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1. Introduction

In the last decade there has been an explosion of interest in the theory of Carnot-Carathéodory
spaces (CC spaces, henceforth), and in the ramifications of this subject into analysis and geom-
etry. We recall that a CC space is a Riemannian manifold (M, g), which has been endowed with
a distance d different from the Riemannian metric attached to the tensor g. Such distance d is
the control metric associated with a sub-bundle H of the tangent bundle TM. Loosely speaking,
if X ={Xy,...,X;m} denotes a system of non-commuting vector fields which (locally) generates
H, then one defines d(z,y) by a minimization procedure which selects among all curves in M
which join z to y, only those whose tangent vector belongs to span{Xi,..., X;;}. The ensuing
metric space (M, d) is called a CC space, or also a sub-Riemannian space. Excellent references
on the subject are the books [VSC92], [Be96], [Gro98|, [Mon02]. We also refer the reader to
the forthcoming book [G02], which more directly treats the connections of CC geometry with
partial differential equations.

In this work we study the following general question: to characterize the traces of Sobolev
functions in a CC space with respect to a measure supported on a lower dimensional manifold.
Our primary motivation is the study of boundary value problems, arising for instance in CR
geometry, for various linear and nonlinear equations of sub-elliptic type. The common trend
of these equations is lack of ellipticity. But their leading part can be expressed by the sum of
squares of smooth vector fields satisfying a certain algebraic assumption known as the finite
rank condition on the Lie algebra, see (1.4). Thanks to a fundamental result of Hérmander
[H67], such condition implies the hypoelliticity of the relevant operator. Another important
motivation is the connection of the questions studied here with the newly forming theory of
perimeters and minimal surfaces in CC spaces. We recall that the existence of minimal surfaces
was established in [GN96], where the problem of their regularity was also posed. This aspect,

however, is only barely touched upon in the present work, and will be systematically investigated



NON-DOUBLING AHLFORS MEASURES, PERIMETER MEASURES, ETC. 3

in the forthcoming article [DGNO0O]. In this connection we mention the very interesting recent
papers [FSS01] and [Pa(II)01].

Among many others devoted to the subject, the classical books [Ne67], [LaU68], [LiMa72],
[Tre75], [Gr85], [Tro87], underline the fundamental role played by trace theorems in the theory
of boundary value problems for partial differential equations. The reader should also consult
the pioneering papers by Gagliardo [Ga57], [Ga58], [Gab9], and Stein [St61]. The more recent
papers [JK95] and [FMM98] contain sharp results for the solvability of boundary value problems
for the non-homogeneous Laplace equation, in terms of the ordinary Besov spaces.

To introduce the problems studied in the present work consider the Euclidean space R”
with Lebesgue measure dz. If @ C R" denotes a Lipschitz domain, and if we indicate with
dy = dH,,_1|09, the restriction of the ordinary (n — 1)-dimensional Hausdorfl measure to the
boundary of €2, then it is well known that there exist constants 0 < a < 8, depending only on
n, and on the Lipschitz character of 2, such that for every z, € 9Q, and any r > 0, one has

ar™ !t < w(Belz,,r)) = p(0QN Be(zy,r)) < Bt

where we have let Be(z,,7) = {z € R" | |xr — z,| < r}. This property can be more suggestively

reformulated as follows
B Be(zo,
(11) o Beleel < B,y < p Beler)l

r r
where from now on |E| indicates the n-dimensional Lebesgue measure of E. The inequality
(1.1) represents an important property of Lipschitz domains. It has several deep repercussions,

among which the well-known trace inclusion for the classical Sobolev spaces
(1.2) WhP(Q) C LI(09Q,dp) , q=p(n—1)/(n—p),

valid when 1 < p < n. We stress that the exponent ¢ is sharp in the scale of Lebesgue spaces.
Moreover, one has ¢ > p when 1 < p < n, whereas there is no gain at the end-point p = 1, since
in that case one has ¢ = 1 as well. The embedding (1.2) says that, despite the fact that the
boundary of Q is a set of minimal smoothness, and of Lebesgue measure zero, it is nonetheless
possible to define the trace of a Sobolev function on 0€2. Moreover, the latter belongs to a
Lebesgue space with respect to the measure p. As it turns out, for this result one does not need
the full strength of (1.1), but only the estimate from above. This was discovered in a beautiful
paper of D. Adams [A71], see also [A73], [AH96], who brought a new perspective into the
problem. For the first time, it became apparent that one of the central elements of the classical
embedding theorems are size estimates - such as (1.1) - of the measure p in the target space.
In this perspective, the problem of traces is divided into two main steps: 1. Establishing the
embedding under such a priori imposed size estimates; 2. Finding good geometric conditions on
the support of the measure 1 which guarantee the validity of such estimates. Clearly, in the step
2 the case in which the measure yu is the surface measure on the boundary of the ground domain
is of great interest. Such ideas have had a lasting influence, and we will see them resurface in
the present work.

The case p = 1 of (1.2) is connected with geometric measure theory and plays a key role in

the study of minimal surfaces. Here, the appropriate substitute for the Sobolev space W!(Q)
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is the space BV () of functions having bounded variation in 2, see [Gi84], [Zi89], [EG92]. The
existence of traces of BV functions was elegantly settled in [MZ77], which was also influenced
by the above described approach in Adams’ paper [A71]. Again, the upper estimate in (1.1)
plays an essential role. However, the proof of the main trace inequality is more delicate than
its Sobolev space counterpart since it also crucially relies on the structure of sets with finite
perimeter.

Once the existence of traces is ascertained, it is natural to ask whether they themselves possess
any degree of smoothness, and if so, whether it is possible to give a complete characterization of
them. It is well-known that the answer to these questions is provided by the fractional Sobolev,
or Besov, space WleP (09Q,dp). A function f € LP(09Q,du) is said to belong to such space if

the semi-norm

(1.3) {/{m /{m ('f(ﬁ __yf;(yN)p z _;n_l dp(y) du(:c)}p

is finite. Here, 8 = 1 — 1/p is the fractional order of differentiation. It is a classical fact that

in order to characterize the latter as the trace space of W1P(Q), one also needs to construct
an extension operator. To accomplish this task, the estimate from below in (1.1) becomes
important, as well as several other tools from harmonic analysis. An excellent reference for
these aspects is the monograph [JW84].

Our goal is to generalize the above mentioned classical results to the Sobolev spaces £17(Q)
associated with a system X = {X1,..., X;;,} of vector fields in R". As we will see, this endeavor
entails analyzing in depth several new problems that, in the classical Euclidean setting, do not
appear, or that are easily resolved. In the process, new tools must be developed.

To fix the ideas, let us consider a system X = {Xi,..., X, } of C* vector fields in R", which
we assume equipped with the standard Lebesgue measure dz. If the finite rank condition on the
Lie algebra is fulfilled,

(1.4) rank Lie[X1,...,Xn] = n,

than thanks to the accessibility Theorem 2.1 of Chow-Rashevsky [Ch39], [Ra38], the CC metric
associated with the system X is well-defined. A basic theorem of Nagel-Stein-Wainger states
that such distance is locally uniformly doubling with respect to Lebesgue measure, see Theorem

2.9. We consider next the collection of all Borel measures By on the metric space (R”,d).

Problem: For which u € By, and exponents 1 < p < q < 00, does the a priori inequality

1 1
(1.5) (/ |u—uB,N\qdu)q <c (/ \Xu|pdx>”, we C®(BY),
B B*

hold?

The notation B = B(z,,r) in (1.5) indicates the ball centered at z, with radius » > 0 in
the CC metric d, whereas B* = B(z,,0R), 0 > 1. The symbol ug , stands for the p-average
of u over B. Finally, we have denoted with Xu = (Xju, ..., X;,u) the sub-gradient of u along
the system X, so that |Xu| = (Z;-n:l(Xju)Q)l/Q. When the measure dy = Vdz a sharp trace
inequality was proved in [D99] when the density V' belongs to a suitable Morrey-Campanato
space with respect to the CC distance.
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The above problem, which constitutes the sub-Riemannian analog of (1.2), is important
in the study of boundary value problems for sub-elliptic equations arising in several complex
variables, in CR geometry (e.g., in the study of the CR Yamabe problem), in the study of
quasi-conformal mappings between nilpotent Lie groups, in control theory, and last, but not
least, in the development of geometric measure theory in CC spaces, particularly, in the theory
of minimal surfaces.

In the paper [DGN98] we were able to provide a complete answer to the problem stated above.
We distinguished between the geometric case, corresponding to p = 1, and the non-geometric

case, when p > 1. Concerning the case p > 1, the main result in [DGN98] was the following.

Theorem 1.1. Consider a bounded, open set U C R™, with local homogeneous dimension Q.

For 1 < p < Q, let u be a nonnegative Borel measure on R® such that for some M > 0,

0<s<p, and R, > 0, one has

|B(z,7)|
T-S

There exist positive constants, C = C(U,X,p,s) and 0 = o(U,X) > 1, such that for any

2, €U,0< R<R,, B= B(z,,R), 0B = B(z,,0R), the following holds: If u € L}P(cB), then

there exists a uniquely determined @ € LY(B,du), where g = p% > p, such that

(1.6) p(B(z,r)) < M ) zelU,0<r<R,.

(r—3)Q

% 1 R p(Q—s) %
(/ |a—aB,”|qdy> < omi [ (/ |Xu|pdac> .
B |B|Q oB

The function @ is called the trace of u in LY(B,du). Finally, (1.6) is also necessary for the

latter inequality to hold.

We remark that Theorem 1.1 incorporates the optimal Sobolev embeddings in [D92], [Lu94],
[MaSC95], [BM95]. To see this it is enough to take du = dz, and notice that (1.6) trivially holds

with M =1 and s = 0. One thus concludes, with obvious meaning of the notations,

1 v 1 »
(131 [ pwslras) " < e (5 [ ixuran)”
ag

where now ¢ = pQ/(Q — p).

We note explicitly that in the statement of Theorem 1.1 no control from below is imposed on
the measure y. In particular, we do not assume that p be a doubling measure. In the case p =1,
using ideas from geometric measure theory, we established a corresponding end-point result, see
Theorem 1.4 in [DGN98].

Although these results are sharp in the scale of the Lebesgue spaces LY(B,du), it is of para-
mount importance to be able to identify the precise trace space on the boundary for a Sobolev
function. In this paper we introduce an appropriate class of Besov spaces with respect to a given
distance d and a given u € By, and we prove that, under some natural growth assumptions on y,
these are the trace spaces for the sub-elliptic Sobolev spaces £1?(Q). We also analyze in depth
the basic problem of the examples. We will not discuss here the trace space of BV functions,
since our treatment of this case will appear in the forthcoming work [DGN(I)02].

The following definition plays a pervasive role in the sequel.
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Definition 1.2. Given s > 0, a measure p € By will be called an upper s-Ahlfors measure, if
there exist M, R, > 0, such that for x e R*, 0 <r < R,, one has
B(z,r
a7 u(Bar) < u P@D]
We will say that p is a lower s-Ahlfors measure, if for some M, R, > 0 one has instead for x

and r as above

(18) u(Bar) > vt BEnl

7«8
When 1 is both an upper and lower s-Ahlfors measure, then we say that it is a s-Ahlfors measure.

We thus come to the central definition for the results in this paper.

Definition 1.3. Given a distance d, let p € By be an upper (or lower) s-Ahlfors measure,
having supp u C F, where F is a closed subset of R*. For 1 <p < 00, 0 < 8 < 1, we introduce
the semi-norm

Mo ) = {/F/F (lf(?(x,_y){s(y)')p |B(i(,3(?,5y))‘du(y) du(:c)}p

The Besov space on F, relative to the measure u, is defined as
By(F,du) = {f € LP(F,dp) | N§(f,F,dp) < oo} .
If f e Bg(F, du), we define the Besov norm of f as

||f||Bg(F,du) = |fllerany + N(f, Fydp) .

To motivate Definition 1.3 we observe that, when X = {0/0x1, ..., 0/0z, } is the standard basis
of R”, then one easily sees that the ensuing CC metric is just the ordinary Euclidean distance
de(z,y) = |z —y|. If @ C R” is a bounded Lipschitz domain, and we take u = H,_1|0, then
(1.1) shows that u is a 1-Ahlfors measure with respect to d.. If we thus let F' = 09, then with
s = 1 the semi-norm N g (f, F,du) gives back the classical Besov semi-norm in (1.3).

We emphasize the purely metrical character of the semi-norm N g (f,F,du). The reader will
have noticed that the parameter s, which is present in the right-hand side of the definition of the
semi-norm, yet does not appear in the left-hand side N g (f, F,dp). This omission is intentional,
and is dictated by the desire of not overburdening the notation. It will not lead to any confusion
since the specific assumptions on u and s will be clearly spelled in the statement of each theorem.

Finally, we note that the parameter 8 in Definition 1.3 measures “smoothness”. In this
respect, it is interesting to observe that if (1.7) holds, and if 8’ > §, then the sub-elliptic Holder
class T8 (F) (for whose definition in the context of homogeneous groups we refer to [FS74],
[F75]) is continuously embedded into Bg(F, du).

A description of the present work can be found in the table of contents. The reader is also
referred to the individual sections for a discussion of the bibliographical accounts. We add here
a few clarifying comments. Section 2 contains various preliminary notions and basic results
about CC distances. The main body of the paper starts with Section 3, where we discuss those

infinitesimal Lie groups which constitute the fundamental models of CC spaces. From that point
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on, the treatment is essentially divided into two parts. The former, Sections 3-7, is preparatory
to the latter, Sections 8-13, and also has an independent interest.

In Sections 3-7 we focus on constructing geometric examples of upper/lower Ahlfors measures.
Keeping in mind that the question of examples is of paramount importance, it should not be
surprising that we dedicate to it considerable effort. In CC geometry a crucial notion is that
of characteristic point on the boundary of a given domain, see Section 4. Typically, bounded
domains do have characteristic points. For instance, in the Heisenberg group H" every bounded
C' domain which is homeomorphic to the unit sphere S?* C R?"*! must have non-empty
characteristic set. At characteristic points the vector fields X1, ..., X;; become tangent to the
boundary and most of the tools from classical analysis fail to work. For example, near the
characteristic set standard surface measure does not scale correctly and fails to satisfy size
estimates such as (1.1) with respect to the CC balls. In [DGN98] we proved that the ad hoc
replacement of surface measure is the X-perimeter Px (E;-), introduced in [CDG94]. The latter
generalizes the notion of perimeter according to De Giorgi, see Section 5, and appears naturally
in the intrinsic isoperimetric inequalities on CC balls established in [GN96]. An essential feature
of the X-perimeter is that, unlike surface measure, it incorporates the geometric properties of
the boundary near its characteristic set. To explain this point we notice that when € is a C*
domain with outward unit normal v, then it was proved in [CDGY94] that for any open set A one

has

ﬁ
(1.9) Py (O A) :/ X, | dH,_+ |
O0NNA

where we have let )?,, = (< X1,v >,...,< Xp,v >). Since at a characteristic point one has
|)? v| = 0, it is reasonable to expect that the X-perimeter should be the appropriate measure on
the boundary. Proving this intuition correct requires a great deal of work.

Concerning upper Ahlfors measures the principal results are Theorems 6.3, 6.5, whose main
consequence, Theorem 6.6, can be summarized by saying that, given a C"! domain Q C R" of
type < 2, the X-perimeter measure Px (£2;-) is an upper 1-Ahlfors measure with respect to the
control metric d associated with X. A C! domain Q = {z € R | ¢ < 0} is called of type < 2 if
for every characteristic point z, € 09 there exist 7,5 = 1,...,m such that [X;, X;]¢(z,) # 0, see
also Definition 6.1. Clearly, if €2 has empty characteristic set, then for every boundary point z,
there exists ¢ € {1,...,m} such that X;¢(z,) # 0, and therefore 2 is of type 1. We stress that
in a Carnot group of step r = 2 every C'! domain is automatically of type < 2, see Lemma, 7.4,
and therefore the type assumption imposes in this setting no restrictions on the characteristic
set. In this perspective, we recall that for the Heisenberg group H", Theorems 6.3 and 6.6
were first proved in [DGN98]. They were subsequently extended to Carnot groups of step 2 in
[CGNO02]. In both papers the type condition was not present, since, as we have explained, the
latter becomes relevant only for groups of step » > 3. The general results in Theorems 6.3, 6.5
have been obtained in recent joint work of the second named author with L. Capogna [CG02].
In the same paper it is also proved that the type assumption in Theorems 6.3, 6.5 and 6.6 is

best possible. In fact, in [CG02] the authors give an example of a C*° domain of type 3 in a
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group of step 3 for which the upper estimates in Theorems 6.3 and 6.6 fail, and consequently
the X-perimeter fails to be an upper 1-Ahlfors measure.

The estimate from below of the perimeter measure has been for a long time an intriguing
open question. Keeping (1.9) in mind, and recalling that at characteristic points |)?,,| vanishes,
it should be clear to the reader that estimating Px(Q;-) from below is a very delicate task.
In this paper we give a first basic contribution to this problem. Our main result is Theorem
7.1, which states that in a C? domain in a Carnot group of step 2 the X-perimeter is a lower
1-Ahlfors measure. Combining this result with Theorem 6.6 we conclude that for any C? domain
in a Carnot group of step 2, the X-perimeter is a 1-Ahlfors measure. In particular, Px(9;-)
is doubling. Again, no restriction on the characteristic set is present in this result. Although
we use the C? smoothness of the domain, we conjecture that Theorem 7.1 should remain valid
for C1!' domains as well, but such regularity is minimal. As we show in the sub-section 7.4, for
every 0 < o < 1 there exists a C1'® domain in the Heisenberg group whose perimeter measure
fails to be lower 1-Ahlfors. In this negative phenomenon, what is lurking in the dark is the
delicate balance between characteristic points and the non-isotropic group dilations.

The second part of this work, Sections 8-13, is devoted to establishing the various trace and
extension theorems connecting the Sobolev spaces £"P(£, dz) to the Besov spaces Bg (F,du).

In Section 8 we address a basic question which is, in a sense, preliminary to the study of
traces. In analyzing the existence of traces we work with an upper Ahlfors measure y. Since the
latter is generally supported on a set of zero Lebesgue measure dx, there is no guarantee that
a funtion in a Sobolev space with respect to dz be defined on the support of y. In Theorem
8.8, which constitutes a refinement of Lebesgue differentiation theorem, we prove that this is
actually the case, thus putting the study of the trace problem on a firm ground.

The latter begins in Section 9, where we prove that, given an upper s-Ahlfors measure u, with
0 < s < p, a function in L7 with respect to dz possesses a trace in the optimal Besov space Bf_é
with respect to p. The main result of the section is Theorem 9.6. The proof of this theorerﬁ
involves a substantial amount of work, and combines various ideas from harmonic analysis.
Theorem 9.6 is local in nature, in the sense that it establishes the existence of traces when the
upper Ahlfors measure p is supported inside the domain of the relevant functions. Subsequently
in the section, see Theorem 9.8, we consider the case in which p is the X-perimeter measure on
an interior boundary.

Section 10 is devoted to the delicate task of constructing an extension operator from a Besov
to a Lebesgue space. Our main result in this direction is Theorem 10.1. Contrarily to the trace
Theorem 9.6, here the key assumption is that y be a lower Ahlfors measure.

In Section 11 we characterize the traces on the boundary for the general class of (¢, d) domains
with respect to a metric d. When d(z,y) = |z — y|, such notion coincides with that of uniform
domain introduced by Martio and Sarvas [MaSa]. In his famous paper [Jo81] P. Jones established
extension theorems for the ordinary Sobolev spaces on (€, §) domains. In Theorem 11.6 we prove
that, given p > 1, there exists a continuous trace operator

(1.10) Tr : LY(Q,dz) — BY ,(09Q,dp) ,

s
P
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when g is an upper s-Ahlfors measure, for some 0 < s < p. When p = Px(£;-), we can combine
Theorem 11.6 with Theorem 6.6, and establish (1.10) with s = 1, see Theorem 11.7. The
crowning result of the section is Theorem 11.9, in which we finally characterize B:f_ , (09, dp) as
the trace space of the Sobolev space £1P(§,dz). For this result, one needs to assum};: that u is a
s-Ahlfors measure. Concerning the (¢, d) assumption in Theorem 11.6, we prove in Proposition
11.8 that it cannot be weakened.

In Section 12 we close the gap between the above cited Theorem 1.1 from [DGN98|, and
Theorem 9.6. We prove that, when p is a lower s-Ahlfors measure supported in F' C €, then the
space Bg(F, du) is continuosly embedded into an optimal Lebesgue space LI(€2, dy). Combining
this result with (1.10) in Theorem 11.6, we recover Theorem 1.1, except that we have made the
additional assumption on yu of being lower s-Ahlfors.

Finally, in Section 13 we apply the theory developed in parts one and two to the setting of
Carnot groups. Using the perimeter measure on the boundary of “minimally smooth” domains,
we obtain some interesting concrete examples of the main results in this work.

Sections 14 and 15 conclude this paper. In the former we give an important application of our
trace theorem by establishing the existence and uniqueness (modulo constants) of the variational
solution of the Neumann problem for sub-Laplacians. We stress that this is not just a functional
analytic theorem, since it heavily relies on both the results of part 1 and 2 discussed above.
The study of the Neumann problem will be taken-up in the forthcoming paper [DGN(II)02].
The purpose of the short, conclusive Section 15 is to bring to the reader’s attention that, with
one natural additional assumption, our results continue to hold in the more general setting of
Lipschitz vector fields analyzed in [DGN98].

The reader will have no difficulty in realizing that, given the general nature of our approach,
the results in Sections 8-13 carry over to the setting of metric spaces with a doubling measure
and a Poincaré inequality. In this context, the appropriate notion of gradient can be given using
that introduced by Hajlasz, or that due to Heinonen and Koskela. We do not explicitly treat
these aspects, but refer the reader to [HK98], [Gro98], and also to the papers [Ha96], [HaM97],
[Che99].

In closing, we mention some references which are connected to the present work. In his
Ph.D. Dissertation M. Mekias [Me93] studied the problem of traces in the Heisenberg group
H". Although specialized to this setting, his work contains several sharp results which are
closely connected to some of ours. Unfortunately, Mekias’ thesis is not available in print, and
furthermore some proofs appear incomplete. Mekias also recognized the relevance of the measure
u introduced in Definition 5.7, and established several of its properties, although he was not
aware of the fact that such y expresses the X-perimeter measure. For the Heisenberg group,
this fact was first recognized by the second named author in a set of unpublished notes dated
1992. We also mention the Ph.D. Dissertation of C. Romero [Ro91] which contains an earlier
version of Theorem 6.3 for the Heisenberg group.

In the paper [BP99], Berhanu and Pesenson established some trace and extension theorems

for C™ vector fields satisfying the finite rank condition (1.4) at step 2. Their work, however,
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only treats non-characteristic manifolds, with two additional hypothesis on the vector fields.
Also, their definition of Besov semi-norm is built on these assumptions.

Again for non-characteristic domains, and for the case of step 2 vector fields, Bahouri, Chemin
and Xu [BCX99] characterized the traces in L? using techniques from microlocal analysis (Weyl-
Hoérmander calculus). Their definition of Besov space is quite different from ours, since it is given
interpolating between standard Sobolev spaces. For the special setting of the Heisenberg group
H" they are also able to establish a trace theorem when the manifold possesses only isolated
characteristic points.

Finally, in their interesting recent paper [MMO02] Monti and Morbidelli have proved the em-
bedding (1.10), but not the characterization of the traces, when  C R” is a bounded C*° domain
with non-characteristic boundary. They use the Besov semi-norm introduced in Definition 1.3
(in fact, a modification of the latter), except that they work with the ordinary surface measure
p = H,_1|09, instead of the perimeter measure. We notice that when 0 is non-characteristic,
this p is obviously equivalent to the measure Px(;-) in (1.9). It is interesting to compare their
result with our Theorem 11.7. We do not require that 02 be non-characteristic, and further-
more we only assume minimal C! smoothness of 2. This is possible thanks to Theorem 6.5, to
the extension theorem for Sobolev spaces proved in [GN98], and to our Theorem 9.6 which we
discussed above. To apply the extension theorem, the (¢,d) condition is needed. On the other
hand, the assumption that J§2 be non-characteristic in [MMO02] allows to avoid resorting to the
extension procedure by working directly on Q. It would be interesting to see whether in the
general Hormander case any C* non-characteristic domain is (¢, d). For Carnot groups of step 2
this property is a corollary of the results in [CG98]. Monti and Morbidelli also treat an example
of characteristic domain for the special situation of the Baouendi-Grushin vector fields in the
plane X; = 0/0z, Xy = |z|*0/0y, a > 0. For a discussion of the latter we refer the reader to
Section 4.

In closing, we mention that the present work was completed and circulated in preprint form
during the year 2000. An announcement appeared in [DGNO1].

2. Carnot-Carathéodory spaces

In this section we collect some definitions and various basic known results which are used in

the main body of the paper.

2.1. Chow’s accessibility theorem and CC metrics. Let X = {X1,..., X;;,} be a system of
C™ vector fields in R*, n > 3, satisfying the finite rank condition (1.4). A piecewise C' curve
v :[0,T] — R is called sub-unitary if for every ¢t € (0,T") for which ~/(¢) exists one has

(2.1) <v(t),&>% < Z < X;(y(t), & >? for every ¢ € R".
j=1
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The reader should notice that definition (2.1) forces the condition

v'(t) € span {X1(y(t), ..., X1 (v(#))} -

We define the sub-unitary length of v as l;(y) = T. Given z,y € R", denote by Sy(z,y)
the collection of all sub-unitary « : [0,7] — U which join z to y. We will need the following
fundamental accessibility theorem due Chow [Ch39].

Theorem 2.1. Given a connected open set U C R™, for every x,y € U there ezistsy € Sy(z,y).

As a consequence of Theorem 2.1, if we pose

(22) dU('Tay) = inf {ls (7) | 0AS SU("I"ay)}a

we obtain a distance on U, called the Carnot-Carathéodory distance on U associated with the
system X. When U = R", we write S(z, y), instead of Sgn(z,7), and d(z,y), instead of dgn (z,y).
It is clear that

(23) d(.’E,’y) < dU(.’II,’y) T,y € Ua

for every connected open set U C R". For z € R", and r > 0, we let B(z,r) = {y € R" |
d(z,y) < r}. We indicate with Be(z,7) = {y € R" | |z —y| < r} the corresponding Euclidean
ball. When z € U, we will write instead By (z,r) = {y € U | dy(z,y) < r}. The following
elementary property of dyy will be useful, see, e.g., [NSW84].

Proposition 2.2. For every connected set U CC R", there exists C = C(U,X) > 0 such that
le —y| < C dy(z,y) for every z,y € U.

This gives for every x € U, and any r > 0,

(2.4) By(z,7) C Be(z,Cr).

Another consequence of Theorem 2.1 is the following property noted in [GN96].

Proposition 2.3. One has
i:(R*,d) — (R*,]-]) is continuous.

The next result, established in [RS76], see also [NSW84], provides a quantitative version of

accessibility.

Theorem 2.4. Given a connected set U CC R", there exist C = C(U,X) > 0, and € =
e(U,X) > 0, such that for every z,y € U

dy(z,y) < C7' |z -yl
This gives for every x € U and r > 0
Be($a (Cr)l/e) C BU(J:’ T)'
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A deep theorem of C. Fefferman and D. H. Phong [FP81] states that the inclusion between
FEuclidean and CC balls in the statement of Theorem 2.4 is, in fact, a necessary and sufficient
condition for the validity of sub-elliptic estimates for a general class of operators with smooth
coefficients and non-negative characteristic form.

Theorem 2.4, coupled with (2.3), gives
(25) d(l‘?y) < C_l |$ - y|6 T,y € U ’

and from this we obtain the following important property.

Proposition 2.5. The inclusion
i (®]) - (Rd)

18 continuous .

As a consequence of Proposition 2.3, and of Proposition 2.5, the Euclidean and the CC
topology on R” coincide. In particular, compact sets with respect to either topology are the
same. However, if the vector fields {X;} =1, . m grow at infinity faster than linearly, then the
compactness of metric balls of large radii may fail in general, see [GN96], [G02]. Consider for
instance in R the smooth vector field X = (1 + 2?) d/dz. Elementary calculations prove that

the CC distance relative to X is given by
d(z,y) = |arctan z — arctan y|,

and therefore, if r > /2, we have B(0,7) = R. This global aspect is intimately connected
to the powerful extension of the Theorem of Hopf-Rinow due to Cohn-Vossen [CV35], and we
refer the reader to the forthcoming book [G02] for a detailed discussion. In the present paper
we are solely concerned with local questions. Thereby, in order to eliminate all the topological
complications connected to the growth of the vector fields at infinity, we will henceforth make

the following hypothesis:

(2.6) The vector fields X1, ..., Xm have coef ficients in Lip(R") .

Such assumption will be in force throughout the paper in the purely Héormander case. It
is instead unnecessary for Carnot groups since, in that framework, the compactness of balls
holds irregardless of the radius, and of the growth of the X;’s at infinity, see [G02]. A basic
consequence of (2.6) is the following result established in [GN98].

Proposition 2.6. Under the hypothesis (2.6), for any x, € R", and every r > 0, the closed ball

B(z,,T) is compact.

Having squared the table of global aspects, we can now improve on Proposition 2.2, by
replacing dy(z,y) in the right-hand side, with the smaller quantity d(z,y). The price that we
must pay is represented by the presence of a larger constant C. We stress that, as the above
simple example shows, without (2.6) the proof of the next proposition would break down, since
the boundedness of the set U would fail in general, see [G02].
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Proposition 2.7. Let U C R" be a bounded set. There exists a bounded set [7, with U C [7,
such that for every x,y € U one has

2~y < C d(,y).

Here,
1/2

m
(2.7) ¢ = [max Y |IX;(2)
2€U0 j=1

This gives for every x € U, and any r > 0,

(2.8) B(z,r/C) C Be(z,r).

2.2. The Nagel-Stein-Wainger polynomial and the size of the CC balls. Let X =
{X1,..., Xin} be a system of C* vector fields in R™, n > 3, satisfying the finite rank condition
(1.4), and denote by Yi,...,¥; the collection of the X;’s and of those commutators which are
needed to generate R™. A “degree” is assigned to each Y;, namely the corresponding order of
the commutator. If I = (i1, ...,i,),1 < i; <[, is a n-tuple of integers, following [NSW84| one
defines d(I) = 3°7_, deg(Y;;), and ar(z) = det (Yiy, -, Y3, )-

Definition 2.8. The Nagel-Stein-Wainger polynomial is defined by
Az,r) = > lag(@)] rD, r>0.
I

For a given bounded open set U C R”, we let
(2.9) Q = sup {d(I) | |ar(z)| #0,z € U}, Q(z) = inf {d(I) | |ar(z)| # 0},
and notice that from the work in [NSW84] we know
3<n<Q@ Q.
It is immediate that for every z € U, and every r > 0, one has
(2.10) 19 Az, r) < Az, tr) < 9@ Az,r), 0<t<1.

The numbers @@ and Q(x) are respectively called the local homogeneous dimension of U, and
the homogeneous dimension at xz, with respect to the system X. The following fundamental
result is due to Nagel, Stein and Wainger [NSW84].

