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Abstract

In this paper we show existence of traces of functions of bounded
variation on the boundary of a certain class of domains in metric
measure spaces equipped with a doubling measure supporting a 1-
Poincaré inequality, and obtain L1 estimates of the trace functions.
In contrast with the treatment of traces given in other papers on
this subject, the traces we consider do not require knowledge of the
function in the exterior of the domain. We also establish a Maz’ya-
type inequality for functions of bounded variation that vanish on a set
of positive capacity.

1 Introduction

The Dirichlet problem for functions of least gradient on a domain Ω is to
find a function u that minimizes the energy

∫
Ω
|∇u| amongst the class of

all Sobolev functions with prescribed boundary values on ∂Ω. In order to
make sense of the problem, one needs to know how to extend the function
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u (which is a priori defined only on Ω) to ∂Ω, and one needs to know for
which boundary data the problem is solvable. The focus of the current paper
is to study the issue of how a function in the class BV(Ω) can be extended
to ∂Ω, that is, whether it has a trace on ∂Ω; the second question needs
very strong geometric conditions on Ω, even in the Euclidean setting (see for
example [15]), and will not be addressed in the present paper.

In the classical Euclidean setting, a standard result is that if the boundary
∂Ω can be presented locally as a Lipschitz graph, then the trace of a BV
function exists. Classical treatments of boundary traces of BV functions can
be found in e.g. [2, Chapter 3], [15, Chapter 2], and [5], and similar results
for Carnot groups are given in [39].

In the setting of general metric measure spaces, where the standard as-
sumptions are a doubling measure and a Poincaré inequality, traces of BV
functions have only been studied recently. In [19], results on traces are ob-
tained by making rather strong assumptions on the extendability of BV func-
tions from the domain to the whole space. These extendability properties are
satisfied by uniform domains, which are a natural generalization of Euclidean
domains with Lipschitz boundaries. In [31], results on traces are obtained in
more general domains but with stronger assumptions on the metric space. In
these papers, the trace of a function in BV(Ω) is influenced by how the func-
tion is extended outside Ω. In this paper, we prove the existence of traces
of BV functions with fewer assumptions on the domain than is standard,
and without referring to the behavior of the function in the exterior of the
domain. In particular, our results hold for domains with various types of
cusps, in which either uniformity or Poincaré inequalities are violated.

There are four main results in this paper, Theorem 3.4, Theorem 5.5,
Theorem 6.9, and Theorem 7.2. The first two deal with traces of general
BV functions on a certain class of domains, and the last two deal with BV
functions with zero trace.

The structure of the paper is as follows. In Section 2 we give the necessary
background definitions used throughout the paper. In Section 3 we propose
a notion of traces of BV functions on an open subset Ω of X, and in the first
main theorem of the paper, Theorem 3.4, we show that if the restriction of
the measure to Ω is also doubling and supports a (1, 1)-Poincaré inequality,
then every function in BV(Ω) has a trace on ∂Ω, well-defined up to sets of
H-measure zero. In Section 4 the necessity of the hypotheses imposed on Ω
in Theorem 3.4 is discussed by means of examples, and in Corollary 4.3 we
describe how to relax some of these hypotheses.
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The goal of Section 5 is to demonstrate that under additional geometric
assumptions on the boundary of Ω (regularity of the H-measure on ∂Ω), the
traces of functions in BV(Ω) lie in L1(∂Ω,H). This result is given in Theo-
rem 5.5. To provide L1 estimates for the trace, we also prove a BV extension
property of domains with such a geometric boundary; this is Proposition 5.2.
Section 6 is devoted to the study of BV functions in Ω with zero trace on ∂Ω.
In particular, we show that if H(∂Ω) is finite for an open set Ω ⊂ X, then
every function in BV(Ω) with zero trace on ∂Ω can be extended by zero to
X \ Ω without increasing its BV energy (Theorem 6.1), and that such func-
tions can be approximated in BV(X) by BV functions with compact support
in Ω (Theorem 6.9). In Section 7 we prove a Maz’ya-type Sobolev inequality
for functions that vanish on a set of positive capacity (Theorem 7.2). To
prove Theorem 6.9 and to study certain locally Lipschitz approximations of
functions in BV(Ω), we use Whitney type decompositions of Ω and discrete
convolutions. For a more substantial description of these tools, see also the
upcoming paper [32].
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of 2013, and during the visit of the first author to the University of Cincinnati
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tality. The research of the second author is partially supported by the NSF
grant DMS#1200915. The authors also wish to thank Juha Kinnunen and
Heikki Hakkarainen for illuminating discussions on trace results while at the
Institut Mittag-Leffler.

2 Preliminaries

In this section we introduce the necessary definitions and assumptions.
In this paper, (X, d, µ) is a complete metric space equipped with a Borel

regular outer measure µ. The measure is assumed to be doubling, meaning
that there exists a constant Cd > 0 such that

0 < µ(B(x, 2r)) ≤ Cdµ(B(x, r)) < ∞

for every ball B = B(x, r) with center x ∈ X and radius r > 0. For a ball
B = B(x, r) we will, for brevity, sometimes use the notation τB = B(x, τr),
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for τ > 0. Note that in a metric space, a ball does not necessarily have a
unique center and radius, but whenever we use the above abbreviation we
will consider balls whose center and radii have been specified.

By iterating the doubling condition, we obtain that there are constants
C ≥ 1 and Q > 0 such that

µ(B(y, r))

µ(B(x, R))
≥ C−1

( r

R

)Q

(2.1)

for every 0 < r ≤ R and y ∈ B(x, R). See [8] for a proof of this.
In general, C ≥ 1 will denote a constant whose value is not necessarily the

same at each occurrence. When we want to specify that a certain constant
depends on the parameters a, b, . . . , we write C = C(a, b, . . .). Unless oth-
erwise specified, all constants only depend on the doubling constant Cd and
the constants CP , λ associated with the Poincaré inequality defined later.

We recall that a complete metric space equipped with a doubling measure
is proper, that is, closed and bounded sets are compact. Since X is proper,
for any open set Ω ⊂ X we define e.g. Liploc(Ω) as the space of functions
that are Lipschitz in every Ω′ b Ω. Here Ω′ b Ω means that Ω′ is open and
that Ω′ is a compact subset of Ω.

For any set A ⊂ X and 0 < R < ∞, the restricted spherical Hausdorff
content of codimension 1 is defined as

HR(A) := inf

{
∞∑
i=1

µ(B(xi, ri))

ri

: A ⊂
∞⋃
i=1

B(xi, ri), ri ≤ R

}
.

The codimension 1 Hausdorff measure of a set A ⊂ X is

H(A) := lim
R→0

HR(A). (2.2)

The (topological) boundary ∂E of a set E ⊂ X is defined as usual. The
measure theoretic boundary ∂∗E is defined as the set of points x ∈ X for
which both E and its complement have positive upper density, i.e.

lim sup
r→0+

µ(B(x, r) ∩ E)

µ(B(x, r))
> 0 and lim sup

r→0+

µ(B(x, r) \ E)

µ(B(x, r))
> 0.

A curve is a rectifiable continuous mapping from a compact interval to
X, and is usually denoted by the symbol γ. A nonnegative Borel function g
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on X is an upper gradient of an extended real-valued function u on X if for
all curves γ on X, we have

|u(x)− u(y)| ≤
∫

γ

g ds (2.3)

whenever both u(x) and u(y) are finite, and
∫

γ
g ds = ∞ otherwise. Here x

and y are the end points of γ. Upper gradients were originally introduced in
[25].

If g is a nonnegative µ-measurable function on X and (2.3) holds for 1-
almost every curve, we say that g is a 1-weak upper gradient of u. By saying
that (2.3) holds for 1-almost every curve we mean that it fails only for a
curve family with zero 1-modulus. A family Γ of curves is of zero 1-modulus
if there is a nonnegative Borel function ρ ∈ L1(X) such that for all curves
γ ∈ Γ, the curve integral

∫
γ
ρ ds is infinite.

We consider the following norm

‖u‖N1,1(X) := ‖u‖L1(X) + inf
g
‖g‖L1(X),

with the infimum taken over all upper gradients g of u. The Newton-Sobolev
space is defined as

N1,1(X) := {u : ‖u‖N1,1(X) < ∞}/∼,

where the equivalence relation ∼ is given by u ∼ v if and only if

‖u− v‖N1,1(X) = 0.

Similarly, we can define N1,1(Ω) for any open set Ω ⊂ X. The space of
Newton-Sobolev functions with zero boundary values is defined as

N1,1
0 (Ω) := {v|Ω : v ∈ N1,1(X) and v = 0 in X \ Ω},

i.e. it is the subclass of N1,1(Ω) consisting of those functions that can be
zero extended to the whole space as Newton-Sobolev functions. For more on
Newton-Sobolev spaces, we refer to [38], [22], or [8].

Next we recall the definition and basic properties of functions of bounded
variation on metric spaces, see [36]. For u ∈ L1

loc(X), we define the total
variation of u as

‖Du‖(X) := inf
{

lim inf
i→∞

∫
X

gui
dµ : ui ∈ Liploc(X), ui → u in L1

loc(X)
}

,
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where each gui
is an upper gradient of ui. We say that a function u ∈ L1(X)

is of bounded variation, and denote u ∈ BV(X), if ‖Du‖(X) < ∞. A
measurable set E ⊂ X is said to be of finite perimeter if ‖DχE‖(X) < ∞. By
replacing X with an open set Ω ⊂ X in the definition of the total variation,
we can define ‖Du‖(Ω). The BV norm is given by

‖u‖BV(Ω) := ‖u‖L1(Ω) + ‖Du‖(Ω). (2.4)

It was shown in [36, Theorem 3.4] that for u ∈ BV(X), ‖Du‖ is the restriction
to the class of open sets of a finite Radon measure defined on the class of all
subsets of X. This outer measure is obtained from the map Ω 7→ ‖Du‖(Ω)
on open sets Ω ⊂ X via the standard Carathéodory construction. Thus, for
an arbitrary set A ⊂ X,

‖Du‖(A) := inf
{
‖Du‖(Ω) : Ω ⊃ A, Ω ⊂ X is open

}
.

