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Abstract. In this paper we deal with the task of uniformly approximating an L-biLipschitz

curve by means of piecewise linear ones. This is rather simple if one is satisfied to have approx-

imating functions which are L′-biLipschitz, for instance this was already done with L′ = 4L

in [3, Lemma 5.5]. The main result of this paper is to do the same with L′ = L+ ε (which is of

course the best possible result); in the end, we generalize the result to the case of closed curves.

1. Introduction

A problem raised by Evans and Ball in the 1980’s (see for instance [1]), and still open in its

full generality, is the following: can one approximate a planar bi-Sobolev homeomorphism with

diffeomorphisms, or piecewise affine homeomorphisms, in the bi-Sobolev sense? This would be

rather important for applications in the context of the non-linear elasticity. This problem and

its partial solutions have an interesting history, one can see for instance the papers [2, 5, 3, 4]

to have an overview of what is now known.

In all the available results, for instance in those cited above, the authors use quite different

strategies, but a common ingredient is to divide the domain in simple ones, namely, triangles

or squares, and then to work on each of them. And, in particular, it is often important to

approximate the value of a homeomorphism on the boundary of the triangle or square. In

other words, the much simpler one-dimensional task (i.e., approximating a function defined on a

segment, or on the boundary of a square) is one of the ingredients to solve the two-dimensional

one, actually usually a very easy ingredient. Let us state this more precisely: we have a function

ϕ : [0, 1] → R2, and we look for a piecewise linear function ϕε : [0, 1] → R2, which is uniformly

close to ϕ and which coincides with ϕ at 0 and 1; this is of course very easy to reach. In

addition, one has often the information that ϕ is L-biLipschitz; in this case, it would be also

interesting to have an estimate on the bi-Lipschitz constant of ϕε (which is surely bi-Lipschitz,

since it is piecewise linear). Surprisingly enough, this does not come for free; in particular, in [3,

Lemma 5.5] it was proved that one can obtain a 4L-biLipschitz approximating function ϕε, and

the proof was simple but not straightforward.

The goal of the present paper is to obtain the sharp result in this direction, namely, that it

is possible to have an approximating function ϕε which is (L+ ε)-biLipschitz. To state it, let us

first recall the definition of the bi-Lipschitz property.

Definition 1.1. The function f : [0, 1]→ R2 is said to be L-biLipschitz if for every p, q ∈ [0, 1]

1

L
|p− q| ≤ |f(p)− f(q)| ≤ L|p− q| .

Notice that the second inequality is the usual L-Lipschitz property; through this paper, we will

refer to the first inequality as the inverse L-Lipschitz property.

Notice that a function can be L-biLipschitz only if L ≥ 1, and actually if L = 1 then the

function must be linear (and then, there is no need of approximating it with piecewise linear
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functions!). As a consequence, we can always think that L > 1. We can now state our main

result.

Theorem 1.2. Let ϕ : [0, 1] → R2 be an L-biLipschitz function, and ε > 0. Then there exists

an (L+ ε)-biLipschitz function ϕε : [0, 1]→ R2 such that

ϕε(0) = ϕ(0) , ϕε(1) = ϕ(1) , ‖ϕ− ϕε‖L∞ ≤ ε , (1.1)

and ϕε is finitely piecewise linear on [0, 1].

The plain of the paper is very simple. Sections 2 and 3 contain the main ingredients of the

proof, namely, the study of how one can approximate a function near Lebesgue points for ϕ′,

and the study of how to treat the remaining small intervals. These two ingredients will be then

put together in Section 4, which contains the proof of Theorem 1.2. Finally, Section 5 is devoted

to generalize the result to the case of closed curves, that is, instead of functions defined on [0, 1]

we consider functions defined on S1; this is obtained in Theorem 5.2.

1.1. Notation. In this paper we will use very little notation. We list the main things here for

the sake of clarity. The length-measure is denoted by H1. Given two points x, y ∈ R2, we

denote by xy the segment joining them; depending on the situation, for the ease of notation we

denote its length either by |y−x|, or by the quicker symbol xy, or also by H1(xy). Once a curve

γ : [a, b]→ R2 is fixed, the arc between two points P and Q is denoted by P̄Q, and its length is

then H1(P̄Q). In particular, for any a ≤ x < y ≤ b, ˝�γ(x)γ(y) is the arc connecting γ(x) to γ(y).

Finally, given any three points x, y, z ∈ R2, we write xŷz ∈ [0, π] to denote the angle between

the segments xy and yz.

