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Abstract

Our aim is to rigorously derive a hierarchy of one-dimensional models
for thin-walled beams with rectangular cross-section, starting from three-
dimensional nonlinear elasticity. The different limit models are distin-
guished by the different scaling of the elastic energy and of the ratio
between the sides of the cross-section. In this paper we report the first
part of our results. More precisely, denoting by h and δh the length of the
sides of the cross-section, with δh ≪ h, and by ε2h the scaling factor of the
bulk elastic energy, we analyse the cases in which δh/εh → 0 (subcritical)
and δh/εh → 1 (critical).

2000 AMS Mathematics Classification Numbers: 74K10, 74B20, 49J45

Keywords: thin-walled cross-section beams, nonlinear elasticity, Γ-convergence, dimen-

sion reduction

1 Introduction

Geometrically, a thin-walled beam is a slender structural element whose length
is much larger than the diameter of the cross-section which, on its hand, is larger
than the thickness of the thin wall. This kind of beams have been used for a
long time in civil and mechanical engineering and, most of all, in flight vehicle
structures because of their high ratio between maximum strength and weight.

Because of their slenderness thin-walled beams are quite easy to buckle and
to deform and hence, in several circumstances, their study has to be conducted
by means of nonlinear theories.

The purpose of this paper is to rigorously derive a hierarchy of one-dimension-
al models for a thin-walled beam, starting from three-dimensional nonlinear
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del Pou Salit, Piazza Duomo, 07041 Alghero, Italy, email: paroni@uniss.it

1



elasticity, in the spirit of what has been done in [11] for plates. The differ-
ent limit models are distinguished by the different scaling of the elastic energy,
which, in turn, depends on the scaling of the applied loads.

More precisely, we shall consider a beam of length ℓ with a rectangular cross-
section of sides h and δh. Let Ωh := (0, ℓ) × (−h/2, h/2)× (−δh/2, δh/2). To
model a thin-walled beam we shall require that

h→ 0 and
δh
h

h→0−→ 0.

The three-dimensional nonlinear elastic energy (per unit cross-section) associ-
ated with a deformation v : Ωh → R

3 is given by

Eh(v) =
1

hδh

∫

Ωh

W (∇v(z)) dz,

where W is the elastic energy density of the material. As classical in dimension
reduction problems, we rescale the domain Ωh to a fixed domain Ω := (0, ℓ)×
(−1/2, 1/2)× (−1/2, 1/2) and, accordingly, we rescale deformations by setting
y(x) := v(x1, hx2, δhx3) for every x ∈ Ω. After this change of variables the
elastic energy rewrites as

Ih(y) =

∫

Ω

W (∇hy(x)) dx, with ∇hy =

(

y,1 ,
y,2
h
,
y,3
δh

)

,

where ∇hy denotes the rescaled deformation gradient.
We consider a sequence of deformations (yh) for which the energy scales as

ε2h, where (εh) is a sequence of positive numbers; more precisely, we assume that

Ih(yh) ≤ Cε2h.

This bound is, for instance, satisfied by sequences of global minimizers of the
total energies

Jh(y) =

∫

Ω

W (∇hy) dx−
∫

Ω

fh · y dx,

assuming the applied loads fh to be of order ε2h (see Section 6). The asymptotic
behaviour of the sequence (yh), as h → 0, is described by the limit of the
functionals Ih/ε2h in the sense of Γ-convergence (we refer to [6] for a complete
treatment of Γ-convergence). The expression of the Γ-limit depends on the
behaviour of εh with respect to the intrinsic scale δh. More precisely, we can
identify three main regimes:

• subcritical:
δh
εh

h→0−→ 0;

• critical:
δh
εh

h→0−→ 1;

• supercritical:
δh
εh

h→0−→ +∞.
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In this paper, in which we report the first part of our studies, we focus on
the subcritical and the critical regimes. The supercritical regime will be studied
in a forthcoming paper.

In the subcritical regime it is easy to see that, if εh = O(1), then the Γ-limit
of the functionals Ih/ε2h exists, up to subsequences, and coincides with the non-
linear string model deduced in [1] for a beam of uniformly small cross-section.
If instead limh→0 εh = 0, we show (Theorem 4.1) that, under appropriate as-
sumptions on W , the Γ-limit of Ih/ε2h is given by

Isub(y) =

{

0 if y ∈ W 1,2((0, ℓ),R3), |y,1| ≤ 1,

+∞ elsewhere.

The most technical part in the proof of this result is the limsup inequality,
where the definition of the recovery sequence is based on the construction of
a two dimensional isometry with prescribed Dirichlet and Neumann boundary
data on [0, ℓ], see Lemma 4.6. The functional Isub denotes the energy of an
inextensible string, or more precisely, since the string can grow shorter but not
longer (because of the constraint |y,1| ≤ 1), Isub denotes, to use a terminology
introduced by Pipkin [17], the energy of an inextensible string with slack.

In the critical regime, again under appropriate conditions on W and under
the additional assumption that limh→0 h

2/δh = 0, we show (Theorem 5.1) that
the Γ-limit of Ih/ε2h is finite only in the class

A :=
{

(y, d2, d3) ∈ W 2,2((0, ℓ);R3)×W 1,2((0, ℓ);R3)×W 1,2((0, ℓ);R3) :

(y,1|d2|d3) ∈ SO(3) and y,1 · d2,1 = 0 a.e. in (0, ℓ)
}

,

and is given by

Icrit(y, d2, d3) =











1

24

∫ ℓ

0

Q2(y,1 · d3,1, d2 · d3,1) dx1 if (y, d2, d3) ∈ A,

+∞ elsewhere,

where Q2 is a quadratic form which can be easily computed from the knowl-
edge of W (see (3)). The proof of the liminf inequality deeply relies on the
rigidity estimate obtained by Friesecke, James, and Müller [10]. The assump-
tion limh→0 h

2/δh = limh→0 εh/(δh/h)
2 = 0 is crucial in the construction of the

recovery sequence. Heuristically, it allows us to stretch the mid-plane, i.e., the
x1x2-plane, by deformations of order εh/(δh/h)

2. When limh→0 εh/(δh/h)
2 6= 0

the mid-plane must undergo a deformation which is very close to an isometry.
For this reason we conjecture that, in this range, the Γ-limit should coincide
with the Γ-limit of the non-linear Kirchhoff functional for a rectangular plate,
representing the mid-plane of the beam, when the length of one of the two sides
approaches zero. In Remark 5.2 we tried to explain the difficulties we encoun-
tered in the case limh→0 εh/(δh/h)

2 = +∞. The functional Icrit denotes the
energy of a Cosserat thin-walled beam, where d2(x1) and d3(x1) are the directors
which characterize the configuration of the material section of coordinate x1.
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The fact that (y,1|d2|d3) ∈ SO(3) implies that the material section remains at
first order orthogonal to the axis of the beam. The warping of the cross-section
with respect to the normal plane emerges as a higher order effect (of order
hδh). The quantities y,1 · d3,1 and y,1 · d2,1 may be interpreted (see Antman [2,
§8-6]) as the flexural strains around the axis x2 and x3, respectively, while the
quantity d2 · d3,1 may be interpreted as the torsional strain. The new condition
y,1 · d2,1 = 0 implies therefore that there is no flexion around the axis x3. Since
y,1 · d2 = 0, the constraint rewrites as y,11 · d2 = 0, and, when y,11 6= 0, it can
be rewritten, by using a Frenet frame, as κn · d2 = 0 where κ is the curvature
and n is the normal to the curve y.

1 2

3
y
,1

d

d

3

2

n
1

3

Case compatible with n · d2 = 0

1

2

3

y
,1

d

d

2

3 n

1

2

This case cannot happen: n · d2 = ±1

Γ-convergence results for thin-walled beams were obtained within the the-
ory of linear elasticity in [7, 8, 9], while Γ-convergence results for beams within
the nonlinear framework were deduced in [1, 15, 16, 18, 19]. A very different
approach to nonlinear rod equations, based on centre manifold theory, was pur-
sued by Mielke [14]. We also mention [4, 5], where a constrained membrane
theory analogous to Isub is derived by means of careful approximation results
for short maps, that are close in spirit to the analysis performed in Section 4.

The paper is organized as follows. In Section 2 we describe the setting of
the problem. In Section 3 we prove some general compactness properties for de-
formations having equibounded energies. Section 4 is devoted to the subcritical
case, while Section 5 to the critical regime. Finally, in Section 6 we introduce
applied loads and discuss convergence of minimizers.

Notation. Throughout this article, and unless otherwise stated, we index vec-
tor and tensor components as follows: Greek indices α, β and γ take values in
the set {1, 2} and Latin indices i, j, k, l in the set {1, 2, 3}. With (e1, e2, e3)
we shall denote the canonical basis of R

3. The component k of a vector v
will be denoted either by (v)k or vk and an analogous notation will be used
to denote tensor components. Given two vectors v, w ∈ R

3, we denote their
vector product by v × w. The notation u,k is used to denote the derivative
of a scalar or vector function u with respect to the k-th variable. If u is a
function of one variable, then the derivative will be denoted by u′ or u,1 in-
differently. Lp(A;B) and Wm,p(A;B) are the standard Lebesgue and Sobolev
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spaces of functions defined on the domain A and taking values in B, with the
usual norms ‖ · ‖Lp(A;B) and ‖ · ‖Wm,p(A;B), respectively. When B = R or
when the right set B is clear from the context, we will simply write Lp(A) or
Wm,p(A), sometimes even in the notation used for norms. Convergence in the
norm, that is the so-called strong convergence, will be denoted by → while weak
convergence is denoted with ⇀. With a little abuse of language, and because
this is a common practice and does not give rise to any confusion, we use to call
“sequences” even those families indicized by a continuous parameter h which,
throughout the whole paper, will be assumed to belong to the interval (0, 1].
Finally, all throughout the paper, the constant C in any statement may change
line by line. For A ∈ R

3×3 we denote the Euclidean norm (with the summation
convention) by |A| =

√

tr(AAT ) =
√
aijaij . Accordingly, the distance of A

from SO(3) = {Q ∈ R
3×3 : QTQ = I, detQ = 1} is

dist(A,SO(3)) = inf{|A−R| : R ∈ SO(3)}.