Similarly, if u ∈ BV(Ω), then ‖Du‖(·) is a finite Radon measure on Ω. We
also denote the perimeter of a set E in Ω by

P (E, Ω) := ‖DχE‖(Ω).

We have the following coarea formula from [36, Proposition 4.2]: if F ⊂ X
is a Borel set and u ∈ BV(X), then

‖Du‖(F ) =

∫ ∞

−∞
P ({u > t}, F ) dt. (2.5)

If F is open, this holds for every u ∈ L1
loc(F ).

We will assume throughout the paper that X supports the following (1, 1)-
Poincaré inequality: there are constants CP > 0 and λ ≥ 1 such that for
every ball B(x, r), for every locally integrable function u, and for every upper
gradient g of u, we have∫

B(x,r)

|u− uB(x,r)| dµ ≤ CP r

∫
B(x,λr)

g dµ,

where

uB(x,r) :=

∫
B(x,r)

u dµ :=
1

µ(B(x, r))

∫
B(x,r)

u dµ.

By approximation, we get the following (1, 1)-Poincaré inequality for BV
functions. There exists C > 0, depending only on the doubling constant and
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the constants in the Poincaré inequality, such that for every ball B(x, r) and
every u ∈ L1

loc(X), we have∫
B(x,r)

|u− uB(x,r)| dµ ≤ Cr
‖Du‖(B(x, λr))

µ(B(x, λr))
. (2.6)

Given an open set Ω ⊂ X, we can consider it as a metric space in its
own right, equipped with the metric inherited from X and the restriction
of µ to subsets of Ω. This restriction is a Radon measure on Ω, see [22,
Lemma 2.3.15]. We say that µ is doubling on Ω if the restriction of µ to
subsets of Ω is doubling, that is, if there is a constant C ≥ 1 such that

0 < µ(B(x, 2r) ∩ Ω) ≤ Cµ(B(x, r) ∩ Ω) < ∞

for every x ∈ Ω and r > 0. Similarly we can require Ω to support a (1, 1)-
Poincaré inequality.

Given a set E ⊂ X of locally finite perimeter, for H-a.e. x ∈ ∂∗E we
have

γ ≤ lim inf
r→0

µ(E ∩B(x, r))

µ(B(x, r))
≤ lim sup

r→0

µ(E ∩B(x, r))

µ(B(x, r))
≤ 1− γ (2.7)

where γ ∈ (0, 1/2] only depends on the doubling constant and the constants
in the Poincaré inequality, see [1, Theorem 5.4]. We denote the collection of
all points x that satisfy (2.7) by Eγ. For a Borel set F ⊂ X and a set E ⊂ X
of finite perimeter, we know that

‖DχE‖(F ) =

∫
∂∗E∩F

θE dH, (2.8)

where ∂∗E is the measure-theoretic boundary of E and θE : X → [α, Cd],
with α = α(Cd, CP , λ) > 0, see [1, Theorem 5.3] and [3, Theorem 4.6].

In the metric setting it is not known, in general, whether the condition
H(∂∗E) < ∞ for a µ-measurable set E ⊂ X implies that P (E, X) < ∞. We
say that X supports a strong relative isoperimetric inequality if this is true,
see [27] or [29] for more on this question.

The jump set of u ∈ BV(X) is defined as

Su := {x ∈ X : u∧(x) < u∨(x)},
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where u∧(x) and u∨(x) are the lower and upper approximate limits of u
defined by

u∧(x) := sup

{
t ∈ R : lim

r→0+

µ(B(x, r) ∩ {u < t})
µ(B(x, r))

= 0

}
(2.9)

and

u∨(x) := inf

{
t ∈ R : lim

r→0+

µ(B(x, r) ∩ {u > t})
µ(B(x, r))

= 0

}
. (2.10)

We also set

ũ :=
u∧ + u∨

2
. (2.11)

By [3, Theorem 5.3], the variation measure of a BV function can be
decomposed into the absolutely continuous and singular part, and the latter
into the Cantor and jump part, as follows. Given an open set Ω ⊂ X and
u ∈ BV(Ω), we have

‖Du‖(Ω) = ‖Du‖a(Ω) + ‖Du‖s(Ω)

= ‖Du‖a(Ω) + ‖Du‖c(Ω) + ‖Du‖j(Ω)

=

∫
Ω

a dµ + ‖Du‖c(Ω) +

∫
Ω∩Su

∫ u∨(x)

u∧(x)

θ{u>t}(x) dt dH(x)

(2.12)

where a ∈ L1(Ω) is the density of the absolutely continuous part and the
functions θ{u>t} are as in (2.8). From this decomposition it also follows that
H is a σ-finite measure on Su.

3 Traces of BV functions

We give the following definition for the boundary trace, or trace for short, of
a function defined on an open set.

Definition 3.1. Let Ω ⊂ X be an open set and let u be a µ-measurable
function on Ω. A function Tu : ∂Ω → R is the trace of u if for H-almost
every x ∈ ∂Ω we have

lim
r→0+

∫
Ω∩B(x,r)

|u− Tu(x)| dµ = 0. (3.1)
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Example 3.2. Consider X = C = R2, and set

Ω = B(0, 1) \ {z = (x1, x2) : x1 > 0, x2 = 0},

that is, the slit disk, and let u(z) := Arg(z). The function u does not have a
trace at any boundary point in the slit, but we do have

lim
r→0+

∫
Ω∩B(z,r)

u dL2 = π

for every z = (x1, 0) with 0 < x1 < 1. For this reason, it is crucial that we
define traces by requiring the stronger condition (3.1).

We start by showing that for sufficiently regular domains, BV functions
can be extended from the domain to its closure, which we consider as a metric
space in its own right. In the following, we define µ as the zero extension of
µ from Ω to Ω, that is, for A ⊂ Ω we set µ(A) = µ(A ∩ Ω). By [22, Lemma
2.3.20] we know that µ is a Borel regular outer measure on Ω. Also, the zero
extension of any µ-measurable function on Ω to either Ω or the whole space
X is µ-measurable, see [22, Lemma 2.3.22].

Proposition 3.3. Assume that Ω is a bounded open set that supports a
(1, 1)-Poincaré inequality, and µ is doubling on Ω. Equip the closure Ω with
µ. If u ∈ BV(Ω), then the zero extension of u to Ω, denoted by u, satisfies
‖u‖BV(Ω) = ‖u‖BV(Ω) and thus ‖Du‖(∂Ω) = 0.

Proof. Clearly ‖u‖L1(Ω) = ‖u‖L1(Ω). Since Ω is a metric space with a dou-
bling measure supporting a (1, 1)-Poincaré inequality, we know that Lipschitz
functions are dense in N1,1(Ω), see [8, Theorem 5.1]. Thus for u ∈ BV(Ω) we
have a sequence of Lipschitz functions ui on Ω with ui → u in L1

loc(Ω) and

‖Du‖(Ω) = lim inf
i→∞

∫
Ω

gui
dµ,

where each gui
is an upper gradient of ui. By using the fact that Ω is bounded

and by considering truncations of u, we can assume that in fact ui → u in
L1(Ω). We can extend every Lipschitz function ui on Ω to a Lipschitz function
on Ω, still denoted by ui. Then ui → u in L1(Ω), and

‖Du‖(Ω) = lim inf
i→∞

∫
Ω

gui
dµ = lim inf

i→∞

∫
Ω

gui
dµ ≥ ‖Du‖(Ω).

9



The last inequality follows from the fact that the zero extension of gui
to ∂Ω

is a 1-weak upper gradient of ui in Ω, by [10, Lemma 5.11]. Thus we have
u ∈ BV(Ω) with ‖Du‖(Ω) = ‖Du‖(Ω), so it follows that ‖Du‖(∂Ω) = 0.

Recall the definition of the codimension 1 Hausdorff measure H from
(2.2). We denote by H the codimension 1 Hausdorff measure in the space Ω,
defined with respect to the measure µ.

We say that an open set Ω satisfies a measure density condition if there
is a constant cm > 0 such that

µ(B(x, r) ∩ Ω) ≥ cmµ(B(x, r)) (3.2)

for H-a.e. x ∈ ∂Ω and every r ∈ (0, diam(Ω)).

Theorem 3.4. Let Ω be a bounded open set that supports a (1, 1)-Poincaré
inequality, and µ be doubling in Ω. Then there is a linear trace operator T
on BV(Ω) such that given u ∈ BV(Ω), for H-a.e. x ∈ ∂Ω we have

lim
r→0+

∫
B(x,r)∩Ω

|u− Tu(x)|Q/(Q−1) dµ = 0.

If Ω also satisfies the measure density condition (3.2), the above holds for
H-a.e. x ∈ ∂Ω.

Proof. By [22, Lemma 7.2.3] we know that Ω equipped with µ also supports
a (1, 1)-Poincaré inequality, and µ is doubling on Ω. By Proposition 3.3 we
know that ‖Du‖(∂Ω) = 0 and so by the decomposition (2.12), we also know
that H(Su ∩ ∂Ω) = 0. On the other hand, by the Lebesgue point theorem
given in [28, Theorem 3.5], we have for H-a.e. x ∈ ∂Ω \ Su

lim
r→0+

∫
B(x,r)∩Ω

|u− u∧(x)|Q/(Q−1) dµ = lim
r→0+

∫
B(x,r)

|u− u∧(x)|Q/(Q−1) dµ = 0.