Theorem 2.9. For every bounded set U C R” there exist constants C, R, > 0 such that, for
any z €U, and 0 <r < R,, one has

(2.11) C Az,r) < |B(z,r)] < O™ Az, 7).
As a consequence, with C1 = 29, one has for every x € U, and any 0 <r < R,

(2.12) |B(z,2r)] < Ci |B(z,r)|.
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Henceforth, the numbers C1, R, in (2.12) will be referred to as the characteristic local param-
eters of U with respect to the system X. The doubling condition (2.12) implies
r\9Q | B(2o,7)|
2.13 (—) < ¢ 2Tl U, 0 <R,.
( ) s = 1‘3(%,5)| Ty € <r<s<iy
We will use the following observation [DGN98, Cor 2.10].

Lemma 2.10. Let U C R™ be a connected, bounded set with |U| > 0, and let R, be as in
Theorem 2.9. For any 0 <r < R, we have

C, = inf|B(z,r)| > 0.
zel

In view of Lemma 2.10 we obtain from (2.13) with C* = 010}501 >0
r@
(2.14) WSC*R(? relU, 0<r<R,.
The following two propositions are easily derived from Theorem 2.9. They will play an

important role in the proof of Theorem 9.6.

Proposition 2.11. The polynomial function A(z,r) in Definition 2.8 satisfies the following
property. Given a bounded set U C R"® one has
A A — A A
Q(.’E) ($’T) < (.T,’r‘g) (‘T,rl) < Q ($1T)

T T —T1 T

foranyz € U, 0 <1 <re2 <R, and some r = r(z) € (r1,r2). Here, R, is the characteristic

local parameter of U and Q is its local homogeneous dimension (2.9).

Proof. We begin by observing that, from Definition 2.8, for any bounded set U C R™ one has

TN (z,7)
2.1 < —7 2 <L fi
(2.15) Qz) < Aor) Q, orevery z€U, 0<r<R,,

where Q and Q(z) are as in (2.9). We fix x € U and 0 < 71 < r9 < R,, and apply the mean

value theorem to the function A(z,-) to reach the conclusion from (2.15). O

Proposition 2.12. Let a < n. For every bounded set U C R" there exists a constant C > 0,
depending only on U and X, such that for all z € U, 0 <11 <ry < Ry, one has
re re

— < C ———.
|B(z,m2)| = [B(z,m1)|

Proof. 1t is easy to see from Definition 2.8, and from the second equation in (2.9), that for all
z€eU,0<r <R, and 0 <t<1, one has

(2.16) Az, tr) < 9@ A(z,7).
This gives for 0 < r; <79 < Ry, and a < n < Q(z)

g o (r\Y s
A(l‘arl) o T A(‘TaTZ) o A('Ta'r?).

The conclusion now follows from Theorem 2.9. O
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Remark 2.13. The exponent o in Proposition 2.12 is allowed to be negative. This is important
because the limitation on s in Theorem 10.1 depends on the upper and lower bounds of o (see
Remark 10.5).

Finally, we recall the following definition from [NSW84], p.123. For z € R", and r > 0, we

set
l
(2.17) Bozx(r) = {z €R" |z =exp (Z u;Y;) with |uj| < 7%},
i=1

where we have let d; = deg(Y;). Here, exp denotes the exponential mapping associated with the
vector fields Y7, ..., Y;. For its definition and main properties we refer the reader to the appendix
of [NSW84]. The following result is contained in Theorem 7 in [NSW84].

Theorem 2.14. Given a bounded set U C R™ there exist n € (0,1), and R, > 0, such that for
any x €U, and 0 <r < R,, one has

B(z,nr) C exp, (Boxz(r)) C B(z,r).

Remark 2.15. One can be more precise about the shape of the sets B(x,r). They have size

2

r in the directions of the X;’s, whereas they have size r° in the directions of the commutators

[Xi, X;], and so on (see [NSW84], and also [Gro96] ).

3. Carnot groups

It is well-known that the infinitesimal groups naturally associated with a system of smooth
vector fields satisfying (1.4) are non-commutative nilpotent Lie groups, whose Lie algebra admits
a stratification, see [St70], [RS76], [F75], [VSC92], and [St93]. These groups, which owe their
name to the foundational paper of Charathéodory [Ca09] on Carnot thermodynamics, occupy
a central position in the study of hypoelliptic partial differential equations, non-commutative
harmonic analysis, sub-Riemannian geometry, and CR geometric function theory. Two funda-
mental results in the subject are the lifting theorem of Rothschild and Stein [RS76], and the
strong rigidity theorem of Mostow [Mo73]. In this section we discuss some basic properties of
Carnot groups which will play a crucial role in the sequel.

A Carnot group G of step r is a simply connected Lie group whose Lie algebra g admits a
nilpotent stratification of step r. This means that g =V, & Vo & --- & V,., and that moreover
V1,Vj] = Vj1 for j = 1,...,r — 1, whereas [V1,V;] = {0}. We assume that a scalar product
< -,» > is given on g for which the Vj's are mutually orthogonal. We let m; = dim V;, 5 =1,...,r,
and denote by

N =m + ... + m,
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the topological dimension of G. The notation {Xj 1, ..., Xjm,}, j = 1,...,7, will indicate a fixed
orthonormal basis of the j — th layer V;. Elements of V; are assigned the formal degree j. As a
rule, we will use letters g, ¢', g, for points in G, whereas we will reserve the letters Z, Z', Z,, for
elements of the Lie algebra g. We will denote by

(3.1) Ly, (9) = 909, Ry, (9) = 9 90,

respectively, the left- and right-translations on G by an element g, € G. Recall that the
exponential map exp : g — G is a global analytic diffecomorphism [V74]. It allows to define
analytic maps & : G — V;, i = 1,...,r, by letting g = exp(&1(g) + ... + &-(g)). For g € G, the
projection of the ezponential coordinates of g onto the layer V;, j = 1, ...,r, are defined as follows
(3.2) zjs(9) = <&(9),Xjs >, s=1,..,mj.

It will be convenient to have a separate notation for the first two layers V; and V5. For
simplicity, we set m = m1, k = mo, and indicate
(3.3) X = {Xq, .., X} = {X11, -y Xim},

Y = {Yl, ey Yk} = {ngl, . XQ,IC}-

We continue to denote by X and Y the corresponding systems of left-invariant vector fields
on G defined by

XJ(g) = (Lg)*(XJ) 7 =1..,m, le(g) = (Lg)*(Yl) 3l = 1""ak 3

where (Lg). denotes the differential of L,. The system X defines a basis for the so-called
horizontal sub-bundle HG of the tangent bundle TG. For a given function f : G — R, the
action of X; on f is specified by the equation

, . flgezp (¢X;) — flg) _ d ,
(3.4) X;f(g) = lim t = % Flg eap (1),
A similar formula holds for any left-invariant vector field. We indicate with
(35) ‘,I"J(g) =< gl(g)an >, J=1.,m, yS(g) =< 52(g)ay;’ >, s=1, 7k

the projections of the exponential coordinates of g onto V; and V,. Letting z(g) = (z1(9), .-, zm(9)),
y(g9) = (y1(9), ---,yk(g9)), we will often identify g € G with its exponential coordinates

(3-6) g = (z(9),y(9),-),
where the dots indicate the (N — (m + k))-dimensional vector
(#3,1(9), - ©3,m3(9), -y Tr,1(9); s Ty, (9))-

When G is a group of step 2, then (3.6) simply becomes g = (z(g),y(g)). Such identification
of G with its Lie algebra is justified by the Baker-Campbell-Hausdorff formula, see, e.g., [V74]

1
(3.7 exp Z exp Z' = exp(Z + Z' + 3 Z,Z'] + ...) Z,7' € g,

where the dots indicate a finite linear combination of terms containing commutators of order

two and higher.
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For Z € g consider the map 0z : g — g given by
1
(3.8) 042"y = Z + Z' + 3 Z2,Z"] + ..

where the right-hand side is given by the Baker-Campbell-Hausdorff sum in (3.7). If we endow
the Lie algebra g with the polynomial group law

(3.9) Z o 7' = 04(2"),

then we can identify the group G with g, via the exponential coordinates.
In a Carnot group one has X7 = —X; [F75]. The sub-Laplacian associated with a basis X is

the second-order partial differential operator on G given by

m m
2 *
(3.10) L= x=-YXx:X;.

By the assumption on the Lie algebra one immediately sees that the system X satisfies the
finite rank condition (1.4), therefore thanks to Hérmander’s theorem [H67] the operator L is
hypoelliptic.

Every Carnot group is naturally equipped with a family of non-isotropic dilations. One first
defines dilations Ay : g — g on the Lie algebra as follows. If X = X; + ... + X, € g, with
X; eV, 3=1,..,r, one lets

(3.11) Ay X = AKX + -+ X)) =2X + - + N X,
One then uses the exponential mapping to lift (3.11) to the group, i.e.,
(3.12) x(9) = expo Ayoezp '(g), g€G.

Denoting by dg the bi-invariant Haar measure on G obtained by lifting via the exponential

map exp the Lebesgue measure on g, one easily checks that

T

(dodx)(g) = N9 dyg, where @ = Zjdzm(VJ)
j=1

The number @, called the homogeneous dimension of G, plays an important role in the analysis
of Carnot groups. In the non-abelian case r > 1, one clearly has Q > N.

We denote by d(g,g¢') the CC distance on G associated with the system X. It is well-known
that d(g, g’) is equivalent to the gauge pseudo-metric p(g,g’) on G, i.e., there exists a constant
C = C(G) > 0 such that

(3.13) C plg,9") < d(g,9") < C7'plg,9), 9.9 €G,

see [NSW84], [VSC92]. The pseudo-distance p(g,g') is defined as follows. Let | - | denote the
Euclidean distance to the origin on g. For § =& +---+ &, € g, & € V;, one lets

r 2r!
(3-14) Elg = (Z Ifz'lw/z> ) 9l = lexp™ glg, g€G
i=1
The pseudo-distance on G associated to | - | is given by

(3.15) p(g,9") = lg7" dla-
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Denoting with

(3.16) B(g,R) = {g' € G |d(g',9) < R}, B,(9,R) ={g' € G| plg',9) < R},
respectively the CC ball and the gauge pseudo-ball centered at g with radius R, one easily
recognizes that there exist w = w(G) > 0, and a@ = a(G) > 0 such that

(3.17) |B(g,R)| = w R, B9, R)| = a RY, g€G,R>0.

The first equation in (3.17) shows, in particular, that for a Carnot group the Nagel-Stein-
Wainger polynomial in Definition 2.8 is simply the monomial wR€<.

3.1. Carnot groups of step 2. A class of Carnot groups of special geometric interest is that
of groups of step 2. Let G be such a group, with Lie algebra g = V; & V5, and denote by b the
group constants defined by the equation

k
(3.18) (Xi, X;] = > b, v,

where X = {X1,...., X;n}and Y = {V1,..., Yy} are as in (3.3). Using (3.7), one immediately sees
that in the exponential coordinates

0
Y = S, l: ].,...,k .
l Oy

The following useful formula for the derivative along the vector fields X; in exponential

coordinates holds.

Lemma 3.1. Let f : G = R, then
of 1 S of
X; = L - - L),
i) = 5,0 + ;5 > (Z bij (g)> 9
Proof. To prove the lemma we recall the definition (3.4) of X;f(g). Let g = exp {(g), with
€(g9) = &1(g) + &2(g). Using (3.7) one obtains

g exp (tX;) = exp (61(9) + tX; + &ag9) + %[&(g)an])-

From (3.18) we find

k m
[€1(g =) (Z bLizi(9) ) Y,

=1 \i=1
and therefore

£g exp (£X,)) = F(@1(9);4(9) + 1, s Tml), 1 g Z bljoi(a)s -0k 0) + 3 3 Wiymilo)

Differentiating the latter equation with respect to ¢, and settlng t = 0, we obtain the conclu-

sion. O

For Z € g consider the map 0z : g — g defined by (3.8). In view of (3.7), 0z is a Lie algebra

homomorphism.
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Proposition 3.2. Let Z' = X' +Y' € g, with X' € V1,Y' € V,, then 07 is an affine transfor-

mation whose Jacobian is given by

Id 0
3.19 doz = mxm mxk o),
(3-19) Z ( Jkxm Idgxk
Here, J is a k X m matriz with entries
1 m
J(hi) = 3 > b ad, 1<Ii<k, 1<j<m.
1=1
Proof. Let Z =X +Y, then [Z', Z] = [X', X], and we obtain from (3.18)
1 m
(3.20) 02(2) = 7' + Z + > wwj[X], X))
i,j=1
1 k m
=7 + 7+ 52 Z bé,jxng Y.
=1 \4,j=1
The conclusion follows immediately from the last expression. O

3.2. The Kaplan mapping. In a group G of step 2, with Lie algebra g = Vi & Vs, consider
the linear mapping J : Vo — End(V1) defined by

(3.21) <Jm)¢,¢" > = <[¢,¢"],n>, nevy, ¢, en.

The algebraic properties of the mapping J have important repercussions on the geometric
and analytic properties of Carnot groups of step 2. An immediate consequence of the definition
of J is that

(3.22) < J(ME,E>= 0, for every n € Vs, £ € V1.

2

Lemma 3.3. In a Carnot group G of step 2, consider the function ¥(g) = |z(g)|°. For any

s=1,....,k, one has
(3.23) < X, Xys > = 0.

Letl =1, ...,k be fized, and denote by y'(g) the (k — 1)—dimensional vector obtained from y(g),
by removing the component y;(g). One has

(3.24) <X, X(|y')*) > = 0.
Proof. Let g =exp&, with £ = & + &. For ¢t € R, one has from (3.7)
< [61(9)’Xj]ay;‘ >

< J(Y5)é1(9), X > .

(3.25) ys(g exptX;) = ys(g) +

N | &~ N[ =~

= ys(g) +
We have from (3.25)

(3.26) (X5 9)(0) = 5 <J(V2)é(9), X; >
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On the other hand, we easily obtain from Lemma, 3.1

(3.27) Xiplg) = 2zi(9) = 2<&(g),X; > .
Equations (3.26), (3.27) give

< X¢p, Xy, > (9) = wa X ys)9) = Y <&(9):X; >< T(V)é(g), X; >

= < J(Y5)&(9),&(9) > = 0,

where in the last equality we have used (3.22). This proves (3.23). From the latter, (3.24)
immediately follows, since

k
<X, X(IWP)>= 2> ys <Xeh,X(ys) >= 0.
p=y

3.3. Groups of Heisenberg type. We next recall an important class of Carnot groups of step
2 which is modelled on the Heisenberg group H", but whose geometry is more intricated since
the center can have arbitrary dimension. The introduction of such groups is due to A. Kaplan
[K80], [K81], [K83].

Definition 3.4. A Carnot group G of step 2 is called of Heisenberg type if for every n € Vs,
such that |n| =1, the map J(n) : Vi — Vi is orthogonal.

We stress that there exists a plentiful supply of groups of Heisenberg type. For instance, the
nilpotent component N in the Iwasawa decomposition G = K AN, where G is a simple group of
rank one, is a group of Heisenberg type [CDKR91]. Such groups N are called Iwasawa groups.
When the center V5 of the group is one-dimensional, then (up to isomorphisms) a group of
Heisenberg type is nothing but the Heisenberg group H". Because of their symmetries, groups
of Heisenberg type play a distinguished role in analysis and geometry. For either aspect the
reader can consult the following (non-exaustive) list of references: [F73], [FS74], [Gav77], [Ge77],
[GeT9], [Ge(1)80], [Ge(IT)80], [Ge(I11)80], [Gre80], [Gre81], [J81], [Cy81], [GeS82], [P82], [K083],
[KaR83], [CK84], [JL84], [GGV84], [Ge84], [GeS84], [Ko85], [Ko85], [KoR85], [KoS85], [Da85],
[BGGV86], [GGV86], [Da87], [Da87], [KoR87], [JL8T7], [JL88|, [JL8Y], [BG88], [F89], [HMSI],
[Ge90], [GL90], [GS90], [Mu90], [MR90], [Th90], [ABCP91], [CDKR91], [Ro91], [Th(I)91],
[Th(IT)91], [Th(II1)91], [Th(IV)91], [HoR92], [MR92], [ABC93], [Me93], [St93], [Th93], [ABC94],
[ABCP94], [E(1)94], [E(I1)94], [MS94], [Th94], [KoR95], [MRS95], [SST95], [Th95], [CDGY6],
[Gro96], [E96], [MRS96], [CMZ96], [RT96], [MPRY7], [NT97], [RRT97], [CGI8], [LU9IS], [BGJISIS],
[CDKR], [Ge98], [Th98], [AR99], [BPr99], [MS99], [BGG00], [Bi00], [GV00], [Pa00], [Th00],
[CGNO02], [CGPO1], [FSS01], [GV01], [NTO01], [Pa(I)01], [Pa(II)01], [GP02].

Definition 3.4 implies

(3.28) |T(mél = Inl €], nevy £eV,



NON-DOUBLING AHLFORS MEASURES, PERIMETER MEASURES, ETC.

(3.29) <JIM)ETMNE> =<, n" > €, n,n'" € Va, €€V

In the next lemma we establish some key properties of groups of Heisenberg type.

Lemma 3.5. Let G be a group of Heisenberg type. For any fizedl = 1,....k, one has

(3.30) < X(wi)(9), X(ly/P)(g) > = 0.
(331) X)) = ; lo()*
(3.32) X(y P = (o) Iy

Proof. One has from (3.26)

k m
(3.33) < X(y)(g), X (|y'[*)( 2 )y > X)X (ys)
:11 j:l

k
= = Yy <JW)(&), J(Ya) (&) >
=
It is at this point that we use the Heisenberg type structure of G, obtaining from (3.29)
<IW)(&), J(V)() > = <V Yy > [ = s [af.

N =

Substituting the latter equation in (3.33), we conclude

1
< X(), X(P) > = 3 Z v | lal* = 0.
s;él
This proves (3.30). To establish (3.31), we use (3.26) and(3.28) which give

1 & 1 1 1
X = 7 D0 <JW)E),X; > = 7 @) = 7 4P &l = ;=
i=1
Finally, again from (3. 26) we obtain

X;(1y'P) =2Zys Zys<J )(&),X; > = < [€,X;],Y' >,
s#l s;él
where we have let Y’/ = Z’le ysYs. This formula gives
1

S
m

(Xi('17)? = > <&, X1,V >?

i=1

NE

X (ly' ) =

<.
Il
—

<J(Y) (&), X; > = |J(Y)&].

I
NgE

<.
Il
—

21
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If at this point we use (3.28), we conclude

Xy = TGP = Y lal? = |z |y
This establishes (3.32), and completes the proof. O
We close this section by recalling an important formula due to Kaplan [K80], which generalized

a basic discovery of Folland for the Heisenberg group [F73]. In a group of Heisenberg type G

we consider the renormalized gauge

(3.34) N(g) = (lz(9)* + 16ly(9)I*)

We notice that (3.34) differs from the expression given by the general formula (3.14) in the

1/4

case r = 2 only for the (immaterial) normalization factor 16. Let £ be a sub-Laplacian associated
with an orthonormal basis X of the first layer of the Lie algebra of G, and denote by I'(g,g’)
the corresponding positive fundamental solution. There exists C(G) > 0 such that

(3.35) M(g.g) = —2C)

! !
——— 55 9.9 €EG,g#g ,
p(g,9")92

where p(g,9') = N(g '¢').

4. The characteristic set

The notion of characteristic set is central to the subjects of sub-elliptic equations and of CC
geometry. In this section we analyze it in detail and discuss various geometric situations of

interest. We begin by recalling the Folland-Stein class I'}.

Definition 4.1. Given an open set @ C R, one says that f € C(S2) belongs to the class T} ()
if the derivatives X;f, j = 1,..,m, exist in Q, and furthermore X;f € C(Q) for j =1,...,m.

Definition 4.2. An open set Q C R is said to be of class T\ if for every z, € O there emist
a neighborhood Uy, of x,, and a function ¢, € T (Uy,), such that

QN Uy, = {z€Uy, | ¢pg,(z) <0}, 0NN Uy, = {z€lUy, | pg, () =0} .

It is well-known that 'y, ¢ C', and that, in fact, membership in '} does not even guarantee
the existence of the ordinary gradient. Thereby, a set of class I‘}X need not have a tangent plane
at x, € 0N).

Definition 4.3. Let Q2 C R" be an open set of class Pﬁ(. A point x, € 0N is called characteristic
with respect to the system X, if given Uy, , ¢y,, as in Definition 4.1, one has X1¢4 (z,) = 0,
ceey Xz, (z0) =0, or equivalently

(4'1) |X¢$o($0)| = 0.

The characteristic set ¥ = g x s the collection of all characteristic points of Q0 with respect to
X.
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When Q is a C! open set, then the function ¢ = ¢, in Definition 4.1 can be taken in C'. In

such case, the condition (4.1) in Definition 4.3 is equivalent to the more familiar one
¥ = Yox = {.’L‘O € 00 | Xj(.’L‘O) € Tzo(GQ), j= 1,...,m}.

The angle function of Q is defined by

(4.2) wz) Y 1Xe), z €N .

The reason for the name is in the fact that, when € is a C' domain, then w(z) measures the
angle formed by the outer unit normal v(z) to 9Q at the point z with span {X1(z), ..., Xm(z)}.
In fact, since the latter is given by v = V¢/|V |, it is clear that if x € 99, then one has

. 1/2 {Zm X-¢(w)2}1/2
(z),v(z) >2 = = - Y z)
2 < Xy(o).vle) > ZZE) Vo)

4.1. A result of Derridj on the size of the characteristic set. Henceforth, we denote
by H, the s-dimensional Hausdorff measure in R* constructed with the standard Euclidean
distance, see, e.g., [Fe69]. If D C R® is a C*, or a Lipschitz domain, then H,,_1|0D is just the
ordinary surface measure on dD.

Suppose that ¢ : R* — R be a C' defining function for , i.e., @ = {z € R* | ¢(z) < 0}.
Denoting with V the standard gradient in R", we always assume that |V¢(z)| > 0, for every
z € 0. In particular, when € is a bounded set we infer the existence of constants o > aq,
such that

(4.3) 0 < ag < |V ¢($)|_1 < Ba, for every =z € 09).

Typically, bounded domains have non-empty characteristic sets. For instance, due to topo-
logical reasons every bounded C' domain in the Heisenberg group H", whose boundary is home-
omorphic to the 2n-dimensional sphere S??, has non-empty characteristic set. The following
basic result, due to Derridj [De71], [De72], shows that, at least from the measure theoretic point

of view, the set X is not too big.

Theorem 4.4. Let Q C R™ be a C*° domain. One has

H,_1(Zq,x) = 0.

Although we will not use it in the present paper, in connection with the size of the charac-
teristic set we mention the interesting recent result of Balogh [B00]. The latter states that for
a C! domain in the Heisenberg group H", the characteristic set has zero (@ — 1)-dimensional
Hausdorff measure with respect to the CC distance of the group. An extension of Balogh’s
theorem to Carnot groups of step 2 has been established by Magnani in [M01].
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4.2. Some geometric examples. In this section we discuss various examples of characteristic
sets which have a special geometric interest in the applications. In the theory of sub-elliptic
equations, or in CC geometry, typically characteristic points are present. In the sense that a
domain with an empty characteristic set must possess some special properties, either geometric
or topological. We will illustrate these aspects with some examples.

4.3. Non-characteristic manifolds. Our goal here is to provide examples of domains whose
boundary has empty characteristic set. We begin with the case of unbounded domains. As we

will see, the construction of bounded domains is much more delicate, and it involves topology.

Example 1 (Non-characteristic hyper-planes). Let G be a Carnot group of step r, with
Lie algebra g = V1 @ ... ® V;, and let m = dim(V1). For a fized vector a € R™ \ {0}, and for
A € R, consider the half-space

Hf = {geG|<z(g),a>> A}

One has ¥ = Xyt v = @. Furthermore, the relative angle function w = |X¢[, where ¢(g) =
A— < z(g),a >, satisfies the equation w(g) = |a|, for every g € G.

Proof. Using (3.7) we easily see that for every fixed i =1, ...,m one has

(4.4) zi(g exp tX) = 3i(g) + t0y,  G=1L.m.
The latter equation shows that
m
I Xo(9)* = ) (Xig(9)” = |al.
i=1
This proves the above claims. O

The above example, and variants of it, are of interest in the study of the CR Yamabe problem,
see [LU98], [GV00], and [GV01], and also in the theory of minimal surfaces in Carnot groups
[DGNO0O], [FSS01]. When the domain € is bounded, then topology enters the picture, and
the construction of non-characteristic boundaries is a much less obvious task. We provide a

significant model in the following example.

Example 2 (A toroid in a group of Heisenberg type G).

To describe such set consider a Carnot group G of step 2, with Lie algebra g = V; & V5. Let

M be a k-dimensional compact submanifold of the (k + 1)-dimensional vector space
{eV <& Xo>=. =< X >=0xVy C g.
We assume in addition that 0M = &, and that
de(M,{0} x V3) > 0,
where d.(M, {0} x V3) denotes the Euclidean distance in V; x Vo. If S™~! denotes the (m —

1)—dimensional sphere in V; centered at the origin, we define the toroid generated by M as

(4.5) T(M) = {g € G |exp!(g) €S™ ! x M}.
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We want to establish the following.

Proposition 4.5. Let T(M) be a toroid in a group of Heisenberg type, then

2 - ET(M),X = .

Before presenting the proof of Proposition 4.5 we need to develop some preliminary material.
The following definition is taken from [GV01].

Definition 4.6. Let G be a Carnot group of step 2 with Lie algebra g = V1 @ Vo. A bounded
domain Q C G is said to have partial symmetry if, for some g, € G, the domain Ly, () is

invariant under the action of the orthogonal group Q(m) onto the first layer V;.

Here, Ly, : G — G is the operator of left-translation introduced in (3.1). We remark that the
toroid in (4.5) has partial symmetry (with respect to the group identity e). Our next goal is to
understand the location of the characteristic set of a domain with partial symmetry. It is clear
that, since the condition that a point be characteristic is invariant under the left-translations
{Ly}4eq, it will suffice to look at the situation in which g, = e. By left-translating along the
center, we can without restriction assume that e € Q2. In what follows, we will consider an even
more general situation, and suppose in fact that, in a neighborhood V of e, the domain 2 can

be described as follows: There exists a fixed index [ = 1, ..., k, such that

(4.6) o NV={ge@| ulg = =@y} NV,
where f : R?2 — R is a given C! function, with f(0,0) = 0. If we let
(4.7) ¢(g) = wlg) — fl=(9)|" [y (9)),

then ¢ is a defining function for {2 near e. We want to compute the relative angle function.
Letting t; = t1(g) = |z(g)|*, and t2 = t2(g) = |v/'(g)|?, we find
Xip = Xju — [2 fu(al® 1P Xov + fu(els 1Y) X397

where for simplicity we have omitted the argument g for all functions involved. The latter
equation gives
(48) Xl = IX@)® + 450 9 (X9 + 571Xy

+ 4 fo foo 0 <X, X(W) > =4 fu b < X(w), Xy >

- 2 ftz < X(yl)aX(|yl|2) >

Lemma 3.3 allows to obtain from (4.8)
(4.9) (Xl = | X@)* + 16 /7 ¢° + £ 1X(Iy' )
— 2 fi, < X (), X(Iy'[*) > .

To understand further the nature of the right-hand side in (4.9), we need to impose more
conditions on the geometry of the group G. An important class of Carnot groups of step 2 for

which, in most occasions, a better understanding of the angle function can be obtained is that
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of groups of Heisenberg type. With Lemma 3.5 in hands we can now complete the identification

of the characteristic set of a domain described by (4.6).

Proposition 4.7. In a group of Heisenberg type G, consider a bounded C' domain Q such that,

for some l =1,....k, one can describe O as in (4.6). One has
5 = {g€ 09| a(g) = 0).

Proof. Using Lemma 3.5 in (4.9) we obtain

1
(4.10) 1 X(9)|> = 1 lz(g)* + 16 17, [2(9)|°® + fZ |=(a) I¥'(9)]?
1
— k(o) {3 + 16 2 o)l + 72 WP}
From (4.10) we deduce that |X¢(g)| = 0 if and only if 2(g) = 0. This proves the proposition.

O
After this preliminary work, we can finally prove Proposition 4.5.

Proof of Proposition 4.5. From its definition it is clear that the compact manifold T(M) is
invariant under the action of the orthogonal group O(m) on the first layer V;. Therefore, as a
special case of Proposition 4.7, we deduce that the only characteristic points of T(M) can occur
on the set A =T(M)N{g € G| z(g) = 0}. However, by the assumption d.(M, {0} x Vo) > 0,
we conclude that A = &. This completes the proof. O

4.4. Manifolds with controlled characteristic set. The previous two examples provide in-
stances in which the characteristic set is empty. We next discuss several geometrically interesting
examples in which the characteristic set is non-empty, and perhaps quite large, but nonetheless

can be controlled in an appropriate sense. We introduce a specific definition.

Definition 4.8. Let X = {X1,...,Xn} be a system of C® vector fields in R® satisfying the
finite rank condition (1.4). Given a F}( open set Q@ C R™, we say that its characteristic set
¥ = Xq,x is controlled if there exists a constant C' > 0, such that for every z, € X, with local
defining function ¢4, : Uy, — R, one has for every x € 02 N Uy,

(4.11) w(z) = [X¢(z)] > Cd(z,%) .

In (4.11) the distance is measured with respect to the CC metric d(z,y) associated with X, see
section 2. It is important to observe that, if {2 is a bounded domain with empty characteristic
set (see Example 2 in section 4.3), then there exists a constant C = C(€,X) > 0 such that
w(z) > C for every = € 9. Therefore, in this situation the condition (4.11) is trivially fulfilled.
Definition 4.8 is connected with the notion of strongly isolated characteristic point, introduced
by D. Jerison [J81], but it is a weaker condition, see Example 5 below. Its relevance is due to

the fact that when the characteristic set is controlled, then it is easier to study its properties. In
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the sequel we will construct several basic examples of sets whose characteristic set is non-empty,

but it is controlled.

Example 3 (Gauge balls in a group of Heisenberg type).

Proposition 4.9. In a group of Heisenberg type G the characteristic set of a gauge ball
By(g0,7r) = {9' € G| p(g0,9") <}
is controlled.
Proof. By left-translation and dilation we can assume that g, = e, the group indentity, and
that r = 1, so that 0B,, where B, = B,(e, 1), is described by the equation
(4.12) z(@)* + 16 [y(9)* = 1,
see (3.34). A defining function ¢ for B, is given by
$(g) =pl9)* — 1 = lz(g)l* + 16 y(g)l® — 1 = $(9)* + 16 y(g)l* — 1.
Since
X¢ =29 Xy + 16 X(jy*),
we thus obtain
[X¢l* = 49 | Xy + 167 [X(Jy)* + 649 <X, X(lyl*) >.

From Lemma 3.1, Lemma 3.3, and from the proof of (3.32) we conclude

(4.13) (Xo> = 16 |z|* (|z|* + 16 [y*) = 16 ||, g € 0B,.

Proposition 4.7 presently gives

1
(4.14) 2 = {9€0B,|z(g) = 0 lylg)] = }-
Suppose we can show that there exists a constant C' > 0 such that, given any g € 0B, one
can find § = §(g) € ¥ satisfying
(4.15) 1z(g)] > C d(g,9).
In view of (4.13), since d(g,§) > d(g,%), (4.15) would imply (4.11), and thus complete the

proof. Let then g € 0B,. From (4.14) we find for g € &

(4.16) d(g.9)* = lz(g)l* + 16 |y(g) — y(3)/*.
We next distinguish two cases. If y(g) = 0, we obtain trivially from (4.12) |z(g)| = 1. We can
thus take as ¢ any point in ¥ since
d(g,9) < diam(B,) = 2.
In this case, (4.15) holds trivially with C'= 1/2. Suppose instead that y(g) # 0. If we choose
9= (0,y(9)), with

~  ylg)
vla) = Aly(g)|’
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then we see from (4.14) that § € ¥. Moreover, it is easy to see that

w(e) — v@P = = (1 — 4y(g))*.

