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Abstract

The present thesis focuses on a recent theory called “Mean Field Games”, introduced
in 2006 by J.-M. Lasry and P.-L. Lions (see [18], [19], [20], [22]). Its goal is to study some
first order Mean Field Games systems with density constraints. The density constraints
are natural to assume, in the sense that agents usually do not want to go through places,
where already there are many other agents. The model which is presented and studied is
due to F. Santambrogio (see [30]) and it uses some ideas from recent works about crowd
motion theory (see [23], [24], [25], [29]).

In the Introduction we briefly present the theory of Mean Field Games, using the
original works by Lasry and Lions and the lecture notes of P. Cardaliaguet ([8]). Here
is also presented a second order and first order system, the latter represents the main
subject of study of the thesis.

In Chapter 1 we give some well-known definitions and results from the theory of
optimal transportation. This theory seems to be very useful also in the study of MFG.
The basic references of this topic are the two monographs by C. Villani (see [33] and [34])
and in this chapter we also use lecture notes of F. Santambrogio ([31]).

In Chapter 2 our aim is to present some well-known facts about optimal control theory
and semi-concavity. Here the reference is mainly the book of P. Cannarsa and C. Sinestrari
([7]) which is a very important tool in our situation.

In Chapter 3 following the lecture notes by P. Cardaliaguet ([8]), which contain the
lectures given by P.-L. Lions in Collège de France (years 2007 and 2008), we present a
fixed point technique to obtain existence for a standard MFG system (without density
constraints). We also present the assumptions (and the proof of the theorem) which are
used to obtain uniqueness in this case. More or less we want to follow a similar way, using
a fixed point scheme to study the case with density constraints.

In Chapter 4 we finally arrive to the model given by F. Santambrogio and try to
construct a fixed point scheme to show the existence of a solution of our MFG system
with density constraints. On this way of studying this system we realize that it is not so
obvious to adapt the techniques from the usual case, hence we have to modify from time
to time the ideas and at the end the problem is reduced to finding a fixed point of a multi-
valued operator. Later in this chapter we give some possible further study possibilities in
this topic and end the thesis with final conclusions. Basically this is the chapter which
contains some original works and adaptations of other results (form the theory of crowd
motion and from the theory of usual MFG theory) to our case.
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Introduction

0.1 General facts and a second order MFG system

Mean Field Game theory was introduced recently by J.-M. Lasry and P.-L. Lions in a
series of papers ([18],[19],[20]) and presented though several lectures of P.-L. Lions at the
Collège de France. This theory is devoted to the analysis of differential games with a large
number of players, who have very little influence on the overall system (“small” players).
These type of models are derived from a “continuum limit” (in other words letting the
number of players/agents go to infinity) which is somehow similar to the classical mean
field approaches in Statistical Mechanics and Physics (as for example the derivation of
Vlasov or Bolzmann equations in the kinetic theory of gases) or in Quantum Mechanics
and Quantum Chemistry (density functional models, etc.). The applications of this theory
cover a wide range of social life and economic problems.

In the present thesis we will use as basic references some very detailed lecture notes,
such as the notes of P. Cardaliaguet ([8]), which covers a huge part of the lectures of P.-L.
Lions at Collège de France (until 2008), as well as the notes by O. Guéant, P.-L. Lions
and J.-M. Lasry ([10]), which was inspired from a “Cours Bachelier” held in 2009 and
taught by J.-M. Lasry.

Now let us return to the theoretical introduction. The typical model for Mean Field
Games (briefly MFG) is the following system

(i) −∂tu− ν∆u+H(x,m,∇u) = F (x,m) in (0, T )× Rd

(ii) ∂tm− ν∆m−∇ · (∇pH(x,m,∇u)m) = 0 in (0, T )× Rd

(iii) m(0) = m0, u(T, x) = G(x,m(T )) in Rd.
(0.1.1)

In the above system, ν ≥ 0 is a parameter. The first equation (a Hamilton-Jacobi
type equation) has to be understood backward in time and the second one (a Kolgomorov
or Fokker-Planck type equation) forward in time. To study this system are crucial the
following assumptions: the convexity of H = H(x,m, p) w.r.t. the last variable. This
condition will imply that the first equation is linked to an optimal control problem (in
this case a stochastic control problem). The u variable in the first equation will be the
value function of a typical “small” player. The second crucial assumption is that m0 (and
therefore m(t)) is (the density of) a probability measure.

We can interpret the system heuristically as it follows. An arbitrary agent controls the
stochastic differential equation

dXt = αtdt+
√

2νBt,
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where Bt is a standard Brownian motion. He aims at minimizing the quantity

E
[∫ T

0

L(Xs,m(s), αs)ds+G(XT ,m(T ))

]
,

where L is the Legendre-Flenchel conjugate of H w.r.t. the p variable. We remark that in
this cost the evolution of the measure ms enters as a parameter.

The value function of our arbitrary player is given by the first (Hamilton-Jacobi)
equation. His optimal control is (at least heuristically) given in feedback form by α∗(t, x) =
−∇pH(x,m,∇u). With a usual game theory argumentation, if all agents argue in this
way, their distribution will move with a velocity which is due to the diffusion and to the
drift term −∇pH(x,m,∇u). This idea will lead us to the second equation (Kolgomorov
or Fokker-Planck) of our system.

As it is formulated also in [8], we can say that the so far developed MFG theory focuses
on two main issues. First to study equation of the form (0.1.1) and give interpretations
(in Economics for example) of such systems. Secondary to analyze differential games with
a finite but large number of players and link their limiting behavior as the number of
players goes to infinity and the equation (0.1.1).

So far the first problem is well understood and well documented. The original works
by Lasry and Lions give a certain number of conditions under which equation (0.1.1)
has a solution, discuss its uniqueness and its stability. Several papers also study the
numerical approximation of the solution of (0.1.1): see for example Achdou and Capuzzo
Dolcetta ([1]), Achdou, Camilli and Capuzzo Dolcetta ([2]), Gomes, Mohr and Souza ([9]),
Lachapelle, Salomon and Turinici ([16]).

In [8] is pointed out also the fact that the MFG theory seem also particularly adapted
to model problems in Economics: see Guéant ([11],[12]), Lachapelle ([17]), Lasry, Lions,
Guéant ([21]), and the references therein. For the second part of the program, the limit-
ing behavior of differential games when the number of players goes to infinity has been
understood only for ergodic differential games. The general case remains largely open.

0.2 A first order (deterministic) MFG system

In our consideration the first order (deterministic) case of the system (0.1.1) plays a
very important role, because it would be interesting to see whether a reasonable model
including diffusion and density constraints makes sense . There are also some well-known
results in this case (without the density constraints), regarding to existence, uniqueness,
stability of the solution, which can be found in details in [8] and [22]. Our main aim is to
prove some similar results, when we equip the system with density constraints. After our
best knowledge these questions are still open and this kind of framework was proposed
by F. Santambrogio in [30].

So a typical model to the first order MFG system is
(i) −∂tu(t, x) + 1

2
|∇u(t, x)|2 = F (x,m(t)) in (0, T )× Rd

(ii) ∂tm(t, x)−∇ · (∇u(t, x)m(t, x)) = 0 in (0, T )× Rd

(iii) m(0) = m0, u(T, x) = G(x,m(T )) in Rd.
(0.2.1)
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Let us say a few words about the heuristic interpretation of this system. The function
u in the first equation, as in the second order case, corresponds to the value function of
a typical agent who controls his velocity α(t) and has to minimize his cost∫ T

0

(
1

2
|α(t)|2 + F (x(t),m(t))

)
dt+G(x(T ),m(T )),

where x(t) = x0 +
∫ t

0
α(s)ds. The only knowledge of every agent on the overall world is

the distribution of the other agents, represented by the density m(t) of some probability
measure. Then their “feedback strategy” (i.e., the way they ideally control at each time
and at each point his velocity) is given by α(t, x) = −∇u(t, x). If all agents argue in this
way, the density m(t, x) of their distribution m(t) over the space will evolve in time with
the continuity equation (0.2.1)-(ii).

As in the case of the second order system, here we can work in the space P1, the space
of Borel probability measures on Rd with finite first order moment, and we endow it with
the Wasserstein (or Kantorovich-Rubinstein) distance W1 (see the precise definition later
on).

Moreover we present the basic assumptions from [8] which are that F,G : Rd×P1 → R
have the following properties

• F and G are continuous over Rd × P1;

• There is a constant C > 0 s.t. for any m ∈ P1

||F (·,m)||C2 ≤ C, ||G(·,m)||C2 ≤ C,

where C2 is the space of functions with continuous second order derivatives endowed
with the usual norm

||f ||C2 = sup
x∈Rd

(
|f(x)|+ |∇f(x)|+ |∇2f(s)|

)
;

• Here we suppose moreover that m0 is absolutely continuous with respect to the d-
dimensional Lebesgue measure, with a density still denoted by m0 which is bounded
and has compact support.

By a solution of (0.2.1) we mean a pair (u,m) ∈ W 1,∞
loc ([0, T ]×Rd)×L1((0, T )×Rd) such

that (i) is satisfied in the viscosity sense, while (ii) is satisfied in the sense of distributions.
We formulate now the well-known results about this system (we will also present the

sketch of the proofs later on).

Theorem 0.2.1 ([8]). Under the above assumptions, there is at least one solution of
(0.2.1).

Theorem 0.2.2 ([8]). Let us assume the following monotonicity properties, that are∫
Rd

(F (x,m1)− F (x,m2)) d(m1 −m2) > 0,∀m1,m2 ∈ P1,m1 6= m2, (0.2.2)
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and ∫
Rd

(G(x,m1)−G(x,m2)) d(m1 −m2) ≥ 0, ∀m1,m2 ∈ P1. (0.2.3)

Under these assumptions there is a unique classical solution of (0.2.1).

Remark 0.2.3. The assumptions (0.2.2) and (0.2.3) ensure the uniqueness in the case of
the system (0.1.1) too.

Later on we will use some elements, ideas from these proofs in the case of MFG systems
with density constraints. We will also present the sketch of the proofs of these theorem
in a further chapter.

0.3 MFG with density penalization and constraints

The idea to study MFG systems with density penalization is a natural procedure in
this theory, however the idea of density constraints is due to F. Santambrogio (see [30]).
Following his ideas we present here how can we construct first order MFG systems with
these penalization and constraints.

We present a model from [30] as follows. We suppose that every agent follows the
controlled trajectories

x′(t) = f(t, x(t), α(t)), t ∈ [0, T ],

where α : [0, T ] → Rd is a control that each agent should choose, when they are
maximizing the payoff function (previously in the introduction there was taken a cost
function that agents wanted to minimize; without loss of generality, just by changing the
corresponding signs, we can work with payoff functions)

−
∫ T

t

(
1

2
|α(s)|2 + g(ρ(s, y(s)))

)
ds+ Φ(y(T )),

where g is a given increasing function. From this payoff function we can see that agents
also pay (among others) for the densities of the regions they pass by. Later on we will
see how can we arrive precisely to a MFG system from this formulation (i.e. how can we
obtain the Hamilton-Jacobi and the continuity equations).

Now we can believe that we will arrive to a similar system to (0.2.1)
(i) ∂tu(t, x) + 1

2
|∇u(t, x)|2 = g(ρ(t, x)) in (0, T )× Rd

(ii) ∂tρ(t, x) +∇ · (∇u(t, x)ρ(t, x)) = 0 in (0, T )× Rd

(iii) ρ(0, x) = ρ0(x), u(T, x) = Φ(x) in Rd.
(0.3.1)

It is also well-known fact that we can obtain the solution of the above system by
minimization of a global functional, which in our case will be the following problem:

min

∫ T

0

∫
Ω

(
1

2
|α(t, x)|2ρ(t, x) +G(ρ(t, x))

)
dxdt−

∫
Ω

Φ(x)ρ(T, x)dx,

among solutions (ρ, α) of the continuity equation ∂tρ +∇ · (ρα) = 0 with the initial
datum ρ(0, x) = ρ0(x). Here agents are moving in a domain Ω ⊂ Rd instead of the whole
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space Rd, but this is not a restriction neither. The function G is chosen as the primitive of
g, and in particular to be convex. This functional recall the functional studied by Benamou
and Brenier in [5] to give a dynamical formulation of optimal transport.

Particulary if we choose for g(ρ) = ρm−1(m > 1) (in this case G(ρ) = 1
m
ρm), then the

above minimization problem as m→∞, tends to

min

∫ T

0

∫
Ω

1

2
|α(t, x)|2ρ(t, x)dxdt−

∫
Ω

Φ(x)ρ(T, x)dx,

with the same assumptions as above and with the additional assumption that ρ(t, x) ≤
1 a.e.

We remark also that the energy will be infinite if we do not have for the initial density
ρ0 ≤ 1 as well.

We can say that the above problem is equivalent, at least in the case of convex domains
Ω, with the following one: find ρT ≤ 1 such that minimizes the quantity

TW 2
2 (ρ0, ρT )−

∫
Ω

ΦdρT

and then choosing ρt as a constant speed geodesic connecting ρ0 and ρT . This can
be deduced from the fact that the optimal curve connecting ρ0 to ρT and minimizing∫ ∫

1
2
|α|2ρdxdt is precisely the geodesic between these two measure in the Wasserstein

space, and the set K of measure with density bounded by 1 is known to be geodesically
convex.

Here it comes more or less in the picture the theory of optimal transportation, which
seems to be a very useful tool in the study of this kind of problems (see also the chapter
where the model for density constraint is presented). The above presented idea was the
density penalization approach to MFG. However we will see later on the precise construc-
tion also for density constraints. We will also give a short presentation of the theory of
optimal transportation and optimal control in the next chapters.
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Chapter 1

Preliminaries on Optimal
Transportation

We have seen in the introduction that the Fokker-Planck type equations of a MFG system
are defined on the space of probability measures. A good and useful approach to under-
stand these type of evolution equations is the framework of Optimal Transportation. So
for the coherency of the present thesis we will give some basic definitions and well-known
results from this theory. The main references in this field of Mathematics are (without
any doubt) the two (monumental) books of C. Villani ([33],[34]). Despite this, we will
use the notations and results from the graduate course given by F. Santambrogio at the
University Paris-Sud in the second semester of the academic year 2011/2012. Here we will
not present any proofs of the results, they can be found in a very detailed way in [31]
(and of course in the textbooks [33],[34],[3]).

This theory has its roots in a more than 200 years old problem, proposed by Monge
in 1781 ([28]). This problem is the following: given two densities of masses f, g ≥ 0 on
Rd, with the property

∫
Rd f =

∫
Rd g = 1, find the map T : Rd → Rd pushing the first one

onto the other, i.e. such that∫
A

g(x)dx =

∫
T−1(A)

f(y)dy, for any Borel subset A ⊂ Rd (1.0.1)

and minimizing the quantity ∫
Rd
|T (x)− x|f(x)dx

among all maps satisfying this condition.
In the following we will always define similarly to (1.0.1), the image measure of a

measure µ on X (measures will indeed replace the densities f and g in the most general
formulation of the problem) through a measurable map T : X → Y. This is the measure
denoted by T#µ on Y and characterized by

T#µ(A) = µ(T−1(A)),

for every measurable subset A of Y, or∫
Y

ϕd(T#µ) =

∫
X

ϕ ◦ Tdµ,
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for every measurable function ϕ.
This problem remained unsolved (does a minimizer exit? how to characterize it?, etc.)

until the 1940s, when by the work of Kantorovich it has been inserted into a suitable
framework, which gave the possibility to approach it, and later to show, that the problem
actually has solutions, and one can characterize them. Since then the problem itself has
been widely generalized, with very general cost functions c(x, y) instead of the Euclidean
distance |x − y| and with more general measures and spaces (see the second book of C.
Villani, [34] for a very general approach). We can say that in the past few decades it has
grown up a huge theory from these two problems of Monge and Kantorovich, which is a
very active field of research nowadays and it has many applications in geometry, PDEs,
economical sciences, etc.

