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Abstract. This article is concerned with the problem of minimising the Willmore energy in

the class of connected surfaces with prescribed area which are confined to a small container. We

propose a phase field approximation based on De Giorgi’s diffuse Willmore functional to this
variational problem. Our main contribution is a penalisation term which ensures connectedness

in the sharp interface limit. The penalisation of disconnectedness is based on a geodesic distance

chosen to be small between two points that lie on the same connected component of the transition
layer of the phase field.

We prove that in two dimensions, sequences of phase fields with uniformly bounded diffuse
Willmore energy and diffuse area converge uniformly to the zeros of a double-well potential

away from the support of a limiting measure. In three dimensions, we show that they converge

H1-almost everywhere on curves. This enables us to show Γ-convergence to a sharp interface
problem that only allows for connected structures. The results also imply Hausdorff convergence

of the level sets in two dimensions and a similar result in three dimensions.

We furthermore present numerical evidence of the effectiveness of our model. The implemen-
tation relies on a coupling of Dijkstra’s algorithm in order to compute the topological penalty

to a finite element approach for the Willmore term.
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1. Introduction

In this article, we consider a diffuse interface approximation of a variational problem arising
in the study of thin elastic structures. Our particular question is motivated by the problem of
predicting the shape of certain biological objects, such as mitochondria, which consist of an elastic
lipid bilayer and are confined by an additional outer mitochondrial membrane of significantly
smaller surface area.

In order to describe the the locally optimal shape of thin elastic structures, we will rely on
suitable bending energies. A well-known example of such a variational characterisation of biomem-
branes is given by the Helfrich functional [Hel73, Can70]

(1.1) EH(Σ) =

∫
Σ

χH (H −H0)2 + χK K dH2

where Σ denotes the two-dimensional membrane surface in R3 and H and K denote its mean and
Gaussian curvatures. The parameters χH , χK and H0 are the bending moduli and the spontaneous
curvature of the membrane and are, in the simplest case, constants. The integral is performed
with respect to the two-dimensional Hausdorff measure H2. The special case when H0, χK = 0
and χH = 1 is known as Willmore’s energy

(1.2) W(Σ) =

∫
Σ

H2 dH2.

While our results extend to certain Helfrich-type functionals of more general form (see section 5),
the basic task we have set for ourselves is the following: Minimise Willmore’s energy in the class of
connected C2-surfaces which are embedded into a domain Ω such that the embedding has prescribed
surface area S > 0. This problem does not necessarily admit a solution, but a minimiser exists in
the varifold closure of these surfaces [DMR14].

In this version of the problem, the outer mitochondrial membrane is the rigid boundary ∂Ω, but
the results also apply if an elastic container is used, see section 5.

We propose a phase field approach to this problem. For computations, this has some advantages
to the naive approach of taking a gradient flow of Willmore’s energy (or an area preserving version
of it).

First, Willmore flow is a fully non-linear degenerate parabolic PDE of fourth order on a moving
surface, which makes both analytic and numerical treatment difficult. In contrast, our phase-
field flow equations are fourth order quasi-linear parabolic with constant coefficients for the fourth
derivatives. The price we have to pay for this relative luxury is, as usual, that we have to solve
equations in one higher dimension.

Second, Willmore flow is a fourth order PDE and as such does not admit a maximum principle.
In particular, a surface originally confined to even a convex container could easily leave it along
the gradient flow, whereas for us the confinement to Ω is simply given by the choice of boundary
condition and the domain of the phase field.

The main challenge for phase fields is to control the topology of a limiting surface (in some sense)
from quantities of diffuse interfaces. In this paper, we give a suitable concept of connectedness
that admits a rigorous variational statement as ε → 0 and can be implemented efficiently in a
simulation.

Heuristically, we introduce a quantitative notion of path-connectedness for the interfacial region
of a phase field. The disconnectedness for two points x, y in the interface layer is measured by
a geodesic distance (the infimum length of connecting paths) where walking in the interfacial
region does not add any length, but leaving the interface adds a positive amount. The total
disconnectedness is then computed as a double integral over the distances of interface points.
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This functional poses analytic challenges since it is not a priori clear how ’two-dimensional’ the
interfacial layer of a phase field is. Since the distance function uses the length of curves, away from
a limiting surface we need the phase-fields to converge almost everywhere on curves, i.e. on objects
of codimension 2. Also, the structure of the interface has to be understood in a precise way in
order to estimate the aforementioned double integral. More rigorous statements are given below.

Our analysis builds on ideas in [RS06]. Along the proof of our Theorem, we obtain a number of
useful technical results about the convergence of phase field approximations to the limit problem
which appear to be new in this context. Namely, for sequences along of uniformly bounded diffuse
energy, in two dimensions we prove convergence of the transition layers to the support of a limiting
measure in the Hausdorff distance and uniform convergence of the phase field to ±1 away from the
limit curve. This is reminiscent of a result for minimisers of the Modica-Mortola functional among
functions with prescribed integral [CC95] and more generally for stationary states [HT00].

In three dimensions, we show that neither result is true, but prove L1-convergence on curves and
that spt(µ) is contained in the Hausdorff limit of interfacial regions. This enables us to precisely
control our topological energy term. We also show that phase fields are uniformly L∞-bounded in
terms of their Willmore energy, also in three dimensions.

The numerical implementation of our functional will be discussed further in a forth-coming
article [DW16]. We use a variant of Dijkstra’s algorithm similar to the one of [BCPS10] to compute
the geodesic distance function used in the topological term of our energy functional. The weight
in the geodesic distance is chosen to be exactly zero along connected components of the transition
layer, which implies that it only needs to be computed once per detected connected component.
This makes the functional efficient from an implementation point of view.

The article is organised as follows. In the remainder of this section we give some further context
for our problem. In section 2 we give a brief introduction to phase fields for Willmore’s problem
in general (sections 2.1 and 2.2) and to our approach to connectedness for the transition layers
(section 2.3). Our main results are subsequently listed in section 2.4.

Section 3 is entirely dedicated to the proofs of our main results. We directly proceed to show
Γ-convergence of our functionals (section 3.1). In sections 3.2 and 3.3, we produce all the auxiliary
estimates that will be needed in the later proofs. These are then used to show convergence of the
phase fields, Hausdorff-convergence of the transition layers, and connectedness of the support of
the limit measure (section 3.4).

In section 4 we show numerical evidence of the effectiveness and efficiency of our approach. To
that end, we compare it to diffuse Willmore flow in two dimensions without a topological term
and to the penalisation proposed in [DMR11]. We have been unable to implement the functional
developed in [DMR14] in practice, so a comparison with that could not be drawn. In section 5 we
discuss a few easy extensions of our main results.

1.1. Topology and Phase Fields. An often cited advantage of phase fields is that they are
capable of changing their topology; in that sense our endeavour is non-standard. It should be
noted that our phase fields may still change their topology (at least in three dimensions), only
connectedness is enforced.

Examples of topological changes and loss of connectedness in simulations for biological problems
governed by bending energies or our type are given in [DW07, Du10].

In [BLS15], a geodesic distance function has been used to minimise the length of a connected
set K containing a prescribed set of points x1, . . . , xN in two dimensions (Steiner’s problem). Our
setting is different in two ways: 1. Steiner’s problem has a finite number of a priori known points
which need to be contained in K while the transition layer of the phase field has no special points
and 2. the phase field approximation of Steiner’s problem works in dimension n = 2, while we
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work in ambient space of dimension n = 2, 3 where the curves used in the definition of the distance
function have codimension 2.

Previous work in [DMR11] provides a first attempt at an implementation of a topological con-
straint in a phase field model for elastic strings modelled by the one-dimensional version of the
Willmore energy, Euler’s elastica. This technique prevents transitions in simulations for simple
situations, but may fail in more complex cases, see section 4. Similar numerical approaches to
controlling the topology using a diffuse Euler number are discussed in [DLW05, DLRW07].

This approach was complemented by a method put forth in [DMR14], which relies on a second
phase field subject to an auxiliary minimisation problem used to identify connected components
of the transition layer. While our functional can be seen as using a diffuse measure of path-
connectedness, the functional in [DMR14] generalises more directly the notion of connectedness.
For this model, a Γ-convergence result was obtained, showing that limits of bounded-energy se-
quences must describe a connected structure. Unfortunately, the complicated nested minimisation
problem makes it unsuitable for computation.

Approaches of regularising limit interfaces have been developed by Bellettini in [Bel97] and
investigated analytically and numerically in [ERR14]. The approaches work by introducing non-
linear terms of the phase field in order to control the Willmore energies of the level sets individually
and exclude transversal crossings (which phase fields for De Giorgi’s functional can develop). These
regularisations may prevent loss of connectedness along a gradient flow in practice, but do not lead
to a variational statement via Γ-convergence.

Furthermore, we would like to emphasise that we can easily describe a weakly* continuous
evolution of varifolds along which connectedness is lost. Except at one singular time, the varifolds
are embedded C2-manifolds and the evolution is C2-smooth. Details can be found in a forthcoming
paper [Woj16].

It thus is not clear whether the approach of [Bel97] does prevent topological transitions, in
particular, the loss of connectedness, in three ambient space dimensions. At least, it is more
difficult to implement due to the highly non-linear term including the Willmore energies of level
sets.

Also in [Woj16], we show that topological genus is not continuous under varifold convergence
and that minimising sequences of a constrained minimisation problem with fixed genus may change
topological type in the limit.

At this point, we thus know of no other model which can control the topology of phase field
limits. Furthermore, our results are optimal since they allow us to control as much of the topology
as can be controlled even for a sharp interface and they allow for efficient implementation.

1.2. Biological Membranes. Willmore’s and Helfrich’s energies are widely used in the modelling
of thin elastic structures. The first mention in that context goes back to Sophie Germain [Ger21].
Later, their importance has been suggested heuristically [Hel73] based on the principle that when
a membrane is written as a graph over its tangent space, only derivatives of at most second degree
should occur in at most quadratic expressions at the base point. Another biological motivation in
the context of red blood cells is given in [Can70].

A Helfrich type functional has also been obtained as a macroscopic limit of certain mesoscale
models for lipid bilayers [PR09, LPR14]. Here bilayers are modelled using functions u, v ∈
BV (Rn, {0, 1}) to express locations of hydrophilic heads and hydrophobic tails of lipid molecules.
These functions are coupled through a Monge-Kantorovich distance to be close together, con-
strained to satisfy uv ≡ 0 and the perimeter of {u = 1} is penalised. This energy prefers a bilayer
structure and suitably rescaled versions Γ-converge to a Helfrich functional with H0 = 0, χH = 1/2
and χK = 1/3.
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A heuristic way to motivate the occurrence of Willmore’s energy in this context comes from
thin shell theory. In [FJM02b, FJM02a] Friesecke, James and Müller proved Γ-convergence of
non-linear three-dimensional elasticity to geometric bending energies including those of Willmore-
or Helfrich-type in the vanishing thickness limit of thin plates. The admissible class here are
isometric embeddings of domains in R2. The restriction to isometries stems from the fact that
in-plane stretching energy scales with thickness of the plate and dominates out of-plane bending,
which scales with the third power of the thickness parameter. Thus in the (second order) vanishing
thickness limit, we are led to minimise Willmore’s energy in a class of isometric immersions. The
case of shells (i.e. non-flat structures) has been treated in [FJMM03].

Lipid bilayers differ from shells in that they are liquid not solid and as such do not have a
reference configuration. Assuming inextensibility, we must therefore also minimise over the space
of Riemannian metrics on the bilayer with fixed area and the isometry constraint turns into the
fixed area constraint.

1.3. Further Context. Without any claim of completeness, let us give a bit more context of
our topic. Willmore’s energy is named for T.J. Willmore who studied it in a series of publica-
tions [Wil65, Wil71, Wil92, Wil00] and popularised it in his textbook [Wil93]. Independently of
Willmore’s work, the energy had already been considered as a bending energy for thins plates in
[Ger21] and as a conformal invariant of surfaces embedded in R3 in [BT29, Tho23].

As mentioned above, Willmore’s energy is famously conformally invariant, in particular scale
invariant. This shows that both the embedding constraint into Ω and the area constraint H2 = S
are needed to give a non-trivial constraint.

