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Abstract. We consider configurational variations of a homogeneous (anisotropic) linear elastic material
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1 Introduction

In Fracture Mechanics it is common to employ a variational approach in which evolutions are defined
in terms of energies and their variations, most often with respect to variations of the crack set. This
approach dates back to Griffith’s criterion [5] which is formulated right in terms of energy release
G (i.e. variations of potential energy with respect to variations of crack surface area) and toughness
Gc (a material parameter). Actually, the mathematical argument of [5] was “just” an algebraic
estimate of the energy release in terms of material and geometrical parameters, based on the results
of Inglis [8] on stress singularities around elliptical holes and cracks.

After [5] energy release became a fundamental concept in Mechanics, through the years it at-
tracted much attention and has been the object of several fundamental contributions. A milestone
is the study of Ehselby [4] which lead to volume and surface integral representations of the energy
release in terms of energy momentum tensor E. It is noteworthy that Eshelby’s works gave general
integral representations applicable in many different context; this is indeed a substantial theoretical
improvement after [5]. Later, Irwin [9] devised an explicit formula for the energy release in terms of
the stress intensity factors, based on Westergaard’s expansions [14] of the stress around the tip, and
Rice [13] introduced a contour integral representation of the energy release, called the J-integral;
this is again a general representation result, infact similar to that of [4], which does not rely on the
singular behaviour of the stress.

Let us turn to the mathematical literature on configurational energy variations for elasticity
problems. First we will make a couple of considerations of technical importance on outer variations
and singularities.

Consider a crack K0 and an incremental variation Kh. Being Kh increasing, the spaces Wh of
admissible displacement and the corresponding spaces Vh of admissible variations are increasing as
well. If wh (for h ≥ 0) denote the equilibrium configuration in Wh, then for h > 0 and h = 0
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respectively the variational formulation yields∫
Ω\Kh

σ(wh) : ε(vh) = 0 for every vh ∈ Vh,∫
Ω\K0

σ(w0) : ε(v0) = 0 for every v0 ∈ V0.

Since the spaces are monotone it holds also∫
Ω\Kh

σ(wh) : ε(vh − v0) dx = 0 for every vh ∈ Vh and v0 ∈ V0.

Hence by symmetry and coercivity the variation of energy can be written as

1
2

∫
Ω\Kh

σ(wh) : ε(wh)− σ(w0) : ε(w0) dx = 1
2

∫
Ω\Kh

σ(w0 + wh) : ε(w0 − wh) dx

= 1
2

∫
Ω\Kh

σ(w0) : ε(w0 − wh) dx

= 1
2

∫
Ω\Kh

σ(w0 − wh) : ε(w0 − wh) dx ≥ C‖wh − w0‖2,

where ‖ · ‖ denotes the norm in Wh. Hence, if the variation of energy is O(h) it tuns out that
w0 − wh = O(h1/2) in Wh. In particular the “speed” w′0 is not well defined. For this reason, it
seems not convenient, even if natural, to frame the energy release in terms of linear outer variations;
as we shall see it is more effective to employ inner variations, including in a broad sense blow up
techniques.

Let us turn to regularity, which is a delicate point often behind the mathematical difficulties on
energy release rate. In the mathematical literature there are several results under many different
hypothesis; here we will just mention a couple of them, a classical and a recent one. The first is
a well known result of Grisvard [7] characterizing the regular and singular part of solutions; more
precisely, it asserts that for a polygonal planar domain the displacement field in a neighbourhood
of the crack tip takes the form

u = KIûI +KIIûII + ũ,

where KI and KII are the stress intensity factors and ûi = ρ1/2Ui(θ) (in local polar coordinates)
while ũ belongs to the Sobolev space W 2,2. A remarkable generalization for a wide class of cracks
has been recently obtained by Babadjian, Chambolle and Lemenant [1] (extending [2]) together
with an “indirect representation” of the energy release, written in terms of a minimization problem.
Another recent result, in the same spirit of our work but with a different technical approach, may
be found in [10].

Now, we present the content of our paper. First of all, we will work with curved cracks, technically
of class W 1,∞ or W 2,∞ in Rn for n ≥ 2, and we will employ homogeneous linear (anisotropic)
elasticity. Using a family of diffeomorphisms Ψh to represent the variation of the domain, as a sort
of shape or configuration derivative, we will provide first a simple way to compute a volume integral
representation of energy variations. We remark that our proof does not employ the primal-dual
formulation of linear elasticity employed by Destuynder and Djaoua [3], it is indeed purely based
on variational formulations; moreover it does not rely on regularity (or singularity) properties of
solutions. For this reason it holds in any space dimensions and for anisotropic elasticity.