2 Setting of the problem

Let
Ωh := (0, ℓ)× ωh ⊂ R

3,

where
ωh := {(z2, z3) : |z2| < h/2, |z3| < δh/2} ⊂ R

2

with h > 0, δ1 := 1 and

lim
h→0

δh
h

= 0.

Henceforth we shall refer to Ωh as the reference configuration of a three-
dimensional body and denote the elastic energy (per unit cross-section) associ-
ated with a deformation v : Ωh → R

3 by

Eh(v) :=
1

hδh

∫

Ωh

W (∇v(z)) dz.

We assume that the stored energy density W : R3×3 → [0,+∞] satisfies the
following assumptions:

1. W ∈ C0(R3×3), W is of class C2 in a neighborhood of SO(3);

2. W is frame indifferent, i.e., W (F ) = W (RF ) for every F ∈ R
3×3 and

R ∈ SO(3);

3. W (F ) ≥ C dist2(F, SO(3)), C > 0; W (F ) = 0 if F ∈ SO(3).

A key role will be played by the following quadratic form:

Q3(F ) :=
∂2W

∂F 2
(I)(F, F ) =

3
∑

i,j,k,l=1

∂2W

∂Fij∂Fkl
(I)FijFkl, F ∈ R

3×3.
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In view of 3 this form is positive semi-definite and hence convex. Moreover, by
1 and 2 we have that (see, e.g., [12, Section 29])

Q3(F ) = Q3

(F + FT

2

)

. (1)

In the special case when the energy density W is isotropic, that is, W (RFQ) =
W (F ) for all F ∈ R

3×3 and R,Q ∈ SO(3), it turns out that

Q3(F ) = 2µ|e|2 + λ(tr e)2, e =
F + FT

2
(2)

for some λ, µ ∈ R.
One of the limit problems will be stated in terms of the function

Q2(α, β) := min{Q3(A) : A ∈ R
3×3, AT = A, A11 = α, A12 = β}. (3)

Let us remark that Q2 is a positive definite quadratic form. Moreover, in the
isotropic case where Q3 takes the form (2), a simple computation shows that

Q2(α, β) = 4µβ2 + Eα2,

where E := µ 2µ+3λ
µ+λ is the Young modulus of the material.

An immediate consequence of assumption 1 is that, by expandingW around
the identity, we get

W (I +A) =
1

2
Q3(A) + η(A), lim

|A|→0

η(A)

|A|2 = 0. (4)

To state our results it is convenient to stretch the domain Ωh along the
transverse directions z2 and z3 in a way that the transformed domain does not
depend on h. Let us therefore set ω := ω1, Ω := Ω1, and let

ph : Ω → Ωh

be defined by
ph(x) = ph(x1, x2, x3) = (x1, hx2, δhx3).

For every y ∈W 1,2(Ω;R3) we define the scaled gradient of y as

∇hy :=

(

y,1 ,
y,2
h
,
y,3
δh

)

,

where y,i denotes the column vector of the partial derivatives of y with respect
to xi, i = 1, 2, 3. Then we can consider the rescaled energy Ih :W 1,2(Ω;R3) →
[0,+∞] defined by Ih(y) := Eh(y ◦ p−1

h ), i.e.,

Ih(y) =

∫

Ω

W (∇hy(x)) dx

for every y ∈W 1,2(Ω;R3).
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3 Compactness and lower bound lemmata

In this section we establish some general compactness properties for sequences
of deformations with equibounded energy and a lower bound for their energies.

Throughout this section, and the rest of the paper, (εh) will denote a se-
quence of strictly positive real numbers.

A key ingredient in the proof of the compactness properties is the following
rigidity result proven by Friesecke, James, and Müller in [10].

Theorem 3.1 Let U be a bounded Lipschitz domain in R
n, n ≥ 2. Then there

exists a constant C(U) with the following property: for every v ∈ W 1,2(U ;Rn)
there is an associated rotation R ∈ SO(n) such that

‖∇v −R‖L2 ≤ C(U)‖ dist(∇v, SO(n))‖L2 .

Owing to the previous theorem, we can deduce the following approximation
result.

Theorem 3.2 Let (yh) be a sequence in W 1,2(Ω;R3) such that

(∫

Ω

dist2(∇hy
h, SO(3)) dx

)
1

2

≤ Cεh (5)

for every h > 0. Then there exist a subsequence (not relabeled) and a correspond-
ing sequence of piecewise constant rotations Rh : (0, ℓ) × (−1/2, 1/2) → SO(3)
such that

‖∇hy
h −Rh‖L2 ≤ Cεh (6)

for any h. Moreover, setting x′ = (x1, x2), there exists a constant C such that

(∫

V ′

|Rh(x′ + ξ)−Rh(x′)|2 dx′
)

1

2

≤ C
(

(|ξ1| ∨ h|ξ2|) + δh
)εh
δh

(7)

for any h, any open set V ′ compactly contained in V := (0, ℓ)× (−1/2, 1/2) and
any ξ = (ξ1, ξ2) such that |ξ| < dist(V ′, ∂V ).

Proof. The proof follows the lines of [10, Proof of Theorem 4.1]. The main
idea is to consider the unscaled domain Ωh and to decompose it into a union
of small parallelepipeds whose sides are approximately of order δh. On each of
these subsets one can apply Theorem 3.1 using the same rigidity constant, since
one can show that C(U) is invariant under dilations and uniform bi-Lipschitz
transformations of U . The main difference with respect to [10] is that, because
of the scaling of order h in the x2 variable, the variations of the approximating
rotations in x1 and in x2 turn out to have a different order of decay, as h → 0
(see (7)).

Without loss of generality we can assume that ℓ = 1.
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Let us set vh := yh ◦ p−1
h : Ωh → R

3, that is,

vh(z1, z2, z3) = yh(z1,
z2
h
,
z3
δh

).

Hence ∇vh = ∇hy
h. Let us define

Nh
1 := [1/δh], Nh

2 := [h/δh], ℓh1 :=
1

Nh
1

, ℓh2 :=
h

Nh
2

,

where [ · ] stands for the integer part, and consider the family of pairwise disjoint
subsets of Ωh

Qh(i, j) := ((i− 1)ℓh1 , iℓ
h
1)× (−h

2
+ (j − 1)ℓh2 ,−

h

2
+ jℓh2 )× (−δh

2
,
δh
2
)

where i = 1, . . . , Nh
1 and j = 1, . . . , Nh

2 . Up to a negligible set, we have that

Ωh =

Nh
1

⋃

i=1

Nh
2

⋃

j=1

Qh(i, j).

z

z

z

1

2

3

Q
h
(0,0)

Q
h
(i,j)

e h
1

e h
2

It is now easy to check that each set Qh(i, j) is the image through a suitable
translation and a δh-dilation of the set

(0, ℓh1/δh)× (0, jℓh2/δh)× (0, 1).

Since ℓhα/δh → 1 for α = 1, 2, those sets are, in turn, bi-Lipschitz equivalent to
the unit cube (0, 1)3 with uniformly controlled Lipschitz constant. Therefore,
by [11, Theorem 5] the same value of the rigidity constant serves for every set
Qh(i, j). Hence, applying Theorem 3.1 to the functions vh restricted to the sets
Qh(i, j) we have that there exists a family of rotations Rh(i, j) ∈ SO(3) such
that

∫

Qh(i,j)

∣

∣∇vh(z)−Rh(i, j)
∣

∣

2
dz ≤ C

∫

Qh(i,j)

dist2
(

∇vh(z), SO(3)
)

dz (8)
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and the constant C is independent of i, j and h. Then, there exists a piecewise
constant map R̂h : (0, 1)× (−h

2 ,
h
2 ) → SO(3) such that

∫

Ωh

|∇vh(z)− R̂h(z)|2dz ≤
∑

i,j

∫

Qh(i,j)

|∇vh(z)−Rh(i, j)|2dz

≤ C
∑

i,j

∫

Qh(i,j)

dist2
(

∇vh(z), SO(3)
)

dz

≤ 2C

∫

Ωh

dist2
(

∇vh(z), SO(3)
)

dz

Passing to the fixed domain Ω, there exists a piecewise constant map Rh :
(0, 1)× (−1/2, 1/2)→ SO(3) and a constant C such that

∫

Ω

|∇hy
h −Rh|2dx ≤ C

∫

Ω

dist2
(

∇hy
h, SO(3)

)

dx.

This proves the first part of the theorem for the whole sequence yh.
To prove the second part we have to estimate the variation of R̂h from a cube

to a neighboring one. To this aim, with a slight change of notation we denote
by Qh(α) the cube with side δh and center in (α, 0) ∈ R

3 with α := (α1, α2) and
R̂h(α) will be the corresponding rotation. Setting Sδ(α) the square with side δ
and center in α then we have

Qh(α) = Sδh(α) × (−δh
2
,
δh
2
).

Let β = (α1, α2)+λ1e1+λ2e2 where {e1, e2} is the canonical basis in R
2 and

λ1, λ2 ∈ {0,−δh, δh}. Then Sδh(β) ⊆ S3δh(α). By Theorem 3.1, there exists

R̂(3δh)(α) ∈ SO(3) such that

∫

S3δh
(α)×(−

δh
2
,
δh
2
)

|R̂(3δh)(α)−∇vh(z)|2dz ≤ C

∫

S3δh
(α)×(−

δh
2
,
δh
2
)

dist2(∇vh, SO(3)) dz (9)

So

|Sδh(β)||R̂h(β) − R̂(3δh)(α)|2 ≤ 2

δh

∫

Sδh
(β)×(−

δh
2
,
δh
2
)

|R̂h(β)−∇vh(z)|2dz+

+
2

δh

∫

S3δh
(α)×(−

δh
2
,
δh
2
)

|R̂(3δh)(α) −∇vh(z)|2dz.