Extrema (in particular, local minimisers) of the Willmore functional are of interest in mod-
els for biological membranes, but they also arise naturally in pure differential geometry as the
stereographic projections of compact minimal surfaces in S3, see e.g. [PS87], also for examples.

Even for Willmore’s energy rigorous results are hard to obtain. From the point of view of
the calculus of variations, a natural approach to energies as the ones above is via varifolds [All72],
[Hut86], where existence of minimisers for certain curvature functionals is proved. The existence of
smooth minimising Tori was proved by Simon [Sim93], and later generalised to surfaces of arbitrary
genus in [BK03].

The long-standing Willmore conjecture that W(T ) ≥ 4π2 for all Tori embedded in R3 was
recently established in [MN14], and the large limit genus of the minimal Willmore energy for closed
orientable surfaces in R3 has been investigated in [KLS10]. The existence of smooth minimising
surfaces under isoperimetric constraints has been established in [Sch12]. A good account of the
Willmore functional in this context can be found in [KS12].

The case of surfaces constrained to the unit ball was studied in [MR14] and a scaling law
for the Willmore energy was found in the regimes of surface area just exceeding 4π and the
large area limit. While the above papers adopt an external approach in the language of varifold
geometry, a parametrised approach has been developed in [Riv14] and related papers. In [KMR14]
this framework is used to solve the Willmore minimisation problem with prescribed genus and
prescribed isoperimetric type. [DGR15] gives a study of the Willmore functional on C2-graphs
and its L1-lower semi-continuous envelope.

Other avenues of research consider Willmore surfaces in more general ambient spaces [LMS11,
LM10, MR13].

In the class of closed surfaces, if χK is constant, the second term in the Helfrich functional is of
topological nature due to the Gauss-Bonnet theorem. So, if the minimisation problem is considered
only among surfaces of prescribed topological type it can be neglected. The spontaneous curvature
is realistically expected to be non-zero and can have tremendous influence. It should be noted
that the full Helfrich energy depends also on the orientation of a surfaces for H0 6= 0 and not only
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on its induced (unoriented) varifold. Große-Brauckmann [GB93] gives an example of (obviously
non-compact) surfaces Mk of constant mean curvature H ≡ 1 converging to a doubly covered
plane. This demonstrates that, unlike the Willmore energy, the Helfrich energy need not be lower
semi-continuous under varifold convergence for certain parameters.

Recently, existence of minimisers for certain Helfrich-type energies among axially symmetric
surfaces under an isoperimetric constraint was proved by Choksi and Veneroni [CV13]. Lower
semi-continuity for the Helfrich functional on C2-boundaries with respect to the L1-topology of
the enclosed sets was established by means of Gauss graphs in [Del97].

Results for the gradient flow of the Willmore functional are still few. Short time existence for
sufficiently smooth initial data has been shown in [Sim01, KS02] (see also [MS03]) and long time
existence for small initial energy and convergence to a round sphere has been demonstrated in
[KS01, KS12]. Kuwert and Schätzle’s lower bound on existence times in terms of initial curvature
concentration in space has been generalised to Willmore flow in Riemannian manifolds of bounded
geometry in [Lin13]. It has been shown that Willmore flow can drive smooth initial surfaces to
self-intersections in finite time in [MS03]. This issue seems to be prevented by our connectedness
functional on the phase field level, although we do not have a rigorous statement on this. Numerical
simulations suggest that singularities can occur in Willmore flow in finite time [MS02]. [DW07,
Figure 2] gives a numerical example of a disc pinching off to a torus. A level set approach to
Willmore flow is discussed in [DR04].

Studies of numerical implementations of Willmore flow are, for example, due to Garcke, Dziuk,
Elliott et al. in [BGN08, Dzi08, DE07]. Particularly interesting here is also an implementation of
a two-step time-discretisation algorithm due to Rumpf and Balzani [BR12].

Phase field approximations of the functional in (1.1), on the other hand, often provide a more
convenient approach to gradient flows or minimisation of the Willmore or Helfrich functionals. In
particular if a coupling of the surface to a bulk term is desired, phase field models can provide an
excellent alternative to a parametric discretisation [Du10].

The idea for applying a phase field approach to Willmore’s energy goes back to De Giorgi [DG91].
For a slight modification of De Giorgi’s functional, reading

EdG
ε (u) =

1

c0

∫
Ω

1

ε

(
ε∆u− 1

ε
W ′(u)

)2

dx +
λ

c0

∫
Ω

ε

2
|∇u|2 +

1

ε
W (u)dx =:Wε(u) + λSε(u)

Γ-convergence to the sum of Willmore’s energy and the λ-fold perimeter functional (λ > 0) was
finally proved by Röger and Schätzle [RS06] in n = 2, 3 dimensions, providing the lower energy
bound in the varifold context, after Bellettini and Paolini had provided the recovery sequence
over a decade earlier [BP93]. First analytic evidence had previously been presented in the form
of asymptotic expansions in [DLRW05]. This and other phase field approximations of Willmore’s
energy and their L2-gradient flows are reviewed in [BMO13]. A convergence result for a diffuse
approximation of certain more general Helfrich-type functionals has also been derived by Belletini
and Mugnai [BM10].

Regarding implementation of phase field models for Willmore’s and Helfrich’s energy, we refer
to the work by Misbah et al. in [BKM05] and Du et al. [DLRW05, DLW05, DLW06, DW07,
DLRW07, DLRW09, Du10, WD07]. In [FRW13], the two-step algorithm for surface evolution has
been extended to phase fields. A numerical implementation of the Helfrich functional can be found,
for example, in the work by Campelo and Hernandez-Machado [CHM06].

2. Phase Fields

2.1. General Background. A phase field approach is a method which lifts problems of (n− 1)-
dimensional manifolds which are the boundaries of sets to problems of scalar fields on n-dimensional
space. Namely, instead of looking at ∂E, we study smooth approximations of χE − χEc . Such
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models are generally based on a competition between a multi-well functional penalising deviation
of the phase field function from the minima (usually ±1 instead of the characteristic function values
0, 1) and a gradient-penalising term preventing an overly sharp transition. Fix Ω b Rn, open. Our
model space is

X = {u ∈W 2,2
loc (Rn) | u ≡ −1 outside Ω}= −1 +W 2,2

0 (Ω).

If ∂Ω ∈ C2, this can be identified with Xa = {u ∈ W 2,2(Ω) | u = ∂νu = 0 on ∂Ω}, otherwise the
first formulation is technically easier to work with. The boundary conditions are chosen to model
sets which are totally contained in Ω and whose boundaries may only touch ∂Ω tangentially. Then
(as well as in more general settings) it is known [Mod87] that the Modica-Mortola or Cahn-Hilliard
functionals

Sε : L1(Ω)→ R, Sε(u) =

{
1
c0

∫
Ω
ε
2 |∇u|

2 + 1
ε W (u) dx u ∈ X

+∞ else,

with W (u) = (u2 − 1)2/4 and c0 =
∫ 1

−1

√
2W (u) du = 2

√
2 /3, Γ-converge to

S0(u) =
1

2
|Du|(Ω)

with respect to strong L1-convergence for functions u ∈ BV (Rn, {−1, 1}) (and +∞ else). The
limit S0(u) agrees with the perimeter functional Per({u = 1}). The double-well potential W forces
sequences of bounded energy Sε(uε) to converge to a function of the above form as ε → 0. By

Young’s inequality ε
4a

2 + εb2 ≥ ab we can control the BV -norms of G(uε) =
∫ uε
−1

√
2W (s) ds

through

||G(uε)||1 ≤ C
(∫

Ω

W (uε) + 1

) 3
4

,∫
Ω

|∇G(uε)|dx =

∫
Ω

|G′(uε)| |∇uε|dx

≤
∫

Ω

1

4ε
|G′(uε)|2 + ε |∇uε|2dx

= 2Sε(uε).

So G(uε) → v converges strongly in Lp(Ω) for all p < n/(n − 1) for some v ∈ BV (Ω) by the
compactness theorem for BV -functions (up to a subsequence), so in particular pointwise almost
everywhere (further subsequence). ||uε||4L4(Ω) ≤ C

(
1 + 1

ε

∫
Ω
W (uε)dx

)
, so uε → u weakly in L4(Ω)

and uε → G−1(v) pointwise a.e. which together implies that uε → u = G−1(v) strongly in Lp(Ω)
for all p < 4. The functional has originally been studied in the context of minimal surfaces, see
e.g. [Mod87, CC95, CC06]. We will view them in a slightly different light. If uε is a finite energy
sequence, we denote the Radon measure given by the approximations of the area functional as

µε(U) =
1

c0

∫
U

ε

2
|∇uε|2 +

1

ε
W (uε) dx.

Taking the first variation of this measure and integrating by parts, we get

δµε(φ) =
1

c0

∫
Ω

(
−ε∆uε +

1

ε
W ′(uε)

)
φdx.

The integrand

vε := −ε∆uε +
1

ε
W ′(uε)

is a diffuse analogue of the mean curvature as the variation of surface area. A modified version
of a conjecture by De Giorgi then proposes that squaring vε, integrating over Ω and dividing by
ε should be a Γ-convergent approximation of W(∂E) for C2-regular sets E, again with respect to
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strong L1-convergence. Dividing by ε is needed to convert the volume integral into a diffuse surface
integral over the transition layer with width of order ε. This is true at least in n = 2, 3 dimensions
[RS06]. From now on, we will restrict ourselves to these dimensions. We thus introduce the diffuse
Willmore functional

Wε(u) =

{
1
c0

∫
Ω

1
ε

(
ε∆u− 1

ε W
′(u)

)2
dx u ∈ X

+∞ else

and the Radon measures associated with a sequence uε with bounded energy Sε(uε) +Wε(uε)

µε(U) =
1

c0

∫
U

ε

2
|∇uε|2 +

1

ε
W (uε) dx, αε(U) =

1

c0

∫
U

1

ε
v2
ε dx.

Since the measures µε, αε are uniformly bounded, we can invoke the compactness theorem for
Radon measures to see that there are finite Radon measures µ, α with support in Ω such that, up
to a subsequence,

uε → u strongly in L1(Ω), µε
∗
⇀ µ, αε

∗
⇀ α.

A finer comparison shows that |Du| ≤ 2µ. Clearly by construction u = χE −χEc for some E ⊂ Ω,
and from the above argument is not difficult to see that E is a Caccioppoli set. In three dimensions,
however, E may well be empty. To see this, one can use the construction of [MR14], where two
concentric spheres of very similar radius are connected by a modified catenoid. As the catenoid is
a minimal surface, this keeps the Willmore energy bounded. Taking the radii to converge to the
same quantity and approximating them with the recovery sequence of a phase field, we see that E
is the L1-limit of the enclosed set between the two original sphere, so empty.

In [RS06] it has been shown that µ is in fact the mass measure of an integral n−1-varifold with
|∂∗E| ≤ µ and H2

µ ·µ ≤ α for the generalised mean curvature Hµ of µ. Unlike µ, α can still behave
wildly.

We aim to minimise the Willmore energy among connected surfaces with given area S. To
prescribe area µ(Ω) = S, we include a penalisation term of

1

εσ
(Sε − S)2

in the energy functional. So we have a good approximation of Willmore’s energy available, the
area constraint can be approximated through an easy penalisation, and confinement to Ω comes
automatically from the choice of function space X. The main challenge left is controlling the
connectedness of spt(µ) which we interpret as a sharp interface membrane.