Then, we show how to recast our volume integral representation in terms of energy momentum
tensor, contour integrals and stress intensity factors. It is interesting to remark that for the first it
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is basically enough to employ symmetry of the stress while for the second and the third some more
information on the regularity of solutions is needed: for the contour integral we employ the fact
that solutions are of class W 2,2 away from the crack front while for the stress intensity factors we
obviously need the exact form of the singularities (and thus the representation holds true only in
the plane strain setting and for isotropic elasticity). To conclude, it is fair to say that it is still not
clear (but under investigation) a possible way to extend the current proof to more general variations
of the domain, including in particular the case of kinked cracks.
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2 Notation

Let Ω ⊂ Rn (for n ≥ 2) be a bounded, connected, open set with Lipschitz boundary ∂Ω. Assume
that the initial crack K ⊂ Ω is closed and of class W 1,∞. Variations of the crack will be of the
form Kh = Ψh(K) for a suitable family Ψh of bi-Lipschitz diffeomorphisms. More precisely, assume
that Ψh is a diffeomorphism of Ω of the form Ψh(x) = x + hΦh(x) for Φh uniformly bounded in

W 1,∞(Ω,Rn) with Φh(x) = 0 on ∂Ω and such that DΦh → DΦ a.e. in Ω (and thus Φh
∗
⇀ Φ in

W 1,∞(Ω,Rn)). Note that configurational variations of this type are not necessarily “incremental”,
i.e. the family of cracks Kh = Ψh(K) is not necessarily increasing. Incremental variations are
possible but they require more regularity of the crack set K, as explained in the next example.

2.1 Incremental variations in the plane strain setting

Assume that the initial crack K and its incremental variations Kh are both represented by the graph
of a function k of class W 2,∞, i.e. that Kh = {(x1, k(x1)) : x1 ∈ [−l, h]} for h ≥ 0. Assume also, for
simplicity, that k(0) = k′(0) = 0.

Let us represent the variations Kh in terms of configurational variations of the initial crack K.
To this end, let φ ∈W 1,∞(Ω, [0, 1]) with φ = 1 in a neighbourhood of the origin and supp(φ) ⊂⊂ Ω
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and define
Ψh(x1, x2) =

(
x1 + hφ(x1, x2), x2 + k(x1 + hφ(x1, x2))− k(x1)

)
.

Let us write Ψh(x) = x+ hΦh(x) (for h > 0) where

Φh(x1, x2) =

(
φ(x1, x2) ,

k(x1 + hφ(x1, x2))− k(x1)

h

)
and let Φ(x1, x2) = φ(x1, x2)(1, k′(x1)). Note that Φh = Φ = 0 if φ = 0.

Lemma 2.1 Φh → Φ strongly in L∞(Ω,Rn). Moreover DΦh → DΦ a.e. in Ω and DΦh is bounded
in L∞(Ω,R2×2).

Proof. It is easy to check that Φh → Φ a.e. in Ω. Write DΦ = ∇φ× (1, k′) + φk′′ ê2 × ê1 and

DΦh =

 φ,1 φ,2

k′(x1 + hφ)− k′(x1)

h
+ k′(x1 + hφ)φ,1 k′(x1 + hφ)φ,2

 .

Then, by continuity and a.e. differentiability of the Lipschitz function k′, it follows that DΦh → DΦ
a.e. in Ω. Finally, DΦh is uniformly bounded in L∞(Ω,R2×2).

Remark 2.2 It is fair to remark that within these variations it is not possible to include kinked
cracks, since in that case only hDΦh is bounded in L∞(Ω,R2×2).

2.2 Incremental variations in the three dimensional setting

Assume again that the initial crack K ⊂ Ω is represented by a graph, i.e. that K = K(K[) with
K(x1, x2) = (x1, x2, k(x1, x2)) for k of class W 2,∞ and K[ ⊂ R2 compact and connected. Let
φ ∈W 1,∞(Ω,R3) with |φ| ≤ 1 and supp(φ) ⊂⊂ Ω. For h > 0 define the mapping

Ψh(x) = x+
(
hφ1(x), hφ2(x), k(x1 + hφ1(x), x2 + hφ2(x))− k(x1, x2)

)
and the corresponding variations of the crack Kh = Ψh(K). Denote also Kh(x1, x2) = Ψh ◦K(x1, x2)
so that Kh = Kh(K[). Introducing φ[(x1, x2) = φ(x1, x2, k(x1, x2)) the map Kh can be written as

Kh(x1, x2) =
(
x1 + hφ[1(x), x2 + hφ[2(x), k(x1 + hφ[1(x), x2 + hφ[2(x))

)
= K(xh1 , x

h
2),

where (xh1 , x
h
2) = (x1, x2) + hφ[(x1, x2) represent the corresponding variation of the domain K[.