16
From the latter equation and from (4.16) we conclude
(4.17) d(g.9)* = la(g)l* + (1 — 4ly(g))* = 2 (1 — 4[y(g))).

On the other hand, (4.12) gives
2| > (1 — 4y]).

The latter inequality, and (4.17), imply that (4.15) holds with C = 2~/%. This completes the
proof. O

Besides gauge balls, there exist large classes of manifolds M whose characteristic set is con-
trolled. For the sake of simplicity, we discuss some of them in the context of the first Heisenberg
group H = R3, with its left invariant vector fields

0 0 0 0
(4.18) Xl—%‘l-?ya, Xo = — — 272

with respect to the non-commutative group law
(4.19) gogd = (zyt) o (@yt) = @+ y+y,t+¢' +2(z'y —zy)) .
The CC metric is equivalent to the gauge distance p(g,go) = N (9 'g,), where we have denoted
by
(4.20) N(g) = Nly,1) = [(lof +ly*) + ]
the gauge defined in (3.14). The interested reader can easily generalize the considerations that

follow to the higher Heisenberg groups H". Using the results previously obtained, one can also

extend some of the examples to groups of Heisenberg type.

Example 4 (Manifolds with cylindrical symmetry in the Heisenberg group).

These manifolds have already been discussed in greater generality in the example of toroids.
The novelty, here, is that we prove that their characteristic set is controlled. Let M C H! be a
manifold whose defining function is given by ¢(x,y,t) =t — f(|z|*) where f : [0,00) — Risa C*
function, and z = (z,7), |z| = /z2 + y2. Without loss of generality, we may assume f(0) = 0
(this situation can always be achieved by left-translation along the center). With g = (z,y, 1),
e = (0,0,0), we thus have

Xip(g) = 4y — 8al2l* f'(l2"), Xaglg) = — 4z — 8yl f(|2*)
and
w(g)? = Xig(9)® + X29(9)” = 16 |2]* (1 + 4fz|*f'(|2|")?).
In accordance with Proposition 4.7, we have ¥ = {e}, therefore d(g,%)* = |z|* + f(|z|*)2.
Since f € C!, and f(0) = 0, it is easy to see that
1 + 4rf'(1)?

Cw(e)t A+ A2 .
1 =1 =41lm-—-—— - 0.
soed(g, S)E 950 251 + |2l 1 (2152 e
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We conclude that (4.11) holds.

The same type of argument also applies to manifolds M whose defining function takes on the
form ¢(g) = ¢* — f(|2[*).

Example 5 (The non-strongly isolated saddle in H!).

D. Jerison in [J81] introduced the notion of strongly-isolated characteristic point in the Heisen-
berg group H”. Given a C' domain 2 C H", with defining function ¢, a characteristic point
go € 00 is called strongly-isolated if for some constant C' > 0 one has for every g € 92

| Xp(g)| > C d(g,90) -

This notion played an important role in [J81] in the study of the Dirichlet problem at char-
acteristic points. In this example we produce a domain whose characteristic points are not
strongly-isolated, according to the above definition, but whose characteristic set is nonetheless

controlled.
Consider the saddle in H', defined by

$lg) =t —2” + 4.
A computation gives
w(g) = |X¢(g)l = 2V2]z—yl,
and therefore,
Y = {(0,0,0) | a € R} .

Using calculus, one easily obtains that
1
d((z,y, 22 —y%),8) = —= |z —vy| .
((z,y y), %) 7 |z —yl

This estimate shows that (4.11) is satisfied, hence the characteristic set of the saddle is
controlled. However, as it was observed in [J81], its characteristic points are not strongly-

isolated.

Example 6 (Baouendi-Grushin vector fields and a-admissibility).

In their cited paper [MMO02] Monti and Morbidelli prove a trace theorem similar to Theorem
11.7 in the following two cases: a) The system X = {X1,..., X;;,} of C* vector fields satisfies
(1.4), the bounded domain € is C*, and it has empty characteristic set; b) In R?, the system
X = {X;, X2} consists of the Baouendi-Grushin vector fields
0 0
e Xy = |z|* —, a>0,

(4.21) X, = By
and the bounded domain 2 is a-admissible.

As for case a), we have already observed that any non-characteristic domain is trivially con-
trolled. Concerning b), we prove here that, at least in the range 0 < a < 1, the notion of

a-admissibility is stronger than that of controlled characteristic set. Therefore, within this
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range, the class of domains introduced in Definition 1 in [MMO02] have controlled characteristic
set to according Definition 4.8.

By left-translation along the y-axis, we can assume that the characteristic point occurs at the
origin (0,0). Definition 1 in [MMO02] requires the existence of f : (—4,d) — R, such that 9Q can
be locally described by the equation y = f(z), with f € C', f(0) = 0, and such that for some
M>0

(4.22) [f'(@)] < M |a|*, |z <4
We notice that (4.22) implies
(4.23) @] < M Jz]ot 2l <.

The function ¢(z,y) = f(z) —y is a C' defining function for {2 near (0,0). A simple compu-
tation gives

[ Xo(z,y)| = VF'(2)? + |afPe, on 0%,
therefore, thanks to (4.22) one has
(424) Z° < [Xé@y)l < Clol®,  on 09.

On the other hand, it is well-known [J81] that

1
d((,9),(0,0)) = (Jaf2ett) 4 ¢2) %

therefore, thanks to (4.23) we see that

(4.25) lz| < d((z,y),(0,0)) < C |z on 0N .

Combining (4.24) with (4.25), we see that near (0,0) we have on 0
\X¢($,y)| ~ |$‘a—1 .
d((z,y), %)
In particular, (4.11) is fulfilled, provided that 0 < o < 1. Some final comments are in order.
The non-isotropic dilations attached to the vector fields (4.21) are 8x(z,y) = (Az, \**1y). With

respect to such dilations, a characteristic “ convex cone” , see [CG98] and [GV00], is given by
Cu = {(z,y) €R |y > Mlz|*T'},

where M > 0 measures the “aperture” of the cone. In this regard we see that condition (4.23)
can be expressed by saying that near the characteristic point 02 must stay below, or at most

coincide with, the boundary of a cone Cyy.

Example 7 (A manifold whose characteristic set is not controlled).

We close this section with an example of a manifold in H' whose characteristic set is composed
of a single point, and yet the condition in Definition 4.8 is not fulfilled. Consider the surface

M C H!' whose defining function is given by

Plg) =t — 2> + > + .
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A computation gives
Xidlg) = — 2z + 2,
Xop(g) = — 22 + 2y + 33°.

Clearly, the only common solution to the above two equations is z = y = 0, hence e = (0,0, 0)
is the only characteristic point. To see that 3 = {e} it is not controlled, observe that for g € M
we have

w(g)t = (IX19(9)f° + [X28(9)1*)? = By — 2)* + 12y°(y — 2) + 9*))?
and
d(g,e)* = (z°+y°)° + (2% -y +9°)%
Take a sequence oy, — 0. Considering points in M of the form (a,, a,, —a3), we see that

— o)t 81af
w(anaana (;n) L = I Qn 5 — 0 asn— oo.
d((anaana _an)7e) 4C¥n T oy

Hence, it is not possible to find a neighborhood V of ¥ = {e}, and a constant C' > 0, such
that

w(g) > Cd(g,%),

foralge MNV.

5. X-variation, X-perimeter and surface measure

The aim of this section is twofold. On the one hand, we recall the notions and some properties
of the X-perimeter and of X-Caccioppoli sets. On the other hand, we introduce the concept
of perimeter measure, which will play a pervasive role throughout the paper, and establish its
connection with the X-perimeter, see Theorem 5.8.

We begin by recalling the notion of X —variation introduced in [CDG94]. The latter is an
intrinsic generalization of the original one due to De Giorgi [DG54], [DG55], [DCP72]. Two
related definitions were independently set forth in [BM95], and in [FSS96]. In the latter paper,
it was proved that the three definitions in [CDGY94], [BM95], [FSS96], are in fact equivalent.
A generalization of the notion of variation to a metric space with a doubling measure and a
Poincaré inequality has been given in [Mi00].

Definition 5.1. Let 0 C R" be an open set, and u € L}, (). The X —variation of u in Q is
defined as follows

m
Varx(u;Q) = sup / U X:¢ dz
cer@) Jo ; !
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where

m 1/2
F@) = {0 Q) € O™ | el =swp (S602) <1},
S j=1

A function v € L'(Q) is called of bounded X —variation if Varx(u;§2) < co. In such case,
we write u € BVx (), and the collection of all such functions becomes a Banach space when
endowed with the norm

lull vk @) = llulleye) + Varx(u; Q).

The notation BV j,.(Q2) indicates the collection of functions u € L}, (), such that u €
BVx(w), for every w CC Q.

A basic source for the properties of the space BVy is [GN96], where also the existence of

minimal surfaces was established. In the same paper we posed the basic question of their

regularity properties.

5.1. The structure of functions in BVx ;,.. An important consequence of Definition 5.1, and
of the Riesz representation theorem, is the following structure theorem for BVx ;.. functions.
Hereafter, we denote by R(£2) the space of Radon measures on €2, and by R(€2)™ that of m-vector

valued ones.
Theorem 5.2. Let Q C R" be an open set, and u € BVx 1:(?). There exists p,, € R(Y), and
a py—measurable function o% = (o¥,...,0%) : Q@ = R™ such that

(¢1) lo“(z)] =1 fy —a.e. T €
(it) / u Y Xj¢de = — / > ¢ ot dpu(z)  for every (= ((1yeyCm) € Co(GR™)
o 4 Q o

Conforming to a well established tradition, for u € BV jo.({2) we introduce the notation
(5.1) | Xull = pu [Xu] = [[Xul| [ ou -

where p,, is the variation measure in Theorem 5.2. Notice that d[Xu] € R(2)™. Equation (ii)

can thus be written
m
(5.2) / w Y Xi¢dr = — / < (o> d||Xul| = — / < ¢ d[Xu] >,
o 4 Q Q
for every ( € C(} (©; R™), where we have indicated with < -,- > the inner product in R™.
5.2. X-Caccioppoli sets. The following definitions are respectively taken from [CDG94] and
[GNY6].

Definition 5.3. Let 2 C R™ be an open set. Given a measurable set E C R", the X —perimeter
of E relative to Q2 is defined by

Px(E;Q) = Varx(xg; Q).
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Definition 5.4. Let Q) C R™ be an open set. A measurable set E C R" is called a X —Caccioppoli
set in Q if

Px (E, UJ) < 0,
for every w CC Q. Equivalently, E C R" is a X-Caccioppoli set in § if

X € BVxi0e(Q) .

When E C R" is a X-Caccioppoli set in 2, taking u = yg in Theorem 5.2, we will write
(5.3) lOx Ell = pixs » vg = oX¥, [0xE] = ||oxEl| [ v% ,

and respectively call ||0x E|| the X —perimeter measure, and v¥ the generalized X -outer normal
to E. If E is a X-Caccioppoli set in R", and 2 C R” is an open set, with the notation in (5.3)

we have
lI0xE||(Q) = Px(E;Q) .

Let ¢ € CL(R™;R™), then for any measurable set E C R” one has

m m m
/ > Xj¢do +/ Y Xi¢d = / Y Xi¢dz = 0.
Eoj=1 ke =1 R™5=1
This implies
(5.4) Px(E;R") = Px(E4R"), vE =
Because of its relevance, we will restate Theorem 5.2 for Caccioppoli sets, using the notations
in (5.3).
Theorem 5.5. Given an open set Q@ C R*, let E C R"® be a X-Caccioppoli set in Q2. There
exists a ||Ox E||-measurable function v¥ : Q@ — R™ such that
VE(z)] = 1 for ||OxE|| —ae. z€Q,

and for which one has for every ¢ € CL(Q;R™)

/ > Xj¢Gdw = —/ < (i > d||loxE|| = —/ < ¢, d[0xE] > .
B =1 Q2 Q

For our purposes, the following property of the X-perimeter is important, see Remark 3.2 in
[CDGY4]. Let E C R* be a C' domain, with outer unit normal v, and assume that H,_1(£2N
OE) < co. If ¢ € CL(;R™), we have

/ Y Xj¢dn = —/ Y G <Xjv> dHy, ;.
E ;5 OENQ

=1

From this observation, and from Theorem 5.5, we conclude the following result.
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Proposition 5.6. Let E C R" be a C' domain, and denote by v its outward pointing unit

normal. If for any given compact set K C R", one has H,_1(0ENK) < oo, then for every open
set Q C R, and any ¢ € CL(Q;R™), one has

_)
/ < ¢ vl > d||oxE|| = / <(, X, > dH, 1,
Q SENQ

where we have let

%
(5.5) X, = (< X1,v>.,<Xm,v>).
Moreover,
N m 1/2
d||0xE|| = |X,|d(H,_1|0E) = {Z<Xj,u>2} d(H,_1|0E) ,
j=1
and one has
_),
(5.6) Px(B:) = [oxBII@) = [ |X.| dHs
OENQ

We observe that, when z, € E N is a characteristic point of E, then we obtain from (5.5)
—
X,(z,) = (0,..,0) € R™.

However, we recall that Theorem 4.4 states that, when €2 is C'°°, the characteristic set X g x

has H,_q measure zero.

5.3. X-perimeter and the perimeter measure. We begin with a definition that plays an

important role in this work.
Definition 5.7. Let 2 C R" be an open set for which there exists ¢ € T'5(R™) such that
Q = {zeR"|¢(x) <0} .
We define the perimeter measure p (associated with the system X and with Q) as follows
(5.7) w(E) def / | X é(z)| dHp—1(z) , E is a Borel subset of R" .
ENoQ

Clearly, p is supported on 0f).

The following result provides a geometric interpretation of the measure u, by showing that
it charges the intersection of a CC ball with the boundary of a C'' domain Q proportionally to
the X —perimeter of 2 with respect to the ball. In this situation, y is therefore nothing but the

X-perimeter in disguise, thereby justifying its name.

Theorem 5.8. Let Q C R* be a C* domain, with defining function ¢ satisfying (4.3). For

every x € 022, and every r > 0, we have

a p(B(z,r)) < Px(@;B(z,r)) < B p(B(z,7)).
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Proof. If we denote with v the outward unit normal to 9Q, we then have v = V¢/|V4|.

Proposition 5.6 gives

(5.8) Px (@ Bla,r)) = /annB(zc,T) {

m 1/2
< Xj,l/ >2 } dHn—l
j=1

X
S e
O0QNB(z,r) |V¢|
The conclusion now follows from (4.3), and from (5.7). O

6. Geometric estimates from above on CC balls for the perimeter measure

This section, and the next one, have a twofold purpose. On one hand, they serve as mo-
tivation for the rest of the paper by showing that the Ahlfors type assumptions in our main
results hold generically in the geometric setting of Carnot groups for the X-perimeter mea-
sure. At the same time, they provide a solid foundation for the development of the theory.
The estimates established here, and those in section 7, have also important applications in par-
tial differential equations, especially in the study of the Dirichlet and Neumann problems, see
[CGNO01], [CGN02], [DGN(II)02], [LUO1], in the theory of free boundaries [DGS02], and in the

development of geometric measure theory in CC spaces [DGNOO].

6.1. A fundamental estimate. Let G be a Carnot group, with Lie algebra g, and topological
dimension N. We consider the (N — 1)—dimensional Hausdorff measure Hy_; in g constructed
with the standard Euclidean distance. For a given open set D C g we will denote with doy the

measure on 0D defined by
(6.1) o = Hy 1| OD.

If D is a Lipschitz domain, then dog is just the ordinary surface measure on 0D. Slightly
abusing the notation, we will also indicate with Hy_; the (N — 1)—dimensional Hausdorff
measure in G constructed with the Riemannian distance. However, no confusion will arise since
we will ordinarily write dHy_1(£), or dHy—1(g), depending on whether the integral in question
is performed with respect to the variable ¢ € g, or g € G. If Q C G is an open set, and if

D = exp~}(Q), then we define a measure on 92 via the formula
(6.2) o(E) = o4(exp 1(E)), for every measurable E C 09,

where oy is given by (6.1). Clearly, E C 99 is called measurable, if exp~!(E) is a measurable
subset of @D with respect to oy.
Our main present objective is providing a significant example of an upper s-Ahlfors measure

1 on G, ie., a non-negative Borel measure with the property

(6.3) w(B(g,r) < m Benl

,r-S
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Throughout this section, we will in fact be solely concerned with the geometrically important

case s = 1. We begin by recalling a basic notion introduced in [CG02].

Definition 6.1. Let G be a Carnot group of step r. Given a bounded open set

Q ={9eG | ¢(g) <0},
where ¢ € CY(G), we define the “type” of g, € O to be the smallest j = 1,...,7 such that there

exists s = 1,...,m;j for which

Xj,s¢(go) # 0.

Such integer will be denoted by type(go). If for every g, € 0Q we have type(g,) < k, then we
say that Q) has type < k. In particular, 2 is of type 1 if and only if it has empty characteristic

set.

Remark 6.2. If G is of step 2, then in view of Lemma 7.4 any bounded C' domain Q C G is

of type < 2, so that Definition 6.1 imposes in this case no restriction on the characteristic set.

It is easy to generalize the notion of type < 2 to a C* system X = {X1,..., X;;,} satisfying
(1.4). Given a bounded C! domain Q = {z € R" | ¢(z) < 0}, we say that Q is of type < 2 if

either ) is non-characteristic, or for every characteristic point z, € 92 one has

[XZ,XJ]QS(.TO) 7& 0,

for some %,j € {1,...,m}.

Theorem 6.3 ([DGN98], [CGN98], [CGN02], [CG02]). Let G be a Carnot group of arbitrary

step, having homogeneous dimension (. Consider a bounded domain of type < 2

Q = {geG|¢g) <0},

where ¢ € CYY(G) is a defining function for Q. There exist M, R, > 0, depending on G and S,
such that for every g, € 02, and 0 < r < R,, one has

(6.4) ( sup |X¢|> o(B(go,7)NON) < M Q1.
B(go,r)NON

Remark 6.4. As we discussed in the introduction, the assumption of type < 2 in Theorem 6.3
is best possible. In [CGO02] the authors have constructed an example of a C* domain 2 of type 3
in the 4-dimensional Engel group such that the estimate (6.4) fails. Furthermore, for the same
domain also the perimeter measure Px(€;-) fails to be upper 1-Ahlfors, and therefore the type

condition is optimal for Theorem 6.6 below as well.

We mentioned that, in the special setting of the Heisenberg group H", and for C? domains,
Theorem 6.3 was, essentially, first formulated independently by C. Romero and by M. Mekias, in
their respective Ph.D. Dissertations [Ro91] and [Me93]. However, neither dissertation is available

in print, and also neither work contains a complete proof. A full proof for the Heisenberg group
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first appeared in [DGN98]. With minor modifications, such result was extended to all Carnot
groups of step 2 in [CGN02]. The full Theorem 6.3 was announced in [CGN98], and its proof
will appear in the paper [CGNO1]. In fact, in [CGNO01], Theorem 6.3 is one of the main steps in
a chain of arguments which, ultimately exploiting the Rothschild-Stein lifting theorem [RS76],
establishes the following analogous result for any system X of Hormander type.

Theorem 6.5 ([CGNO1]). Let X be a system of C* wvector fields in R" satisfying (1.4). Con-

sider a bounded open set
Q = {zeR|d(z) <0},

where ¢ € CHLRM) is a defining function for Q. If Q is of type < 2 there exist M, R, > 0,
depending on X and on 2, such that for every xz, € 082, and 0 < r < R,, one has

( sup |X¢|> o(B(zo,r)NON) < M M’
B(

Zo,T)NON r

where we have let o denote the standard surface measure on 0S).

We have already pointed out that the geometric estimates in Theorems 6.3, 6.5 play a fun-
damental role in several questions which range from boundary value problems, to geometric
measure theory. In this paper, they will be primarily used in connection with trace inequalities.
We observe explicitly that Theorems 6.3, 6.5 provide a precise quantitative information on how
bad surface measure do can be at characteristic points. For instance, in the case of a Carnot
group of step 2 it was shown in [DGN98] that one has

|B(go,7)|

o(B(go,7)NON) < M 2

bl

and that such estimate is sharp at characteristic points, in the sense that it cannot be improved
to

|B(9057')|
7«-5

o(B(go,7)NON) < M

bl

for some 1 < s < 2. Away from the characteristic set one expects surface measure to be well-
behaved. This intuition has been proved correct by Monti and Morbidelli in their cited paper
[MMO02]. They show that for a bounded C* domain Q having empty characteristic set, the
following interesting estimate holds

. [B(as,1)

Mt M < o(Bao,r)N0Q) < M

T, €002, 0<r<R,.

6.2. The X-perimeter of a C''! domain is an upper 1-Ahlfors measure. These observa-
tions naturally lead to the question of what is the appropriate replacement for surface measure
in the trace inequalities. The answer is contained in the following important consequence of the
above theorems.
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Theorem 6.6. Let Q C R™ be as in Theorem 6.5. There exist M, R, > 0, depending on X and
Q, such that the perimeter measure u on 2, introduced in Definition 5.7, satisfy the estimate

u(Blayr) < u B0l

for every x, € 02, and any 0 < r < R,. This estimate, along with Theorem 5.8, imply that u
and Px(Q;-) are upper 1-Ahlfors measures.

Proof. Using Theorem 6.3 one finds

1Bg0, 7))

r

w(B(go,T)) = / | X¢(g)| do < ( sup |X¢I> o(B(go,r) NON) < M
B(go,r)NoN B(go,r)NOQ

O

Remark 6.7. One should compare the estimate in Theorem 6.6 with that in the right-hand side
of (1.1).

7. Geometric estimates from below on CC balls for the perimeter measure

We now turn to the study of the bound from below for the perimeter measure introduced in
Definition 5.7. Due to the presence of characteristic points on the boundary, this constitutes
a very delicate endeavor. QOur main result is contained in the following Theorem 7.1. We
emphasize that, in the statement of the latter, no assumption is made on the characteristic set
of the domain €.

Theorem 7.1. Let G be a Carnot group of step 2, with Lie algebra g = V1 @ Vs, and consider a
bounded C? domain Q C G. There exist positive constants M, R,, depending on 2, such that if
i denotes the perimeter measure associated with an orthonormal basis of the the first layer V1,
one has for every g, € 092, and any 0 < r < R,,

1Bl

W(Blagor) > M 1P
Combining this estimate with Theorem 5.8, we conclude that p and Px(Q;-) are lower 1-Ahlfors

measures.

The proof of Theorem 7.1 is rather involved, and will be accomplished in a number of steps.

Before turning to it we pause to list a basic consequence of Theorems 5.8, 6.3, and 7.1.

Theorem 7.2. In a Carnot group G of step 2, let @ C G be a bounded C? domain. There
exist constants M = M(G,Q) > 0, R, = R,(G,Q) > 0, such that for every g, € 0, and any
0<r <R, one has

B B
1| (g:,r)| S PX(Q;B(QO,T)) S M‘ (g:,?")|’

M-
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i.e., Px(Q;-) is a 1-Ahlfors measure. In particular, Px(f;-) is doubling, i.e., there exists
C=C(G,Q) >0 such that

PX(Q;B(QOaZT)) < CPX(Q;B(ng)) O<T<Ro/2'

7.1. A basic geometric lemma. The next result plays a central role in the proof of Theorem
7.1. In the sequel, for a given function f : G — R, we let [Y f| = ( le(st)Q)l/Q, where the
vector fields Y; are like in (3.3).

Lemma 7.3. Given a Carnot group G of step 2, let Q@ C G be a C? bounded domain with
defining function ¢. There exist constants R1,C > 0, depending on G and 2, such that for all
go € 090, and 0 < r < Ry, the following estimate holds

(7 1) TQ—l (B( ) BQ) C 1 ,rQ_].
) <o ,7) N < C ,
1(go,7) ~ 9o 1(9go, )
where @) is the homogeneous dimension of G, and
max {|X ,r|Y
(7.2) 7)(90,?”) — {‘ ¢(go)| | ¢(90)|}.

IVé(go)|
Proof. We divide the proof in two steps. First, we obtain an estimate of o4(IIN Boz(r)), where
II={(z,y) €g|A1z1 + -+ ApZm + Biy1 + - - - + Bgyy = 0}
is an arbitrary hyper-plane in g passing through the origin, and Boz(r) is the non-isotropic box
defined by
Boz(r) = {£ =& +& g lé] <& < r?).

We notice explicitly that this definition of Boz(r) coincides with that in (2.17) for a general

system of vector fields of Hormander type. In the second step, we show that the sought for
estimate of o(A(go, 7)) can be derived from that of og(II N Box(r)), found in step one.
Step 1. Let in g = V1 @ V5 be the Lie algebra of G. We observe that the set Boz(r) is invariant
with respect to the action of the orthogonal groups O(m) and O(k) on V; and V5, respectively.
Furthermore, the same is true for the measure Hy_;. This is not completely obvious, but
a moment’s thought should convince the reader of the validity of this fact. Performing an
orthogonal transformation inside each layer V;, we can thus assume without loss of generality
that the defining equation for II is given by

(7.3) m(X,Y) = Az1 + By,
where A = (Z;”: . Ag)% and B = (Zle B;) ? With T defined by (7.3), we obviously have
Boz(r) N T = {(z,y) ER™* | Az, + By, =0, |z| <7, |y <r’}.
Moreover, by an isometric linear map, we can transform the set
{(z,y) €R™* | Az + Byi = 0, |z <r, [y <r?}
into

(_Ta r)mil X (_7,,2’,,42)16*1 X Sa
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where
S = {(s1,80) ER? | As;+ Bsy=0, |s;] <r', i=1,2}.

These considerations allow to conclude

(7.4) og(ILN Boz(r)) = oN=2,Q-3 IS,

where |S| denotes the length of the segment S. By considering the two cases A < Br, or
A > Br, it is easy to see that

2 r2\/A2 + B2
) o e
Hence, using (7.5) in (7.4), and recalling the definitions of A and B, we finally obtain
Q-1
7.6 og(II N Boz(r)) = 2N-1 r—,
where

s ()" (2t 20)' )

@& n(r) = :
\/22'11 AF + 37, BY

Step 2. In this second step, we begin by observing that in view of (6.2), if g, = exp(&,), and
Q = exp(D), then

7(A(go,7)) = oglexp (A(go,7)) = (9D N By(éo,))-

Using Taylor’s formula, and the compactness of 0D, we can approximate og(0D N Bg(&o,7))
with o4(T¢, (0D) N Bg(&,,7)), i.e., there exists a constant C' > 0, depending only on G, and €2,
such that

04(0D N By(&o, 1))
(7.8) OIS 04(Tg, (0D) N By(EoyT))

We next use the ball-box Theorem 2.14 to find C = C(G) > 0, such that

< oL

(7.9) ¢, (Box(Cr)) C Bg(éo,r) C 9§O(Bow(C_1r)),

where 6, is defined in (3.8). Using the inclusions (7.9), we conclude that

(7.10)
04(T¢, (0D) N6, (Box(Cr)) < 04(T¢, (dD) N By(&o,7)) < 0g(Te, (0D) N b, (Boz(C~'r)).

From now on, we concentrate on estimating one of the two quantities in the left- and right-

hand side of (7.10). For simplicity, we neglect the immaterial factor C, and consider
0g(Te, (0D) N O¢,(Box(r)) .

The map 0, is one-to-one, therefore we have

04(Te, (OD) 0, (Bow(r))) = o (6, (61 (T, (9D)) N Box(r)) ).
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We now notice that in a Carnot group of step 2 the maps 050,9&;1 : g — g are affine, see
(3.20), therefore globally Lipschitz with respect to the Euclidean metric in g. By Theorem 1 in
sec. 2.4.1 in [EGY2], we infer

(7.11) g (05, (62 (T, (9D)) N Boa(r))) < (Lipe(0e,)™ ™" oq (9 (Te, (9D)) 1 Box(r))

{o]

(7.12)

o (0%, (01 (Te, (0D)) N Bow(r) ) > (Lipe(0:1))' ™ oy (81 (T, (9D)) N Boa(r) ),
where we have denoted by Lipc(6g,), Lz'pe(Hgo_l) the Lipschitz constants, with respect to the
Euclidean metric, of the maps 0, 060_1' It is clear that we can estimate such constants in terms

of the Hilbert-Schmidt norms ||dfe,||, [|d0 1||, where dbe, is defined in (3.19). One the other
hand, we have

1 m k '
[0 || = \|m+k+ ] ;;J(M)Q,

j
and therefore, there exists a constant C* = C*(g, D) > 0 (or, equivalently, C* = C*(G, 2), since
2 = exp(D)), such that
VN < ||df, || < C7, for every &, € 0D,

with an analogous estimate holding for [|df,-1]|. Returning to (7.11), (7.12), we next want

to estimate oy (050—1(T§0(8D)) N BO:E(T)). To this purpose, observe that II = 6,-1(T¢,(0D))
is a hyper-plane in g passing through the origin. Our task is to identify the normal to II at
0= 05_01(50). Let v(&,) denote the normal to T, 0D at §,, that is, v(§,) = Vp(&,), where
p = ¢ o exp is the defining function for 9D. Let N denote the normal to II at the origin, then

by the chain rule we obtain

N = V(pobe,)(0) = dbg,(0)" (Vp(6e,(0) = dbe,(0)° (Vp(Eo) = dbe,(0)" (v(E))-

From Proposition 3.2 we conclude

N = dfe, (0)! (v(&)) = (Idmxm fg:x’“k ) V(&)

Ok xm
g (€0) + Li (1,1 5 (6o) X1¢(go)
&2 + S Imn2E) | | | Xndloo)
2 (&) ¥i(g0)
\ (;97/;(50) Yieh(9o)

where in the last equality we have used Lemma 3.1. At this point we invoke the estimates in
step one, which were obtained for a generic hyper-plane II through the origin of g. Specifically,
by choosing (A, B) = (X&(g,),Y ¢(go)) in (7.6), and keeping (7.7) in mind, we finally reach the
conclusion. This completes the proof.

O
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7.2. Further analysis for Hormander vector fields of step 2. We next establish some
lower bounds for the function w which are crucial to the proof of Theorem 7.1. The following

simple lemma is a key ingredient in the proof of Lemma 7.9 below.

Lemma 7.4. Let X = {X1,..., X;,} be a system of C™ vector fields in R", satisfying Hormander’s
condition (1.4) at step 2. Let Q@ C R be a bounded, C? domain, with defining function ¢. For
every T, € ¥ = X x there ezist indices io,jo € {1,...,m} such that

(7.13) Xi, (Xjo#)(x0) # 0.

Proof. Suppose (7.13) false, then there exists a z, € ¥ such that, for every 7,5 € {1,...,m}, one
has

(7.14) Xi(X;)(z5) = 0.
In this case,
< [Xi, Xj](20), V(o) > = [Xi, Xjlo(z0) = XiXjd(zo) — X;Xig(z,) = 0.
This shows that [X;, X;]|(z,) is orthogonal to V¢(z,). Therefore,
V¢($0) ¢ span{Xi(:po), [Xian](‘To)a 1<4,5 < m} ,

and hence, Hormander’s condition is violated at x,. We have reached a contradiction. O

To establish the next results, it will be convenient to make use of local coordinates and Taylor
expansions. After a C? local change of variable, we can assume that the manifold 8Q = M
coincides with a portion of the hyper-plane H = {(z1,...,2,) € R" |z, = 0}. Thereby, a
defining function for M is given by ¢(z) = x,. We continue to indicate with the symbols
X1, ...; X, the transformed vector fields. Note that such vector fields are no longer C* since
the local diffeomorphism is only C2. However, they still satisfy the finite rank condition (1.4)
at step 2, since the latter is preserved by diffeomorphisms. In particular, the estimate (2.5)
continues to hold with e = 1/2. As a consequence, Proposition 7.8 below remains valid for a

system of C? vector fields satisfying the rank assumption at step 2, see [Gro96], pp.114-115.

