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Abstract. A recent paper by Cordero-Erausquin and Klartag provides a characterization of
the measures µ on Rd which can be expressed as the moment measures of suitable convex
functions u, i.e. are of the form (∇u)#e

−u for u : Rd → R∪ {+∞} and finds the corresponding
u by a variational method in the class of convex functions. Here we propose a purely optimal-
transport-based method to retrieve the same result. The variational problem becomes the
minimization of an entropy and a transport cost among densities ρ and the optimizer ρ turns
out to be e−u. This requires to develop some estimates and some semicontinuity results for the
corresponding functionals which are natural in optimal transport. The notion of displacement
convexity plays a crucial role in the characterization and uniqueness of the minimizers.

1. Introduction

We consider in this paper the notion of moment measure of a convex function, which comes
from functional analysis and convex geometry. Given a convex function u : Rd → R ∪ {+∞},
we define its moment measure as

µ := (∇u)#ρ, where dρ = e−u(x)dx.

The connection of this notion with the theory of optimal transport is straightforward from
the fact that, by Brenier’s Theorem, the map ∇u will be the optimal transport map for the
quadratic cost c(x, y) = 1

2 |x− y|
2 from ρ to µ.

In a recent paper, Cordero-Erausquin and Klartag ([12]) studied the conditions for a measure µ
to be the moment measure of a convex function. First, they identified that an extra requirement
has to be imposed to the function u in order the problem to be meaningful. The main difficulty
arises in case u is infinite out of a proper convex set K ⊂ Rd. In this case one needs to require
some continuity properties of u on ∂K. Without this condition, every measure with finite first
moment can be the moment of a function u, which is in general discontinuous on ∂{u < +∞}.
Also, without this condition there is a strong non-uniqueness of u. On the contrary, if one
restricts to convex functions u that are continuous Hd−1-a.e. on ∂{u < +∞} (those functions
are called essentially continuous), then there is a clear characterization: a measure µ is a moment
measure if and only if it has finite first moment, its barycenter is 0, and it is not supported on
a hyperplane. Moreover, the function u is uniquely determined by µ up to space translations.

In [12], the authors first prove that these conditions on µ are necessary, due to summability
properties of log-concave densities, and they prove that they are sufficient to build u as the
solution of a certain minimization problem.

Here we want to reprove the same existence result with a different method, replacing functional
inequalities techniques with ideas from optimal transport. This aspect seems to be absent from
[12] even if it is not difficult to translate most of the ideas and techniques of Cordero-Erasquin
and Klartag into their optimal transport counterparts. The result is an alternative language,
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that is likely to be appreciated by people knowing optimal transport theory, while the community
of functional inequalities could legitimately prefer the original one (or, better, everyone could
learn something from the language of the others). The question of which approach will the
colleagues working with both optimal transport and functional inequality prefer is an open and
unpredictable issue. . .

The main idea justifying this approach is the following: many variational problems of the
form

min

{
1

2
W 2

2 (ρ, µ) +

∫
f(ρ(x)) dx

}
have been studied in recent years, for different purposes (time-discretization of gradient flows,
urba planning. . . see for instance [7, 13, 16] and Chapter 7 in [17]). The optimality condition
of this problem reads, roughly speaking, as

φ+ f ′(ρ) = const,

where φ is the Kantorovich potential in transport from ρ to µ for the cost c(x, y) = 1
2 |x − y|

2

(notice that the convex function appearing in Brenier’s Theorem is given by u(x) = 1
2x

2−φ(x):
if T = ∇u is the optimal transport, −∇φ is the optimal displacement, i.e. T (x) = x−∇φ(x)).

In the case f(t) = t ln t, the condition above implies that ρ is proportional to e−φ. In
order to obtain the condition that appears in moment measures, we need to correct the above
minimization, so that we get u instead of φ. In order to do so, one needs to change the sign and
insert a 1

2 |x|
2 term, which leads to

min

{
−1

2
W 2

2 (ρ, µ) +
1

2

∫
|x|2 dρ(x) + E(ρ)

}
,

where E(ρ) denotes the entropy of ρ, defined as E(ρ) :=
∫
ρ ln ρdx for ρ � Ld, E(ρ) = +∞

for ρ non absolutely continuous. When µ has finite second moment and we minimize the above
functional among measures ρ supported on a given compact set K it is easy to check that a
minimizer exists and that we have ρ = e−u, where (∇u)#ρ = µ. Yet, it is highly possible that
u is discontinuous at the boundary of K. Indeed, at least in the case where also µ is compactly
supported, one sees that the function u must be Lipschitz (since its gradient is bounded), which
means that it is bounded, and hence ρ is bounded from below by a positive constant. Yet, ρ = 0
and u = +∞ outside K and u is not essentially continuous. This is a confirmation that every
µ ∈ P1(Rd) is a moment measure, if we accept convex functions u which are not essentially
continous.

The interesting case is the one where we minimize among measures ρ ∈ P1(Rd), without
restricting their support to a compact domain (we recall the standard notation Pp(Rd) for the
set of measures ρ with finite p-th momentum, i.e.

∫
Rd |x|pdρ(x) < +∞). In this case the

existence of an optimal ρ is not evident (indeed, the term W2(ρ, µ) is continuous for the weak
convergence of probability measures on compact sets, but only l.s.c. on unbounded sets, and
here it is accompanied by the negative sign, which makes it u.s.c., while we want to minimize).
Also, the lower semicontinuity of the entropy term E(ρ) is more delicate on unbounded sets.
Here comes into play the assumptions on µ, which will allow to provide a bound on the first
moment of a minimizing sequence ρn. Then, we can prove that ρ is log-concave and that a
precise representative of ρ must vanish Hd−1-a.e. on the boundary of its support, which proves
that u is essentially continous. In order to handle the case of measures ρ, µ /∈ P2(Rd), we will
profit of the fact that the second moment part of 1

2W2(ρ, µ) and 1
2

∫
|x|2 dρ(x) cancel each other,
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and that everything is well-defined for ρ, µ ∈ P1(Rd) if we transform the minimal transport
problem for the cost c(x, y) = 1

2 |x− y|
2 into the maximal transport problem for c(x, y) = x · y.