Therefore we have, using (8) and (9) , that

|Sδh(β)||R̂h(β)− R̂(3δh)(α)|2 ≤ C

δh

∫

S3δh
(α)×(−

δh
2
,
δh
2
)

dist2(∇vh, SO(3)) dz. (10)
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Since |R̂h(α)−R̂h(β)|2 ≤ 2
(

|R̂h(α)−R̂(3δh)(α)|2+|R̂h(β)−R̂(3δh)(α)|2
)

, by (10)
and its special case α = β (that is λ1 = λ2 = 0)

|Sδh(β)||R̂h(α)− R̂h(β)|2 ≤ C

δh

∫

S3δh
(α)×(−

δh
2
,
δh
2
)

dist2(∇vh, SO(3)) dz (11)

which also can be written, being R̂h piecewise constant,
∫

Sδh
(α)

|R̂h(z′ + λ1e1 + λ2e2)− R̂h(z′)|2dz′ ≤ C

δh

∫

S3δh
(α)×(−

δh
2
,
δh
2
)

dist2(∇vh, SO(3)) dz.

Hence for η ∈ R
2 satisfying |η|∞ := max{|η · e1|, |η · e2|} ≤ δh,

∫

Sδh
(α)

|R̂h(z′ + η)− R̂h(z′)|2dz′ ≤ C

δh

∫

S3δh
(α)×(−

δh
2
,
δh
2
)

dist2(∇vh, SO(3)) dz.

Let now V ′ be an open set compactly contained in V = (0, 1) × (−1/2, 1/2)
and denote by V ′

h and Vh = (0, 1) × (−h
2 ,

h
2 ) the corresponding scaled do-

mains. Let us consider a more general translation vector η ∈ R
2 such that

|η|∞ < dist(V ′
h, ∂Vh). As now it can happen that |η|∞ > δh, then we set

N := max{[ ηδh · e1], [ ηδh · e2]} and pick η0,...,ηN+1 such that η0 = 0, ηN+1 = η,

|ηk+1 − ηk|∞ ≤ δh. Then

|R̂h(z′ + η)− R̂h(z′)|2 ≤ (N + 1)

N
∑

k=0

|R̂h(z′ + ηk+1)− R̂h(z′ + ηk)|2

and hence

∫

Sδh
(α)

|R̂h(z′ + η)− R̂h(z′)|2dz′ ≤ C(N + 1)

δh

N
∑

k=0

∫

S3δh
(α+ηk)×(−

δh
2
,
δh
2
)

dist2(∇vh, SO(3)) dz.

Summing over all Sδh(α) ∩ V ′
h 6= ∅ and using that each z ∈ Vh × (− δh

2 ,
δh
2 )

is contained in at most C(N + 1) of the sets S3δh(α + ηk) × (− δh
2 ,

δh
2 ) with C

independent of h, then
∫

V ′

h

|R̂h(z′ + η)− R̂h(z′)|2dz′ ≤ C

δh
(
|η1|
δh

∨ |η2|
δh

+ 1)2
∫

Vh×(−
δh
2
,
δh
2
)

dist2(∇vh, SO(3)) dz.

The claim follows now by passing to the fixed domain with the usual change of
variables, setting ξ1 = η1 and ξ2 = η2/h and observing that |η|∞ < dist(V ′

h, ∂Vh)
if and only if |ξ|∞ < dist(V ′, ∂V ). 2

Lemma 3.3 Under assumption (5), there is a sequence of maps

R̃
h ∈ C∞([0, ℓ]× [− 1

2 ,
1
2 ];R

3×3)

such that, for every h > 0,
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1. ‖R̃h −Rh‖L∞ ≤ Ch1/2εh/δh,

2. ‖∇hy
h − R̃

h‖L2 ≤ Cεh,

3. ‖R̃h,1‖L2 ≤ Cεh/δh, ‖R̃h,2‖L2 ≤ Chεh/δh,

where the constant C may change from line to line. Moreover, if in addition
h1/2εh/δh → 0, then we can take

4. R̃
h
(x1, x2) ∈ SO(3) for every (x1, x2) ∈ (0, ℓ) × (−1/2, 1/2) and every

h > 0.

Proof. The strategy of the proof is the same as in [11, Theorem 6]: we consider
the approximating rotations constructed in Theorem 3.2 and regularize them on
a small scale. The difference quotient estimate (7) translates then into suitable
bounds for the derivatives of the mollifications. In contrast with what is done
in [11], we need to choose mollifiers that have a different scaling in the x1 and
x2 variables, because of the different order of decay of the variations of Rh in
the two variables.

Let (Rh) denote the sequence of rotations of the previous Theorem 3.2 ex-
tended by successive reflections to the whole of R2. Let ηh be any sequence of
mollifiers which will be made precise in the following and

R̄h(y′) := Rh ∗ ηh(y′) =
∫

ηh(z
′)Rh(y′ − z′) dz′.

Let V ′ ⊂⊂ V = (0, ℓ) × (−1/2, 1/2). Using the fact that
∫

ηh = 1 and
Hölder’s inequality, we observe that

‖R̄h −Rh‖2L2(V ′) =

∫

V ′

∣

∣

∫

ηh(z
′)
(

Rh(y′ − z′)−Rh(y′)
)

dz′
∣

∣

2
dy′

≤
∫

|ηh(z′)|2dz′
∫

supp ηh

∫

V ′

|Rh(y′ − z′)−Rh(y′)|2 dy′ dz′.
(12)

Let us now choose the sequence of mollifiers as follows: for i = 1, 2, let ηi ∈
C∞
c (−1/2, 1/2), ηi ≥ 0,

∫

ηi = 1 and define

η(y′) := η1(y1)η2(y2), ηh(z
′) :=

h

δ2h
η(
z1
δh
,
hz2
δh

) =
h

δ2h
η1(

z1
δh

)η2(
hz2
δh

).

Then ηh ∈ C∞
c ((−δh/2, δh/2) × (−δh/2h, δh/2h)) and

∫

ηh = 1. In particular,
for any h small enough, supp ηh is contained into a ball with radius smaller than
the distance from V ′ to ∂V ; therefore we can apply estimate (7) in (12) and
substitute the expression of ηh, so obtaining

‖R̄h −Rh‖2L2(V ′) ≤ C

∫

|ηh(z′)|2dz′
∫

supp ηh

(

(|z1| ∨ h|z2|) + δh
)2
ε2hδ

−2
h dz′

≤ C

∫

| h
δ2h
η(x′)|2 δ

2
h

h
dx′

∫

supp ηh

δ2hε
2
hδ

−2
h dz′ ≤ C

h

δ2h
ε2h
δ2h
h

= Cε2h
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which implies that
‖R̄h −Rh‖L2(V ) ≤ Cεh (13)

since the constant C does not depend on the choice of V ′.
Applying Hölder’s inequality and proceeding as above, we have

∫

V ′

|R̄h,1|2dy′ =

∫

V ′

∣

∣

∫

ηh,1
(

Rh(y′ − z′)−Rh(y′)
)

dz′
∣

∣

2
dy′

≤
∫

supp ηh

|ηh,1|2dz′
∫

V ′

∫

supp ηh

|Rh(y′ − z′)− Rh(y′)|2 dz′dy′

≤ C
h

δ4h

∫

supp ηh

(

(|z1| ∨ h|z2|) + δh
)2
ε2hδ

−2
h dz′ ≤ C

h

δ4h
ε2h
δ2h
h

which implies

‖R̄h,1‖L2 ≤ C
εh
δh
. (14)

Analogously we can prove that

‖R̄h,2‖L2 ≤ Ch
εh
δh
. (15)

Rewriting inequality (11) with R̂h(η1, η2) = Rh(η1, η2/h), performing the
corresponding change of variables in the integral on the right-hand side, esti-
mating from above with the integral on Ω, and using assumption (5), we have

δ2h|Rh(x1 + ξ1, x2 + ξ2)−Rh(x1, x2)|2 ≤ Ch

∫

Ω

dist2(∇hy
h, SO(3)) dx ≤ Chε2h

for every |ξ1| ≤ δh and |ξ2| ≤ δh/h. Then we have

|R̄h(x1, x2)−Rh(x1, x2)| ≤
∫

supp ηh

|ηh(z′)||Rh(x′−z′)−Rh(x′)| dz′ ≤ Ch1/2εh/δh

which implies
‖R̄h −Rh‖L∞ ≤ Ch1/2εh/δh. (16)

Conditions 1, 2 and 3 are proven by setting R̃
h
= R̄h. In particular, 2 follows

from (6) and (13).
Let now assume that h1/2εh/δh → 0. Let Π : U → SO(3) be a smooth

projection from a compact neighborhood U of SO(3) onto SO(3). Since by (16)

the functions R̄h take values in U for h small enough, we can define R̃
h
:=

ΠR̄h. By the regularity of the projection, R̃
h
is smooth. Condition 4 of the

statement is satisfied. Claim 1 follows from the continuity of the projection and
inequality (16). From (6), (13) and still by continuity of Π we obtain 2. Finally,
claim 3 follows from (14), (15) and the boundedness of the gradient of Π. 2

Let us conclude this section by proving a useful lower bound of the energy.
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Lemma 3.4 Assume that limh→0 εh = 0. Let (yh) ⊂ W 1,2(Ω;R3), (Rh) ⊂
SO(3) and

Gh :=
Rh∇hy

h − I

εh
⇀G in L2(Ω;R3×3).