2.3 Energy

We consider homogeneous linearized energy with density

W (Du) = 1
2 Du : C[Du] = 1

2 ε(u) : σ(u),

for ε(u) = (Du+DuT )/2 and C[Du] = σ(u). Note that for the moment, and in most of the paper,
we will not assume isotropic elasticity, which will be needed only in §6 to obtain Irwin’s formula.

For ∂DΩ relatively open in ∂Ω and g ∈W 1,2(Ω,Rn) let

Uh = {u ∈W 1,2(Ω \Kh,Rn) : u = g ∂DΩ}
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be the space of admissible displacements. For f ∈W 1,p(Ω,Rn) (for some p > 1) the energy is of the
form F (u) = E(u)− L(u) where

E(u) =

∫
Ω\Kh

W (Du) dx, L(u) =

∫
Ω\Kh

f · u dx.

Now, given u ∈ Uh by a change of variable, write

E(u) = Eh(u ◦Ψh) = 1
2

∫
Ω\K

D(u ◦Ψh) : Ch[D(u ◦Ψh)] dx (1)

where Ch[F ] = C[FDΨ−1
h ]DΨ−Th detDΨh and

L(u) = Lh(u ◦Ψh) =

∫
Ω\K

fh · (u ◦Ψh) dx (2)

for fh = (f ◦ Ψh) detDΨh. Since Ψh induces a one to one correspondence between U0 and Uh for
our purposes it will be equivalent to consider the energy Fh(u) = Eh(u) − Lh(u) in U0 instead of
the energy F (u) = E(u)− L(u) in Uh.

3 Variational representation of energy variations

3.1 Expansions

Lemma 3.1 Ψh → id in W 1,∞(Ω,Rn). Moreover, for h� 1 we have the following expansions

DΨ−1
h =

∞∑
n=0

(−hDΦh)n = I − hDΦh + o(h)

detDΨh = 1 + h trDΦh + o(h),

which hold in L∞(Ω,Rn×n) (and thus a.e. in Ω).

Proof. Since DΨh(x) = I + hDΦh(x) with DΦh uniformly bounded it is clear that Ψh → id in
W 1,∞(Ω,Rn). Moreover for h� 1 the inverse matrix can be expanded as

DΨ−1
h =

∞∑
n=0

(−hDΦh)n = I − hDΦh + o(h).

Finally detDΦh = 1 + h trDΦh + o(h). All the expansions above hold in L∞(Ω,Rn×n).

Lemma 3.2 Let w ∈W 1,2(Ω \K,Rn), then Ch[Dw]→ C[Dw] in L2(Ω \K,Rn×n) and

Ch[Dw]−C[Dw]

h
→ C′[Dw] = −C[DwDΦ0]−C[Dw]DΦT

0 + C[Dw]trDΦ0

in L2(Ω \K,Rn×n). Moreover fh → f in Lp(Ω,Rn) and

fh − f
h

⇀ f ′ = Df Φ + f trDΦ in Lp(Ω,Rn).
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Proof. Write Ch[Dw] = C[DwDΨ−1
h ]DΨ−Th detDΨh. Since DΨ−1

h → I in L∞(Ω,Rn×n) (by Lemma
3.1) it follows that Ch[Dw]→ C[Dw] in L2(Ω \K,Rn×n).

From the expansions of Lemma 3.1 we get, a.e. in Ω,

Ch[Dw] = C
[
DwDΨ−1

h

]
DΨ−Th detDΨh

= C
[
Dw

(
I − hDΦh + o(h)

)](
I − hDΦh + o(h)

)T (
1 + htrDΦh + o(h)

)
= C[Dw] + h

(
−C[DwDΦh]−C[Dw]DΦT

h + C[Dw]trDΦh

)
+ o(h)

= C[Dw] + hC′h[Dw] + o(h),

where
C′h[Dw] = −C[DwDΦh]−C[Dw]DΦT

h + C[Dw]trDΦh.

Since DΦh is uniformly bounded in L2(Ω \K,Rn×n) and converge a.e. to DΦ, by dominated con-
vergence it follows that C′h[Dw]→ C′[Dw] in L2(Ω \K,Rn×n).

The convergence to f ′ of the difference quotient follows from Lemmas 2.1 and 3.1 together with
a classical result on difference quotient for Sobolev functions, see instance [11].

3.2 Variational representation

In this section we show a volume integral representation of the energy release, obtained without
any regularity assumption on the displacement field. Let wh ∈ argmin {F (w) : w ∈ Uh} be the
displacement field in Ω \Kh and let uh ∈ argmin {Fh(u) : u ∈ U0} be its pull back in Ω \K. We
will denote by GΦ(u0) the variation of energy, i.e.