Hence, we study the minimization problem

(P ) min
{
E(ρ) + T (ρ, µ) : ρ ∈ P1(Rd)

}
,

where

T (ρ, µ) = sup

{∫
(x · y) dγ(x, y) : γ ∈ Π(µ, ν)

}
.

As we announced above, we prove that this problem has a log-concave solution of the form
ρ = e−u, that u is essentially continuous and µ is the moment measure of u. We also prove
uniqueness up to translations of the minimizer and that the condition µ = (∇u)#ρ, where
dρ = e−u, is sufficient to minimize. This characterizes u. Uniqueness and sufficient conditions
will be based on the notion of displacement convexity in the space P2(Rd) endowed with the
distance W2. It is useful to notice that the displacement convexity of the entropy exactly
corresponds to the Prekopa inequality, which expresses more or less the same fact, but at the
level of convex functions.
Structure of the paper After this introduction, Section 2 presents the main well-known
tools from optimal transport theory (Wasserstein distances, geodesic interpolation. . . ). The
estimates and semicontinuity of the entropy term that we provide at the end of the section are
also well-known, but presented in alternative fashion. On the other hand, the strict displacement
convexity properties of the entropy that we present here do not seem widely known. Section 3 is
devoted to the transport cost ρ 7→ T (ρ, µ) and to its estimates and semicontinuity in a P1(Rd)
framework. Section 4 is the core of the paper, and presents the variational problem that we
need to solve in order to find the log-concave measure ρ = e−u that we aim at. In particular,
we prove that u is convex and essentially continuous. In Section 5 we show that the condition
(∇u)#e

−u = µ is actually equivalent to the fact that e−u minimizes our functional, using the
notion of displacement convexity. Finally, in Section 6 we compare our approach to the one in
[12], explaining why they are equivalent and how to pass from one to the other.
Acknowledgments The author would like to thank Guillaume Carlier and Dario Cordero-
Erausquin for interesting discussions about this problem during the workshop “New Trends in
Optimal Transport” organized at the Hausdorff Center for Mathematics in March 2015, and all
the participants of the seminar Courbure, transport optimal, et probabilités. The author also
thanks the support of the ANR through the contract ANR- 12-BS01-0014-01 GEOMETRYA.

2. Few words on optimal transport, entropy and technical tools

We recall here the main notions and notations that we will use throughout the paper. We
refer to [17] (Chapters 1, 5 and 7) and to [1, 20] for more details and complete proofs.

Given two probability measures µ, ν ∈ P(Rd) we consider the set of transport plans

Π(µ, ν) = {γ ∈ P(Rd × Rd) : (πx)#γ = µ, (πy)#γ = ν, }

i.e. those probability measures on the product space having µ and ν as marginal measures.
For a cost function c : Rd × Rd → [0,+∞] we consider the minimization problem

min

{∫
cdγ : γ ∈ Π(µ, ν)

}
,
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which is called the Kantorovich optimal transport problem for the cost c from µ to ν. In
particular, we consider the case c(x, y) = 1

2 |x−y|
2. In this case the above minimal value is finite

whenever µ, ν ∈ P2(Rd), where P2(Rd) :=
{
ρ ∈ P(Rd) :

∫
|x|2 dρ(x) < +∞

}
.

For the above problem one can prove that the minimal value also equals the maximal value
of a dual problem

max

{∫
φ dµ+

∫
ψ dν : φ(x) + ψ(y) ≤ 1

2
|x− y|2

}
,

and that the optimal function φ may be used to construct an optimizer γ. Indeed, the optimal
φ is locally Lipschitz and semiconcave (in particular x 7→ 1

2 |x|
2 − φ(x) is convex) on spt(µ) and

differentiable µ−a.e. if µ� Ld; one can define a map T : Rd → Rd through T (x) = x−∇φ(x)
and this map satisfies T#µ = ν and γT := (id, T )#µ (i.e. the image measure of µ through the
map x 7→ (x, T (x))) belongs to Π(µ, ν) and is optimal in the above problem. Moreover, the map
T is the gradient of the convex function u given by u(x) = 1

2 |x|
2−φ(x) and is called the optimal

transport map (for the quadratic cost c(x, y) = 1
2 |x−y|

2) from µ to ν. The fact that the optimal
transport map T exists, is unique, and is the gradient of a convex function is known as Brenier
Theorem (see [5]).

The same could be obtained if one withdrew from the cost 1
2 |x− y|

2 the parts 1
2 |x|

2 and 1
2 |y|

2

which only depend on one variable each (hence, their integral against γ only depends on its
marginals). In this case we are interested in a transport maximization problem

max

{∫
(x · y) dγ(x, y) : γ ∈ Π(µ, ν)

}
and the dual problem would become

min

{∫
u dµ+

∫
v dν : u(x) + v(y) ≥ x · y

}
.

In this problem it is quite clear that any pair (u, v) can be replaced with (u, u∗) where u∗(y) :=
supx x · y − u(x) is the Legendre transform of u and is the smallest function compatible with
u in the constraint u(x) + v(y) ≥ x · y. Then, it is easy to see by the primal-dual optimality
conditions that the optimal γ and the optimal u satisfy

spt(γ) ⊂ {(x, y) : u(x) + u∗(y) = x · y} = {(x, y) : y ∈ ∂u(x)},
which shows that γ is concentrated on the graph of a map T (which is one-valued µ−a.e.,
provided µ� Ld), given by T = ∇u.

The value of the minimization problem with the quadratic cost may also be used to define a
quantity, called Wasserstein distance, over P2(Rd):

W2(µ, ν) :=

√
min

{∫
|x− y|2 dγ : γ ∈ Π(µ, ν)

}
.