2.2. Equipartition of Energy. Intuitively, the Cahn-Hilliard energy prefers phase fields to be
close to ±1 in phase and make transitions between the phases along layers of width proportional to
ε. In particular, to attain the minimum, equality |∇uε| = |G′(uε)| is needed in Young’s inequality
on most of Ω. So it makes sense that the terms ε

2 |∇uε|
2 and 1

ε W (uε) should make an equal con-
tribution to the measure µε. The difference of their contributions is controlled by the discrepancy
measures

ξε(U) =
1

c0

∫
U

ε

2
|∇uε|2 −

1

ε
W (uε) dx,

their positive parts ξε,+(U) = 1
c0

∫
U

(
ε
2 |∇uε|

2 − 1
ε W (uε)

)
+

dx and their total variation measures

|ξε|(U) = 1
c0

∫
U

∣∣ ε
2 |∇uε|

2 − 1
ε W (uε)

∣∣ dx. We will see that for a suitable recovery sequence, |ξε|
vanishes exponentially in ε; more generally the discrepancy goes to zero in general sequences uε
along which αε + µε stays bounded as shown in [RS06, Propositions 4.4, 4.9]. The result has
been improved along subsequences in [BM10, Theorem 4.6] to Lp-convergence for p < 3/2 and
convergence of Radon measures for the gradients of the discrepancy densities for an approximation
of Helfrich’s energy.
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The control of these measures is extremely important since they appear in the derivative of the
diffuse (n− 1)-densities r1−nµε(Br(x)) with respect to the radius r.

2.3. Connectedness. In order to ensure that the support of the limiting measure µ is connected
we include an auxiliary term Cε in the energy functional. The heuristic idea behind this is that if
the support of the limiting measure spt(µ) is connected, then so should the set {ρ1 < uε < ρ2} for
−1 < ρ1 < ρ2 < 1. These level sets away from ±1 can be heuristically viewed as approximations
of spt(µ), and in other situations, they can be seen to Hausdorff-converge to it [CC95]. This is not
quite true in our situation (in three dimensions, see Remark 2.8), but the intuition still holds.

Our concept is to introduce a quantitative notion of path-connectedness and penalise the mea-
sured disconnectedness. Take a weight function F ∈ C0(R) such that

F ≥ 0, F ≡ 0 on [ρ1, ρ2], F (−1), F (1) > 0.

and the associated geodesic distance

dF (u)(x, y) = inf

{∫
K

F (u) dH1

∣∣∣∣K connected, x, y ∈ K,H1(K) ≤ ω(ε)

}
, ω(ε)→∞ as ε→ 0.

In particular, ω(ε) ≡ ∞ is not excluded. If {ρ1 < uε < ρ2} is connected, we can connect any two
points x, y ∈ u−1

ε (ρ1, ρ2) by a curve of length zero. If it is not, then dF (u)(x, y) gives a quantitative
notion of how badly path-connectedness fails between these two points. To obtain a global notion,
we take a second weight function φ ∈ Cc(−1, 1) resembling a bump, i.e.,

φ ≥ 0, {φ > 0} = (ρ1, ρ2) b (−1, 1),

∫ 1

−1

φ(u) du > 0

and take the double integral

Cε(u) =
1

ε2

∫
Ω

∫
Ω

φ(u(x))φ(u(y)) dF (u)(x, y) dxdy.

So, if {φ(uε) > 0} = {ρ1 < uε < ρ2} is connected, we can connect any two points x, y ∈ Ω such that
φ(uε(x))φ(uε(y)) > 0 with a curve of length zero, hence dF (uε)(x, y) = 0 and both the integrand
and the double integral vanish.

If on the other hand spt(µ) is disconnected, then we expect that dF (uε) should be able to discern
different connected components such that lim infε→0 Cε(uε) > 0. The core part of our proof is
concerned with precisely that. We need to show that φ detects components of the interface and
that dF (uε) distinguishes them. For the first result, we need to understand the structure of the
interfaces converging to µ and make sure they cannot be so steep in u−1

ε (ρ1, ρ2) that the double
integral does not see them in the limit.

For the second part, the challenge is to understand how phase fields converge away from the
interface. It is clear that they converge pointwise almost everywhere, but it is not a priori clear
whether they can stay away from ±1 along a curve in three dimensions. Namely, if the support of
a limiting measure µ of µε had two components C1, C2, but the approximating sequence satisfied
uε ∈ (ρ1, ρ2) in a neighbourhood of a curve γε connecting C1 and C2, then dF (uε) could not
distinguish between the components.

In two ambient dimensions, this is excluded relatively easily. In three-dimensional space however,
the curve γε would not be seen by the limiting measure µ, which is an integral 2-varifold. Thus
we need to show that in analogy to the sharp interface, a long and narrow tunnel-like strucure
around γε blows up in diffuse Willmore energy. We like to think of this as a convergence localised
on curves, i.e. sets of co-dimension n− 1 = 2.
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2.4. Main Results. We have the following results for phase fields with bounded Willmore energy
and perimeter. In the following we assume that uε denotes the continuous representative.

Theorem 2.1. Let n = 2 and uε ∈ X a sequence such that

lim sup
ε→0

(Wε + Sε) (uε) <∞.

Denote µ = limε→0 µε for a subsequence along which µε converge weakly as Radon measures to a
limit and take any Ω′ b Rn \ spt(µ). Then |uε| → 1 uniformly on Ω′.

This result has already been proved by Nagase and Tonegawa in [NT07], where they also show
a Γ− lim inf-inequality forWε+Sε in two space dimensions. The use of a monotonicity formula in
their proof resembles ours with differences in the estimate on the discrepancy measures. We show
our proof here to illustrate some ideas in the more involved argument for n = 3.

Theorem 2.2. Let n = 2 and D b (−1, 1). Then u−1
ε (D)→ spt(µ) in the Hausdorff distance. If

n = 3, up to a subsequence, u−1
ε (D) Hausdorff-converges to a set K which contains spt(µ).

In three dimensions, K 6= spt(µ) is possible, see Remark 2.8. As an illustration, the following
statement describes the convergence of phase fields on lower dimensional objects that we need.
In the proofs a slightly different version of the theorem is used to account for changing curves as
ε→ 0.

Theorem 2.3. Let n = 2 and uε ∈ X a sequence such that

lim sup
ε→0

(Wε + Sε) (uε) <∞.

Denote µ = limε→0 µε for a subsequence along which µε converges weakly as Radon measures to a
limit. Take any K b Rn\spt(µ) such that 0 < H1(K) <∞. Then |uε| → 1 converges H1|K-almost
everywhere.

For our application to connectedness, we define the total energy of an ε-phase field as

(2.1) Eε(u) =

{
Wε(u) + ε−σ (Sε(u)− S)2 + ε−κ Cε(u) u ∈ X
+∞ else

for σ ∈ (0, 4), κ > 0.

Remark 2.4. If ω(ε) <∞, existence of mininimisers for the functional Eε is a simple exercise in the
direct method of the calculus of variations, since uniform convergence of a minimising sequence
uε,k ∈W 2,2(Ω)→ C0(Ω) for fixed ε guarantees convergence of the distance term.

Theorem 2.5. Let uε ∈ X be a sequence such that (Wε + Sε)(uε) ≤ C for some C > 0 and µ, α

Radon measures such that µε
∗
⇀ µ, αε

∗
⇀ α. If spt(µ) is disconnected, then

lim inf
ε→0

Cε(uε) > 0.

Using these results, we can show the following.

Theorem 2.6. Let n = 2, 3 and uε ∈ X a sequence such that lim infε→0 Eε(uε) < ∞. Then the
diffuse mass measures µε converge weakly* to a measure µ with connected support spt(µ) ⊂ Ω and
area µ(Ω) = S.

Using [RS06], µ is also the mass measure of an integral varifold. The main result of [RS06] can
be applied to deduce Γ-convergence of our functionals in the following sense:
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Corollary 2.7. Let n = 2, 3, S > 0, Ω b Rn and E b Ω, with smooth boundary ∂E ∈ C2 with
area Hn−1(∂E) = S. Then

Γ(L1(Ω))− lim
ε→0
Eε(χE − χEc) =

{
W(∂E) ∂E is connected

+∞ otherwise

Here we have adopted the notation of [RS06] where Γ-convergence is said to hold at a point
if the lim inf- and lim sup-inequalities hold at that point. This distinction is necessary since it is
not clear what Γ-convergence properties hold at other points u ∈ BV (Ω, {−1, 1}) since Wε does
not converge to the L1-lower semi-continuous envelope of W at non-embedded sets even in two
dimensions.

This issue stems from the fact that the stationary Allen-Cahn equation −∆u + W ′(u) = 0
admits global saddle-solutions which have vanishing sets asymptotic to a union of lines. The
best known example vanishes along the coordinate axes and is positive in the first and third
quadrants and negative in the second and fourth ones, see [dPKPW10]. These solutions can
be used to approximate transversal crossings with zero Willmore energy, while the lower semi-
continuous envelope of Willmore’s energy/Euler’s elastica energy becomes infinite at those points.
Interestingly enough, the crossing has zero Willmore-energy as a varifold, so that the energy can
still be justified, despite the fact that it does not give the sensible result in our situation.

While heuristic considerations suggest – and numerical simulations appear to confirm – that at
least in n = 2 dimensions and when 0 /∈ spt(φ), our additional term in the energy might prevent
saddles, we do not investigate convergence at non-embedded points further.

Remark 2.8. Uniform convergence generally fails in three dimensions. This can be seen by taking
a sequence uε as the optimal interface approximation which will be given in the proof of Corollary
2.7 and adding to it a perturbation g((x − x0)/ε) for any g ∈ C∞c (Rn). It can easily be verified
that the energy will remain finite (at least if |g| � 1) but clearly the functions do not converge
uniformly.

Heuristic arguments show that for modifications uε = uε+εα g(ε−β ·), the coefficients α = β = 1
should be optimal in three dimensions and α = 1/2, β = 1 if n = 2, so we expect a convergence
rate of

√
ε in the two-dimensional case.

Since uniform convergence does not hold, it follows that the pre-images of certain level sets can
have additional points in the Hausdorff limit.

Remark 2.9. Since Sε(uε) is uniformly bounded, a standard argument for the Modica-Mortola
model shows that uε → χE − χΩ\E in Lp for p < 4/3. We are going to show in Lemma 3.1 that
the sequence uε is uniformly bounded in L∞(Rn) when additionally lim supε→0W(uε) <∞, which
implies Lp-convergence for all p <∞.

3. Proofs

The proofs are organised in the following way. First, anticipating the results of section 3.4,
we show Γ-convergence of Eε to W. We decided to move the proof to the beginning since it is
virtually independent of all the other proofs in this article and can be isolated, but introduces the
optimal interface transitions which will be needed later. After that, we proceed chronologically
with technical Lemmata (sections 3.2 and 3.3) and the proof of Theorems 2.1, 2.3, 2.2, 2.5 and 2.6
in section 3.4.

3.1. Proof of Γ-Convergence. We now proceed to prove Corollary 2.7.

Proof of the lim inf-inequality: It will follow from Theorem 2.6 that Eε(uε) → ∞ if ∂E is discon-
nected. If ∂E is connected, the main part of this inequality is to show that if uε → χE − χEc
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in L1(Ω) and µε(Ω) ≤ S + 1, then lim infε→0 Eε(uε) ≥ W(∂E). Since Eε ≥ Wε and enforces the
surface area estimate, we obtain with [RS06] that

lim inf
ε→0

Eε(uε) ≥ W(∂E).

�

Proof of the lim sup-inequality: We may restrict our analysis to the case of connected boundaries
with area Hn−1(∂E) = S. In this proof, we will construct a sequence uε ∈ X such that

lim
ε→0
||uε − (χE − χEc)||1,Ω = 0, lim

ε→0
Eε(uε) =W(∂E).

The construction is standard and holds for arbitrary n ∈ N. We take the solution of the one-
dimensional problem and apply it to the signed distance function of ∂E, thus recreating the shape
of ∂E with an (approximate) optimal profile for the transition from −1 to 1. For δ > 0 consider

Uδ := {x ∈ Rn | dist(x, ∂E) < δ}.