GΦ(u0) = lim
h→0

F (wh)− F (u0)

h
= lim

h→0

Fh(uh)− F (u0)

h
, (3)

since F (wh) = Fh(uh).

Theorem 3.3 The variation of energy reads

GΦ(u0) = 1
2

∫
Ω\K

Du0 : C′[Du0] dx−
∫

Ω\K
f ′ · u0 dx, (4)

where C′ and f ′ have been defined in Lemma 3.2.

Proof. First, let us see that uh ⇀ u0 in W 1,2(Ω \ K,Rn). For convenience, let us introduce the
bilinear forms

Ah(u, v) =

∫
Ω\K

Dv : Ch[Duh] dx, A(u, v) =

∫
Ω\K

Dv : C[Du] dx,

so that the Euler-Lagrange equation for uh reads Ah(uh, v) = Lh(v) for every v ∈ V0. It is not
difficult to check that Ah is elliptic and continuous in W 1,2(Ω \ K,Rn) uniformly with respect to
h. It follows that uh is bounded in W 1,2(Ω \ K,Rn) and thus (up to subsequences) that uh ⇀ w
in W 1,2(Ω \ K,Rn) and thus strongly in L2(Ω \ K,Rn). Passing to the limit in the variational
formulation Ah(uh, v) = Lh(v) leads to A(w, v) = L(v) for every v ∈ V0. Hence w = u0 and
uh ⇀ u0 in W 1,2(Ω \K,Rn).

By the variational formulations, for every u ∈ U0 we have

Ah(uh, uh) = Ah(uh − u, uh) +Ah(u, uh) = Lh(uh − u) +Ah(u, uh).
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Hence

Fh(uh) = 1
2Ah(uh, uh)− Lh(uh) = 1

2Lh(uh − u0) + 1
2Ah(u0, uh)− Lh(uh)

= 1
2Ah(u0, uh)− 1

2Lh(uh + u0).

In the same way F (u0) = 1
2A(uh, u0)− 1

2L(u0 + uh). Writing explicitly we get

1
2Ah(u0, uh)− 1

2A(uh, u0) = 1
2

∫
Ω\K

Duh :
(
Ch[Du0]−C[Du0]

)
dx

and
1
2Lh(uh + u0)− 1

2L(uh + u0) = 1
2

∫
Ω\K

(fh − f) · (uh + u0) dx.

Hence by Lemma 3.2

Fh(uh)− F (u0)

h
→ 1

2

∫
Ω\K

Du0 : C′[Du0] dx−
∫

Ω\K
f ′ · u0 dx,

which concludes the proof.

Note that Theorem 3.3 employs only the weak convergence of uh, in particular it does not rely
on quantitative estimates of uh − u0. Note also that GΦ(u0) is the sum of a configurational force f ′

and a configurational stress C′[Du0]. Finally, introducing F ′(u) = 1
2A
′(u, u)− L′(u) where

A′(u,w) =

∫
Ω\K

Du : C′[Dw] dx, L′(u) =

∫
Ω\K

f ′ · u dx,

equation (4) reads simply GΦ(u0) = F ′(u0).

Remark 3.4 In the case of “incremental variations” GΦ provides the energy release up to a multi-
plicative constant. Strictly speaking, the classical definition of elastic energy release (for incremental
cracks) would be

G(u0) = − lim
h→0

Fh(uh)− F (u0)

Hn−1(Kh \K)
,

i.e. the negative derivative with respect to variations of crack surface area, and not with respect the
parametrization parameter h. Thus, apart from the minus sign, GΦ(u0) differs from G(u0) by a
multiplicative constant, which measures the variation of surface area with respect to h. (Under the
assumptions of § 2.1 it turns out that GΦ(u0) = −G(u0) since the length `(h) of the cracks Kh is

`(h) =

∫ h

−l
(1 + (k′(s))2)1/2 ds

and thus `′(0) = 1). Finally, note that GΦ(u0) depends linearly on Φ, through C′ and f ′. As
a matter of fact the energy release depends only on the variations of the crack; indeed, if Kh =
Ψh(K) = Ψ̂h(K) for every h > 0 then Fh(uh) = Fh(ûh) = F (wh) and thus by definition (3) it is
independent of the choice of the configurational map.

In the next sections we will obtain from (4) a cascade of classical representations of energy
variations (including of course the energy release): to re-write (4) we will use both algebraic and
regularity properties of u0 but we will not use any more the definition (3).
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4 Representation with the energy momentum tensor

With few algebraic manipulations which do not require further regularity of u0 we can write (4) in
terms of the Eshelby tensor

E(u0) = W (Du0)I −DuT0 σ(u0).