This quantity may be proven to be a distance over P2(Rd). Moreover, when restricted to the
probabilities supported on a given compact set, i.e. to P(K) with K ⊂ Rd compact, it metrizes
the weak-* convergence of probability measures. The space P2(Rd) endowed with the distance
W2 is called Wasserstein space of order 2 and denoted in this paper by W2(Rd).

The geodesics in this space play an important role in the theory of optimal transport. If
µ, ν ∈ P2(Rd) and µ� Ld, we define ρt := ((1− t)id+ tT )#µ, where T is the optimal transport
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from µ to ν. This curve ρt happens to be a constant speed geodesic for the distance W2

connecting µ to ν (in case neither µ nor ν are absolutely continuous, it is possible to produce a
geodesic by taking ρt := (πt)#γ where πt(x, y) = (1−t)x+ty and γ is optimal in the Kantorovich
problem, which gives the same result if γ = γT ).

Once we know the geodesics in W2(Rd), one can wonder which functionals F : P2(Rd) → R
are geodesically convex, i.e. convex along constant speed geodesics. This notion, applied to the
case of the Wasserstein spaces, is also called displacement convexity and has been introduced by
McCann in [14]. It is very useful both to provide uniqueness results for variational problems and
to provide sufficient optimality conditions. A related notion is that of convexity on generalized
geodesics, which corresponds to t 7→ F (ρt) being convex every time that we take a triplet µ, ρ0, ρ1,
the optimal maps T0 from µ to ρ0 and T1 from µ to ρ1, and take ρt = ((1− t)T0 + tT1)#µ. The
curve ρt is not in general the geodesic connecting ρ0 to ρ1. However, the conditions to guarantee
displacement convexity and convexity on generalized geodesics are often very similar and most
of the useful functionals which are actually used satisfy both notions, and we present this notion
here only for the sake of completeness.

We are in particular interested in the entropy functional E , defined as follows

E(ρ) :=

{∫
ρ(x) ln(ρ(x)) dx if ρ� Ld,

+∞ otherwise.

Displacement convexity and strict displacement convexity of the entropy

This functional is displacement convex as it satisfies the assumption required in [14] (it is also
convex on generalized geodesics, but we will not use it here). We also compute its derivative
along a geodesic ρt. Suppose ρt = (Tt)#ρ, where Tt = (1− t)id + tT . From a simple change of
variable, we have

ρt(Tt(x)) =
ρ(x)

det((1− t)I + tDT (x))

(this formula, where DT is the Jacobian matrix of T , is valid provided Tt is countably Lipschitz
and injective, which is the case whenever T is an optimal transport). Hence we have
(2.1)

E(ρt) =

∫
ln(ρt(x)) dρt(x) =

∫
ln ρt(Tt(x)) dρ(x) = E(ρ)−

∫
ln(det((1− t)I + tDT (x))) dρ(x).

We can use Formula (2.1) so as to compute second derivatives. Using the notation of Section

7.3.2 in [17], we set g(t, x) = (det((1− t)I+ tDT (x)))1/d and E(ρt) = E(ρ)−d
∫

ln(g(t, x)) dρ(x).
Hence, we have

d

dt
[E(ρt)] = −d

∫
g′(t, x)

g(t, x)
dρ(x),

d2

dt2
[E(ρt)] = d

∫ (
−g′′(t, x)

g(t, x)
+
g′(t, x)2

g(t, x)2

)
dρ(x).

This can be used to prove the displacement convexity result of [14]. Indeed, a simple calculation
(see Lemma 7.26 in [17]) shows that

d

(
−g′′(t, x)

g(t, x)
+
g′(t, x)2

g(t, x)2

)
=

d∑
j=1

λ2j
(1 + tλj)2

,
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where we denote by λj the eigenvalues of DT (x) − I. This shows that the second derivative
of E(ρt) is positive, and hence E is displacement convex. But it also shows that t 7→ E(ρt) is
strictly convex unless DT (x)− I = 0 a.e. on {ρ > 0}.

Moreover, from the same Formula (2.1) we also deduce

d

dt
[E(ρt)]|t=0 = −

∫
∇ · (T − id) dρ.

Here the divergence is to be understood in the a.e. sense, as T is countably Lipschitz. If we
use T = ∇v with v convex, this divergence is equal to ∆acv − d, where ∆ac is the absolutely
continuous part of the distributional Laplacian of v, which is a measure.

Lower bounds and semicontinuity of the entropy

We also need to underline two other properties of E , in particular lower bounds and lower
semicontinuity. We stress that both these conditions are easy when we look at measures in P(K)
with |K| <∞, but become trickier on the whole space, because ρ ln ρ is not positive.

The last property that we need to recall is the semicontinuity of E w.r.t. the weak-* con-
vergence of probability measures, under the extra condition of a bound on the first moment∫
|x|dρ(x). The semicontinuity of functionals of the form

ρ 7→
∫
f

(
dρ

dλ
(x)

)
dλ(x)

is standard for convex and superlinear f (which is the case for f(t) = t ln(t)) whenever the
reference measure λ (which is the Lebesgue measure here) is finite (see for instance [4] or Chapter
7 in [17]). If f is positive it is easy to get the same result by taking the supremum of functionals
restricted to compact subsets, but this is not possible here. Yet, we can notice that for ρ� Ld
we have

E(ρ) =

∫ (
ρ(x) ln(ρ(x)) + eh(x)−1 − ρ(x)h(x)

)
dx+

∫
ρ(x)h(x) dx−

∫
eh(x)−1dx

for any function h such that eh(x)−1 ∈ L1(Rd) and h ∈ L1(ρ). If we suppose ρ ∈ P1(Rd) we can

take h = −
√
|x|. Then we can write E = E1 + E2 + E3, where

E1(ρ) =

∫ (
ρ(x) ln(ρ(x)) + eh(x)−1 − ρ(x)h(x)

)
dx

E2(ρ) =

∫
ρ(x)h(x) dx,

E3(ρ) = −
∫
eh(x)−1dx.