2. The “Lebesgue intervals”

In this section we show that, on a small interval around a Lebesgue point for ϕ′, it is

possible to replace the function ϕ with a linear one. Since Rademacher Theorem ensures that

almost every point of [0, 1] is a Lebesgue point for ϕ′, being ϕ a Lipschitz function, we will be

eventually able to repeat this argument on a large number of non-intersecting intervals which

fill a big portion of [0, 1]. In the end, we can prove the following result.

Proposition 2.1. Let ϕ : [0, 1] → R2 be an L-biLipschitz function, and let ε > 0. Then there

exists an (L + ε)-biLipschitz function ϕε : [0, 1] → R2 such that (1.1) holds true, and ϕε is

finitely piecewise linear on a finite union of intervals A ⊆ [0, 1] such that |[0, 1] \A| ≤ ε.

As we said above, the main brick to prove this result concerns the modification of ϕ on a

single small interval. Before stating it, we need the following piece of notation.

Definition 2.2. Let ϕ : [0, C]→ R2 be a function, and let 0 ≤ s < t ≤ C. We set ϕst : [0, C]→
R2 the function defined as

ϕst(x) :=

 ϕ(x) if x /∈ (s, t) ,

ϕ(s) +
x− s
t− s

Ä
ϕ(t)− ϕ(s)

ä
if x ∈ (s, t) .

Moreover, we call t+ = s+ |ϕ(t)− ϕ(s)|/L and ϕ+
st : [0, C − (t− t+)]→ R2 the function

ϕ+
st(x) :=


ϕ(x) if x ≤ s ,

ϕ(s) +
L(x− s)
|ϕ(t)− ϕ(s)|

Ä
ϕ(t)− ϕ(s)

ä
if s < x < t+ ,

ϕ(x+ t− t+) if t+ ≤ x ≤ C − (t− t+) .
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In words, the function ϕst coincides with ϕ out of the interval (s, t), while the curve ϕ in

(s, t) is replaced by the segment connecting ϕ(s) to ϕ(t). The function ϕ+
st behaves in the very

same way, except that the segment is parametrized at the (maximal possible) speed L.

Lemma 2.3. Let ϕ : [0, 1] → R2 be an L-biLipschitz function, and let ε > 0 be small enough.

For any x ∈ (0, 1) which is a Lebesgue point for ϕ′, there exists ¯̀= ¯̀(x) > 0 such that, for any

` ≤ ¯̀, there is a sets I`(x) ⊆ (x− `, x+ `) with∣∣∣I`(x)
∣∣∣ ≥ (2− ε)` , (2.1)

so that for every s < t ∈ I`(x) the function ϕst is (L+ε)-biLipschitz and satisfies ‖ϕ−ϕst‖L∞ < ε.

Moreover, for every s ∈ I`(x) and t1, t2 ∈ (x − `/ε, x + `/ε) with t1 < s < t2, the directions of

the segments ϕ(t1)ϕ(s) and ϕ(s)ϕ(t2) coincide up to an error 2ε.

In this section we will first show Lemma 2.3, and then use it as a tool to obtain Proposi-

tion 2.1.

Proof (of Lemma 2.3). We divide the proof in three steps for the sake of clarity.

Step I. The L-Lipschitz property of ϕst and a uniform estimate for ϕ− ϕst.
In this step we show that ϕst is L-Lipschitz for any choice of s, t in [0, 1], and we give an estimate

for ‖ϕ− ϕst‖L∞ . Let us fix 0 ≤ s ≤ t ≤ 1 and take two arbitrary points y 6= z ∈ [0, 1]: we have

to check that
|ϕst(y)− ϕst(z)|

|y − z|
≤ L .

This is clearly true if both y, z ∈ [0, 1] \ (s, t), since in this case ϕst = ϕ at both y and z; on the

other hand, if both y, z ∈ [s, t], then by definition

|ϕst(y)− ϕst(z)|
|y − z|

=
|ϕst(s)− ϕst(t)|

|s− t|
=
|ϕ(s)− ϕ(t)|
|s− t|

≤ L . (2.2)

Finally, let us suppose that one of the points y and z belongs to (s, t), and the other one to

[0, 1] \ [s, t]; by symmetry, we can assume s < y < t < z. Thus, by the above observations and

by the triangular inequality we have

|ϕst(y)− ϕst(z)| ≤ |ϕst(y)− ϕst(t)|+ |ϕst(t)− ϕst(z)| ≤ L|y − t|+ L|t− z| = L|y − z| .

Concerning the uniform estimate, it says that

‖ϕ− ϕst‖L∞ ≤ 2L|t− s| . (2.3)

Indeed, calling for brevity d = |t − s|, for any x ∈ [s, t] one has |ϕ(x) − ϕ(s)| ≤ L|x − s| ≤ Ld.

As an immediate consequence, for any y ∈ [s, t] we also get |ϕst(y)− ϕ(s)| ≤ Ld, hence in turn

‖ϕst − ϕ‖L∞ ≤ 2Ld, that is, (2.3).