Theorem 4.1 The variation of energy can be written as

GΦ(u0) =

∫
Ω\K

E(u0) : DΦ dx−
∫

Ω\K
f ′ · u0 dx, (5)

where f ′ = Df Φ + f trDΦ.

Proof. Since
F : C[F ]MT = FM : C[F ] = C[FM ] : F = F : C[FM ]

we can write (for M = DΦ)

F : C′[F ] = F : (−C[FDΦ]−C[F ]DΦT + C[F ]trDΦ) =

= F : (−2C[F ]DΦT + C[F ]trDΦ)

= F : C[F ](−2DΦT + trDΦI).

Remembering that DΦ : I = trDΦ and that 1
2F : C[F ] = W (F ) we can write

1
2F : C′[F ] = −DΦ : F TC[F ] +DΦ : W (F )I.

For F = Du0 we get

1
2Du0 : C′[Du0] = −DΦ : DuT0 σ(u0) +DΦ : W (Du0)I = DΦ : E(u0).

Hence (5) follows from (4).

5 Representation with contour integrals

In this section we will show the representation of GΦ by means of contour integrals. We will get first
a ”generalized J-integral” [12] and then, under special hypothesis, the classical path-independent
J-integral [13]. We will assume that the crack is of class W 2,∞, that the map Φ is compactly
supported, tangent to the crack (i.e. that Φ · n̂ = 0 on K) and that f ′ = 0.

In order to define a contour integral it is necessary to have more information on the regularity of
the displacement field u0. Singular expansions in terms of the stress intensity factors are not strictly
necessary; what is actually needed is indeed the ”elliptic regularity” of u0. Let Γ denote the crack
front or tip, then by [6, 7] u0 ∈W 2,2(Ω′ \K,Rn) for every Ω′ ⊂ Ω with Ω̄′ ⊂ Ω and Γ∩ Ω̄′ = ∅ (note
that Ω′ may intersect to crack K but not its front/tip Γ). Therefore, E(u0) ∈ W 1,q(Ω′ \K,Rn) for
some q > 1 and σ(u0)n̂ = 0 in K± ∩ Ω′ in the sense of traces, and thus in L1(K ∪ Ω′,Rn).

Lemma 5.1 The following representation holds,

GΦ(u0) =

∫
Ω\K

div(ET (u0)Φ) dx.

In particular div(ET (u0)Φ) ∈ L1(Ω \K).
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Proof. Denote for simplicity E = E(u0), σ = σ(u0) and u = u0.
Since Φ ∈W 1,∞ we have ETΦ ∈W 1,q

loc (Ω \K) for some q > 1. Let us check that

div(E) = 0, div(ETΦ) = div(E) · Φ + E : DΦ = E : DΦ. (6)

Denote by divk the k-component of the vectorial divergence. Being Cijmn = Cmnij and u ∈
W 2,2

loc (Ω \K,R2) we have

divk
(
W (Du)I

)
= 1

2(σ : Du),k = 1
2(σij ui,j),k = 1

2(Cijmnum,n ui,j),k

= 1
2Cijmnum,nk ui,j + 1

2Cmnijum,n ui,jk = σij ui,jk,

divk(Du
Tσ) = (DuTσ)kj,j = (ui,k σij),j = ui,kj σij + ui,k σij,j = ui,jk σij + ui,k σij,j .

Hence divk(E) = divk(WI −DuTσ) = −ui,k σij,j = −u,k · div(σ) = 0. By the regularity of ETΦ,
we can write

div(ETΦ) = (EjiΦj),i = Eji,iΦj + EjiΦj,i = div(E) · Φ + E : DΦ = E : DΦ,

which concludes the proof by Theorem 4.1.

Let us introduce the contour integral: consider a family Ur of Lipschitz neighbourhoods of the
crack front/tip Γ. Assume that Ur ⊂ {x : d(x,Γ) < r}. Denoting, Γr = ∂Ur \K the contour integral
or “generalized J-integral” [12] will be

JΦ(u0,Γr) =

∫
Γr

ΦTE(u0) n̂ ds (7)

where n̂ denotes the outward unit normal for Ur. Note that in the case of curved cracks the contour
integral depends both on the tangent field Φ and on the boundary Γr. We will recover the classic
path-independent J-integral of [13] in the case of a straight crack in § 5.1. Let us see the relationship
between GΦ and JΦ.