Notice that the integrand in E1 is positive (indeed, for every a ∈ R+ and b ∈ R we have
a ln(a) + eb−1 ≥ a · b). This allows to write E ≥ E2 + E3, and hence we have

E(ρ) ≥ −
∫
ρ(x)

√
|x|dx−

∫
e−
√
|x|−1dx ≥ −C −

√∫
|x|dρ(x),

where we used
∫

dρ(x) = 1 in the last inequality (Hölder inequality). This gives a bound from
below of E(ρ) in terms of the square root of the first moment of ρ.
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Then, we also express E1 as a supremum over compact sets, using the positivity of the inte-
grand:

E1(ρ) = sup
K⊂Rd,K compact

∫ (
ρ(x) ln(ρ(x)) + eh(x)−1 − ρ(x)h(x)

)
dx.

Now, we observe that for every sequence ρn ⇀ ρ with E(ρn) ≤ C, thanks to the classi-
cal Dumford-Pettis Theorem, we also have weak convergence ρn ⇀ ρ in L1. Moreover, from∫
|x|dρn(x) ≤ C, we deduce the convergence

∫
ψ(x)dρn(x) →

∫
ψ(x)dρ(x) for every sublinear

function ψ (i.e. satisfying lim|x|→∞ ψ(x)/|x| = 0, which is true for ψ = h). Hence, the term E1
is l.s.c., E2 is continuous and E3 is constant and finite for this type of convergence. Globally we
can resume these facts in the following proposition.

Proposition 2.1. (1) The functional E : P1(Rd)→ R ∪ {+∞} is well-defined and satisfies

E(ρ) ≥ −C −
(∫
|x|dρ(x)

)1/2
.

(2) For every sequence ρn ⇀ ρ with
∫
|x|dρn(x) ≤ C and E(ρn) ≤ C we have lim infn E(ρn) ≥

E(ρ).
(3) When restricted to P2(Rd), the functional E is geodesically convex in W2 and strictly

convex on every geodesic t 7→ ρt = ((1− t)id+ tT )#ρ unless the optimal map T is such
that DT = I a.e. on {ρ > 0}.

(4) If ρt = ((1 − t)id + tT )#ρ, then the derivative at t = 0 of t 7→ E(ρt) is given by
−
∫
∇ · (T − id) dρ.

3. The maximal correlation functional

For µ, ρ ∈ P1(Rd), with
∫
y dµ(y) = 0, we define the following quantity:

T (ρ, µ) := sup

{∫
(x · y) dγ : γ ∈ Π(µ, ρ)

}
= inf

{∫
udρ+

∫
u∗ dµ : u : Rd → R ∪ {+∞} convex and l.s.c.

}
.

We notice that, if ρ, µ ∈ P2(Rd), then we also have

T (ρ, µ) =
1

2

∫
|x|2 dρ(x) +

1

2

∫
|y|2 dµ(y)− 1

2
W 2

2 (ρ, µ).

This functional T is a transport cost, but we also observe that it is the maximal correlation
between ρ and µ, in the sense

T (ρ, µ) = sup {E[X · Y ] : X ∼ ρ, Y ∼ µ} .

For this reason, T will be called maximal correlation functional.
We are interested in the following properties.

Proposition 3.1. (1) For every ρ ∈ P1(Rd), we have T (ρ, µ) ∈ [0,+∞].
(2) If ρ and ρ̃ are one obtained from the other by translation, then T (ρ, µ) = T (ρ̃, µ).
(3) If

∫
x dρn(x) = 0 and ρn ⇀ ρ, then lim infn T (ρn, µ) ≥ T (ρ, µ).

(4) For every µ ∈ P1(Rd) with
∫
y dµ(y) = 0 there exists a sequence µn of compactly

supported probability measures with µn ⇀ µ and
∫
y dµ(y) = 0 such that for every

ρ ∈ P1(Rd) we have T (ρ, µn)→ T (ρ, µ).



8 F. SANTAMBROGIO

(5) For every ρ ∈ P1(Rd) there exists a sequence ρn of compactly supported probabilities such
that ρn ⇀ ρ, E(ρn) → E(ρ) and such that for every µ ∈ P1(Rd) with

∫
y dµ(y) = 0 we

have T (ρn, µ)→ T (ρ, µ).

Proof. In order to prove (1), just take γ = ρ⊗ µ ∈ Π(ρ, µ). We get

T (ρ, µ) ≥
∫

(x · y) d(ρ⊗ µ) =

(∫
x dρ(x)

)
·
(∫

y dµ(y)

)
= 0.

To prove (2), notice that every γ̃ ∈ Π(ρ̃, µ) can be expressed as the translation of a γ ∈ Π(ρ, µ),
in the sense

∫
φ(x, y) dγ̃(x, y) =

∫
φ(x+ v, y) γ(x, y), where v is the vector translating ρ into ρ̃.

Applying this fact to φ(x, y) = x · y, we get T (ρ̃, µ) = T (ρ, µ) +
∫
v · y dµ(y) = T (ρ, µ).

We now prove (3). We restrict to the case T (ρn, µ) ≤ C otherwise the statement is straight-
forward. We first take optimal plans γn such that T (ρn, µ) =

∫
(x · y) dγn(x, y). From the

tightness assumption on ρn, we infer that γn are also tight. Hence, we can extract a converging
subsequence γn ⇀ γ ∈ Π(ρ, µ). If we set Γn := spt(γn), we have a sequence of closed sets in
Rd × Rd. We can extract a further subsequence locally Hausdorff-converging to a closed set Γ
(this is a consequence of the classical compactness result for the class of closed sets inside a

given compact space, w.r.t. to the Hausdorff distance; here it has to be applied to Γn ∩B(0, R)
and then completed with a diagonal extraction). From the cyclical monotonicity of each Γn, we
infer that Γ is also cyclically monotone. Hence, γ is also optimal, since its support is contained
in a cyclically monotone set, a condition which is sufficient to guarantee optimality. Hence we
have T (ρ, µ) =

∫
(x · y) dγ(x, y).