Step II. Definition of `(x) and I`(x) and the estimate on the directions.

Let x be a Lebesgue point for ϕ′. By definition, for every δ > 0 there exists a strictly positive

constant h̄ = h̄(x) < 1/(4L) such that, for any h < h̄,∫ x+h

x−h
|ϕ′(z)− ϕ′(x)|dz < δ . (2.4)

Let us now assume for simplicity that ϕ′(x) is an horizontal vector, and for any p < q in

(x − h, x + h), let us call τpq ∈ S1 the direction of the segment ϕ(p)ϕ(q). Since |ϕ′(x)| ≥ 1/L,
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we immediately obtain that for any interval (p, q) ⊆ (x− h, x+ h) the following holds,

M(p, q) :=

∫ q

p
|ϕ′(z)− ϕ′(x)| dz < ε

2L
=⇒ |τpq| < ε . (2.5)

We want now to find a particular set A ⊆ (x− 3h, x+ 3h) such that

M(p, q) <
ε

2L
∀ p, q ∈ (x− h, x+ h) : (p, q) /∈ A×A . (2.6)

Notice that we are asking M(p, q) to be small as soon as at least one between p and q belongs

to (x − h, x + h) \ A. To define A, let us start simply by letting A = ∅ if M(p, q) < ε/(2L) is

true for every pair p, q ∈ (x− h, x+ h), so that (2.6) trivially holds.

Otherwise, let p1 < q1 ∈ (x−h, x+h) be two points maximizing H1(pq) among all the pairs

for which M(p, q) ≥ ε/(2L): notice that this is possible by the fact that ϕ′ is an L1 function on

the compact interval [x− h, x+ h]. Then, let us define I1 = (p−1 , q
+
1 ), being

p−1 = p1 − (q1 − p1) , q+1 = q1 + (q1 − p1) . (2.7)

Notice that by construction I1 ⊆ (x− 3h, x+ 3h). Now, if (2.6) is satisfied with A = I1 we stop

here, otherwise let p2 < q2 ∈ (x − h, x + h) be two points maximizing H1(pq \ I1) among the

pairs for which M(p, q) ≥ ε/(2L), and let I2 = (p−2 , q
+
2 ) where p−2 and q+2 are defined as in (2.7).

Notice that, by definition, it is possible that p2 or q2 belong to I1, but the intervals (p1, q1) and

(p2, q2) are surely disjoint. Indeed, by the maximality in the definition of p1 and q1 we have

that H1(p2q2) ≤ H1(p1q1); as a consequence, the intervals (p1, q1) and (p2, q2) could intersect

only if both p2 and q2 belong to I1: but then, H1(p2q2 \ I1) = 0, against the maximality in the

definition of p2 and q2. Moreover, as before, I2 ⊆ (x − 3h, x + 3h). We continue our definition

of the intervals Ij recursively, being at any step pj < qj ∈ (x− h, x+ h) two points maximizing

H1
Ä
pq\∪j−1i=1 Ii

ä
among the pairs for which M(p, q) ≥ ε/(2L), noticing that the different intervals

(pj , qj) are disjoint, and stopping the construction if A = ∪ji=1Ii satisfies (2.6).

Thus, either we stop after finitely many steps, and this means that (2.6) holds true being

A a finite union of intervals, or we end up with a sequence of intervals Ij = (p−j , q
+
j ), j ∈ N.

Since all the different “internal intervals” (pj , qj) are disjoint, the sum of the lengths is bounded,

hence |Ij | → 0 when j → ∞. As a consequence, we can easily check that (2.6) holds true by

setting

A :=

{
z ∈ (x− 3h, x+ 3h) : lim inf

ν→0

|(z − ν, z + ν) ∩ ∪jIj |
2ν

> 0

}
,

that is, A is the set of points having strictly positive density with respect to ∪jIj . To do so, let

us assume the existence of p < q ∈ (x − h, x + h) such that at least one between p and q does

not belong to A, but M(p, q) ≥ ε/(2L). We can immediately notice that

H1
Ä
pq \ ∪jIj

ä
= 0 : (2.8)

indeed, if the above measure were some quantity ξ > 0, then the fact that the interval (p, q) was

not chosen at the j-th step gives that

H1
Ä
pjqj \ ∪j−1i=1 Ii

ä
≥ H1

Ä
pq \ ∪j−1i=1 Ii

ä
≥ H1

Ä
pq \ ∪i∈NIi

ä
= ξ ,

hence in particular |Ij | ≥ ξ for every j, while we have already noticed that |Ij | → 0. On the

other hand, (2.8) implies that both p and q have at least density 1/2 for ∪jIj , so they both

belong to A, against the assumption. Hence, the validity of (2.6) has been established.
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We define then ` = ε̃h for some ε̃ = ε̃(ε, L) < ε to be specified later, and we set

I`(x) = (x− `, x+ `) \A .