If we write the vector fields in the form
n
Xj = X](.’L') = Za,j’k(.’[)ak, ] = 1, ey,
k=1

then the angle function w = | X ¢|, defined in (4.2), is now given by

m 2
(7.15) w(z) = (Zak,n(m,...,xnl,of) :
k=1
whereas the characteristic set of M is
(7.16) E={zeM|an(z) = -+ = apa(r) = 0}

We let V' denote the (n — 1)-dimensional gradient, taken with respect to the variables z' =

(1, ..., Zn—1). We have the following.
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Lemma 7.5. There exist Cy > 0, a neighborhood %5 = {z|d(z,%) < d1} such that,

m

M [Vaja(@)] > Ci > 0

i=1

for all x € Xs, .

Proof. If z, € X, then noting that X, ¢ = a;, », the conclusion of Lemma 7.4 presently trans-
lates into the existence of %,, j, such that

n
0 # Xi,aj,n(z,) = Zaio,k(ﬂvo) Ok aj,n(To)

k=1
n—1
= Zaio,k($0) O @joun(z0) = < (V'ajyn(20),0), Xi, (20) > .
k=1

This shows that the vector (V'a;, »(z,),0) has a non-zero component in span {X1(z,), ..., Xm (o) }-
However, z, is characteristic, and therefore span {X1(z,), ..., Xm(xo)} C Ty, M = H. As a con-

sequence, we infer
(7.17) [V'ajn(z,)| # 0.

The conclusion now follows from (7.17), the continuity of 377", [V'a;n(z)], and the compact-
ness of 3. 0

Since the inequality that leads to the proof of Lemma 7.5 will be important later on, we state

it in a separate lemma.

Lemma 7.6. There exists a neighborhood s, of ¥ such that, for every xz, € ¥5,, one can find
indices iy, jo € {1,...,m} for which

(7.18) < (V,ajo,n(x0)70)7X’io (z0) > # 0.

Proof. Since the manifold is bounded, ¥ is compact. The lemma holds for each y, € . By con-
tinuity, for each y, € X, there exists a neighborhood Uy, such that | < (V'a;, n(2),0), X, (z) >
> 0 for every z € U,,. By a standard covering argument, we obtain the desired neighborhood
252.

O

The next proposition is an adaptation of [Me93, Lemma 2b], in which the author established
an analogous result for the Heisenberg group H".

Proposition 7.7. There exists f > 0, depending only on the manifold M, and on the system
X ={X1,...., X}, such that if z, € M is such that w(z,) > 0, then

inf w > w(wo).
B(zo,8 w(zo)) 2
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Proof. Recalling (7.15), and using a Taylor expansion for a;,(z), we can write

w@f = 3 (ajnle0) + el - ad)’

j=1
m m
2 Zajm(aco)2 + 2 Zaj,n(37o) ¢j(lz — o)),

where €;(|z — z,|) denotes a function which tends to zero, as £ — z,. It is then clear that there
exists 3, depending only on the system X, and on M, such that if |z — z,| < (3/4)5'w(z,),
then

w(zo)?

4

w(@)® > w(z,)” — B w(z,)lz — 20| >
We have thus established the following

inf w > w(@o)
Be(0,(3/4)B'w(zo)) 2

(7.19)

bl

where we have denoted by B.(z,, R) the Euclidean ball centered at z, with radius R. The passage
from (7.19) to the statement in the theorem is now made possible by the crucial Proposition
2.7. The latter claims the existence of a bounded set U, containing M, such that with C given
by (2.7), the inclusion (2.8) holds. It is thus clear that, by choosing

_ 3
l8_4é’

the sought for conclusion follows. O

In the proof of the next lemma we will need the following result about non-holonomic geometry
whose proof can be found in [Gro96], Sec.1.1.A’, p.115.

Proposition 7.8. Let c¢(t) be a smooth curve in R" parametrized by arc-length, such that c(0) =
o, and for which ¢(0) € span {X1(zo), ..., Xpn(x0)}. There exists T, > 0, and Cy > 0, such
that

d(zo,c(t)) < Cit 0<t< T,
The following result plays an important role in the proof of Theorem 7.1.

Lemma 7.9. There exist C, Ry > 0, depending on M and on X, such that for all 0 < r < Ry,

and every t, € M, one has

(7.20) max w > Cr.

Proof. If ¥ = @, then the result is trivial, since the compactness of M gives
infw > C,
M

for some C > 0 depending only on M, and on X. To achieve (7.20), it thus suffices to choose
Ry = C. Consider next the case ¥ # @. Let ¥5 = UN;, NY;5, be a d-neighborhood of 3, where
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35,5 25, are the neighborhoods from Lemmas 7.5 and 7.6 respectively and U is a neighborhood

of ¥ on which (2.5) holds. Since w is continuous, and only vanishes on ¥, we have

L = inf w>20.
M\Zs

Now, if we fix Ry < L, then for r < Ry, and every z, € M \ X5, we have

max w > w(z,) > L > r.
B(xo,r)NM

We are left with considering the more subtle case z, € 5. In what follows, to simplify the

notation we set a; = a;,. Using Taylor expansion around z,, we obtain
J 75 7

WE

(7.21)  w(z)? = [aj(:z:o) + < (V'aj(z,),0),2 —z, > + €|z — :r0|)]2

<.
Il
—

I
.MS

[aj(aco)2 + < (V'aj(2,),0),2 — 1o > + €j(|z — ,])?

<
Il
—

+ 2 aj(xo) < (V,Gj(.’Eo),O),.’E — Zo > + 2 aj(l'o) €j(|.’L' —.’EOD
+ 2 < (V'ay(20),0),0 = 20 > €5(|7 — o))

[aj(x0)2 + < (V'aj(:vo),()),:v —zo>2 + €|z — :170|)2

NE

<.
Il
—

= 2 oy o) | < (V'a5(@0),0),2 — 20 > | — 2 laz(za)] s — o))
— 2C | < (V'aj(z0),0),2 —zo > | |z — a:0|2} ,

with C = C(M, X) > 0. Suppose first that z, € 3. (It is not necessary to distinguish the
cases T, € ¥ and z, € X5 \ X separately. However, for the clarity of the exposition, we prefer
to make this distinction). Recalling (7.16), this assumption gives a;(z,) =0, j = 1,...,n. For
every € B(z,,r) N M, (7.21) thus implies

m

(7.22) w(z)? > Z{ < (V'aj(z,),0), 7 — z, >2

=1

- 2C|< (V'aj(aco),()),w — Ty > | |:1:—:v0\2 + ej(|w—aco\)2}

[< (V'aj(z,),0),2 — 2, >* —2C | < (V'aj(2,),0),2 — 30 > | |z — z0/]

<
Il
—

M

< (V'aj(z,),0), 0 —z, >2 — C' 13,

NgE

<.
Il
—

We notice that in obtaining the estimate C'r3 for the term
2 C | < (V'aj(x,),0), 0 — x40 > | |2 — 70|

in the last inequality, we have used Proposition 2.7, which gives B(z,,7) "M C Be(z,, Cr)NM.
Thereby, |z — z,| < Cr.
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To continue estimating from below, we invoke Lemma 7.6 to find indices i,, j,, for which
V'a;, (z,) # 0, and (7.18) hold. Hence,

m
max Z < (V'aj(z,),0),z — z, > |z € B(wo,7) "M
=1

> maz {< (V'aj,(0),0),z — 7, >? |z € B(z,,7) nM}.

Due to the nature of the constraint, it is not obvious at this point how to estimate from below
the quantity in the right-hand side of the latter inequality. Our idea is to exploit Proposition 7.8
and make a clever choice of z which allows avoiding the actual computation of the constrained
maximum. Without restriction, we can assume that C; > 1 in Proposition 7.8, whereas, by
restricting the parameter Ry further, we can suppose that 7, > Ry. Keeping (7.18) in mind, we
fix A > 0 so that
5 | <X (20), (V'aj,(20),0) > Xi, (2,)|

ACh =1,
[V'aj, (2o)]
with C; being the constant in Proposition 7.8. We now define a point Z by the equation
_ AT
(723) r — Ty = W < Xio(lﬂo),(vlajo(l'o),()) > XZ'O(.’L'O).
Let us observe that, by our choice of A, and of Ry, we have
(7.24) T—2o] = — <7 < Ry < T, .
Cq
We next define the smooth curve
(7.25) ot) = zp + t 220 0<t<1.
|Z — z,|

Clearly, c(t) is parametrized by arc-length, and ¢(0) = z,. By Proposition 7.8, we have
d(fﬂoaj) < C~'1 to,

where t, is such that c(¢,) = Z. Of course, we need to make sure that ¢, = |z — z,| < T,, but
this is guaranteed by (7.24). We conclude

d(z5,Z) < ClZ—xzo| < 1.

This proves that Z € B(x,,7). On the other hand, from (7.23), and from z, € ¥ (see (7.16)),

it is clear that £ € M, therefore we have
T € B(z,,7) N M.
This important conclusion allows to continue as follows
(7.26) maz {< (V'a;,(,),0),2 — 2, >* |z € B(z,,7) N M}

2

< Xio(wo)a (Vlajo(l'o)ao) >2 ) 2 C* 2

p rt = T,
V'@, (0)]

where in the second to the last equality we have used (7.23) . Exploiting (7.17), and (7.18),

we conclude that C* = C*(M, X) > 0. At this point we insert (7.26) in (7.22). By choosing

> < (V'aj,(%0),0),7 — x, >% = <)\
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Ry > 0 sufficiently small, depending on the constants C*, C' in these estimates, we conclude the
existence of C = C(M, X) > 0 such that, for every z, € 3, and for any 0 < r < Ry, one has

maz{w(z)|z € B(ze,r) "M} > Cr.

This proves the lemma when z, is characteristic.
Finally, we consider the case z, € £5\ =. Let Co be the constant in (2.5) (with e = 1/2 in
(2.5)). Let 4o, jo be given by Lemma 7.6 and let X be such that
5 o | <Xi(20), (V'a, (2,),0) > Xi (z0)| 1
A Cy ; = -
V'aj, (2,)| 2

Next, we would like to choose a candidate @ € B(z,,7) N M such that w(a) > C*r. When
To € Lg \ 2, u has to be choosen slightly differently and carefully. As before, let z be defined
by (7.23) with X playing the role of A there. By considering the curve defined in

(7.25), using our new choice of X and arguing as before we now have

(7.27) d(wo,7) < Cito = Culg—ao| = 3.

We are ready to specify our choice of .
Ar
V' aj, (2,)]

U =z, + < Xi,(20), (V'ajo(xo),()) > (aio,1(~770)a---aaz’o,n—lao)-

That is, @ is the orthogonal projection of our new choice of Z onto M. Our next task is to show
that 4 € B(z,,7) (hence @ € B(z,y,7) N M).
Clearly, as before, by exploiting (7.17) and (7.18) we obtain C > 0 such that

(7.28) | < (V'aj,(2,),0),Z —zo>| > Cr.

To continue, let

1 . C _
A = ~min(C, 2> inf{|X;, ()| |z € T4, }) > 0
4 C?
where in the above, the indices j, are the ones obtained from Lemma 7.6. We assume w(z,) <
Ar. Otherwise, the conclusion of the Lemma follows trivially. With this assumption in hand,

using our choices of A, A and recalling (7.15) we obtain

1
2

~ 1 ~ 5\7‘
7.29 Colz — 142 = Cy | =—| < (V'aj,(20),0), Xi, () > ||as, (7o
( ) 2| | 2 ('Vlaljo(:ﬂo)" ( ]o( ) ) ( ) H ( )l)

N =

- G, (muwn)

1
~ Ar? 2
ca (A Y
2C1| X, (zo)|

N3
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Hence
d(zo,u) < d(zo,z) + d(Z,u)
(by (25) < d(z0,7) + Colz — 1|2
(by (7.27) and (7.29)) < g + g _

This shows u € B(z,,7). To complete the proof, our goal is to show w(u) > Cr for some
C = C(X, M) > 0. To this end observe that since the last component of (V'a;,(z0),0) is zero

we obtain

(7.30)
< (Va3 (20), 008 — 70 > — 2Aaz,(z)]| < (V'a5, (@0),0), — 0 > |
= < (Va3 (@0, 0,7 — 50 > — 2Aajo(z)]] < (V'a5, (@0),0),7 — 50 > |
~2
(by (7.28)) > C(C — 24)® > %72

by our choice of A. Using the estimate of (7.30) in (7.21) and arguing as in the case where

Zo € ¥ we obtain w(z,) > Cr and reach the conclusion. O

7.3. Proof of Theorem 7.1. Finally, we come to the proof of the central result in this section.
Given a Carnot group G of step 2, let Q C G be a bounded C? domain with characteristic set
Y = XYgq x. We set R’1 = min(R1, R2), where R; and Ry are the parameters in Lemmas 7.3 and
7.9 respectively. With g, € 09, and 0 < r < R/, we consider the surface ball B(g,,r) N Q. Let
g1 € B(go,7/2) N 0N be such that
(7.31) w(g1) = maz{w(g)|g € B(go,r/2) N OQ}.

We now claim that w(g;) > 0. In fact, if by contradiction w(g;) = 0, then we must have

(7.32) B(g,,7/2)N0Q C 2.

Thanks to (2.3), and to Theorem 2.4, which in the present case of a group of step 2 holds
with e = 1/2, we conclude the existence of a constant C' > 0, depending on G and €, such that
for every g,¢' € Q

d(g,g") < C de(g,g')"/?,

where we have denoted by d¢(g,g’') the Riemannian distance in G. This inequality, combined
with (7.32), shows that

Be(go, (r/C))N0Q C B

This, however, contradicts Theorem 4.4, and therefore the claim is proved.
We can thus invoke Proposition 7.7, obtaining the existence of 8 > 0 such that, for all
g9 € B(g1,8 w(g1)) N 0K, we have

(7.33) wig) > P9

We now distinguish two cases.
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Case 1: w(g;) < % r (the “nearly characteristic” case). In this situation, the hypothesis
g1 € B(go,r/2) N 0N implies

B(g, gw(gl)) NoQ C B(go,r) NN .

This gives,
(7.34) W(Blanr)109) = [ w(g) do(g)
B(go,r)NoN

> w(g) do(g)

/B(gl Gw(gi))non

w(g1) /
2 JB(g:,Bw(gi))non

w(g) (§w(g))?!
2 g, §wlo))
From the definition (7.2) of the function n we see that, if

éw _w(g)
”(gl’:% (91)) K

(by (7.33)) =

do(g)

(by Lemma 7.3) > C

then (7.34) reduces to
1(B(go,r) N ON) > C w(gr)?™t > Cr9t,

where in the last inequality we have used Lemma 7.9. The crucial role of the latter in this last

step cannot be emphasized enough. If, instead,

B _ B Y ¢(g1)]
U (glagw(91)> = 3 w(g1) ma

then, in particular, we have

(7.35) 1 (o0 Dwlan) < 5 wia).

This follows from the inequality |Y ¢| < |V¢|, which can be easily proved observing that, in
the exponential coordinates of G, one has Y; = 0/0y;. Inserting (7.35) in (7.34), we obtain

1(B(go,r) N OQ) > Cw(gl)Q_1 > ¢ r@ L

where, again, we have used Lemma 7.9.

Case 2 : w(g1) > %r (the “non-characteristic” case). In this situation, we have
B(go,7) N0 C B(g1,Pw(gr)) N O,

and therefore (7.33) implies w(g) > w(g1)/2 for all g € B(g,,r) N 2. This gives
w(g1) w(g1) o1
. B Q) > —— o(B Q) > —
(7.36) H(B(go,r) N 0Q) 2 == o(Blgo,r)N0Q) > C 50 =,
by Lemma 7.3 again. If (g,,7) = w(gs)/|V$(go)|, then (7.31) implies that

w(g1)

>c" >0,
1(go,T)
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thus the conclusion of the theorem follows. If, instead, n(go,7) = 7 |Y ¢(90)|/|VP(go)|, then as
for (7.35) we obtain
C |V¢(go)| -1 3C o1
w(B(go, ) NIN) > — w(g1) et 7@~ 5> == @1
BlaomI 009 2 5 w9 yg(g,) 15
where in the last inequality we have used the assumption that w(g;) > %r. This completes the

proof.

Remark 7.10. In connection with Theorem 7.2 we mention a remarkable result by Ambrosio
[AmO1]. The latter states, among other things, that the generalized perimeter P(-;-) in a complete
metric space (S,d) is asymptotically doubling. That is, if & C S is any set such that P(2;S) <
o0, then
. P(Q, B(z,2t))
(737 RSP P, B 0)
The asymptotic doubling (7.37) suffices to obtain a Vitali type covering theorem with respect to
the measure P(Ej;-), as in [Fe69], Theorem 2.8.17, and thereby develop a theory of differentiation
a la De Giorgi.

for P(Q;-) —a.e. z€S.

The basic assumptions in [Am01] are that: a) (S,d) be a k-Ahlfors space, ie., that S be
endowed with a Borel measure v such that for some a > 0 one has for every x € S, and any
r>0

(7.38) ar® < v(B(z,r)) < a7 lrk.

Secondly, (S,d) supports a Poincaré inequality, with a gradient according to Hajlasz, or to
Heinonen and Koskela, see [HK98]. With these assumptions in force, one can introduce a notion
of perimeter and develop a theory of first-order Sobolev spaces similarly to what was done in
[GN96] for CC spaces, see [Mi00].

If G is a Carnot group with homogeneous dimension @, then (7.38) is valid with dv = dg
and k = @, see (3.17). As a consequence, (7.37) holds in any Carnot group. The assumption
(7.38) leaves out the case of vector fields of Hormander type. However, recently the same author
[Am01] has established (7.37) under more general assumptions which include this setting.

As we have seen in this section the passage from the asymptotic information in (7.37), to
the precise Ahlfors type estimates in Theorem 7.2 hides a considerable amount of work. This
is unfortunately unavoidable since, in the applications of CC geometry to partial differential
equations, one needs to confront the essential obstacle due to the presence of characteristic
points on the boundary of a given domain 2. In this perspective, it becomes necessary to
develop a more precise quantitative analysis of the interplay between the questions at study,

and the geometry of the ambient space.

7.4. Failure of the 1-Ahlfors condition for the X-perimeter of C*® domains. In the
proof of Theorem 7.1 we have assumed that the relevant domain be of class C?. We conjecture

that, in fact, C'! smoothness should suffice (at least as far as groups of step 2 are concerned).
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This intuition is supported by the analysis of the prototype Cb! domain Q = {g € H' | z >
—1,0<t<1, f(z) < t}, where f(z) = (z4)?, r. = max(0,z). For such region, (0,0,0)
is a characteristic point, but the conclusion of Theorem 7.1 continues to hold. We prove here
that it is not possible to further weaken the regularity hypothesis on the domain. In other
words, the C? smoothness of the domain €2 in Theorems 7.1 and 7.2 is essentially minimal for
the X-perimeter measure Px(f;-) to satisfy the 1-Ahlfors condition. Consider in fact the first
Heisenberg group H!, denote with g = (x,y,t) the generic point, and let z = (,7y). We indicate
with e = (0,0,0) the group identity. Recall that the homogeneous dimension of H' associated
with the parabolic dilations dy(g) = (\z, A\%t) is Q = 4. Given any «a € (0,1), with 8 = 1 + «,
we consider the bounded domain

(7.39) Q= {geH |0<t<1, t>][f}.

Except for the intersection with the plane {g € H' | ¢ = 1} (which we could have as well
rounded off without introducing new characteristic points), the boundary of € is a manifold of
class C1@. Set F = 0§\ {g € 0 | t = 1}, then e is the only characteristic point of F. We will
prove that

(7.40) i 2XEEBler)

r—0 r3
Keeping in mind that |B(g,r)|/r = r3, we conclude from (7.40) that for no M > 0, and
0 < R, < 1, can the inequality

B
Px(Q;B(e,r)) > M™! 1Ble,r)] , 0<r<R,,
T

possibly hold. Therefore, Px(£2;-) is not a lower 1-Ahlfors measure (although it can be proved
that it is an upper 1-Ahlfors measure). To establish (7.40) it suffices to prove that

X d
(7.41) lim fFﬂBoz(e,r)| d(g)| do(g) e

r—0 7‘3

where Boz(e,r) = {g € H' | |2| < r,|t| < r?}, and ¢(g) = |z|® —t is a defining function for Q
near e. In fact, thanks to (5.8) we have for 0 < r <1

Py@B(er) = [ Xdg)ldo(e)
FnB(e,r)
and Theorem 2.14 gives
/ Xplldote) < [ 1Xololdol) < [ X(g)ldo()
FnBox(e,6~17) FNB(e,r) FnBox(e,6~1r)

for some § > 0 independent of r. From (4.18) se find

Xiplg) = B |of’? —2y, Xodlg) = Byl +2.
Since 1 < 8 < 2, it is easy to recognize that for every g € F' we have
(7.42) Bl < 1Xg(9)l < VA+B [T

Noting that do = /1 + (2|2|2f~1)dz, we have
dz < do(g) < /1+p2dz, on F.
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Again the condition 1 < 8 < 2, and (7.42), imply that
(7.43) / Xp) dolg) = [ g
FNBox(e,r) |z|<r2/B

The latter equation immediately implies (7.41).

What goes on with this example is that, despite the C1'® smoothness of the boundary, the
parabolic dilations of the group actually turn the domain  into a “cuspidal” region, when seen
with the sub-Riemannian glasses. We will return to this example in Proposition 11.8 in Section
11.

8. Fine differentiability properties of Sobolev functions

As we have seen in Sections 6 and 7, in the study of the traces the measure p in Definition
1.3 is supported on a lower dimensional manifold, and therefore on a set of Lebesgue measure
zero. Thereby, a function in LP with respect to Lebesgue measure may not see the support of
. This is a serious obstacle in the study of trace inequalities since, a priori, one only knows
membership of the appropriate functions in a sub-elliptic Sobolev space with respect to Lebesgue
measure. This section is devoted to by-passing this obstacle. Our main result is Theorem 8.8,

which constitutes a refinement of Lebesgue differentiation theorem.

8.1. Poincaré inequality, fractional integrals and improved representation formulas.
In the theory of partial differential equations a classical inequality is that of Poincaré. Combined
with the doubling condition (2.12), such inequality represents nowadays a basic constituent
of analysis and geometry. This aspect was, independently, first emphasized by the works of
Grigor’yan [Gri91] and Saloff-Coste [SaCo092]. Subsequently, the works of several people have
further developed these ideas, see, e.g., [HK98], [G02], and the references therein. In the setting
of CC metrics generated by a system of Hormander type X, an inequality of Poincaré type
was proved by D. Jerison in his fundamental paper [J86]. An earlier version for Carnot groups
was obtained by Varopoulos [Va86]. More recently, an interesting different approach has been
proposed by Lanconelli and Morbidelli in [LMO0O].

Henceforth, for a given measure dv on R", 1 < p < 0o, and an open set 2 C R", we define
(8.1) LYP(Q,dv) = {f € LP(Q,dv)| X, f € LP(Q,dv), j =1,...,m}.
Such space is endowed with the obvious norm
W llcvr@ay = Nfllze@ar) + X Fllro@,av)-

Here is Jerison’s Poincaré inequality [J86].
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Theorem 8.1. Let U C R” be a bounded set. There exist constants Cy, R, > 0, depending on
U and on X, such that for any z, €U, 0 <r < R,, and f € LY (B(z,,7),dz), one has
[ U@ = fuplds < Cor [ X7 do
B(zo,r)

B(zo,r)

A basic consequence of Theorem 8.1 is the following representation formula established inde-
pendently in [FLW95], [CDG97], see also [FLW96].

Theorem 8.2. Given a bounded set U C R", there ezist constants § > 1,C' > 0, depending on
U and on X, such that for any z, €U, 0 <r < R,, and f € LY (B(z,,ér),dz), one has
d(z,y)
(82) F@ = Tl < € [ XIW) gy
| Bl = C o XY B ey

whenever © € B(x,,7) is such that

1 -
lin o /B Ly 0@ = @,

In particular, (8.2) holds for dz-a.e. © € B(z,,T).

For the rest of the section, § will have the same meaning as in Theorem 8.2. One aspect of
Theorem 8.2 which represents a problem in the study of traces is the fact that the exceptional
set is with respect to the Lebesgue measure dx. Unfortunately, we do not know how to relate
sets of dr-measure zero to negligible sets with respect to a different measure. For this reason,
we need to refine the statement of Theorem 8.2. By exploiting the assumption that f belong to
a Sobolev space, we remove the dz-a.e. part of its conclusion, and also introduce an improving

factor. But first, we introduce two definitions.

Definition 8.3. Let U C R™ be a bounded set, with characteristic local parameters Ci, R,, and
with local homogeneous dimension Q = logy Ci. For every 0 < a < Q, and every 0 < R < R,,
the operator of fractional integration of order «, relative to the ball B(z,,0R), where z, € U,
1s defined by

d(z, y)*
o f@ = [ ) g do v € Bl 0R).
: oy 1B, do ) °
Using this definition, we can reformulate (8.2) as follows
83) /@) — foeen| < CLIX@)  for do—ae o€ Bzon)
Definition 8.4. For a function f € L (R",dz) we let
%i_?)?g m fB(w,t) fly)dy if this limit exists,
) =
0 otherwise.

We call f* the precise representation of f.

It is easy to verify that the function f* has the following elementary properties.
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1. If f = g dx-a.e., then f* = g* everywhere.

2. Lebesgue differentiation theorem for spaces of homogeneous type [C76] implies f = f*
dz-a.e.

3. If for some p > 1 we have f € LP(B(z,, R),dz), then X;f* = (X;f)*, and moreover
f* € LY (B(x,, R),dz) also.

Theorem 8.5. Let U C R" be bounded, with local parameters Cy, R,. For any 0 < a < 1, there
exists C = C(C1,a) > 0 such that, for any t, € U, 0 < R < R,, and f € LY (B(z,,R),dx),
one has

1f*(@) = fhanl < Cr L(Xf ()
for every z € B(z,y, R), and 0 < r < dist(z,0B(z,,0R)).

Proof. We fix z € B(z,,R), and 0 < r < dist(z,0B(z,,0R)). Our goal is to prove that, for
0 < n <o <r, the following estimate holds

84) [f@m — fo@el < Cn' ™ L(Xf)(@) + C (67 — 27079 5'7) L(| X f)(),

for some constant C', depending only on C; and a. Suppose for a moment that we have proved
(8.4). We distinguish two cases. If I,(|X f*|)(z) = Io(|X f|)(z) = oo, then the inequality in the
theorem is trivially true. If, instead, I,(|X f|)(z) < oo, we infer from (8.4) that {fp(s ) to<t<r

is a Cauchy sequence, hence
. 1 /
lim ——— f(y)dy
M B S TV

exists. By Definition 8.4, one has

f(z) = }E}% m/B(m)f(y) dy

Noting that fp( ) = fg(m vy passing to the limit as  — 0 in (8.4), and choosing o = r, we
obtain the conclusion.
To complete the proof of the theorem, we are thus left with proving (8.4). If N € N, we have

N
Z |fB@2-+10) — [B@2-*0)l

IN

|fB(a:,2—N—1a) - fB(;c,a)‘

N
= - - d
B % |B 2 k=g | / B(z,2 % 1g ) fB(iE,? k0)| Yy

1
(by Theorem 2.9) < C Zm/ . )|f(’y) — fB2*o)l Y
k 0 ? g
N _
by Theorem 8.1) < C / X f(y)|dy
( ) ];)|B$2k | m52ka)| ()|

N —k \o
= C 2_ko- 1_05& X d
];)( ) ‘B(ﬂ?, 2_k0)| /B(I,JQ—’CU) | f(y)| Y
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- d(z,)"
(by Proposition 2.12) < C §7® ¢! ZZ_k(l_a) /( ) | X f(y)] ’7ydy
B(zo,0R T, =22

(by Theorem 2.9) < C o' % I(|Xf])(z 22

Lo 1—9- (1- a)(N+1)
< oo X T L)),

We next choose N € N such that 2=V~1o < < 27¥g. Then

1— 2—(1—01)(N—|—1) S 1— 2—(1—a) (ﬁ)l—a .
o
Using this fact in the right-hand side of the above string of inequalities, we obtain

(8.5) [/ B@2-¥-10) = IB@e)| < C (0™ = 2707%9170) L( X f])(2).
On the other hand, we find
1

(86) |fB(a:,'q) - fB(w,2*N*1fr)| < |B(:E 9-N-1 ) B(s.2-N-10) ‘f(y) - fB(z,n)|dy

(by Theorem 2.9, and by the choice of N) < C Bl / |f(y IBam | dy
Z 1)

(by Theorem 8.1) < C ——— / | X f(y)| dy
|B(',I"77] | ,0m)

(by Proposition 2.12, and by Theorem 2.9) < C n'~*I,(|X f|)(x).

Using (8.5), and (8.6), we conclude

|fB(w,n) - waa)' |fB z,n) fB(m,Q*N*10)| + |fB(a:,2*N*10) - fB(w,a)'
< O L(Xf)(=) + C (o' — 27079917 (X f|)(x).
This proves (8.4), and completes the proof. O

An immediate consequence of Theorem 8.5 is the following.

Theorem 8.6. Let U, C1, R,, o, be as in Theorem 8.5. There exists C = C(C1,a) > 0 such
that for every z, € U, 0 < R < R,, and f € LYY (B(x,,0R), one has

# * _ * -« %
B(z,7)| /BW) |f*(z) — f)ldy < Cri=® L(Xf*|)(2)
for every © € B(zy, R), and 0 < r < dist(z,dB(z,,0R)).

Proof. Theorems 8.2, 8.5 imply

1 * _ *
Blz.7)| If*(z) — f*(y)ldy

B(z,r)

1
< |f*(z) — f5 N e = / : — f5 )l @
|f ( ) fB( R )| ‘B((E,’I‘)' Bay) |f (y) fB( R )| Y

a Nx 1 *(y M >
< Cr' L(XF@) + C e /BW) (/B(z,m X @ g a0 ) W
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The second term in the right-hand side of the latter inequality is estimated as follows

1 d(y,2)
B Joer) (/B(m,&«)‘ ”'|B<y,< ) )
d(y,

(by Theorem 2.9) < Bl T| /mar (/ o m ) | X f*(2)| d=

=iy <|4B(a:5r)| /m,m X7 *‘Z"dz>

. 1+6 d(z,y)*
by Proposition 2.12) < C rl—a / X — g
(by Prop )< O % (mm' POl B G, a1 ¥

= Cr'™® L(Xf|) ().

This completes the proof. O

8.2. Fine mapping properties of fractional integration on metric spaces. The map-
ping properties of the operator I, between Lebesgue spaces (or weighted Lebesgue spaces), are
nowadays well-known, see the forthcoming book [G02]. Such properties are, however, of little or
no use for our purposes, since we are facing the situation of two different measure spaces, with
the target being relative to an upper (non-doubling) Ahlfors measure. The new ideas needed to
tackle this problem originated in the Euclidean setting in the paper by D. Adams [AT71] cited
in the introduction. In what follows, we will need the following result from [DGN98] which
generalizes the main result in [A71], and provides a ad hoc, more sophisticated version, of the
classical fractional integration theorem.