Then

lim inf
h→0

1

ε2h

∫

Ω

W (∇hy
h) dx ≥ 1

2

∫

Ω

Q3(G) dx.

Proof. The proof is an adaptation of an argument by Friesecke, James, and
Müller [10]. By expanding W around the identity as in (4) and setting ω(t) =
sup|A|≤t{|η(A)|/|A|2}, we have

W (I +A) ≥ 1

2
Q3(A)− ω(|A|)|A|2,

where ω(t) → 0, as t→ 0+.
By the frame indifference of W then we have

W (∇hy
h) =W (Rh∇hy

h) =W (I + εhG
h)

≥ ε2h
2
Q3(G

h)− ε2hω(εh|Gh|)|Gh|2.
(17)

From the boundedness of Gh in L2 it follows that the functions

χh(x) :=

{

1 if |Gh(x)| ≤ 1/
√
εh,

0 otherwise,

converge in measure to the constant 1 and are uniformly bounded. Hence

χhG
h⇀G in L2. (18)

By inequality (17) we obtain

1

ε2h

∫

Ω

W (∇hy
h) dx ≥ 1

ε2h

∫

Ω

χhW (∇hy
h) dx

≥ 1

2

∫

Ω

χhQ3(G
h) dx−

∫

Ω

χhω(εh|Gh|)|Gh|2 dx

=
1

2

∫

Ω

Q3(χhG
h) dx−

∫

Ω

χhω(εh|Gh|)|Gh|2 dx.

Since Q3 is a semi-positive definite quadratic form (by the hypotheses on W ),
hence convex, the first integral on the right-hand side is lower semicontinuous
with respect to the convergence (18). The second integral converges to zero,
because |Gh|2 is bounded in L1(Ω) and χhω(εh|Gh|) ≤ ω(

√
εh), which converges

to zero. Therefore the claim follows by taking the liminf as h→ 0. 2
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4 The subcritical case

In this section we focus on the study of the asymptotic behaviour of a sequence
of deformations (yh) ⊂W 1,2(Ω;R3) satisfying

Ih(yh) =

∫

Ω

W (∇hy
h) dx ≤ Cε2h, (19)

where

lim
h→0

εh = lim
h→0

δh
εh

= 0. (20)

The main result of the section is the following.

Theorem 4.1 Assume (20). Then the following assertions hold.

1. (Compactness) If (yh) ⊂W 1,2(Ω;R3) satisfies (19), then there exist some
constants ch ∈ R

3 and a function y ∈ W 1,2(Ω;R3) such that |y,1| ≤ 1,
y,2 = y,3 = 0 a.e. in Ω and yh−ch⇀y inW 1,2(Ω;R3) (up to subsequences).

2. (Upper bound) For every y ∈W 1,2(Ω;R3) such that |y,1| ≤ 1, y,2 = y,3 =
0 a.e. in Ω there exists a sequence (yh) ⊂W 1,2(Ω;R3) such that yh⇀y in
W 1,2(Ω;R3) and

lim
h→0

1

ε2h
Ih(yh) = 0.

Remark 4.2 Theorem 4.1 implies that, under the assumption (20), the se-
quence

(

1
ε2
h

Ih
)

Γ-converges in the weak topology of W 1,2(Ω;R3) to the func-

tional

I(y) =

{

0 if |y,1| ≤ 1, y,2 = y,3 = 0 a.e. in Ω,

+∞ else.

We begin with some approximation lemmata, which will be useful in the
proof of the upper bound.

Lemma 4.3 Let v ∈ L2((0, ℓ);R3) be such that |v| ≤ 1 a.e. in (0, ℓ). Then
there exists a sequence (vk) in C

∞([0, ℓ];R3) such that |vk| = 1, v′k 6= 0 in [0, ℓ],
and vk⇀v weakly in L2((0, ℓ);R3).

Proof. We split the proof into three steps.

Step 1. Assume first that v is constant, that is, v(t) = y0 for a.e. t ∈ (0, L),
with y0 ∈ R

3, |y0| ≤ 1. Then there exist y1, y2 ∈ R
3 with |yα| = 1 and λ ∈ (0, 1]

such that
y0 = λy1 + (1− λ)y2.

As |y1| = |y2| = 1, we can find two pairs (w1, z1), (w2, z2) of orthonormal
vectors, which are orthogonal to y1 and y2, respectively.
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Let y, w, z : R → R
3 be the periodic functions of period ℓ defined on (0, ℓ]

by
y(t) := χ(0,λℓ]y1 + χ(λℓ,ℓ]y2,
w(t) := χ(0,λℓ]w1 + χ(λℓ,ℓ]w2,
z(t) := χ(0,λℓ]z1 + χ(λℓ,ℓ]z2,

where χ denotes the characteristic function. For every k ∈ N we consider the
function ṽk : [0, ℓ] → R

3 defined as follows:

ṽk(t) :=
√

1− a2k y(kt) + ak
(

cos t w(kt) + sin t z(kt)
)

,

where ak is a sequence of positive numbers converging to 0.
It is well known that the sequence y(k ·) converges to v weakly in L2((0, ℓ);R3),

as k → ∞. Since ak → 0 and

| cos t w(kt) + sin t z(kt)| = 1 for every t,

we conclude that ṽk converges to v weakly in L2((0, ℓ);R3). Moreover, |ṽk(t)| =
1 for any t ∈ [0, ℓ]. Away from the points

tm,1k :=
1

k
(λ+m)ℓ, tm,2k :=

1

k
mℓ, k ∈ N, m = 0, . . . , k,

the function ṽk is differentiable and

ṽ′k(t) = ak
(

− sin t w(kt) + cos t z(kt)
)

,

hence |ṽ′k| = ak 6= 0. To conclude it remains to modify ṽk around the jump
points tm,αk in such a way to obtain a smooth function. Let ηk > 0 be such that
kηk → 0. For every k ∈ N, m = 0, . . . , k − 1, and α = 1, 2, we can construct a
function φm,αk ∈ C∞([−ηk, ηk];R3) such that |φm,αk | = 1, (φm,αk )′ 6= 0, and for
every j ∈ N ∪ {0}

Djφm,αk (−ηk) = Dj ṽk(t
m,α
k − ηk), Djφm,αk (ηk) = Dj ṽk(t

m,α
k + ηk),

where Dj denotes the derivative of order j. Indeed, as |ṽk(t)| = 1, there exist
two real functions ϕk and ϑk such that

ṽk(t) =





sinϕk(t) cosϑk(t)
sinϕk(t) sinϑk(t)

cosϕk(t)



 ,

where ϕk and ϑk are smooth except at the points tm,αk . For every k,m, α and
for t ∈ [−ηk, ηk] we define

φm,αk (t) :=







sinϕm,αk (t) cosϑm,αk (t)

sinϕm,αk (t) sin ϑm,αk (t)

cosϕm,αk (t)






,
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where ϕm,αk and ϑm,αk are smooth transitions constructed in such a way that
(φm,αk )′ 6= 0 and

Djϕm,αk (−ηk) = Djϕk(t
m,α
k − ηk), Djϕm,αk (ηk) = Djϕk(t

m,α
k + ηk),

Djϑm,αk (−ηk) = Djϑk(t
m,α
k − ηk), Djϑm,αk (ηk) = Djϑk(t

m,α
k + ηk)

for every j ∈ N ∪ {0}.
The required sequence is then given by

vk(t) :=

{

ṽk(t) if t ∈ [0, ℓ] \ ∪k−1
m=0 ∪2

α=1 (t
m,α
k − ηk, t

m,α
k + ηk),

φm,αk (t− tm,αk ) if t ∈ (tm,αk − ηk, t
m,α
k + ηk).

It is clear that vk is smooth, |vk| = 1, and v′k 6= 0. Moreover, since kηk → 0, we
have that ‖vk − ṽk‖L2 → 0, hence vk converge to v weakly in L2((0, ℓ);R3).

Step 2. Let v be a piecewise constant function with |v| ≤ 1 a.e. in (0, ℓ). Then
there exist a partition 0 = s0 < s1 < · · · < sM = ℓ of (0, ℓ) and some constant
vectors ȳ1, . . . , ȳM with |ȳi| ≤ 1 such that

v =
M
∑

i=1

χ(si−1,si)ȳi.

On every interval (si−1, si) we can repeat the construction of Step 1. In this way
we obtain a sequence (vk) with the desired properties, except for the regularity,
as vk may jump at the points si. Around these points we can make vk smooth by
introducing a transition function like φm,αk of Step 1 on small intervals (si−1 −
ηk, si + ηk), where ηk → 0.

Step 3. Let us consider now the general case. Let v be as in the statement of the
lemma. Then we can construct a sequence v̂n of piecewise constant functions
with |v̂n| ≤ 1 a.e. and v̂n → v strongly in L2((0, ℓ);R3).

We note that, owing to the bound |v| ≤ 1, we can restrict our attention to a
bounded subset of L2((0, ℓ);R3), where the weak topology is metrizable. By the
previous step for every n there exists a sequence (vnk ) ⊂ C∞((0, ℓ);R3) such that
|vnk | = 1, (vnk )

′ 6= 0, and vnk ⇀vn weakly in L2((0, ℓ);R3). A diagonal argument
allows us to conclude the proof. 2

Lemma 4.4 Let R ∈ W 1,2((0, ℓ);R3×3) be such that R ∈ SO(3) a.e. in (0, ℓ).
Then there exists a sequence of analytic functions Rν : [0, ℓ] → R

3×3 such
that Rν ∈ SO(3) in [0, ℓ] and Rν → R in W 1,2((0, ℓ);R3×3). If moreover
(RTR,1)ij = 0 for some i 6= j, then we can choose also ((Rν)TRν,1)ij = 0 in

[0, ℓ] for every ν ∈ N. If in addition R ∈ Ck([0, ℓ];R3×3) for some k ≥ 1, then
Rν → R in Ck([0, ℓ];R3×3).