1.1 Primal and dual problems

In what follows we will focus on the transport problem from a measure µ on a space X to
ν on a space Y . X and Y could be complete and separable metric spaces (in general Polish
spaces), but in the rest of this short insight we will consider the same (usually compact)
subset Ω ⊂ Rd. We also will deal with general cost functions, c : X × Y → [0,+∞] which
will be supposed to be continuous or semi-continuous (and very often symmetric).

The generalization of the problem of Monge, given by Kantorovich ([13]) is the follow-
ing:

Definition 1.1.1. For two given probability measures µ and ν on Ω, and a cost function
c : Ω× Ω→ [0,+∞] we consider the problem

(PK) min

{
K(γ) :=

∫
Ω×Ω

cdγ|γ ∈ Π(µ, ν)

}
, (1.1.1)

where Π(µ, ν) is the set of so-called transport plans, i.e. Π(µ, ν) := {γ ∈ P(Ω × Ω) :
(πx)#γ = µ, (πy)#γ = ν}, where πx and πy are the two projections of Ω× Ω onto Ω.

The solutions (minimizers) for this problem are called optimal transport plans between
µ and ν. If γ is of the form (id × T )#µ for a measurable map T : Ω → Ω (i.e. when no
splitting of the mass occurs), then the map T would be called optimal transport map from
µ to ν.

Remark 1.1.2. If (id × T )#µ belongs to Π(µ, ν) then T pushes µ onto ν (i.e. ν(A) =
µ(T−1(A)) for any Borel set A) and our functional, we want to minimize, takes the form∫
c(x, T (x))µ(dx), so this approach will be a generalization of Monge’s problem.

Remark 1.1.3. We can also remark here that this formulation of the problem by Kan-
torovich is much better to work with, because in the case of Monge’s problem we cannot
ensure always, that there exists a map T, which satisfies the constraints (i.e. T#µ = ν),
take for example the case when µ is a Dirac mass, and ν is not. For this case there exists
no such T, but in contrary we have always µ ⊗ ν ∈ Π(µ, ν). But anyway there are links
between the two formulations and we will see soon which are these.
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An important tool will be duality theory and to introduce it we need in particular
the notion of c-transform (a kind of generalization of the well-known Legendre-Flenchel
transform).

Definition 1.1.4. Given a function χ : X → R we define its c−transform or c-conjugate
χc : Y → R by

χc(y) = inf
x∈X

c(x, y)− χ(x).

We also define the c-transform of ξ : Y → R by

ξc(x) = inf
y∈Y

c(c, y)− ξ(y).

Moreover, we say that a function ψ defined on Y is c-concave if there exists χ such
that ψ = χc (and analogously, a function φ over X is said to be c-concave if there is ξ such
that φ = ξc and we denote by cC(X) and cC(Y ) the sets of c− and c− concave functions,
respectively (when X = Y and the cost c is symmetric this distinction between c− and
c− concavity will play no more any role, and we will use just the notion of c-concavity).

We can see that for the cost function c(x, y) = x · y, the notion of c−transform is
exactly the well-know Legendre-Flenchel transform.

Now we can formulate the well known result, regarding to the duality of (PK) (see
[33] for example).

Proposition 1.1.5. We have

min(PK) = max
φ∈cC(X)

∫
Ω

φdµ+

∫
Ω

φcdν. (1.1.2)

In particular the minimum value of (PK) is a convex function of (µ, ν) and it is the
supremum of linear functionals.

Definition 1.1.6. The functions φ which realize the maximum in (1.1.2) (they are not
necessarily unique) are called Kantorovich potentials for the transport from µ to ν.

We remark, that any c−concave function shares the same modulus of continuity of the
cost c. In particular the cases when c(x, y) = |x − y|p for some p ∈ [1,+∞] have many
interesting properties and are mainly well understood.

For example the case c(x, y) = |x− y| shows a lot of interesting features, even if from
the point of the existence of an optimal map T it is one of the most difficult. A first
interesting property is the following:

Proposition 1.1.7. For any 1−Lipschitz function φ we have φc = −φ. In particular the
duality formula (1.1.2) may be rewritten as

min(PK) = sup
φ∈Lip1

∫
Ω

φd(µ− ν).

Another useful property of the c−transform is the following:

3



Proposition 1.1.8. For any cost c and any function φ : X → R we have φcc ≥ φ and
the equality holds if and only if φ is c-concave.

We summarize here some useful results for the case where the cost c is of the form
c(x, y) = h(x− y), for a strictly convex function h.

Theorem 1.1.9. Given µ and ν probability measures on a compact domain Ω ⊂ Rd,
there exists an optimal transport plan π. It is unique and of the form (id × T )#µ, pro-
vided µ is absolutely continuous and ∂Ω is negligible. Moreover there exists also at least a
Kantorovich potential φ, and the optimal transport map T and the potential φ are linked
by

T (x) = x− (∇h)−1(∇φ(x)).

Moreover it holds φ(x) + φc(T (x)) = c(x, T (x)) for µ−a.e. x. Conversely, every map T
which is of the form T (x) = x− (∇h)−1(∇φ(x)) for a function φ ∈ cC(Ω) is an optimal
transport plan from µ to T#µ.

Remark 1.1.10. The above theorem can be particularized in the case of the cost function

c(c, y) = |x−y|2
2

. This is a well-known result of Brenier (see [6]), which says that there exits
a unique optimal transport map, which send µ to ν and has it is a gradient of a convex
function.

Naturally all the costs c(x, y) = |x− y|p with p > 1 fall under the above theorem. For
the case c(x, y) = |x− y| the results are a little bit weaker and are summarized below.

Theorem 1.1.11. Given µ and ν probability measures on a domain Ω ⊂ Rd there exists
at least an optimal transport plan π. Moreover, one of such plans is of the form (id×T )#µ
provided µ is absolutely continuous. There exists also at least a Kantorovich potential φ,
and we have φ(x)− φ(T (x)) = |x− T (x)| for µ−a.e. x, for any choice of optimal T and
φ.

In the above result the absolute continuity assumption is crucial to have existence of
an optimal transport map, in the sense that in general it cannot be replaced by weaker
assumptions as in the strictly convex case. This can be seen from the following well-known
example (see [34] and [31] for example).

Example 1.1.12. Set

µ = H1bA and ν =
H1bB+H1bC

2
,

where A,B and C are three vertical parallel segments in R2 whose vertexes lie on the
two lines y = 0 and y = 1 and the abscissas are 0, 1 and −1, respectively, and H1 is
the 1-dimensional Hausdorff measure. It is clear that no transport plan may realize a
cost better than 1 since, horizontally, every point needs to be displaced of a distance 1.
Moreover, one can get a sequence of maps Tn : A → B ∪ C by dividing A into 2n equal
segments (Ai)i=1,...,2n and B and C into n segments each, (Bi)i=1,...,n and (Ci)i=1,...,n (all
ordered downwards). Then define Tn as a piecewise affine map which sends A2i−1 onto Bi

and A2i onto Ci. In this way the cost of the map Tn is less than 1 + 1/n, which implies
that the infimum of the Kantorovich problem is 1, as well as the infimum on transport
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maps only. Yet, no map T may obtain a cost 1, as this would imply that all points are
sent horizontally, but this cannot respect the push-forward constraint. On the other hand,
the transport plan associated to Tn weakly converge to the transport plan 1

2
T+

#µ+ 1
2
T−#µ,

where T±(x) = x± e and e = (1, 0). This transport plan turns out to be the only optimal
transport plan and its cost is 1.

1.2 Wasserstein distances and spaces

Let Ω ⊂ Rd and p ≥ 1 and let us define

Pp(Ω) :=

{
µ ∈ P(Ω) :

∫
Ω

|x|pdµ < +∞
}
.

The subset Pp(Ω) of the set P(Ω) of the probability Borel measure contains all the
measures with finite pth order moment. Obviously, if Ω is bounded, then Pp(Ω) = P(Ω).
On these spaces we will define the Wasserstein distances as follows.

For µ, ν ∈ Pp(Ω)

Wp(µ, ν) = inf

{∫
Ω×Ω

|x− y|pdγ : γ ∈ Π(µ, ν)

} 1
p

.

We remark, that due to Jensen’s inequality we have Wp(µ, ν) ≤ Wq(µ, ν) for all p ≤ q.

On the other hand, if Ω is bounded we have Wp(µ, ν) ≤ CW1(µ, ν)
1
p , for p > 1, where

C = diam(Ω)
p−1
p .

We also can define W∞(µ, ν) (as a limit for p→∞).
We can formulate the following result:

Theorem 1.2.1. For any p ≥ 1 the functional Wp is a distance over Pp(Ω) and, given a
measure µ and a sequence (µn)n≥1 in Pp(Ω), the followings are equivalent:

• µn → µ w.r.t. Wp;

• µn ⇀ µ and
∫

Ω
|x|pµn(dx)→

∫
Ω
|x|pµ(dx);

•
∫

Ω
φdµn →

∫
Ω
φdµ for any φ ∈ C(Ω) with a growth at most of order p.

1.3 Curves, geodesics, continuity equation and dis-

placement convexity

Now we continue our presentation studying some properties of curves in the Wasserstein
spaces Pp endowed with the corresponding metrics Wp. For this theory the main reference
is the book of Ambrosio, Gigli and Savaré (see [3]).

Before giving the main result we are interested in, we recall the definition of metric
derivative, which is a concept that may be useful when studying curves which are valued
in generic metric spaces.
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Definition 1.3.1. Given a metric space (X, d) and a curve ω : [0, 1] → X we define the
metric derivative of the curve ω at time t as the quantity

|ω′|(t) = lim
h→0

d(w(t+ h), w(t))

|h|
(1.3.1)

provided the limit exists.

As a consequence of Rademacher’s theorem it can be seen that for any Lipschitz
curve the metric derivative exists at almost every point t ∈ [0, 1]. The following theorem
guarantees the existence of the metric derivative for Lipschitz curves.

Theorem 1.3.2. Suppose that ω : [0, 1] → X is Lipschitz continuous, then the metric
derivative |ω′|(t) exists for a.e. t ∈ [0, 1]. Moreover we have, for t < s,

d(ω(t), ω(s)) ≤
∫ s

t

|ω′|(τ)dτ.

Now the goal is to identify the Lipschitz curves in the space Pp(Ω) endowed with the
distance Wp with the solution of the continuity equation

∂tµt +∇ · (vtµt) = 0,

with Lp vector fields vt, and to connect the Lp norm of vt with the metric derivative |µ′|(t).
We interpret this continuity equation as the equation which describes the evolution

of the density µt of a family of particles initially distributed according to µ0 and each of
them following the flow {

y′x(t) = v(t, yx(t))
yx(0) = x.

(1.3.2)

Now let us see how can we define solutions for this equation.

Definition 1.3.3. We say that a family of pairs measures/vector fields (µt, vt) solves the
continuity equation in the distributional sense if for any test function φ ∈ C1

c ((0, 1)×Ω),
compactly supported in time but not necessarily in space, we have∫ 1

0

∫
Ω

∂tφdµtdt+

∫ 1

0

∫
Ω

∇φ · vtdµtdt = 0

Obviously this formulation includes Neumann boundary conditions on ∂Ω for vt. If we
want to impose the initial and final measures we can say that (µt, vt) solves the same
equation, in the sense of distributions, with initial and final data µ0 and µ1, respectively,
if for any test function φ ∈ C1([0, 1]× Ω), we have∫ 1

0

∫
Ω

∂tφdµtdt+

∫ 1

0

∫
Ω

∇φ · vtdµtdt =

∫
Ω

φ(1, x)dµ1(x)−
∫

Ω

φ(0, x)dµ0(x).

On the other hand we can define a weak solution of the continuity equation through
the following condition: we say that (µt, vt) solves the continuity equation in the weak
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sense if for any test function ψ ∈ C1([0, 1] × Ω), the function t 7→
∫
ψdµt is Lipschitz

continuous and, for a.e. t, we have

d

dt

∫
Ω

ψdµt =

∫
Ω

∇ψ · vtdµt.

Notice that in this case t 7→ µt is automatically continuous for the weak convergence, and
imposing the values of µ0 and µ1 may be done pointwisely.

We remark that the two notions are actually equivalent: every weak solution is actually
a distributional solution and every distributional solution admits a representative (another
family µ̃t = µt for a.e. t) which is weakly continuous and is a weak solution. The proof of
this equivalence it is not so obvious at all, but it can be found in many references about
optimal transportation. So due to this equivalence it is just a matter of taste, which notion
of solution we will work with.

Now we formulate a characterization theorem of Lipschitz curves.

Theorem 1.3.4. Let (µt)t∈[0,1] be a Lipschitz curve for the distance Wp (p > 1). Then
for a.e. t ∈ [0, 1] there exists a vector field vt ∈ Lp(µt;Rd) such that

• the continuity equation ∂tµt+∇·(vtµt) = 0 is satisfied in the weak sense (see above);

• for a.e. t we have ||vt||Lp(µt) ≤ |µ′|(t).

On the contrary, if (µt)t∈[0,1] is a family of measures in Pp(Ω) and for each t we have
a vector field vt ∈ Lp(µt;Rd) with the property ||vt||Lp(µt) ≤ C, then (µt)t is actually a
Lipschitz curve for the Wp distance and for a.e. t we have |µ′|(t) ≤ ||vt||Lp(µt).

Now on we want to give some characterizations to the geodesics in the Wasserstein
spaces Pp(Ω.) At first we give some definitions in arbitrary metric spaces (X, d).

We can define the length of a curve in a metric space by the usual definition, moreover
we know that for a Lipschitz curve ω : [0, 1]→ X, we have

length(ω) =

∫ 1

0

|ω′|(t)dt.

Definition 1.3.5. A curve ω : [0, 1]→ X is said to be a geodesic between x0 and x1 ∈ X
if it minimizes the length among all curves such that ω(0) = x0 and ω(1) = x1.

A space (X, d) is said to be a length space if it holds

d(x, y) = inf{length(ω) : ω ∈ Lip, ω(0) = x, ω(1) = y}.

A space (X, d) is said to be a geodesic space if it holds

d(x, y) = min{length(ω) : ω ∈ Lip, ω(0) = x, ω(1) = y},

i.e. if it is a length space and there exit geodesics between two arbitrary points.
In a length space, a curve ω : [0, 1]→ X is said to be a constant speed geodesic between

ω(0) and ω(1) ∈ X if it satisfies

d(ω(t), ω(s)) = |t− s|d(ω(0), ω(1)),∀t, s ∈ [0, 1].