Theorem 8.7. Let U C R"™ be a given bounded set, with characteristic local parameters C1, R,,
and Q. For0 < a<Q,letl <p< % Suppose that for 0 < t < p, p is an upper t-Ahlfors
measure. Under these assumptions, we have for any B = B(z,, R), z, € U, 0 < R < R,,
I, : I’(B,dz) — L%*(B,du),

with

Q—at

q=7p

Q—ap
Furthermore, there exists C = C(C1,a,p,t, M) > 0 such that, for any f € LP(B(z,,R),dx),
and A > 0,

> p.

Q(ap—t)

C R p(Q—t) %
p({z € B(zo, R)[Ioaf(z) > A}) < a (m) (/B(%,R) |f|pd$> .
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8.3. Differentiation with respect to an upper Ahlfors measure. The main objective of
this section is to prove the following qualitative version of trace theorem. We emphasize that
the conclusion of Theorem 8.8 is relative to the measure u, and not to the Lebesgue measure
dx.

We observe that, thanks to (2.12), the Lebesgue differentiation theorem for a space of ho-
mogeneous type in [C76] applies. From the latter we conclude that f = f* dz — a.e., but the
equivalence of f and f* with respect to a different measure p is a delicate matter (and, in fact,
such equivalence cannot possibly subsist in general). Theorem 8.8, however, states that when
i is an upper Ahlfors measure, then f = f* p-a.e. This result will enable us to work with f*,

instead of f, in all situations involving p.

Theorem 8.8. Let U C R" be a bounded set, with local parameters Cq, R,, and Q). Given
1 < p<Q, let u be an upper s-Ahlfors measure for 0 < s < p. Under these hypothesis, if
f € LYP(B(z,, 6r),dx), then

1
8.7 lim ——— f(z) — f*(y)|dy = 0,
(8.7) i B B(m,t)l (z) ()]
for u-a.e. point x € B(x,,dr).

Proof. We fix a number ¢ > 0 such that s < ¢t < p, and set @ = s/t, so that 0 < a < 1, and
s = at. Let Leb(f*) be the set of Lebesgue points of f* with respect to Lebesgue measure dz,

ie.,
Leb(f*) = {x € Bledr) | Jim oy oy 157 Ty = o} .
A direct consequence of Theorem 8.6 is that
{z € B(zo,0r) [ In(|X f*])(z) < o0} C Leb(f"),
or, equivalently,
B(z,,6r) \ Leb(f*) C {z € B(z,,6R) | Io(|Xf*])(x) = oo}

From this inclusion it is clear that, if we can prove that

(8-8) p({z € B(zo, 0r) [ I (| X f7[)(z) = 00}) = 0,

then we would also have p(B(z,,0r) \ Leb(f*)) = 0. Therefore, (8.7) would hold at u-a.e. point
x € B(z,, dr), thus completing the proof.
To establish (8.8) we observe

E Y {z € B(zo,07) | I(X*|)(@) = 00} C () {z € B(zo,0r) | I(|X[*])(w) > A}.

A>0
Our choice of «, and the assumption that u is an upper s-Ahlfors measure, guarantee that
we can apply Theorem 8.7, obtaining

w(E) < p({z € B(zo,or) [ I (IXf*|)(x) > A})
Q(ap—t) a

C 5r p(Q—t) i »
<< <7> [ xrpa)
| B(x,, 07)| @ B(zo,0r)
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for every A > 0. Letting A — oo in the latter inequality, we infer (8.8). O

An important consequence of Theorem 8.8 is that, if we identify f with f*, then f is defined
everywhere with respect to p. In particular, if F' C B(z,, R) is such that |F| = 0, but u(F) > 0
(this is the case, for instance, when y is the perimeter measure (5.7) supported on a lower
dimensional manifold), then we can define the trace of f on F' to be the pointwise restriction of
f* to F. Such restriction is then defined 4 — a.e. on F.

Using the results in [DGN98] a meaningful notion of trace on F = supp p for functions
in a Sobolev space LYP(B(x,,dr),dz) can be obtained. However, when dealing with traces
on the boundary of an open set {2 in such a general setting, one needs the Sobolev extension
theorem (Theorem 10.4). Since such extension operators are not unique, to prove that the trace
is independent of the choice of the extended function, Theorem 8.8 is required. We refer the

reader to section 11 for details.

8.4. Upper Ahlfors measures and Hausdorff measure. We mention that a different form
of Theorem 8.8 was established in [HK98] for an L? Sobolev function f on a metric space. There,
the authors proved that for any & < p one has

HOF ({2 | Mag(z) = 00}) = 0,

where M,, is the Hardy-Littlewood fractional maximal operator, g is the “generalized gradient” of
f, HY™* is the standard metric (Q — k)-Hausdorff measure, and Q = log, C; is the homogeneous
dimension of the metric space associated with the doubling constant C;. Our Theorem 8.8 cannot
be inferred from this result in [HK98] since it may not possible to control the measure y from
above by H97F. Instead, as the following result proves, if u is a lower s-Ahlfors measure, then it
is possible to control y from below in terms of H%9~*. As a consequence, when y is an s-Ahlfors

measure, Theorem 8.8 implies the version found in [HK98].

Definition 8.9. Given a set E C R", we let

H(E) = mf{zr; E c | B(zi,mi), rz-</\},

=1 i=1

and
H(E) = lim H3(E).
A—0

We call H® the s-dimensional metric Hausdorff measure.

For the properties of Hausdorff measures in metric spaces we refer the reader to [Fe69], [M95].
The following is a particular case (our d(z,y) is an actual distance) of the Vitali type covering

lemma for spaces of homogeneous type, see e.g., [CWT71, p.69].

Lemma 8.10. Let E C U be given and G = {B(z,r(x))} be any covering of E such that
D = sup{r(z)|B(z,r(z)) € G} < oc.
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Then there is a countable subfamily F C G of pairwise disjoint elements such that

Ec |JB
BeF
In the above, we have used B to denote the ball having the same center but with five times the
radius of B.

Theorem 8.11. Let U C R" be a bounded set with local parameters C1, R,, and Q. If for some
0 < s<Q, uis alower s-Ahlfors measure, then there exists a constant C = C(C1, Ry, s, M) > 0
such that, for every Borel set E CC U, one has

C

u(B) > o HO(B) .

Proof. We assume pu(FE) < oo, otherwise, there is nothing to prove. Given € > 0, we choose an

open set A D E such that u(A) < u(E) + e. This is possible since p is a Borel measure. We let
Ge = {B(x,r) lz e BE,0<r< %, and B(z,r) C A, }

Clearly, G¢ covers E and thus, by Lemma 8.10, there exists a sequence of pairwise disjoint
balls { B(z;,7;) }ien, all contained in A, such that

o
E c | B(i, 5ri).
i=1
Definition 8.9, and the assumption on u, give

o0

HE(EB) < Y (5ry)0
=1
(by (2.14)) < C(Ch, R, s) iM
i=1 ]

T3

< CM Y u(Blxir))
=1
< CMpu(A) < CM (u(E) + .

Letting € — 0 we reach the conclusion. O

9. Embedding a Sobolev space into a Besov space with respect to an upper
Ahlfors measure

The main objective of this section is to prove that, under suitable conditions on s, given
an upper s-Ahlfors measure y, a function f in the Sobolev space L£1P(B,dz) admits a trace
f on F = supp p which belongs to the sharp Besov space Bf_s /p(F, dp). Furthermore, the
trace operator Tr : L1P(B,dz) — Bf_s /p(F, du) is a bounded linear operator. For the precise
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statement, we refer the reader to Theorem 9.6. The proof of the latter is very delicate and

involves a substantial amount of work. We begin with some preparatory results.

9.1. Some results from harmonic analysis. In the proof of Theorem 10.1 we will need
the following adaption to a space of homogeneous type (which, for convenience, we take to be
(R™,d,dx), where d = d(z,y) is the CC distance associated to X) of a classical result of Whitney.
We refer the reader to [St93] for the proof of Theorem 9.1.

Theorem 9.1 (Whitney decomposition). Let F' C R" be a closed subset. There ezists a
family of balls F = {B(p;,mi) |t =1,2,...} such that:

(i) R*\ F = Uger B;

(iii) Ir(B;) <d(Bj,F) < 5r(B;);

)
)
(iv) If 6B, N6B; # @ then 57r(B;) < r(B;) < 24r(B;);
(v) F islocally finite. That is, for any a > 1 there exists N = N(«), depending on the doubling
constant in (2.12), such that if B;, € F is a fized ball, then the number of balls B; € F,
such that aB; NaB;, # 3, is less than or equal to N.

In the above, we have let B; = B(pj,r;), r; = r(Bj), and aB; = B(p;, ar;).
We next recall a generalization of the classical Calderén-Zygmund decomposition for spaces
of homogeneous type established in [Chr90], see also [St93].

Theorem 9.2. Let U and R, be as in Theorem 2.9, and let @ CC U be open with diam(Q2) < R,/2.
There is constant ¢ > 0, depending only on the characteristic local parameters of U, such that
for every f € L*(2), t > 0, C* > 1, there exist a decomposition of f,

f=g+)> b,
J
and a sequence of balls {B;} = {B(pj;,r;)}, such that

() |g(z)| < ct, fordz a.e.x € Q;
(ii) supp bj C B; C C*B; C Q and, moreover,

/bj<y)dy ~ 0, and /|bj<y)\dy < ct|B)

(iii) there exists an integer N such that each point in Q belongs to at most N balls of the family
{Bj};
(iv) @ cU;2C"B;, and 33, |B;| < £ [|f(y)ldy.

Note that since Theorem 2.9 is local in nature, we need to correspondingly localize Theorem
9.2 with respect to the global statements in [Chr90], [St93]. The relative details are standard
and we omit them. The only difference with respect to the presentation in [St93] being that one
needs to work with the following maximal function

Mf(z) = sup

Tt f(y)|dy.
zcB |BNQ| Jpno 7w
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It is worth pointing out that, since the supports of the b;’s are obtained from the Whitney
decomposition in Theorem 9.1, it is possible to force C*B; to be contained in 2, see [St93, p.15].
When in section 9.3 we will use Theorem 9.2 in the proof of Lemma, 9.5, we will have to make
sure that the radii and centers of the balls B; fall within the range of the parameters of Theorem
2.9.

9.2. Two simple growth-estimates. In the sequel we record two elementary, but useful, esti-

mates concerning upper Ahlfors measures. Since their proof is elementary, we omit it altogether.

Lemma 9.3. Assume that v is an upper T-Ahlfors measure, with 7 > 0. Fiz a bounded set
U CR, and let « > 7. There ezists C = C(Cy,7,M,a) > 0 such that for any z € U, and
0<r<R,/2

M v\z =7
/B(z,r) |B(z,d(z, )] dv(z) < C ]

When dv = dz, the Lebesgue measure on R?, we will take 7 = 0 in Lemma 9.3.

Lemma 9.4. Under the same assumptions of Lemma 9.3, let o < 7. There exists C =
C(Cy,7,M,a) > 0 such that for any x € U, and 0 <r < R < R, one has

d(z,z)*

—————dv(z) < Cr*".
Ar<d(z,z)<R} |B('Tad($az))| ( ) N

9.3. A key continuity estimate for a singular integral. The next lemma will be important
in the proof of Theorem 9.6. Let U C R™ be a bounded open set, with characteristic local
parameters C1, R,, and local homogeneous dimension (). For some given numbers a,~y, p > 0.
For z,z € U with = # z, we define
e
% if 0 < d(z,2) < p,
K,(z,2) =
p1+7d(117, z)aflf'y
A(z,d(z, 2))

if p < d(z, 2),

where A(z,r) represents the Nagel-Stein-Wainger polynomial in Definition 2.8 and in Theorem
2.9.

Lemma 9.5. Assume that y is an upper s-Ahlfors measure with 0 < s < Q. Let a < 1+ s.
There ezists C = C(Ci,s,M,a,vy) > 0 such that for every y,z € U with 0 < d(y,z) < R,/8,
p < R,/4, one has

/ K,y (5,2) — Kplo,9) dulz) < C d(y, ).

{% > d(z,2) > 2d(y,2)}
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Proof. Our main objective is to prove that for every z,y,z € U, such that

R
(9.1) 2d(y,z) < d(z,z) < ZO’
the following estimate holds
d(z,z) !
(9.2) Ky(z,z) — Ky(z,y)| < Cd(y,z) —————.
- @) Ble.d(z )
Once (9.2) is available we can easily reach the conclusion of the lemma as follows.
[ K@) - Ke)lda)
Bo > d(x,2)>2d(y,2)}
d(z,z)2 !
<cdys) [ i)
|B(z,d(z, z))|
{£o>d(z,2)>2d(y,2)}

< Cd(y,z)*°,

where in the second to the last inequality we have used (9.2), whereas in the last we have
exploited Lemma 9.4. This is possible since a — 1 < s.

In order to prove (9.2) we begin by making the simple observation that the inequality in the
left-hand side of (9.1) implies

1
9.3) 5 d@2) < dlz,y) < %d(x,z).
We now distinguish four cases:
(9.4) d(z,z), d(z,y) < p;
(9.5) d(z,z) < p, p < d(z,y) < %;
(9.6) dwy) < p p < daz) < o
R,
(9.7) p < dz,y), d(z,z) < —.

4
We will prove that in each of the cases (9.4)-(9.7), the kernel K, satisfies (9.2). In fact,
we will only treat the former two cases, since the treatment of the latter two cases requires
similar arguments. If (9.4) occurs, then using the definition of K, we obtain with elementary

considerations

(9-8) |Kp(2,2) — Kpy(z,y)|

ld(z,2)* — d(z,y)?| oAz, d(z,y)) — Az, d(z,2))|

S T A@dwme) TNV TG @, 9) A, d, )
ld(z,2)* — d(z,y)?| o Maz,t)  d(z,y) — d(z,2)]|

S T A@dwe) T M) S G am ) A dw )

where in the last inequality we have used Proposition 2.11, with ¢ a number between d(z,y)
and d(z,z). At this point we use the fact that, thanks to Definition 2.8, (2.9), the function
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A(z,s)
S

deduce from (9.8) with elementary arguments

s — is increasing, uniformly in z € U and in 0 < s < R,. This fact, and (9.3), allow to

(9-9) |Kp(x,z) - Kp(xay”
ld(z,2)* — d(z,y)?| d(z,2)**
S T Amdme) YR )

To handle the term containing |d(z, z)® — d(z,y)®| we apply the mean-value theorem to the
function g(t) = t“ obtaining
|d(:v,z)o‘ - d(.’E,y)a| < a Ta_l |d(3),2) - d(l'ay)' < «a 7.04—1 d(y,Z),

where 7 is a number between d(z,z) and d(z,y). If « —1 > 0, using simple arguments, and

(9.3), in either case d(z,y) < 7 < d(z, 2), or d(z,z) < T < d(z,y), we reach the conclusion
(9-10) jd(z,2)* — d(z,y)*] < Cd(z,2)*" dy,2),

where C = C(a). Equally simple considerations lead to the same conclusion if @ — 1 < 0.
Substituting (9.10) in (9.9) we see that (9.2) holds in case (9.4).
We next consider the case (9.5). From the definition of K, we find
_ |d($a Z)aA(J,‘, d(]), y)) B p1+7d(.’c, y)a—l—’yA(.T’ d(iL‘, Z))|
- A(z,d(z, 2)) Az, d(z,y)) '

To estimate (9.11), we distinguish two cases. First, suppose that

d(z,2)* Az, d(z,y)) — p*7 d(z,y)* " Az, d(z,2)) > 0,

9-11)  |Kpy(z,2) — K,(z,y)|

then we obtain from d(z,z) < p
d(.’E, Z)aA(xa d(.’E, y)) — pH"Yd(:c, y)a—l—’yA(x’ d(.’L‘, Z))
A(z, d(z, 2)) Az, d(z,y))
< d(Ia Z)QA(J"a d(l‘, y)) — d(.Z‘, z)1+7d(x, y)ai,yilA(:L'a d(l‘, Z))
A(z, d(z, 2)) A=, d(z, y))
147y |d($az)a7771 — d(may)ai’yiw a—y—1 |A(I,d(l‘,y)) — A(m,d(m,z))|
o) e a0 HECA e (e e et )
The second term in the right-hand side of the latter inequality is dealt with similarly to (9.8).

|Kp(z,2) — Ky(z,y)| =

Arguing as in the proof of (9.10), we find for a constant C = C(a,y) > 0,
|d(z,2)*777 — d(z,y)* 7 < Cd(z,2)* 772 d(y, 2).
This shows that K, satisfies (9.2). Suppose instead that
d(z,2)* Maz,d(z,y)) — p'™ d(z,y)* " A(z,d(z,2)) < 0,
then we obtain from (9.11) and from d(z,y)'*? > p'*™7 (see the second inequality in (9.5))
p M d(z,y)* TV A(z, d(, 7)) — d(z,2)* Az, d(z,y))
A(z,d(z, 2)) Az, d(z, y))

d(.’II, y)aA('T, d(.’l?, Z)) — d(.’IJ, z)aA('Ta d(ma y))
- A(z, d(z, 2)) Az, d(z, y))

|d($,y)a — d(.'II, z)a' d(ﬂ? Z)a |A($’ d(:]], Z)) — A(:]I, d(.’IJ, y))| .
Az, d(z,y)) ’ A(z, d(z, 2)) Az, d(z, y))

|Kp($>z) - Kp(z,y)| =
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Arguing as before, we recognize that (9.2) holds in case (9.5) as well. This completes the proof

of the lemma. O

9.4. The main theorem. We are now ready to present the main result in this section.

Theorem 9.6 (Interior sharp trace inequality). Let U C R™ be a bounded set with char-
acteristic local parameters Ci,R,. There exists o = o(X,U) > 0 such that, given p > 1,
B, = B(zo,R) CU,0< R < %’, f € LYP(0B,,dx), and an upper s-Ahlfors measure p, with

0 < s < p, and such that supp up = F C B, and u(F) > 0, one has for any 0 < <1—s/p

(912) ||f||BZ(F,du) < C||f||£1'P(UBO,d;c)7

for some C = C(X,U,p,s,M, ) > 0.

Proof. We only present the proof of the hard part of the theorem, namely the case f = 1—s/p.
When 8 < 1 — s/p, the proof is much simpler. We will explain this point in Remark 9.7.
Hereafter in this section, we work with the precise representation f* of a function f, as given in
Definition 8.4. However, to simplify the notation we will write f, instead of f*.

With ¢ as in Theorem 8.2, we set 0 = 8(49 + 1). Fix B, = B(z,,R) C U, with 0 < R < %’,
and let f € LYP(0B,,dz). To prove the theorem we will show that

©013) [l < Rﬁ {( / . |f<y)|pdy)’_° LR ( / . |Xf(y)|pdy)5},

and

(914) ffs/p(fa Fa dl‘l‘) < C ||Xf||LP(o'BO,d:E)'

We first establish (9.13). Choose a such that s/p < a < 1. This is possible since we assume
s < p. Theorem 8.2 and (1.7) allow to obtain

/ 1@ dutz) < G, / Sl dute) + Cy / 1) = fauPdute)

P d(x,y) P
O uBo)linl" + G | (f,Bom'Xf<y"dy> au()

IN

< CR /B F ()P dy

T, y)% z,y)l— @ P
e ( / dl@,y)” __ d@y) IXf(y)Idy) dpu(z)
Bo \/oBo |B(x,d(z,y))|? |B(z,d(z,y))|?

CR” /B |f (y) P dy

d(z, y)* » d(z,y)1—ow
t e B, </oBo leﬂyN dy) (/UBO mdy> dp(z)

_dzyr .
Bo (/Bo |B(z,d(z,y))| dp( )) | X f(y)P dy

AL

IN

ST

IN

CR™ [ |f(y)|Pdy + C RO~P /
Bo o
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< CR™ / fw)[Pdy + C RO-o Ror=s / X ()P dy,
B,

oB,

where in the first and second to the last inequality we have applied Lemma 9.3. We conclude
that (9.13) holds.

We next establish (9.14). For z,y € B, we denote by B a ball containing z and y with radius
2d(z,y). Theorem 8.2 gives

(9.15) @) — fW) < |f@) — fsl + 1f@) — fol
Y, 2)
: C/B|dewz s @ldz C/B\By, dy, 2] Pl 4=

The radius of the ball §B in (9.15) is less than 4R, therefore by our choice of o we have
0B C §B, . Since the role of z and y in (9.15) can be reversed, it suffices to consider only one
of the two integrals in the right-hand side. With § =1 — s/p we obtain from (9.15)

(9.16)

» z,y)° Pp d(z, z) N de P m
NG, Fdp)” < C/o/oledxy)>| (/53 Bla, d(z, )] )'d> du(z) dpu(v)

(@)™ _d(wz) ’
< C /0/0 |B(z,d(z,y))| (/13(w,2(1+6)d(x,y)) |B($,d(sz))||Xf(z)\dz du(z) du(y).

For a fixed = € B, we have from (1.7) and (2.12)

(9.17)
_d(@,y)" _d@) e\
/BO |B(z,d(z,y))| (/ Blea(14d)iay)) | B@ d(, z))||Xf( )| d ) du(y)
- iz:% ; / : |B(x,d(z,y))] </B(;c 2(14+0)d(z,y)) | B(Z, d(w z))||Xf(Z)|dz> dp(y)
{y|2—iR<d(z,y)< 2-i+1R}

(279)5=PP |B(z,27"F'R)| / d(z, z) ’
< 95 M RS PP i — - | X f(2)|dz
- Z |B(z,27¢R)| (27**1R)s {d(z,2)<4(1+6)2-iry | B(@, d(, Z))‘| =

C R—ﬂpzziﬂp (/ Mp{ﬂz)wz) .
{

P d(z,2)<4(1+0)2-1 R} | B(7,d(, 2))]

IN

d(z,z)

We let F(r (f{d (2,2)< %1} W|Xf( z)| dz)p. Since F' is increasing in r, one has

R
(9.18) / P LB () dr = Z / r LB R () dr
0 9-i-1R<r<2—iR}

RPp Z 2P (2771 R)
=0

R_ﬂp > o d(:]: z) p
- / o [ X f(2)]dz ) .
2 zz:% ( {d(z,2)<§2 'R} |B(-’E,d(w,z))|| ()] )

v
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Using (9.18) in (9.17), and (9.17) in (9.16), we obtain

(9.19) NZ(f,B,)P < 0/ /Rr—l—ﬂp / __d@2) v i) de pdrd,u(:v)
Ao N o J 0 {d(z,2)<gr} |B($ad($’z))|
<C T(Xf)(z, )P dpa (z, 1),
B, x[0,R)
where we have let
(9.20) dui(z,r) = =175 dr du(z),
and defined
(9.21) Thiz,r) = 1 / Rz, (2, 9)|h(2)|dz,
r {d(z,2)< TR}
with
d(z, z) )
__ax.z) if0 < d(z,2) < p,
~ B, d(a, )] @2
p P d(z,z ,
if p < d(z, 2).
B, dix,2) 2)

The parameter y > 0 in the definition of the kernel K,(z,z) is fixed so that s < 7. The
role of the additional term in the definition of K ,» will become clear once we reach (9.34) below.
Essentially, the purpose of such term is to smoothly cut-off K,, rather than simply truncate it,
for d(z,z) > p. Keeping in mind (9.19) we see that in order to establish (9.14) it suffices to
prove that the sub-linear operator 7" maps boundedly LP(oB,,dz) into LP(B, X [0, R),du1). In
view of Marcinkiewicz interpolation theorem, it is enough to show that T is of weak type (p,p)
for all p > 1. We will thus prove

(922) lu,l({(z,'r) € B, X [O,R) |Th($’,r)p > )\p}) < C (”hHL:(UBO))P.

We now fix a > 0 in the following way

1
(9.23) ° < 4 < min {1i}
P P

We notice that, since s < v, in view of (9.23) the number a also satisfies
1
o < 1H1

(9.24) -

Let p’ be such that % + 4 =1. One has

P
a (1-a) P
Th(.T,T)p < Cp rP (/ d(.’B,Z) i d(.’II,Z) 1 ‘h(2)|dz)
{d(z,2)<gr} |B(I,d($,2))|; |B(:1;,d(x,z))|7

14y oo 11 a P
b Clp.o) P (/ r v d(z,2) i r d(z, z) |h(z)\dz>
{§R>d(x2)24r}  |B(z,d(z,2))|» |B(z,d(z,z2))|?

_ d(l‘ Z)ap d(x’z)(l_a)pl I
C T p / 7 h z p dZ / —_— dZ
( {d(z,2)< 51} \B(m,d(x,z))\| =) ( {d(z,2)<2r} [B(z,d(z, 2))]

AL

IN
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P
4O r / Lty d(m,z)al’—l—7|h(z)|p 5 / P d(z,z)”% 0 P
{GR>d(z,2)>9r} |B(:E,d(.T,Z))| {§R>d(z,2)>9r} |B('T,d($,z))|
_ d(z, z)%P rI 7 d(z, )P 17
< Cr @ / ’—thdz+/ . h(z)P dz 3 ,
{ {d(z,2)<gr} |B(:L‘7d($7z))|| ( )‘ {§FR>d(z,2)>%r} |B(.T,d(:1,‘,2’))| | ( )|

where in the last inequality we have used Lemmas 9.3 and 9.4, with dv = dx, and 7 = 0. We

stress that Lemma 9.3 can be applied since by our choice a < 1, see (9.23). On the other hand,
it is possible to implement Lemma 9.4 since, thanks to (9.24), we have ap — 1 — v < 0. We thus
conclude

(9.25) Th(z,r)? < Cr=*® / Ko (z,2)|h(2)[P dz + / Koy (z,2)|h(2)]P dz ¢,
B,
{d(w,)<GR) v
where K, is the kernel introduced in Lemma 9.5 corresponding to the choice a = ap. We
now apply Theorem 9.2 to |h|P € L'(0B,), with C* = 20, at level ¢t = c,AP. The value of c,

will be conveniently chosen subsequently. Let [h(z)[P = g(2) + >, b;(2) be the corresponding
decomposition, with family of balls {B;};en, Bj = B(pj,7;). From (9.25) we obtain

(9.26) Th(z,r)? < Hi(z,7) + H(z,7),
where

Hl(iL',’l") = Cr % K%T(x,z)g(z)dz
oB,

Hy(z,r) = Cr™® Ker(z,2) Z bj(z)dz.
Bo 7

ag

From (9.26) we obtain
p1({(z,7) € By x [0, R) | Th(z,r)? > N\P})
< m{(ar) € By x [0, R) | Hi(e,r) > 2)) + m({(,r) € By x [0,R) | Halar,r) > 5 ).

In order to prove (9.22) it will thus suffice to establish similar estimates for H; and Hs. In

fact, we will soon prove that, for a suitable choice of the constant ¢,, we have

AP
(9.27) Hy(z,r) < CR

Consequently,

p1({(z,r) € B, x [0,R) | Hi(z,7) > ;} = 0,

and therefore, to achieve (9.22), we only need to prove

(9.28) w1 ({(z,r) € B, x [0, R) | Ha(z,r) > g}) < C (M)p
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To establish (9.27) we use (i) of Theorem 9.2, and again apply Lemmas 9.3, 9.4 with dv equal

to Lebesgue measure dx, and 7 = 0, obtaining
ap
Hi(z,1) < Cr 7 ccy N {/ —d(a:,z)
{2€0B, | d(x,2)<§r} |B(ZE, d(.’L‘, Z))'
I+vq ap—1—y
+ C(o, ’Y)/ L (z,2) z}
{z€0B, | §r<d(w,2)<Ro} |B(z,d(z, 2))|

K co NP 77 (r“p + r1+7r“p_1_7) = K¢, NP.

z

IN

Here k > 0 is a constant which depends on the characteristic local parameters of U, and on
D, 8,7, a. At this point, with the choice ¢, = ﬁ, we see that (9.27) holds.
We then turn to the more delicate estimate (9.28). We let

Ej = B(pj,20"l"j) X [O,Tj), E = U, Ej C (O'Bo X [O,R)) .
Denoting by E€ the complement of E with respect to 0B, x [0, R), one clearly obtains
AP
(9.29) {(z,r) € B, x [0, R) | Hy(z,T) > ?}

= {(z,r) € E|Hy(z,r) > %} U {(z,r) € E°| Hy(z,r) > ;}

To estimate the p; measure of the first set in the right-hand side of (9.29) we use the assump-

tion (1.7), Theorem 2.9, and property (iv) in Theorem 9.2

(9.30 i({a,r) € B Hoe,r) > 5} < (B) < 3 ()
J

= Z/ dpi(z,r) = Z/ /]T_H'Sdrdu(x)
j E; j B(pj,?O”I‘j) 0

1 |B(pj, ;)]
= Zr?u(B(pjﬂarj)) < CM Zr; TJS J
J J J

CM
a Ap oB,
As for the second set in the right-hand side of (9.29), observing that E¢ = (UE;)® C Ef for
every 7 € N, one finds

(9.31) /E (e, Dl () < 0 Y / B | /U . Kol by () |y . 7)

|h(2)IP dz

= C Y (A + By),
J
where
A = r %

{(@,r)€Box[0,R) | r; <r<R}

/ Ko, (z,2)bj(2) dz‘ dp (z, 1)
B(zo,0R) *

- —ap
B = T

{(z,r)€Bo x[0,R) | 0<7<r;,d(z,mj)>207; }

/B Ks,(z,2)bj(2) dz‘ dp (z, 7).
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We will prove that
(9.32) Z(A + B) < C Z/ z)| dz.
pj7T]

Suppose we have achieved this. From (9.32), and from (ii) and (iv) of Theorem 9.2, we would

conclude
/ \Ho(z, )| dps (1) < c/ ()P d.
B,

Finally, Chebychev inequality would give

c AP 2 C »
p1{ {(z,7r) € E°|Hy(z,7) > -} ) < |Ha(z, )| dpi(z,7) < — |h(2)[P dz.
2 AN Jge AP

0B,
Together with (9.30) this would establish (9.28), and therefore (9.22), thus completing the
proof of the theorem.
We thus turn to proving (9.32). Observe that in the inner integral in the right-hand side of
the formulas defining A;, B;, the integration really takes place on supp b; C B(pj,r;). On the
other hand, if z € B(pj,r;), then B(pj,20r;)¢ C B(z,0r;)¢. We can therefore estimate B; as

follows
(9.33)

B, < / / ! p—l+s—ap (/ Ke.(z,2)[bj(2)| dz) dr du(z)
B(pj,20m;)° J0 B(pjrj)
g —1+s—ap i
r 1b;j(2)] Koy(z,2)du(z) | dzdr
0 B(p] arj) B(p] a20—,rj )C

- /1 _1+s—ap/ bj (2)] (/ Ko (z,2) d,u(:v)) dzdr
B(p;,r;) B(z,207;)°
14y ap—1—vy
<of e |Mm(/ ol cwm>ww
B(pj,rj) {or; <d(z,z)<Ro/4} | (Z, (x,Z))l

_ d(z,z)"!