Proof. Let us set A := RTR,1 ∈ L2((0, ℓ);R3×3). Since (RTR),1 = 0, the
matrix A is skew-symmetric. Then there are α, β, γ ∈ L2(0, ℓ) such that

A =





0 γ α
−γ 0 β
−α −β 0



 .
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Let (αν), (βν), and (γν) be sequences of polynomials on [0, ℓ] such that

αν → α, βν → β, γν → γ in L2(0, ℓ) (21)

and define

Aν :=





0 γν αν

−γν 0 βν

−αν −βν 0



 .

Let Rν be the unique solution to the linear initial value problem
{

Rν,1 = RνAν in [0, ℓ],

Rν(0) = R(0).
(22)

Since Aν is analytic on [0, ℓ], the same is true for Rν . Moreover, from the fact
that (RνTRν),1 = AνT +Aν = 0 and Rν(0)TRν(0) = R(0)TR(0) = I, it follows

that RνTRν ≡ I, that is, Rν(t) ∈ SO(3) for any t ∈ [0, ℓ].
Setting Zν := R − Rν , it is easy to check that Zν is the unique solution to

the problem
{

Zν,1 = ZνAν +R(A−Aν) in [0, ℓ],

Zν(0) = 0.
(23)

By Gronwall’s lemma, Hölder’s inequality and the boundedness of (Aν) in L2,
for a.e. t ∈ (0, ℓ) we have

|Zν(t)| ≤
∫ t

0

|R(s)||A(s) −Aν(s)| ds e
∫

t

0
|Aν(s)| ds

≤ C‖R‖L∞‖A−Aν‖L2 ,

hence
|R(t)−Rν(t)| ≤ C‖A−Aν‖L2,

which implies that
Rν → R in L∞((0, ℓ);R3×3). (24)

From (23) we have

‖Zν,1‖L2 ≤ ‖Zν‖L∞‖Aν‖L2 + C‖R‖L∞‖A− Aν‖L2 (25)

and taking the limit as ν → ∞ we get ‖Zν,1‖L2 → 0, which implies that the
convergence in (24) is in the norm of W 1,2((0, ℓ);R3×3), and the first part of
the lemma is proven.

To prove the second part of the statement, let assume, to fix ideas, that
(RTR,1)12 = 0. Then we have γ = 0, hence we can choose γν = 0 for any
ν ∈ N. Thus, by (22), we have

(RνTRν,1)12 = (RνTRνAν)12 = Aν12 = γν = 0.

If now R ∈ Ck([0, ℓ];R3×3), then A ∈ Ck−1([0, ℓ];R3×3). Thus, we can find
sequences of polynomials (αν), (βν), and (γν) such that the convergences in
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(21) hold with respect to the Ck−1 norm. Arguing similarly as in (25), it is
then easy to prove that Rν → R in Ck([0, ℓ];R3×3). 2

Remark 4.5 The purpose of the present remark is to give a geometrical-me-
chanical interpretation of the components of the matrix A = RTR,1, which
played a major role in the proof of Lemma 4.4.

Let R ∈W 1,2((0, ℓ);R3×3) be such that R ∈ SO(3) a.e. in (0, ℓ), and assume
that the vectors R(x1)e2 and R(x1)e3 characterize the configuration of the de-
formed cross-section with coordinate x1, like, for instance, the vectors e2 and
e3 characterize the cross-section in the reference configuration. Then, from the
identity

Aij = ei ·RTR,1ej = Rei · (Rej),1
we can see that the component Aij measures the change of the characterizing
vector Rej along the direction Rei. Thus Aij are strains, in particular A12 and
A13 measure fleaxure, while A23 measures torsion.

Lemma 4.6 Let y, d2 : [0, ℓ] → R
3 be analytic functions such that

|y′| = |d2| = 1, y′′ 6= 0, and y′ · d2 = y′′ · d2 = 0 in [0, ℓ].

Then there exist some η > 0 and an analytic function u : [0, ℓ]× [− η
2 ,

η
2 ] → R

3

such that u is an isometry on [0, ℓ] × [− η
2 ,

η
2 ] satisfying u(x1, 0) = y(x1) and

u,2(x1, 0) = d2(x1) for every x1 ∈ [0, ℓ].

Proof. We need to show that there exists some tubular neighbourhood U of
[0, ℓ]×{0} such that the problem































u,1 ·u,1 = 1 in U,

u,2 ·u,2 = 1 in U,

u,1 ·u,2 = 0 in U,

u(x1, 0) = y(x1) for x1 ∈ [0, ℓ],

u,2(x1, 0) = d2(x1) for x1 ∈ [0, ℓ],

(26)

has an analytic solution u defined in U .
We follow the classical results in the construction of local isometric embed-

dings of analytic metrics (see [13, Section 1.1] or [20, Chapter 11]). We first
derive an equivalent formulation of (26). Differentiating the second equation in
(26) with respect to x1 we deduce that

u,12 ·u,2 = 0 in U. (27)

Differentiating the system with respect to x2 and using the equality above, we
obtain that any solution to (26) satisfies















u,1 ·u,22 = 0 in U,

u,2 ·u,22 = 0 in U,

u,11 ·u,22 = u,12 ·u,12 in U.

(28)
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We shall show that the system (28), supplemented by the initial conditions

u(x1, 0) = y(x1), u,2(x1, 0) = d2(x1) for x1 ∈ [0, ℓ], (29)

is equivalent to (26). Indeed, let u be an analytic solution to (28)–(29). From the
second equation in (28) and the assumption that |d2| = 1 it follows immediately
that |u,2| = 1 in U and, in particular, that (27) is satisfied. Now, using the first
equation in (28) and (27), we have

(

u,1 ·u,2
)

,2
= u,12 ·u,2 + u,1 ·u,22 = 0 in U.

From the assumption y′ · d2 = 0 on [0, ℓ] it follows that also the third equation
in (26) is satisfied, which, in turn, yields

u,11 ·u,2 + u,1 ·u,12 = 0 in U. (30)

Differentiating (27) with respect to x1 and using the last equation in (28), we
obtain

0 = u,112 ·u,2 + u,12 ·u,12 = u,112 ·u,2 + u,11 ·u,22 =
(

u,11 ·u,2
)

,2
,

hence, by the boundary conditions,

u,11 ·u,2 = 0 in U.

Combining this equality with (30), we conclude that

0 = u,1 ·u,12 =
1

2

(

u,1 ·u,1
)

,2
in U.

This, together with the assumption that |y′| = 1, yields the first equation in
(26). Therefore, (26) is equivalent to (28)–(29).

Now, we observe that, if the vectors u,1, u,2, u,11 are linearly independent
in U , then we can solve u,22 from (28) to obtain

u,22 = F (u,1, u,2, u,11, u,12) in U,

where F is an analytic function of all its arguments. Owing to the analytic
regularity of y and d2, the Cauchy-Kovalevskaya theorem guarantees that the
previous equation, supplemented by the initial conditions (29), always admits an
analytic solution u in a neighbourhood U of [0, ℓ]×{0}. Since the vectors u,1, u,2,
u,11 are linearly independent on [0, ℓ]×{0}, they remain linearly independent in
a small neighbourhood U ′ of [0, ℓ]×{0} contained in U . Therefore, u is a solution
to (28)–(29), and, in turn, of (26) in U ′. 2

We are now in a position to prove the main result of this section.

Proof of Theorem 4.1. 1. (Compactness) Let (yh) be a sequence in
W 1,2(Ω;R3) satisfying (19). By Lemma 3.2 there exists a sequence of rotations
(Rh) for which

‖∇hy
h −Rh‖L2 ≤ Cεh.
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Since Rh converge, up to subsequences, to some F weakly∗ in L∞, we have that
∇hy

h converge to F weakly in L2. This implies that, up to additive constants,
yh converge to some y weakly in W 1,2, where y,2 = y,3 = 0 a.e. in Ω and
y,1 = Fe1. Since F is a weak∗ limit of rotations, we deduce that |y,1| ≤ 1 a.e.
in Ω.

2. (Upper bound) Assume first to have a pair of analytic functions y, d2 :
[0, ℓ] → R

3 satisfying the following conditions:

|y′| = |d2| = 1, y′′ 6= 0, and y′ · d2 = y′′ · d2 = 0 in [0, ℓ]. (31)

By Lemma 4.6, there exist some η > 0 and an analytic function u : [0, ℓ] ×
[− η

2 ,
η
2 ] → R

3 such that u is an isometry on [0, ℓ]× [− η
2 ,

η
2 ] and satisfies

u(x1, 0) = y(x1) and u,2(x1, 0) = d2(x1) for every x1 ∈ [0, ℓ]. (32)

We set n := u,1 × u,2. For every 0 < h < η we consider the following recovery
sequence:

yh(x) := u(x1, hx2) + δhx3n(x1, hx2)

for every x ∈ Ω. By (32), it is easy to check that yh → y strongly inW 1,2(Ω;R3).
Moreover, we have

∇hy
h(x) = Q(x1, hx2) +O(δh),

whereQ := (u,1|u,2|n) ∈ SO(3) andO(δh) denotes a function such thatO(δh)/δh
is uniformly bounded. In particular,

QT∇hy
h = I +O(δh),

so that by frame-indifference and Taylor expansion (see (4)) we obtain

W (∇hy
h) =W (I +O(δh)) = O(δ2h).

By (20) we conclude that 1
ε2
h

W (∇hy
h) converges to 0 uniformly, hence

1

ε2h

∫

Ω

W (∇hy
h) dx −→ 0.