A curve with this property is automatically a geodesic.
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Proposition 1.3.6. Fix an exponent p > 1 and consider curves connecting x0 and x1.
The following three facts are equivalent:

• ω is a constant speed geodesic;

• |ω′|(t) = d(ω(0), ω(1)) a.e.;

• ω solves min
{∫ 1

0
|ω′|(t)pdt : ω(0) = x0, ω(1) = x1

}
Now we give a link between the constant speed geodesics in Pp(Ω) endowed with Wp

and the optimal transports.

Theorem 1.3.7. Suppose that Ω is convex, take µ, ν ∈ Pp(Ω) and γ an optimal transport
plan in Π(µ, ν) for the cost |x − y|p (p ≥ 1). Define πt : Ω × Ω → Ω through πt(x, y) =
(1−t)x+ty. Then the curve µt := (πt)#γ is a constant speed geodesic in Pp(Ω) connecting
µ0 = µ and µ1 = ν.

In the particular case where µ is absolutely continuous, or in general when γ = γT ,
this very curve is obtained as ((1− t)id+ tT )#µ.

As a consequence, the space Pp(Ω) endowed with the Wasserstein distance Wp is a
geodesic space.

Now let us recall the definitions of geodesic- and displacement convexity.

Definition 1.3.8. In an arbitrary metric space (X, d) (actually, it is better if we are in a
geodesic space) we can define F : X → R ∪ {+∞} to be geodesically convex if for every
two points x0, x1 ∈ X there exists a constant speed geodesic ω connecting ω(0) = x0 and
ω(1) = x1 such that [0, 1] 3 t 7→ F (ω(t)) is convex.

The notion of geodesic convexity in the space Pp(Ω) for the distance Wp has been
introduced by McCann in [26] and it is particularly interesting since we know how to
characterize the geodesics in such a space. This notion of convexity is usually referred to
as displacement convexity. Notice, that it could a priori depend on the exponent p.

Now we present and study some functionals defined on Wasserstein spaces, which will
be very important later on, because in many applied problems we face with minimization
problems where the unknown to be determined is the distribution of a certain amount of
mass, and there will be involved some functionals which we will present. So let us consider
the following ones:

• The integral of a given function (potential energy)

V(µ) =

∫
V dµ;

• The double integral of a function on Ω × Ω according to the tensor product µ ⊗ µ
(interaction energy)

W(µ) =

∫
W (x, y)dµ(x)dµ(y);
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• The Wasserstein distance (or a function of it) from a fixed measure

D(µ) = Wp(µ, ν);

• The norm in a dual function space: given a Banach space X of functions on Ω, define

||µ||X′ = sup
φ∈X,||φ||≤1

∫
φdµ = sup

φ∈X\{0}

∫
φdµ

||φ||X
;

• The integral of a function of the density

F(µ) =

{ ∫
f(ρ(x))dx if µ = ρ · dx,

+∞ otherwise;

• The sum of a function of the masses of the atomes

G(µ) =

{ ∑
i g(ai) if µ =

∑
i aiδxi ,

+∞ if µ is not purely atomic.

Now we can summarize some results about (semi)continuity and displacement convex-
ity of these functionals.

Theorem 1.3.9. • If V ∈ Cb(Ω) then V is continuous for the weak convergence of
probability measures. If V is l.s.c. and bounded from below than V is l.s.c. Moreover,
semi-continuity of V (respectively, continuity) is necessary for the semi-continuity
(continuity) of V.

• If W ∈ Cb(Ω) thenW is continuous for the weak convergence of probability measures.
If W is l.s.c. and bounded from below than W is semi-continuous.

• For any 1 ≤ p < +∞, the Wasserstein distance Wp(·, ν) for any fixed measure
ν ∈ P(Ω) is continuous w.r.t. weak convergence provided Ω is compact. If Ω is not
compact and ν ∈ Pp(Ω), then Wp(·, ν) is well-defined over Pp(Ω) and it is only l.s.c.

• Let X be a Banach space of functions over Ω such that X ∩ Cb(Ω) is dense in X.
Then

µ 7→ ||µ||X′ = sup
φ∈X,||φ||X≤1

∫
φdµ = sup

φ∈X\{0}

∫
φdµ

||φ||X
is l.s.c. for the weak convergence.

Proposition 1.3.10. Let f : R→ R be convex function, with f(0) = 0, and set

L := lim
t→+∞

f(t)

t
= sup

t>0

f(t)

t
∈ R ∪ {+∞}.

Let λ be a fixed positive measure on Ω. For every measure µ write µ = ρ · λ + µs, where
ρ · λ is the absolutely continuous part of µ and µs be the singular one (w.r.t. λ). Then,
the functional defined through

F(µ) =

∫
f(ρ(x))dλ(x) + Lµs(Ω)

is l.s.c.
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Lemma 1.3.11. Suppose that g(0) = 0, g(t) ≥ 0, g is sub-additive and l.s.c., moreover

limt→+∞
g(t)
t

= +∞. Then G is l.s.c.

Proposition 1.3.12. • The functional V is displacement convex if and only if V is
convex.

• The functional W is displacement convex if W is convex.

• Suppose that f is convex and superlinear, f(0) = 0 and s 7→ sdf(s−d) is convex and
non-increasing. Then F is displacement convex for the distance W2.

1.4 Gradient flows for W2

Now we will give a short presentation of the gradient flow of a functional F : P(Ω) →
R∪{+∞}. This functional is supposed to be l.s.c. for the weak convergence of probability
measures and we also suppose that Ω is compact. The main reference of this theory is the
textbook [3].

We will use an implicit Euler-like iterated minimization scheme to approach the gra-
dient flows w.r.t. W2. This method is borrowed of course from the Euclidean case, when
F is defined on Rd.

So let us consider the discrete-time scheme

ρτk+1 ∈ argminF (ρ) +
W 2

2 (ρ, ρτk)

2τ
,

for a fixed time step τ > 0.
Each of these problems has a solution, by the compactness of P(Ω) and semi-continuity

of the r.h.s.
In order to have further investigations about these problems, we need to introduce a

good notion of functional derivatives. Given a functional G : P(Ω)→ R, we call δG
δρ

(ρ) (if

it exists), any function such that (they are unique up to additive constants)

d

dε
G(ρ+ εχ)|ε=0 =

∫
δG

δρ
(ρ)dχ,

for every perturbation χ s.t. at least for ε sufficiently small ρ+ εχ ∈ P(Ω).
Now we will suppose that δF

δρ
(ρ) is known, and we try to write the limit equation in

terms of this operator. We also need the functional derivative of 1
2
W 2

2 (·, ν), for a fixed
ν ∈ P(Ω).

Lemma 1.4.1. Let ν be a fixed probability measure. Consider µ ∈ P(Ω) such that in the
optimal transport from µ to ν for the cost c(x, y) = 1

2
|x− y|2 the Kantorovich potential is

unique (up to additive constants). This means that there is only one pair of (φ, ψ) solving

max

∫
φdµ+ ψdν : φ(x0) = 0, φ(x) + ψ(y) ≤ c(x, y)

where x0 is any fixed point in Ω, so as to get rid of additive constants.
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Then, for any µ1 ∈ P(Ω), setting µε := (1− ε)µ+ εµ1, we have

d

dε

(
1

2
W 2

2 (µε, ν)

) ∣∣∣
ε=0

=

∫
φd(µ1 − µ).

Now we want to construct perturbations for which we will calculate the the first
variation of the functional, which is defined as the r.h.s. of our time discrete scheme. So
for this take an optimal measure ρ for the minimization problem at step k and construct
some perturbations with the help of ρε = (1− ε)ρ+ ερ̃, where ρ̃ is any other probability
measure.

Now we choose a perturbation χ = ρ̃−ρ, which guarantees that, for ε > 0, the measure
ρε is actually a probability over Ω.

Let us compute now the first variation and, due to optimality, we have

0 ≤ d

dε

(
F (ρ+ εχ) +

W 2
2 (ρ+ εχ, ρτk)

2τ

) ∣∣∣∣∣
ε=0

=

∫ (
δF

δρ
(ρ) +

φ

τ

)
dχ. (1.4.1)

If we assume the fact that χ is an almost arbitrary measure with zero mass (which
is not necessarily true, but when we deal with concrete examples we can work more
carefully, so without loss of generality we can have this assumption), we deduce from the
above condition the very important observation, namely that

δF

δρ
(ρ) +

φ

τ

must be constant.
But we know that T (x) = x−∇φ(x) for the optimal T , so taking in consideration the

observation we made recently, we get

T (x)− x
τ

= −∇φ(x)

τ
= ∇

(
δF

δρ
(ρ)

)
(x). (1.4.2)

We can view the ratio between the displacement and time as velocity, so let us denote
v := −T (x)−x

τ
, the minus sign is because the displacement is associated to the transport

from ρτk+1 to ρτk.
Now we arrived again to a very important observation, which is the fact that we have

v = −∇
(
δF
δρ

(ρ)
)
, so this will suggest (and it can be analyzed rigourously) that at the

limit τ → 0 we will find a solution of

∂tρ−∇ ·
(
ρ∇
(
δF

δρ
(ρ)

))
= 0.

Let us present some well-known examples of this kind of equations. The three main
classes of examples are some of the functionals presented in the previous section, and
more precisely those considered by McCann in [26].

Consider the functionals F ,V ,W , already presented previously. In the case, where
the function W is involved, we study only the simple case when it is depending on the
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difference x − y, and symmetric, i.e. W (z) = W (−z). So in this case it is quite easy to
realize that we have

δF
δρ

(ρ) = f ′(ρ),
δV
δρ

(ρ) = V,
δW
δρ

(ρ) = 2W ∗ ρ.

A very important example is the case when f(t) = t ln t. In such a case we obviously
have f ′(t) = ln t + 1 and ∇(f ′(ρ)) = ∇ρ

ρ
this means that the gradient flow equation

associated to the functional F would be the Heat Equation

∂tρ−∆ρ = 0,

and that for F + V we would have the Fokker-Planck Equation

∂tρ−∆ρ−∇ · (ρ∇V ) = 0.

The case of the interaction functionalW gives a not so elegant non-linear and non-local
equation, which is

∂tρ−∇ · (ρ(∇W ∗ ρ)) = 0.

Finally we remark the fact that if we want uniqueness of the gradient flows, naturally
we would need some kind of convexity notion for the functional which is involved in
the minimization (this notion could be the geodesic or displacement convexity, or some
λ-geodesic convexity). In PDE applications usually it is a very important step to to
prove uniqueness for weak solutions of the continuity equation with the velocity field

v = −∇
(
δF
δρ

)
.

1.5 Gradient flows with density constraints

In this section we present some remarks about the gradient flow of a special functional
in the Wasserstein space. This functional is used in the study of problem arising in the
theory of crowd motion with density constraints and we will use some of these ideas in
the study of MFG systems with density constraints. One can see the construction of the
precise model later on, where it is explained as well where comes from the definition of
the functional. We consider at first the set K := {ρ ∈ P2(Ω) : ρ ≤ 1}, which helps us in
the formulation of the constraints.

Let us consider the functional

F (ρ) =

∫
Ω

Ddρ+ IK(ρ),

where

IK(ρ) =

{
0, if ρ ∈ K,
+∞, otherwise.

Here the function D is sufficiently regular, in the special case of crowd motion theory
(see for example [24]) the authors wanted to gain information about a motion, where the
vector field u := −∇D was used.
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So for the discrete time scheme for gradient flow of the functional F we fix a time step
τ > 0 and consider the minimization scheme as usual:

ρτk+1 ∈ argminρ∈P2(Ω)F (ρ) +
1

2τ
W 2

2 (ρ, ρτk).

Now we want to say a few words about the optimality conditions (similarly to (1.4.1))
in terms of δF

δρ
. This is explained also in [32]. So let us denote by ψ := δF

δρ
+ φ

τ
, where φ is

the Kantorovich potential. If we do not consider for the moment the constraint, ρ ∈ K,
we have that the optimal ρ is concentrated on argmin ψ = D+ φ

τ
. This fact is also because

ρ minimizes also the functional ρ 7→
∫
ψdρ.

But now, if we want to take in consideration the constraint, i.e. ρ ∈ K, and we know
that K is a convex set, we can take a variation of the form ρε := (1 − ε)ρ + ερ̃, for any
ρ̃ ∈ K. Here we mention, that we cannot take an arbitrary probability measure for ρ̃.

In this case instead of (1.4.1) we will have:∫
ψdρ ≤

∫
ψdρ̃, ∀ρ̃ ∈ K.

We have here an important remark, namely that for a given function ψ for the min-
imizers of ρ 7→

∫
ψdρ it is sufficient to concentrate ρ on a level set of ψ, and put the

maximal possible density (which is 1) on it. This implies that there is a constant l such
that

ρ =


1, on ψ < l,
0, on ψ > l,
∈ [0, 1], on ψ = l.

We will see later on, that this also will motivate the introduction of a pressure p, and
consider the constraint in the term of this pressure.
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Chapter 2

Some Preliminaries on Optimal
Control Theory and Semi-Concavity

We also have seen, that Optimal Control theory is also a very important tool in MFG
theory. While the Optimal Transportation theory helps us in the understanding of the
Fokker-Planck type equations in a MFG system, the theory of Optimal Control is an
indispensable tool to study the Hamilton-Jacobi type equation of the system. We will
also see later on, that some semi-concave estimates on the value function are also very
important. That is why we spend some time giving some definitions and properties on
these subjects. A very good reference, which is exactly what we need at this point is the
monograph of P. Cannarsa and C. Sinestrari, [7]. So following this book we give some
basic definitions and results on this topic.

2.1 Basic definitions and assumptions

Definition 2.1.1. [7] A control system consists of a pair of (f,A), where A ∈ Rm is a
closed set and f : Rd ×A → Rd is a continuous function. The set A is called the control
set, while f is called the dynamics of the system. The state equation associated with the
system is {

y′(t) = f(y(t), α(t)), t ∈ [t0,+∞) a.e.,
y(t0) = x,

(2.1.1)

where t0 ∈ R, x ∈ Rd and α ∈ L1
loc([t0,+∞),A). The function α is called a control strategy

or simply a control. We denote the solution of (2.1.1) by y(·, t0, x, α) and we call is the
trajectory of the system corresponding to the initial condition y(t0) = x and to the control
α.

The word “control” sometimes is used to denote elements v ∈ A and sometimes for
functions α : [t0,+∞)→ A; the meaning should be clear from the context.

We restrict ourselves to autonomous control systems, where f(x, α) is not depending
explicitly on t, this is done for the sake of simplicity since the results we present can
be easily extended to the non-autonomous case and in the studying of MFG systems we
usually work with autonomous control systems.
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We now list some basic assumptions on our control system which will be needed in
most of the results we will present in this chapter. These formulations are borrowed from
[7].

(H0) The control set A is compact.

(H1) There exists K1 > 0 such that |f(x2, α)−f(x1, α)| ≤ K1|x2−x1|, for all x1, x2 ∈ Rd

and α ∈ A.

(H2) ∂f
∂x

exists and it is continuous, in addition, there exists K2 > 0 such that∣∣∣∣∣∣∂f
∂x

(x2, α)− ∂f

∂x
(x1, α)

∣∣∣∣∣∣ ≤ K2|x2 − x1|,

for all x1, x2 ∈ Rd and α ∈ A.