We just need to prove lim infn
∫

(x · y) dγn(x, y) ≥
∫

(x · y) dγ(x, y). If x · y were a bounded
continuous function, we would have equality. The problem is that it is not bounded. Yet, we
can prove that it is bounded from below on

⋃
n Γn, which is enough for the semicontinuity.

Indeed, take (x, y), (x′, y′) ∈ Γn. From cyclical monotonicity we can write

x · y + x′ · y′ ≥ x · y′ + x′ · y.
If we integrate the above inequality w.r.t. dγn(x′, y′) we get

x · y + T (ρn, µ) ≥ 0.

Indeed,
∫
x · y dγn(x′, y′) = x · y,

∫
x′ · y′ dγn(x′, y′) = T (ρn, µ),

∫
x · y′ dγn(x′, y′) = 0 and∫

x′ · y dγn(x′, y′) = 0. This proves x · y ≥ −C on
⋃
n Γn and allows to prove (3).

To prove (4), we take for instance µn := µ B(0, n) + µ(B(0, n)c)δvn , where

vn :=
1

µ(B(0, n)c)

∫
B(0,n)c

y dµ(y).

In this case we have
∫
u∗ dµn ≤

∫
u∗ dµ for every convex function u∗, which gives T (ρ, µn) ≤

T (ρ, µ). Combining this inequality with the semicontinuity result of (3) we get T (ρ, µn) →
T (ρ, µ).

The same construction does not work for (5), as we want to guarantee convergence of entropies.
In this case, if E(ρ) < +∞, we need to produce a sequence ρn of absolutely continuous measures.
We can take ρn := (ρ B(0, n))/ρ(B(0, n)). In this case we can check explicitely that E(ρn)→
E(ρ) by dominated convergence. Moreover, for every convex function u we have

∫
udρn →

∫
udρ

(first we subtract a linear part to u, using ρ ∈ P1(Rd), and then we are reduced to monotone
convergence). Hence, along this sequence, the functional T (·, µ) is u.s.c. as an infimum of
continuous functional. But the semicontinuity result of (3) provides the continuity. �
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We are also interested in the following estimate on T as a function of ρ in terms of the first
moment of ρ. We first define the constant

c(µ) :=
1

2d
inf

{∫
|y · e− `|dµ(y) : e ∈ Sd−1, ` ∈ R

}
.

Note that the infimum in the definition of c(µ) is actually a minimum (we minimize a function
which is continuous in e and `, coercive w.r.t. `, and e lives in a compact set). For simplicity,
we only state the estimate in the case where ρ is absolutely continuous.

Proposition 3.2. If
∫
x dρ(x) = 0 and ρ � Ld, then we have T (ρ, µ) ≥ c(µ)

∫
|x|dρ(x). In

particular, T satisfies an inequality of the form T (ρ, µ) ≥ c
∫
|x| dρ(x) for c > 0 and for every ρ

with
∫
x dρ(x) = 0, if and only if µ is not supported on a hyperplane.

Proof. Take ρ such that
∫
x dρ(x) = 0 and ρ � Ld and select a vector e ∈ Sd−1 such that

e 7→
∫

(x · e)+ dρ(x) is maximal. Set A+ := {x : x · e > 0} and A− := {x : x · e < 0}. By
optimality conditions, this implies that v+ :=

∫
A+ x dρ(x) is oriented as e. From the barycenter

condition on ρ and the fact that it does not charge the hyperplane {x : x · e = 0}, the vector
v− :=

∫
A− x dρ(x) is opposite to v+. Set m± := ρ(A±). We have m+ + m− = 1, again from

ρ(Rd \ (A+ ∪A−)) = 0.
Let ` be a value such that µ({x : x · e > `}) ≤ m+ and µ({x : x · e < `}) ≤ m− (if µ does

not give mass to the hyperplane {x · e = `} then both inequalities are equalities). Decompose µ
into the sum of two measures µ± such that

sptµ+ ⊂ {x · e ≥ `}, sptµ− ⊂ {x · e ≤ `}, µ±(Rd) = m±.

Consider γ obtained in the following way: distribute the mass of ρ A+ onto that of µ+ via a
tensor product, and do the same from ρ A− onto µ−, i.e.

γ =
1

m+
(ρ A+)⊗ µ+ +

1

m−
(ρ A−)⊗ µ− ∈ Π(ρ, µ).

We have ∫
(x · y)dγ = v+ · 1

m+

∫
y dµ+(y) + v− · 1

m−

∫
y dµ−(y).

We use that v+ is oriented as e, and v− = −v+, and we have

v+ · 1

m+

∫
y dµ+(y) + v− · 1

m−

∫
y dµ−(y) =

|v+|
m+

∫
y · edµ+(y)− |v

+|
m−

∫
y · edµ−(y).

Since µ+/m+ and µ−/m− are both probability measures, we can subtract the same constant `
to the two integrals and get

|v+|
m+

∫
(y · e− `) dµ+(y)− |v

+|
m−

∫
(y · e− `) dµ−(y) = |v+|

∫
|y · e− `|d

(
µ+

m+
+
µ−

m−

)
.

Then, we use m± ≤ 1 in order to estimate this last result from below with |v+|
∫
|y · e − `|dµ.

In order to conclude, we just need to observe that∫
|x| dρ(x) ≤ 2d sup

e∈Sd−1

∫
(x · e)+ dρ(x) = 2d|v+|.

The last part of the statement is easy: if µ is not concentrated on a hyperplane, then c(µ) > 0.
If µ is concentrated on a hyperplane H, then take an arbitrary measure ρ concentrated on the
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line L orthogonal to H and passing through the origin. One can choose it so that
∫
x dρ(x) = 0

and
∫
|x| dρ(x) > 0, while T (ρ, µ) = 0. �

Finally, we also prove displacement convexity of T as a function of ρ.

Proposition 3.3. Let ρ0, ρ1 ∈ P2(Rd) be absolutely continuous measures, and let ρt = ((1−t)id+
tT )#ρ be the unique constant speed geodesic connecting them for the Wasserstein distance W2.
Then t 7→ T (ρt, µ) is convex on [0, 1]. Its derivative at t = 0 is larger than

∫
(T (x)− x) · y dγ(x)

where γ is an optimal transport plan from ρ0 to µ.