Assume now that y ∈ C∞([0, ℓ];R3), |y′| = 1, and y′′ 6= 0 in [0, ℓ]. For every
t ∈ [0, ℓ] we set

n(t) :=
y′′(t)

|y′′(t)| , b(t) := y′(t)× n(t).

Since |y′| = 1, we have

R := (y′ | − b |n) ∈ SO(3), (33)

(RTR,1)12 = −y′ · b′ = y′′ · b = 0. (34)

By Lemma 4.4, there exists a sequence of analytic functions Rν : [0, ℓ] → R
3×3

such that Rν ∈ SO(3), ((Rν)TRν,1)12 = 0, and Rν → R in C1([0, ℓ];R3×3) as
ν → ∞.
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For every x1 ∈ [0, ℓ] we set

yν(x1) := y(0) +

∫ x1

0

Rν(s)e1 ds, dν2(x1) := Rν(x1)e2.

Then yν and dν2 are analytic functions and satisfy conditions (31). Indeed, as
Rν,1 converge to R,1 uniformly on [0, ℓ] and R,1e1 = y′′ 6= 0 in [0, ℓ], we can
assume that Rν,1e1 = (yν)′′ 6= 0 in [0, ℓ] for ν large enough. Moreover, yν → y
strongly in W 1,2((0, ℓ);R3) as ν → ∞. By the previous step for every ν ∈ N

there exists a sequence of functions (yν,h) in W 1,2(Ω;R3) such that yν,h → yν

and
1

ε2h

∫

Ω

W (∇hy
ν,h) dx→ 0

as h→ 0. Hence, by a standard diagonal argument, there exists a sequence νh →
0 such that, setting yh := yνh,h we have that yh → y strongly in W 1,2(Ω;R3)
and

1

ε2h

∫

Ω

W (∇hy
h) dx→ 0. (35)

Finally, let y ∈ W 1,2(Ω;R3) be such that |y,1| ≤ 1, y,2 = y,3 = 0 a.e. in Ω.
By Lemma 4.3, there exists a sequence (vk) in C

∞([0, ℓ];R3) such that |vk| = 1,
v′k 6= 0 in [0, ℓ], and vk⇀y′ weakly in L2((0, ℓ);R3) as k → ∞. Let

uk(t) := y(0) +

∫ t

0

vk(s) ds, t ∈ (0, ℓ),

so that uk⇀y weakly in W 1,2(Ω;R3). By the previous step, for every k there
exists a sequence of functions (yhk ) in W

1,2(Ω;R3) such that yhk → uk and

1

ε2h

∫

Ω

W (∇hy
h
k ) dx→ 0

as h→ 0. Again by a diagonal argument we deduce that there exists a sequence
kh → ∞ such that, setting yh := yhkh we have that yh⇀y in W 1,2(Ω;R3) and
(35) holds. This concludes the proof. 2

5 The critical case

Throughout this section we shall consider a sequence of deformations (yh) ⊂
W 1,2(Ω;R3) such that

Ih(yh) =

∫

Ω

W (∇hy
h) dx ≤ Cε2h, (36)

where
lim
h→0

εh
δh

= 1. (37)
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In this regime the class of limiting deformations is given by the following set:

A :=
{

(y, d2, d3) ∈ W 2,2((0, ℓ);R3)×W 1,2((0, ℓ);R3)×W 1,2((0, ℓ);R3) :

(y,1|d2|d3) ∈ SO(3) and y,1 · d2,1 = 0 a.e. in (0, ℓ)
}

. (38)

Moreover, we have the following result.

Theorem 5.1 Assume (37). Then the following assertions hold.

1. (Compactness and lower bound) Let (yh) ⊂W 1,2(Ω;R3) satisfy

lim sup
h→0

1

ε2h
Ih(yh) ≤ C < +∞. (39)

Then there exist a triple (y, d2, d3) ∈ A and a subsequence (not relabeled)
such that

∇hy
h → (y,1|d2|d3) in L2(Ω;R3×3).

Moreover,

lim inf
h→0

1

ε2h
Ih(yh) ≥ 1

24

∫ ℓ

0

Q2(y,1 · d3,1, d2 · d3,1) dx1, (40)

where Q2 is the quadratic form introduced in (3).

2. (Upper bound) Assume in addition that

lim
h→0

h2

δh
= 0. (41)

Then for every (y, d2, d3) ∈ A there exists a sequence (yh) ⊂W 1,2(Ω;R3)
such that yh → y in W 1,2(Ω;R3), ∇hy

h → (y,1|d2|d3) in L2(Ω;R3×3), and

lim
h→0

1

ε2h
Ih(yh) =

1

24

∫ ℓ

0

Q2(y,1 · d3,1, d2 · d3,1) dx1.

Proof. 1. (Compactness and lower bound) Up to extracting a subse-
quence, we can assume that (yh) satisfies (36). Thus, by Lemma 3.3 and assump-

tion (37) we can construct a sequence (R̃
h
) in C∞((0, ℓ) × (−1/2, 1/2);R3×3)

such that for every h

R̃
h
(x1, x2) ∈ SO(3) for every (x1, x2) ∈ (0, ℓ)× (−1/2, 1/2), (42)

‖∇hy
h − R̃

h‖L2 ≤ Cεh, (43)

‖R̃h,1‖L2 ≤ C, ‖R̃h,2‖L2 ≤ Ch. (44)

From (42) and (44) it follows that there exists R ∈ W 1,2((0, ℓ);R3×3) such that

R(x1) ∈ SO(3) for every x1 ∈ (0, ℓ) and, up to subsequences, R̃
h
⇀R weakly in

W 1,2 and strongly in L2((0, ℓ)× (−1/2, 1/2);R3×3). By (43) we deduce that

∇hy
h → R in L2((0, ℓ)× (− 1

2 ,
1
2 );R

3×3). (45)
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This implies that ∇yh → Re1 ⊗ e1 strongly in L2((0, ℓ) × (−1/2, 1/2);R3×3).
Therefore, there exists y ∈ W 1,2(Ω;R3) such that, up to additive constants,
yh → y strongly in W 1,2(Ω;R3) and y,1 = Re1, y,2 = y,3 = 0 a.e. in Ω.

Let us set Rek = dk for k = 2, 3. To prove that (y, d2, d3) ∈ A it remains
to show that y,1 · d2,1 = 0 a.e. in Ω. To this aim we remark that by the second
inequality in (44) there exists B ∈ L2((0, ℓ)× (−1/2, 1/2);R3×3) such that, up
to subsequences,

1

h
R̃
h

,2⇀B weakly in L2((0, ℓ)× (− 1
2 ,

1
2 );R

3×3). (46)

Differentiating the identity (R̃
h
)T R̃

h
= I, dividing by h and passing to the limit,

we deduce that B satisfies

BTR+RTB = 0. (47)

Moreover, by (43) we have

∥

∥

∥

1

h
(R̃

h −∇hy
h),2

∥

∥

∥

W−1,2
=

1

h
sup

‖ψ‖
W

1,2
0

≤1

∣

∣

∣

∫

Ω

(R̃
h −∇hy

h)ψ,2 dx
∣

∣

∣

≤ 1

h
‖R̃h −∇hy

h‖L2 ≤ C
εh
h
.

Combining the previous inequality with (37) and (46), we obtain

1

h
(∇hy

h),2⇀B weakly in W−1,2(Ω;R3×3). (48)

Now, since for every ψ ∈W 1,2
0 (Ω;R3) we have

〈 1
h
yh,12, ψ〉 = −

∫

Ω

1

h
yh,2 ·ψ,1 dx,

passing to the limit and applying (45) and (48) yield

Be1 = d2,1.

By (47) we have Be1 ·Re1 = 0, which, in view of the identity above, implies
that y,1 · d2,1 = 0 and thus, (y, d2, d3) ∈ A.

For future reference we notice that (47) also implies that

Be2 · d2 = 0, Be2 · y,1 = −Be1 · d2 = −d2,1 · d2 = 0,

so that Be2 is parallel to d3. Since B ∈ L2((0, ℓ)× (−1/2, 1/2);R3×3) and d3 ∈
L∞((0, ℓ);R3), we have that α := Be2 · d3 belongs to L2((0, ℓ) × (−1/2, 1/2)).
Finally, again by (47) we obtain

Be3 · y,1 = −d3 · d2,1,
Be3 · d2 = −d3 ·Be2 = −α,
Be3 · d3 = 0.
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Summarizing, we have proven that the matrix B can be represented as follows:

B :=
(

d2,1|αd3| − (d3 · d2,1)y,1 − αd2
)

, (49)

where α ∈ L2((0, ℓ)× (−1/2, 1/2)).
Let us now prove the lower bound (40). First of all we can assume that the

left-hand side be finite and, possibly passing to a subsequence, that the liminf
be a limit.

Let us now set

Gh :=
(R̃

h
)T∇hy

h − I

εh
.

By (43) we have that Gh : Ω → R
3×3 is uniformly bounded in L2(Ω;R3×3). In

particular, up to subsequences, Gh converges weakly to some G in L2(Ω;R3×3).
Therefore, by Lemma 3.4 we get

lim inf
h→0

1

ε2h

∫

Ω

W (∇hy
h) dx ≥ 1

2

∫

Ω

Q3(G) dx =
1

2

∫

Ω

Q3(symG) dx

≥ 1

2

∫

Ω

Q2(G11,
1
2 (G12 +G21)) dx, (50)

where the last inequality follows from the definition (3) of Q2.
We now claim that G has the following structure:

G(x)e1 = x3R
Td3,1 +G(x1, x2, 0)e1, (51)

G(x)e2 = x3R
TBe3 +G(x1, x2, 0)e2. (52)

Identity (51) follows by proving that (Ge1),3 = RTd3,1 inW
−1,2(Ω;R3). Indeed,

by definition,

R̃
h
Ghe1 =

1

εh
(yh,1 − R̃

h
e1).