Theorem 5.2 The following asymptotic contour integral representation holds,

−GΦ(u0) = lim
r→0

JΦ(u0,Γr) = lim
r→0

∫
Γr

ΦTE(u0) n̂ ds . (8)

Proof. Denote E = E(u0), σ = σ(u0) and Ωr = Ω\ (K ∪ Ūr). Without loss of generality we assume
that r � 1. Being div(ETΦ) ∈ L1(Ω \K)∫

Ω\K
div(ETΦ) dx = lim

r→0

∫
Ωr

div(ETΦ) dx. (9)

As Φ is compactly supported in Ω we have ETΦ ∈W 1,q(Ωr,Rn) for some q > 1 and we are allowed
to write ∫

Ωr

div(ETΦ) dx = −
∫
∂Ωr

ΦTE n̂ ds,

because ETΦ ∈ L1(∂Ωr,Rn) and becuase n̂ is the inward unit normal to Ωr. Let us split ∂Ωr as
∂Ω ∪ (K± ∩ ∂Ωr) ∪ Γr and check that∫

∂Ω
ΦTE n̂ ds = 0,

∫
K±∩ ∂Ωr

ΦTE n̂ ds = 0.
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The first integral vanishes simply because Φ has compact support in Ω. The second vanishes since
ΦTE n̂ = 0 on K± ∩ ∂Ωr, indeed we have

ΦTE n̂ = ΦT (WI −DuTσ)n̂ = (ΦT n̂)W − ΦTDuT0 (σn̂) = 0, (10)

being Φ · n̂ = 0 (because here Φ is tangent to the crack) and σn̂ = 0 (by equilibrium). Hence by (9)∫
Ω\K

div(ET (u0)Φ) dx = − lim
r→0

∫
Γr

ΦTE(u0) n̂ ds = − lim
r→0

JΦ(u0,Γr), (11)

which concludes the proof

Corollary 5.3 (Path Dependence) Let Ui (for i = 1, 2) be admissible neighbourhoods for (7).
Assume that Ū2 ⊂ U1. Then we have

JΦ(Γ1)− JΦ(Γ2) =

∫
U1\U2

div(ET (u0)DΦ) dx. (12)

Note that div(ET (u0)DΦ) = E(u0) : DΦ in general does not vanish in U1 \ U2.

Proof. It is sufficient to write∫
U1\U2

div(ET (u0)DΦ) dx =

∫
∂(U1\U2)

ΦTE(u0) n̂ ds,

where n̂ is the outward unit normal for U1 \U2. Since E(u0)n̂ = 0 on ∂(U1 \U2)∩K± (see the proof
of Theorem 5.2) and since −n̂ on Γ2 is the outward unit vector for ∂U2 we get (12).

Figure 1: A curved crack and a couple of admissible contours for the evaluation of JΦ.

5.1 Path independent J-integral

In this subsection we will restrict ourselves to the setting of [13]: assume that Ω ⊂ R2 and consider
a straight crack K = [−l, 0]× {0}. Consider also a simple Lipschitz curve γ : [0, 1] → Ω \ {0} with
γ(1) ∈ K+ and γ(0) ∈ K−. Denote Γ = γ([0, 1]) and define the J-integral as

J = −
∫

Γ
ê1E(u0)n̂ ds,

where n̂ is again the outward normal.
Let ϕ ∈ C∞0 (Ω, [0, 1]) with ϕ = 1 in a (small) neighbourhood of the origin (the crack tip). Let

Φ = ê1ϕ. For h� 1 the map Ψh(x) = x+hΦ(x) is a smooth diffeomorphism of Ω with Kh = Φh(K).
Clearly −GΦ(u0) is the energy release with respect to the variations Kh of K.
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Proposition 5.4 J is independent of Γ and J = −GΦ(u0).

Proof. By the assumptions on Γ for r sufficiently small we can apply Corollary 5.3 with Γ1 = Γ
and Γ2 = ∂Br. Denoting by A the region “enclosed” by Γ, ∂Br and K±, we get by (6)∫

Γ
ê1E(u0)n̂ ds−

∫
∂Br

ê1E(u0)n̂ ds =

∫
A
E(u0) : Dê1 dx = 0.

On the other hand, by (7)

GΦ(u0) = − lim
r→0

∫
∂Br

ê1E(u0) n̂ ds = −
∫

Γ
ê1E(u0)n̂ ds, (13)

which gives the representation of the energy release in terms of the J-integral [13]. This argument
holds for every curve Γ and thus J is independent of Γ.