< C bi(z / Ls—ap / r A% du(z) | drdz
sy s ( (o <y <oy 1Bz, )] 4

<

.
C r;-lp_l_s/ 1b;j(2)] (/ ’ TP dr) dz
B(pjrj) 0

=c/ 1b;(2)] dz,
B(pj,rj)

where in the last inequality we have used Lemma 9.4 with v = pu, and 7 = s. We note that this
is possible since, thanks to (9.23), we have ap — 1 < s.
This establishes half of (9.32). We are left with estimating A;. Since [ B(zo,0R) bj(z)dz =0

we have

(9.34) A; = / rp

{(2,r)€Bo x[0,R) | rj<r<R}

< / rop /; |K%T(I,Z) - K%r(w,pjﬂ |b](z)| dz dpq (z,1)
{(z,r)€Box[0,R) | 7;<r<R} (pjrs)

[ (Kgelo2) — Kgr(omy)) (e de] (o7
B(p] ,TJ )
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R
— [ @I [ e ([ e - Kol duta) ) dr,
B(pjr;) T Bo

We analyze the innermost integral in (9.34) as follows.
(9.35)

/ Kz (2,2) — Kz, (2,p;)] diu(z)

o

- / Ko p(2,2) — Kz, (z,p;)| du(z)
{r€B, | d(z,2)<2d(pj,2)}
+ [ K — Kylemy)|duta)
{z€B, | d(x,2)>2d(p;,2)}
< [ Ko@)l duo) + [ Ko (0,p5)| du()
{d(z,2)<2d(pj,2)} {d(=z,p;)<3d(p;,2)}
+ / Ko p(2,2) — Kz(o,p))] du(s)
{z€B, | d(x,2)>2d(p;,2)}

d(z, z)%P / d(z,p;)*P
————du(z) +
/{d(z,z)§2 d(p;,2)} |B(z,d(z,2))| ule) {d(z,p;)<3d(p;,2)} | B(pj: d(z,p;5))|

IN

du(z) + C d(z,p;)*™*

< Cd(pj,2)™".

In the derivation of (9.35) we have used in the order Lemma 9.5, Theorem 2.9, and Lemma 9.3.
We stress that, in order to apply Lemma 9.5, we must have 0 < ap —s < 1. This is guaranteed
by (9.23). Inserting (9.35) in (9.34), in view of the assumption 0 < s < p, we can conclude

R
A< C / d(p;, )™ b (2)] / == gy
B(pjy'r]) Tj

<c / 1b(2)| dz.
B(p] 77'j)

This establishes the remaining half of (9.32) and thereby completes the proof of the theorem.
O

Remark 9.7. If one is only interested in the case 0 < < 1 — s/p, then the proof of Theorem
9.6 is much simpler and can be obtained as follows. Choosing a > 0 such that s < ap < 1, and
proceeding from the first term in the right-hand side of (9.19), one has

R d(z, z) P
B _
Ng(faBoad/Jf)p <C /0/0 r 1-pp (/{d($7z)<%r} |B(m’d(m’z))|‘Xf(z)|dz) dT'dM(.T)

R d(z, z)™
C 1—pp _ Az, 2)" by
<Lk </{d<w,z><%r} Bz, dz, 2] ) >

Pr
7

d(w, z)(l—a)p’ P
X ——dz dr du(x
(/{d@,zk%r} |B(z, d(z,2))] (@)
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* d(z, z)P
C / / r_l_ﬂp'r(l—a)P / — " X F(Pdz | drdul(x
o0 {d(z,2) <57} |B(w,d(x,z))|| f(2)] w(z)

R d(z,z)%
< C / 7"_1_’3”"'(1_“)”/ Xf(2)|P / " du(z) | drdz
: semery NN Jiatoyez g 1B dGa, )] #)
R

C (/0 p—1=Bp+(1—a)p Lap—s dr) HXfHIiP(B(wO,UR),dz)

C
_ p(1—s/p—PB) P
s/ B 1 W

In the above estimate we have used Lemma 9.3 twice, the former time with dv = dx, and T = 0,

IN

IN

Zo,0R),dz)"

the latter with dv = du, and 7 = ap. Such simple proof fails miserably in the end-point case
B=1-s/p.

A situation of special interest arises when the set F' in Theorem 9.6 is a portion of a C1!

hypersurface, and u represents the perimeter measure introduced in Definition 5.7.

Theorem 9.8. Let U C R" be a bounded set with characteristic local parameters C, R,. There
exists o = o(X,U) > 0 such that, given p > 1, B, = B(z,,R) C U, 0 < R < %, f e
LYP(0B,,dz), and F C B,, where F C 09, and Q is a bounded C1' domain of type < 2, one

has

(9.36) ||f||Bf7l(F,du) < C|lfllgrr(oB,,dz) +
p

for some C = C(X,U,p,Q) >0, where y is the perimeter measure.

Proof. In view of Theorem 6.6 the perimeter measure of €2 is an upper 1-Ahlfors measure. We

can therefore apply Theorem 9.6 to obtain the conclusion. O

10. The extension theorem for a Besov space with respect to a lower Ahlfors

measure

The main objective of this section is establishing the following result.

Theorem 10.1 (Extension theorem). Let 1 < p < oo, and p be a lower s-Ahlfors measure
i R, with 0 < s < p. When p > n we require, in addition, that s < "T”Lp. We assume that for
an open set Q C R*, we have F = supp p be a compact subset of Q, with |F| = 0. There exists
a bounded linear mapping (an extension operator) &£ : BY , (F,du) — LYP(Q,dz), such that

P

(1) Ef(z) = f(=) forp ae zeF, (@) lEfllcwim < Clfller_,,

for some C = C(X,p,s, M,dist(F,00)) > 0. Furthermore, £f is supported in a neighborhood
of F.
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We stress that while in the previous sections the measure y was assumed to be an upper

Ahlfors measure, in the above theorem we need the control from below expressed by (1.8).

10.1. Some auxiliary results. The proof of Theorem 10.1 is based, among other things, on
the extension theorem for the Sobolev spaces £ established in [GN98]. We recall this basic
result in Theorem 10.4 below. We will also need the following Whitney partition of unity on
CC balls established in [GN98].

Theorem 10.2. Let F be the covering given by Theorem 9.1. There exists a partition of unity
{¢;j 17 =1,2,...} subordinated to F. That is, the ¢; satisfy

(i) &; € Lipa(B;), supp ¢; C Bj

() 0< ¢ <1, X,45=1 on U B} OR\F,
Bj€.7:

(i) |X65] < 5y

We next recall a notion from [GN98], which generalizes that of Euclidean (e,d)—domain
introduced in [Jo81].

Definition 10.3. An open set Q C R" is called an (e, d)-domain if there exist 0 < § < 0o, 0 <
e < 1, such that for any pair of points p,q € Q, if d(p,q) < J, then one can find a continuous,
rectifiable curve 7y : [0,T] — Q, for which v(0) = p, v(T') = ¢, and

(10.1) I(v) < % d(p,q), d(z,09) > € min {d(p,z),d(z,q)} for all z € {v}.

If @ C R™ is an open set, then the radius of € is defined as follows

(10.2)  rad(Q) = sup {r>0| IB(p,s) NQ # &, for every p € Q, and every 0 < s < r}.
Note that if § = 0o, or € is connected, then rad(£2) > 0.

Theorem 10.4. Let 1 <p < oc. If Q C R" is a bounded (¢, 0)-domain with rad(Q2) > 0, then

there ezists a linear operator S : L1P(Q,dz) — LYP(R™,dx) such that for some C > 0 one has
for f € LYP(Q,dx)

())Sf(z) = f(z) foraexz€Q, (@) (IS fllc1o @ dzy < Cllf | 21p(0,da)-
We have used here S to denote the extension operator for Sobolev spaces since we have

reserved the symbol £ to indicate the extension operator for Besov spaces. We are now ready

to prove the main result of this section.
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10.2. Proof of Theorem 10.1. We fix an open set {2 and a bounded set U C R", such that
F CQcCccU,andlet C1, R, be the characteristic local parameters of U. Consider the Whitney
decomposition F of R” \ F' as in Theorem 9.1. From the proof of the latter one can easily deduce
the following. For any ball B € F we have 6BNF # @. We let B* = 6B. There exist constants
a1, ag such that if B, B; € F, and B*N B;, # &, then

(10.3) Bia C a1 B* C OZQBZ'O.

We let
st (F, 00
F = {BE]—“|r(B)<min{w,Ro}},

and notice that if B € F', then B* C Q. We define

f(g;) ifx € F,
(104) &f(z) = Y e Ciy (@) ifzeQ\F, where ¢;= “(%Bf)f‘”B}k J(t) du(t).

n (10.4), the collection of functions {¢;} denotes the partition of unity in Theorem 10.2. It
is clear from Theorem 9.1 that u(alB; ) > 0. Hence £ is well defined, and it is supported in a
neighborhood of F. We now proceed to prove that £ is a bounded operator by showing there
exists a constant C > 0 such that

(a) /Q\F\é’f(fv)l”dw < C/Flf(w)lpdu(w),

BN ) i )
o [, xeseras < ey = o [ [ - s et dut) duto)

The proof of (a) is divided in two steps. First, we fix z € Q\ F and let B;, € F be any (fixed)

ball containing z. One has from (10.4)

(103 £ < 32 40 ST oy O 00
1 » Z
< X e (TB) .., du(t))

S =

< (i L

to

|F @) du(t)>
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In the above, we have used (10.3), and the fact that the sum is actually a finite sum of no

more than N terms. Next, we obtain from (10.5)

e LEr@pds < 3 / €7 ()P do

BE]:
< 3w / (o [ " 0P du(v) do
<w 3 o /MB () du(t)

(by (1.8) < MNP 3 r( / £ dut)

B;eF

< C min(dist(F,09Q), / Z XazB; ()| f ()P du(t)
@2Bi g e
< C min(dist(F,09), / | ()P du(t)

We have thus proved (a), with C' depending only on M, dist(F,0%2), and on the characteristic
local parameters of U.

We now turn to the proof of (b). Let z € Q\ F. Recall that ), ¢;(z) = 1, and therefore
Xi(3o; ¢i(x)) = Xi(1) = 0. Using these facts, for any point y € Q\ F' such that £f(y) # 0, we

estimate

Xp€f(z) = (Z ¢j(z (o B )/ 5 (f?) Ef(y))dﬂ(t))
1
— ZXk(ﬁj(x)iu(alB”f) /¢1le ( Z¢l alB*) /ale f(7) d,u(T)) dp(t)

:
ZXM (Z¢z )TB) / oy 100
- ;;ij(w)@(y)m /alB; F(7) du(r)

= %:;ij(x)qbz(y)@/mj f(t) du(t)
- ;;ij(w)@(y)@ /alB; F(7) du(r)

= ZZM(@@@) {ﬁ / PRCLTCR o / L0 du(T)}
ZZXk% p(en B;) ™ p(en By) ™!

.{u(alBl*)/ B?f(t)du(t)—u(alBﬁ/ B

1

f(7)du(r) }
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Z Zxk@ Vu(0a B) Lo BY)™ / / — F(n)} dpa(t) dp(r).
alB* alB*

If we take y = z in the above, we obtain

(10.7) Xk Ef (x ZZIXW% )| i) -

1 1 %
(MalB;*) pler B;) /alB; /M; F®) = FE)P dut) du(r)) .

For any fixed z € Q\ F, and any fixed B;, € F containing z, the sum in (10.7) is over all
balls Bj, B; such that B; N B;, # @, BN B;, # &, and it is actually finite, with the number of

terms independent of z. Hence, from (10.7), and (#4¢) in Theorem 10.2, we obtain

108)  IXEf(@)l < ZZ (N(Bli af [ e - f(T)I”du(t)dﬂ(T)>p

j=11=1
1
P
(by Theorem 9.1) < C / / — f(1)|P du(t) du(r)
'f'( .o Z0 012310 042310
Using (10.8) we conclude
(10.9)

/ XWEf (@) dz < / XLEF(@)P de
Q\F B,eF

by ) <o Y [ (

/ 70) = P dut) dur) ) ds
asB; JasB;

o
= C Bze;| - — f(D)P du(t) du(r)
by @) < oMt 5 ‘BT ” / o0 = P ) )
(by Proposition 2.12) < C Bzejf /a " /a 15 - f(T)|P% du(t) du(r)
(by Theorem 9.1) < C M? //|f -y %du(t)du(ﬂ.

In the second to the last inequality above, we have used the doubling condition (2.12) and
the fact that t,7 € B;. Also, we have applied Proposition 2.12 with o = 2s — p. This is possible
provided that @ < n. When 1 < p < n, one has equivalently p < #, and therefore the
condition a < n is automatically guaranteed by the assumption 0 < s < p. This is no longer the
case in the range p > n, but now the hypothesis s < % implies a < n. At this point, summing

over kK =1,..,m in (10.9) we obtain (b). This concludes the proof of thorem.

Remark 10.5.
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(i) We note that, interestingly, the Poincaré inequality Theorem 8.1 is not needed to establish
Theorem 10.1. This is due to the fact that one only needs to control the Sobolev norm from
above by the Besov norm.

(ii) As we will see subsequently, in the important situation when F is the boundary of a smooth
domain, the parameter s in (1.8) will be s = 1, thus the limitation 0 < s < p is always
satisfied if we confine attention to the range p > 1. Moreover, since n > 3 one also has
P >2>1=s.

(iii) As the end of the proof of Theorem 10.1 shows, the limitation s < "T+p when p > n in its
statement comes from the limitation o < n in Proposition 2.12. An important situation
in which such constraint can be considerably improved is that of a Carnot group G with
homogeneous dimension Q. In such case, |B(z,r)| = w rQ, where w = w(G) > 0 is
independent of x € G, and therefore Proposition 2.12 holds trivially with < Q. As a

consequence, the range of s is wider.

11. Traces on the boundary of (¢,d) domains

In Section 9 we proved that a Sobolev function on a domain {2 possesses a trace on the support
F of an upper Ahlfors measure p, in the situation when F' is contained in the interior of 2. We
are presently interested in the question of traces in the important situation when F' = 0€2. This
problem is more delicate than the interior one since it is of a global nature. To explain this
point, let us recall that while it is always possible to locally approximate a Sobolev function in
the space L1P(Q) by smooth functions (see [Frd4], [GN96] and [FSS96]), the same is not true
up to the boundary of the domain €2, unless the latter possesses certain geometrical properties.
This aspect was investigated in [GN98], where, among other things, it was proved that when Q
is a (€,0)—domain, then the class C*°(Q) is dense in £?(Q). The purpose of this section is to
prove that, when p is an upper Ahlfors measure, the (e, ) condition also suffices to guarantee
that functions in £1P(2, dz) have a trace in the Besov space Bf_s/p(aQ, du), see Theorem 11.6.
Furthermore, if i is a Ahlfors measure, then such Besov space actually characterizes the trace
space on 0f2 of Sobolev functions in €2, see Theorem 11.9. We need to develop some preparatory

results.

Definition 11.1. An open set 2 C R™ is said to have interior positive density at z, € 01, if
one has
. |Q N B("Em T)‘
D, (Q,2,) = limsup —————~
+( ’ 0) r—0 |B(£L'0,’I‘)‘

Proposition 11.2. If Q has interior positive density at every z, € 0N, then |02 = 0.

Proof. Consider the characteristic function yq. Since xyq € Li (R"), by Lebesgue differenti-

loc
ation theorem for spaces of homogeneous type [St93], we know that dz-a.e. point of R" is a
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Lebesgue point for xq. Therefore, the set
QNB 1
s - {pep | 120BED _
|B(z,7)| |B(z,7)| /B,
has zero Lebesgue measure. Since the condition D, (£2,z,) > 0 for every z, € 912, implies that
02 C S, the conclusion follows. O

xo(y)dy 7 xo(z),as r — 0}

A stronger notion than that of interior positive density is contained in the following definition.

Definition 11.3. An open set @ C R" is called of type-A if for A > 0, there exists R, > 0
such that for every z, € 012, and 0 < r < R,,

2N B(zoyr)| > A [Blao,r)].

Clearly, if Q is of type-A, then for every z, € 00 one has D, (2, z,) > A. We next recall
Definition 10.3, and also (10.2). The following proposition has important potential theoretic

consequences.

Proposition 11.4. IfQ is an (¢, 6)-domain, then S is type-A with A = A(e,C1). In particular,
one has |0Q] = 0.

Proof. Fix z, € 09, and let y € Q be such that d(z,,y) < %5. Consider B(z,,r) with

r < %d(wo,y) < %(5, and choose z € ) such that d(z,z,) < g. By the triangle inequality, we

have d(z,y) < d(z,z,) + d(zo,y) < d. Definition 10.3 guarantees the existence of a continuous
curve v : [0,7] — , such that v(0) = z, v(T) = y, and satisfying (10.1). Consider the

continuous function g : [0,7] — R given by g(t) = d(~(t),7(0)). Since g(0) = 0 and

(1L.1) g(T) = dz,y) > d(woy) — dleez) > 2 — ¢ > ¢
by the intermediate value theorem, there exists z € {7} such that d(z,z) =
(10.1)

%. One has from

d(z,090) > € min {d(z,z),d(z,y)} > € min {d(z,z),d(z,y) — d(z,2)}
(o T Ty _ T
> € mln{g, r—g—g} = €5
This implies B(z, §-) C . Furthermore, since d(z,7,) < d(z,7) + d(z,z,) < 7 and hence,

z € B(z,y,7/4). We infer

B(z’fg) - B(‘TOar)ﬂQa B(xoar) C B(Z, Z’I‘)
Using Theorem 2.9 we conclude
[N B(zo,7)| _ |B(z ) |B(z 37)]
> A(e,C > A(e,C1) > 0.
Baor)| = Baan = O Baan = A0

This completes the proof. O

Remark 11.5. Due to the nature of the (€,6) condition, Proposition 11.4 represents a useful
tool when one wants to show that a given domain is not (¢,0). We will see an instance of this

in Proposition 11.8 below.
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Theorem 11.6 (Trace theorem on the boundary). Let U C R" be a bounded set with
characteristic local parameters C1,R,, and let p > 1. There is 0 = o(X,U) > 0 such that,
if Q@ C U is a bounded (e, §)-domain with rad(2) > 0, diam(2) < %’, dist(Q,0U) > R,, and
p is an upper s-Ahlfors measure for some 0 < s < p, having supp p C 0N, then for every
0 < B <1—s/p there exist a linear operator

Tr : LYP(Q,dz) — BE(0Q,dp) ,
and a constant C = C(U,p, s, M, B,¢€,8,rad(Q2)) > 0, such that

(11.2) 1T fll Bz 60.n) < C Ifllcrr(e,d) -

Furthermore, if f € C®(Q) N LYP(Q,dz), then Tr f = f on 09.

Proof. Let 0 = o(X,U) > 0 be the parameter whose existence is asserted by Theorem 9.6. With
f € LYP(Q,dz) given, we fix z, € . In what follows, we continue to indicate with f the precise
representation f*, see Definition 8.4. If R = diam(£2), one clearly has 2 C B, = B(x,, R). The
assumption diam(Q) < % implies 0 < R < R,/o. Since by hypothesis dist(2,0U) > R,, we
conclude 0B, C U. Let S : LYP(Q,dz) — LYP(0B,,dz) be a Sobolev extension operator given
by Theorem 10.4. We next consider the set

1
= Q| lim ——— i .
g {:6 €0 lim B " Ly f(y) dy ex1sts}
Our first objective is to prove that
(11.3) p(0Q\G) =
To this end, we show
£ = {xeaﬂ ;LHMB |/“ SF(y) — Sf(x)|dy = o} cg.

In fact, suppose for a moment we have proved the latter inclusion. Theorem 8.8 allows to
conclude p(9Q\ &) = 0, and therefore (11.3) would follow from 92\ G C 9N\ E. Let thus z € &.

Proposition 11.4 gives

lim

— d
r—0 |B xz,Tr ﬂQl / w’r)ﬂQ y Sf(.’L‘)‘ 4

Sf(y) — Sf(z)ldy

= lim

r—=0 |B(z,T) ﬂQ\/ w,,-)mQ

|B(z,7)|
= }1—>0|B(x r)r‘IQHB:I:T\ ;”)|Sf y) — Sf@)ldy
= 0.

This shows that

11.4 lim
( ) 7‘1—)0|B.’L"l" ﬂQ|/$T)nQ
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(recall that Sf = Sf*, and therefore Sf(z) exists for every z). We have thus proved that z € G,
and therefore (11.3) is valid. Next, we define for z € 09

Trfw)  tim f(y)dy -

r=0 [B(z,7) N Q| J@rne
According to (11.3), (11.4), the function 77 f is defined y — a.e. on 992. Moreover, (11.4)
implies that the definition of 7 is independent of the choice of the operator S (although Sf was
used to show that the trace operator 7 is well defined). Finally, if f € C®(Q) N LP(Q, dz),
then 77 f(z) = f(x), for all z € Q. Our final task is to prove that 7r f € Bg(@Q, dy). Using
Proposition 11.4 we obtain for z € G

1
|B<a:,r)mz| oo ALY
|B(z,T)
|B(z, r)nm |B:v M s [SFy)ldy
1 1
ISf(y)|dy.

< - -
A |B(-’B’T)| B(z,r)
Passing to the limit as » — 0, and using again Theorem 8.8, we conclude
1
(11.5) Tr f(z) < 1 Sf(z), for p—ae. z€ .
Using in succession (11.5), Theorem 9.6, and Theorem 10.4, we find

1T fll Bz 00,40 < A ISfllBz@00,a < CISFllcreoBoar)y < C Ifllcrr(,an)-

This completes the proof. O

The following theorem has a special interest in the applications. Its proof is a direct conse-

quence of Theorems 6.6, and 11.6.

Theorem 11.7. Let U C R" be a bounded set with characteristic local parameters C1, R,, and
let p > 1. There is 0 = o(X,U) > 0 such that, if @ C U is a C11, (¢,0)-domain with
rad(§2) > 0,diam(Q2) < g‘;, dist(2,0U) > R,, and p is the perimeter measure on OS2, then if

1s of type < 2 there exist a linear operator
Tr . LY(Q,dz) — B‘f_%(aﬁ,du) ,
and a constant C = C(U,p, s, M,e,d,rad(2)) > 0, such that
(11.6) 177 flle, 00.dw < C llfllcro,dn) -
p

Furthermore, if f € C®(Q) N LYP(Q,dz), then Tr f = f on 0.
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11.1. The (¢,0) condition is optimal for the existence of traces. In the sequel we prove
that the (e, d) assumption in Theorem 11.6 cannot be weakened. What we mean by this is that
there exist C1'* domains in Carnot groups of step 2 which fail to be (¢,§), and for which it
is impossible to define the trace on the boundary of Sobolev functions. To prove this negative
phenomenon we consider the domain € introduced in (7.39). In the sequel we continue to use

the notations of the sub-section 7.4.

Proposition 11.8. The domain Q C H' defined in (7.39) is not a (€,0)-domain. More-
over, there exist a function f € LY2(Q,dg) whose trace does not belong to the Besov space

1/2(89 du), where dy denotes the perimeter measure defined in Definition 5.7.

Proof. To prove that Q is not (e, d) it suffices to show, in view of Proposition 11.4, that € fails
to be of type A. To this purpose it is enough to prove that
QNB
(11.7) lim 120 Bozlen)]
r—0  |Box(e,r)]

It is now easy to see that
2

" o8 B a4d
|2N Bozx(e,r)| = 7T/ 2B dr =« rTB .
0

On the other hand |Box(e,r)| = 277, and therefore
|2 N Boz(e,r)| Jé]
|Boz(e,r)|  2(B+2)
Since 4/8 — 2 > 0, the latter equation proves (11.7). We notice that when 5 = 2 the domain
Q is of type A. In fact, thanks to the results in [CG98], in this case 2 is a NT' A domain, and
therefore also (¢, d).

[
|
N

We next show that Theorem 11.6 fails to be valid for 2. For simplicity we consider the case
p=2. Let u(g) =t %, with a > 0 to be chosen. We claim that if
1 2 1
then u € LY?(Q, dg), but the trace of u does not belong to the Besov space BI/Q(GQ,du). We
note explicitly that when = 2 the numbers in left- and right-hand sides of (11.8) coincide, and
the interval is empty.

In order to prove that u € £L?(Q,dg), we compute Xu = (X1u, Xou) using (4.18),
Xiu(g) = —2ayt ™", Xou(g) = 2axt ",

This gives

1 1
/ |Xul? dg = / / 40?|2)? ) dz dt < 4a? / /B=2at1) gy
Q 0 J)z|<tt/8 0

It is then clear that u € £1?(Q, dg) provided that the second inequality in (11.8) hold.
We next want to show that if a satisfies the left-hand side inequality in (11.8), then

1

— u(g 2 ! 2
(11.9) N3 (u, F,dp) = {// (‘“ 1/(2 )|) ‘B(Z’(g’(g,)g,))‘du(g)du(g’)} = oo,
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where F' C 0f) is as in section 7.4, and Ng(u,F, du) is the semi-norm of u in the Besov space
1/2(F dy). Recalling that d(g,¢') = N(go g '), where N(g) is the gauge in (4.20), and the

group law is given by (4.19), we see that in order to prove (11.9) it suffices to show

u\g) — u\g 2
(11.10) e [ o )2‘ X(9)| 1X(g")] dolg) dolg') = oo

Keeping in mind (7.42), we have

||Z| b - |€|_GIB|2 |Z|ﬂ71 |C|ﬂfl dz dC
lz|<1J[¢|<1 N(gog 1) ’

Ngogd ™t = (o2 +1eP —2<2>)" + (12 = P +26n - ew)

where

and we have let ¢’ = (¢, 7') = (&, 7, 7'). Switching to polar coordinates we find

2 27 —aff _ aﬂ2
A(r,0,p, b)

A(r,0,p,¢) = (2 +p* —2rpcos(0 — ¢))> + (r° = p’ +2rpsin(6 — ¢))?

where

The change of variable r = ps in the integral with respect to r gives

2r 2w rl/p 72aﬂ _ o—aB|2.8 ,28+1
M = // / / |1 S IS0 s do dg dp
A(ps, 0,p,9)

2 27 —2a5|1 a,8|235p2,3+1
ds df d¢ d
= [ T e o de

2
Alps,0,p,¢) = p*{s? —2scos(60 — ¢) + 1}2 + p? {sﬁ —1+42sp” P sin(0 — gb)}

= p? {p42ﬁ {s* — 2scos(6 — ¢) + 1}2 + {sﬁ — 1+ 2sp*> Psin(h — ¢)}2}

def

We now notice that

p*? B(p,0,s,9) .
Thanks to the assumption 1 < 8 < 2, we readily recognize that

|B(p,0,s,¢) < C, 0<p,s<1,0<6,¢ <27,

L1 - s%)
M > C/ 2aﬂ 1 / 52aB—F ds .

The integral in the right-hand side of the latter inequality is divergent provided that 2a8—1 >
1, i.e.,, a > 1/B, which is the inequality in the left-hand side of (11.8). This proves (11.10), so
the proof is completed. O

therefore
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11.2. Characterization of the traces on the boundary. In what follows we finally prove
the central result of this section, namely, the characterization of the trace space for a Sobolev

space.

Theorem 11.9. Let U C R" be a bounded set, with characteristic local parameters C1, R,, and
Q C U be an (¢,6)-domain, with rad(?) > 0, dist(2,0U) > R,. Givenp > 1, let u be a
s-Ahlfors measure, with 0 < s < p and supp p C 0Q. When p > n we assume in addition that
s < nT+p. There is 0 = o(U,X) > 0 such that, if diam(Q2) < %, then there exist two linear

operators

Tr: L'YP(Q,dz) — BY_, (0%, dp) €:B]_,,,(09,dp) - LYP(Q, dz) |

such that Tr o & is the identity map from Bzf_s/p((')ﬂ,du) into itself.

Proof. We begin by observing that, thanks to Proposition 11.4, we have |0€Q| = 0, therefore
if F = supp p, we obtain in particular |F| = 0. Since p is, in particular, a lower s-Ahlfors
measure, with s within the range of the hypothesis of Theorem 10.1, we can apply this result

which guarantees the existence of an extension operator
& : Bf_s/p(BQ, dp) — LY(Q,dz)

where () is a bounded open set such that © C . Clearly, £f [o€ LYP(Q,dz). The fact that
i is an upper s-Ahlfors measure allows to apply Theorem 11.6 to infer the existence of a trace

operator

Tr : LYP(Q,dz) — BY .,

This completes the proof. O

(0Q,du) .

Theorem 11.9 gives a complete characterization of the traces of Sobolev functions for the
general class of (¢,d) domains. Thanks to such result it is now possible to say that the space
Bf_s/p(aﬂ,du) is the trace space of LYP(Q,dz) on the boundary of . We will express this
property as follows

£Y2(Q,dz)go = BY_, ),

We close this section with a different trace theorem which follows directly from the cited
Theorem 1.1, established in [DGN98], and from the extension Theorem 10.4 from [GN98].

(09, du).

Theorem 11.10. Let U C R™ be a bounded set, with characteristic local parameters C1, R,.
Consider an (€,6)-domain Q C U, with rad(Q) > 0, and an upper s-Ahlfors measure p for some
0 < s < p, having supp p C 0, with u(0R) > 0. There is 0 = o(U,X) > 0 such that, if

diam(Q) < Ee there exists a restriction operator

Tr : LY(Q,dz) — L0, dy) where ¢ = p

O
|
S

such that Trf = f for f € C®°(Q) N LYP(Q,dx) and

|Trfllze@ady < C fllcirda) -
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This result is of course different from the much deeper Theorem 11.6. A comparison, and

some comments about these two theorems, are found in Section 12.

12. The embedding of Bg(Q,du) into LY($,dpu)

Theorem 1.1 in the introduction claims that a function in the sub-elliptic Sobolev space
LYP(0B,,dz) possesses a trace on the support of the measure p. Furthermore, such trace
belongs to a Lebesgue space L(B,,du), with an optimal gain in the exponent of integrability.
On the other hand, in Theorem 9.6 we have proved that £'?(0B,,dz) embeds continuously into
the Besov space Bg (Bo,dp). The question naturally arises of whether it is possible to close the
gap between these two results, by showing that BZ(BO, dp) C LY(By,,du). The purpose of this
section is to prove that this is in fact possible, provided that p is a lower s-Ahlfors measure.

The following theorem is our main result in this direction.

Theorem 12.1 (Embedding a Besov space into a Lebesgue space). Given a bounded set
U C R" having characteristic local parameters C1, Ry, and local homogeneous dimension Q, let
QCQCU be an open set with diam Q2 < R,/2. Let p > 1, 0 < 8 < 1. Suppose p is a lower

s-Ahlfors measure with

(12.1) 0<s < n+ PBp, s < Q—pPp,
and such that supp u = F C Q. There exists a continuous embedding
Q-—s
BZ(F, dp) C LIQ,dp), where g = p O—s—Bp

and, in fact, for f € Bg(F, du) one has

diam(Q) » 1
(12.2) |fllzedn < C {(1 + ()T)N (f, Fydp) + W(F)PI@—9) ||f||LP(Q,du)}a
where C = C(Q, C1, Ry, p, 8,5, M) > 0. Furthermore,
(12.3)

(/[ 1560) = sl duto ); <o ([ [ e - rwppet Zfﬂdu(y)du(x))’l’,

where fq,, denotes the average ey fQ fdp.