Since R̃
h
does not depend on x3, we have

(R̃
h
Ghe1),3 =

1

εh
yh,13 =

1

εh
yh,31. (53)

Recall that R̃
h
converges to R weakly in W 1,2((0, ℓ)× (−1/2, 1/2);R3×3), hence

strongly in Lp((0, ℓ) × (−1/2, 1/2);R3×3) for every p < ∞, while Gh con-

verges to G weakly in L2(Ω;R3×3). Therefore, we have that R̃
h
Ghe1⇀RGe1

in L2(Ω;R3), hence

(R̃
h
Ghe1),3⇀ (RGe1),3 = R (Ge1),3 in W−1,2(Ω;R3×3).

Then, passing to the limit in (53), using (45) and (37), we conclude that

R (Ge1),3 = d3,1,

which implies (51).
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Identity (52) follows by proving that (Ge2),3 = Be3 in W−1,2(Ω). Indeed,

(R̃
h
Ghe2),3 = R̃

h
(Ghe2),3 =

1

εh

( 1

h
yh,2

)

,3
=

1

hεh
yh,32

Passing to the limit and using (48), we conclude that

R (Ge2),3 = Be3,

which implies (52).
Combining (49), (51), (52), and the definition of R, we obtain

∫

Ω

Q2(G11,
1
2 (G12 +G21)) dx =

=

∫

Ω

Q2

(

x3y,1 · d3,1 +G11|x3=0, x3d2 · d3,1 + 1
2 (G12|x3=0 +G21|x3=0)

)

dx

=

∫

Ω

x23Q2

(

y,1 · d3,1, d2 · d3,1
)

+Q2

(

G11|x3=0,
1
2 (G12|x3=0 +G21|x3=0)

)

dx

≥
∫

Ω

x23Q2

(

y,1 · d3,1, d2 · d3,1
)

dx =
1

12

∫ ℓ

0

Q2

(

y,1 · d3,1, d2 · d3,1
)

dx1,

where the second equality follows by the fact that y,1, d2 and d3 do not depend
on x3, and by the symmetry of the domain Ω. This inequality, together with
(50), yields the lower bound (40).

2. (Upper bound) Let (y, d2, d3) ∈ A and let R := (y,1|d2|d3). Assume first
that y, d2, d3 ∈ C2([0, ℓ];R3). For every h > 0 let us consider the function

yh(x) := y(x1)+hx2d2(x1)+δhx3d3(x1)−hδhx2x3d3(x1) · d2,1(x1)y,1(x1)+βh(x),
(54)

with

βh(x) := −h2 x
2

2

2 β22(x1)d3(x1) + hδhx2x3β22(x1)d2(x1)+

+δ2hx
2
3

[

β13(x1)y,1(x1) + β23(x1)d2(x1) +
1
2β33(x1)d3(x1)

]

where (β13(x1), β22(x1), β23(x1), β33(x1)) is the solution of the minimum prob-
lem (3) with α(x1) = d3,1 · y,1 and β(x1) = d2 · d3,1, that is

Q2(d3,1 · y,1, d2 · d3,1) = Q3(B),

where

B :=





d3,1 · y,1 d2 · d3,1 β13
d2 · d3,1 β22 β23
β13 β23 β33



 .

Before proceeding with the proof we note that the first term on the right of
the ansatz (54) describes the deformation of the axis of the beam, the second
and third terms produce a rigid rotation of the cross-sections, while the fourth
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term takes into account that the cross-section does not remain planar. This
latter term may be interpreted as the warping of the cross-section, in fact it is
proportional to d3 · d2,1 which is a measure of torsion, see Remark 4.5.

Under the regularity assumptions on y,1, d2 and d3, we have βij ∈ C1([0, ℓ]).
Moreover,

∇hy
h = R+ hx2(d2,1| − β22d3| − d3 · d2,1y,1 + β22d2)

+ δhx3(d3,1| − d3 · d2,1y,1 + β22d2|2β13y,1 + 2β23d2 + β33d3) +O(h2),

where O(h2) denotes a function such that O(h2)/h2 is uniformly bounded. It
is immediate to see that yh → y in W 1,2(Ω;R3) and ∇hy

h → R = (y,1|d2|d3) in
L2(Ω;R3×3).

To prove the convergence of energies we observe that from the previous
computations and the fact that d2,1 · y,1 = 0 and d3 · d2,1 = −d3,1 · d2, it follows
that

RT∇hy
h = I + hx2





0 0 −d3 · d2,1
0 0 β22

d3 · d2,1 −β22 0



+

+δhx3





d3,1 · y,1 d3,1 · d2 2β13
d3,1 · d2 β22 2β23

0 0 β33



+O(h2),

hence, using the formula (I +A)T (I +A) = I + 2 symA+ATA,

(∇hy
h)T∇hy

h = I + 2δhx3 sym





d3,1 · y,1 d3,1 · d2 2β13
d3,1 · d2 β22 2β23

0 0 β33



+O(h2).

Therefore,
√

(∇hyh)T∇hyh = I + δhx3B +O(h2)

and by frame indifference and polar decomposition

W (∇hy
h) =W (

√

(∇hyh)T∇hyh) =W (I + δhx3B +O(h2)).

Since for h small enough the matrix I+δhx3B+O(h2) belongs to a neighborhood
of I where W is of class C2, by Taylor expansion (see (4)) we have

W (∇hy
h) =

1

2
δ2hx

2
3Q3(B) +O(h4) +O(h2δh) + o(δ2h),

so that, by (37) and (41), we deduce that

1

ε2h
W (∇hy

h) → 1

2
x23Q3(B) pointwise in Ω,

and
1

ε2h
|W (∇hy

h)| ≤ C(|B|2 + 1) in Ω
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for some constant C > 0. We emphasize that this is the only step of the proof
where we need the additional requirement (41).

By dominated convergence we conclude that

lim
h→0

1

ε2h

∫

Ω

W (∇hy
h) dx =

1

2

∫

Ω

x23Q3(B) dx =
1

24

∫ ℓ

0

Q2(d3,1 · y,1, d3,1 · d2) dx1.
(55)

Consider now the general case. Let (y, d2, d3) ∈ A and let

(β13(x1), β22(x1), β23(x1), β33(x1))

be the solution of the minimum problem (3) with α(x1) = d3,1 · y,1 and β(x1) =
d2 · d3,1, as above. Under the regularity assumptions on y,1, d2 and d3 we have
βij ∈ L2(0, ℓ). We can construct, by convolution, sequences βνij ∈ C1([0, ℓ]) such

that βνij → βij in L2(0, ℓ).

Since R ∈W 1,2((0, ℓ);R3×3) and since, by the definition of R and of the set
A, we have

RTR,1 =





0 0 y,1 · d3,1
0 d2 · d3,1

skew 0



 ∈ L2(0, ℓ;R3×3)

then, by Lemma 4.4, we can find a sequence of rotations Rν ∈ C∞([0, ℓ];R3×3)
such that Rν → R in W 1,2((0, ℓ);R3×3) and (RνTRν,1)12 = 0. Let us set

yν(x1) :=

∫ x1

0

Rν(s)e1 ds, dνα(x1) := Rν(x1)eα for α = 2, 3.

Then, yν , dν2 , d
ν
3 ∈ C∞([0, ℓ];R3) and (yν , dν2 , d

ν
3) ∈ A. Moreover, yν converges

to y strongly in W 1,2((0, ℓ);R3), while dν2 and dν3 converge to d2 and d3, respec-
tively, strongly in W 1,2((0, ℓ);R3), as ν → ∞. By the previous step for every
ν ∈ N there exists a sequence of functions (yν,h) such that yν,h → yν strongly
in W 1,2(Ω;R3), ∇hy

ν,h → Rν = (yν,1|dν2 |dν3) strongly in L2(Ω;R3×3), and

1

ε2h

∫

Ω

W (∇hy
h,ν) dx→ 1

24

∫ ℓ

0

Q2(d
ν
3,1 · yν,1, dν3,1 · dν2) dx1,

as h → 0. Hence, by a standard diagonal argument, there exists a sequence
νh → 0 such that the sequence yh := yνh,h has all the required properties. 2

Remark 5.2 In the proof of part 2 of Theorem 5.1, we have shown that, under
the assumption

lim
h→0

h2

δh
= 0,

for every smooth triple (y, d2, d3) ∈ A and every smooth βij : [0, ℓ] → R it is
possible to construct a sequence of smooth functions yh such that yh → y in
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W 1,2(Ω;R3), ∇hy
h → (y,1|d2|d3) in L2(Ω;R3×3),

lim
h→0

1

ε2h

∫

Ω

W (∇hy
h) dx =

1

24

∫ ℓ

0

Q3





d3,1 · y,1 d3,1 · d2 β13
β22 β23

sym β33



 dx1,

and in addition,

yh,11 → y,11
yh,12
h

→ d2,1
yh,22
h2

→ −β22d3 in L2(Ω;R3).

The aim of the present remark is simply to show that in the case

lim
h→0

h2

δh
= +∞,

it is impossible to find a recovery sequence satisfying all the above properties
and with β22 an arbitrary function of x1. To see this, suppose there exists a yh

with the above properties and note that any smooth function yh satisfies the
identity

−1

2

1

h2
(yh,1 · yh,1),22 = −(

yh,22
h2

· yh,1),1 +
yh,22
h2

· yh,11 −
yh,12
h

·
yh,12
h
.