Keep in mind that, since h is any positive constant smaller than h̄(x), then also ` can be chosen

as any positive constant smaller than ¯̀(x) = ε̃h̄(x). To conclude this step, we give an estimate

of the length of A, namely,

|A| ≤
+∞∑
j=1

|Ij | = 3
+∞∑
j=1

H1(pjqj) ≤
6L

ε

+∞∑
j=1

∫ qj

pj

|ϕ′(z)− ϕ′(x)| dz

≤ 6L

ε

∫ x+h

x−h
|ϕ′(z)− ϕ′(x)| dz < 12Lhδ

ε
< hεε̃ = `ε ,

where we have used the definition of A, the fact that M(pj , qj) ≥ ε/(2L) for every j ∈ N, the

fact that all the intervals (pj , qj) are disjoint, and (2.4), and where the last inequality holds true

as soon as δ ≤ ε2ε̃/(12L). As a consequence, the validity of (2.1) follows.

To conclude this step, we take two points s ∈ I`(x) and t1, t2 ∈ (x−h, x+h) with t1 < s < t2.

Applying (2.6) at both pairs (t1, s) and (s, t2), and keeping in mind (2.5), we get that both the

segments ϕ(t1)ϕ(s) and ϕ(s)ϕ(t2) are horizontal up to an error ε, thus in turn the two directions

coincide up to an error 2ε. Notice that, since (x − `/ε, x + `/ε) ⊆ (x − h, x + h), in particular

we have proved the last assertion of the claim about the directions.

Step III. The bi-Lipschitz property and the L∞ estimate for ϕst.

To conclude the proof we only have to check that, whenever x is a Lebesgue point for ϕ′ and the

points s and t are in I`(x), the function ϕst is (L+ ε)-biLipschitz and satisfies ‖ϕ−ϕst‖L∞ < ε.

The L∞ estimate comes directly by Step I, keeping in mind (2.3) and since by construction

2L|t − s| ≤ 4`L < 4εhL < ε; moreover, Step I ensures also the Lipschitz property, even with

constant L instead of (L+ε): as a consequence, we only have to take care of the inverse Lipschitz

inequality. In other words, we take y, z ∈ [0, 1] and we have to check that

|ϕst(y)− ϕst(z)| ≥
|y − z|
L+ ε

. (2.9)

If y and z are both in [0, 1] \ (s, t), then (2.9) is true –with L in place of L+ ε– because ϕ = ϕst
at both y and z, while if they are both in [s, t] then the validity of (2.9) –again with L in place

of L + ε– can be obtained exactly as in (2.2). Without loss of generality, let us then consider

the case when s < y < t < z, which we further subdivide in two cases.

If z ∈ (x− h, x+ h) then, as observed at the end of Step II, the angle θ = ϕ(y)‘ϕ(t)ϕ(z) is

at most 2ε. Recalling that the validity of (2.9) with L in place of L + ε is already known for

both the pairs (y, t) and (t, z), we have then

|ϕst(y)− ϕst(z)| ≥ cos(θ/2)
Ä
|ϕst(y)− ϕst(t)|+ |ϕst(t)− ϕst(z)|

ä
≥ cos ε

|y − t|+ |t− z|
L

≥ |y − z|
L+ ε

,

which is valid up to take ε small enough.

Finally, assume that z > x+ h: in this case it is enough to observe that, also by (2.3),

|ϕst(y)− ϕst(z)|
|y − z|

=
|ϕst(y)− ϕ(z)|
|y − z|

≥ |ϕ(y)− ϕ(z)|
|y − z|

− ‖ϕst − ϕ‖L
∞

|y − z|

≥ 1

L
− 4L`

h− `
=

1

L
− 4Lε̃

1− ε̃
>

1

L+ ε
,
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up to have chosen ε̃ = ε̃(ε, L) small enough. Thus, the estimate (2.9) has been proved in any

case and the proof is concluded. �

Definition 2.4. Given an interval J = (a, b) ⊆ [0, 1] and ε > 0, we call central part of J the

interval Jε given by

Jε :=

Ç
a+ b

2
− ε

2
(b− a),

a+ b

2
+
ε

2
(b− a)

å
.

Moreover, we say that J is ε-admissible if there exists x ∈ Jε such that ¯̀(x) > (b− a)/2.