Remark 12.2. If in the statement of Theorem 12.1 we take 1 <p < Q, and f =1— s/p for
some 0 < s < p, then condition (12.1) translates into s < nT+p (the reader should note that such
inequality is automatically guaranteed by the condition s < p when p < n. Thereby, it imposes
an additional restriction on s only when n < p < Q.) If we assume, in addition to (1.8), that u
satisfy (1.7), then combining Theorem 9.6 with Theorem 12.1, we obtain a stronger version of
the cited Theorem 1.1, established in our previous work [DGN98]. However, while in Theorem

12.1 we have assumed (1.8), such hypothesis is not needed in Theorem 1.1.
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Proof. We divide the proof into several steps. Given f € Bg(Q, du), for 0 < r < diam(Q) < R,
consider a ball B(xz,,r) such that € B(z,,r). Using (1.8) and Theorem 2.9, we can estimate

1 :
@) = Faomal < {m f @ = s du(y)}

< M'/r {m /B(wo,r) |f(z) = f(y)[f du(y)}

oM\ [ (2r) i g
< ( 59 ) {7|B(%2T)| - |f(z) = f (W) du(y)}

If we use Proposition 2.12 with a = s — 8p < n, we obtain

z) — fB(zor z,y)s PP v
a2y O Tenid o oupn { 1) - s m D )}

where C = C(C4,p, ,s) > 0. The estimate (12.4) suggests to consider the following truncated

maximal function

GPf(z) = sup {|f($) _:;B(IO’T)’Ml |z € B(zo,7),0 <7 < Ro} .

From (12.4) it is clear that

i y ) ;
s @) < @0 { [ 176 - 1Pt )
and therefore
z,y)5 P
20)  [1655@Pauta) < x| [ 1f(0) = sl N duty) duo)

= C M N(f,F,du),

which proves, in particular, GAf € LP(Q, dp).
Consider next z,y € €2, and fix a ball B(z,,r) for which z,y € B(z,,r), with r < 2d(z,y).
One has

(12.7) [f(z) = f(¥)

IN

|f(.’E) - fB(wo,r),ul + |f(y) - fB(.’,Cg,'I‘),[L|
< 2 d(z,y)’ {G°f=)+ G 1)}

We let ¢ = GPf. We can assume g > 0, otherwise f would be constant and hence f €
L9(Q,dp) trivially. If we let Ey, = {z € Q| g(z) < 2¥}, then we obtain

(12.8) /Q g(@) du(z) = p /0 Tz e Qgla) > 1)) di

> 5 > 2Pul{z € Qg(x) > 2'))
kezZ

p
2 o> > 2" p(Bryr \ By).
kEZ

Let now C* = C(9Q, R,) > 0 be the constant in (2.14).
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If we set

1
2MRY\ & o
r = min ( Cf’") W(ES_ )@= Ry b |

then 0 < r < R,. Since by hypothesis diam (Q2) < R,/2, it is clear that if r = R, then for every
x € Ej, one has trivially

(12.9) B(z,r) NEx_1 # @.

If, on the other hand, r = (2%5‘?) 9 u(Eg_l)ﬁ, then for z € Ej, we can apply (1.8), and
(2.14), obtaining

1 |B(z,7)| > M1 % rQ=s
rs - R?
This implies that (12.9) holds in this case as well. Otherwise, we would have from (12.10)
w(Eg) + n(Bi\ Bp1) = w(Bi1) < p(B(z,7))
= w(B(z,r) \ Ex) + p(B(z,7) N (Eg \ Bg-1))

< w(Bp) + p(Bg\ Bg),

a contradiction. Let then Z € B(z,r) N Ej_1, and define

(12.10) w(B(z,r)) > M~

= 2 pu(Ei_y) > p(Ep_y).

a, = sup |f].
Ey
From (12.7) and the definition of r we obtain for x € Ej

@) < |f@@) = f@)] + |f(@)] < Cdz,2)%(9(z) + 9(&) + sup |f|

Eg_1

s(28 4+ 26N+ sup |f]

Ei_1

. B
< C p(Eg_,)%-

8
< C 2P u(Ep )9 + apoa.

Chebychev inequality gives
(12.11) W(BE) = pda € Qo) > 27 < o [ o) dute
and using this information in the latter inequality we find

k
(12.12) a, < C2M1~ ||g||L,,Qdm + ap_1,

where C' = C(C1, R,,p, s,). Using the fact that Q = J,o; Ex, and the monotonicity Ej C
Ej1, one can find k, € Z such that

Q
(12.13) pB-) < "0 < ).
This gives in particular
4L
M < g, ).

2
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This inequality and (12.11) imply

1

(12.14) 2 < C T 119l ze(,du)-
u(S2)7
Consider now
1

1 P
12.15 b:inffg( /fxpd x)
(12.15 v =il < (g [ V@P e

Let z; € Ej, be such that |f(z;)| — by, then (12.7) gives for z € Ej,
f(@)| < Cd(z,2)" (9(z) + g(2)) + |f(z)] < C diam(Q)’ 2*7" + |f(z))].
Letting j — oo we infer
I (@) < C diam(Q)? 271 + by, z € Ey,
and therefore, in particular,

(12.16) ar, = sup |f| < C 267! diam(Q)? + by,
ko

1
2%~ diam(Q)P + 71 f 1l Le (@,

(B, )?
1

_ 1
(by (12.14)) < Cdiam(R)” gl e (@,an) + 1| fll o (,ap)
p(§2)» p(Ey,)?

C .
(by (12.13)) < —— (diam(Q) llglriom + If o) -
u()»
Since the ay’s are increasing in k, if £ < k,, then ay < ay,. If instead k£ > k,, then iterating
(12.12), and observing that (12.1) implies 1 — 2 > 0, we obtain

(by (12.15))

AN

k

Bp_ : Bp Bp
1— 22 k(11— 22
(1217) @ < Clgllfpg > 20779 +a, < C ||g||Lp(Qdu2‘ o) + ay,.
]Z*OO
We conclude from (12.17) that, if ¢ = pQ?:ﬂp, then
[ 1@t < X alutB\ By
Q kez
99=s k 1—
< € 3 |lalfS 02" F BN Bicr) + o, B\ By
kEZ
<C HgH Qdu)z2kp (B \ Ex—1) + a’k ()

kEZ
by (128)0216)) < Clallaaa + © 1k (@' + diam(@)P llglt, g g

< € (1+ diam(@Pu()"5) gl 0an + C B F 11 q-
The above arguments show that f € LY(€,du) with

diam/(Q)? ~ 1
(12.18)  [[fllze@any < C {1 + W}HQHM(Q,M + C Wﬂfﬂm(n,du)-

To complete the proof, we are left with establishing (12.3). To this end, we prove
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(12.19) If = faulr@an < C diam()? gl Lo du)-

Assuming (12.19) for the moment. Applying (12.18) to f — fo,, and observe that fo(x) =
Gﬁ( f —¢)(z) for any constant ¢ € R and we have

f — fa,dull e(o,du)
(by (12.18)) < C(1 + diam()? (@) @) lglliray + Cu(®) a=IIf — foull o

(by (1219)) < C(1 + diam(Q) ()™ 7)gliriom + Cdiam(@)P (@)~ llgl 1o (04

< C'(1 + diam(Q)Pu(Q)" 2

)HQHLP(Q,du)-
Now, we turn to the proof of (12.19). For z € Q we have

1
1@ ~ foul < i /Q @) — ) duy)

2am B
(by (12.7)) < ¢%am()” [ lat@) + ) duty) = Caiam(@)? (gm + o | Ig(y)ldu(y)>

1(€2)
< Cdiam(Q)? |g(z) + (ﬁ/ﬂ@(yﬂpdﬂ(y))p

Thus,

If — Soulmea = ( / |f(w)—fn,u|”du(w))p

(crami [ atorae + (s [ e ascn) o] )

— 20aiam(@) ( [ o) duta) ) g

This completes the proof of the theorem. O

IN

We end this section by showing that, when the measure y is an s-Ahlfors measure, then
the Besov space Bg(F, dp) is a Banach space. In what follows, @ always denotes the local

homogeneous dimension corresponding to a bounded set U C R™.

Theorem 12.3. Let U C R", R, be as in Theorem 2.9, 1 < p < @Q and u be a s-Ahlfors
measure, with s < 1#. Assume supp = F C B, CC U for some B, = B(z,, R), with R < e

207

where o is the parameter in Theorem 9.6, |F| =0 and u(F) > 0. If 0 < 8 <1 — s/p, then the
space Bg(F, du) is a Banach space .

Proof. We consider the set
2 = {f € L'7(B(zo,0R),dz) | [If*lpz(ran) = 0}-

Note that Z is well defined by Theorem 9.6, since thanks to the latter one has || f*|| BY(Fdu) <
o for f € LYP(B(z,,0R),dr). We claim that Z is a closed subspace of the Banach space



88 DONATELLA DANIELLI, NICOLA GAROFALO, AND DUY-MINH NHIEU

LYP(B(z,,0R),dz). To see this, we take f, € Z and suppose f, converges to some f in
LYP(B(z,,0R),dz). We wish to show that f € Z. Now

1 B2 (Boor)an) < I = FallBE(B@owr)dn + 1282 (B@o o R).dw)
(by Theorem 9.6) < C|f* — fullcie(BooRr)dz) — 0 as n — 0o.

We conclude that f* € Z. Hence the quotient space £!?(B(z,,0R),dr)/Z is also a Banach
space, see e.g., [Sch71, Theorem 5.2]. Next, we show that there is a continuous bijection between
BZ(F, dp) and LY?(B(z,,0R),dz)/Z. We define @ : BZ(F, dp) — LYP(B(x,,0R),dx)/Z to be

d = 7wof

where 7 : LYP(B(x,,0R),dz) — LYP(B(z,,0R),dz)/Z is the standard quotient map and &
is the extension operator given by Theorem 10.1. @ is bounded since 7 is bounded and & is
bounded by Theorem 10.1. It is also easy to see that ® is one to one by the definition of the
extension operator £. To show that @ is onto, given an element [f] € L1P(B(z,,0R),dz)/Z, we
let f to be any element in [f] restricted to F. Clearly, ®(f) = [f]. It now follows that Bg(F, dp)
is a Banach space since it can be identified with the space L1P(B(z,,0R),dz)/Z. O

13. Returning to Carnot groups

This section is devoted to some applications of the theory so far developed to the setting
of Carnot groups. In view of the central position of these ambients in analysis and geometry,
it is desirable to present the main results in this context. We notice that the statements of
the relevant theorems can be greatly simplified, due to the global character of the doubling
condition, see (3.17). Also, with the exception of Theorem 13.2, we have chosen not to use an
abstract measure in stating the results. Instead, we have expressed them with respect to the
perimeter measure (Definition 5.7), since the latter plays a central role in the applications. In
the sequel we will adopt the notations introduced in Section 3.

We begin with a version of the interior trace inequality in Theorems 9.6, 9.8.

Theorem 13.1. Let G be a Carnot group. Consider of a bounded C*' domain Q C G of type
< 2, with its perimeter measure . Given p > 1, B, = B(go,R) C G, u € LY (2B,,dg), and
F C B,, where F C 02, one has for any0 < 3 <1—1/p

(13.1) ||U||Bg(F,du) <C ||U||le(23,,,dg) )

for some C = C(G,p,Q,5) > 0.

Proof. It follows immediately from Theorem 9.6. O

The result that follows specializes the extension Theorem 10.1.
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Theorem 13.2. Let G be a Carnot group with homogeneous dimension Q. Suppose 1 < p < 0o

and let p be a compactly supported, lower s-Ahlfors measure on G for some 0 < s < p. When

p > Q we require in addition that s < #. If F = supp u is such that |F| =0, and F C Q,

then there exist C > 0, and a linear extension operator £ : BY_, (F,du) — LYP(Q,dg), such that
p

(0) Eulg) = ulg) forpaegelF, (i) |[Eulciray < Clullpr , (ma-

Furthermore, Eu is supported in a neighborhood of F.

We next consider the interesting situation in which y is the perimeter measure concentrated

on the boundary of a C? sub-domain of (2, see Definition 5.7.

Theorem 13.3. In a Carnot group of step 2, G, consider two open sets Q@ CC Q C G, with
Q a C? domain. Denoting by u the perimeter measure associated with Q, for every 1 < p < 0o
there exists a bounded linear mapping & : Bf_ (09, dp) — LYP(Q,dg), such that for any u €

1
~ P
Bf_l(BQ,du) one has
V4

() €ulg) = ulg)  forn ae geoR, (i) |Sullcmoa < Cllullar | o

for some C = C(X,p, s, M, dist(Q,09)) > 0. Furthermore, Eu is supported in a neighborhood
of 0.

Proof. Thanks to Theorem 7.1, 4 is a lower 1-Ahlfors measure. This highly non-trivial informa-
tion allows to apply Theorem 13.2 with s =1, F = 8Q, and immediately reach the conclusion.
We only need to observe that, when p > @), then % >Q>4>s. O

We now consider a version of Theorem 11.6.

Theorem 13.4. Let G be a Carnot group, and consider a CY!, connected, (¢,8)-domain Q C G
with its perimeter measure . If Q is of type < 2, then given p > 1, for every 0 < 8 <1 — 117
there exist a linear operator

Tr @ LY7(Q,dg) — B5(0Q,dp) ,
and a constant C = C(G,p, B, €, 6,rad(Q),CH! character of Q) > 0, such that

(13.2) |Tr U||Bg(aﬂ,du) < Clullz1p(0,4g) -
Furthermore, if u € C®(Q) N LY (Q,dz), then Tru = u on 69.

We close this section by considering a remarkable situation in which we can concretely char-

acterize the traces.

Theorem 13.5. Let G be a Carnot group of step 2, and consider a C? connected, bounded open

set 2, with perimeter measure u. Given p > 1, there exist two linear operators

Tr: LY(Q,dg) — BY_| (09, dp) €: B}, (09, dp) — L(Q,dg) ,

such that Tr o &£ is the identity map from Bzf_l/p(aﬂ,dp,) into itself.
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Proof. The proof relies of course on Theorem 11.9, but in order to apply this result we also need
to resort to various other deep facts. First of all, for a C? domain we know from Theorem 6.6
that the perimeter measure is an upper 1-Ahlfors measure. The assumption that G be of step
2 allows to enforce Theorem 7.1, and conclude that, in fact, y is a 1-Ahlfors measure. Secondly,
we need to know that C? domains in every Carnot group of step 2 are (¢,d) domains. This
is a highly non-trivial result. In conjunction with the development of a Fatou theory, the first
study of large classes of domains in Carnot groups appeared in [CG98]. In that paper it was
conjectured that in every Carnot group of step 2, C! domains are non-tangentially accessible
(NTA) with respect to the CC distance. We recall the inclusion NTA C (¢,6). A partial answer
to this conjecture was provided in [CG98], stating that in a Carnot group of step 2 any C*-!
domain with cylindrical symmetry near its characteristic set is NTA, and therefore (e, d). For
the Heisenberg group H" a recent result of Capogna, Pauls and one of us [CGPO01] allows to
substitute the assumption of partial symmetry with the much weaker one that the characteristic
points be strongly isolated. The full conjecture has been recently established by Monti and
Morbidelli in their very interesting paper [MMO1]. Thanks to these results, all the assumptions
for the domain 2 and for the measure p in Theorem 11.9 are fulfilled. We only need to observe
that, since now s = 1, the hypothesis s < p is trivially satisfied. Moreover, when p > @, the
homogeneous dimension of G, then (Q +p)/2 > Q > 4 > s. We can thus implement Theorem
11.9 and reach the conclusion. O

14. The Neumann problem

We consider a system of C* vector fields in R" satisfying the finite rank condition (1.4). Let
) C R" be a bounded, open set, defined by Q2 = {z € R" | ¢(z) < 0}, where ¢ : R* — R is C?,

and for some a > 0
(14.1) Vo(z)| > a7, z € 00.

If v denotes the outer unit normal to 99, then v = V¢/|V¢|. Let p be the perimeter measure
supported on Jf) introduced in Definition 5.7. We recall, that dy = | X ¢| dH,_1][09. Consider
the Besov space B? (09, du), and denote by B? (0Q,du)* its dual space.

2 2

Formulation: Consider the second order partial differential operator L = — Z;nzl X5 X;. Sup-
pose we are given T € Bg([”)ﬂ,du)*, satisfying the compatibility condition

(14.2) <T,1>=0,

where < -,- > represents the duality between B?(0Q,du), and B2 (0Q,du)*. The sub-elliptic
Neumann problem for Q and L consists in ﬁndz'n2g u € £1’2(Q,dw),2such that

{Lu =0 in Q,

14.3
(14.3) Y < Xjv>Xu =T  ond.

In order to introduce the appropriate formulation to this problem, let us observe that the
second equation in (14.3) demands an accurate interpretation, since we are assigning the deriva-

tives of u along the vector fields X, on the boundary of Q. This term corresponds precisely to
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the co-normal derivative from classical elliptic theory, but now the operator L fails to be elliptic,
and the presence of characteristic points on the boundary poses serious difficulties and must be
taken in due consideration. At such points, in fact, the X;’s become tangential to 0€).

The purpose of this section is to illustrate a basic application of Theorems 6.5 and 11.6, by
establishing the existence of a unique (modulo constants) variational solution to (14.3). We
emphasize that, differently from the weak formulation of the Dirichlet problem, that of the Neu-
mann problem requires as a crucial prerequisite knowledge of the trace space for the appropriate
Sobolev space L£1?(€2,dx). This makes the Neumann problem a much harder question to tackle,
since right from the beginning one cannot just resort to functional analytic tools, but one has
to settle the delicate question of traces. In a forthcoming work [DGN(II)02], starting from the
results in the present paper, we will undertake a deeper study of the Neumann problem, and
obtain various sharp quantitative estimates of the variational solution, to whose existence we
now turn.

To introduce the variational formulation of the sub-ellitpic Neumann problem assume for a
moment that the Neumann datum 7 is in C'(09Q). Suppose that u solves (14.3), and that
u € C?(2) (we stress that such assumption is completely unrealistic since, near a characteristic
point u experiences a dramatic loss of smoothness). First, the compatibility condition is clear,

since the first equation in (14.3), and an integration by parts, give
m m m
0=->Y / X;Xjuds = Z/ X Xju do + Y / (div X;) Xju d
j=1 79 j=1 79 j=1 79
=) / < Xjv>XudHyy — Y / (div X;) Xju dz
j=1 o0 j=1 Q
m
+ Y / (div X;) Xju dz
j=1 7%
=) / < Xj,v> Xju dHy, o

= / TdH, 1 =<T,1> .
o0

Secondly, multiplying the first equation in (14.3) by f € C*(f2), and integrating over €2, we
find

m m m
(14.4) 0 = — Z / X;‘Xjuf dr = Z / Xijufdx + Z / (dZ’U Xj) X]ufdac
j=1 7% j=1 7% j=1 7%
m m
=Y / <Xj,v>XjufdHy 1 — / div(fX;) Xju dz
=1 Joa =1 e
m
+ ) / (div X;) Xju f dz
j=1 79

:/ T fdH,—1 —/<Xu,Xf>dx.
a0 0
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If we now assume that 2 be a domain for which there exists a continuous trace operator T'r,

such that Tr(f) = f for any f € C*(Q2), we can thus write

/ T fdHpy =<T,Tr(f)>.
89

Using the latter equation in (14.4), we finally obtain
(14.5) / < Xu,Xf>dr =<T,Tr(f) >, for every f € C*®(Q).
Q

The latter equation suggests what the variational formulation of the Neumann problem (14.3)
should be. Let us pause a moment, however, to note a delicate issue connected with the bound-
ary integral in the right-hand side of (14.4). Keeping in mind that eventually we want to
take T € B?(08),du)*, we wonder whether this is actually the case under the (unrealistic)
smoothness a%ssumption on u that led to (14.5). The boundary integral in the right-hand side
of (14.4) is performed with respect to surface measure H,_1|0f?, and this seems to contrast
with the assumption that T belongs to the dual of the Besov space B% (95, du), since the latter
space is defined with respect to the perimeter measure dy. In view 012" the continuous inclusion
BE(BQ, dp) C L2(09,dy), we have from Schwarz inequality

1/2 1/2
2 —1 2
< ( G dH) ( R dH)

1/2
< ([ 1P Ixa dr) " U7l o
o0 2

(14.6) ‘ /aQ T f dH,_4

From (14.6) it is thus clear that, in order to have T' € B?% (92, du)*, it would suffice to know
that T € L2(09, | X¢|~! dH,,_1) = L2(0Q,du)*. Let us oliserve explicitly, at this point, that
the measure | X¢|~! H,_1|09 can be quite singular on the characteristic set ¥, where | X ¢| = 0.
However, we have

m
(14.7) T = D <Xj,v>Xul <
j=1

| X¢| | Xu|

—— < «a|X¢| | Xul,
S < alXl|xu

where in the last inequality we have used (14.1). The presence of the factor | X¢| in the right-

hand side of (14.7) is what saves the day, since one obtains
/ IT]? | X¢p| ' dH,—1 < o? / | Xul? | X¢| dH,_, = o / | Xul? dp < oo,
N o N

thanks to the assumption u € C?(Q). In conclusion, if we assume the existence of a solution
smooth up to the boundary, the above considerations allow to interpret the boundary integral
in the right-hand side of (14.4) as the action of 7', in the duality of B?(99,dpu), on the test
function f. ’

We are now ready to state the main result in this section. For simplicity, we will state it in the
context of a Carnot group, since in this setting the statements of the relevant results are simpler.

We stress however that Theorem 14.1 continues to be valid for an operator of Hérmander type.
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For a reason which will be immediately clear, we introduce the Sobolev space of functions

with zero average in (2

LY (0, dz) = {f€£1’2(ﬂ,d:v)|f9 = ﬁ/ﬂf(w)d:v :0}.

Theorem 14.1. Let G be a Carnot group of arbitrary step, and consider a C%', connected,
(€,8) domain Q C G of type < 2. Given T € B2(0Q,du)*, satisfying the compatibility condition
2

(14.2), there ezists a unique function u € L2(Q,dg), such that
/ < Xu,Xf>dg =<T,Tr(f) >, for every f € LY*(Q,dg).
Q
We call such u the variational solution to the sub-elliptic Neumann problem (14.3).

Proof. We begin by observing that (e,d) domains constitute a subclass of that of Poincaré-
Sobolev (PS-) domains studied in [GN96]. Therefore, thanks to Corollary 1.5, part II, in
[GN96], for every 1 < p < oo, Q2 supports the p-Poincaré inequality, that is, there exists a
constant C' = C(G,p) > 0, such that

/ |f — falPdg < C (diam Q)P / | X fIP dg for any f € LYP(Q,dg).
Q Q

This shows in particular that

lema = ([ 1X7Pd0)

defines a norm on £'2(Q, dg) which is equivalent to || - lc12(0,dg) » 1-€-

(14.8) ||f||/§1,2(n,dg) < HfHL',1’2(Q,d_q) <C ||f||£~1:2(ﬂ,dg)'

We observe next that the assumption that © be connected guarantees that rad(2) > 0.
Therefore, Theorem 11.7 (which follows from Theorem 6.3, and Theorem 11.6) implies the

existence of a continuous trace operator
r: L2(Q,dg) — B (09, du),
2

such that Tr(f) = f|aq, for every f € C*°(Q). Consider the bilinear form B : £?(Q,dg) x
L£12(Q,dg) — R, given by

B(f.g) = [ <XfXg> dg
By (14.8), B is coercive on £2(f,dg), since

B( ) = ||f||£129dg

(Had we worked with the space £12((2,dg), we would have lost the coercivity of B, and
this is why the space EI’Z(Q, dg) was introduced.) Moreover, B is obviously bounded, since an

application of Schwarz inequality gives

BU,)| < 1Fllz12000) 191 21200 -
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Next, given T € B%(09Q,du)*, satisfying (14.2), we consider the linear functional Ar :
B 2
LY2(Q,dg) — R, given by

Ar(f) E <1 Tr(f) >

Using Theorem 11.7, we obtain
[Ar(HI < TN ITr () 2 00,du)
2

< CITI [[fller2@.d9)
< CITI 1] 1.2(0,49):

the latter inequality being justified by (14.8). This shows Ar € L£Y2(Q,dg)*. By the Lax-

Milgram lemma, there exists a unique function v € £2(9, dg) such that
(14.9) B(u, f) = Ar(f), for all  f € £LY%(Q,dyg).

Such u is the sought for variational solution to (14.3). We now notice that, thanks to the
assumption < 7,1 >= 0, the equation (14.9) continues to hold for any f € £1?(£,dg). In fact,
given such an f, we have f — fq € £L1%(Q,dg), and therefore (14.9) gives

B(uaf) = B(U,f—fﬂ) :<T5Tr(f_fﬂ)>:<T7TT(f)> .

This completes the proof of the theorem. O

15. The case of Lipschitz vector fields

In this section we briefly indicate how the results in the second part of this work can be
generalized to the case of a system of Lipschitz vector fields in R". The interest of such general
setting stems from the following considerations: It includes on one hand the important case of
C®™ vector fields previously treated, on the other hand it also incorporates the general sub-elliptic
operators studied in [OR73], [FSC86], since by the results in [PS67] the factorization matrix of
a smooth positive semi-definite matrix has in general at most Lipschitz continuous entries. A
further motivation comes from the fact that there are interesting classes of operators, such as,
e.g., the Baouendi-Grushin ones [Ba67], [Gru70], which arise from systems of non-smooth vector
fields. Remarkably, even in such general context, all the trace and extension results established
in Sections 8-12, can be obtained under the three basic assumptions, listed as (H.1),(H.2) and
(H.3) below, plus an additional structural hypothesis on the CC balls, see (H.4). This is possible
thanks to the general character of the theory developed here, as well as in our previous papers
[GN96], [GN98], [DGN98]. One also needs the results in [FW99].

Let then X = {X3,..., X;,} be a system of Lipschitz vector fields in R". In order to define
the CC distance associated with X, we assume that the system be controllable, at least locally.
This is equivalent to saying that, with the notations of Section 2, for any connected, bounded
open set U C R", one has Sy(z,y) # & for every z,y € U. We can thus define the CC distance

dy(z,y). In the sequel we fix a U which is going to the the “universe” of our discussion, and
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for simplicity drop the reference to this set, and simply write d(z,y). We denote by B(z,r)
the metric ball centered at x with radius r. Before proceeding we notice that the geometric
hypothesis (1.4) becomes clearly meaningless in the present framework, and therefore some
substitute assumptions are necessary. For interesting progress in this direction the reader should
consult the recent article [RSu01] and the references therein.

Following [GN96], [GN98], [DGN98], we next introduce the minimal topological and differen-
tial hypothesis which suffice to develop analysis in the metric space (R",d).

(H.1) i: (R*,d.) — (R™,d) is continuous, where d. is the Euclidean distance in R".

(H.2) For every bounded set U C R™ there ezist constants C1,R, > 0 such that for © € U and
0<r <R, one has

|B(z,2r)| < Cy |B(z,r)| .
(H.3) Given U as in (H.2), there exist constants Co, R, > 0 such that for any © € U, 0 < r < R,,
and f € LYY(B(z,r),dz), one has for B = B(z,r)
[ 1w = galay < e [ xrwlan.

Remark 15.1. In view of the results in [GN96], (H.3) can be replaced by the weaker hypothesis:
(H.3)’ With U,Cs, R, as in (H.2), there exists § > 1 such that for any x € U, 0 < r < R, and
f € LYY (B(z,r),dz), one has

sup {M{y € B||f(y) — fs|>N\}} < c”/ X £ ()] dy.
A>0 0B

Assumptions (H.1)-(H.3) are the most basic ones. In additon to them, we assume that:

(H.4) There ezist functions A(z,r), C(z) > 0, with sup{C(z)|z € U} < oo, and a constant
C > 0 such that, for any z € U, and 0 < R < R,,

CA(z,R) < |B(z,R)| < C7'A(z,R) .

Moreover, the function A must satisfy

A(z,r)

A(z,m1) — Alz,r2)| < C(x) |r1 — 7o

forany 0 <ry <ry < Ry, z € U and some r € (r1,72).

We leave it to the interested reader to verify that, with the hypothesis (H.1)-(H.4) in force,
all the results in Sections 8-12 can be extended to the present setting.

REFERENCES

[AT1] D. Adams, Trace of potentials arising from translation invariant operators, Ann. Scuola Norm. Sup. Pisa
CL. Sci., 25 (1971), 203-217.

[A73] , A trace inequality for generalized potentials, Studia Math., 48 (1973), 99-105.

[AH96] D. Adams & L. Hedberg, Function Spaces and Potential Theory, Springer-Verlag, 1996.

[Ad75] R. A. Adams, Sobolev Spaces, Pure and Applied Mathematics No. 65, Academic Press, New York, 1975.

[ABC93] M. Agranovsky, C. Berenstein & D.C. Chang, Morera theorem for holomorphic HP spaces in the Heisen-
berg group, J. Reine Angew. Math., 443 (1993), 49-89.




96 DONATELLA DANIELLI, NICOLA GAROFALO, AND DUY-MINH NHIEU

[ABCY94] , Ergodic and mizing properties of radial measures on the Heisenberg group, Fourier analysis
(Orono, ME, 1992), 1-15, Lecture Notes in Pure and Appl. Math., 157, Dekker, New York, 1994.

[ABCP91] M. Agranovsky, C. Berenstein, D.C. Chang & D. Pascuas, A Morera type theorem for L* functions in
the Heisenberg group, J. Anal. Math., 57 (1991), 282-296.

[ABCP94] , Injectivity of the Pompeiu transform in the Heisenberg group, J. Anal. Math., 63 (1994),
131-173.

[AR99] M. L. Agranovsky & R. Rawat, Injectivity sets for spherical means on the Heisenberg group, J. Fourier
Anal. Appl., 5 (1999), no. 4, 363-372.

[AmO01] L. Ambrosio, Some fine properties of sets of finite perimeter in Ahlfors reqular metric measure spaces,
Adv. Math., 159 (2001), 51-67.

[AmO01] , Fine properties of sets of finite perimeter in doubling metric spaces, preprint, 2001.

[BCX99] H. Bahouri, J.- Y. Chemin & C. - J. Xu, Trace theorems in Sobolev spaces associated with Hormander’s
vector fields, Partial Differential Equations and Their Applications (Wuhan 1999), 1-14, World Sci. Publish-
ing, River Edge, NJ, 1999.

[B0OO] Z. M. Balogh, Size of characteristic sets and functions with prescribed gradients, preprint, 2001.

[Ba67] Baouendi, M. S., Sur une classe d’opérateurs elliptiques dégénérés, Bull. Soc. Math. France, 95 (1967),
45-87.

[BG88] R. Beals & P. Greiner, Calculus on Heisenberg manifolds, Annals of Mathematics Studies, 119. Princeton
University Press, Princeton, NJ, 1988.

[BGGOO0] R. Beals, B. Gaveau & P. C. Greiner, Hamilton-Jacobi theory and the heat kernel on Heisenberg groups,
J. Math. Pures Appl., (9) 79 (2000), no. 7, 633-689.

[BGGVS86] R. Beals, B. Gaveau, P. C. Greiner & J. Vauthier, The Laguerre calculus on the Heisenberg group. II.,
Bull. Sci. Math., (2) 110 (1986), no. 3, 225-288.

[BGJS98] R. Beals, P. C. Greiner, Y. Jiang & L. Seco, A functional calculus on the Heisenberg group and the
boundary layer potential D_T_l for the 8-Neumann problem, J. Funct. Anal., 155 (1998), no. 1, 205-228.

[Be96] A. Bellaiche & J.-J. Risler, ed., Sub-Riemannian Geometry, Birkhiuser, 1996.

[BP99] S. Berhanu & I. Pesenson, The trace problem for vector fields satisfying Hormandér’s condition, Math.
Zeit., 231 (1999), no.1, 103-122.

[Bi00] T. Bieske, On oco-harmonic functions on the Heisenberg Group, preprint, 2000.