Since E b Ω, Uδ ⊂ Ω for all sufficiently small δ, and since ∂E ∈ C2 is embedded, there is δ > 0
such that

ψ : ∂E × (−δ, δ)→ Uδ, ψ(x, t) = x+ t νx

is a diffeomorphism. We have the closest point projection π : Uδ → ∂E and the signed distance
function d(x) = sdist(x, ∂E) from ∂E which is positive inside E and negative outside E. Both are
C2-smooth on Uδ and they satisfy ψ(π(x), sdist(x)) = x and (see e.g. [GT01, Section 14.6])

∇d(x) = νπ(x), ∆d(x) = Hπ(x) + Cπ(x) · d(x) +O(d(x)2)

where Cπ(x) is a constant depending on the base projection point π(x). Let us consider the optimal
transition between −1 and 1 in one dimension. This optimal profile is a stationary point of S1, i.e.
a solution of −q′′ +W ′(q) = 0 (and thus a zero energy point of W1) with the side conditions that
limt→±∞ q(t) = ±1. Note that the optimal profile satisfies

q′′ = W ′(q) ⇒ q′′ q′ = W ′(q) q′ ⇒ d

dt

(
(q′)2 −W (q)

)
= 0,

so we find that (q′)2−W (q) ≡ c. We look for transitions where both (q′)2 and W (q) are integrable
over the whole real line, and since limt→±∞W (q(t)) = 0, we see that c = 0 and (q′)2 ≡W (q). This
gives us equipartition of energy already before integration. For simplicity, we focus on W (q) =

(q2 − 1)2/4 which has the optimal interface q(t) = tanh(t/
√

2). Note that the functional rescales
appropriately under dilations of the parameter space so that we have equipartition of energy before
integration also in the ε-problem. The disadvantage of the hyperbolic tangent is that it makes the
transition between the roots of W only in infinite space, so we choose to work with approximations
qε ∈ C∞(R) such that

(1) qε(t) = q(t) for |t| ≤ δ/(3ε),
(2) qε(t) = 1 for t ≥ δ/(2ε),
(3) qε(−t) = −qε(t),
(4) q′ε > 0,
(5) |q′′ε |(t) ≤ ε3 for all |t| ≥ δ/ε.

Such a function is easily found as tanh converges to ±1 exponentially fast. Then we set

uε(x) = qε(d(x)/ε).

A direct calculation establishes that with this choice of uε, we have |Sε(uε)−S| ≤ εγ for all γ < 2,
|ξε| ≤ εm for all m ∈ N and limε→0Wε(u

ε) =W(∂E). It remains to show that limε→0 ε
−κCε(u

ε) =
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0. We will show that even Cε(u
ε) ≡ 0 along this sequence. Since ∂E is connected and ψ is a

diffeomorphism, all the level sets

{uε = ρ} = ψ(∂E, ε q−1
ε (ρ))

are connected manifolds for ρ ∈ (−1, 1) and ε small enough such that qε = q around q−1(ρ). We
know that

{φ(uε) > 0} = {ρ1 < uε < ρ2}

and pick any ρ ∈ (ρ1, ρ2). Now let x, y ∈ Ω, φ(uε(x)), φ(uε(y)) > 0. We can construct a curve
from x to y by setting piecewise

γ1 : [0, d(x)]]→ Ω , γ1(t) = π(x) + t νπ(x),

γ3 : [0, d(y)]→ Ω , γ3(t) = π(y) + t νπ(y)

and γ2 any curve connecting π(x) to π(y) in {uε = ρ}. This curve exists since connected manifolds
are path-connected. The curve γ = γ3 ⊕ γ2 ⊕ γ−1

1 connects x and y and satisfies by construction
φ(γ(t)) > 0, so F (γ(t)) ≡ 0. Therefore we deduce

dF (uε)(x, y) = 0

if φ(uε(x)), φ(uε(y)) 6= 0 since the connecting curves have uniformly bounded length and ω(ε)→∞.
Thus in particular

1

ε2

∫
Ω×Ω

φ(uε(x))φ(uε(y)) dF (uε)(x, y) dxdy ≡ 0.

�

3.2. Auxiliary Results I. A lot of our proofs will be inspired by [RS06] which again draws from
[HT00]. We will generally cite [RS06] because it treats the more relevant case for our study. In
this section, we will prove a number of auxiliary results which concern either general properties
of phase fields or properties away from the support of the limiting measure µ which will enable
us to investigate their convergence later. Results concerning phase interfaces are postponed until
section 3.3.

We start with an optimal regularity lemma for phase fields on small balls. This is an improve-
ment upon [RS06, Proposition 3.6] where in three dimensions, only boundedness in Lp for finite
p and a slow growth in L∞ could be obtained. The new L∞-bound also implies local Hölder
continuity which is used extensively later.

Lemma 3.1. Let n = 2, 3, Ω b Rn and uε ∈ X such that ᾱ := lim supε→0Wε(uε) < ∞. Then
there exists ε0 > 0 such that for all ε < ε0

(1) ||uε||∞,Rn ≤ C where C is a constant depending only on ᾱ and n.
(2) uε is 1/2-Hölder continuous on ε-balls, i.e.

|uε(x)− uε(y)| ≤ C√
ε
|x− y| 12 ∀ x ∈ Rn, y ∈ B(x, ε).

Again, the constant C depends only on α and n.

Proof. We will argue using Sobolev embeddings for blow ups of uε onto the natural length scale.
In the first step, we show the set {|uε| > 1} to be small. In the second step, we estimate the
L2-norm of the blow ups, in the third we estimate the full W 2,2-norm and use suitable embedding
theorems to conclude the proof of regularity.
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Step 1. First observe that

αε(Ω) ≥ αε({uε > 1})

=
1

c0

∫
{uε>1}

1

ε

(
ε∆uε −

1

ε
W ′(uε)

)2

dx

=
−2

c0 ε

∫
∂{uε>1}

W ′(uε) ∂νuε dHn−1

+
1

c0

∫
{uε>1}

ε (∆uε)
2 +

2

ε
W ′′(uε) |∇uε|2 +

1

ε3
(W ′(uε) )2 dx

≥ 1

c0

∫
{uε>1}

ε (∆uε)
2 +

4

ε
|∇uε|2 +

1

ε3
(W ′(uε) )2 dx(3.1)

using that W ′′(t) ≥ 2 for t ≥ 1. The boundary integral vanishes if {uε > 1} is of finite perimeter
since uε ∈ W 2,2 ↪−→ C0,1/2 is continuous and W ′(1) = 0. If this is not the case, take θ ↘ 1
converging from above such that {uε > θ} is of finite perimeter. This holds for almost all θ ∈ R.
The sign of the boundary integral can be determined since ∂νuε < 0 on the boundary of {uε > θ}
and W ′(θ) > 0 for θ > 1 so that the same inequality can still be established. By symmetry, the
same argument works for {uε < −1}.

Step 2. Let xε ∈ Ω be an arbitrary sequence and define the blow up sequence ũε : Rn → R by

ũε(y) = uε(xε + εy).

Then we observe that∫
B(0,2)

ũ2
ε dx =

∫
B(0,2)

( |ũε| − 1 + 1)
2

dy

≤
∫
B(0,2)

( (|ũε| − 1)+ + 1)
2

dy

≤ 2

∫
B(0,2)

( |ũε| − 1)2
+ + 1 dy

≤ 2 ε3−n
∫
{|uε|>1}

1

ε3
W ′(uε)

2 dy + 2n+1 ωn

≤ 2
{

2n ωn + c0 ε
3−n αε(Ω)

}
.

As usual, ωn denotes the volume of the n-dimensional unit ball. In exactly the same way with a
slightly simpler argument we obtain∫

B(0,2)

(W ′(ũε))
2 dy ≤ C(ᾱ, n).

Step 3. Now a direct calculation shows that∫
B(0,2)

(∆ũε −W ′(ũε))
2

dy =

∫
B(0,2)

(ε2∆uε −W ′(uε))2 (xε + εy) dy

= c0ε
3−n αε(B(xε, 2ε)).

Thus

||∆ũε ||2,B(0,2) ≤ ||∆ũε −W ′(ũε) ||2,B(0,2) + ||W ′(ũε) ||2,B(0,2)

≤
√
c0 ε3−n αε(Ω) +

√
C(ᾱ, n).

In total, we see that
|| ũε ||2,B(0,2) + ||∆ũε ||2,B(0,2) ≤ C(ᾱ, n)
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for all 0 < ε < 1 so small that αε(Ω) ≤ α(Ω) +1. Using the elliptic estimate from [GT01, Theorem
9.11], we see that

||ũε||2,2,B(0,1) ≤ C(ᾱ, n),

where we absorb the constant depending only on n and the radii into the big constant. Using the
Sobolev embeddings

W 2,2(B(0, 1)) ↪−→W 1,6(B(0, 1)) ↪−→ C0,1/2(B(0, 1))

we deduce that
|ũε|0,1/2,B(0,1) ≤ C(n, ᾱ),

again absorbing the embedding constants into the constant. In particular, this shows that

||ũε||∞,B(0,1) ≤ C(n, ᾱ).

But since this holds for all sequences xε, we can deduce that

||uε ||∞,Rn ≤ C(n, ᾱ).

Furthermore, for x, z ∈ Rn with |x− z| < ε < ε0, we choose xε = x to deduce

|uε(x)− uε(y)| = |ũε(0)− ũε( (y − x)/ε)| ≤ C(n, ᾱ) | (y − x)/ε |
1
2 =

C(n, ᾱ)√
ε
|x− y| 12 .

�

Remark 3.2. Without prescribing boundary conditions as in our modified space X, the result
could still be salvaged on compactly contained subsets. Techniques for estimating quantities over
{|uε| > 1} in that case can be found in [RS06, Proposition 3.5], which we include below for the
readers’ convenience.

Proposition 3.3. [RS06, Proposition 3.5] For n = 2, 3, Ω ⊆ Rn, ε > 0, uε ∈ C2(Ω), vε ∈ C0(Ω),

−ε∆uε +
1

ε
W ′(uε) = vε in Ω,

and Ω′ b Ω, 0 < r < dist(Ω′, ∂Ω), we have∫
{|uε|≥1}∩Ω′

W ′(uε)
2 ≤ Ck(1 + r−2kε2k)ε2

∫
Ω

v2
ε + Ckr

−2kε2k

∫
{|uε|≥1}∩Ω

W ′(uε)
2

for all k ∈ N0.

Thus uε is uniformly finite on compactly contained sets for small ε and steps 2 and 3 from the
proof of Lemma 3.1 go through as before. A useful rescaling property is the following observation
from the proof of [RS06, Theorem 5.1].

Lemma 3.4. Let uε : B(x, r)→ R, λ > 0 and ûε : B(0, r/λ)→ R with

ûε(y) = uε(x+ λy).

Set r̂ := r/λ, ε̂ := ε/λ,

µ̂ε :=
1

c0

(
ε̂

2
|∇ûε|2 +

1

ε̂
W (ûε)

)
Ln, α̂ε :=

1

c0 ε̂

(
ε̂∆ûε −

1

ε̂
W ′(ûε)

)
Ln.

Then
r̂1−nµ̂ε(B(0, r̂)) = r1−n µε(B(x, r)), r̂3−n α̂ε(B(0, r̂)) = r3−n αε(B(x, r)).

The discrepancy measures ξε,± behave like µ under rescaling.

Proof. This can be seen by a simple calculation similar to the one in the proof of Lemma 3.1. �

For the reader’s convenience we include the following classical monotonicity result.
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Lemma 3.5. [RS06, Lemma 4.2] For x ∈ Rn we have

d

dρ

(
ρ1−n µε(B(x, ρ))

)
= −ξε(B(x, ρ))

ρn
+

1

c0 ρn+1

∫
∂B(x,ρ)

ε 〈y − x,∇uε〉2 dHn−1(y)

+
1

c0 ρn

∫
B(x,ρ)

vε 〈y − x,∇uε〉dy.

In low dimensions n = 2, 3, the second and third term in the monotonicity formula can easily
be estimated after integration. While the result is known, we fixed some details in the proof of
[RS06, Proposition 4.5], so we include it here for completeness.