Thus we set Tu(x) = u∧(x). Note that because µ(∂Ω) = 0, the value of u∧

at points in ∂Ω is unaffected by how we extend u to ∂Ω. The linearity of T is
immediate. If the measure density condition (3.2) holds, then H and H are
comparable for subsets of ∂Ω, and so the result holds for H-a.e. x ∈ ∂Ω.
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4 Some examples

In this section we consider examples that illustrate the function of each of
the hypotheses stated in Theorem 3.4.

Theorem 3.4 is stronger than it seems, for we do not assume that H(∂Ω)
is finite.

Example 4.1. The von Koch snowflake domain in the plane is a uniform
domain, and uniform domains equipped with the restriction of the Lebesgue
measure have a doubling measure supporting a (1, 1)-Poincaré inequality, see
e.g. [10]. On the other hand, the H-measure (that is, the one-dimensional
Hausdorff measure) of the boundary of the snowflake domain is infinite, so
the existence of Tu at H-almost every boundary point is a strong statement.
However, we do not claim here that the trace Tu is in the class L1(∂Ω,H),
and indeed this would be too much to hope for. Since constant functions are
in the class BV(Ω) whenever Ω is a bounded domain, and their traces are
also constant functions on ∂Ω, in order to consider whether traces of BV(Ω)-
functions are in L1(∂Ω,H) it is necessary that H(∂Ω) be finite. Observe also
that for the snowflake domain, ∂∗Ω = ∂Ω so considering L1(∂∗Ω,H) does not
help either.

We will consider L1 estimates in Section 5.

Example 4.2. Let C ⊂ [0, 1] be the usual 1/3-Cantor set, and define
Ω := (0, 1)2 \ C × C. This is an open set from which Sobolev functions can
be extended to the whole unit square, as can be seen by the characterization
of Sobolev functions by means of absolute continuity on almost every line
parallel to the (canonical) coordinate axes of Euclidean spaces. Thus Ω sup-
ports a (1, 1)-Poincaré inequality, and it is clear that the Lebesgue measure is
doubling in Ω and that the measure density condition (3.2) holds. Therefore
by Theorem 3.4, any function u ∈ BV(Ω) has a trace at H-a.e. x ∈ ∂Ω.
However, the Hausdorff dimension of C × C is 2 log(2)/ log(3) > 1, and so
H(∂Ω) = ∞. Together with the example discussed above, this indicates that
in the generality considered in Theorem 3.4 we do not have Tu ∈ L1(∂Ω,H).

To see why the assumptions of Theorem 3.4 are necessary at least in some
form, we first note that without a Poincaré inequality, Ω can be chosen to
be the slit disk from Example 3.2, where we know that traces of functions of
bounded variation do not exist. On the other hand, consider a domain in R2
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with an interior cusp:

Ω = {x = (x1, x2) ∈ R2 : |x| < 1 and |x2| > x2
1 when x1 ≥ 0},

This does not support a (1, 1)-Poincaré inequality, since such an inequal-
ity always implies that the space (in this case the set Ω) is quasiconvex,
that is, every pair of points can be connected by a curve whose length is
at most a constant times the distance between the two points (see e.g. [16,
Proposition 4.4]). However, boundary traces of BV functions do exist for
this domain, as can be deduced from the following result. In the above do-
main with an internal cusp, we can take the sets Fε to be small closed balls
centered at the origin.

Corollary 4.3. Let Ω be an open set. The conclusions of Theorem 3.4 are
true if for every ε > 0 there is a closed set Fε ⊂ X with

H(∂Ω ∩ Fε) < ε (4.1)

such that Ω \ Fε, instead of Ω itself, satisfies the hypotheses of Theorem 3.4
(apart from the last sentence).

Proof. Fix ε > 0. It is easy to check that ∂Ω \Fε ⊂ ∂(Ω \Fε). As earlier, we
can define a codimension 1 Hausdorff measure in the closure of Ω \ Fε with
respect to the zero extension of µ from Ω \ Fε, but since Fε is closed, this
agrees with H on ∂Ω \ Fε. Thus by Theorem 3.4 we know that for H-a.e.
x ∈ ∂Ω \ Fε, there exists Tu(x) ∈ R with

lim
r→0+

∫
B(x,r)∩Ω\Fε

|u− Tu(x)|Q/(Q−1) dµ = 0.

But since Fε is closed, this immediately implies that

lim
r→0+

∫
B(x,r)∩Ω

|u− Tu(x)|Q/(Q−1) dµ = 0.

Thus the trace Tu(x) exists outside a subset of ∂Ω with H-measure at most
ε, due to (4.1). By letting ε → 0, we get the result.

In the following example, we consider the distinction between the mea-
sures H and H .
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Example 4.4. Without the measure density condition (3.2), the conclusion
of Theorem 3.4 does not necessarily hold for H-a.e. x ∈ ∂Ω. As a coun-
terexample, consider the space X = R2 equipped with the Euclidean metric
and the weighted Lebesgue measure dµ := w dL2 with w = |x|−1. It can be
shown that µ is doubling and X supports a (1, 1)-Poincaré inequality, see [24,
Corollary 15.34] and [7, Theorem 4]. Consider the domain

Ω :=
{
x = (x1, x2) ∈ R2 : 0 < x1 < 1, |x2| < x2

1

}
. (4.2)

We can check that µ is doubling on Ω and that Ω supports a (1, 1)-Poincaré
inequality, see the upcoming Example 4.5. On the other hand, the mea-
sure density condition (3.2) clearly does not hold at the origin (0, 0), for
µ(B((0, 0), r)) = 2πr, whereas µ(B((0, 0), r)∩Ω) ≤ r2. For (0, 0) ∈ ∂Ω, if B
is a ball containing (0, 0), then B((0, 0), 2r) contains this ball, where r is the
radius of B. Thus by the doubling property of µ, we have

µ(B)

r
≤ 2

µ(B((0, 0), 2r))

2r
≤ C

µ(B)

r
.

Therefore

H({(0, 0)}) ≥ 1

C
lim

r→0+

µ(B((0, 0), r))

r
=

1

C
lim

r→0+

2πr

r
=

2π

C
,

whereas

H({(0, 0)}) ≤ lim
r→0+

µ(B((0, 0), r) ∩ Ω)

r
≤ lim

r→0+

r2

r
= 0.

Now, if we define the function u := |x|−1/2, and denote its local Lipschitz
constant by Lip u, we have

‖Du‖(Ω) =

∫
Ω

Lip u dµ =
1

2

∫
Ω

|x|−3/2 dµ ≤
∫ 1

0

r−3/2r2r−1 dr < ∞,

and similarly ‖u‖L1(Ω) < ∞, so u ∈ BV(Ω). However, the trace of u does
not exist at (0, 0). So without the measure density condition, we may have
traces for H-a.e. but not H-a.e. x ∈ ∂Ω. Thus by allowing ourselves the
flexibility of working with either H or H, and by taking Corollary 4.3 into
account, we cover a wider class of domains.

Next we show that various exterior cusps do satisfy the assumptions of
Theorem 3.4, apart from the measure density condition (3.2).
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Example 4.5. Take the unweighted space X = R2, and as in (4.2), define
the domain with a cusp

Ω :=
{
x = (x1, x2) ∈ R2 : 0 < x1 < 1, |x2| < x2

1

}
.

To show that µ is doubling on Ω, it suffices to show the doubling property
with respect to squares centered at points in Ω. For x = (x1, x2) ∈ Ω and
r > 0, this can be done by an explicit computation for two separate cases,
with either r ≥ x2

1 or r < x2
1 — we leave the details to the reader.

Now we focus on showing that Ω supports a (1, 1)-Poincaré inequality.
For this, it is enough to show that Ω supports a Semmes family of curves,
see [37] or [23]. Pick a pair of points x, y ∈ Ω; here we only consider the
case x = (x1, 0) and y = (y1, 0). The required condition is that there is a
family Γx,y of curves connecting x and y, and a probability measure αx,y on
this family, such that∫

Γx,y

∫
γ

χA(t) dt dαx,y(γ)

≤ C

∫
A

d(z, x)

L2|Ω(B(x, d(z, x)))
+

d(z, y)

L2|Ω(B(y, d(z, y)))
dL2|Ω(z)

(4.3)

for every Borel set A ⊂ Ω. Define the Semmes family Γx,y of curves between
x and y as follows: for s ∈ (−1, 1),

γs(t) :=


(x1 + t, st)

(x1 + t, s(x1 + t)2)

(x1 + t,−s(t + x1 − y1))

(4.4)

for the respective cases
t ≥ 0, y1 − (x1 + t) ≥ (x1 + t)2, (x1 + t, t) ∈ Ω,

t ≥ 0, y1 − (x1 + t) ≥ (x1 + t)2, (x1 + t, t) /∈ Ω,

0 ≤ t ≤ y1 − x1, y1 − (x1 + t) < (x1 + t)2,

respectively. Note that the parametrization is not by arc-length, but compa-
rable to it. Essentially, the curves spread out from x as a ”pencil” of angle
π/2 as long as there is space in Ω, then they become parabolas that corre-
spond to the cusp, and finally the curves converge on y as another ”pencil”
of angle π/2.
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Since the curves γs ∈ Γx,y are parametrized by s, we can define αx,y :=
1
2
H1|(−1,1), where H1 is the 1-dimensional Hausdorff measure. Now, if A ⊂ Ω

is such that every γs is defined in A according to the first or third possible
definition given in (4.4), it is a standard result, possible to prove by the
classical coarea formula, that (4.3) holds.