Proof. Suppose for a while that µ ∈ P2(Rd). Then, it is well known that ρ 7→ −1
2W

2
2 (ρ, µ) is a−1-

displacement convex functional (see [1], Theorem 7.3.2). On the other hand, ρ 7→ 1
2

∫
|x|2 dρ(x)

is 1-convex, and the sum of the two, which gives T (ρ, µ)− 1
2

∫
|y|2 dµ(y), is displacement convex.

To obtain the proof for general µ in P1(Rd), one needs to approximate, and part (4) of
Proposition 3.1 allows to do so. Hence, if ρt is a geodesic for W2, the inequality T (ρt, µn) ≤
(1 − t)T (ρ0, µn) + tT (ρ1, µn) passes to the limit and implies the displacement convexity of
ρ 7→ T (ρ, µ).

For the last part of the statement, we just observe that

T (ρt, µ) ≥
∫

(x · y) d((Tt × id)#γ)(x, y) =

∫
Tt(x) · y dγ(x, y).

Differentiating this last term we obtain the desired expression. �

4. A variational principle for moment measures

As we sketched in the introduction, we consider the following variational problem. We fix
µ ∈ P1(Rd) with

∫
y dµ(y) = 0 and not supported on a hyperplane, and we want to solve

(P ) min
{
E(ρ) + T (ρ, µ) : ρ ∈ P1(Rd)

}
.

Theorem 4.1. The problem (P) admits a solution, which is unique up to translation. If ρ is a
solution, and u : R→ R∪{+∞} is a convex l.s.c. function such that T (ρ, µ) =

∫
udρ+

∫
u∗ dµ

with u = +∞ on {ρ = 0}, then ρ = ce−u.

Proof. To prove existence of a solution, we take a minimizing sequence ρn. We can suppose that
all ρn have 0 as their barycenter as translations do not change the value of the two parts of the
functional. We use the inequality

E(ρ) ≥ −C −
(∫
|x| dρ(x)

)1/2

,

and the inequality T (ρ, µ) ≥ c
∫
|x| dρ(x) that we proved in Proposition 3.2. This implies that the

moment
∫
|x|dρn(x) must be bounded. In particular, this gives tightness of the sequence ρn and

we assume ρn ⇀ ρ. Also, we know that the entropy E(ρ) is l.s.c. for the weak convergence when
the first moment is bounded, and the semicontinuity of T along sequences with

∫
x dρn(x) = 0

was proven in Proposition 3.1.
This proves that a minimizer exists.
We first analyze the optimality conditions: if ρ̄ is optimal and u is a convex function realizing

the minimum in the definition of T (ρ̄, µ), then

ρ 7→
∫
ρ ln ρdx+

∫
udρ
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is minimal for ρ = ρ̄. By standard convex minimization arguments this implies that ρ̄ also
minimizes the linearized functional

ρ 7→
∫
ρ(ln ρ̄+ 1) dx+

∫
udρ,

which implies that ρ̄ is concentrated on the set of points where ln ρ̄+1+u is minimal. This means
that ρ̄ > 0 on every point where u < +∞, and on these points we need to have ln ρ̄ = C−u, i.e.
ρ̄ = ce−u. This same formula also holds on u = +∞, since we necessarily have ρ̄ = 0 on those
points.

In particular, the optimal ρ is a log-concave probability density. This implies that all its
moments are finite, and we have ρ ∈ P2(Rd).

As for uniqueness, we suppose to have two minimizers ρ0, ρ1. We know that they are log-
concave densities, and hence belong to P2(Rd). We want to use the displacement convexity of
the entropy and of the T term and deduce uniqueness from strict convexity on the geodesic
ρt connecting ρ0 to ρ1. From the results contained in Proposition 2.1, we get that the only
possibility for ρ0 and ρ1 to be both minimizers is that the optimal transport map T between
ρ0 and ρ1 satisfies DT = I a.e. on {ρ0 > 0}. Unfortunately, this is not enough to deduce that
T is a translation, as T is a priori only a BV map, which could have singular parts and even
jumps. Yet, using the fact that also the optimal map S from ρ1 to ρ0 satisfies the same property
(otherwise the entropy is strictly convex on the geodesic t 7→ ρ1−t), the following lemma 4.2
allows to conclude that ρ0 and ρ1 are obtained one from the other through a translation. �

Lemma 4.2. Suppose that ρ0 and ρ1 are two absolutely continuous densities in Rd with Ki =
{x ∈ Rd : ρi(x) > 0} convex for i = 0, 1, and let T = ∇u be the optimal transport from ρ0 to
ρ1 and S = ∇u∗ the optimal transport from ρ1 to ρ0. Suppose DT = D2u = I a.e. on K0 and
DS = D2u∗ = I on K1. Then both T and S are translations, i.e. there exists a vector v ∈ Rd
such that T (x) = x+ v and S(y) = y − v.

Proof. The Hessian D2u which appears in the assumption is the pointwise a.e. Hessian, but it
is also the absolutely continuous part of the positive matrix-valued measure D2u. Hence, if we
regularize u by convolution into a function uε, we have D2uε(x) ≥ I on all the points x ∈ K0

with d(x, ∂K0) > ε. On this same set we have

(∇uε(x)−∇uε(x′)) · (x− x′) ≥ |x− x′|2.
This inequality passes to the limit as ε → 0 in all the differentiability points of u belonging
to the interior of K0. In the points where ∇u does not exist, the same inequality stays true
replacing ∇u(x) and ∇u(x′) with the extremal points of ∂u(x) and ∂u(x′), respectively, as they
are limits of gradients computed at differentiability points (see Theorem 25.6 in [15]). By convex
combinations the same inequality may be obtained for every point in ∂u(x) and ∂u(x′):

p ∈ ∂u(x), p′ ∈ ∂u(x′)⇒ (p− p′) · (x− x′) ≥ |x− x′|2.
Since this inequality is true on the interior of K0, which is convex, this shows that u is strictly
convex on K0, and hence u∗ is C1. By repeating the same argument with u∗ instead of u, we
get that both functions are strictly convex and C1. Hence we get