Lemma 3.6. [RS06, Proposition 4.5] Let 0 < r < R < ∞ if n = 3 and 0 < r < R ≤ 1 if n = 2,
then

r1−nµε(B(x, r)) ≤ 3R1−nµε(B(x,R)) + 2

∫ R

r

ξε,+(B(x, ρ))

ρn
dρ

+
1

2 (n− 1)2
αε(B(x,R)) +

r3−n

(n− 1)2
αε(B(x, r))

+
R2

0 R
1−n

(n− 1)2
αε(B(x,R))(3.2)

where R0 := min{R,RΩ} and RΩ is a radius such that Ω ⊂ B(0, RΩ/2)

Proof. Without loss of generality we may assume that x = 0 and write Bρ := B(0, ρ), f(ρ) =
ρ1−nµε(Bρ). Observe that for any function g : BR → R we have

∫ R

r

ρ−n
∫
Bρ

g(x) dxdρ =

∫
BR

g(x)

∫ R

max{|x|,r}
ρ−n dρdx

=
1

n− 1

∫
BR

g(x)

(
1

max{|x|, r}n−1
− 1

Rn−1

)
dx

and

∫ R

r

ρ−(n+1)

∫
∂Bρ

g(x) dHn−1 dρ =

∫
BR\Br

g(x)

|x|n+1
dx.
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Using this to integrate the derivative we obtain using Young’s inequality

f(R)− f(r) =

∫ R

r

f ′(ρ) dρ

=

∫ R

r

− ξε(Bρ)
ρn

dρ+
1

c0

∫
BR\Br

ε 〈∇uε, y〉2

|y|n+1
+

1

n− 1

vε 〈y,∇uε〉
|y|n−1

dy

+
1

(n− 1) c0 rn−1

∫
Br

vε 〈y,∇uε〉dy −
1

(n− 1) c0Rn−1

∫
BR

vε 〈y,∇uε〉dy

≥
∫ R

r

− ξε,+(Bρ)

ρn
dρ

+
1

c0

∫
BR\Br

ε 〈∇uε, y〉2

|y|n+1
− 1

n− 1

(
(n− 1) ε

〈y,∇uε〉2

|y|2(n−1)
+

1

4 (n− 1) ε
v2
ε

)
dy

− 1

c0 rn−1

∫
Br

λ
ε 〈y,∇uε〉2

2 |y|2
+

1

2λ

|y|2 v2
ε

(n− 1)2 ε
dy

− 1

c0Rn−1

∫
BR

λ
ε 〈y,∇uε〉2

2 |y|2
+

1

2λ

|y|2 v2
ε

(n− 1)2 ε
dy

≥
∫ R

r

− ξε,+(Bρ)

ρn
dρ− 1

4 (n− 1)2

∫
BR\Br

1

ε
v2
ε dy

− λ f(r)− 1

2λ

r2

(n− 1)2 rn−1

∫
Br

v2
ε

ε
dy

− λ f(R)− 1

2λ

R2
0

(n− 1)2Rn−1

∫
BR

v2
ε

ε
dy.

where λ ∈ (0, 1). Here we used that n = 2, 3 to obtain that 2(n − 1) ≤ n + 1, so that |y|n+1 ≤
|y|2(n−1) for all |y| if n = 3 and for |y| ≤ 1 if n = 2. When we bring all the relevant terms to the
other side, this shows that

(1 + λ) f(R)− (1− λ) f(r) ≥ −
∫ R

r

ξε,+(Bρ)

ρn
dρ− 1

4 (n− 1)2
αε(BR \Br)

− r3−n

2λ (n− 1)2
αε(Br)−

R2
0

2λ (n− 1)2Rn−1
αε(BR).

Setting λ = 1/2 and multiplying by two proves the Lemma. �

Remark 3.7. If n = 3, we may let R →∞ and subsequently ε→ 0, r → 0 and finally λ→ 0 that
we have

lim sup
r→0

r1−nµ(B(x, r)) ≤ 1

4 (n− 1)2
α(Ω)

at every point x ∈ R3 such that α({x}) = 0 (i.e. when limr→0 α(Br) = 0). Using the results of
[RS06], µ is an integral varifold, so this yields a Li-Yau-type [LY82] inequality

(3.3) θ∗(µ, x) = lim sup
r→0

µ(B(x, r))

π r2
≤ 1

16π
α(Ω).

This inequality is usually found with a 4 in place of the 16 which stems from a different normali-
sation of the mean curvature and W(µ) in the place of α, see also the proof of [Top98, Lemma 1]
or [KS12, Proposition 2.1.1].
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In n = 2 dimensions, we had to assume R ≤ 1. Indeed, an inequality of this type cannot hold
since circles with large enough radii have arbitrarily small elastic energy. Still, setting R = 1, a
similar bound on the multiplicity in terms of ᾱ and S can be obtained.

The version of the monotonicity formula (3.2) which we will use is the simplified expression

(3.4) r1−nµε(B(x, r)) ≤ 3R1−nµε(B(x,R)) + 3αε(B(x,R)) + 2

∫ R

r

ξε,+(B(x, ρ))

ρn
dρ.

This holds generally if n = 3, and whenR ≤ 1 if n = 2. Furthermore, we have the following estimate
for the positive part of the discrepancy measures. It is a precise quantitative refinement of the
classic statement that smooth solutions of the stationary Allen-Cahn equation −∆u+W ′(u) = 0
on Rn satisfy |∇u|2 ≤ 2W (u) [Mod85].

Lemma 3.8. [RS06, Lemma 3.1] Let n = 2, 3. Then there are δ0 > 0,M ∈ N such that for all
0 < δ ≤ δ0, 0 < ε ≤ ρ and

ρ0 := max{2, 1 + δ−Mε} ρ
we have

ρ1−nξε,+(B(x, ρ)) ≤ C δ ρ1−n µε(B(x, 2ρ)) + C δ−Mε2 ρ1−n
∫
B(x,ρ0)

1

ε
v2
ε dx

+ C δ−Mε2 ρ1−n
∫
B(x,ρ0)∩{|uε|>1}

1

ε3
W ′(uε)

2 dx+
C ε δ

ρ
.

The following observation is the key ingredient in order to obtain our required convergence
results. Geometrically, it expresses that phase fields uε which stay away from ±1 at a fixed
point need to have a minimal positive measure α or µ. In three dimensions, this is only proved
under additional technical assumptions. The proof uses infinitesimal Hölder continuity and the
monotonicity formula to transition from the ε-length scale to the macroscopic scale.

In a slight abuse of notation, we will denote the functionals defined by the same formulas by
Wε, Sε again, although they are given on spaces over B1 := B(0, 1) instead of Ω.

Lemma 3.9. Let n = 2, 3, θ ∈ (0, 1), 0 < η < 1/2. Consider the subsets

Y 2 := {u ∈W 2,2(B1) : |u(0)| ≤ θ}
in n = 2 dimensions and

Y 3
ε :=

{
u ∈W 2,2(B1) : |u(0)| ≤ θ and αε(B√ε) +

∫
B√

ε∩{|uε|>1}

W ′(u)2

ε3
dx ≤ εη

}
.

Define Fε : W 2,2(B1)→ [0,∞) as

Fε(u) =Wε(u) + Sε(u).

Then θ0 := lim infε→0 infu∈Y 2 Fε(u) > 0 if n = 2 and

θ0 := lim inf
ε→0

inf
u∈Y 3

ε

Fε(u) > 0

if n = 3. The same works if instead u(0) ≥ 1/θ.

Proof: By Hölder continuity, the condition that |u(0)| ≤ θ leads to the creation of an infinitesimal
diffuse mass density ε1−nµε(Bε) ≥ cn,ᾱ,θ. We will use the monotonicity formula to integrate this
up to show that if α = 0, macroscopic mass is created as well. In three dimensions, there is an
additional technical complication which forces us to make two steps, one from the ε-scale to the
length scale of

√
ε and a second one to the original scale.

Step 1. In a first step we show that the diffuse mass densities are uniformly bounded on large
enough length scales. For x ∈ Ω, set fε(ρ) := ρ1−nµε(B(x, ρ)). Without loss of generality, we may
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assume that fε(1) ≤ 1 for small enough ε > 0 and that αε(B3/4)+
∫
B3/4∩{|uε|>1}

1
ε3W

′(uε)
2 dx ≤ 1

due to [RS06, Proposition 3.5] (included here as Proposition 3.3).
Take δ = log(ε)−2 in Lemma 3.8 to obtain from Lemma 3.6 that for 0 < r < R = 1 we have

fε(r) ≤ 3 fε(R) + 3αε(BR) + 2

∫ R

r

ξε,+(Bρ)

ρn
dρ

≤ Cᾱ,n + C

∫ R

r

1

log(ε)2

fε(2ρ)

ρ
+

ε

log(ε)2ρ2

+ ε2 log(ε)2Mρ−n

(
αε(Bρ) +

∫
Bρ∩{|uε|>1}

W ′(uε)
2

ε3
dx

)
dρ

≤ Cᾱ,n +
C

log(ε)2

∫ R

r

fε(2ρ)

ρ
dρ+

Cε

log(ε)2

(
1

r
− 1

R

)
+
C ε2 log(ε)2M

n− 1

(
r1−n −R1−n)

≤ Cᾱ,n +
C

log(ε)2

∫ 2R

r

fε(ρ)

ρ
dρ

for a uniform constant Cᾱ,n for r ≥ ε if n = 2 and for r ≥
√
ε if n = 3. We use Grönwall’s

inequality backwards in time to deduce that

fε(r) ≤ Cᾱ,n exp

(
C

log(ε)2

∫ 2R

r

1

ρ
dρ

)
≤ Cᾱ,n

on [ε, 1) if n = 2 and on [
√
ε, 1) if n = 3.

Step 2. If n = 3 and additionally

αε(B√ε) +

∫
B√

ε∩{|uε|>1}

W ′(u)2

ε3
dx ≤ εη,

we can estimate the terms in the second line more sharply to obtain uniform boundedness of fε(r)
also for ε ≤ r ≤ R =

√
ε.

Step 3. Now we turn to the proof of the statement. For a contradiction, assume that (αε +
µε)(B1)→ 0 for a suitable sequence uε. The functions uε are C0,1/2-Hölder continuous with Hölder
constant C/

√
ε for a uniform C ≥ 0 on B1/2, as can be obtained like in Lemma 3.1. The only

difference is that we need to use [RS06, Proposition 3.5] (included here as Proposition 3.3) to
estimate

∫
{|uε|>1}

1
ε3W

′(uε)
2 dx due to the lack of boundary values. It follows that u(x) ≤ 1+θ

2 for

x ∈ B(0, cε) for some uniform c > 0, which implies

ε1−nµε(Bε) ≥
1

εn

∫
B(0,cε)

W

(
1 + θ

2

)
dx =: cn,ᾱ,θ > 0.

In the following, we will assume n = 3. The two-dimensional case follows with an easier argument
of the same type. First we deduce that

fε(ε) ≤ 3 fε(
√
ε) + 3αε(B√ε)

+ C

∫ √ε
ε

1

log(ε)2ρ
+

ε

log(ε)2 ρ2
+ ε2 log(ε)2Mρ−n εβ dρ.
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Since the second line goes to zero as ε→ 0 and αε ⇀ 0 by assumption, we deduce that fε(
√
ε) ≥

cn,ᾱ,θ/4 for all sufficiently small ε > 0. Finally, we obtain

fε(
√
ε) ≤ 3 fε(1) + 3αε(B1)

+ C

∫ 1

√
ε

1

log(ε)2ρ
+

ε

log(ε)2 ρ2
+ ε2 log(ε)2Mρ−ndρ.

Again, the terms in the second line vanish with ε→ 0 and αε(B1)→ 0 by assumption, thus

fε(1) ≥ cn,ᾱ,θ
16

for all sufficiently small ε > 0. But this contradicts the assumption that (αε + µε)(B1) → 0, so
we are done. The case u(0) ≥ 1/θ follows similarly in two dimensions; in three dimensions it is
automatically excluded by the choice of space Y 3

ε . �

The estimate above is not sharp, but suffices for our purposes. After this Lemma, everything is
in place to show uniform convergence of phase fields in two dimensions in section 3.4, while further
results will be needed for Hausdorff convergence of the transition layers. In a very weak phrasing,
Lemma 3.10 suffices, more precise versions (and the application to connectedness) need the entire
section 3.3.

3.3. Auxiliary Results II. In this section, we will derive technical results concerning how phase
field approximations interact with the function φ as needed for the functional Cε to impose con-
nectedness. While the previous section focused on estimates away from the interface, here we
investigate the structure of transition layers close to spt(µ). The following Lemma is a special case
of [RS06, Proposition 3.4] with a closer attention to constants and the limit ε→ 0 already taken.