It is well-known fact from the theory of ODEs that assumption (H1) ensures the
existence of a unique global solution to the state equation (2.1.1) for any choice of t0, x
and α.

An optimal control problem consists of choosing the control strategy α in the state
equation (2.1.1) in order to minimize a given functional. We will introduce the so-called
Bolza problem, which is exactly the type of problem, which will arrive in our consideration
later on, studying MFG systems.

We are giving a control system (f,A), a function g ∈ C(Rd) and a finite time T > 0,
in addition, a function L ∈ C(Rd ×A) is assigned, called running cost. The function g is
called the final cost. For any (t, x) ∈ [0, T ]× Rd we consider the functional

Jt,x(α) =

∫ T

t

L(y(s), α(s))ds+ g(y(T )), (2.1.2)

where y(·) = y(·, t, x, α) obtained from the state equation (2.1.1), and we consider the
control problem

(BP ) min
α:L1([t,T ],A)

Jt,x(α).

We also give some assumption on L, which we will need later in some results.

(L1) For any R > 0 there exists cR > 0 such that |L(x2, α)− L(x1, α)| ≤ cR|x2 − x1|, for
all x1, x2 ∈ B(0, R), α ∈ A.

(L2) For any x ∈ Rd the following set is convex: L(x) := {(λ, v) ∈ Rd+1 : ∃α ∈ A s.t. v =
f(x, α), λ ≥ L(x, α)}.

(L3) For any R > 0 there exists λR > 0 s.t.

L(x, α) + L(y, α)− 2L

(
x+ y

2
, α

)
≤ λR|x− y|2,∀x, y ∈ B(0, R), α ∈ A.

Definition 2.1.2. [7] A control α : [t, T ]→ A such that the infimum in (BP ) is attained
is called optimal for problem (BP ) with initial point (t, x). The corresponding solution
y(·) = y(·, t, x, α) of (2.1.1) is called an optimal trajectory or a minimizer.
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We now present the following result concerning the existence of optimal trajectories
for (BP ). The main step is contained in the following theorem.

Theorem 2.1.3. [7] Assume that (H0),(H1),(L1) and (L2) hold. Let {yk} be a set of
trajectories in (2.1.1) in some given interval [t0, t1], that is yk(·) = yk(·, t0, xk, αk) for
some xk ∈ Rd and αk : [t0, t1] → A. If the trajectories yk are uniformly bounded, then
there exists a subsequence, still denoted by {yk} converging uniformly to an arc y which
is a trajectory of (2.1.1) associated with some control α and satisfies∫ t1

t0

L(y(s), α(s))ds ≤ lim inf
k→+∞

∫ t1

t0

L(yk(s)αk(s))ds.

Theorem 2.1.4. [7] Assume that (H0),(H1),(L1) and (L2) hold and that g is continuous.
Then, for any (t, x) ∈ [0, T ]× Rd, there exists an optimal control for problem (BP ).

Let us now consider the case when the control set A is not bounded (for instance is the
whole space Rm) and thus (H0) is not satisfied. In this case we can replace the assumption
(H0) with the following ones:

(H∗) There exists K0 > 0 such that

|f(x, α)| ≤ K0(1 + |x|+ |α|),∀x ∈ Rd, α ∈ A.

(L∗) There exists l0 ≥ 0 and a function l : [0,+∞) → [0,+∞) with limr→∞
l(r)
r

= +∞
and such that

L(x, α) ≥ l(|α|)− l0,∀x ∈ Rd, α ∈ A.

Now we have the following result:

Theorem 2.1.5. [7] Let (f,A) be a control system satisfying (H∗) and (H1). Let T > 0,
let g be locally Lipschitz and bounded from below and let L ∈ C(Rd × A) satisfying (L∗)
and (L1). Then, for any R > 0 there exists µR > 0 with the following property: given
(t, x) ∈ Rd ×B(0, R), if we set MR := {α : [t, T ]→ A : ||α||∞ ≤ µR} we have

inf
α∈L1([t,T ])

Jt,x(α) = inf
α∈MR

Jt,x(α).

The previous result shows that the control problem under consideration is equivalent
to one with compact control space. Thus we can obtain the following result.

Theorem 2.1.6. [7] Let the hypotheses of the previous theorem be satisfied and let (L2)
also hold. Then there exists an optimal control for the problem (BP ) for any initial con-
dition (t, x) ∈ [0, T ]× Rd.
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2.2 The value function and a Hamilton-Jacobi equa-

tion

Now let us introduce the value function of the Bolza problem.

Definition 2.2.1. [7] Given (t, x) ∈ [0, T ]× Rd, we define

V (t, x) = inf
α measurable

Jt,x(α).

The function V is called the value function of the control problem (BP ).

One can prove that the value function satisfies the dynamic programming principle:
for any given (t, x) ∈ (0, T )Rd and s ∈ [t, T ] we have

V (t, x) = inf
α:[t,s]→A

V (s, y(s, t, x, α)) +

∫ s

t

L(y(τ, t, x, α), α(τ))dτ. (2.2.1)

Now we can have some regularity properties for the value function, under some as-
sumptions.

Theorem 2.2.2. [7] Let our control system satisfy the assumptions (H0),(H1), (L1) and
let g ∈ Liploc(Rd). Then V ∈ Liploc([0, T ]× Rd).

Theorem 2.2.3. [7] Let the assumptions (H0), (H1), (H2), (L1), (L3) be satisfied and
let g be locally semi-concave with linear modulus in Rd. Then V is locally semi-concave
with linear modulus in [0, T ]× Rd.

Analogous results hold when the control space is not necessarily compact but the
running cost is super-linear w.r.t. α, more precisely

Theorem 2.2.4. [7] Let (f,A) be a control system satisfying (H∗) and (H1).
(i) Let g be locally Lipschitz and bounded from below, and let L ∈ C(Rd×A) satisfying

(L1) and (L∗). Then the value function V for (BP ) is locally Lipschitz.
(ii) Suppose, in addition, that g is locally semi-concave with linear modulus, f satisfies

(H2) and L satisfies the following: for any R > 0, there exists λR such that

L(x, α) + L(y, α)− 2L

(
x+ y

2
, α

)
≤ λR|x− y|2,∀x, y ∈ B(0, R), α ∈ A ∩B(0, R).

Then V is locally semi-concave with linear modulus in [0, T ]× Rd.

The value function of a Bolza problem also satisfies a suitable Hamilton-Jacobi equa-
tion in viscosity sense. The Hamiltonian in this case is defined as

H(x, p) = max
α∈A

(−p · f(x, α)− L(x, α)) .

Then we have the following result.
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Theorem 2.2.5. [7] Under the hypotheses of Theorem 2.2.2 and Theorem 2.2.4(i), the
value function V is a viscosity solution of the problem{

−∂tV (t, x) +H(x,∇V (t, x)) = 0, (t, x) ∈ (0, T )× Rd,
V (T, x) = g(x), x ∈ Rd.

(2.2.2)

Now we can formulate a very important theorem of the control theory w.r.t. the Bolza
problem, namely the Pontryagin maximum principle formulated for a compact A, but
which can be extended, as we have seen already.

Theorem 2.2.6. [7] Let f and L satisfy the hypotheses (H0), (H1), (L1) and let g be
continuous. Suppose in addition that ∂f

∂x
and ∂L

∂x
exist and are continuous w.r.t. x. Given

(t, x) ∈ [0, T ]×Rd, let α : [t, T ]→ A be an optimal control for problem (BP ) with initial
point (t, x) and let y(·) = y(·, t, x, α) be the corresponding optimal trajectory. For a given
q ∈ D+g(y(t)) (the set of all super-differentials of g in y(T )), let p : [t, T ] → Rd be a
solution of the equation{

p′(s) = −∂f
∂x

t
(y(s), α(s))p(s)− ∂L

∂x
(y(s), α(s)), s ∈ [t, T ] a.e.

p(T ) = q.
(2.2.3)

Then, p(s) satisfies, for s ∈ [t, T ] a.e.

−f(y(s), α(s)) · p(s)− L(y(s), α(s)) ≥ −f(y(s), v) · p(s)− L(y(s), v),

for all v ∈ A. In addition

p(s) ∈ ∇+V (s, y(s)),∀s ∈ [t, T ].

Remark 2.2.7. Here we denoted by ∂f
∂x

t
the transpose of the Jacobian matrix ∂f

∂x
.

Throughout this chapter we used the usual definition of the semi-concavity, which we
can formulate and characterize in the following way.

Definition 2.2.8. [7] Let A ∈ Rd be an open set. We say that a function u : A → R
is semi-concave with linear modulus if it is continuous in A and there exists C ≥ 0 such
that

u(x+ h) + u(x− h)− 2u(x) ≤ C|h|2,
for all x, h ∈ Rd such that [x− h, x+ h] ⊂ A. The constant C is called the semi-concavity
constant for u in A.

Proposition 2.2.9. [7] Given u : A → R, with A ⊂ Rd open, convex and given C ≥ 0,
the following properties are equivalent:

(a) u is semi-concave with a linear modulus in A and with semi-concavity constant C;

(b) u satisfies

λu(x) + (1− λ)u(y)− u(λx+ (1− λ)y) ≤ C
λ(1− λ)

2
|x− y|2,

for all x, y such that [x, y] ⊂ A and λ ∈ [0, 1];
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(c) the function x 7→ u(x)− C
2
|x|2 is concave in A;

(d) there exist two functions u1, u2 : A→ R such that u = u1 + u2, where u1 is concave,
u2 ∈ C2(A) and satisfies ||∇2u2||∞ ≤ C;

(e) for any ν ∈ Sd−1 we have ∂2u
∂ν2
≤ C in A in the sense of distributions, that is∫

A

u(x)
∂2φ

∂ν2
(x)dx ≤ C

∫
A

φ(x)dx, ∀φ ∈ C∞0 (A), φ ≥ 0;

(f) u can be represented as u(x) = infi∈I ui(x), where {ui}i∈I is a family of functions of
C2(A) such that ||∇2ui||∞ ≤ C for all i ∈ I.
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Chapter 3

Existence and Uniqueness for a
Standard First Order MFG System

In this chapter we want to present briefly how can we obtain existence and uniqueness
results for a standard first order MFG system (i.e. without any density constraints).
Basically what we will do is to show the mains ideas which were used in the proofs of
Theorem 0.2.1 and Theorem 0.2.2. These are contained in a very nice and detailed way in
[8], so we borrow these ideas from this reference, moreover we recommend this reference
for a better insight to this theory.

The basic idea behind all the machinery which is needed in the proof of the Theorem
0.2.1 (i.e. proving existence result in the case of the system (0.2.1)) is to split the system in
two part. First to take the unknown density from the system as a given quantity and study
(just) the Hamilton-Jacobi equation (show the existence and uniqueness of a solution).
Secondary to prove existence and uniqueness of a solution of the continuity equation for a
given value function. And finally to “glue” these two information together, in the following
sense: define an abstract operator, which for example for an input density creates through
the unique solution of the Hamilton-Jacobi equation (with this given input density), an
output, which is the unique solution of the continuity equation (with the recently got
value function as a given quantity). This operator will be well-defined, because of the
existence and uniqueness results in the two little problems, hence it remains just to prove
some continuity property of the operator and use a fixed point theorem (for example
Schauder’s) and we are done with the existence.

For the uniqueness result in the case of (0.2.1) (i.e. Theorem 0.2.2) we just have to
use some monotonicity assumptions, which were mentioned in the Introduction. We will
give some details later on.

3.1 Existence results

At fist let us consider the Hamilton-Jacobi equation of the system (0.2.1).{
−∂tu+ 1

2
|∇xu|2 = f(t, x), in (0, T )× Rd,

u(T, x) = g(x), in Rd.
(3.1.1)
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We have seen a more or less detailed theory on this type of equations in the previous
chapter (see also [7]) and as we have seen, the most fundamental regularity property of
the solutions of this equation is semi-concavity.

So we formulate a result regarding the solution of this problem.

Lemma 3.1.1 ([8]). For any C > 0 there is a constant C1 = C1(C) such that is f :
[0, T ]× Rd → R and g : Rd → R are continuous and such that

||f(t, ·)||C2 ≤ C, ∀t ∈ [0, T ], ||g||C2 ≤ C,

then the equation (3.1.1) has a unique bounded continuous viscosity solution which is given
by the formula:

u(t, x) = inf
α∈L2([t,T ],Rd)

∫ T

t

1

2
|α(s)|2 + f(s, x(s))ds+ g(x(T )), (3.1.2)

where x(s) = x+
∫ s
t
α(τ)dτ. Moreover u is Lipschitz continuous and satisfies

||∇x,tu||∞ ≤ C1 and ∇2
xxu ≤ C1Id,

where the last inequality holds in the sense of distributions.

For a point (t, x) ∈ [0, T )×Rd as before in the previous chapter we denote by A(t, x)
the set of optimal controls in the problem (3.1.2). It is a well-known result from optimal
control theory that this set is nonempty, moreover if (tn, xn)→ (t, x) and αn ∈ A(tn, xn)
then up to a subsequence (αn) weakly converges in L2 to some α ∈ A(t, x).

We can formulate now the next result.

Lemma 3.1.2 ([8]). Let (t, x) ∈ [0, T ]×Rd, α ∈ A(t, x) and let us set x(s) = x+
∫ s
t
α(τ)dτ.

Then the following statements are true:

(i) For any s ∈ (t, T ], the restriction of α to [s, T ] is the unique element of A(s, x(s));

(ii) ∇xu(t, x, ) exists if and only if A(t, x) is reduced to a singleton. In this case,∇xu(t, x) =
−α(t), where A(t, x) = {α}.

We also can formulate a “reverse” result in the following lemma:

Lemma 3.1.3 ([8]). Let (t, x) ∈ [0, T )×Rd and x(·) be an absolutely continuous solution
to the differential equation{

x′(s) = −∇xu(s, x(s)), a.e. in [t, T ],
x(t) = x.

(3.1.3)

Then the control α := x′ is optimal for u(t, x). Moreover if u(t, ·) is differentiable at x,
then the equation (3.1.3) has a unique solution, corresponding to the optimal trajectory.
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We remark here that the graph of (t, x) 7→ A(t, x) is weakly closed in L2([0, T ],Rd).
From this we can conclude that this map is measurable with nonempty closed values,
so it has a Borel measurable selection α, more precisely α(t, x) ∈ A(t, x), ∀(t, x). This
motivates the definition of the flow

Φ(x, t, s) = x+

∫ s

t

α(t, x)(τ)dτ, ∀s ∈ [t, T ].

We have the following result for this recently defined flow:

Lemma 3.1.4 ([8]). The flow Φ has the semi-group property, i.e.

Φ(x, t, s′) = Φ(Φ(x, t, s), s, s′), ∀t ≤ s ≤ s′ ≤ T.

Moreover it satisfies

∂sΦ(x, t, s) = −∇u(s,Φ(x, t, s)), ∀x ∈ Rd, s ∈ (t, T ),

and
|Φ(x, t, s′)− Φ(s, t, s)| ≤ ||∇u||L∞ |s′ − s|, ∀x ∈ Rd,∀t ≤ s ≤ s′ ≤ T.