Proof (of Proposition 2.1). For any N ∈ N, we write [0, 1] as the essentially disjoint union of

the intervals Jm =
Ä
m/N, (m+ 1)/N

ä
, with 0 ≤ m < N . Moreover, we let ε̃ = ε̃(ε, L) < ε be a

small constant, to be specified later. We split the proof in three steps for clarity.

Step I. A piecewise linear (L+ ε̃)-biLipschitz function ϕm on each ε̃-admissible interval.

Let us start by considering an interval Jm which is ε̃-admissible. Then, there exists a Lebesgue

point xm ∈ J ε̃m for ϕ′ satisfying ¯̀(xm) > 1/2N . Let now ` = dist(xm, [0, 1] \ Jm): of course

` ≤ 1/2N < ¯̀(xm), hence we can apply Lemma 2.3 with ε̃ in place of ε, and get two points

x−m ∈
Ç
m

N
,
m

N
+

2ε̃

N

å
, x+m ∈

Ç
m+ 1

N
− 2ε̃

N
,
m+ 1

N

å
such that the function ϕm = ϕx−mx+m of Definition 2.2 is (L + ε̃)-biLipschitz and satisfies ‖ϕ −
ϕm‖L∞ < ε̃ < ε. Notice that ϕm is piecewise linear on a subset of Jm having length at least

(1 − 4ε̃)/N . We underline now another L∞ estimate which holds for ϕ − ϕm, which will be

needed later; namely, since ϕ and ϕm are bi-Lipschitz and they coincide at x−m, then for any

y ∈ (x−m, x
+
m) we have

|ϕm(y)− ϕ(y)| ≤ |ϕm(y)− ϕm(x−m)|+ |ϕ(x−m)− ϕ(y)| ≤ (2L+ ε̃)(y − x−m) <
3L

N
. (2.10)

Step II. The length of the non ε̃-admissible intervals Jm is small.

Let us consider an interval Jm which is not ε̃-admissible. By definition, this means that no

Lebesgue point x in J ε̃m satisfies ¯̀(x) > 1/2N , or equivalently that J ε̃m is entirely contained in

AN =

®
x ∈ [0, 1] : either x is not a Lebegue point for ϕ′, or ¯̀(x) ≤ 1

2N

´
.

As a consequence, the union of the intervals which are not ε̃-admissible has length at most

|AN |/ε̃: hence, since ε > 0 is fixed and since ε̃ will ultimately depend only on ε and L, by

Rademacher Theorem we can select N � 1 such that this union is as small as we wish.

Step III. Definition of the function ϕε.

We are now in position to define the desired function ϕε. More precisely, we let ϕε = ϕm in

every ε̃-admissible interval Jm, and ϕε = ϕ on the other intervals; thus, ϕε coincides with ϕ on

every interval which is not ε̃-admissible, as well as in the “external” portion Jm \ (x−m, x
+
m) of

the ε̃-admissible intervals.

First of all, observe that ϕε is piecewise linear on the union of the intervals (x−m, x
+
m), hence

–by Steps I and II– on a portion of [0, 1] having measure larger than 1− 5ε̃ (thus in turn larger

than 1− ε if ε̃ < ε/5) as soon as N � 1.

Second, by construction we have ϕε(0) = ϕ(0) and ϕε(1) = ϕ(1); moreover, since in every

ε̃-admissible interval Jm one has ‖ϕ−ϕε‖L∞ = ‖ϕ−ϕm‖L∞ < ε̃, while on each non ε̃-admissible

interval one has ϕε = ϕ, the L∞ estimate and thus the whole (1.1) has been established.
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To conclude, we have only to check the (L+ ε)-biLipschitz property of ϕε. To do so, having

fixed two points y < z in [0, 1], we need to show that

|ϕε(y)− ϕε(z)| ≤ (L+ ε)|y − z| , |ϕε(y)− ϕε(z)| ≥
1

L+ ε
|y − z| . (2.11)

Since ϕ is L-biLipschitz by assumption, and every ϕm is (L + ε̃)-biLipschitz by Step I, there

is nothing to prove unless y ∈ (x−m, x
+
m) and z ∈ (x−n , x

+
n ) for some m < n, being both the

intervals Jm and Jn ε̃-admissible. In this case, the first inequality in (2.11) comes directly by

the triangular inequality, being

|ϕε(y)− ϕε(z)| ≤ |ϕε(y)− ϕε(x+m)|+ |ϕε(x+m)− ϕε(x−n )|+ |ϕε(x−n )− ϕε(z)|

= |ϕm(y)− ϕm(x+m)|+ |ϕ(x+m)− ϕ(x−n )|+ |ϕn(x−n )− ϕn(z)|
≤ (L+ ε̃)|y − z| ≤ (L+ ε)|y − z| .