(T (x)− T (x′)) · (x− x′) ≥ |x− x′|2 ⇒ |x− x′| ≤ |T (x)− T (x′)|.
By writing the same estimate for S = T−1 we get the equality |T (x)− T (x′)| = |x− x′| and the
inequality (T (x)−T (x′)) ·(x−x′) ≥ |x−x′|2 can only be satisfied if the two vectors T (x)−T (x′)
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and x− x′ are equal. If we fix an arbitrary point x0 ∈ K0, we get T (x) = x+ (T (x0)− x0) and
the claim is proven. �

Remark 4.1. Note that the uniqueness proof could also have been completed by proving some
very mild regularity on the optimal map T (W 1,1 would have been enough). This requires argu-
ments similar to [8, 9] concerning log-concave measures. We also cite [10] as a general reference
for the regularity properties of solutions to Monge-Ampère equations, but we warn the reader
that many arguments in these papers need strong adaptations to handle the unbounded case.

Remark 4.2. We observe that (P) has no solutions if µ is concentrated on a hyperplane. Sup-
pose this hyperplane is {xd = 0} and take ρn = 1

2dn
Ld (Rn) where Rn = {x = (x1, . . . , xd) ∈

Rd : |xi| ≤ 1 for i = 1, . . . , d − 1, |xd| ≤ n}. In this case we have E(ρn) = − ln(2n) and

T (ρn, µ) ≤
√
d
∫
|y|dµ(y). Hence E(ρn) + T (ρn, µ)→ −∞.

To prove the main result of the paper, we just need to prove that u is essentially continuous.
This can be done in the following way. We recall that, given any solution ρ to problem (P), we
can choose as a precise representative of ρ the one given by ρ = ce−u, with u convex and l.s.c.
(hence ρ is log-concave and u.s.c.).

Theorem 4.3. Let ρ be the precise representative above of a solution of (P). Set Ω = {u < +∞}.
Then ρ = 0 Hd−1-a.e. on ∂Ω.

Proof. Suppose on the contrary that ρ > 0 on a set of positive Hd−1 measure on ∂Ω. Since
Ω is a convex set, we can use local coordinates and assume that this set is of the form A =
{(x1, x′) ∈ R × Rd−1 x′ ∈ B, x1 = h(x′)}, where B ⊂ Rd−1 has positive Lebesgue measure
and h is a convex real-valued function. In the same chart, Ω would be locally expressed as
the set of points satisfying x1 > h(x′). Up to reducing the set A (and hence B), we can
suppose that we have a lower bound ρ(x) ≥ a > 0 for x ∈ A and that B is compact. Define
Aε := {(x1, x′) ∈ R × Rd−1 x′ ∈ B, x1 ∈ [h(x′), h(x′) + ε]}. Then, by the continuity of ρ inside
Ω, we wan also assume, for small ε0 > 0, that we have ρ(h(x′) + ε0, x

′) ≥ b > 0. Using that
ρ is log-concave, for ε < ε0 we also have ρ(x1, x

′) ≥ min{a, b} for (x1, x
′) ∈ Aε. This implies∫

Aε
ρ(x) dx ≥ c0ε.

Now, we define a new density ρε as a competitor in (P). We define T : Aε → Rd by T (x1, x
′) =

(x1 − ε, x′) and we set

ρε = ρ (Acε) +
1

2
ρ (Aε) +

1

2
T#(ρ (Aε)).

By computing the density of ρε we can check

E(ρε) = E(ρ)− ρ(Aε) ln 2.

In order to estimate T (ρε, µ) we take the optimal function u (realizing T (ρ, µ) =
∫
udρ +∫

u∗ dµ) and we modify it into a function uδ defined as follows. First, take a convex, positive

and superlinear function χ : Rd → R such that
∫
χ(x) dµ(x) < +∞. Such a function exists

because µ ∈ P1(Rd). Then we fix δ > 0 and we take uδ = (u∗ + δχ)∗. We have

uδ(x) ≤ u(x) for every x ∈ Ω uδ(T (x)) ≤ u(x) + δχ∗
(εe1
δ

)
for every x ∈ Aε

(where e1 denotes te first vector of the canonical basis e1 = (1, 0, . . . , 0)). Hence,

T (ρε, µ) ≤
∫
uδ dρε +

∫
(u∗ + δχ) dµ ≤ T (ρ, µ) +

1

2
ρ(Aε)δχ

∗
(εe1
δ

)
+ δ

∫
χdµ.
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The optimality of ρ compared to ρε provides

ρ(Aε) ln 2 ≤ 1

2
ρ(Aε)δχ

∗
(εe1
δ

)
+ δ

∫
χdµ.

Now, use ρ(Aε) ≥ c0ε and choose δ = cε for a small constant c such that c
∫
χdµ < 1

2c0 ln 2.
This gives

1

2
ρ(Aε) ln 2 ≤ cε

2
ρ(Aε)χ

∗(c−1e1),

which is impossible as ε→ 0. �

5. Sufficient optimality conditions

To complete the current study, it remains to prove that every log-concave density ρ = e−u

such that (∇u)#ρ = µ and u is an essentially continuous convex function u : Rd → R ∪ {+∞}
is necessarily a minimizer of E(ρ) + T (ρ, µ). This would explain that the variational principle
of the previous section finds exactly all the desired functions u.

As this result is not the main core of the paper, this section will be little more sketchy than
the rest, and will use some results from [12]. Anyway, we claim that the main points of the
proof are present in the paper.

The main idea, already investigated in [2, 3] for game theory purposes, is the fact that dis-
placement convexity is sufficient to guarantee minimality when necessary conditions are satisfied.

The result is the following.

