operator, we �nally get:∫
(Γ)µ

|∇vµϕ̄µ |2 dx→ 0 , as µ→ 0.
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We are now left to prove estimate (3.32). Fix µ̄ > 0 and let Φµ := ϕ̄µ∇Γu
+ . Then:

〈divΓ

(
ϕ̄µ∇Γu

±), v+〉
H−

1
2 (Γ)×H

1
2 (Γ)
≤ ‖divΓΦµ‖2

H−
1
2 (Γ)
‖v±‖2

H
1
2 (Γ)

≤ C ε
2

2
‖v‖H1((Γ)µ̄) +

C

2ε2

≤ C ε
2

2
‖∇v‖L2((Γ)µ̄) +

C

2ε2
.

Thus, taking ε > 0 su�ciently small, we obtain the desired estimate. �

Remark 3.31. In view of the result of Theorem 3.24, it is not restrictive to suppose an
admissible set U to be of class C∞ , meeting ∂Ω orthogonally. Indeed, by (3.33), it follows
that

−
∫
U1

|∇vϕ|2 dx ≥ −
∫
U2

|∇vϕ|2 dx ,

for every ϕ ∈ H̃1(Γ) , whenever U1 and U2 are admissible subdomains such that U1 ⊂ U2 .
Hence, given a regular critical and strictly stable triple point (u,Γ) and generic admissible
subdomain U , we can write U =

⋂
n Un , whith Un admissible subdomains where (u,Γ) is

strictly stable, that are of class C∞ meeting ∂Ω orthogonally.

3.6. Appendix

Proof of Proposition 3.22. Step 1. Without loss of generality, we can suppose ϕi ∈
C∞(Γ̄i) . Indeed, if we take ϕ ∈ H̃1(Γ) , we can consider approximation by convolution (ϕiε)ε
of each ϕi (where we have previously extended each ϕi to an H1 function de�ned in a regular
extension of gi ). Now let hε :=

(
ϕ1
ε + ϕ2

ε + ϕ3
ε

)
(x0) and de�ne

ϕ̃3
ε = ϕ3

ε − hε .

Then ϕε := (ϕ1
ε, ϕ

2
ε, ϕ̃

3
ε) ∈ H̃1(Γ) , ϕiε → ϕi in H1(Γi) for i = 1, 2 and ϕ̃3

ε → ϕ3 in H1(Γ3) .
By the continuity of the quadratic form ∂2MS

(
(u,Γ);U

)
with respect to the H1 convergence,

we obtain that
∂2MS

(
(u,Γ);U

)
[ϕ] = lim

ε→0
∂2MS

(
(u,Γ);U

)
[ϕε] .

Step 2. Let ϕ ∈ h̃1(Γ) such that ϕi ∈ C∞(Γ̄i) . For x ∈ Γ̄i , de�ne

Y (x) := ϕi(x)νi(x) + bi(x)τ i(x) ,

for some function bi ∈ C1(Γ̄i) such that bi ≡ 0 if |x− x0| ≥ δ1 . The functions b
i have to be

choosen in such a way that the vector Y is well de�ned in x0 and that DY (x0)[τ1+τ2+τ3] = 0 .
The �rst condition requires to impose that(

ϕi +
1

2
ϕ(i+1)mod3 −

√
3

2
b(i+1)mod3

)
(x0) = 0 ,

while the other one leads to
3∑
i=1

[
νiDΓiϕ

i + τ iDΓib
i
]
(x0) = 0 ,

where we have use the fact that Hi(x0) = 0 , and hence DΓiν
i(x0) = DΓiτ

i(x0) = 0 . Now
de�ne

Ȳ :=

 Y (x) if x ∈ Γ ,
a(x)τ∂Ω(x) if x ∈ ∂Ω ,
0 in Ω\U ,
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where a ∈ C1(∂Ω) is such that a ≡ 1 in a neighborhood of Γ̄∩∂Ω , a ≡ 0 in ∂DΩ∪ (Ū ∩∂Ω) .
Thanks to Lemma 3.37, Ȳ ∈ C1(Γ̄∪∂Ω∪(Ω\U);R2) . Then, use Whitney's extension theorem