Now our aim is to present some existence and uniqueness result for the solutions of the
continuity equation. So if it is given the unique solution of (3.1.1), we study the continuity
equation {

∂tµ(s, x)−∇ · (∇xu(s, x)µ(s, x)) = 0, in (0, T )× Rd

µ(0, x) = m0(x), in Rd.
(3.1.4)

Theorem 3.1.5 ([8]). Given a solution u to (3.1.1) and under the assumptions of Theo-
rem 3.1.1 the problem (3.1.4) has a unique weak solution given by the formula

s 7→ µ(s) := Φ(·, 0, s)#m0.

Now we present a stability result which will be needed in the construction of the fixed
point scheme. Consider a sequence (mn) in C([0, T ],P1) which uniformly converges to
m ∈ C([0, T ],P1) and let un be the solution of{

−∂tun + 1
2
|∇xun|2 = F (x,mn(t)), in (0, T )× Rd,

un(T, x) = g(x,mn(T )), in Rd,
(3.1.5)

and u let be the solution of{
−∂tu+ 1

2
|∇xu|2 = F (x,m(t)), in (0, T )× Rd,

u(T, x) = g(x,m(T )), in Rd.
(3.1.6)

Furthermore we denote by Φn the flow associated to un and Φ the flow associated to u
and set µn(s) := Φn(·, 0, s)#m0 and µ(s) := Φ(·, 0, s)#m0. In this setting we have the
following result:

Lemma 3.1.6 ([8]). The solution un locally uniformly converges to u in [0, T ]×Rd while
µn converges to µ in C([0, T ],P1).
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Now we are able to obtain an existence result of the solution of the system (0.2.1), i.e.
proving the Theorem 0.2.1.

Proof of Theorem 0.2.1. Let us consider K the convex subset of maps m ∈ C([0, T ],P1)
such that m(0) = m0. Let us consider the following operator on K : to every m ∈ K let
us associate the unique solution u of the problem (3.1.6), and to this solution u let us
associate the unique solution of (3.1.4). Then µ ∈ K, so the operator is well-defined and
from the above mentioned stability result this is also continuous.

Moreover we also know from [8] that there exists a constant R > 0, independent of m,
such that for any s ∈ [0, T ], µ(s) has support in B(0, R) and satisfies

W1(µ(s), µ(s′)) ≤ R|s− s′|, ∀s, s′ ∈ [0, T ].

This fact will imply that the above defined operator m 7→ µ is compact because s 7→ µ(s)
is uniformly Lipschitz continuous with values in the compact set of probability measures
P1(B(0, R)).

So at this point we are able to use Schauder’s fixed point theorem, which says that
any continuous map defined on a convex, compact set of a Banach space has a fixed point.
By this result we concluded the proof of the theorem, i.e. the existence of a solution of
the first order MFG system.

3.2 Uniqueness results

Now having in mind the assumptions of the Theorem 0.2.2, i.e.

∫
Rd

(F (x,m1)− F (x,m2)) d(m1 −m2) > 0,∀m1,m2 ∈ P1,m1 6= m2, (3.2.1)

and ∫
Rd

(G(x,m1)−G(x,m2)) d(m1 −m2) ≥ 0, ∀m1,m2 ∈ P1. (3.2.2)

we will prove the uniqueness of a solution of the standard firts order MFG system, (0.2.1).

Proof of the Theorem 0.2.2. We will work with a contradiction argument, so assume that
there exist two solutions (u1,m1) and (u2,m2) of the system (0.2.1). Let us define u :=
u1 − u2 and m = m1 −m2. With the help of these notations we can write the Hamilton-
Jacobi and the continuity equations satisfied by u and m. These are:

−∂tu+
1

2

(
|∇xu1|2 − |∇xu2|2

)
− (F (x,m1)− F (x,m2)) = 0, (3.2.3)

and

−∂tm−∇ · (m1∇xu1 −m2∇xu2) = 0. (3.2.4)

Now we write the weak formulations of these equations, starting with the second one. We
use as test function u (which we can assume that it is of class C1) in equation (3.2.4),
hence we multiply the equation and integrate w.r.t. time and space. We have
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−
∫
Rd
m(T )u(T ) +

∫
Rd
m(0)u(0) +

∫ T

0

∫
Rd

(∂tum−∇xu · (m1∇xu1 −m2∇xu2)) = 0.

Now we multiply the equation (3.2.3) by m and integrate over time and space, so we have

∫ T

0

∫
Rd

(
−∂tum+

m

2

(
|∇xu1|2 − |∇xu2|2

)
−m(F (x,m1)− F (x,m2))

)
= 0.

Now we assume that m(0) = 0 and add the two weak formulations. After simplifications
we get

−
∫
Rd
m(T )(G(x,m1(T ))−G(x,m2(T ))) +

∫ T

0

∫
Rd

(
m

2

(
|∇xu1|2 − |∇xu2|2

))
−
∫ T

0

∫
Rd

(m(F (x,m1)− F (x,m2)) +∇xu · (m1∇xu1 −m2∇xu2)) = 0

We remark here that we have by assumption that∫
Rd
m(T )(G(x,m1(T ))−G(x,m2(T ))) ≥ 0,

moreover we have the formula

m

2

(
|∇xu1|2 − |∇xu2|2

)
−∇xu · (m1∇xu1 −m2∇xu2) = −m1 +m2

2
|∇xu1 −∇xu2|2.

These statements will imply that∫ t

0

∫
Rd
m(F (x,m1)− F (x,m2)) ≤ 0,

which together with the assumption (3.2.1) will imply that m = 0, so m1 = m2. But this
will imply that u1 = u2, because they solve the equation for the same measure. So finally
we have the uniqueness result we wanted.
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Chapter 4

An Approach of MFG with Density
Constraints

In this chapter we actually give a model for Mean Field Games with density constraints in
the deterministic case. This problem arises from the “congestion” case, where in the cost
that agents optimize there is a penalization for passing through zones with high density
of other agents. This is a natural problem in real life, because the agents do not want to
go to places, where there is already a huge number of other agents.

This model, we will present is due to Filippo Santambrogio, and can be found in [30].
Although in this paper the model is presented in a very detailed way, for the completeness
we will present it shortly.

The idea of this model comes from some recent works about crowd motion, where
the density constraints were treated in terms of projections of the velocity field onto the
set of admissible velocities (with a constraint on the divergence) and a pressure field was
introduced. In the paper [30] it was written the corresponding system of PDEs and also
proposed some open problems. In what it follows, we would like to understand this model
and answer some of the open problems regarding mainly to the existence and uniqueness
of the solutions.

Now we will present some results about the crowd motion with density constraints
and present the construction of the MFG system with this constraints, i.e. the adaptation
of the ideas from crowd motion.

4.1 Crowd motion with density constraints

In the usual models for pedestrian motion we can use the terminology of “soft congestion”,
which is the description of the natural fact that people slow down when the density of
the crowd around them is too high. Here is also very natural to say that their speed is
(or influenced by) a decreasing function of the density ρ.

Maury and Venel in [23] presented another model where the idea is that particles can
move as they want as far as they are not too dense, but, if a density constraint is fulfilled,
there velocity field u will be modified into another field v, which is less concentrating and
usually slower. Here comes the main assumption of the model, which we will somehow
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also use in our MFG model with density constraints, i.e. the new field v is the projection
of u onto the cone of admissible velocities. These velocities are those that infinitesimally
preserve the constraints. The authors in [23] were considering a discrete (microscopic) case,
where individuals are represented by small disks. The density constraint is interpreted as
a non-superposition constraint: particles cannot overlap, but as soon as they are not in
touch their motion is unconstrained. When they touch, the set of admissible velocities
restricts to those that increase the distance of every pair of particles in contact.

Later on, a continuous (macroscopic) model has also been established in [24] (see also
[25] for the latest developments and a micro-macro comparison).

The studied model is the following:

• The population of the particles is described by a probability measure (here actually
we can identify probability measures with their densities, because we are working
only with absolutely continuous measures) ρ ∈ P(Ω);

• The non-overlapping constraint is replaced by the condition ρ ∈ K := {ρ ∈ P(Ω) :
ρ ≤ 1};

• For every time t, we consider ut : Ω → Rd a vector field, possibly depending on ρ.
We remark here that this scheme is more general, than the one briefly discussed in
the Section 1.5, because while there we took for the vector field the opposite of the
gradient of a (semi-convex) function, here we take an arbitrary vector field, possibly
depending on ρ;

• For every density ρ we have a set of admissible velocities, characterized by the
sign of the divergence on the saturated region {ρ = 1}, so the set is: adm(ρ) :={
v : Ω→ Rd : ∇ · v ≥ 0 on {ρ = 1}

}
;

• We consider the projection operator P, which is either the projection in L2(Ld) or
in L2(ρ) (this will turn out to be the same, since the only relevant zone is {ρ = 1});

• Finally we solve the equation

∂tρt +∇ ·
(
ρtPadm(ρt)[ut]

)
= 0, (4.1.1)

in the weak sense, which definition was already given.

One can show the existence of a solution of this problem by a discrete scheme, taking
a fixed positive time step τ > 0 and consider the sequence ρτ0 := ρ0 and for k ≥ 0 define
ρ̃τk+1 = (id + τu)#ρk and finally ρτk+1 = PK [ρ̃τk+1]. By this construction letting τ → 0 we
will have existence of a solution in the described model.

But the main difficulty solving explicitly (4.1.1) even in the weak sense is, that the
vector field vt = Padm(ρt)[ut] is nor regular at all, because it was obtained as an L2

projection, and may only be expected L2 a priori, neither depends regularly on ρ.
By duality arguments we can modify the set of admissible velocities, and due to this

modification the problem will be more easier to handle.

adm(ρ) =

{
v ∈ L2(ρ) :

∫
v · ∇p ≤ 0 ∀p ∈ H1(Ω) : p ≥ 0, p(1− ρ) = 0

}
.
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In this sense we characterize v = Padm(ρ)[u] through

u = v +∇p, v ∈ adm(ρ),

∫
v · ∇p = 0,

p ∈ press(ρ) :=
{
p ∈ H1(Ω) : p ≥ 0, p(1− ρ) = 0

}
,

where press(ρ) is the space of functions p used as test functions in the dual definition
of adm(ρ). They play the role of pressures in the movement. The two cones ∇press(ρ)
and adm(ρ) are orthogonal to each other and that is why this allows the orthogonal
decomposition of u = v +∇p.

So we can write our continuity equation in the form:

∂tρ+∇ · (ρ(u−∇p)) = 0, p ≥ 0, p(1− ρ) = 0. (4.1.2)

We remark here the fact that the orthogonality condition
∫
v · ∇p = 0 is no more

necessary and is a consequence of the continuity equation. This may be informally seen
in the following way. Fix a time t0 and notice that∫

pt0dρt0 =

∫
pt0 ≥

∫
pt0dρt,

which means that the function t 7→
∫
pt0dρt is maximal at t = t0. By differentiating and

using the definition of the weak solution of the continuity equation, we get

0 =

∫
∇pt0 · vt0dρt0 =

∫
∇pt0 · vt0 ,

(however this proof is only formal because nothing guarantees that t 7→
∫
pt0dρt is differ-

entiable at t = t0, but this can be fixed and it is possible to obtain
∫
∇pt0 · vt = 0 for a.e.

t).
Because of the lack of regularity of v the main tools to prove at least existence of

a solution of the continuity equation lie in the theory of Optimal Transportation and
Wasserstein distances (and gradient flows for W2).

An interesting point here is that the constraint ρ ∈ K may be seen as a limit of Lm

penalization as m → +∞, however it is pointed out in [30], that this method of density
penalization is hard to adapt to MFG systems with density constraints. Later on we will
present some other alternative methods to handle this problem.

4.2 The MFG system with density constraints

In [30] we can see how is constructed a MFG system with density constraints using the
approach with the pressure, presented in the previous section. So we recall the construction
of this model.

Actually we will study a first order deterministic problem, similar to the one presented
in the Introduction (0.2.1). Now we will give the expression of the effect of the density
constraints through the existence of a non-zero pressure field. This of course requires
changing the definition of the equilibrium.

The model is as follows:

27



• The situation is described through a pair (ρ, α), where ρt stands for the density of
the agents at time t and α(t, x) for the effort that the agent located at x at time t
makes to control his movement. We require that (ρ, α) satisfies

∂tρt +∇ · (ρt(Padm(ρt)[αt])) = 0

which means that ρ is convected by the projection of this effort vector field.

• Considering the projection of αt onto adm(ρt) a pressure pt appears such that

Padm(ρt)[αt] = αt −∇pt, pt ∈ press(ρt),
∫
Padm(ρt)[αt] · ∇pt = 0

(but again, the orthogonality condition in included in the continuity equation).

• Every agent wants to optimize his own control problem, where the state equation
is influenced by the pressure:

min

∫ T

t

|α(s)|2

2
ds+G(y(T )) : y′(s) = α(s)−∇ps(y(s)), y(t) = x.

• The configuration (ρ, α) is said to be an equilibrium if the original effort field α co-
incides with the optimal effort in this control problem and if the original densities ρt
coincide with the densities realized at time t according to these optimal trajectories.

We compute the Hamiltonian of this control problem and after this we will write down
the system which is associated to such an equilibrium.

H(t, x, ξ) = sup
α

(
−ξ · (α−∇xp(t, x))− |α|

2

2

)
=
|ξ|2

2
+ ξ · ∇xp(t, x),

the optimal α in this maximization being exactly −ξ. This means that the optimal effort
at (t, x) will be −∇xu(t, x) (the gradient of the value function) and that the vector field
appearing in the continuity equation will be −∇xu−∇xp. We finally get our MFG system

(i) −∂tu+ |∇xu|2
2
−∇xu · ∇xp = 0, in [0, T ]× Rd,

(ii) ∂tρ−∇ · (ρ(∇xu+∇xp)) = 0, in [0, T ]× Rd,
(iii) p ≥ 0, p(1− ρ) = 0, in [0, T ]× Rd,
(iv) u(T, x) = G(x), ρ(0, x) = ρ0(x), in Rd,

(4.2.1)

where the first equation is understood in viscosity sense, while the second in distributional
sense.

At this point it is very important to remark that the density only is not sufficient
to describe the configuration, so the equilibrium may only be defined in terms of a pair
(ρ, α). This is because of the fact that the pressure at time t does not depend on the
density ρt only, but on the vector field that we project onto adm(ρt). This is the main
difference between this approach and the gradient flow framework presented for crowd
motion in [24], where the vector field to be projected was itself a function of ρ.
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4.3 Towards to existence results with density con-

straints

We mentioned already that in [30] there were proposed many open questions regarding
to the given first order MFG system with density constraints, presented in the previous
chapter. Actually by now, we do not know any results for example considering existence
and uniqueness of a solution of the presented system.

Our main aim in this chapter is to give some positive answers to these questions. At
first we will not follow the way described in [30], i.e. the method of density penalization,
which guarantee that the constraints will be fulfilled, but we try to build in the constraints
in a good constructed fixed point scheme (somehow similar to the scheme presented in [8])
which will ensure the existence of a solution, moreover the satisfaction of the constraints.

Remark 4.3.1. We mention here that for the simplicity we will denote later on by ∇f =
∇xf , the gradient of a function f : [0, T ]× Rd → R with respect to the space variable.