To be precise, the original way [13] of writing the J-integral is the following:

J =

∫
Γ
Wdx2 − T · u,1 ds,

where the first term is a differential form (and Γ denotes a counter-clockwise contour) while the
second is a (non-oriented) line integral. Now, consider a counter-clockwise arc length parametrization
γ of Γ. Since γ̇ is the unit tangent vector and n̂ is the unit outward vector, we have γ̇2 = n̂1 and
thus the differential form Wdx2 reads∫

Γ
Wdx2 =

∫ L

0
W
(
Du0(γ(t))

)
γ̇2(t) dt =

∫
Γ
W (Du0)n̂1 ds =

∫
Γ
W (Du0)n̂ · ê1 ds.

The second is instead a line integral for T = σ(u0)n̂ and u,1 = Du0ê1. Thus∫
Γ
u,1 · T ds =

∫
Γ
(Du0ê1)Tσ(u0)n̂ ds =

∫
Γ
êT1 Du

T
0 σ(u0) n̂ ds.

Taking the difference, we get

J =

∫
Γ
W (Du0) êT1 n̂− êT1 DuT0 σ(u0) n̂ ds =

∫
Γ
êT1 E(u0)n̂ ds.

6 Representation with the stress intensity factors

In this section we will work under the following assumptions: Ω ⊂ R2 and the crack K is of class
W 2,∞ (in particular it is not necessarily straight). Without loss of generality we assume that the tip
is in the origin with tangent ê1. Finally, we assume that f ′ = 0 and, most important, we consider
isotropic elasticity with C[Du] = σ(u) = 2µε(u) + λtr(ε(u))I, for λ, µ > 0 the Lamé constants.
First of all let us introduce the singular displacement fields

ûI = ρ1/2ÛI(θ), ûII = ρ1/2ÛII(θ),

where the fields Ûi take the form

ÛI(θ) = (aI cos(θ/2) + bI cos(3θ/2), cI sin(θ/2) + dI sin(3θ/2)),

ÛII(θ) = (aII sin(θ/2) + bII sin(3θ/2), cII cos(θ/2) + dII cos(3θ/2))

ÛI(θ) = α(cos(θ/2)(β − cos θ), sin(θ/2)(β − cos θ)),

ÛII(θ) = α(sin(θ/2)(β + 2 + cos θ),− cos(θ/2)(β − 2 + cos θ)),
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for a suitable choice of the scalars depending only on the Lamé parameters. Now, given u0 let us
introduce the rescaled field

u(r)(x) = r−1/2u0(rx).

Then by [1] there exist KI,KII (the stress intensity factors) such that

Du(r) → KIDûI +KIIDûII strongly in L2(B1,R2×2). (14)

In the case of a smooth crack the above convergence follows easily from the singular expansion
proved by Grisvard in [7].

The following result gives Irwin’s formula for the representation of the energy release −GΦ(u0)
in terms of the stress intensity factors.

Theorem 6.1 Let the map Φ be compactly supported and tangent to the crack K. Then

−GΦ(u0) = (1− ν2)(K2
I +K2

II)/E, (15)

where ν = λ/2(λ+ µ) and E = 2(1 + ν)µ are respectively Poisson’s ratio and Young’s modulus.

Proof. For 0 < r � 1 let ϕr(x) = |1 − |x|/r|+ (where | · |+ denotes the positive part). Given the
tangent field Φ let Φr(x1, x2) = ϕr(x)Φ(x). Clearly ∇ϕr(x) = 0 in Ω \ Br and ∇ϕr(x) = êρ/r in
Br, thus

DΦr = êρ ⊗ Φ/r + ϕrDΦ.

By (5) we have

GΦ(u0) = lim
r→0

∫
Br\K

E(u0) : DΦr dx. (16)

In the ball Br it holds |Φ − ê1| ≤ cr and hence |DΦr − êρ ⊗ ê1/r| ≤ C, with C independent of
r. Since E(u0) ∈ L1 it follows that

GΦ(u0) = lim
r→0

∫
Br\K

E(u0) : DΦr dx = lim
r→0

r−1

∫
Br\K

E(u0) : êρ ⊗ ê1 dx .

In terms of the rescaled field u(r) the variation of energy reads

GΦ(u0) = lim
r→0

∫
B1\K(r)

E(u(r)) : êρ ⊗ ê1 dx,

where K(r) = K/r. By (14) it follows that E(u(r))→ E(KIûI +KIIûII) strongly in L1(B1,R2×2) and
thus

GΦ(u0) =

∫
B1

E(KIûI +KIIûII) : êρ ⊗ ê1 dx.