To show the other inequality, it is convenient to distinguish two subcases, namely, whether y and

z are very close, or not. More precisely, let us first assume that z < xm+1/(2Nε̃) < xm+¯̀(xm)/ε̃;

in this case, by Lemma 2.3 we know that the angle θ = ϕε(y) ◊�ϕε(x+m)ϕε(z) satisfies θ > π − 2ε̃,

so that as soon as ε̃ = ε̃(ε, L) is small enough we have

|ϕε(y)− ϕε(z)| ≥ cos(ε̃)
Ä
|ϕε(y)− ϕε(x+m)|+ |ϕε(x+m)− ϕε(z)|

ä
≥ cos(ε̃)

L+ ε̃
|y − z| ≥ 1

L+ ε
|y − z| .

Finally, if z ≥ xm+1/(2Nε̃), then of course |y−z| ≥ 1/(3Nε̃). As a consequence, since by (2.10)

we have ‖ϕ− ϕε‖L∞ < 3L/N , we get

|ϕε(y)− ϕε(z)|
|y − z|

≥ |ϕ(y)− ϕ(z)|
|y − z|

− 2‖ϕ− ϕε‖L∞
|y − z|

≥ 1

L
− 18Lε̃ ≥ 1

L+ ε
,

where the last inequality is again true for a suitable choice of ε̃ = ε̃(ε, L). The second inequality

in (2.11) is thus proved in any case, and the proof is concluded. �

Remark 2.5. Notice that, if the function ϕ is C1 up to the boundary on the interval [0, 1], then

Lemma 2.3 can be applied to any point of [0, 1], thus by a trivial compactness argument the proof

of Proposition 2.1 can be modified to get an (L + ε)-biLipschitz approximation of ϕ which is

finitely piecewise linear on the whole [0, 1].

3. The “non Lebesgue intervals”

In this section we show that any L-biLipschitz function ϕ can be modified inside any small

interval (a, b), shrinking a little bit this interval, becoming C1 there, and remaining globally

L-biLipschitz. In the next section we will apply this result to the “non Lebesgue intervals”, that

is, the intervals which we were not able to treat in the last section. The main aim of the section

is to prove the following result.

Proposition 3.1. Let ϕ : [0, C]→ R2 be an L-biLipschitz function, let [a, b] ⊆ [0, C] be a given

interval, and suppose that for some ε > 0 the function ϕ is linear on (a − ε, a) ∩ [0, C] and on

(b, b+ε)∩ [0, C], with |ϕ′| = L on both these intervals. Then, there exists a+(b−a)/L2 ≤ b′ ≤ b
and an L-biLipschitz function ψ : [0, C − (b− b′)]→ R2 which is C1 on [a, b′] and satisfies®

ψ(t) = ϕ(t) for every 0 ≤ t ≤ a ,
ψ(t) = ϕ(t+ b− b′) for every b′ ≤ t ≤ C − (b− b′) . (3.1)

To obtain this result, the following two definitions will be useful.
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Definition 3.2 (Fast and short functions). Let ϕ : [0, C] → R2 be an L-biLipschitz function

and [a, b] ⊆ [0, C] be a given interval. We say that a function ψ : [0, C − (b − b′)] → R2 is fast

on [a, b] if a+ (b− a)/L2 ≤ b′ ≤ b, ψ satisfies (3.1),

1

L
|z − y| ≤ |ψ(z)− ψ(y)| ≤ L|z − y| ∀ y ∈ [a, b′] , z /∈ [a, b′] , (3.2)

and |ψ′| ≡ L on [a, b′]. Moreover, any ψ which minimizes the value of b′ among all the functions

fast on [a, b], is said to be short on [a, b].

In words, a “fast” function is a function which connects ϕ(a) with ϕ(b) always moving

at maximal speed, and satisfying (3.2), while a “short” function is the shortest possible fast

function. Let us immediately make a very simple observation, which we will use often later.

Lemma 3.3. Let ϕ : [0, C]→ R2 be an L-biLipschitz function, and let ψ : [0, C − (b− b′)]→ R2

be short on some interval [a, b] ⊆ [0, C]. Let also a ≤ r < s ≤ b′, and assume that ψ is not a

straight line between ψ(r) and ψ(s). Then, the inverse L-Lipschitz property for the function ψ+
rs

fails for some p /∈ [a, b′ − (s− s+)] and q ∈ (r, s+), where ψ+
rs and s+ are as in Definition 2.2.