4.3.1 A fixed point method for the existence

As we said it before, to show the existence of a solution of (4.2.1) we would like to use a
fixed point argumentation. Let us describe the idea.

• As an initial step we take a pair (ρ, α), where ρ satisfies the density constraint
and α is an optimal control for our control problem (which will exist under the
correct assumptions). Now from this pair we will define a pressure (more precisely
the gradient of the pressure) using the projection operator onto the space adm(ρ).

• With the obtained pressure we solve the Hamilton-Jacobi equation with the final
state condition ((i) from (4.2.1)), and we get a (unique) value function u.

• Now we would like to show the existence and uniqueness of a pair (ρ, p) which
solves the continuity equation equipped with the initial condition, moreover where
ρ satisfies the density constraint defined with the help of the pressure p ((ii), (iii)
from (4.2.1)).

• As next step we define an abstract operator, which associates to this pair (ρ, p) the
unique pair, what we get after another loop (now we take the obtained p as the
initial pressure when we solve the Hamilton-Jacobi equation).

• As last step we have to prove some properties of this operator (continuity, etc.) and
of the space, on which it acts in order to use some fixed point theorem (for example
Schauder’s), which will give us the existence of the density ρ saturating also the
constraint. The existence of u will be a consequence.

So this is the idea of proving the existence. Of course we have to prove each interme-
diate steps rigorously.

Remark 4.3.2. As we mentioned in Chapter 2, we use the same notation A for a function
space, and also a subset of the Euclidean space of controls, but this will be clear in the
context.
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Now we want to do each step in the proof of the existence algorithm precisely. For this
at first we study the Hamilton-Jacobi equation with the final state condition, i.e.{

−∂tu+ 1
2
|∇u|2 −∇p · ∇u = 0, in [0, T ]× Rd,

u(T, x) = g(x), in Rd.
(4.3.1)

As we have seen in Chapter 2, under some assumptions on the p and g, we can gain
existence, uniqueness and also some regularities on the value function u. So at first let us
translate the hypotheses, which were used in the mentioned chapter, to our problem and
then we formulate some properties.

So these hypotheses are:

(H0′) The set A is compact;

(H1′) There exists K1 > 0 such that |∇p(x1) − ∇p(x2)| ≤ K1|x1 − x2|,∀x1, x2 ∈ Rd, i.e.
p ∈ C1,1(Rd). We remark that so far we just translated this hypothesis from [7] to
our case, but as we will see it is to strong to assume this property on the pressure
p. But this property is needed only to ensure the existence and uniqueness of the
solution of the Cauchy problem, and it is well-known that in our case for this it is
enough for p to be semi-convex (which would be more natural assumption to have),
hence we transform this hypothesis into the following one:

∃K1 > 0 : (∇p(x1)−∇p(x2)) · (x1 − x2) ≥ K1|x1 − x2|2,∀x1, x2 ∈ Rd.

(H2′) ∇2p exists and is continuous; in addition, there exists K2 > 0 such that ||∇2p ·
x1 − ∇2p · x2|| ≤ K2|x1 − x2|,∀x1, x2 ∈ Rd. Here we also have the remark, that
this assumption is needed only to ensure the semi-concavity regularity for the value
function, which we cannot use in our scheme, hence we will not need this regularity
for the introduced pressure p.

The running cost in our control problem is L(x, α) := 1
2
|α|2, so the assumptions (L1)

and (L3) will hold trivially. But this is not the situation in the case of assumption (L2),
so we reformulate this as follows.

(L2′) For any x ∈ Rd, the following set is convex:

L(x) :=

{
(λ, v) ∈ Rd+1 : ∃α ∈ A s.t. v = α−∇p(x), λ ≥ 1

2
|α|2
}
.

Here let us consider the case when the control set is unbounded and thus assumption
(H0′) does not hold. In this case we replace again this assumption with the following one:

(H∗
′
) There exists K0 such that

|∇p(x)| ≤ K0|x|,∀x ∈ Rd;
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Because of the particularity of the running cost, the (L∗) property is automatically satis-
fied (we can take l0 = 0 and l(r) = 1

2
r2).

Now we are dealing with the following dynamic programming problem and state equa-
tion for a given p ∈ H1(Rd).

u(t, x) = sup
α∈L2([t,T ],Rd)

−
∫

1

2
|α(s)|2ds+ g(y(T )) = inf

α∈L2([t,T ],Rd)

∫
1

2
|α(s)|2ds+ g(y(T )),

(4.3.2)
where y solves the state equation{

y′(s) = α(s)−∇p(s, y(s)), s ∈ (t, T ],
y(t) = x.

(4.3.3)

So we can formulate for our problem similar results as in Theorem 2.2.2, Theorem
2.2.3, Theorem 2.2.4 and Theorem 2.2.5.

Proposition 4.3.3. (i) Let our control system satisfy the assumptions (H0′),(H1′) and
let g ∈ Liploc(Rd). Then u ∈ Liploc([0, T ]× Rd).

(ii) Let assume moreover the assumption (H2′) be satisfied and let g be locally semi-
concave with linear modulus in Rd. Then u is locally semi-concave with linear modulus in
[0, T ]× Rd.

Analogous results hold when the control space is not necessarily compact.

Proposition 4.3.4. Let our control system satisfying (H∗
′
) and (H1′).

(i) Let g be locally Lipschitz and bounded from below. Then the value function u, the
solution of (4.3.1) is locally Lipschitz.

(ii) Suppose, in addition, that g is locally semi-concave with linear modulus and (H2’)
holds. We see that L(x, α) = 1

2
|α|2 satisfies immediately the following condition (which

was used in [7]): for any R > 0, there exists λR such that

L(x, α) + L(y, α)− 2L

(
x+ y

2
, α

)
≤ λR|x− y|2,∀x, y ∈ B(0, R), α ∈ A ∩B(0, R).

Then u is locally semi-concave with linear modulus in [0, T ]× Rd.

Of course we can formulate the existence and uniqueness of a viscosity solution of the
problem (4.3.1), which is exactly given by the dynamic programming principle (4.3.2).

Theorem 4.3.5. Under the hypotheses of Proposition 4.3.3(i) and Proposition 4.3.4(i),
the value function u (given by the formula (4.3.2)) is a unique viscosity solution of the
problem (4.3.1).

Now we give the Euler-Lagrange optimality condition, satisfied by the optimal control
α in (4.3.2).

Lemma 4.3.6. If α is an optimal control in (4.3.2) (with a corresponding ρ) then it solves
the ODE {

α′(s) = ∇2p(s, y(s))α(s), ∀s ∈ [t, T ),
α(T ) = −∇g(y(T )).

(4.3.4)
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Proof. At first we mention, that if α solves (4.3.4), then we have the identity:

α(s) = − exp

(
−
∫ T

s

∇2p(τ, y(τ))dτ

)
∇g(y(T )), ∀t < s ≤ T.

Now let us show how we arrive to the equation (4.3.4). We can write the control problem
(4.3.2) in the following way:

u(t, x) = inf
α

∫ T

t

1

2
|y′(s) +∇p(s, y(s))|2 +

d

ds
(g(y(s))) ds+ g(y(t))

= inf
α

∫ T

t

1

2
|y′(s) +∇p(s, y(s))|2 +∇g(y(s))y′(s)ds+ g(x)

Now we can define a Lagrangian, as the inner part of the integral, more precisely

L(y, y′) :=
1

2
|y′ +∇p(·, y)|2 +∇g(y)y′.

By the Euler-Lagrange theorem we know, that if y solves the minimization problem,
then we have for this y the Euler-Lagrange equation satisfied

d

dt
(∇y′L(y(t), y′(t))) = ∇yL(y(t), y′(t)).

So let us write down the Euler-Lagrange equation in our case. We have

∇yL(y, y′) = ∇2p(·, y)(y′ +∇p(·, y)) +∇2g(y)y′ = ∇2p(·, y)α +∇2g(y)y′,

and
∇y′L(y, y′) = α +∇g(y).

Moreover
d

dt
(∇y′L(y(s), y′(s))) = α′(s) +∇2g(y(s))y′(s).

We also know that ∇y′L(y(T ), y′(T )) = 0, so by the Euler-Lagrange equation we have
obtained exactly (4.3.4).

Our next program point would be to prove the next step in the fixed point approach
idea, i.e. the existence of a unique pair (ρ, p) obtained from the unique value function u.
But as we will see, we will not be able to show uniqueness and under the assumptions we
gave more or less there is no hope neither to have uniqueness. Hence we need to modify
the fix point scheme.

We can formulate the following theorems, which are somehow the translations of some
similar theorems from [24] and [29] to our case.

Theorem 4.3.7. Suppose Ω ⊂ Rd is a bounded convex domain, w = −∇D, where D :
[0, T ] × Rd → R is a locally Lipschitz function, moreover ρ0 ≤ 1 is an admissible initial
density. Then ∃ ρt, vt such that they solve

∂tρt +∇ · (ρtvt) = 0
ρt ≤ 1, ρt=0 = ρ0

∀t vt = Padm(ρt)[wt].
(4.3.5)
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Under the assumptions, we can say equivalently that ∃ ρt, pt such that they solve
∂tρt +∇ · (ρt(wt −∇pt)) = 0
pt ≥ 0, (1− ρt)pt = 0
ρt=0 = ρ0.

(4.3.6)

Theorem 4.3.8. If in addition to the assumptions of the previous theorem D is also
λ−convex (semi-convex) in the space variable, then the pair (ρt, vt) or equivalently (ρt, pt)
which solves (4.3.5) and (4.3.6) respectively, is unique.

In the proof of these theorems we will adapt some techniques from [24] and [29]. For
the first theorem our goal would be to show the existence of (ρt, vt) or equivalently (ρt, pt)
which satisfy (4.3.5) or (4.3.6) respectively. For this it is natural to consider an implicit
Euler (JKO) scheme for the gradient flow approach as follows.

Let us consider K := {ρ ∈ P2(Ω) : ρ ≤ 1}, the set of feasible densities and the
indicator function IK as in the section “Gradient flows with density constraints”. The
scheme will be almost the same as the one presented in the mentioned section, with a
little modification, because the function D is depending also on time. So we consider a
fixed time step τ > 0, ρτ0 := ρ0 and for k ∈ N, k ≥ 0 we consider the scheme

ρτk+1 ∈ argminρ∈P2(Ω)

(∫
Ω

D(kτ, x)dρ(x) + IK(ρ) +
1

2τ
W 2

2 (ρ, ρτk)

)
(4.3.7)

Here we remark that there exists always a minimizer in the above scheme, because the
argument is l.s.c., but we cannot expect to be unique (the argument which would ensure
the uniqueness would be the semi-convexity of D).

Moreover we define the discrete velocity and momentum as vτk =
id−T τk
τ

, where T τk is
the unique transport map from ρτk to ρτk−1 and Eτ

k = ρτkv
τ
k respectively. We can interpolate

these discrete values by 
ρτ (t, ·) = ρτk,
vτ (t, ·) = vτk , if t ∈](k − 1)τ, kτ ]
Eτ (t, ·) = Eτ

k .

Our goal would be now to prove that if τ → 0 then we will get a limit (ρt, ρtvt)
for (ρτ , Eτ ) which solves the problem (4.3.5), fulfilling the constraint. This is similar to
Theorem 2.1 form [24] and Theorem 2.2.12 from [29], the only difference is that D is
depending also on time and is not semi-convex.

Now let us prove some technical lemmas, which will be useful in the proof of the
Theorem 4.3.7.

Lemma 4.3.9. For the function D in Theorem 4.3.7 and a measure ρ ∈ K there exists
a τ ∗ > 0 such that for all τ < τ ∗ we have:

(i) The functional ρ 7→
∫

Ω
D(τ , x)dρ(x)+IK(ρ)+ 1

2τ
W 2

2 (ρ, ρ) admits a minimizer, where
τ is an arbitrary fixed time moment, possibly depending on ρ;
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(ii) There exists a Kantorivich potential φ from ρm to ρ, for all minimizers ρm in the
previous point, such that∫

Ω

(
D(τ , x) +

φ(x)

τ

)
ρ ≥

∫
Ω

(
D(τ , x) +

φ(x)

τ

)
ρm,

for all ρ ≤ 1 a.e.

Proof. The point (i) can be easily shown, because the function is l.s.c., so taking a mini-
mizing sequence we can obtain a minimizer.

(ii) At first let us assume that ρ > 0. Now if we take a minimizer ρm, there exists a
unique Kantorovich potential φ from ρm to ρ such that φ(x0) = 0 for an x0 ∈ Ω. We define
a small perturbation of ρm in K by ρε := ρm + ε(ρ − ρm), where ρ ≤ 1 is a probability
density from K and ε > 0. Let us use the notation J(ρ) =

∫
Ω
D(τ , x)dρ(x). Because ρm

is a minimizer, we have that

J(ρε)− J(ρm) +
1

2τ

(
W 2

2 (ρε, ρ)−W 2
2 (ρm, ρ)

)
≥ 0.

We have explicitly

J(ρε)− J(ρm) =

∫
Ω

D(τ , x)(ρε − ρm)dx = ε

∫
Ω

D(τ , x)(ρ− ρm)dx.

Now we estimate the term with the Wasserstein distances. Let us denote by φε a
Kantorovich potential from ρε to ρ, so we have

1

2
W 2

2 (ρε, ρ) =

∫
Ω

φε(x)ρε(x)dx+

∫
Ω

φcε(y)ρ(y)dy

and
1

2
W 2

2 (ρm, ρ) ≥
∫

Ω

φε(x)ρm(x)dx+

∫
Ω

φcε(y)ρ(y)dy,

so we get
1

2τ

(
W 2

2 (ρε, ρ)−W 2
2 (ρm, ρ)

)
≤ ε

τ

∫
Ω

φε(x)(ρ(x)− ρm(x))dx.

Hence ∫
Ω

D(τ , x)(ρ− ρm)dx+
1

τ

∫
Ω

φε(x)(ρ(x)− ρm(x))dx.

Now if we send ε→ 0, the potential φε will tend to the unique potential φ, so we get the
desired inequality when ρ > 0.

To prove the general case, we will argue as in Remark 3.1 from [24]. Let ρδ > 0 from
K such that it converges to ρ as δ → 0. Now define ρδm as a minimizer of the functional

ρ 7→ J(ρ) + IK(ρ) +
1

2τ
W 2

2 (ρ, ρδ) + cδW
2
2 (ρ, ρm),

where cδ → 0, as δ → 0 so that ρδm converges to ρm. Using the Kantorovich potential
φδ from ρδm to ρ, which will tend to φ, in the limit as δ → 0 we will get the desired
inequality.
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Now we follow the same path as in [24] or [29], proving similar results as in the
references for D also depending on time and not semi-convex to achieve the proof of the
Theorem 4.3.7.

Lemma 4.3.10. We have for the velocity field w = −∇D(kτ, ·) and τ > 0 the following
decomposition

w = vτk +∇pτk, where pτk ∈ H1(Ω), pτk(1− ρτk) = 0, pτk ≥ 0.