to extend it to a vector �eld Ỹ ∈ C1(Ω̄;R2) . Using convolutions, we can approximate Ỹ with

vector �elds X̃ε ∈ C∞(Ω̄;R2) such that X̃ε → Ỹ in C1(Ω̄;R2) . Notice that supp X̃ε ⊂⊂
U ′\∂DΩ , where U ′ ⊃ U is an admissible subdomain. Now de�ne

Xε(x) :=

{
X̃ε(x)− χ

(
s2

δ2

)(
(X̃ε · ν∂Ω)ν∂Ω

)
(y) if x = y + sν∂Ω(y) , s < δ,

X̃ε otherwise.

In this way Xε · ν∂Ω = 0 on ∂Ω , and still Xε → Ỹ in C1(Ω̄;R2) . This allows to conclude.
Indeed, call (Φε)t the �ow generated by the vector �eld Xε , with Φε

0 = Id , and let Γεt be the
evolution of Γ through this �ow. Then, we have that

∂2MS
(
(u,Γ);U

)
[ϕ] = lim

ε→0

d2

dt2
MS

(
(uε,Γε);U

)
|t=0
≥ 0 ,

where the last inequality follows from the local minimality of (u,Γ) . �

3.6.1. Results on elliptic problems. The following theorem collects some regularity
results on elliptic problems in domains with corners we will need in the following. All these
results can be found in the book of Grisvard (see [32]).

Notation. In this section we will consider operators L written in the form

Lu = −
2∑

i,j=1

Di(aijDju) +

2∑
i=1

aiDiu+ a0u ,

where Di denotes the partial derivatives with respec to the variable xi .

Definition 3.32. We say that an open and bounded set A ⊂ R2 is a curvilinear polygon
of class Cr,s , with r ∈ N and s ∈ (0, 1] , if ∂A is a simple and connected curve that can be
written as

∂A = ∪ki=1γ̄i ,

where each γi is a relatively open curve of class Cr,s , and k ∈ N .
Moreover we will denote by Pi the common boundary point of γi and γi+1 (or γk and

γ1 ), and by ωi the angle in Pi internal to A .

Theorem 3.33. Let A be a curvilinear polygon of class C1,1 , and let L be an elliptic
operator de�ned on A , with coe�cients of class C0,1 . Then, the following a priori estimate
holds true:

‖u‖H2(A) ≤ C1

(
‖Lu‖L2(A) + ‖∂νu‖

H
1
2 (∂A)

+ ‖u‖
H

3
2 (∂A)

)
+ C2‖u‖H1(A) , (3.34)

for suitable constants C1, C2 ≥ 0 and for all u ∈ H2(A).

Given f ∈ L2(A) , let u ∈ H1(A) be a weak solution of the problem Lu = f in A ,
∂νu = 0 on γi , for i ∈ N ,
u = 0 on γi , for i ∈ D ,

where N ,D is a partition of {1, . . . , N} . Then u can be written as

u = ureg +
N∑
i=1

uising ,
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where ureg ∈ H2(A) and uising ∈ H1(A) are such that uising ∈ H2(Vi) for each open set Vi
such that Pi 6∈ V̄i .

Finally, suppose that

ωi ≤
{
π if j, j + 1 ∈ D , or j, j + 1 ∈ N ,
π
2 otherwise .

Then u ∈ H2(A). Moreover, if D is not empty, (3.34) holds with C2 = 0.

Finally, we need a continuity theorem for elliptic problems (see, e.g., [41, Remark 2.2]).