Proposition 5.1. Suppose that u : Rd → R∪{+∞} is an essentially continuous convex function,
consider ρ̄ = e−u and suppose (∇u)#ρ̄ = µ. Then ρ̄ ∈ P1(Rd) and it solves

min
{
E(ρ) + T (ρ, µ) : ρ ∈ P1(Rd)

}
.

Proof. Let us consider an arbitrary ρ ∈ P2(Rd) with compact support and the geodesic ρt =
((1 − t)id + tT )#ρ̄, where T = ∇v is the optimal transport from ρ̄ to ρ. From the compact
support assumption on ρ, we get that T is bounded. From the displacement convexity of E and
T (·, µ), in order to prove E(ρ) + T (ρ, µ) ≥ E(ρ̄) + T (ρ̄, µ) it is sufficient to prove

d

dt
(E(ρt) + T (ρt, µ))|t=0 ≥ 0.

The computation of the derivative is included in Propositions 2.1 and 3.3 and we have

d

dt
(E(ρt) + T (ρt, µ))|t=0 ≥ −

∫
(∆acv − d)dρ̄+

∫
(∇v(x)− x) · ∇u(x)ρ̄(x)dx.

First we use the inequality

d

∫
e−u(x)dx ≥

∫
x · ∇u(x)e−u(x)dx

valid for essentially continuous convex functions u. This is actually an equality, but anyway the
inequality we need is proven in [12]. Hence

d

dt
(E(ρt) + T (ρt, µ))|t=0 ≥ −

∫
(∆acv) dρ̄+

∫
∇v(x) · ∇u(x)ρ̄(x)dx.
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We then use ∆acv ≤ ∆v (as v is convex and its distributional derivative is a positive measure)
and we integrate by parts. We first do it on a ball B(0, R):

−
∫
B(0,R)

(∆acv) dρ̄+

∫
B(0,R)

∇v(x) · ∇u(x)ρ̄(x)dx = −
∫
∂B(0,R)

∇v(x) · nρ̄(x)dHd−1(x).

We want to pass to the limit as R→∞. The second integral may be handled using the fact that
∇u(x)ρ̄(x) = −∇ρ̄(x) and ∇ρ̄ ∈ L1 (this corresponds to µ ∈ P1(Rd)) and that T = ∇v ∈ L∞.
In the first integral, we use (∆v)(B(0, R)) =

∫
∂B(0,R)∇v(x) ·ndHd−1(x) ≤ CRd−1, together with

the exponential decay of ρ̄ = e−u, so that ρ̄ ∈ L1(∆v). In the right-hand side, we use again the
exponential decay of ρ̄ with the polynomial explosion of Hd−1(∂B(0, R)) and the boundedness
of ∇v.

Hence, we get

d

dt
(E(ρt) + T (ρt, µ))|t=0 ≥ lim

R→∞
−
∫
∂B(0,R)

∇v(x) · nρ̄(x)dHd−1(x) = 0.

This proves the optimality of ρ̄ when compared to compactly supported measures ρ. for a
general ρ, we use part (5) of Proposition 3.1, which allows to approximate every ρ ∈ P1(Rd)
with compactly supported measures ρn so that E(ρn) + T (ρn, µ)→ E(ρ) + T (ρ, µ). �

6. From this variational problem to the one studied in [12]

In this last section we want to make some short comments on (P) and connect it to the
problem studied in [12].

From the dual formulation of T , we may re-write our problem as a min-min problem

min

{∫
ρ(x) ln ρ(x) dx+

∫
u(x)ρ(x) dx+

∫
u∗(y) dµ(y) : ρ ∈ P1(Rd), u convex

}
.

The approach of the present paper consists in considering u as a secondary variable: for every
ρ we compute the minimum over possible u, which gives rise to the functional T (ρ, µ).

A different possible approach could consist in looking at ρ as the secondary variable, i.e.
considering for every u the optimal ρ. It is easy to see that one can compute

inf

{∫
ρ(x) ln ρ(x) dx+

∫
u(x)ρ(x) dx : ρ ≥ 0,

∫
ρ(x) dx = 1

}
by a Lagrange multiplier approach, which means that we need to choose ρ so that ln ρ(x) + u =

const. Hence, ρ is proportional to e−u. Let us write c =
∫
e−u(x)dx. We have ρ = e−u/c and we

can compute∫
ρ(x) ln ρ(x) dx+

∫
u(x)ρ(x) dx =

1

c

∫ (
e−u(−u− ln c) + ue−u

)
dx = − ln c.

This means that we consider the functional u 7→ − ln(
∫
e−udx), which is a concave functional

of u, and we solve

min

{∫
u∗ dµ− ln

(∫
e−udx

)
: u convex

}
.

In the above minimization problem, the first term is convex, since u 7→ u∗(y) is convex, but
the second is concave.

Notice that this transformation of a convex-concave minimization problem (i.e., the mini-
mization of the difference of two convex functions) into another convex-concave minimization is
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what is usually known as Toland duality (see [18, 19]). In particular, we also refer to [11] for
the applications of this notion to the case of variational problems involving the term −W 2

2 , and
their connections to variational problems under convexity constraints.

What [12] does, is to consider the same problem in terms of u∗ instead of u: the first term
becomes linear and the second, magically, convex (thanks to a clever application of a quantitative
Prekopa inequality, which corresponds, as we said in the introduction, to the displacement
convexity of the entropy). One should not be astonished that they obtain a convex problem:
convexity in u∗ more or less corresponds to the displacement convexity of the functional that
we study here in terms of ρ (more precisely, convexity in ∇u∗ corresponds to the convexity on
generalized geodesics with base measure µ).
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[18] J. F. Toland, Duality in Nonconvex Optimization, J. Math. Anal. Appl., 66 (2), 399–415, 1978.
[19] J. F. Toland, A duality principle for non-convex optimisation and the calculus of variations, Arch. Rational

Mech. Anal., 71 (1), 41–61, 1979.
[20] C. Villani, Optimal Transport. Old and New. Grundlehren der Mathematischen Wissenschaften, 338.

Springer-Verlag, Berlin, 2009.
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