On the other hand, if A ⊂ Ω is such that every γs is defined by the second
definition in A, for every z ∈ A, we have

d(z, x)

L2(B(x, d(z, x)) ∩ Ω)
≥ 1

2

z1 − x1∫ x1+2(z1−x1)

x1
2v2 dv

=
1

8

(∫
{(x1,x1+2(z1−x1))}

v2 dv

)−1

≥ 1

8

1

z2
1

,

(4.5)

where the last inequality follows from the fact that v 7→ v2 is convex. On the
other hand, by the classical coarea formula we have∫ 1

−1

∫
γs

χA(t) dt dH1(s) ≤
∫

A

1

z2
1

dL2.

Thus condition (4.3) holds in this case as well.
Finally, it can be checked that essentially the same definition of the

Semmes family works in the more general case of the space Rn, n ∈ N,
n ≥ 2, with a weighted Lebesgue measure dµ = w dLn with w = |x|α, α ∈ R,
and with a polynomial cusp of degree β > 0 rather than 2. The above compu-
tations run through with small changes at least if we require that α + β ≥ 1.

5 L1 estimates for traces

In this section we consider a particular condition on the domain Ω (given be-
low in (5.1)) which, in addition to the assumptions on Ω given in Section 3, is
necessary and sufficient for obtaining L1 estimates for traces. Such estimates
are related to extensions of BV functions — recall that a domain Ω is a BV
extension domain if there is a bounded operator E : BV(Ω) → BV(X) such
that Eu|Ω = u. By [27, Proposition 6.3] we know that if Ω is an open set
with H(∂Ω) < ∞ and E ⊂ Ω is a µ-measurable set with P (E, Ω) < ∞,
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then P (E, X) < ∞. However, here we do not have an extension bound
P (E, X) ≤ CP (E, Ω). It was shown by Burago and Maz’ya in [13] that a
domain Ω is a weak BV extension domain (with control only on the total
variation of the extension, not the whole BV norm) if and only if there is a
constant C ≥ 1 such that whenever E ⊂ Ω is of finite perimeter in Ω and of
sufficiently small diameter, there is a set F ⊂ X with F ∩ Ω = E such that
P (F, X) ≤ CP (E, Ω). See [6, Theorem 3.8] for a proof of this fact in the
metric setting. In the following extension result we get a bound not only on
the total variation but on the whole BV norm. Some of the assumptions we
require are somewhat simpler than in [10], where Newtonian functions are
extended.

Remark 5.1. While we are mostly interested in applying extension results
to estimates for traces, the trace operator T need not exist for a BV extension
domain. This is demonstrated by the planar slit disk, which is known to be a
BV extension domain by [30, Theorem 1.1]. Furthermore, we can show that
every Sobolev N1,1-extension domain is a BV extension domain, but not every
BV extension domain is a Sobolev N1,1-extension domain, as demonstrated
again by the slit disk.

Proposition 5.2. Assume that Ω ⊂ X is a bounded domain that supports a
(1, 1)-Poincaré inequality, that there is a constant C∂Ω > 0 such that

H(B(x, r) ∩ ∂Ω) ≤ C∂Ω
µ(B(x, r))

r
(5.1)

for all r ∈ (0, 2 diam(Ω)), and that there is a constant cm > 0 such that the
measure density condition (3.2) holds for all x ∈ ∂Ω and all r ∈ (0, diam(Ω)).
Then there is a constant CΩ = CΩ(Cd, CP , λ, C∂Ω, cm, diam(Ω)) such that for
every u ∈ BV(Ω) the zero extension of u, denoted by û, satisfies

‖û‖BV(X) ≤ CΩ‖u‖BV(Ω). (5.2)

Example 5.3. Condition (5.1) is not needed for Ω to be a BV extension
domain, as demonstrated by the von Koch snowflake domain. However, this
domain does not satisfy (5.2). While the boundary of the von Koch snowflake
domain has infinite 1-dimensional Hausdorff measure, a modification of it will
result in a domain which satisfies H(∂Ω) < ∞ as well as all the hypotheses of
the above theorem except for (5.1), and it can be seen directly that in such a
domain, the zero extensions of BV functions are of finite perimeter in X = R2
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but do not satisfy (5.2). One such domain can be obtained as follows. The
curve obtained by the construction of the von Koch snowflake curve at the
k-th step has length (4/3)k. For each positive integer k we scale a copy of the
k-th step of the snowflake curve by a factor (3/4)2k, and concatenate them
so that their end points lie on the x-axis in R2. Such a curve has total length∑∞

k=1(3/4)k < ∞. We replace one side of a square of length
∑∞

k=1(3/4)2k

with this curve. The interior region in R2 surrounded by this closed curve is
a uniform domain, and hence the restriction of the Lebesgue measure to this
domain is doubling and supports a (1, 1)-Poincaré inequality. Furthermore,
the H-measure of its boundary is

∞∑
k=1

(3/4)k + 3
∞∑

k=1

(3/4)2k < ∞.

However, this domain fails to satisfy (5.1).
To demonstrate that we cannot discard the other assumptions of Proposi-

tion 5.2 either, we note that without the assumption of a Poincaré inequality
in Ω, we could take the space to be

X := {(x1, x2) ∈ R2 : 0 ≤ x1 ≤ 1, −1 ≤ x2 ≤ x2
1}

and then set Ω to be the domain

Ω := X \ [0, 1/2]× {0}.

Note that Ω satisfies the measure density condition and (5.1), but fails to sup-
port a (1, 1)-Poincaré inequality. If we now consider the sets Ei := {(x1, x2) ∈
X : 0 ≤ x1 ≤ 1/i, x2 > 0}, i ∈ N, then P (Ei, Ω) = 1/i2, whereas for every
Fi ⊂ X for which Fi ∩ Ω = Ei, we must have P (Fi, X) ≥ 1/i. Therefore
we cannot find a constant C ≥ 1 such that P (Fi, X) ≤ CP (Ei, Ω) for all
positive integers i.

To see that the measure density condition is also needed in the proposi-
tion, we consider X to be the Euclidean plane, with Ω = {(x1, x2) ∈ R2 :
0 < x1 < 1, |x2| < x2

1} the external cusp domain we saw in Example 4.5.
As shown in that example, Ω supports a (1, 1)-Poincaré inequality and the
restriction of the Lebesgue measure to Ω is doubling, and clearly (5.1) holds
as well. However, Ω does not satisfy the measure density condition, and the
sets Ei := {(x1, x2) ∈ R2 : 0 < x1 < 1/i, |x2| < x2

1}, i ∈ N, together demon-
strate that we cannot find a bound C ≥ 1 controlling the perimeter of the
extensions.
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Proof of Proposition 5.2. We first consider a µ-measurable set E such that
P (E, Ω) < ∞. By (5.1) we have H(∂Ω) < ∞. Therefore by [27, Proposition
6.3] we know that P (E, X) < ∞. We consider the following two cases.
Case 1: µ(E) > 1

2
µ(Ω). Then by (2.8),

P (E, X) ≤ P (E, Ω) + P (E, ∂Ω)

≤ P (E, Ω) + CH(∂Ω)

≤ P (E, Ω) + 2C
H(∂Ω)

µ(Ω)
µ(E) ≤ C‖χE‖BV(Ω)

for some C = C(Cd, CP , λ, C∂Ω, cm, diam(Ω)), as desired.
Case 2: µ(E) ≤ 1

2
µ(Ω). The perimeter measure of E is carried on the set

Eγ, where Eγ consists of all the points x ∈ ∂E that satisfy (2.7), see [1,
Theorem 5.4]. We therefore need to control H(Eγ ∩∂Ω) in terms of P (E, Ω).
Fix x ∈ Eγ ∩ ∂Ω. Since x ∈ Eγ, for some r0 > 0 we have that for all
0 < r < r0,

µ(B(x, r) ∩ E)

µ(B(x, r) ∩ Ω)
>

γ

2
.

Fix such r > 0. Because µ(E) ≤ 1
2
µ(Ω), we can choose the smallest j ∈ N

such that
µ(B(x, 2jr) ∩ E)

µ(B(x, 2jr) ∩ Ω)
≤ 1

2
.

If j = 1, then by the choice of r we have

µ(B(x, r) ∩ E)

µ(B(x, r) ∩ Ω)
>

γ

2
.

If j > 1, then we again have

µ(B(x, 2j−1r) ∩ E)

µ(B(x, 2j−1r) ∩ Ω)
>

1

2
≥ γ

2
,

and so by the doubling property of µ together with the measure density
condition for Ω,

1

2
≥ µ(B(x, 2jr) ∩ E)

µ(B(x, 2jr) ∩ Ω)
≥ µ(B(x, 2j−1r) ∩ E)

µ(B(x, 2j−1r) ∩ Ω)

µ(B(x, 2j−1r) ∩ Ω)

µ(B(x, 2jr) ∩ Ω)
≥ γ

2

cm

Cd

.
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Set rx := 2jr. By using the relative isoperimetric inequality in Ω, the measure
density condition, and the above, we get

CP (E, Ω ∩B(x, λrx)) ≥ γ

2

cm

Cd

µ(B(x, rx) ∩ Ω)

rx

≥ γ

2

c2
m

C2
d

µ(B(x, rx))

rx

.