Lemma 3.10. Let x ∈ Rn, r, δ > 0, 0 < τ < 1− 1/
√

2. Then

lim sup
ε→0

µε
(
{uε ≥ 1− τ} ∩B(x, r)

)
≤ 4 τ µ(B(x, r + δ)).

For all x ∈ Rn, there are only countably many radii r > 0 such that µ(∂B(x, r)) > 0. This
follows from the fact that µ is finite and that there are at most finitely many radii such that
µ(∂B(x, r)) ≥ 1/k, so that the union of those sets is countable. Thus for any r > 0 there is
t ∈ (0, r) such that µ(∂B(x, t)) = 0. Letting δ → 0 at such a radius t (and using that the
discrepancy measures go to zero) gives us the following result (compare also [DMR14, Lemma 9]).

Corollary 3.11. For all x ∈ spt(µ), r > 0 and τ < 1/8 we have

lim inf
ε→0

1

ε
Ln ( {|uε| < 1− τ} ∩B(x, r)}) > 0.

The following arguments rely more on the rectifiable structure of the measure µ that we are
approximating. Specifically, we introduce the diffuse normal direction by

νε :=
∇uε
|∇uε|

when ∇uε 6= 0 and 0 else. To work with varifolds, we introduce the Grassmannian G(n, n − 1)
of n − 1-dimensional subspaces of Rn. We refer readers unfamiliar with varifolds or countably
rectifiable sets to the excellent source [Sim83]; an introduction with different focus which is easier
to find and covers most results relevant for us is [KP08]. Recall the following result.

Lemma 3.12. [RS06, Propositions 4.1, 5.1] Define the n− 1-varifold Vε := µε ⊗ νε by

Vε(f) =

∫
Rn×G(n,n−1)

f(x, 〈νε〉⊥) dµε ∀ f ∈ Cc(Rn ×G(n, n− 1)).
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Then there is an integral varifold V such that Vε → V weakly as Radon measures on Rn×G(n, n−1)
(varifold convergence). The limit satisfies

µV = µ, H2
µ µ ≤ α

where µV is the mass measure of V and Hµ denotes the generalised mean curvature of µ. In
particular, W(µ) ≤ ᾱ.

The following result is a suitably adapted version of [RS06, Proposition 5.5] for our purposes.
It shows that given small discrepancy measures and small oscillation of the gradient, a bounded
energy sequence looks very much like an optimal interface in small balls. Using our improved
bounds from Lemma 3.1, we can drop most of their technical assumptions.

Lemma 3.13. Let δ, τ > 0 and denote νε,n = 〈νε, en〉. Then there exist 0 < L <∞ depending on
δ and τ only and γ > 0 depending on ᾱ, δ and τ such that the following holds for all x ∈ Rn. If

(1) |uε(x)| ≤ 1− τ and
(2) |ξε|(B(x, 4Lε)) +

∫
B(x,4Lε)

1− ν2
ε,n dµε ≤ γ (4Lε)n−1

then also the following two properties hold:

• The blow up ũε(y) = uε(x+ εy) is C0,1/4-close to an optimal profile q on B(0, 3L):

| ± ũε − q(yn − t1)|0,1/4,B(0,3L) < δ.

The optimal profile q is the function from the lim sup-construction and t1 = q−1(uε(x)).
• |uε(x̂, xn + t)| ≥ 1 − τ/2 for all Lε ≤ |t| ≤ 3Lε, where x̂ = (x1, . . . , xn−1) and u changes

sign in between.

Proof. Without loss of generality, we may assume that x = 0 and write Br := B(0, r). Recall that

q′(t) =
√

2W (q(t)) and limt→±∞ q(t) = ±1. Thus we can pick L > 0 such that |q(t)| ≥ 1 − τ/4
for all t > L.

Assume for a contradiction that there is no constant γ > 0 such that the results of the Lemma
hold. Then for γj → 0, there must be a sequence ujε such that |ujε(0)| ≤ 1− τ , Wε(u

j
ε) ≤ ᾱ+ 1 and

|ξjε |(B4Lε) +

∫
B4Lε

1− (νjε,n)2 dµε ≤ γj (4Lε)n−1,

but the conclusions of the Lemma do not hold. Considering the blow ups ũj : B4L → R with
ũj(y) = ujε(εy) we obtain

||ũj ||2,2,B3L
≤ Cᾱ,n,L

like in Lemma 3.1. Hence there is ũ ∈W 2,2(B3L) such that

ũj ⇀ ũ in W 2,2(B3L).

Since W 2,2 embeds compactly into W 1,2 and L4, we see that∫
B3L

∣∣ |∇ũ|2/2−W (ũ)
∣∣ dx = lim

j→∞

∫
B3L

∣∣ |∇ũj |2/2−W (ũj)
∣∣ dx

≤ lim
j→∞

ε1−n|ξjε |(B4Lε)

≤ lim inf
j→∞

(4L)n−1γj

= 0
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and when we set ∇̂u = (∂1u, . . . , ∂n−1u), we get∫
B3L

|∇̂ũ|dx = lim
j→∞

∫
B3L

|∇̂ũj |dx

= lim
j→∞

∫
B3L

√
|∇ũj |2 − |∂nũj |2 dx

≤ lim inf
j→∞

∫
B4L

|∇ũj |
√

1−
(
ν̃jn
)2

dx

≤ lim inf
j→∞

(ωn (4L)n)
1/2

(∫
B4L

|∇ũj |2
(
1− (ν̃jn)2

)
dx

) 1
2

≤ lim inf
j→∞

√
8Lωn

(
ε1−n

∫
B4Lε

1− (νjn)2 dµε

) 1
2

≤ lim inf
j→∞

√
8Lωn γj

= 0.

Thus we can see that

|∇ũ|2 = 2W (ũ), ∇ũ = (0, . . . , 0, ∂nũ).

Clearly, this means that ũ(y) = p(yn) for a function p with p′ = ±
√

2W (p) . Using that |ũ(0)| ≤
1 − τ and the Picard-Lindelöff theorem on the uniqueness of the solutions to ODEs, we see that
p(yn) = ±q(yn − ȳ) for some ȳ ∈ R which can easily be fixed by the initial condition for p(0).

Since weak W 2,2-convergence implies strong C0,1/4-convergence in n = 2, 3 dimensions, we see
that there is j ∈ N such that the claim of the Lemma holds for ujε contradicting our assumption.
Thus the Lemma is proven. �

To deal with the rectifiable sets in the next section more easily we prove a structure result for
rectifiable sets. The result seems standard, but we have been unable to find a reference for it. As
usual, we call a function on a closed set differentiable if it admits a differentiable extension to a
larger open set.

Lemma 3.14. Let M be a countably k-rectifiable set in Rn. Denote by B the closed unit ball in k
dimensions. Then there exist injective C1-functions fi : B → Rn with ∇fi 6= 0 on B such that

Hk
(
M \

∞⋃
i=1

fi(B)

)
= 0

and such that fi(B) ∩ fj(B) = ∅ for all i 6= j.

Proof. According to [KP08, Lemma 5.4.2] or [Sim83, Lemma 11.1] there is a countable collection
of C1-maps gi : Rk → Rn such that

M ⊂ N ∪
∞⋃
i=1

gi
(
Rk
)

where Hk(N) = 0. Without loss of generality, N is assumed to be disjoint from the other sets.
First we need to make the individual maps gi one-to-one. To do that, we define the set where
injectivity fails in a bad way:

Ai :=
{
x ∈ Rk | ∀ r > 0 ∃ y ∈ B(x, r) such that gi(x) = gi(y)

}
.
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Due to the failure of local injectivity, we see that the Jacobian Jgi(x) vanishes on Ai. Since gi is
a C1-function, the set Di := J−1

gi (0) is closed and by the Morse-Sard Lemma [Fed69, 3.4.3]

Hk (gi(Di)) = 0.

Set Ui := Rk \Di. Now as in [EG92, Chapter 1.5, Corollary 2] we can use Vitali’s covering theorem

[EG92, Chapter 1.5, Theorem 1] to obtain a countable selection of closed balls Bji such that fi is

injective with non-vanishing gradient on Bji for all j ∈ N and

Lk
Ui \ ∞⋃

j=1

Bji

 = 0.

Since the boundary of a k-ball has Hausdorff dimension k − 1, we could equally well take open
balls. Since C1-functions map sets of Lk-measure zero to sets of Hk-measure zero, we have shown
that we can write

M ⊂ Ñ ∪
∞⋃
j=1

g̃i(B
◦)

where Hk(Ñ) = 0, g̃i : B → Rn is one-to-one, C1, and has a non-vanishing gradient everywhere
on the closed ball B. The functions g̃m are obtained by rescaling suitable restrictions of gi from
Bji to the unit ball. Finally, we have to cut out the sets that get hit by more than one function
g̃m. Inductively, we define

Ũm := B◦ \ g̃−1
m

(
m−1⋃
l=1

g̃l(B)

)
.

Finally, we use Vitali’s Lemma again to pick collections of closed balls B̃lm such that

Lk
(
Ũm \

∞⋃
l=1

B̃lm

)
= 0.

Rescaling the restricted functions from these balls and translating to the unit ball gives us the
result. �

The proof of the following Lemma resembles that of the integrality of µ in [RS06, Lemma 4.2].
It faces different challenges: while we do not need to prove multi-layeredness, we cannot zoom in
on the tangent space since we need a macroscopic measure contribution to the double integral.
Thus we need Lemma 3.14 to approximate macroscopically the structure of µ.

Lemma 3.15. Let φ ∈ C0(R) such that φ ≥ 0 and
∫ 1

−1
φ(u) du > 0. If x ∈ spt(µ), then

lim inf
ε→0

1

ε

∫
B(x,r)

φ(uε) dx > 0

for all r > 0.

Proof. Step 1. As usual, we assume that x = 0, µ(∂B(x, r/2)) = 0 and denote B = B(x, r/2).
This means that all the ε-balls of positive integral we are going to find will actually lie in B(x, r)
and is a purely technical condition. Let ζ be a small constant to be specified later. For further
use, denote by B̂ the closed unit ball in Rn−1.

As µ is an integral varifold, we know that spt(µ) is rectifiable. This means by Lemma 3.14 that

there are countably many C1-functions fi : B̂ → Rn such that

spt(µ) ⊂M0 ∪
∞⋃
i=1

fi(B̂), Hn−1(M0) = 0 fi(B̂) ∩ fj(B̂) = ∅



24 PATRICK W. DONDL, ANTOINE LEMENANT, AND STEPHAN WOJTOWYTSCH

for i 6= j. Since µ has second integrable mean curvature H2
µ ·µ ≤ α, we can further use the Li-Yau

inequality (3.3) to bound the maximum multiplicity of µ uniformly by

θmax ≤
α(Ω)

16π
,

at least Hn−1-almost everywhere. Now since Hn−1(spt(µ)) < +∞ we can find N ∈ N such that

Hn−1

((
spt(µ) ∩B

)
\
N⋃
i=1

fi(B̂)

)
<

ζ

θmax
.

Since fi is injective and has non-vanishing tangent maps everywhere, M :=
⋃N
i=1 fi

(
B̂◦
)

is a

C1-manifold. We observe that

Hn−1(spt(µ) ∩B \M) <
ζ

θmax

and hence
µ (B \M) < ζ.

Since the maps in question are smooth and the unit discs are orientable, for every i we can pick
a continuous unit normal field to fi(B̂) (e.g. using cross products). Since the discs are compact
and disjoint (thus a positive distance apart), the fields defined on each disc separately induce a
continuous unit vector field on the union of their closures.

Now we use the Tietze-Urysohn extension theorem to obtain a vector field X on B such that
X = νM on M and projecting on the unit ball we ensure |X| ≤ 1. After an easy modification, we
may assume that |X| = 1 on a neighbourhood of M . We then define

G : Rn ×G(n, n− 1)→ R, G(x, S) = 〈Xx, νS〉2

where νS is one of the unit normals to S. Note that G is continuous since X is. Using the non-
negativity of G and the fact that Txµ = TxM for Hn−1-almost every x ∈M ∩ spt(µ) we interpret
µ as dual to C0(Rn ×G(n, n− 1)) and observe

〈µ,G〉 =

∫
spt(µ)

θ(x)G(x, Txµ) dHn−1

≥
∫

spt(µ)∩M
θ(x)G(x, TxM) dHn−1

=

∫
spt(µ)∩M

θ(x) dHn−1

= µ(M)

≥ µ(B)− ζ.