Proof. Let us consider the function ψ+
rs : [0, C − (b− b′′)]→ R2, with b′′ = b′ − (s− s+), which

of course satisfies (3.1). Since ψ is not a straight line between ψ(r) and ψ(s), we have that

b′′ < b′ and then, since ψ is short on (a, b), by definition we get that ψ+
rs cannot be fast on

(a, b). As a consequence, recalling (3.2), we know that there must be some p /∈ [a, b′′] and some

q ∈ [a, b′′] such that the L-biLipschitz property for ψ+
rs fails at p and q. However, we know that∣∣∣(ψ+

rs)
′
∣∣∣ = L in (a, b′′), while outside

∣∣∣(ψ+
rs)
′
∣∣∣ ≤ L since ψ+

rs coincides with ϕ up to a translation

of the variable, and ϕ is L-biLipschitz. Thus, the L-Lipschitz property for ψ+
rs cannot fail, and

we realize that the inverse L-Lipschitz property must fail at p and q. By symmetry, we can also

assume that p < a; hence, if a ≤ q ≤ r, then

|ψ+
rs(q)− ψ+

rs(p)|
q − p

=
|ψ(q)− ψ(p)|

q − p
≥ 1

L
,

because the function ψ is short and then in particular it satisfies (3.2). Instead, if s+ ≤ q ≤ b′′,
then we have

|ψ+
rs(q)− ψ+

rs(p)|
q − p

=
|ψ(q + (s− s+))− ψ(p)|

q − p
=
|ψ(q + (s− s+))− ψ(p)|

q + (s− s+)− p
q − p+ (s− s+)

q − p

≥ |ψ(q + (s− s+))− ψ(p)|
q + (s− s+)− p

≥ 1

L
.

As a consequence, we obtain that q must be in (r, s+), and the thesis is concluded. �

Our next result tells that a short function always exists, and it is even L-biLipschitz: notice

that this is not guaranteed by (3.2), since there we check only some pairs (y, z), namely, those

for which y is inside the interval (a, b′) and z is outside it.

Lemma 3.4. Let ϕ : [0, C]→ R2 be an L-biLipschitz function, and let [a, b] ⊆ [0, C] be a given

interval. Then, there exists a function ψ short on [a, b], and any such function is L-biLipschitz.

Proof. First of all, let us observe that the set of the fast functions is not empty. Indeed, the

function ϕ itself, reparametrized at speed L in (a, b), is fast: more precisely, let us set

b′ = a+
H1
Ä˝�ϕ(a)ϕ(b)

ä
L

,
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let σ : [0, C]→ [0, C − (b− b′)] be the one-to-one function given by

σ(t) =


t ∀ 0 ≤ t ≤ a ,

a+
H1
Ä˝�ϕ(a)ϕ(t)

ä
L

∀ a < t < b ,

t− (b− b′) ∀ b ≤ t ≤ C ,

and set ψ1 as ψ1(σ(t)) = ϕ(t). We claim that ψ1 is a fast function on [a, b]: everything is obvious

by construction except the validity of (3.2). But in fact, let y ∈ (a, b′) and z > b′ (if z < a,

the very same argument applies). Since |ψ′1(t)| = L for t ∈ (y, b′), while for b′ < t < z one has

|ψ′1(t)| = |ϕ′(t+ b− b′)| ≤ L because ϕ is L-biLipschitz, we get immediately the validity of the

second inequality. Concerning the first one, we have just to recall that |σ′| ≤ 1, so that

b′ − y = σ(b)− σ
Ä
σ−1(y)

ä
≤ b− σ−1(y) ,

and then we directly get

|ψ1(z)− ψ1(y)|
|z − y|

=
|ϕ(z − b′ + b)− ϕ(σ−1(y))|

z − b′ + b′ − y
≥ |ϕ(z − b′ + b)− ϕ(σ−1(y))|

z − b′ + b− σ−1(y)
≥ 1

L

where in the last inequality we have used the bi-Lipschitz property of ϕ. So, also the first

inequality in (3.2) is proved and thus the claim is established.

To get the existence of a short function, it is enough to recall that all the fast functions are

uniformly continuous on uniformly bounded intervals; thus, such existence follows directly by

Ascoli–Arzelà Theorem and since any uniform limit of fast functions is also fast.

To conclude, we take a short function ψ on [a, b], and we have to show that ψ is L-biLipschitz.

We have already noticed that |ψ′| ≤ L, so the Lipschitz property is obvious and we only have to

care about the inverse Lipschitz property. To do so, let us take y < z ∈ [0, C− (b− b′)]. If y and

z are both smaller than a, or both larger than b′, this comes directly by the inverse Lipschitz

property of ϕ; if one between y and z is smaller than a, and the other is larger than b′, the same

argument applies since

|ψ(z)− ψ(y)| =
∣∣∣ϕ(z + b− b′)− ϕ(y)

∣∣∣ ≥ 1

L

∣∣∣(z + b− b′)− y
∣∣∣ ≥ 1

L
|z − y| ;

if exactly one between y and z is in [a, b′], the inequality is ensured by (3.2). Summarizing, the

only situation left to prove is the case a < y < z < b′.