Thus we get a covering {B(x, λrx)}x∈∂Ω∩Eγ of ∂Ω ∩ Eγ in which every ball
B(x, rx) satisfies the above inequality. By the 5-covering theorem, we can
pick a countable collection {Bj = B(xj, λrj)}∞j=1 of pairwise disjoint balls
such that {B(xj, 5λrj)}∞j=1 is a cover of ∂Ω∩Eγ. Therefore by (5.1) and the
doubling property of µ, together with the fact that the perimeter measure of
E is comparable to H|Eγ (see (2.8)), we get

H(Eγ ∩ ∂Ω) ≤
∑
j∈N

H(Eγ ∩ ∂Ω ∩ 5λBj)

≤ C∂Ω

∑
j∈N

µ(5λBj)

5rj

≤ C
∑
j∈N

µ(Bj)

rj

≤ C
∑
j∈N

P (E, Ω ∩ λBj) ≤ CP (E, Ω).

Thus by (2.8) again,

P (E, X) = P (E, Ω) + P (E, ∂Ω) ≤ P (E, Ω) + CH(Eγ ∩ ∂Ω) ≤ CP (E, Ω).

Finally, for u ∈ BV(Ω), with û denoting the zero extension of u to X \Ω,
by the coarea formula (2.5) we have

‖Dû‖(X) =

∫ ∞

−∞
P ({û > t}, X) dt

≤ C

∫ ∞

−∞
P ({u > t}, Ω) dt = C‖Du‖(Ω)

as desired.

Suppose Ω ⊂ X is a bounded open set and u ∈ BV(Ω), and suppose that
the trace Tu(x) exists for H-a.e. x ∈ ∂Ω. We wish to have the following L1

estimate for the trace:∫
∂Ω

|Tu| dH ≤ CT

(∫
Ω

|u| dµ + ‖Du‖(Ω)

)
(5.3)

for a constant CT > 0 which is independent of u. This kind of integral-type
inequality is closely related to the condition (5.1), as we will now show.
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Proposition 5.4. Let Ω ⊂ X be open and bounded. If (5.3) holds for
every u ∈ BV(Ω), then there is a constant C∂Ω = C∂Ω(CT , Cd, diam(Ω)) >
0 such that the boundary of Ω satisfies (5.1) for all x ∈ ∂Ω and all r ∈
(0, 2 diam(Ω)).

Proof. Pick x ∈ ∂Ω. For every i ∈ Z, there exists ri ∈ [2i, 2i+1] such that

P (B(x, ri), X) ≤ Cd
µ(B(x, ri))

ri

,

see [27, Lemma 6.2]. We consider i ∈ Z for which 2i ≤ 4 diam(Ω). Given
such an i, we choose u = χB(x,ri)∩Ω. Then we have

H(∂Ω ∩B(x, ri)) ≤
∫

∂Ω

|Tu| dH ≤ CT

(∫
Ω

|u| dµ + ‖Du‖(Ω)

)
= CT (µ(B(x, ri) ∩ Ω) + P (B(x, ri), Ω))

≤ CT (µ(B(x, ri)) + P (B(x, ri), X)) .

By the choice of ri, we now have

H(∂Ω ∩B(x, ri)) ≤ CT Cd

(
µ(B(x, ri)) +

µ(B(x, ri))

ri

)
≤ 8CT Cd[1 + diam(Ω)]

µ(B(x, ri))

ri

.

Now by the doubling property of µ it follows that the above holds for all
radii r ≤ 2 diam(Ω), by inserting an additional factor C2

d on the right-hand
side.

Now we prove the second of the two main theorems of this paper.

Theorem 5.5. Let Ω be a bounded domain that supports a (1, 1)-Poincaré
inequality and that there is a constant cm > 0 such that the measure density
condition (3.2) holds for all x ∈ ∂Ω, r ∈ (0, diam(Ω)), and that (5.1) holds.
Then there is a constant CT = CT (Cd, CP , λ, Ω, cm) > 0 such that (5.3) holds,
that is, ∫

∂Ω

|Tu| dH ≤ CT

(∫
Ω

|u| dµ + ‖Du‖(Ω)

)
for all u ∈ BV(Ω).

20



Proof. By Theorem 3.4, the trace Tu(x) exists for H-a.e. x ∈ ∂Ω. First
we show that Tu is a Borel function on ∂Ω, so that the integral in (5.3)
makes sense. Since X supports a Poincaré inequality, we know that a bi-
Lipschitz change in the metric results in a geodesic space, i.e. a space where
every pair of points can be joined by a curve whose length is equal to the
distance between the two points, see [16, Proposition 4.4]. It is easy to
see that traces are invariant under this transformation because the measure
density condition for Ω holds. It follows from [12, Corollary 2.2] that there
are positive constants C, δ such that whenever x ∈ X, r > 0, and ε > 0,

µ(B(x, r[1 + ε]) \B(x, r)) ≤ Cµ(B(x, r))εδ.

It follows from the above condition and the absolute continuity of integrals
of u that the function

∂Ω 3 x 7→ uΩ∩B(x,r)

for any fixed r > 0 is continuous. Since Tu is the limit of these functions as
r → 0, it is a Borel function.

By Proposition 5.2 the zero extension û = Eu ∈ BV(X). By [19, Propo-
sition 5.12] we know that∫

∂Ω

|(Eu)∧|+ |(Eu)∨| dH ≤ C‖Eu‖BV(X).

By the measure density condition, it is clear that

(Eu)∧(x) ≤ Tu(x) ≤ (Eu)∨(x)

for every x ∈ ∂Ω for which the trace Tu(x) exists. Thus we get by Proposition
5.2∫

∂Ω

|Tu| dH ≤
∫

∂Ω

|(Eu)∧|+ |(Eu)∨| dH ≤ C‖Eu‖BV(X) ≤ C‖u‖BV(Ω).

Example 5.6. Note that once again, if we define Ω by (4.2) as an exterior
cusp in the unweighted space R2, and consider functions ui := χB((0,0),1/i)∩Ω,
i ∈ N, we see that we do not have the L1 estimate (5.3), and neither do
we have the measure density condition (3.2). If we consider Ω as our metric
space, we obviously have the measure density condition (3.2), but then we
do not have (5.1), and again the L1 estimate fails.
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On the other hand, the proof of Theorem 5.5 does not really require that
Ω supports a (1, 1)-Poincaré inequality provided a trace operator exists, as
demonstrated in the following example.

Example 5.7. Let X = R2 and let Ω be the internal cusp domain given by

Ω := {x = (x1, x2) ∈ R2 : |x| < 1 and |x2| > x2
1 when x1 ≥ 0},

equipped with the restriction of the Euclidean metric and Lebesgue measure.
Note that Ω satisfies the measure density condition and (5.1), but Ω does
not support a (1, 1)-Poincaré inequality. However, by Corollary 4.3 we know
that functions in BV(Ω) do have a trace, and the proof of Theorem 5.5 shows
that the traces are H-measurable on ∂Ω. Furthermore, Ω is a BV extension
domain, see for example [30, Theorem 1.1]. Now it follows as in the proof of
Theorem 5.5 that traces of functions in BV(Ω) satisfy an L1 estimate. Thus
the conclusion of Theorem 5.5 is more widely applicable than it first appears.

6 BV functions with zero trace

In this section we study functions in BV(Ω) that have zero trace on ∂Ω. In
considering Dirichlet problems for a given domain, one is interested in mini-
mizing certain energies of a function from amongst the class of all functions
with the same boundary value; that is, the difference of the test function and
the boundary data should have zero trace. Hence an understanding of BV
functions with zero trace is of importance.

The following argument can be found in [27], but we give a proof for
the reader’s convenience. Given f ∈ BV(X), recall the definition of the

representative f̃ from (2.11).

Theorem 6.1. Let Ω ⊂ X be an open set and let u ∈ BV(Ω). Assume
either that the space supports a strong relative isoperimetric inequality, or
that H(∂Ω) < ∞. Then

lim
r→0+

1

µ(B(x, r))

∫
B(x,r)∩Ω

|u| dµ = 0 (6.1)

for H-a.e. x ∈ ∂Ω if and only if the zero extension of u into the whole space

X, denoted by û, is in BV(X) with ‖Dû‖(X \Ω) = 0 and ˜̂u(x) = 0 for H-a.e.
x ∈ ∂Ω.
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If in addition Ω satisfies the measure density condition (3.2), then the
above conditions are also equivalent with the condition of having Tu(x) = 0
for H-a.e. x ∈ ∂Ω.

Observe that if u has a trace Tu on ∂Ω, then u necessarily satisfies (6.1)
and Tu = 0 H-a.e. in ∂Ω.

Proof. First assume that (6.1) holds for H-a.e. x ∈ ∂Ω. We denote the level
sets of û by

Et := {x ∈ X : û(x) > t}, t ∈ R.

Fix t < 0. Then clearly X \ Ω ⊂ Et. If x ∈ ∂Ω such that (6.1) holds, then
because on Ω \ Et we have |u| ≥ t, we get

lim sup
r→0+

µ(B(x, r) ∩ Ω \ Et)

µ(B(x, r))
≤ lim sup

r→0+

1

|t|µ(B(x, r))

∫
B(x,r)∩Ω

|u| dµ = 0.

Hence Et has density 1 at H-a.e. x ∈ ∂Ω.
Now fix t > 0. Then Et ⊂ Ω, and if x ∈ ∂Ω such that (6.1) holds, then

because on Et we have |u| ≥ t, we get

lim sup
r→0+

µ(B(x, r) ∩ Et)

µ(B(x, r))
≤ lim sup

r→0+

1

|t|µ(B(x, r))

∫
B(x,r)∩Ω

|u| dµ = 0,

that is, Et has density 0 at x.
From the above argument we know that H(∂∗Et ∩ ∂Ω) = 0 whenever

t 6= 0. Since û is a zero extension, clearly we have ∂∗Et \Ω = ∅ for all t ∈ R.
By the coarea formula (2.5) we know that P (Et, Ω) < ∞ for a.e. t ∈ R.
Thus for a.e. t ∈ R, by (2.8) we have

H(∂∗Et) = H(∂∗Et ∩ Ω) ≤ CP (Et, Ω) < ∞.