Step 2. By varifold convergence, we know that limε→0〈µε, G〉 = 〈µ,G〉 ≥ µ(B)−ζ, and |X|, |νε| ≤
1 so

lim sup
ε→0

∫
B

∣∣1− 〈νε, X〉2∣∣dµε = lim sup
ε→0

∫
B

1− 〈νε, X〉2 dµε

≤ lim sup
ε→0

(µε(B)− 〈µε, G〉)

≤ ζ.
For γ, ε, L > 0 we define the set

Uε,γ,L :=

{
x ∈ B

∣∣∣∣ 1

(4Lε)n−1

∫
B(x,4Lε)

∣∣1− 〈νε, X〉2 ∣∣dµε > γ/4

}
.
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Let x1, . . . , xK be points in Uε,γ,L being maximal for the property that the balls B(xi, 4Lε) are
disjoint. Then by definition

ζ ≥
∫
B

∣∣1− 〈νε, X〉2∣∣dµε ≥ K∑
i=1

∫
B(xi,4Lε)

∣∣1− 〈νε, X〉2∣∣ dµε ≥ K (4Lε)n−1 γ/4.

At the same time, we know that the balls B(xi, 8Lε) cover Uε,γ,L because otherwise we could bring
in more disjoint balls, therefore

Ln(Uε,γ,L)

ε
≤ K ωn (8Lε)n

ε

≤ 4 ζ

γ (4Lε)n−1

ωn (8Lε)n

ε

= 2n+4 ωn Lζ/γ.

For a given γ, we choose ζ = ζ(γ) such that this is ≤ µ(B)/4.
Step 3. Knowing that |ξε|(B) → 0, we can use the same argument as in the second step to

show for

Vε,γ,L :=

{
x ∈ B

∣∣∣∣ |ξε| (B(x, 4Lε))

(4Lε)n−1
> γ/2

}
the estimate

Ln(Vε,γ,L)

ε
≤ µ(B)/4

for all sufficiently small ε > 0.
Step 4. Now choose U as a neighbourhood of M on which |X| = 1 and τ > 0 like in Corollary

3.11 satisfying

lim inf
ε→0

µε (U ∩ {|uε| ≤ 1− τ}) ≥ 3µ(B)

4
.

This is easily achieved when µ(M) > 3µ(B)/4. Furthermore we take δ � 1 suitably small for
small deviations of the optimal interface to behave similarly enough, L and γ as in Lemma 3.13
and ζ = ζ(γ). Using steps one through three, we see that

lim inf
ε→0

Ln ({|uε| ≤ 1− τ} ∩ U \ (Uε,γ,L ∪ Vε,γ,L))

ε

≥ lim inf
ε→0

Ln ({|uε| ≤ 1− τ} ∩ U)

ε
− L

n (Uε,γ,L)

ε
− L

n (Vε,γ,L)

ε
≥ 3µ(B) /4− µ(B)/4− µ(B)/4

= µ(B)/4.

Using the reverse argument of step 2, we can see that there are at least K points x1, . . . , xK in
{|uε| ≤ 1− τ} ∩ U \ (Uε,γ,L ∪ Vε,γ,L) such that the balls B(xi, 4Lε) are disjoint with

K ≥ µ(B)

8n+1 Ln εn−1
.



26 PATRICK W. DONDL, ANTOINE LEMENANT, AND STEPHAN WOJTOWYTSCH

Step 5. To apply Lemma 3.13, we must “freeze” the coefficients of the vector field X to a single
unit vector. We compute

1

(4Lε)n−1

∣∣∣∣ ∫
B(xi,4Lε)

(
1− 〈νε, X〉2

)
−
(
1− 〈νε, Xi〉2

)
dµε

∣∣∣∣
=

1

(4Lε)n−1

∣∣∣∣ ∫
B(xi,4Lε)

〈νε, Xi〉2 − 〈νε, X〉2 dµε
∣∣∣∣

=
1

(4Lε)n−1

∣∣∣∣ ∫
B(xi,4Lε)

〈νε, Xi −X〉 〈νε, Xi +X〉 dµε
∣∣∣∣

≤ |Xi +X|C0(B(xi,4Lε)) · |Xi −X|C0(B(xi,4Lε))
1

(4Lε)n−1
·
∫
B(xi,4Lε)

dµε

≤ 2Cᾱ,L,n |Xi −X|C0(B(xi,4Lε))

for all Xi such that |Xi| ≤ 1. When we set Xi = X(xi), the last term converges to zero – so
eventually it is smaller than γ/4 and

1

(4Lε)n−1

∫
B(xi,4Lε)

1− 〈νε, Xi〉2 dµε < γ/2.

Since xi ∈ U , we finally see that |Xi| = 1 and Lemma 3.13 can be applied.
Step 6. Since uε is C0,1/4-close to a one-dimensional optimal profile on B(xi, 3Lε) which

transitions from −1 to 1, we see that for each s ∈ (−(1 − τ), (1 − τ)) there must be a point
yi ∈ B(xi, 3Lε) such that uε(yi) = s. By Hölder continuity, we deduce that∫

B(xi,3Lε)

φ(uε) dx ≥ θ̄ εn

for a constant θ̄ depending on the support of φ and on ᾱ, n for the Hölder constant. Since the balls
are disjoint by construction, we can add this up to

1

ε

∫
B

φ(uε) dx ≥
1

ε

M∑
j=1

∫
B(xi,3Lε)

φ(uε) dx

≥ 1

ε
M θ̄ εn

≥ µ(B) θ̄

8n+1 Ln

> 0.

This concludes the proof. �

We need one final result from geometric measure theory before we move on to our main results.

Lemma 3.16. Let (X, d) be a metric space and K ⊂ X is compact. If K is not connected, then
there exist two open sets U1, U2 ⊂ X such that

K ⊂ U1 ∪ U2, K ∩ Ui 6= ∅ for i = 1, 2 and dist(U1, U2) > 0.

Proof. Assume that spt(µ) is not connected. Then there exist relatively open non-empty sets
W1,W2 ⊂ K such that

K = W1 ∪W2.
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By definition of the subspace topology, W1 and W2 are also relatively closed. Since K is compact,
they are even compact, so δ := dist(W1,W2) > 0. We set U1 = {dist(·,W1) < δ/3} and U2 =
{dist(·,W2) < δ/3}. �

If K is the support of a measure µ, we can pick xi ∈ Wi for i = 1, 2 since neither set is empty.
As Ui is a neighbourhood of xi, we see directly from the definition of the support of a measure
that µ(Ui) > 0 for i = 1, 2.

3.4. Proof of the Main Results. Having dealt with the necessary auxiliary results, we can
proceed to prove our main results. We use the terminology of Lemma 3.9.

Proof of Theorem 2.1. Compare also [NT07, Lemmas 3.1, 3.2 and Proposition 4.2]. Let Ω′ b
Rn \ spt(µ) and τ > 0. Assume there is a sequence xε in Ω′ such that |uε(xε)| ≤ 1 − τ or
|uε(xε)| ≥ 1 + τ . By definition, xε ∈ Ω and using compactness, there is x ∈ Ω′ ∩ Ω such that
xε → x.

Let r > 0 such that B(x, 3r) ⊂ Rn \ spt(µ). Due to convergence, B(xε, r) ⊂ B(x, 2r) for all
sufficiently small ε > 0. If we use the rescaling property from Lemma 3.4 and the minimisation
property of Lemma 3.9 for n = 2, we see that

α(B(x, 2r)) ≥ 1

r
lim inf
ε→0

(
r αε(B(xε, r)) + r−1 µε(B(xε, r))

)
≥ 1

r
lim inf
ε̂→0

inf
u∈Y 2

Fε̂(u)

≥ θ0/r

with ε̂ = ε/r as in Lemma 3.4. Letting r → 0, we obtain a contradiction. �

If n = 3, neither the rescaling property of Lemma 3.4 nor the minimisation property of Lemma
3.9 hold in as strong formulations. As we sketched in Remark 2.8, uniform convergence is, in fact,
false.

Proof of Theorem 2.2: We assume that uε → u strongly in L1(Ω) and that µε
∗
⇀ µ for our sequence

or a suitable subsequence (not relabelled). Let D b (−1, 1), then u−1
ε (D) b Ω. We can consider

u−1
ε (D) instead without changing the Hausdorff limit to conform with standard approaches. By

the usual compactness results (see e.g. [KP08, Theorem 1.6.6]), there is a compact set K such that
a further subsequence of u−1

ε (D) converges to K in Hausdorff distance. K can be computed as the
Kuratowski lower limit

K = {x ∈ Rn | ∃ xε ∈ u−1
ε (D) such that xε → x}.

Step 1. We first show that K ⊂ spt(µ) if n = 2. Assume x ∈ K \ spt(µ). Then there exists
r > 0 such that B(x, r) b R2 \ spt(µ). This means already that |uε| → 1 uniformly on B(x, r)
showing that u−1

ε (D) ∩B(x, r) = ∅ for small enough ε, contradicting our assumption.
Step 2. Now we prove that spt(µ) ⊂ K in n = 2, 3 dimensions. It suffices to show that for

x ∈ spt(µ), s ∈ D and r > 0 we have u−1
ε (s)∩B(x, r) 6= ∅ for all sufficiently small ε, which implies

Hausdorff convergence.
This is an easier version of the proof of Lemma 3.15. Again, we use Corollary 3.11 to show that

we have a point y ∈ B(x, r/2) to use Lemma 3.13 on and then Lemma 3.13 to see that we get
points in the pre-image of s close to y since uε is C0-close to an optimal interface in B(y, 3Lε).

If n = 2, the uniqueness of the limit also shows convergence for the whole sequence. �

We will now proof our main statement about connectedness.
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Proof of Theorem 2.5. The proof is structured as follows. First, we show that we can find neigh-
bourhoods of connected components which have positive distance with respect to the usual metric
on Rn. Then we need to show that they also have positive distance with respect to the pseudo-
metric dF (uε). Intuitively, this makes sense since any connecting curve should have to leave the
interfacial layer between the two sets. This is simple if n = 2 and slightly more technical if n = 3.
We proceed in the spirit of Theorem 2.3 and show that uε converges to ±1 even on curves.

Without loss of generality, we may assume that there are −1 < θ1 < θ2 < 1 such that {φ > 0} ⊂
(θ1, θ2) and F ≥ 1 outside (θ1, θ2). This is only a minor assumption and could easily be removed,
but simplifies the proof.

Step 1. Assume that spt(µ) is not connected. Since spt(µ) is compact, according to Lemma
3.16 there are disjoint open sets U1, U2 such that

spt(µ) ⊂ U1 ∪ U2, µ(Ui) > 0, i = 1, 2, δ := dist(U1, U2) > 0.

Now

lim inf
ε→0

Cε(uε) ≥ lim inf
ε→0

∫
U1

φ(uε(x)) dx · lim inf
ε→0

∫
U2

φ(uε(y)) dy

· lim inf
ε→0

distF (uε)(U1, U2).

Since the first two factors are strictly positive according to Lemma 3.15, it suffices to show that

lim infε→0 distF (uε)(U1, U2) > 0.

Step 2. For a contradiction, assume that distF (uε)(U1, U2) → 0. Pick a sequence cε such that

cε → 0 but still distF (uε)(U1,U2)
cε

→ 0. Then there exist a connected set Kε and points xε, yε ∈ Ω
such that

xε ∈ Kε ∩ ∂U1, yε ∈ Kε ∩ ∂U2,

∫
Kε

F (uε) dH1 ≤ cε.

If n = 2, we know that |uε| → 1 uniformly on Ω \ (U1 ∪ U2), so in particular uε /∈ [θ1, θ2] on
Kε ⊂ Ω \ (U1 ∪ U2) and ∫

Kε

F (uε) dH1 ≥ H1(Kε \ (U1 ∪ U2)) ≥ δ > 0

since Kε connects U1 to U2. This is a contradiction to our assumption. In the case n = 3 we need
a further argument.