Proof. Having in mind the statement of the previous lemma and also the ideas for the
section “Gradient flows with density constraints” we know that there exists a Kantorovich
potential φ from ρτk to ρτk−1 such that ρτk is a minimizer of the problem

ρτk ∈ argminρ∈K

{∫
Ω

D(kτ, x)ρ(x)dx+
1

τ

∫
Ω

φ(x)ρ(x)dx

}
,

which imposes 
ρτk = 1, on {F < l},
ρτk < 1, on {F = l},
ρτk = 0, on {F > l},

(4.3.8)

where F : Ω→ R, F (x) = D(kτ, x) + φ(x)
τ

and l ∈ R so that
∫

Ω
ρτk(x)dx = 1.

Now we can define a pressure by

pτk(x) = (l − F (x))+ =

(
l −D(kτ, x)− φ(x)

τ

)
+

.

This newly defined pressure satisfies that is non-negative, is in H1(Ω) and is zero where

ρτk < 1. Furthermore on the region where ρτk > 0 we have ∇pτk = −∇D(kτ, x) − ∇φ(x)
τ

,

where ρτk = 0 we can modify the velocity to hold true the formula. Since vτk =
id−T τk
τ

= ∇φ
τ
,

the decomposition is true, which is that w = −∇D(kτ, ·) = vτk +∇pτk.

Now we will construct densities through interpolation along geodesics of the discrete
densities ρτk by

ρ̃τ (t, ·) :=

(
t− (k − 1)τ

τ
(id− T τk ) + T τk

)
#

ρτk,

furthermore we define the velocities ṽτ (t, ·) as the unique velocity field in Tanρ̃τ which
together with ρ̃τ solves the continuity equation. Moreover we also define the momentums
as Ẽτ = ρ̃τ ṽτ .

As is [24] we can formulate some a priori bounds for these quantities defined above.
But before these let us give some estimations on the curves.

By the optimality of ρτk with respect to ρτk−1 we easily can write the estimate

W 2
2 (ρτk−1, ρ

τ
k) ≤ 2τ

(∫
Ω

D(kτ, x)dρτk−1(x)−
∫

Ω

D(kτ, x)dρτk(x)

)
,

and the integral terms on the r.h.s. are bounded, so we have

W 2
2 (ρτk−1, ρ

τ
k) ≤ Cτ,
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for a C > 0 constant. This would be the discrete Hölder estimate of order 1
2
.

Summing up over k the above inequality with the integrals, we get

1

2

∑
k

τ

(
W 2

2 (ρτk−1, ρ
τ
k)

τ

)2

≤
∫

Ω

D(τ, x)ρτ0(x)dx

+

∫
Ω

|D(2τ, x)−D(τ, x)|ρτ1(x)dx

+

∫
Ω

|D(3τ, x)−D(2τ, x)|ρτ2(x)dx

+ . . .

+

∫
Ω

|D((N + 1)τ, x)−D(Nτ, x)|ρτN(x)dx

−
∫

Ω

D((N + 1)τ, x)dρτN+1(x)

≤ TC|Ω|+
∫

Ω

D(τ, x)ρτ0(x)dx−
∫

Ω

D((N + 1)τ, x)ρτN+1(x)dx

≤ TC|Ω|+
∫

Ω

|D(τ, x)|dx+

∫
Ω

|D(T, x)|dx

≤ TC|Ω|+ C̃.

where (N + 1)τ = T and D is Lipschitz continuous in time with constant C. Here we also
used the fact that D(t, ·) is integrable w.r.t. space variable for all t, so the last sum of the
two integral terms is bounded by C̃ > 0. This implies that

∑
k

τ

(
W 2

2 (ρτk−1, ρ
τ
k)

τ

)2

≤ 2(TC|Ω|+ C̃), (4.3.9)

which we can interpret as a discrete version of H1 estimate.

Since on the interval [(k−1)τ, kτ ] the quantity
W 2

2 (ρτk−1,ρ
τ
k)

τ
is the velocity of ρ̃τ , we can

calculate the L2 norm of its velocity on [0, T ] by∫ T

0

|(ρ̃τ )′|(t)dt =
∑
k

W 2
2 (ρτk−1, ρ

τ
k)

τ
,

which by (4.3.9) is uniformly bounded independent of τ. This gives a compactness result
of the curves ρ̃τ .

Now we can formulate the results for a priori bounds we mentioned before and another
useful lemma. These are borrowed from [24].

Lemma 4.3.11 (A priori estimates, [24]). The followings are true:

(i) vτ is τ−uniformly bounded in L2((0, T );L2
ρτ (Ω));

(ii) pτ is τ−uniformly bounded in L2((0, T );H1(Ω));
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(iii) Eτ and Ẽτ are τ−uniformly bounded measures.

Lemma 4.3.12 ([24]). Assume that µ and ν are two absolutely continuous measure which
densities are bounded by a same constant C > 0. Then for all functions f ∈ H1(Ω) we
have the following inequality:∫

Ω

fd(µ− ν) ≤
√
C||∇f ||L2W2(µ, ν). (4.3.10)

The proof of the first lemma about the a priori estimates is more or less the same as
in [24], using the estimations we obtained before. The proof of the second lemma is the
same as in [24], so that is why we omit them at this point.

Now we have in our pocket all the necessary tools to prove the Theorem 4.3.7. We are
following exactly the same way as in [24], but for the coherency we will try to do each
step more or less in details, even though we have to borrow many arguments from the
proof from [24].

Proof of the Theorem 4.3.7. We divide the proof of this theorem in three steps.
Step 1: convergence of (ρ̃τ , Ẽτ ) and (ρτ , Eτ ).

The previous results show that ρ̃τ and Ẽτ are τ−uniformly bounded measures, so there
exists (ρ, E) such that the sequence (ρ̃τ , Ẽτ ) narrowly converges to it. Let us prove that
the other sequence (ρτ , Eτ ) converges to the same limit.

At first let us prove the result for ρτ . By construction both measures ρ̃τ and ρτ coincide
on the discrete time moments of the form kτ and on each interval ](k − 1)τ, kτ ] the first
one in Hölder continuous of order 1

2
(as we have seen), while the second one is constant.

Moreover ρ̃τ is uniformly converging on [0, T ] w.r.t. W2. We have that W2(ρ̃τ (t), ρτ (t)) ≤
Cτ

1
2 for all t ∈ [0, T ]. And so ρτ converges uniformly to the same limit as ρ̃τ .
Now let us focus to the other part, i.e. the convergence of Eτ to the same limit as

Ẽτ . For this let us take an arbitrary test function f ∈ C∞c ([0, T ] × Ω) and prove that

the quantity
∫ T

0

∫
Ω
f(Ẽτ − Eτ ) tends to 0, when τ goes to 0. We know that ρ̃τ (t, ·) was

obtained by an interpolation, more precisely ρ̃τ (t, ·) = (Tt)#ρ
τ
k, where

Tt = (t− (k − 1)τ)vτk + T τk .

Hence for a small h we have

ρ̃τ (t+ h, ·) = (Tt + hvτk)#ρ
τ
k = (id+ hvτk ◦ T−1

t )Tt#ρ
τ
k = (id+ hvτk ◦ T−1

t )#ρ̃
τ (t, ·).

This allows us to define a transport map between ρ̃τ (t, ·) and ρ̃τ (t+h, ·) as T̃ = id+hvτk ◦
T−1
t . By this we can write explicitly the velocity ṽτ as

ṽτ (t, ·) = lim
h→0

T̃ − id
h

= lim
h→0

hvτ ◦ T−1
t

h
= vτ ◦ T−1

t .

We have then ∫
Ω

f(t, x)ρ̃τ (t, x)ṽτ (t, x)dx =

∫
Ω

f(t, Tt(x))ρτ (t, x)vτ (t, x)dx.
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And finally we have∫ T

0

∫
Ω

f(Ẽτ − Eτ ) ≤
∑
k

∫ (k+1)τ

kτ

∫
Ω

|f(t, x)− f(t, Tt(x))||vτk(x)|ρτk(x)dxdt

≤
∑
k

∫ (k+1)τ

kτ

∫
Ω

Lip(f)|x− Tt(x)||vτk(x)|ρτk(x)dxdt

≤
∑
k

∫ (k+1)τ

kτ

∫
Ω

Lip(f)τ |vτk(x)|2ρτk(x)dxdt ≤ Lip(f)Cτ.

So we have the result we wanted.
Step 2: existence of the limit velocity

We want to show that the limit momentum E is absolutely continuous w.r.t. the limit
measure ρ. For this let us consider the functional Ψ which is defined on measure pairs
(F, θ), where F is a vector valued measure and θ is a scalar measure, and its values are
real numbers, more precisely

Ψ(F, θ) =

{ ∫ T
0

∫
Ω
|F |2
θ
, if F � θ for a.e. t ∈ [0, T ],

+∞, otherwise.

This functional is l.s.c. w.r.t. the weak-* convergence of measures. But from a previous
lemma we know the uniform bound∫ T

0

∫
Ω

|vτ |2ρτ =

∫ T

0

∫
Ω

|Eτ |2

ρτ
≤ C,

hence by lower semi-continuity of Ψ we have Ψ(E, ρ) < +∞ so E is absolutely continuous
w.r.t. ρ. Other hand this means that there exists a v(t, ·) ∈ L2(ρ(t, ·)) such that E = ρv,
moreover (ρ, ρv) satisfies the continuity equation as a limit of (ρ̃τ , Ẽτ ).

Now it is left to prove that vt is an admissible velocity, which is that vt ∈ adm(ρt).
Let us prove this statement. Let t0 ∈ (0, T ) and let q ∈ H1(Ω) such that q ≥ 0 and
q(1− ρt0) = 0. By the continuity equation we have for a positive small h the following∫ t0+h

t0

∫
Ω

∇q(x)vt(x)ρt(x)dxdt =

∫
Ω

(ρt0(x)− ρt0+h(x)) q(x)dx.

Other hand we know that ρt0 = 1, where q > 0 and ρt0+h ≤ 1, a.e., hence we have for
a.e. t0 ∈ (0, T ) that ∫

Ω

(ρt0(x)− ρt0+h(x)) q(x)dx ≥ 0.

Using this inequality, we have the following limit as h→ 0

0 ≤ 1

h

∫ t0+h

t0

∫
Ω

∇q(x)vt(x)ρt(x)dxdt→
∫

Ω

∇q(x)vt0(x)ρt0(x)dx

=

∫
Ω

∇q(x)vt0(x)dx.
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We get the opposite inequality, if in the integration w.r.t. time we integrate from t0 − h
to t0. So finally we get, what we wanted, i.e. vt ∈ adm(ρt).

Step 3: the limit velocity vt is the projection of wt onto adm(ρt)
First of all let us prove that it holds the decomposition wt = vt +∇pt. We already know
that on an interval of type ](k− 1)τ, kτ ] we have that w = −∇D(kτ, ·) = vτk +∇pτk. So it
is a natural idea to define also an approximation of −∇D in time as

−∇Dτ (t, ·) = −∇D(kτ, ·), if t ∈](k − 1)τ, kτ ].

Of course this sequence of piecewise constant functions tends to −∇D (remember that D
is a locally Lipschitz function, so its space gradient is still locally Lipschitz is time).

So we have that Eτ = ρτvτ = −ρτ (∇Dτ + ∇pτ ) = −ρτ∇Dτ − ∇pτ , because pτ = 0
on {ρτ < 1}. Our aim now is to prove that pτ converges to a p ∈ H1(Ω), where p ≥ 0
and p(1 − ρ) = 0. Because pτ ∈ L2([0, T ], H1(Ω)), there exists a p such that pτ weakly
converges to p in L2([0, T ], H1(Ω)). We have of course that p ≥ 0 a.e., so it remains
to show that pt = 0 where {ρt < 1}. To show this, as in [24], we consider the average
functions

pτa,b =
1

b− a

∫ b

a

pτ (t, ·)dt and pa,b =
1

b− a

∫ b

a

p(t, ·)dt.

Since pτ = 0 on {ρτ < 1}, we have

0 =

∫ b

a

∫
Ω

pτ (t, x)(1− ρτ (t, x))dxdt =
1

b− a

∫ b

a

∫
Ω

pτ (t, x)(1− ρτ (a, x))dxdt

+
1

b− a

∫ b

a

∫
Ω

pτ (t, x)(ρτ (a, x)− ρτ (t, x))dxdt

As τ → 0 we have that∫
Ω

pτa,b(t, x)(1− ρτ (a, x))dx→
∫

Ω

pa,b(t, x)(1− ρ(a, x))dx.

This is because pτa,b ⇀ pa,b in H1(Ω) (therefore strongly in L2(Ω)) and ρτ (a, ·) converges
weakly-* to ρ(a, ·) in L∞(Ω). Furthermore for all Lebesgue points a of p(·, x) we have that
pa,b → p(a, ·), when b→ a, so for all these Lebesgue points we have∫

Ω

pa,b(t, x)(1− ρ(a, x))dx→
∫

Ω

p(a, x)(t, x)(1− ρ(a, x))dx, as b→ a.

For the second integral in the above sum we use the Lemma 4.3.12 and we have

∫ b

a

∫
Ω

pτ (t, x)(ρτ (a, x)− ρτ (t, x))dxdt ≤
∫ b

a

||∇pτ (t, ·)||L2W2(ρτ (a, ·), ρτ (t, ·))dt

≤ C
√
b− a

(∫ b

a

||∇pτ (t, ·)||2L2dt

) 1
2
(∫ b

a

dt

) 1
2

= C(b− a)

(∫ b

a

||∇pτ (t, ·)||2L2dt

) 1
2

.
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Moreover we know that
∫ T

0
||∇pτ (t, ·)||2L2dt is τ−uniformly bounded, so ||∇pτ (t, ·)||2L2 con-

verges weakly to a measure µ. That is why for a.e. a we have that

lim
τ→0

1

b− a

∫ b

a

∫
Ω

pτ (t, x)(ρτ (a, x)− ρτ (t, x))dxdt ≤ C
√
µ([a, b])→ 0, as b→ a.

So finally we obtained that ∫
Ω

p(a, x)(1− ρ(a, x))dx = 0

for a.e. a ∈ [0, T ].
We also know that −ρτ∇Dτ converges to −ρ∇D, so we have that E = −ρ∇D −∇p,

where p = 0 on the set {ρ < 1}, so E = −ρ(∇D −∇p). Other hand E = ρv, so we have
the decomposition v = −∇D −∇p, which is w = v +∇p.

By the Step 2 we also know that∫
Ω

∇p(t, x) · v(t, x) = 0, for a.e. t ∈ [0, T ],

and this ensures that vt = Padm(ρt)[wt].

Now we will show that having the additional assumption on D, namely the semi-
convexity in the space variable, we can gain uniqueness. But at first we present a lemma,
which would be needed in the proof of Theorem 4.3.8.

Lemma 4.3.13. Let Ω be a convex bounded domain of Rd and let ρ, ρ̃ ∈ P2(Ω) two
absolutely continuous measures such that ρ ≤ 1 and ρ̃ ≤ 1. Take a Kantorovich potential
φ from ρ to ρ̃ and p ∈ H1(Ω) such that p ≥ 0 and p(1− ρ) = 0.

Then ∫
Ω

∇φ · ∇pdρ ≥ 0.

Proof of the lemma. By the assumption on the pressure p, that it vanishes where the
density is less than 1 (and so vanishes also its distributional gradient), the above integral
is nonzero only on the set {x ∈ Ω : ρ(x) = 1}, and on this set we can do the integration
with respect to the Lebesgue measure, because ρ is absolutely continuous.