Theorem 3.34. Let (Ls)s∈(−δ,δ) be a family of uniformly elliptic operators de�ned on a

curvilinear polygon A of class C1,1 , and let N ,D be a partition of {1, . . . , N} , with D 6= Ø.
Suppose that, for s ∈ (−δ, δ) , the functions

s 7→ aij(·, s) s 7→ ai(·, s) , s 7→ a0(·, s) ,

belong to L∞(A) ,

s 7→ fs ∈ H−1(A)

are continuous and that there exists a constant M > 0 such that

|aij(x, s)| ≤M , |ai(x, s)| ≤M , |a0(x, s)| ≤M ,

for all x ∈ A and for all s ∈ (−δ, δ) . Given v ∈ H1(A) let us consider the operator

T : (−δ, δ) → H1

s 7→ us

where us is a weak solution of the problem Lsu = fs in A ,
∂νu = 0 on γi , for i ∈ N ,
us = v on γi , for i ∈ D .

Then T is continuous.

3.6.2. Whitney's extension theorem. Here we state the version of the Whitney's
extension theorem needed in the chapter. But we �rst need to set some notation. Given
k = (k1, . . . , kn) ∈ N2 and v ∈ R2 , let

|k| := k1 + k2 , vk := vk1
1 v

k2
2 .

If f is a |k|-times di�erentiable function, we set

Dkf(x) :=
∂|k|f

∂xk
(x) =

∂|k|f

∂xk1
1 x

k2
2

(x) ,

where D0 = f .

Definition 3.35. Let X be a compact subset of R2 . We de�ne the space Ch(X) as the
space of functions f : X → R for which there exists a family F := {Fk}|k|≤h of continuous

functions on X , with F 0 = f , such that, for every |k| ≤ h , it holds

sup
x,y∈X, 0<|x−y|<r

∣∣∣Fk(x)− Fk(y)−
h−|k|∑
|j|=1

F j(x)(y − x)k+j
∣∣∣ = o(rh−|k|) . (3.35)
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Moreovere, we de�ne

‖F‖Ch(X) :=
∑
|k|≤h

‖Fk‖C0(X) .

Theorem 3.36 (Whitney's extension theorem). For every h ≥ 1 and L > 0 there exists a
constant C0 > 0 , depending on h and L, with the following property: if X ⊂ BL is a compact

set of R2 and f ∈ Ch(X) , then there exists a function f̃ ∈ C∞(R2\X) ∩ Ch(R2) such that

Dkf̃ = F k on X , for every |k| ≤ h ,
and

‖f̃‖Ch(R2) ≤ C0‖F‖Ch(X) .

We now prove a technical result we needed to use several times in this chapter.

Lemma 3.37. Let γ ⊂ Ω be a simple curve of class C1 meeting ∂Ω orthogonally in a
point x̄ . Let X ∈ C1(γ;R2) be such that X(x̄) = τ∂Ω(x̄). Then, the vector �eld de�ned as

X̃ :=

{
X on γ ,
τ∂Ω on ∂Ω ,

belongs to C1(Γ̄ ∪ ∂Ω;R2) .

Proof. Denote by τ the tangent vector �eld on γ . De�ne

DX̃(x)[τ(x)] := DX(x)[τ(x)] , DX̃(x)[ν(x)] := χ
( |x− x̄|2

ε2

)
Dτ∂Ω(x̄)[τ∂Ω(x̄)] ,

for x ∈ γ , and

DX̃(x)[τ∂Ω(x)] := Dτ∂Ω(x)[τ∂Ω(x)] , DX̃(x)[ν∂Ω(x)] := χ
( |x− x̄|2

ε2

)
DX(x̄)[τ(x̄)] ,

for x ∈ ∂Ω , for a constant ε > 0 . Then condition (3.35) is easily satis�ed if x, y ∈ γ or
x, y ∈ ∂Ω . In the case x ∈ γ and y ∈ ∂Ω , we simply write y − x = (y − x̄)− (x− x̄) and we
use the triangular inequality te get the desired estimate. �
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