If H(∂Ω) < ∞, by [27, Proposition 6.3] we know that for such t, necessarily
P (Et, X) < ∞. The same is true if X supports a strong relative isoperimetric
inequality. By (2.8) we then have

P (Et, X) ≤ CH(∂∗Et) ≤ CP (Et, Ω),

and then it follows from the coarea formula (2.5) that

‖Dû‖(X) =

∫ ∞

−∞
P (Et, X) dt ≤ C

∫ ∞

−∞
P (Et, Ω) dt = C‖Du‖(Ω) < ∞
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and

‖Dû‖(∂Ω) =

∫ ∞

−∞
P (Et, ∂Ω) dt ≤ C

∫ ∞

−∞
H(∂∗Et ∩ ∂Ω) dt = 0.

Hence we also have û ∈ BV(X).
Conversely, if we know that the zero extension û ∈ BV(X) and ‖Dû‖(X \

Ω) = 0, by the decomposition (2.12) we know that H(Sbu∩∂Ω) = 0, and then
by the Lebesgue point theorem proved in [28, Theorem 3.5], we have

lim
r→0+

1

µ(B(x, r))

∫
B(x,r)∩Ω

|u| dµ = lim
r→0+

∫
B(x,r)

|û− ˜̂u(x)| dµ = 0

for H-a.e. x ∈ ∂Ω.
The last statement of the theorem is clear.

To discuss Dirichlet problems in the metric setting, one needs a criterion
that determines whether a BV function has the same boundary values as a
given function (the boundary data). One such criterion is as follows.

Definition 6.2. We say that u ∈ BV(Ω) has the same boundary values as
f ∈ BV(Ω) if

lim
r→0+

1

µ(B(x, r))

∫
B(x,r)∩Ω

|u− f | dµ = 0 (6.2)

for H-a.e. x ∈ ∂Ω.

By Theorem 6.1, the zero extension û− f of u − f is in BV(X) with

‖D(û− f)‖(∂Ω) = 0. Therefore, if f ∈ BV(X), then the extension Eu of u
by f to X \ Ω is in BV(X) with ‖D(Eu − f)‖(∂Ω) = 0. In the Euclidean
setting, this is the idea behind the direct method developed by Giusti, see [15,
Chapter 14].

In particular, the condition Tu(x) = Tf |Ω(x) implies T (u− f |Ω)(x) = 0,
which in turn implies (6.2), but of course the traces may fail to exist, as was
the case in Example 4.4.

Definition 6.3. We define BV0(Ω) to be the class of functions u ∈ BV(Ω)
that satisfy (6.1) for H-a.e. x ∈ ∂Ω.

Note that in [18] and [19] a class of BV functions with zero boundary
values is defined very differently, as functions u ∈ BV(X) with u = 0 outside
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Ω. For example, if Ω is the unit ball in Rn, then u = χΩ is not in BV0(Ω), but
does have zero boundary values in the sense of [18] and [19]. In minimization
problems, the definition for boundary values given in [18] and [19] can be
more convenient, but on the other hand it is unclear how much variation
measure is concentrated on ∂Ω. The situation is simpler for Newton-Sobolev
functions with zero boundary values N1,1

0 (Ω), since whenever u ∈ N1,1(X)
with u = 0 outside Ω, we automatically have ‖Du‖(X \ Ω) = 0; this follows
e.g. from [8, Corollary 2.21]. We will not pursue the study of Dirichlet
problems in the current paper, but will use the above concept of boundary
values in the study of fine properties of BV functions. To do so, we will need
the following lemma.

Lemma 6.4. Let Ω ⊂ X be an open set, let ν be a Radon measure of finite
mass on Ω, and define

A :=

{
x ∈ ∂Ω : lim sup

r→0+

r
ν(B(x, r) ∩ Ω)

µ(B(x, r))
> 0

}
.

Then H(A) = 0.

Proof. It suffices to show that for each n ∈ N, the set

An :=

{
x ∈ ∂Ω : lim sup

r→0+

r
ν(B(x, r) ∩ Ω)

µ(B(x, r))
>

1

n

}
has H-measure zero. Fix n ∈ N and δ > 0. Then for every x ∈ An, we can
find a ball of radius rx < δ/5 such that

rx
ν(B(x, rx) ∩ Ω)

µ(B(x, rx))
>

1

n
.

By the 5-covering theorem, we can select a countable pairwise disjoint sub-
collection of the collection {B(x, rx)}x∈An , denoted by {B(xi, ri)}i∈N, such
that An ⊂

⋃
i∈N B(xi, 5ri). Now we have

Hδ(An) ≤
∑
i∈N

µ(B(xi, 5ri))

5ri

≤ C3
d

5

∑
i∈N

µ(B(xi, ri))

ri

≤ C3
d

5
n
∑
i∈N

ν(B(xi, ri) ∩ Ω)

= Cn ν

(⋃
i∈N

B(xi, ri) ∩ Ω

)
.
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Given that ri < δ/5, we know that⋃
i∈N

B(xi, ri) ∩ Ω ⊂
⋃

x∈∂Ω

B(x, δ/5) ∩ Ω.

Because ν(Ω) < ∞, it follows that

H(An) = lim
δ→0+

Hδ(An) ≤ lim
δ→0+

Cn ν

( ⋃
x∈∂Ω

B(x, δ/5) ∩ Ω

)

= Cn ν

(⋂
δ>0

⋃
x∈∂Ω

B(x, δ/5) ∩ Ω

)
= Cn ν(∅) = 0.

Thus H(A) = 0.

In most of the remainder of the paper, we will work with Whitney type
coverings of open sets. For the construction of such coverings and their
properties, see e.g. [9, Theorem 3.1]. Given any open set Ω ⊂ X and a scale
R > 0, we can choose a Whitney type covering {Bj = B(xj, rj)}∞j=1 of Ω
such that:

1. for each j ∈ N,

rj := min{dist(xj, X \ Ω)/20λ, R}, (6.3)

2. for each k ∈ N, the ball 5λBk meets at most C0 = C0(Cd, λ) balls 5λBj

(that is, a bounded overlap property holds),

3. if 5λBj meets 5λBk, then rj ≤ 2rk,

4. for each j ∈ N,
dist(2Bj, X \ Ω) ≥ 18λrj. (6.4)

The last estimate above follows from the first estimate combined with the
fact that λ ≥ 1.

Given such a covering of Ω, we have a partition of unity {φj}∞j=1 sub-
ordinate to this covering, that is, for each j ∈ N the function φj is C/rj-
Lipschitz with supp(φj) ⊂ 2Bj and 0 ≤ φj ≤ 1, such that

∑
j φj = 1 on Ω,
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see e.g. [9, Theorem 3.4]). Finally, we can define a discrete convolution uW

of u ∈ L1
loc(Ω) with respect to the Whitney type covering by

uW :=
∞∑

j=1

uBj
φj.

In general uW ∈ Liploc(Ω) ⊂ L1
loc(Ω). If u ∈ L1(Ω), then uW ∈ L1(Ω).

In the next proposition, no assumption is made on the geometry of the
open set Ω, so that in particular we do not know whether traces of BV
functions exist. However, we can prove that discrete convolutions have the
same boundary values as the original function in the sense of (6.2).

Proposition 6.5. Let Ω ⊂ X be an open set, let R > 0, and let u ∈ BV(Ω).
Let uW ∈ Liploc(Ω) be the discrete convolution of u with respect to a Whitney
type covering {Bj = B(xj, rj)}∞j=1 of Ω, at the scale R. Then

lim
r→0+

1

µ(B(x, r))

∫
B(x,r)∩Ω

|uW − u| dµ = 0 (6.5)

for H-a.e. x ∈ ∂Ω.

Proof. Fix x ∈ ∂Ω and take r > 0. Denote by Ir the set of indices j ∈ N for
which 2Bj ∩B(x, r) 6= ∅, and note that by (6.4),

rj ≤
dist(2Bj, X \ Ω)

18λ
≤ r

18λ

for every j ∈ Ir. Because
∑

j φj = χΩ, we have∫
B(x,r)∩Ω

|u− uW | dµ =

∫
B(x,r)∩Ω

∣∣∣∑
j∈Ir

uφj −
∑
j∈Ir

uBj
φj

∣∣∣ dµ

≤
∫

B(x,r)∩Ω

∑
j∈Ir

∣∣∣φj(u− uBj
)
∣∣∣ dµ

≤
∑
j∈Ir

∫
2Bj

|u− uBj
| dµ

≤ 2Cd

∑
j∈Ir

∫
2Bj

|u− u2Bj
| dµ

≤ 4CdCP

∑
j∈Ir

rj‖Du‖(2λBj)

≤ Cr‖Du‖(B(x, 2r) ∩ Ω).

(6.6)
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In the above, we used the fact that X supports a (1, 1)-Poincaré inequality,
and in the last inequality we used the fact that 2λBj ⊂ Ω ∩ B(x, 2r) for all
j ∈ Ir and the bounded overlap of the dilated Whitney balls 2λBj. Thus by
Lemma 6.4, we have

lim
r→0+

1

µ(B(x, r))

∫
B(x,r)∩Ω

|u− uW | dµ = 0

for H-a.e. x ∈ ∂Ω.