It is convenient to write explicitly the Eshelby tensor as

E(KIûI +KIIûII) =
II∑

i,j= I

KiKj Êi,j ,

where Êi,j = ε(ûi) : σ(ûj)I −DûTi σ(ûj) is of the form ρ−1Ŝi,j(θ) (for i, j = I, II). Denoting

Ĉi,j =

∫
B1

Êi,j : êρ ⊗ ê1 dx =

∫
B1

ρ−1Ŝi,j(θ) : êρ(θ)⊗ ê1 ρ dρ dθ

=

∫ π

−π
Ŝi,j(θ) : êρ(θ)⊗ ê1 dθ



G: May 5, 2015 13

we obtain

GΦ(u0) =
II∑

i,j= I

Ĉi,jKiKj .

From the classical result of Irwin it holds ĈI,II = ĈII,I = 0 (by symmetry arguments) and that
ĈI,I = ĈII,II = −(1− ν2)/E.

To conclude this section, we observe that in our setting Green’s formula∫
Ω\K

div(ET (u0)Φ) dx =

∫
∂(Ω\K)

ΦTE(u0) n̂ ds

does not hold true. Indeed,

GΦ(u0) =

∫
Ω\K

div(ET (u0)Φ) dx while

∫
∂(Ω\K)

ΦTE(u0) n̂ ds = 0,

since ΦTE(u0) n̂ = 0 a.e. on K±, as shown in (10). However, by Lemma 5.1 and Theorem 6.1 the
following ”generalized Green’s formula” holds∫

Ω\K
div(ET (u0)Φ) dx =

∫
∂(Ω\K)

ΦTE(u0) n̂ ds− (1− ν2)(K2
I +K2

II)/E.

In general, since E belongs to L1(div; Ω \ K,Rn×n) Green’s formula (cf. Theorem A.1) takes the
form ∫

Ω\K
div(ET (u0)Φ) dx = 〈Γn̂(E(u0)),Φ〉, (17)

where Γn̂ : L1(div; Ω \ K,Rn×n) → (W 1,∞(K,Rn))∗ is a bounded linear operator. In general Γn̂
does not enjoy an integral representation, i.e. it does not belong to L1(K,Rn). In our setting, given
u0, if Φ is tangential it holds

Γn̂(E(u0)) = −(1− ν2)(K2
I +K2

II)/E.

A Green’s formula in L1(div)

Let A be a bounded, Lipschitz domain in Rn and define

L1(div;A,Rn×n) = {ξ ∈ L1(A,Rn×n) : div(ξ) ∈ L1(A,Rn)}

endowed with the norm ‖ξ‖L1(div) = ‖ξ‖L1 +‖div(ξ)‖L1 . The following Theorem defines the normal
trace in L1(div;A,Rn×n) as an element of (W 1,∞(∂A,Rn))∗, the dual of W 1,∞(∂A,Rn).

Theorem A.1 Let ξ ∈ L1(div;A,Rn×n). There exists a bounded linear operator

Γn̂ : L1(div;A,Rn×n)→ (W 1,∞(∂A,Rn))∗

such that ∫
A

div(ξψ) =

∫
A

div(ξ) · ψ + ξ : Dψ dx = 〈Γn̂(ξ), ψ〉, for ψ ∈W 1,∞(A,Rn),

and such that Γn̂(ξ) = ξ n̂ for ξ ∈ C1(Ā,Rn×n). Brackets 〈·, ·〉 above denote the duality between
W 1,∞(∂A,Rn) and its dual (W 1,∞(∂A,Rn))∗.
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Proof. If ξ ∈ C1(Ā,Rn×n) then ξψ ∈ W 1,∞(A,Rn) and classical Green’s formula holds in integral
form as ∫

A
div(ξψ) =

∫
A

div(ξ) · ψ + ξ : Dψ dx =

∫
∂A
ψ · ξ n̂ ds.

Let us define Γn̂ : C1(Ā,Rn×n)→ (W 1,∞(∂A,Rn))∗ by

〈Γn̂(ξ), ψ〉 =

∫
A

div(ξ) · ψ̃ + ξ : Dψ̃ dx

where ψ̃ ∈ W 1,∞(A,Rn) is a lifting of ψ ∈ W 1,∞(∂A,Rn). Clearly Γn̂ is linear and bounded with
respect to the norm of L1(div;A,Rn×n), indeed by definition

‖Γn̂(ξ)‖(W 1,∞(∂A,Rn))∗ = sup
{
〈Γn̂(ξ), ψ〉 : ψ ∈W 1,∞(∂A,Rn) with ‖ψ‖W 1,∞(∂A,Rn) ≤ 1

}
and by continuity of the lifting operator

〈Γn̂(ξ), ψ〉 =

∫
A

div(ξ) · ψ̃ + ξ : Dψ̃ dx ≤ C‖ξ‖L1(div,A,Rn×n).

We conclude extending Γn̂ (in a unique way) since C∞(Ā,Rn×n) is dense in L1(div;A,Rn×n).
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