We would like to integrate by parts, since we know how to handle the sign of the
Laplacian. Yet, this does not make sense because we cannot expect much regularity for
the potential φ, hence its Laplacian will be a measure, p is also just an H1(Ω) function. If
ρ and ρ̃ would be bounded from below away from zero, we would know that the potential
is in W 2,1(Ω), so its Laplacian would be in L1(Ω), so it would be enough for p to be
in L∞(Ω), and we know how to handle this situation. However this is not the case, the
Laplacian of φ is just a measure, so for the pressure we would need to be continuous. That
is why we have problems with the integration by parts.

But we can show that the sign of the integral is the same as if we could use some
integration by parts formula. For this we will use some approximation arguments.
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It is enough to prove the statement in the case when p is bounded, because in the
case when p is unbounded, we can use the non-negativity of the integral for a sequence
pn := min{p, n}, which approximates p in H1(Ω) and take its limit, so we will have the
result also for unbounded pressures.

We remark here that without the loss of generality, using some extension arguments
for functions in H1(Ω), we extend p to the whole Rd, imposing compact support for the
new function, and work with this new pressure, to avoid some technical issues on the
boundary later on in the construction of the approximating sequence.

Now we will take a sequence (pε)ε>0, which approximates p in H1(Ω), and which
support is “almost” containing in the set {ρ = 1}. We explain what we mean exactly in
a moment.

For every ε > 0 there exists a compact setKε ⊂ {ρ < 1} such that |∆φ| ({ρ < 1} \Kε) <
ε, and Oε := Rd \ Kε is an open set. Moreover p = 0 a.e. outside of Oε, so it is true
that p ∈ H1

0 (Oε), hence it can be approximated by a sequence pε ∈ C∞c (Oε), such that
supp(pε) ⊂ Oε and ||p− pε||H1 < ε.

Now we use the integration by parts formula for pε, more precisely∫
Ω

∇φ · ∇pεdx =

∫
∂Ω

∂φ

∂n
pεdσ(x)−

∫
Ω

∆φpεdx.

Since the domain is convex, it is easy to see that the angle between ∇φ and n, the
outer normal vector is always less or equal than π

2
, so ∂φ

∂n
= ∇φ · n ≥ 0. Moreover pε ≥ 0,

that is why the boundary term in the above formula is always non-negative. We have that∫
Ω

∇φ · ∇pεdx ≥ −
∫

Ω

∆φpεdx = −
∫
Oε

∆φpεdx. (4.3.11)

We can decompose the last integral as follows:

−
∫
Oε

∆φpεdx = −
∫
Oε∩{ρ=1}

∆φpεdx−
∫
Oε\{ρ=1}

∆φpεdx (4.3.12)

It was important this decomposition, because we know that ∆φ ≤ 0 on the set {ρ = 1},
and by this we can have further good estimations. But let us explain why this statement is

true. First of all we know that the Kantorovich potential satisfies that ψ(x) := |x|2
2
−φ(x)

is convex. Secondary we also know that ψ satisfies a Monge-Ampère equation, namely

ρ

ρ̃(∇ψ)
= det(∇2ψ).

We are interested in the region, where ρ = 1, and we also know that ρ̃ ≤ 1, so the left
hand side is grater or equal than 1. So we have

1 ≤ det(I −∇2φ).

Moreover the matrix I−∇2φ is positive definite, so all of its eigenvalues are positive, and
we know that the determinant is the product of the eigenvalues. So that is why we can
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use the inequality between the arithmetic and geometric means, which will be a relation
between the determinant and the trace of I −∇2φ. So we will have

1 ≤ det(I −∇2φ) ≤
(

1

d
(d−∆φ)

)d
which is equivalent to

1 ≤ 1− ∆φ

d
,

from where we can deduce that ∆φ ≤ 0. To be more precise we remark here that in the
proof of this inequality we actually used the absolutely continuous part of the measure
∆φ, while in the integration by parts formula we used the full measure. But this is not
a problem, because we know that ∆φ ≤ ∆aφ, where we denoted by ∆aφ the absolutely
continuous part.

Now let us return to the inequality (4.3.11). By the above argumentation and using
also (4.3.12) we have ∫

Ω

∇φ · ∇pεdx ≥ −
∫
Oε\{ρ=1}

∆φpεdx.

The set Oε \ {ρ = 1} is exactly {ρ < 1} \ Kε and using the fact that the approxi-
mating sequence is also bounded (because it was enough to work originally with bounded
pressures) we will have the following estimation∫

Ω

∇φ · ∇pεdx ≥ −
∫
{ρ<1}\Kε

∆φpεdx ≥ −c|∆φ|({ρ < 1} \Kε) ≥ −cε.

The last inequality if due to the construction of Kε, where c > 0 is a constant, which
controls the (supremum) norm of the sequence.

So finally we send ε to 0, then in the limit the left hand side tends to
∫

Ω
∇φ · ∇pdx

and the right hand side tends to 0 and we are done.

Proof of the Theorem 4.3.8. Let us take two curves ρt and ρ̃t satisfying the continuity
equation in (4.3.5) with the corresponding vector fields vt and ṽt (which are actually in
the tangent spaces of the curves). Now the idea would be to calculate d

dt
1
2
W 2

2 (ρt, ρ̃t) and
estimate it.

From Theorem 8.4.7 from [3] we know that for an absolutely continuous curve µt in
Pp(Ω) and its tangent vector field vt we have the formula

d

dt

1

p
W p
p (µt, ν) =

∫
Ω×Ω

|x− y|p−2(x− y) · vt(x)dγ, ∀γ ∈ Π(µt, ν),

where ν ∈ Pp(Ω) is a fixed measure.
Using this formula in our case for µt = ρt and ν = ρ̃s, for a fixed s, then changing

the roles of the two measures we will obtain adding this two inequalities (using also the
Lemma 4.3.4 from [3]) the following inequality

d

dt

1

2
W 2

2 (ρt, ρ̃t) ≤
∫

Ω×Ω

(x− y) · (vt(x)− ṽt(y))dγ, ∀γ ∈ Π(ρt, ρ̃t).
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We also know that for absolutely continuous measures (assuming also that the border
of Ω is negligible) there is an optimal transport map T such that T#ρt = ρ̃t and for
γ ∈ Π(ρt, ρ̃t) we have γ = (id × T )#ρt. Using this, we can write the above formula in
terms of transport maps, instead of plans, so we have

d

dt

1

2
W 2

2 (ρt, ρ̃t) ≤
∫

Ω

(x− T (x)) · (vt(x)− ṽt(T (x)))dρt(x).

Now we know for the vector fields vt and ṽt their representation with the introduced
pressure fields, i.e. vt = wt −∇pt and ṽt = wt −∇p̃t. Using these we try to estimate the
r.h.s. We also use the fact, that the vector field wt is the opposite of the gradient of a
semi-convex function. By this fact we have∫

Ω

(x− T (x)) · (vt(x)− ṽt(T (x)))dρt(x) =

∫
Ω

(x− T (x)) · (−∇D(t, x) +∇D(t, T (x)))dρt(x)

−
∫

Ω

(x− T (x)) · (∇pt(x)−∇p̃t(T (x)))dρt(x)

≤ −λ
∫

Ω

|x− T (x)|2dρt −
∫

Ω

(x− T (x)) · (∇pt(x)−∇p̃t(T (x)))dρt(x)

= −λW 2
2 (ρt, ρ̃t)−

∫
Ω

(x− T (x)) · (∇pt(x)−∇p̃t(T (x)))dρt(x)

Now we will prove that
∫

Ω
(x−T (x))·(∇pt(x)−∇p̃t(T (x)))dρt(x) is a positive quantity.

We know that x−T (x) = ∇φ(x), for a Kantorovich potential φ. So we can use simply the
Lemma 4.3.13, which tells us that

∫
Ω
∇φ(x) ·∇pt(x)dρt(x) ≥ 0 and similarly −

∫
Ω
∇φ(x) ·

∇p̃t(T (x))dρt(x) ≥ 0. Let us explain a little bit more detailed, why is this analogous. If
we write again for ∇φ(x) = x− T (x) and make a change of variable formula x 7→ T−1(y)
in the integral we will get∫

Ω

(y − T−1(y)) · ∇p̃t(y)ρt(T
−1(y))

1

|JT |
dy,

where we denoted by |JT | the absolute value of the Jacobian determinant of T. But we
know that this will be ∫

Ω

∇ψ(y) · ∇p̃t(y)ρ̃t(y)dy,

where ψ is the Kantorovich potential from ρ̃ to ρ. Now we can use again the Lemma 4.3.13
showing the non-negativity of this term.

So we will get
1

2

d

dt
W 2

2 (ρt, ρ̃t) ≤ −λW 2
2 (ρt, ρ̃t).

By Gronwall’s lemma we have that

W 2
2 (ρt, ρ̃t) ≤ e−2λtW 2

2 (ρ0, ρ̃0),

but naturally we use the same initial measures for both curves, so we can deduce the
uniqueness.
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Unfortunately we see that in our case we would need to take D as u, the value function
from the Hamilton-Jacobi equation of our system, which under the hypotheses we had
would be more likely semi-concave, not semi-convex what we would need for this theo-
rem (anyway we are not able at this point to prove semi-convexity under some suitable
assumptions), so there is no hope to guarantee the uniqueness of the solution (ρt, pt).

In the lack of uniqueness, our abstract operator would not be well-defined, so the
scheme as we stated in the beginning of this section will not work in that form. We need
some modifications in the idea and a natural modification would be to try to use some
fixed point theorem for multi-valued maps. Let us come back to this issue in the next
section.

4.4 Further ideas. Conclusions

4.4.1 A more general fixed point theorem for the existence

As we have seen previously at this moment unfortunately we are not able to show the
existence of a solution of our first order MFG system with density constraints. But we
have at least two more ideas to approach this issue. The first one would be not to drop
the fixed point theories yet, but try to use a more general one.

Our first problem which arose in the fixed point scheme we wanted to use, is that the
defined operator will be multi-valued and if we want to translate for example Schauder’s
fixed point theorem for multi-valued maps, we need the convexity of the image sets. But
it seems that this property is hard to be proven, i.e. that all the solutions (ρ, p) of (4.3.6)
form a convex set. So if it is possible we want to get rid of this property and find a more
general fixed point theorem, for which we do not need the convexity. Fortunately there is
some hope, because we have found one, which assumes more topological properties instead
of algebraic ones (for ex. convexity). This theorem is due to Begle (see [4]) and later on
it was used by many other authors (see [27], [14]) to deal with similar issues.

Let us say a few words about the definitions, which we need for this theorem.

Definition 4.4.1. A space is said to be contractible if its characteristic function is ho-
motopic to a constant (so a contractible space is always nonempty). A nonempty convex
set is always contractible, but there are examples when the converse is not true.

A nonempty space is acyclic if its Čech homology (coefficients in a fixed field) is zero
in dimensions greater than zero. With other words an acyclic space is a space which has
the same homology group as does the space which is consisting of just one point. Every
contractible space is acyclic, but we have also examples which show that the converse
implication is not necessarily true.

And now we present the fixed point theorem which we were talking about and which
is due to Begle (in 1950).

Theorem 4.4.2 ([4],[27]). Suppose X is a compact acyclic lc space and f : X → X is a
closed-graphic acyclic valued multifunction. Then f has a fixed point, i.e. ∃x ∈ X : x ∈
f(x).
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Remark 4.4.3. At this point we omit the definition of the lc (locally connected) space,
because it requires many algebraic topological preparations, and to give these notions is
not the goal of our thesis. But it can be found in the original work of Begle (see [4]).

So basically our next program point would be to check that under which conditions
the assumptions of this fixed point theorem could be satisfied in our case, and if it is
possible deduce the existence of a solution of our MFG system with density constraints.
But it seems that this is not completely trivial, i.e. checking this algebraic topological
notions in our case, but there is still some hope.

4.4.2 The vanishing viscosity method for existence

A next interesting idea would be to study the first order MFG system with density con-
straints as a limit of a certain regularized (second order) system. This is a well-known
method (called as vanishing viscosity method) and it was used also in [8] to show the
existence of a first order MFG system, which was obtained as the limit of second order
systems.

Here at first it is necessary to build second order MFG systems with density constraints
(using stochastic control) and after a big work on these systems maybe it will be easier
to obtain existence results also in the first order case. Hence this method would be very
useful.

Let us see what is happening mathematically. We can see in [8] that in the limit as
σ → 0 the solutions (uσ,mσ) of

(i) −∂tu− σ∆u+ 1
2
|∇u| = F (x,m) in (0, T )× Rd

(ii) −∂tm− σ∆m−∇ · (∇um) = 0 in (0, T )× Rd

(iii) m(0) = m0, u(T, x) = G(x,m(T )) in Rd.
(4.4.1)

converge to a solution (u,m) of (0.2.1). For (uσ) the convergence is locally uniformly
in [0, T ]× Rd and for (mσ) it is in C([0, T ],P1(Rd)).

Anyway we can say that after the study of first order MFG systems with density
constraints it would be a natural further idea to study the second order case with these
constraints.

4.4.3 MFG with density constraints on manifolds

It would be also nice to study MFG systems with density constraints on manifolds (Rie-
mannian or Finslerian). There is a huge literature for optimal control and optimal trans-
portation theory on manifolds, so it would be very natural and important to study also
MFG systems on manifolds. At first it is important to study MFG systems with density
constraints in the whole space Rd, instead of a bounded (and convex) domain Ω ⊂ Rd.

We can also imagine examples, where the metric on a manifold is not symmetric and
the agents are moving on this manifold. An idea would be that the agents are moving
“between mountains” and going upwards on a mountain is more expensive than going
downwards, so the cost or the payoff could depend on the (non-symmetric) metric.
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There is a paper by Kristály et al. which deals with optimal placement of a deposit
between markets on Finslerian manifolds (see [15]), and the authors use some tech-
niques from Riemann-Finsler geometry and some computational techniques (evolutive
algorithms) as well to study this problem. It would be an interesting approach to study
this problem in the framework of optimal transportation an adapt some techniques to
study MFG systems with density constraints on Finslerian manifolds.

Another interesting idea could be to study the location of Nash equilibria points (also
on manifolds) when the number of players tends to infinity, i.e. to characterize the Nash
equilibria of a MFG system (with and without density constraints). Here we also could
adapt some ideas from the works of Kristály (see for example [14]).

4.4.4 Final conclusions and remarks

So far this thesis contains some possible approaches to study first order MFG systems
with density constraints. The model is due to F. Santambrogio (see [30]) and it consists
some ideas from the theory of crowd motion.

We wanted to construct a fixed point scheme to show the existence of a solution of
such a system, but at the present moment we just have some conclusions and further ideas
to develop, instead of full results. One of the main issues is that we cannot guarantee the
semi-convexity of the value function and this fact leads us to the necessity of the use
of some multi-valued fixed point theorem. But almost all the multi-valued fixed point
theorems require the convexity of the image sets. And this fact seems hard to be shown,
hence we looked for a more general fixed point theorem for multi-valued maps (Begle’s
fixed point theorem) and hopefully after some works we will be able to show the existence.
But anyway we have some other ideas for this issue (for example the already mentioned
vanishing viscosity method) which require further works.
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