Let Ω ⊂ X be an open set, R > 0, and let uW be the discrete convolution
of a function u ∈ BV(Ω) with respect to a Whitney type covering {Bj}j∈N
of Ω at scale R. Then uW has an upper gradient

g = C
∞∑

j=1

χBj

‖Du‖(5λBj)

µ(Bj)
(6.7)

in Ω, with C = C(Cd, CP , λ), see e.g. the proof of [28, Proposition 4.1].
Also, if each vi, i ∈ N, is a discrete convolution of a function u ∈ L1(Ω) with
respect to a Whitney type covering of Ω at scale 1/i, then

vi → u in L1(Ω) as i →∞, (6.8)

as seen by the discussion in [21, Lemma 5.3].
Combining these facts with Theorem 6.1 and Proposition 6.5, we obtain

the following properties for discrete convolutions.

Corollary 6.6. Let Ω ⊂ X be an open set, and let u ∈ BV(Ω). Assume
either that the space supports a strong relative isoperimetric inequality, or
that H(∂Ω) < ∞. For each i ∈ N let each vi ∈ Liploc(Ω) be a discrete
convolution of u in Ω at scale 1/i. Then as i →∞ we have vi → u in L1(Ω),
‖Dvi‖(Ω) ≤

∫
Ω

gvi
dµ ≤ C‖Du‖(Ω) for some choice of upper gradients gvi

of
vi, and the functions

wi :=

{
vi − u in Ω,

0 in X \ Ω,

satisfy wi ∈ BV0(Ω) with ‖Dwi‖(∂Ω) = 0.
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Because of the lower semicontinuity of the BV-energy norm, it follows
from the above corollary that

‖Du‖(Ω) ≤ lim inf
i→∞

‖Dvi‖(Ω) ≤ C‖Du‖(Ω).

In the Euclidean setting (where the measure is the homogeneous Lebesgue
measure), one has recourse to a better smooth approximation than the dis-
crete convolution presented in this section, namely the smooth convolution
approximation via smooth compactly supported non-negative radially sym-
metric convolution kernels; with such a convolution one has equality in the
first inequality above. However, in the metric setting, equality is not guaran-
teed, see for example [19]. In order to obtain equality in the above, we need
to modify the approximations vi away from ∂Ω. This is the point of the next
corollary.

Corollary 6.7. Let Ω ⊂ X be an open set, and let u ∈ BV(Ω). Assume
either that the space supports a strong relative isoperimetric inequality, or
that H(∂Ω) < ∞. Then there exist functions v̆i ∈ Liploc(Ω), i ∈ N, with
v̆i → u in L1(Ω),

∫
Ω

gv̆i
dµ → ‖Du‖(Ω) for a choice of upper gradients gv̆i

of
v̆i, and such that the functions

w̆i :=

{
v̆i − u in Ω,

0 in X \ Ω,

satisfy w̆i ∈ BV0(Ω) with ‖Dw̆i‖(∂Ω) = 0.

Note that ‖Dv̆i‖(Ω) ≤
∫

Ω
gv̆i

dµ, and hence as a consequence we also
have that ‖Dv̆i‖(Ω) → ‖Du‖(Ω). When v̆i → u in L1(Ω) and ‖Dv̆i‖(Ω) →
‖Du‖(Ω), we say that the sequence of functions v̆i converges strictly to u in
BV(Ω).

Proof. For every δ > 0, let

Ωδ := {y ∈ Ω : dist(y, X \ Ω) > δ}. (6.9)

Fix ε > 0 and x ∈ X, and choose δ > 0 such that

‖Du‖(Ω \ (Ωδ ∩B(x, 1/δ))) < ε.
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We will use the function η on X given by

η(y) := max

{
0, 1− 4

δ
dist(y, Ωδ/2 ∩B(x, 2/δ))

}
to paste discrete convolutions to good local Lipschitz approximations of u
far away from ∂Ω. The function η is 4/δ-Lipschitz.

Let each vi ∈ Liploc(Ω) be a discrete convolution of u in Ω, at scale 1/i.
From the definition of the total variation we get a sequence of functions
ui ∈ Liploc(Ω) with ui → u in L1

loc(Ω) such that∫
Ω

gui
dµ → ‖Du‖(Ω)

for some choice of upper gradients gui
of ui. Now define

v̆i := ηui + (1− η)vi,

so that v̆i → u in L1(Ω), and by a Leibniz rule, see e.g. [8, Lemma 2.18],
each v̆i has an upper gradient

gi := gη|ui − vi|+ ηgui
+ (1− η)gvi

,

where gη and gvi
are upper gradients of η and vi, respectively. Since we can

take gη = 0 outside Ωδ/4 ∩ B(x, 4/δ) b Ω, we have gη|ui − vi| → 0 in L1(Ω),
and by also using (6.7), we get

lim sup
i→∞

∫
Ω

gi dµ ≤ lim sup
i→∞

∫
Ω

gui
dµ + lim sup

i→∞

∫
Ω\(Ωδ/2∩B(x,2/δ))

gvi
dµ

≤ ‖Du‖(Ω) + C‖Du‖(Ω \ (Ωδ ∩B(x, 1/δ)))

≤ ‖Du‖(Ω) + Cε.

The facts that w̆i ∈ BV(X) and ‖Dw̆i‖(∂Ω) = 0 for each i ∈ N again
follow by combining Theorem 6.1 and Proposition 6.5. By a diagonalization
argument, where we also let ε → 0 (and hence δ → 0), we complete the
proof.

We can relax the requirement that X supports a strong relative isoperi-
metric inequality or that H(∂Ω) < ∞ and still obtain a useful, but slightly
weaker, approximation as follows.
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Corollary 6.8. Let Ω ⊂ X be an open set. Then there is a sequence of open
sets Ωj, j ∈ N, with Ωj b Ωj+1 for each j ∈ N and Ω =

⋃
j Ωj, such that

whenever u ∈ BV(Ω), there is a sequence of functions uj ∈ BV(Ωj) such that

1. uj ∈ Liploc(Ωj) with ∫
Ωj

guj
dµ ≤ ‖Du‖(Ωj) + 2−j

for some choice of upper gradient guj
of uj,

2. ‖uj − u‖L1(Ωj) ≤ 2−j,

3. with ûj − u denoting the zero extension of uj − u to X \ Ωj,

‖D(ûj − u)‖(∂Ωj) = 0,

4. H(∂Ωj) is finite for each j ∈ N.

Proof. For unbounded sets Ω we can make modifications to the following
argument along the lines of the proof of Corollary 6.7, so we assume now
that Ω is bounded.

For each δ > 0 let Ωδ be as in (6.9). By the results of [11] or [4, Proposition
3.1.5] (see also [33, Inequality (2.6)]), H(∂Ωδ) < ∞ for almost every δ > 0.
For each j ∈ N we choose one such δj ∈ [2−j−1, 2−j].

Since H(∂Ωj) is finite, we can apply Corollary 6.7 to Ω in order to obtain
a function uj that satisfies the requirements laid out in the statement of the
present corollary. This completes the proof of Corollary 6.8.

In what follows, BVc(Ω) is the collection of all functions u ∈ BV(X) with
supt(u) b Ω. Recall the definition of BV0(Ω) given in Definition 6.3 above.
The class N1,p

0 (Ω) has N1,p
c (Ω) as a dense subclass whenever 1 ≤ p < ∞,

see for example [8, Theorem 5.45]. The following analogous approximation
theorem for BV0(Ω) is an application of Proposition 6.5. Such an approx-
imation is a useful tool in the study of Dirichlet problems associated with
BV functions. The theorem clearly fails even for smooth bounded Euclidean
domains if the notion of BV0(Ω) as given in [18] or [19] is considered.

Theorem 6.9. Let Ω be an open set, and suppose that either the space sup-
ports a strong relative isoperimetric inequality or H(∂Ω) < ∞. Suppose that
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u ∈ BV0(Ω) (in particular, it is enough to have u ∈ BV(Ω) with Tu(x) = 0
for H-a.e. x ∈ ∂Ω). Then there exists a sequence uk ∈ BVc(Ω), k ∈ N, such
that uk → u in BV(Ω).

Proof. First note that functions in BV0(Ω) can be approximated in the BV
norm by bounded functions. To see this, for each positive integer n set

un = max{−n, min{u, n}}.

Then by the coarea formula and by |un| ≤ |u|, we see that un ∈ BV0(Ω)
with limn un = u in L1(Ω). For t > 0, we see that u(x) − un(x) > t if and
only if u(x) > t + n, and for t < 0, we have u(x) − un(x) > t if and only if
u(x) > t− n. Therefore by the coarea formula,

‖D(u− un)‖(Ω) =

∫ ∞

−∞
P ({u− un > t}, Ω) dt

=

∫ 0

−∞
P ({u > t− n}, Ω) dt +

∫ ∞

0

P ({u > t + n}, Ω) dt

=

∫
(−∞,−n)∪(n,∞)

P ({u > t}, Ω) dt → 0 as n →∞.

Therefore un → u in BV(Ω) as n →∞. Hence without loss of generality we
will assume for the rest of the proof that u ∈ BV0(Ω) is bounded.

Fix ε > 0. Take a sequence of discrete convolutions vi of u, each with
respect to a Whitney type covering of Ω at scale 1/i. By (6.8) we know that
vi → u in L1(Ω) as i →∞. By Proposition 6.5 and the fact that u ∈ BV0(Ω),
for each i ∈ N we also have

lim
r→0+

1

µ(B(x, r))

∫
B(x,r)∩Ω

|vi| dµ = 0 (6.10)

for H-a.e. x ∈ ∂Ω.
Let Ωδ be as in (6.9) for δ > 0, and as in the proof of Corollary 6.7, let

ηδ ∈ Lipc(Ω) be a 1/δ-Lipschitz function such that 0 ≤ ηδ ≤ 1 on X, with
ηδ = 1 in Ω2δ and ηδ = 0 outside Ωδ. Then define

wδ,i := ηδu + (1− ηδ)vi.