[BPr99] I. Birindelli & J. Prajapat, Nonlinear Liouville type theorems in the Heisenberg group via the moving
plane method, Comm. Partial Diff. Eq., 24 (1999), 9-10, 1875-1890.

[BM95] M. Biroli & U. Mosco, Sobolev inequalities on homogeneous spaces, Pot. Anal., 4 (1995), no.4, 311-324.

[C76] A.-P. Calderén, Inequalities for the mazimal function relative to a metric, Studia Math., 57 (1976), 3,
297-306.

[CDGY94] L. Capogna, D. Danielli & N. Garofalo, The geometric Sobolev embedding for vector fields and the
isoperimetric inequality, Comm. Anal. and Geom., 2 (1994), 201-215.

[CDGY6] , Capacitary estimates and the local behavior of solutions of nonlinear subelliptic equations, Amer.
J. Math., 118 (1996), no.6, 1153-1196.

[CDGIT] , Subelliptic mollifiers and a basic point-wise estimate of Poincaré type, Math. Zeit., 226 (1997),
147-154.

[CG98] L. Capogna & N. Garofalo, Boundary behavior of non-negative solutions of subelliptic equations in NTA
domains for Carnot-Carathéodory metrics, Journal of Fourier Anal. and Appl.,4-5, 4 (1998), 403-432.

[CGO02] , Ahlfors regularity of the perimeter measure for minimally smooth hypersurfaces in Carnot-
Carathéodory spaces, preprint, 2002.

[CGN98] L. Capogna, N. Garofalo & D. M. Nhieu, A version of a theorem of Dahlberg for the subelliptic Dirichlet
problem, Math. Research Letters, 5 (1998), no. 4, 541-549.

[CGNO02] , Properties of harmonic measures in the Dirichlet problem for nilpotent Lie groups of Heisenberg
type, Amer. J. Math., 124 (2002), no. 2, 273-306.

[CGNO01] L. Capogna, N. Garofalo & D. M. Nhieu, Properties of sub-elliptic harmonic measures. Part II: General
Hérmander type operators, preprint, 2001.

[CGP01] L. Capogna, N. Garofalo & S. Pauls, Asymptotic behavior of the Gauss map near weakly singular
characteristic points, preprint, 2001.

[Ca09] C. Carathéodory, Untersuchungen iber die Grundlangen der Thermodynamik, Math. Ann., 67 (1909),
355-386.

[Che99] J. Cheeger, Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal. 9 (1999),
no. 3, 428-517.

[Ch39] W. L. Chow, Uber Systeme von linearen partiellen Differentialgleichungen erster Ordnung, Math. Annalen,
117 (1939), 98-105.




NON-DOUBLING AHLFORS MEASURES, PERIMETER MEASURES, ETC. 97

[Chr90] M. Christ, A T'(b) theorem with remarks on analytic capacity and the Cauchy integral, Colloq. Math.
60/61 (1990), 2, 601-628.

[CGL93] G. Citti, N. Garofalo & E. Lanconelli, Harnack’s inequality for sum of squares of vector fields plus a
potential, Amer. J. Math., 115 (1993), 3, 699-734.

[CV35] Cohn-Vossen, S., Eristenz kiirzester Wege, Dokl. Akad. Nauk UzSSR 3 (1935), 339-342.

[CWT1] R. Coifman & G. Weiss, Analyse harmonique non-commutative sur certains espaces homogenes, Springer-
Verlag, (1971).

[CMZ96] T. Coulhon, D. Miiller & J. Zienkiewicz, About Riesz transforms on the Heisenberg groups, Math. Ann.,
305 (1996), no. 2, 369-379.

[CDKRI1] M. Cowling, A. H. Dooley, A. Kordnyi & F. Ricci, H-type groups and Iwasawa decompositions, Adv.
Math., 87 (1991), 1-41.

[CDKR] , An approach to symmetric spaces of rank one via groups of Heisenberg type, J. Geom. Anal.,
8 (1998), no. 2, 199-237.

[CK84] M. Cowling & A. Kordnyi, Harmonic analysis on Heisenberg type groups from a geometric viewpoint, in
“Lie Group Representation 111", pp.60-100, Lec. Notes in Math., 1077 (1984), Springer-Verlag.

[Cy81] J. Cygan, Subadditivity of homogeneous norms on certain nilpotent Lie groups, Proc. Amer. Math. Soc.,
83 (1981), 69-70.

[Da85] E. Damek, Harmonic functions on semidirect extensions of type H nilpotent groups, Trans. Amer. Math.
Soc., 1, 290 (1985), 375-384.

[Da87] , A Poisson kernel on Heisenberg type nilpotent groups, Coll. Math., 53 (1987), 255-268.

[Da87] , The geometry of semi-direct extensions of a Heisenberg type nilpotent group, Coll. Math.,
53 (1987), 255-268.

[D92] D. Danielli, Representation formulas and embedding theorems for subelliptic operators, C. R. Acad. Sci.
Paris Sér. I Math., 314 (1992), no. 13, 987-990.

[D99] , A Fefferman-Phong type inequality and applications to quasilinear subelliptic equations, Potential
Analysis, 11 (1999), no. 4, 387-413.

[DGN98] D. Danielli, N. Garofalo & D. M. Nhieu, Trace inequalities for Carnot-Carathéodory spaces and appli-
cations, Ann. Sc. Norm. Sup. Pisa, Cl. Sci. (4), 2, 27 (1998), 195-252.

[DGNO1] , Sub-elliptic Besov spaces and the characterization of traces on lower dimensional manifolds,
Harmonic Analysis and Boundary-value Problems, 2000 Arkansas Spring Lect. Series, Ed.: L.Capogna and
L. Lanzani, Amer. Math. Soc., 2001.

[DGNO00] , Minimal surfaces, surfaces of constant mean curvature and isoperimetry in Carnot groups,
preprint, 2000.

[DGN(I)02] , Traces of BV functions in CC spaces, work in preparation.

[DGN(II)02] , The Neumann problem for sub-Laplacians, work in preparation.

[DGS02] D, Danielli, N. Garofalo & S. Salsa, Variational inequalities with lack of ellipticity. Part I: optimal
interior regularity and non-degeneracy of the free boundary, Indiana Univ. Math. J., to appear.

[DG54] E. De Giorgi, Su una teoria generale della misura (r — 1)—dimensionale in uno spazio a r dimensiont,
Ann. Mat. Pura Appl., 36 (1954), 191-213.

[DG55] , Nuovi teorems relativi alla misura (r — 1)-dimensionale in uno spazio a v dimensioni, Ric. Mat.,
4 (1955), 95-113.

[DCP72] E. De Giorgi, F. Colombini & L. C. Piccinini, Frontiere orientate di misura minima e questions collegate,
Sc. Norm. Sup. Pisa, Cl. Scienze, Quaderni, 1972.

[De71] M. Derridj , Un probléme auz limites pour une classe d’opérateurs du second ordre hypoelliptiques, Ann.
Inst. Fourier, Grenoble, 21, 4 (1971), 99-148.

[De72] , Sur un théoréme de traces, Ann. Inst. Fourier, Grenoble, 22, 2 (1972), 73-83.

[E(1)94] P. Eberlein, Geometry of 2-step nilpotent groups with a left invariant metric, Ann. Sci. cole Norm. Sup.
(4) 27 (1994), no. 5, 611-660.

[E(II)94] , Geometry of 2-step nilpotent groups with a left invariant metric. II, Trans. Amer. Math. Soc.,
343 (1994), no. 2, 805-828.

[E96] , Geometry of nonpositively curved manifolds, Chicago Lectures in Mathematics. University of
Chicago Press, Chicago, IL, 1996.

[EG92] L. C. Evans & R. F. Gariepy, Measure Theory and Fine Properties of Functions, CRC press, 1992.

[FMM98] E. Fabes, O. Mendez & M. Mitrea, Boundary layers on Sobolev-Besov spaces and Poisson’s equation
for the Laplacian in Lipschitz domains, J. Funct. Anal., 159 (1998), 323-368.

[Fe69] H. Federer, Geometric Measure Theory, Springer, 1969.

[FP81] C. Fefferman & D. H. Phong, Subelliptic eigenvalue problems, Proceedings of the Conference in Harmonic
Analysis in Honor of A. Zygmund, Wadsworth Math. Ser., Belmont, CA, (1981), 530-606.




98 DONATELLA DANIELLI, NICOLA GAROFALO, AND DUY-MINH NHIEU

[FSC86] C. Fefferman & A. Sanchez-Calle, Fundamental solutions for second order subelliptic operators, Ann.
Math., 124 (1986), 247-272.

[F73] G. Folland, A fundamental solution for a subelliptic operator, Bull. Amer. Math. Soc., 79 (1973), 373-376.

[F75] , Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Math., 13 (1975), 161-207.

[F89] , Harmonic analysis in phase space, Annals of Mathematics Studies, 122, Princeton University
Press, Princeton, NJ, 1989.

[FS74] G. B. Folland & E. M. Stein, Estimates for the 8, Complex and Analysis on the Heisenberg Group, Comm.
Pure Appl. Math., 27 (1974), 429-522.

[FLW95] B. Franchi, G. Lu & R. L. Wheeden, Representation formulas and weighted Poincaré inequalities for
Hormander vector fields, Ann. Inst. Fourier Grenoble, 45 (1995), 577-604.

[FLW96] , A relationship between Poincaré type inequalities and representation formulas in spaces of ho-
mogeneous type, Inter. Math. Res. Not., 1 (1996), 1-14.

[FSS96] B. Franchi, R. Serapioni & F. Serra Cassano, Meyers-Serrin type theorems and relazation of variational
integrals depending on vector fields. Houston J. Math. 22 (1996), no. 4, 859-890.

[FSS01] , Rectifiability and perimeter in the Heisenberg group, Math. Ann., 321 (2001) 3, 479-531.

[FW99] B. Franchi & R. Wheeden, Some remarks about Poincaré type inequalities and representation formulas
in metric spaces of homogeneous type, J. Inequal. Appl. 3 (1999), no. 1, 65-89.

[Fr44] K.O. Friedrichs, The identity of weak and strong extensions of differential operators, Trans. Amer. Math.
Soc., 55 (1944), 132-151.

[Gab7] E. Gagliardo, Caratterizzazione delle tracce sulla frontiera relative ad alcune classi di funzioni in n vari-
abili, Rend. Sem. Mat. Padove, 27 (1957), 284-305.

[Gab8] , Proprieta di alsune classi di funzioni in pit variabili, Ricerche Mat., 7 (1958), 102-137.

[Gab9] , Ulteriori proprieta di alcune classi di funzioni in pit variabili, 9 (1959), 24-51.

[G02] N. Garofalo, Analysis and Geometry of Carnot-Carathéodory Spaces, With Applications to Pde’s,
Birkh&user, book in preparation.

[GLI0] N. Garofalo & E. Lanconelli, Frequency functions on the Heisenberg group, the uncertainty principle and
unique continuation, Ann. Inst. Fourier (Grenoble), 40 (1990), no. 2, 313-356.

[GL92] , Ezistence and nonezistence results for semilinear equations on the Heisenberg group, Indiana
Univ. Math. J., 41 (1992), no. 1, 71-98.

[GN96] N. Garofalo & D. M. Nhieu, Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and
the existence of minimal surfaces, Comm. Pure Appl. Math., 49 (1996), 1081-1144.

[GN9g] , Lipschitz continuity, global smooth approzimations and extension theorems for Sobolev functions
in Carnot-Carathéodory spaces, J. Anal. Math., 74 (1998), 67-97.

[GP02] N. Garofalo & S. D. Pauls, The Bernstein problem in the Heisenberg group, preprint, 2002.

[GS90] N. Garofalo & F. Segala, Estimates of the fundamental solution and Wiener’s criterion for the heat
equation on the Heisenberg group, Indiana Univ. Math. J., 839 (1990), no. 4, 1155-1196.

[GV00] N. Garofalo & D. Vassilev, Regularity near the characteristic set in the non-linear Dirichlet problem and
conformal geometry of sub-Laplacians on Carnot groups, Math. Ann., 318 (2000), 453-516.

[GVO01] , Symmetry properties of positive entire solutions of Yamabe-type equations on groups of Heisenberg
type, Duke Math. J., 106 (2001), no.3, 411-448.

[Gav77] B. Gaveau, Principe de moindre action, propagation de la chaleur et estimées sous elliptiques sur certains
groupes nilpotents, Acta Math., 139 (1977), no. 1-2, 95-153.
[GGV84] B. Gaveau, P. Greiner & J. Vauthier, Polynomes harmoniques et probléme de Dirichlet de la boule du
groupe de Heisenberg en présence de symétrie radiale, Bull. Sci. Math., (2) 108 (1984), no. 4, 337-354.
[GGV86] , Intégrales de Fourier quadratiques et calcul symbolique ezact sur le groupe d’Heisenberg, J.
Funct. Anal., 68 (1986), no. 2, 248-272.

[Ge77] D. Geller, Fourier analysis on the Heisenberg group, Proc. Nat. Acad. Sci. U.S.A., 74 (1977), no. 4,
1328-1331.

[GeT9] , Necessary and sufficient conditions for local solvability on the Heisenberg group, Harmonic analysis
in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978), Part 2, pp.
219-226, Proc. Sympos. Pure Math., XXXV, Part, Amer. Math. Soc., Providence, R.I., 1979.

[Ge(1)80] , Fourier analysis on the Heisenberg group. I. Schwartz space, J. Funct. Anal., 36 (1980), no. 2,
205-254.
[Ge(11)80] , Local solvability and homogeneous distributions on the Heisenberg group, Comm. Partial Dif-

ferential Equations, 5 (1980), no. 5, 475-560.
[Ge(I11)80] , Some results in H® theory for the Heisenberg group, Duke Math. J.,47 (1980), no. 2, 365-390.
[Ge84] , Spherical harmonics, the Weyl transform and the Fourier transform on the Heisenberg group,
Canad. J. Math., 36 (1984), no. 4, 615-684.




NON-DOUBLING AHLFORS MEASURES, PERIMETER MEASURES, ETC. 99

[Ge90] , Analytic pseudodifferential operators for the Heisenberg group and local solvability, Mathematical
Notes, 37. Princeton University Press, Princeton, NJ, 1990.

[Ge98] , Complex powers of convolution operators on the Heisenberg group, Analysis, geometry, number
theory: the mathematics of Leon Ehrenpreis (Philadelphia, PA, 1998), 223-242, Contemp. Math., 251, Amer.
Math. Soc., Providence, RI, 2000.

[GeS82] D. Geller & E. M. Stein, Singular convolution operators on the Heisenberg group, Bull. Amer. Math. Soc.,
6 (1982), no. 1, 99-103.

[GeS84] , Estimates for singular convolution operators on the Heisenberg group, Math. Ann., 267 (1984),
no. 1, 1-15.

[Gi84] E. Giusti, Minimal surfaces and functions of bounded variation, Birkhduser, 1984.

[Gre80] P. C. Greiner, Spherical harmonics on the Heisenberg group, Canad. Math. Bull., 23 (1980), no. 4, 383-
396.

[Gre81] , , On the Laguerre calculus of left-invariant convolution (pseudodifferential) operators on the
Heisenberg group, Goulaouic-Meyer-Schwartz Seminar, 1980-1981, Exp. No. XI, 40 pp., cole Polytech.,
Palaiseau, 1981.

[Gri91] Grigoryan, A. A., The heat equation on noncompact Riemannian manifolds, (Russian) Mat. Sb.
182 (1991), no. 1, 55-87; transl. in Math. USSR-Sb. 72 (1992), no. 1, 47-77.

[Gr85] P. Grisvard, Elliptic problems in non-smooth domains, Pitman, Boston, (1985).

[Gro96] M. Gromov, Carnot-Carathéodory spaces seen from within, in Sub-Riemannian Geometry, Progress in
Mathematics, vol. 144, edited by André Bellaiche & Jean-Jacques Risler, Birkhauser, 1996.

[Gro98] , Metric Structures for Riemannian and Non-Riemannian Spaces, Ed. by J. LaFontaine and P.
Pansu, Birkh&duser, 1998.

[Gru70] V. V. Grushin, On a class of hypoelliptic operators, Math USSR Sbornik, 12 (1970), (3), 458-476.

[Ha96] P. Hajtasz, Sobolev spaces on an arbitrary metric space, Pot. Anal., 5 (1996), 403-415.

[HaM97] P. Hajlasz & O. Martio, Traces of Sobolev functions on fractal type sets and characterization of extension
domains, J. Funct. Anal., 143 (1997), 221-246.

[HK98] P. Hajlasz & J. Kinnunen, Hdélder quasicontinuity of Sobolev functions on metric spaces, Rev. Mat.
Iberoamericana, 14 (1998), no. 3, 601-622.

[HoR92] I. Holopainen & S. Rickman, Quasiregular mappings of the Heisenberg group, Math. Ann., 294 (1992),
no. 4, 625-643.

[H67] H. Hormander, Hypoelliptic second-order differential equations, Acta Math., 119 (1967), 147-171.

[HM89] H. Hueber & D. Mller, Asymptotics for some Green kernels on the Heisenberg group and the Martin
boundary, Math. Ann., 283 (1989), no. 1, 97-119.

, The Dirichlet problem for the Kohn Laplacian on the Heisenberg group, J. of Funct. Anal. 43 (1981),
Part I, 97-141, Part II, 224-257.

[J86] D. Jerison, The Poincaré inequality for vector fields satisfying Hormander’s condition, Duke Math. J. 53(2),
1986, pp. 503-523.

[JL84] D. Jerison & J. Lee, A subelliptic, nonlinear eigenvalue problem and scalar curvature on CR manifolds,
Contemporary Math., 27 (1984), 57-63.

[JL87] , The Yamabe problem on CR manifolds, J. Diff. Eq., 25 (1987), 167-197.

[JL8S] , Extremals for the Sobolev inequality on the Heisenberg group and the CR Yamabe problem, J.
Amer. Math. Soc., 1, 1 (1988), 1-13.

[JL89] , Intrinsic CR normal coordinates and the CR Yamabe problem, J. Diff. Geom., 29 (1989), no. 2,
303-343.

[JK95] D. Jerison & C. K. Kenig, The inhomogeneous Dirichlet problem in Lipschitz domains, J. Funct. Anal.,
130 (1995), 1, 161-219.

[Jo81] P. W. Jones, Quasiconformal mappings and extendability of functions in Sobolev spaces, Acta Math.,
147 (1981), 71-88.

[JW84] A. Jonsson & H. Wallin, Function spaces on Subsets of R”, Harwood Academic, Reading, UK, 1984.

[K80] A. Kaplan, Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic
forms, Trans. Amer. Math. Soc., 258 (1980), 147-153.

[K81] , Riemannian nilmanifolds attached to Clifford modules,Geom. Dedicata, 11 (1981), 127-136.

[K83] , On the geometry of groups of Heisenberg type, Bull. London Math. Soc., 15 (1983), 35-42.

[KaR83] A. Kaplan & F. Ricci, Harmonic ananlysis on groups of Heisenberg type, in “Harmonic Analysis”,
pp-416-435, Lec. Notes in Math., 992 (1983), Springer-Verlag.

[Ko83] A. Kordnyi, Geometric aspects of analysis on the Heisenberg group, Topics in modern harmonic analysis,
Vol. I, IT (Turin/Milan, 1982), 209-258, Ist. Naz. Alta Mat. Francesco Severi, Rome, 1983.

[Ko85] , Kelvin transform and harmonic polynomials on the Heisenberg group, Adv.Math. 56 (1985), 28-38.

[Ko85] , Geometric properties of Heisenberg-type groups, Adv.Math. 56 (1985), 28-38.

[781]




100 DONATELLA DANIELLI, NICOLA GAROFALO, AND DUY-MINH NHIEU

[KoR85] A. Kordnyi & H. M. Reimann, Quasiconformal mappings on the Heisenberg group, Invent. Math.,
80 (1985), no. 2, 309-338.

[KoR&87] , Horizontal normal vectors and conformal capacity of spherical rings in the Heisenberg group,
Bull. Sc. Math., 111 (1987), 3-21.

[KoR95] , Foundations for the theory of quasiconformal mappings on the Heisenberg group, Adv. Math.,

[KoS85] A. Kordnyi & N. Stanton, Liouville-type theorems for some complex hypoelliptic operators, J. Funct.
Anal., 60 (1985), no. 3, 370-377.

[LaU68] O. A. Ladyzhenskaya & N. N. Uraltseva, Linear and Quasilinear Elliptic Equations, Academic Press,
1968.

[LMO00] E. Lanconelli & D. Morbidelli, On the Poincaré inequality for vector fields, Ark. Mat. 38 (2000), no. 2,
327-342.

[LU98] E. Lanconelli & F. Uguzzoni, Asymptotic behavior and non-ezistence theorems for semilinear Dirichlet
problems involving critical exponent on unbounded domains of the Heisenberg group, Boll. Un. Mat. Ital., (8)
1-B (1998), 139-168.

[LUO01] , Degree theory for VMO maps on metric spaces and applications to Hormander operators, preprint.

[LiMa72] J. L. Lions & M. Magenes, Non-homogeneous boundary value problems and applications, Vol. 1-2,
Springer-Verlag, (1972).

[Lu94] G. Lu, The sharp Poincaré inequality for free vector fields: an endpoint result, Rev. Mat. Iberoamericana,
10 (1994), no. 2, 453-466.

[MO01] V. Magnani, Generalized coarea formula and characteristic sets on carnot groups, preprint, 2001.

[MaSa] O. Martio & J. Sarvas, Injectivity theorems in the plane and space, Ann. Acad. Sci. Fenn., 4 (1978-79),
383-401.

[M95] P. Mattila, Geometry of sets and measures in Euclidean spaces : fractals and rectifiability, Cambridge
studies in advanced Mathematics, Cambridge University Press, 44 (1995).

[MaSC95] P. Maheux & L. Saloff-Coste, Analyse sur les boules d’un opérateur sous-elliptique, Math. Ann.,
303 (1995), 713-740.

[Me93] M. Mekias, Restriction to hypersurfaces of non-isotropic Sobolev spaces, M.I.'T. Ph.D Thesis, (1993).

[MZ77] N. G. Meyers & W. P. Ziemer, Integral inequalities of Poincaré and Wirtinger type for BV functions,
Amer. J. Math., 99 (1977), 1345-1360.

[Mi00] M. Miranda, Jr., Functions of bounded variation on “good” metric spaces, preprint.

[MMO02] R. Monti & D. Morbidelli, Some trace theorems for vector fields, Math. Zeit., 2002, to appear.

[MMO1] , Regular domains in homogeneous groups, preprint, 2001.

[Mon02] R. Montgomery, A Tour of Subriemannian Geometries, Their Geodesics and Applications, Mathematical
Surveys and Monographs, 91. American Mathematical Society, Providence, RI, 2002.

[Mo73] G. D. Mostow, Strong Rigidity of Locally Symmetric Spaces, Princeton Univ. Press, Princeton, N.J., 1973.

[Mu90] D. Miiller, A restriction theorem for the Heisenberg group, Ann. of Math., (2) 131 (1990), no. 3, 567-587.

[MPR97] D. Miiller, M. Peloso & F. Ricci, On the solvability of homogeneous left-invariant differential operators
on the Heisenberg group, J. Funct. Anal., 148 (1997), no. 2, 368-383.

[MR90] D. Miiller, & F. Ricci, Analysis of second order differential operators on Heisenberg groups. I, Invent.
Math., 101 (1990), no. 3, 545-582.

[MR92] , Analysis of second order differential operators on Heisenberg groups. II, J. Funct. Anal.,
108 (1992), no. 2, 296-346.

[MRS95] D. Miiller, F. Ricci & E. M. Stein, Marcinkiewicz multipliers and multi-parameter structure on Heisenberg
(-type) groups. I, Invent. Math. 119 (1995), no. 2, 199-233.

[MRS96] , Marcinkiewicz multipliers and multi-parameter structure on Heisenberg (-type) groups. II, Math.
Z., 221 (1996), no. 2, 267-291.

[MS94] D. Miiller, D. & E. M. Stein, On spectral multipliers for Heisenberg and related groups, J. Math. Pures
Appl., (9) 73 (1994), no. 4, 413-440.

[MS99] ____ | LP-estimates for the wave equation on the Heisenberg group, Rev. Mat. Iberoamericana, 15 (1999),
no. 2, 297-334.

[NSW84] A. Nagel, E. M. Stein & S. Wainger, Balls and metrics defined by vector fields I: basic properties, Acta
Math. 155 (1985), 103-147.

[NT01] E. K. Narayanan & S. Thangavelu, Injectivity sets for spherical means on the Heisenberg group, J. Math.
Anal. Appl., 263 (2001), no. 2, 565-579.

[Ne67] J. Necas, Les Méthodes Directes en Théorie des Equations Elliptiques, Masson et C*°, 1967.

[NT97] A. Nevo & S. Thangavelu, Pointwise ergodic theorems for radial averages on the Heisenberg group, Adv.
Math., 127 (1997), no. 2, 307-334.




NON-DOUBLING AHLFORS MEASURES, PERIMETER MEASURES, ETC. 101

[OR73] O. A. Oleinik & E. V. Radkevich, Second order equations with non-negative characteristic form (Mathe-
matical Analysis 1969), Moscow: Itogi Nauki (1971) [Russian], English translation: Providence, R.I., Amer.
Math. Soc. (1973).

[P82] P. Pansu, Une inégalité isopérimétrique sur le groupe de Heisenberg, C. R. Acad. Sci. Paris Sr. I Math.,
295 (1982), no. 2, 127-130.

[Pa00] S. Pauls, The large scale geometry of nilpotent Lie groups, Comm. Anal. Geom., 1 (2000), no.2, 1-32.

[Pa(I)01] , A notion of rectifiability modeled on Carnot groups, preprint, 2001.

[Pa(1I)01] , Minimal surfaces in the Heisenberg group, preprint, 2001.

[PS67] R. S. Phillips & L. Sarason, Elliptic-parabolic equations of the second order, J. Math. Mech., 17 (1967/8),
891-917.

[RSu01] F. Rampazzo & H. J. Sussmann, Set-valued differentials and a nonsmooth version of Chow’s Theorem,
preprint.

[Ra38] P. K. Rashevsky, Any two points of a totally nonholonomic space may be connected by an admissible line,
Uch. Zap. Ped. Inst. im. Liebknechta, Ser. Phys. Math., (Russian) 2 (1938), 83-94.

[RT96] P. K. Ratnakumar & S. Thangavelu, Analogues of Besicovitch-Wiener theorem for the Heisenberg group,
J. Fourier Anal. Appl., 2 (1996), no. 4, 407-414.

[RRT97] P. K. Ratnakumar, R. Rawat & S. Thangavelu, A restriction theorem for the Heisenberg motion group,
Studia Math., 126 (1997), no. 1, 1-12.

[Ro91] C. Romero, Potential theory for the Kohn Laplacian on the Heisenberg group, Univ. of Minnesota Ph. D.
Thesis (1991).

[RS76] L. P. Rothschild & E. M. Stein, Hypoelliptic differential operators and nilpotent groups, Acta Math.
137 (1976), 247-320.

[SaCo092] L. Saloff-Coste, A note on Poincaré, Sobolev, and Harnack inequalities, Internat. Math. Res. Notices,
2 (1992), 27-38.

[SC84] A. Sanchez-Calle,Fundamental solutions and geometry of sum of squares of vector fields, Inv. Math.,
78 (1984), 143-160.

[Sch71] M. Schechter, Principles of functional analysis, Academic press, (1971).

[SST95] A. Sitaram, M. Sundari & S. Thangavelu, Uncertainty principles on certain Lie groups, Proc. Indian
Acad. Sci. Math. Sci., 105 (1995), no. 2, 135-151.

[St61] E. M. Stein, The characterization of functions arising as potentials I, Bull. Amer. Math. Soc., 67 (1961),
102-104, 11, ibidem, 68 (1962), 577-582.

[St70] , Some problems in harmonic analysis suggested by symmetric spaces and semisimple groups, Proc.
Int. Congr. Math., Nice I, 1970, Gauthier-Villars, Paris, 1971, 173-179.

[St93] , Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory Integrals, Princeton
Univ. Press, (1993).

[Th90] S. Thangavelu, Riesz means for the sub-Laplacian on the Heisenberg group, Proc. Indian Acad. Sci. Math.
Sci., 100 (1990), no. 2, 147-156.

[Th(I)91] , Restriction theorems for the Heisenberg group, J. Reine Angew. Math., 414 (1991), 51-65.

[Th(II)91] , Spherical means on the Heisenberg group and a restriction theorem for the symplectic Fourier
transform, Rev. Mat. Iberoamericana, 7 (1991), no. 2, 135-155.

[Th(III)91] , Some restriction theorems for the Heisenberg group, Studia Math., 99 (1991), no. 1, 11-21.

[Th(IV)91] , A multiplier theorem for the sub-Laplacian on the Heisenberg group, Proc. Indian Acad. Sci.
Math. Sci., 101 (1991), no. 3, 169-177.

[Tho3] , On Paley-Wiener theorems for the Heisenberg group, J. Funct. Anal., 115 (1993), no. 1, 24-44.
[Tho4] , Spherical means and CR functions on the Heisenberg group, J. Anal. Math., 63 (1994), 255-286.
[Th95] , Mean periodic functions on phase space and the Pompeiu problem with a twist, Ann. Inst. Fourier

(Grenoble), 45 (1995), no. 4, 1007-1035.

[Tho8] , Harmonic analysis on the Heisenberg group, Progress in Mathematics, 159, Birkhuser Boston,
Inc., Boston, MA, 1998.

[ThO0] ,Local ergodic theorems for K-spherical averages on the Heisenberg group, Math. Z., 234 (2000),
no. 2, 291-312.

[ThO1] , An analogue of Hardy’s theorem for the Heisenberg group, Colloq. Math., 87 (2001), no. 1, 137-
145.

[Tre75] F. Tréves, Basic linear partial differential equations, Pure and Applied Mathematics, Vol. 62. Academic
Press, New York-London, 1975.

[Tro87] G. M. Troianiello, Elliptic Differential Equations and Obstacle Problems, Plenum Press, 1987.

[V74] V.S. Varadarajan, Lie Groups, Lie Algebras, and Their Representations, Springer-Verlag, New York, Berlin,
Heidelberg, Tokyo, 1974.

[Va86] N. Th. Varopoulos, Analysis on Lie groups, J. Funct. Anal., 76 (1986), 346-410.




102 DONATELLA DANIELLI, NICOLA GAROFALO, AND DUY-MINH NHIEU

[VSC92] N. Th. Varopoulos, L. Saloff-Coste & T. Coulhon, Analysis and Geometry on Groups, Cambridge U.
Press, 1992.
[Zi89] W. P. Ziemer, Weakly Differentiable Functions, Springer-Verlag (1989).

DEPARTMENT OF MATHEMATICS, THE JOHNS HOPKINS UNIVERSITY, BALTIMORE, MD 21218
E-mail address, Donatella Danielli: dxd@math. jhu.edu

DEPARTMENT OF MATHEMATICS, THE JOHNS HOPKINS UNIVERSITY, BALTIMORE, MD 21218
E-mail address, Nicola Garofalo: ngarofalo@math. jhu.edu

DEPARTMENT OF MATHEMATICS, PURDUE UNIVERSITY, WEST LAFAYETTE, IN 47907
E-mail address, Nicola Garofalo: garofalo@math.purdue.edu

DEPARTMENT OF MATHEMATICS, GEORGETOWN UNIVERSITY, WASHINGTON DC 20057-1233
E-mail address, Duy-Minh Nhieu: nhieu@math.georgetown.edu