Step 3. In this step, we will use the competition between the distance function driving uε away
from ±1 along Kε and the energy bounds in three dimensions.

Precisely, knowing that the F (uε)-weighted length of Kε is small, we will construct a set of
Nε � 1 points xi,ε on Kε such that uε(xi,ε) ∈ [θ1, θ2] for all i = 1, . . . N and such that the balls of

radius ε1/2 around these points are disjoint. The large number of balls implies that one of them
has to satisfy the conditions of Lemma 3.9. This allows us to show that α must have an atom of
fixed minimal size close to this point.

A more careful construction allows us to localise the argument on short segments of Kε such
that we may construct any finite number of atoms with the same fixed minimal size. This gives
the desired contradiction.

Take a subsequence realising the lim inf. The 1-Lipschitz map π(x) := dist(x, U1) maps Kε to
a connected set containing 0 = π(xε) and δ = π(yε), so [0, δ] ⊂ π(Kε). Furthermore, π−1(0, δ) ⊂
R2 \ (U1 ∪ U2) since dist(U1, U2) = δ. Take the set

K ′ε := {t ∈ [0, δ] : ∃ x ∈ Kε such that t = π(x) and uε(x) /∈ [θ1, θ2]}
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of points whose pre-image contributes a lot to the weighted length of Kε. Then

H1(K ′ε) ≤ H1 (Kε ∩ {uε /∈ [θ1, θ2]})

≤
∫
Kε

F (uε) dH1

≤ cε.

Pick M intervals

Ik =

[
2k − 1

2M
δ,

k

M
δ

]
inside [0, δ]. Fix 1 ≤ k ≤M . When ε is so small that cε <

δ
4M , we deduce that

(3.5) H1(Ik \K ′ε) ≥ H1(Ik)−H1(K ′ε) ≥
δ

2M
− δ

4M
=

δ

4M
.

Take a maximal collection t1,ε, . . . , tNε,ε in Ik with the property that the balls B(ti,ε, ε
1/2) are

mutually disjoint. Then Nε ≥ δ
16Mε1/2

− 1 since otherwise

Ik \K ′ε ⊂
Nε⋃
i=1

B(ti,ε, 2ε
1/2) ⇒ H1(Ik \K ′ε) ≤ Nε · 4ε1/2 ≤

(
δ

16Mε1/2
− 1

)
· 4ε1/2 <

δ

4M
.

For each ti,ε we pick xi,ε ∈ Kε ∩ π−1(ti,ε) which satisfies by construction uε(xi,ε) ∈ [θ1, θ2].

Since the projection map is contracting, also the balls B(xi,ε, ε
1/2) are mutually disjoint. Fix any

0 < η < 1/2. Now assume for a contradiction that all points xi,ε satisfy

αε(B(xi,ε, ε
1/2)) +

∫
B(xi,ε,ε1/2)∩{|uε|>1}

W ′(uε)
2

ε3
dx ≥ εη

for all i = 1, . . . , Nε. Thus

2αε(Ω) ≥ αε(Ω) +

∫
{|uε|>1}

W ′(uε)
2

ε3
dx ≥ Nεεη ≥

δ

16M
εη−1/2 − εη ∼ εη−1/2

due to (3.1). This grows beyond any bound as ε→ 0, so there must by 1 ≤ iε ≤ Nε such that

αε(B(xi,ε, ε
1/2)) +

∫
B(xi,ε,ε1/2)∩{|uε|>1}

W ′(uε)
2

ε3
dx ≤ εη.

Using compactness and a subsequence, there exists xk ∈ π−1(Ik) such that xiε,ε → xk. We can

achieve this simultaneously for all k = 1, . . . ,M . The balls B(xk, r) are disjoint for 0 < r < δ
4M

since the intervals Ik have distance δ/2M and µ(B(x̄k, r)) = 0 since

dist(x̄k, spt(µ)) ≥ dist(Ω \ U1 ∪ U2, spt(µ)) ≥ δ.

Fix such r and consider ε̂ = ε/(2r) and

ûε : B(0, 1)→ R, ûε(y) = uε

(r
2
· y + xi,ε

)
with ûε(0) ∈ [θ1, θ2]. We use the terminology of Lemma 3.4. The associated measures α̂ε satisfy

α̂ε(B(0, 1)) +

∫
B(0,1)∩{|ûε|>1}

W ′(ûε)
2

ε̂3
dx ≤ ε̂η
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so by Lemma 3.9

α(B(x̄k, r)) ≥ lim inf
ε→0

αε(B(x̄k, 3r/4))

≥ lim inf
ε→0

αε(B(xiε,ε, r/2))

= lim inf
ε→0

[
αε(B(xiε,ε, r/2)) + (r/2)1−n µε(B(xiε,ε, r/2))

]
= lim inf

ε→0
(µ̂ε + α̂ε)(B(0, 1))

≥ θ0.

Taking r → 0, we see that α({x̄k}) ≥ θ0. So in total, α(Ω) ≥Mθ0 for all M ∈ N where θ0 depends
only on θ1 and θ2. Thus we have reached the desired contradiction. �

Now Theorem 2.6 is an obvious consequence of Theorem 2.5.

Proof of Theorem 2.6: Let uε be a sequence such that Eε(uε) is bounded. Then in particular
|µε(Ω) − S| ≤ εσ/2, so µε(Rn) = µε(Ω) is bounded and µε ⇀ µ for some Radon measure µ – for
this and other properties see [EG92, Chapter 1]. Clearly

µ(Ω) ≥ lim sup
ε→0

µε(Ω) = S

and on the other hand
µ(Ω) ≤ µ(Rn) ≤ lim inf

ε→0
µε(Rn) = S

so µ(Ω) = S. If U = Rn \ Ω, we have

µ(U) ≤ lim inf
ε→0

µε(U) = 0,

so spt(µ) =
⋂
U open,µ(U)=0 U

c ⊂ Ω. Since Eε(uε) is bounded, we have Cε(uε) → 0, so due to

Theorem 2.5, spt(µ) is connected. �

Finally, the same arguments give convergence H1-a.e. on fixed curves.

Proof of Theorem 2.3. This proof is a simpler version of that of Theorem 2.5. If |uε| 6→ 1H1-almost
everywhere on K, there is a set

K ′s := {x ∈ K | lim sup
ε→0

∣∣ |uε| − 1
∣∣ ≥ s}

with H1(K ′s) > 0 for some small s > 0. We do not need the projection onto the first coordinate
and can directly define xi,ε in the fixed set Kε ≡ K ′s without passing through ti,ε, the rest works
analogously. �

4. Computer Implementation

In a computer simulation, we try to find local minimisers of the ε-problem in n = 2 dimensions.
In the implementation, we follow a finite element approximation of the time-normalised L2-gradient
flow of Eε with ε = 1.5 ·10−2, κ = 1, σ = 2. The pictures below were obtained on a triangular mesh
with elements of diameters approximately h = 6 · 10−3 and approximately 250.000 H2-conforming
subdivision surface basis functions supported in the two-ring around an element. Time-stepping
was semi-implicit with a time-step of τ = ε · 10−5. The distance function dF (uε) and its gradient
are implemented via Dijkstra’s algorithm in a fashion similar to the one of [BCPS10]. The initial
condition is the same for all simulations and can be seen in Figure 1 on the left; the domain is the
disc of radius 1. There was no penalisation of the discrepancy measure in our simulations.

For practical purposes, we use two functions φ1, φ2 with support close to 1 and −1, respectively,
rather than just one φ. Quite obviously, our proofs easily extend to that situation. By keeping
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level sets close to the edges connected, we create barriers that prevent the interface from splitting
apart early in the process. The implementation will be described in greater detail in a forth-coming
article [DW16].

We see in Figure 1 that without the inclusion of the topological term, the transition layer
disintegrates into several connected components along the gradient flow of Wε + ε−σ (Sε − S)2.

Figure 1. Gradient flow of Wε + ε−σ (Sε−S)2. From left to right: phase field u
for approximately t = 7.5 · 10−5, t = 3 · 10−4, t = 7.5 · 10−4 and t = 1.8 · 10−3.

To compare implementations of topological side conditions, we include the topological term
suggested in [DMR11], which penalises a deviation of a diffuse signed curvature integral from 2π
in the simulation. This term prevents the initial pinch-off, but at a later time, the interface will
pinch off in a more complicated way which keeps the diffuse winding number close to 2π. The
phenomenon is a simultaneous pinch off at several points as seen in Figure 2. The far right plot in
Figure 2 illustrates the diffuse curvature density as distributed along the curve at pinch off time.
We can observe the formation of a circle with negative total curvature ≈ −2π (due to the phase
field switching in the other direction from +1 to −1), and two components with total curvature
≈ 2π so that the total curvature of the whole interface stays close to 2π.

Figure 2. Gradient flow with penalty on a diffuse winding number as suggested
in [DMR11]. From left to right: phase field u for approximately t = 3 · 10−4,
t = 7.5 · 10−4 and t = 1.8 · 10−3, then a plot of the diffuse winding number density
denoted T at time t = 1.8 · 10−3.

In Figure 3, a flow for Eε with the additional term of Cε on the other hand can be seen to stably
flow past those singular situations.

Comparing the three scenarios above, we observe that there is virtually no difference in the
plots at time 3 · 10−4 and that the plots for both modified (penalised using either the old or the
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Figure 3. Evolution including our new topological penalty term Cε. Top line,
from left to right: phase field u for approximately t = 3 · 10−4, t = 7.5 · 10−4

and t = 1.8 · 10−3, then a plot of the diffuse Willmore energy density (denoted
W here) of the initial condition. bottom line, left to right: phase field u and
diffuse Willmore energy density first for approximately t = 6.6 · 10−3 and then for
approximately t = 3.6 · 10−2.

new method) functionals at time 7.5 · 10−4 still look very similar. It can thus be argued that the
topological condition does not affect the shape of the curve in a major way except when it has to
in order to prevent loss of connectedness.

In Figure 3, we see non-trivial geometric changes along the gradient flow for later times. This
demonstrates the necessity of continuing the flow beyond the critical times.

It should be emphasised that our focus is not on implementing a scheme to approximate Willmore
flow using phase fields but on finding minimisers of the diffuse interface problem using a gradient
flow. Existence of Willmore flow for long time and topological changes along it are still an open
field of research.

5. Conclusions

In this paper, we have developed a strategy to enforce connectedness of diffuse interfaces. The
strategy fares well in applications and can efficiently be implemented and seems to be more generally
applicable to a wider class of problems. We claim that our results can be extended to the following
situations.

• We can include a soft volume constraint like

F

(
1

2

∫
Ω

uε + 1 dx

)
for continuous functions F ≥ 0.
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• Another popular constraint compatible with our functional and results is minimising a
distance from a given configuration as

Aε(u) =

∫
Ω

|u− g|dλ

where λ is a finite Radon measure on Ω and g ∈ L1(Ω). This functional originates in
problems in image segmentation, but in our context it can be understood as prescribing
certain points to lie inside or outside the membrane according to experimental data.
• Using [BM10, Theorem 4.1], we could take Bellettini and Mugnai’s approximation of the

Helfrich energy

EHel
ε (u) =

∫
Ω

2 + χ

2ε
v2
u,ε −

χ

2ε

∣∣∣∣ε∇2u− W ′(u)

ε
νu ⊗ νu

∣∣∣∣2 dx

for χ ∈ (−2, 0) in place of the diffuse Willmore energyWε. Here vu,ε is the usual Willmore
density associated with u and νu = ∇u/|∇u| is the diffuse normal like in Lemma 3.12.
• We can use the same modelling techniques for a finite collection of membranes given by
u1
ε, . . . , u

N
ε inside an elastic container given by Uε. The governing energy could be composed

of a sum of the individual elastic energies Eε and interaction energies Iε like

Iε(u
i
ε, u

j
ε) =

1

ε

∫
Ω

(uiε + 1)2 (ujε + 1)2dx

which prevent penetration of the phases uiε ≈ 1 and ujε ≈ 1 or, in a slight variation, enforce
confinement of uiε ≈ 1 to Uε ≈ 1.
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