It is clear that wδ,i → u in L1(Ω) as i → ∞, and by using first the Leibniz
rule for BV functions obtained in [28, Corollary 4.2] (unlike for Newtonian
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functions, using the Leibniz rule for BV functions requires that we have
bounded functions), and then (6.7), we get for large enough i

‖D(wδ,i − u)‖(Ω) = ‖D
(
(1− ηδ)(vi − u)

)
‖(Ω)

≤ C

∫
Ωδ\Ω2δ

gηδ
|vi − u| dµ + C‖Du‖(Ω \ Ω2δ) + C‖Dvi‖(Ω \ Ω2δ)

≤ C

δ

∫
Ωδ\Ω2δ

|vi − u| dµ + C‖Du‖(Ω \ Ω3δ).

We can make the second term smaller than ε/3 by taking δ small enough,
and then we can simultaneously ensure that the first term is smaller than
ε/3 and that ‖wδ,i−u‖L1(Ω) is smaller than ε/3 by taking i large enough. We
fix the value of δ so obtained, and then for such large enough i ∈ N, we have

‖wδ,i − u‖BV(Ω) < ε. (6.11)

By [27, Theorem 1.1] and (6.10), we know that each vi is in the space N1,1
0 (Ω),

i.e. the space of Newtonian functions with zero boundary values. By [8,
Theorem 5.45] we then have for each i ∈ N a Lipschitz function v̆i, with
compact support contained in Ω, such that ‖v̆i − vi‖N1,1(Ω) < 1/i, whence
‖v̆i − vi‖BV(Ω) < 1/i. Then we can define for δ > 0 and i ∈ N,

w̆δ,i := ηδu + (1− ηδ)v̆i.

Clearly ‖w̆δ,i − wδ,i‖L1(Ω) → 0 as i →∞, and by the Leibniz rule again,

‖D(w̆δ,i − wδ,i)‖(Ω) = ‖D
(
(1− ηδ)(v̆i − vi)

)
‖(Ω)

≤ C‖D(v̆i − vi)‖(Ω) + C

∫
Ω

gηδ
|v̆i − vi| dµ → 0

as i →∞. By combining this with (6.11), we have for the δ > 0 determined
earlier and a large enough i ∈ N that ‖w̆δ,i − u‖BV(Ω) < ε, and furthermore
w̆δ,i ∈ BVc(Ω).

7 Maz’ya-Sobolev inequalities

In the direct method of the calculus of variations, to obtain regularity of
minimizers one needs a Sobolev inequality, namely, an estimate of the average
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value (on balls) of a power of a test function in terms of the average value
of its gradient. Such an inequality does not hold for functions in general, as
demonstrated by non-zero constant functions. However, if the test functions
of interest vanish on a significantly large set, then such an estimate can be
obtained. If the largeness of the set is in terms of the measure of the zero
set, then such an estimate follows easily from the Poincaré inequality: for
u ∈ BV(X) and any ball B = B(x, r), we have for A := {y ∈ B : |u(y)| > 0},(∫

B

|u|Q/(Q−1) dµ

)(Q−1)/Q

≤ Cr

(
1−

(
µ(A)

µ(B)

)1/Q
)−1

‖Du‖(2λB)

µ(2λB)
,

where Q > 0 is the lower mass bound exponent from (2.1). We refer the
interested reader to [26, Lemma 2.2] for proof of this. However, in general this
is too much to ask for. The more natural way to measure largeness of the zero
set of a function is in terms of the relative capacity of the set. Inequalities
based on such capacitary measures are originally due to Maz’ya [34, 35].
For functions with zero trace on the boundary of Ω, the zero set contains
the boundary of Ω, and hence one can see such an inequality as associated
with BV0(Ω). Thus we are motivated to study Maz’ya’s inequalities for BV
functions.

First we define two notions of BV-capacity as follows:

Definition 7.1. For an arbitrary set A ⊂ X,

CapBV(A) := inf ‖u‖BV(X),

where the infimum is taken over functions u ∈ BV(X) that satisfy u ≥ 1 on
a neighborhood of A. If A ⊂ B for a ball B ⊂ X, then the relative capacity
of A with respect to 2B is given by

capBV(A, 2B) := inf ‖Du‖(X) = inf ‖Du‖(2B),

where the infimum is taken over u ∈ BV(X) such that u ≥ 1 on a neighbor-
hood of A, with u = 0 in X \ 2B.

Note that if we just required u ≥ 1 on A, we would have CapBV(A) = 0
whenever µ(A) = 0. For more on BV-capacity, see [17] and [20].

For u ∈ BV(X), recall the definition of ũ from (2.11) as follows:

ũ(x) = (u∧(x) + u∨(x))/2, x ∈ X.
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By [20, Corollary 4.7] we know that for any compact K ⊂ B,

capBV(K, 2B) ≤ C inf{‖Du‖(X) : ũ ≥ 1 on K, u = 0 in X \ 2B}.

Crucially, above we do not require that ũ ≥ 1 in a neighborhood of K. By
slightly adapting the proof of this result, we obtain an analogous result for
CapBV: for any compact set K ⊂ X,

CapBV(K) ≤ C inf{‖u‖BV(X) : ũ ≥ 1 on K}. (7.1)

By [17, Corollary 3.8] we know that for any Borel set A ⊂ X,

CapBV(A) = sup{CapBV(K), K ⊂ A, K compact}. (7.2)

By a direct modification of [17, Theorem 3.4] and [17, Corollary 3.8], we
obtain an analogous result for capBV: for any Borel set A ⊂ B,

capBV(A, 2B) = sup{capBV(K, 2B), K ⊂ A, K compact}.

Adapting the proof of [8, Theorem 5.53] (the result [8, Theorem 5.53] in
the Euclidean setting is originally due to Maz’ya [34], see also [35, Theo-
rem 10.1.2]), we now show the following.

Theorem 7.2. For u ∈ BV(X), let S := {y ∈ X \ Su : ũ(y) = 0}. Then for
every ball B = B(x, r) ⊂ X, we have

(∫
2B

|u|
Q

Q−1 dµ

)Q−1
Q

≤ C
r + 1

CapBV(S ∩B)
‖Du‖(2λB),

and (∫
2B

|u|
Q

Q−1 dµ

)Q−1
Q

≤ C

capBV(S ∩B, 2B)
‖Du‖(2λB),

with C = C(Cd, CP , λ).

Proof. Set q := Q
Q−1

. First we assume that u is bounded, u ≥ 0, and that

‖u‖L1(2B) > 0.
Let η : X → [0, 1] be a 1/r-Lipschitz function with η = 1 in B and η = 0

in X \ 2B. We use the abbreviation

a :=

(∫
2B

uq dµ

)1/q

,
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and define v := η(1 − u/a). Now v ∈ BV(X) such that v = 0 in X \ 2B
and ṽ = 1 on S ∩ B. Pick an arbitrary compact set K ⊂ S ∩ B, so that
in particular ṽ = 1 on K. By (7.2) and by using the Leibniz rule for BV
functions, see [28, Corollary 4.2], we get

1

C
CapBV(K) ≤

∫
X

v dµ + ‖Dv‖(X)

≤ 1

a

∫
2B

|u− a| dµ +
C

a

(
‖Du‖(2B) +

∫
2B

|u− a|gη dµ

)
≤ 1 + Cr−1

a

∫
2B

|u− a| dµ +
C

a
‖Du‖(2B).

(7.3)

To estimate the first term, we write∫
2B

|u− a| dµ ≤
∫

2B

|u− u2B| dµ + |u2B − a|µ(2B). (7.4)

Here the first term can be estimated using the (1, 1)-Poincaré inequality,
whereas for the second term we have

|a− u2B|µ(2B)1/q = |‖u‖Lq(2B) − ‖u2B‖Lq(2B)|
≤ ‖u− u2B‖Lq(2B)

=

(∫
2B

|u− u2B|q dµ

)1/q

µ(2B)1/q

= Cr
‖Du‖(2λB)

µ(2B)
µ(2B)1/q.

Inserting this into (7.4), we get∫
2B

|u− a| dµ ≤ Cr‖Du‖(2λB).

Inserting this into (7.3), we then get

CapBV(K) ≤ C
r + 1

a
‖Du‖(2λB).

Recalling the definition of a and using (7.2), this implies(∫
2B

|u|q dµ

)1/q

≤ C
r + 1

CapBV(S ∩B)
‖Du‖(2λB).

36



A modification of the above argument (by dropping the term
∫

X
v dµ from (7.3))

yields the second inequality claimed in the theorem for bounded non-negative
functions. For bounded BV functions that are allowed to take negative val-
ues, we can replace u with |u| to obtain the desired inequalities by noting
that for any A ⊂ X,

‖D|u|‖(A) ≤ ‖Du‖(A).

Finally, for BV functions that may also be unbounded, as at the beginning
of the proof of Theorem 6.9 we approximate u by bounded functions un in
the BV(X)-norm and note that

lim
n→∞

∫
2B

|un|q dµ =

∫
2B

|u|q dµ

and
lim

n→∞
‖Dun‖(2λB) = ‖Du‖(2λB).

Thus we obtain the desired capacitary estimates for all u ∈ BV(X).
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Hölder continuous and characteristic functions on metric spaces,
Canad. J. Math. 59 (2007), no. 6, 1135–1153.

[10] J. Björn and N. Shanmugalingam, Poincaré inequalities, uniform
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