Let ψ ∈ C∞
0 (Ω). Then

−1

2

1

h2

∫

Ω

yh,1 · yh,1ψ,22 dx =

∫

Ω

yh,22
h2

· yh,1ψ,1 + (
yh,22
h2

· yh,11 −
yh,12
h

·
yh,12
h

)ψ dx. (56)

The left-hand side of (56) converges to zero, since

1

h2
∣

∣

∫

Ω

yh,1 · yh,1ψ,22 dx
∣

∣ =
1

h2
∣

∣

∫

Ω

[(yh,1 − R̃
h
e1) · yh,1 + R̃

h
e1 · (yh,1 − R̃

h
e1)

+R̃
h
e1 · R̃

h
e1]ψ,22 dx

∣

∣

=
1

h2

∣

∣

∫

Ω

(yh,1 − R̃
h
e1) · (yh,1 + R̃

h
e1)ψ,22 dx

∣

∣

≤ 1

h2
‖(yh,1 − R̃

h
e1)‖L2(Ω)‖(yh,1 + R̃

h
e1)ψ,22‖L2(Ω)

≤ C
δh
h2
,

where we have applied Lemma 3.3 to the sequence (yh).
Thus passing to the limit in (56), under the assumed convergence, we find

0 =

∫

Ω

−β22d3 · y,1ψ,1 + (−β22d3 · y,11 − d2,1 · d2,1)ψ dx.

Hence, taking into account that d2,1 = (d2,1 · d3)d3, we deduce

0 = (y,1 · d3,1)β22 − (d2,1 · d3)2,

which implies that β22 can not be a generic function. Hence the contradiction.

28



6 Convergence of minimizers

In this section we consider a sequence of forces and we characterize the asymp-
totic behaviour, as h → 0, of minimizers (or almost minimizers) of the total
energy. This is made precise in the following two theorems.

Theorem 6.1 (Subcritical case) Let εh → 0 and

lim
h→0

δh
εh

= 0. (57)

Let fh, f ∈ L2(Ω;R3) be such that

∫

Ω

fh(x) dx = 0 and
1

ε2h
fh⇀f weakly in L2(Ω;R3). (58)

Let

Jh(y) := Ih(y)−
∫

Ω

fh · y dx

for y ∈W 1,2(Ω;R3).
Then | inf Jh| ≤ Cε2h. Moreover, if (yh) ⊂ W 1,2(Ω;R3) is a minimizing

sequence of 1
ε2
h

Jh in the following sense

lim
h→0

( 1

ε2h
Jh(yh)− inf

1

ε2h
Jh

)

= 0, (59)

then there exist some constants ch ∈ R
3 and a function ȳ ∈ W 1,2(Ω;R3) such

that, up to subsequences, yh−ch⇀ȳ weakly inW 1,2(Ω;R3). The limit ȳ satisfies
|ȳ,1| ≤ 1, ȳ,2 = ȳ,3 = 0 a.e. in Ω and minimizes the functional

Jsub(y) = −
∫ ℓ

0

f̄ · y dx1

among all y ∈ W 1,2((0, ℓ);R3) with |y′| ≤ 1. Here we have set f̄(x1) :=
∫

(− 1

2
, 1
2
)2 f(x) dx2dx3. Furthermore, we have

lim
h→0

1

ε2h
inf Jh = lim

h→0

1

ε2h
Jh(yh) = Jsub(ȳ) = min Jsub.

Proof. For further reference we divide the proof into two steps.
Step 1. Consider the identity deformation ph(x) := (x1, hx2, δhx3). Then by
Hölder inequality and (58) we have

inf Jh ≤ Jh(ph) = −
∫

Ω

fh · ph dx ≤ C‖fh‖L2 ≤ Cε2h. (60)
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Let now (yh) be a minimizing sequence of 1
ε2
h

Jh in the sense of (59), and let

us denote by ch the average of yh on Ω. Using (58), (59), (60), and Poincaré-
Wirtinger inequality we obtain

Ih(yh) = Jh(yh) +

∫

Ω

fh · (yh − ch) dx

≤ Cε2h + ε2h‖yh − ch‖L2 ≤ Cε2h + Cε2h‖∇yh‖L2. (61)

From the assumptions on W it follows that W (F ) ≥ C|F |2 − C′ for every
F ∈ R

3×3 and for some constant C,C′ > 0, so that

Ih(yh) ≥ C‖∇hy
h‖2L2 − C′|Ω| ≥ C‖∇yh‖2L2 − C′|Ω|.

Combining the two previous estimates we deduce that the sequence (∇yh) is
uniformly bounded in L2(Ω;R3×3). In particular, by (61) this implies that

Ih(yh) ≤ Cε2h. (62)

Moreover, using again (58) and Poincaré-Wirtinger inequality, we obtain

Jh(yh) ≥ −
∫

Ω

fh · (yh − ch) dx ≥ −Cε2h‖∇yh‖L2 ≥ −Cε2h.

Since (yh) is a minimizing sequence, the last inequality together with (60) im-
plies that | inf Jh| ≤ Cε2h.
Step 2. Assume now (57). By (62) and by Theorem 4.1, part 1, there exist
some constants ch ∈ R

3 and a function ȳ ∈ W 1,2(Ω;R3) such that |ȳ,1| ≤ 1,
ȳ,2 = ȳ,3 = 0 a.e. in Ω and yh−ch⇀ȳ inW 1,2(Ω;R3). In particular, yh−ch → ȳ
in L2(Ω;R3). Using (58) we deduce that

lim inf
h→0

1

ε2h
Jh(yh) ≥ lim inf

h→0

(

−
∫

Ω

1

ε2h
fh · (yh − ch) dx

)

= −
∫

Ω

f · ȳ dx = Jsub(ȳ). (63)

Let now y ∈ W 1,2((0, ℓ);R3) with |y′| ≤ 1. By Theorem 4.1, part 2, there exists
a sequence (ŷh) ⊂W 1,2(Ω;R3) such that ŷh⇀y in W 1,2(Ω;R3) and

lim
h→0

1

ε2h
Ih(ŷh) = 0.

This implies that

lim sup
h→0

1

ε2h
Jh(yh) = lim sup

h→0

( 1

ε2h
inf Jh

)

≤ lim sup
h→0

1

ε2h
Jh(ŷh)

= lim sup
h→0

(

−
∫

Ω

1

ε2h
fh · ŷh dx

)

= Jsub(y). (64)

Combining (63) and (64) we have the thesis. 2

In the critical case we may consider more general loads, see Remark 6.3
below.
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Theorem 6.2 (Critical case) Let

lim
h→0

δh
εh

= 1, (65)

and suppose in addition that (41) is satisfied. Let Fh, F ∈ L2(Ω;R3×3) be such
that

1

ε2h
Fh⇀F weakly in L2(Ω;R3×3). (66)

Let

Jh(y) := Ih(y)−
∫

Ω

Fh · ∇hy dx

for y ∈W 1,2(Ω;R3).
Then | inf Jh| ≤ Cε2h. Moreover, if (yh) ⊂ W 1,2(Ω;R3) is a minimizing

sequence of 1
ε2
h

Jh in the sense of (59), then there exist some constants ch ∈ R
3

and a triple (ȳ, d̄2, d̄3) ∈ A such that, up to subsequences, yh − ch → ȳ strongly
in W 1,2(Ω;R3) and ∇hy

h → (ȳ,1|d̄2|d̄3) in L2(Ω;R3×3). Moreover, the limit
triple (ȳ, d̄2, d̄3) minimizes the functional

Jcrit(y, d2, d3) =
1

24

∫ ℓ

0

Q2(y,1 · d3,1, d2 · d3,1) dx1 −
∫ ℓ

0

F̄ · (y,1|d2|d3) dx1

among all triples (y, d2, d3) ∈ A, where we have set F̄ (x1) :=
∫

(− 1

2
, 1
2
)2
F (x) dx2dx3.

Furthermore, we have

lim
h→0

1

ε2h
inf Jh = lim

h→0

1

ε2h
Jh(yh) = Jcrit(ȳ, d̄2, d̄3) = min Jcrit.

Proof. As in the case of Theorem 6.1 the proof can be divided into two steps.
Step 1. This is quite similar to that of Theorem 6.1.
Step 2. Assume (41) and (65). By (62) and by Theorem 5.1, part 1, there
exist some constants ch ∈ R

3 and a triple (ȳ, d̄2, d̄3) ∈ A such that, up to
subsequences, yh − ch → ȳ strongly in W 1,2(Ω;R3) and ∇hy

h → (ȳ,1|d̄2|d̄3) in
L2(Ω;R3×3). Moreover, by (40) and (66) we deduce that

lim inf
h→0

1

ε2h
Jh(yh) ≥ Jcrit(ȳ, d̄2, d̄3). (67)

Let now (y, d2, d3) ∈ A. By Theorem 5.1, part 2, there exists a sequence (ŷh) ⊂
W 1,2(Ω;R3) such that ŷh → y in W 1,2(Ω;R3) and

lim
h→0

1

ε2h
Ih(ŷh) =

1

24

∫ ℓ

0

Q2(y,1 · d3,1, d2 · d3,1) dx1.

This implies that

lim sup
h→0

1

ε2h
Jh(yh) = lim sup

h→0

( 1

ε2h
inf Jh

)

≤ lim sup
h→0

1

ε2h
Jh(ŷh) = Jcrit(y, d2, d3). (68)
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Combining (67) and (68) we have the thesis. 2

Remark 6.3 Let Sh := e1⊗ e1+1/he2⊗ e2+1/δhe3 ⊗ e3. If F
h besides being

in L2(Ω;R3×3) is slightly more regular then

∫

Ω

Fh · ∇hy dx =

∫

Ω

fh · y dx+

∫

∂Ω

sh · y dx, (69)

for any y ∈W 1,2(Ω;R3), where the body and surface forces fh and sh are given
by

fh := −divFhSh, sh := FhShν,

with ν the exterior normal to the boundary of Ω.
Conversely, for any fh ∈ L2(Ω;R3) and sh ∈ L2(∂Ω;R3) such that

∫

Ω

fh dx+

∫

∂Ω

sh dx = 0,

it is always possible to find an Fh ∈ L2(Ω;R3×3) for which (69) is satisfied.
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