Let us assume, by contradiction, that there exists a < r < s < b′ such that

|ψ(s)− ψ(r)| < 1

L
|s− r| , (3.3)

and consider the function ψ+
rs : [0, C − (b − b′′)] → R2 given by Definition 2.2. Notice that ψ

cannot be a straight line between ψ(r) and ψ(s), by (3.3) and the fact that |ψ′| = L on (a, b′).

Thus, Lemma 3.3 ensures the existence of some p /∈ [a, b′′] (and, without loss of generality, we

can think p < a) and q ∈ (r, s+) such that

|ψ+
rs(q)− ψ+

rs(p)| <
1

L
(q − p) . (3.4)
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Finally, making use of the validity of (3.2) for ψ, together with (3.3) and (3.4), we get

1

L
|s− p| ≤ |ψ(s)− ψ(p)| ≤ |ψ(s)− ψ+

rs(q)|+ |ψ+
rs(q)− ψ(p)|

= |ψ(s)− ψ(r)| − |ψ+
rs(q)− ψ+

rs(r)|+ |ψ+
rs(q)− ψ+

rs(p)| <
1

L
(s− r)− L(q − r) +

1

L
(q − p)

≤ 1

L
|s− p| ,

and since the contradiction shows that ψ is L-biLipschitz, the proof is concluded. �

Keep in mind that we aim to prove Proposition 3.1, that is, we want to find some L-

biLipschitz function ψ which satisfies (3.1) and which is C1 on [a, b′]. By definition, any function

fast in [a, b] already satisfies (3.1), and the lemma above ensures that any function short on [a, b]

is also L-biLipschitz. We will then get our proof once we show that any short function is

necessarily C1 on [a, b′]. To do so, we start with a couple of preliminary geometric estimates.

Lemma 3.5. For every small constants ` and η and for every L ≥ 1, there exists δ̄(`, η, L)� `

satisfying the following properties. Let P, Q, S be three points in R2 such that PQ ≥ `/2 and

δ = QS ≤ δ̄. Call also θ, θ′, ν ∈ S1 the directions of the segments PQ, PS and QS respectively.

Then the following holds true:

|θ − θ′| ≤ η

L2
, (3.5)

θ · ν − η

L2
≤ PS − PQ

δ
≤ θ · ν +

η

L2
. (3.6)

Proof. Once `, η and L are given, the existence of some δ̄ satisfying (3.5) is immediate by

continuity; we will show that the same choice of δ̄ gives also (3.6).

Let us call τ : [0, δ] → R2 the function given by τ(t) = Q + tν, so that τ(0) = Q and

τ(δ) = S; call also θ(t) the direction of the segment Pτ(t), and observe that |θ(t) − θ| ≤ η/L2

by (3.5) applied to the triple (P,Q, τ(t)). Hence,

PS − PQ =

∫ δ

0

d

dt

(
Pτ(t)

)
dt =

∫ δ

0
θ(t) · ν dt = δθ · ν +

∫ δ

0
(θ(t)− θ) · ν dt ,

and the modulus of the latter integral is smaller than δη/L2, hence (3.6) follows. �

Lemma 3.6. Let `, η and L be fixed, let ϕ : [0, C] → R2 be an L-biLipschitz function, and

take three points P = ϕ(p), Q = ϕ(q), R = ϕ(r), with p < q < r, satisfying PQ ≥ ` and

δ := QR ≤ δ̄(`, η, L). Assume that the function ϕ+
qr : [0, C − (r − r+)] → R2 of Definition 2.2

does not satisfy the inverse L-Lipschitz property at the pair (p, t) with some q ≤ t ≤ r+. Then,

1

L2
− 2

η

L2
≤ θ · ν ≤ 1

L2
+ 2

η

L2
, (3.7)

PQ

|q − p|
≤ 1

L
+

3ηδ

|q − p|L2
, (3.8)

H1(Q̄R)

QR
≤ 1 + 6η , (3.9)

where θ and ν are the directions of the segments PQ and QR respectively.
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Proof. First of all, let us call for brevity σ := Qϕ+
qr(t) and Qσ = ϕ+

qr(t). The failure of the

inverse L-Lipschitz property at p and t, together with (3.6) applied with S = Qσ and with the

fact that ϕ, instead, is L-biLipschitz, gives

σ

L2
+
q − p
L

=
t− p
L

> ϕ+
qr(p)ϕ

+
qr(t) = PQσ ≥ PQ+σ

Ç
θ·ν− η

L2

å
≥ q − p

L
+σ

Ç
θ·ν− η

L2

å
, (3.10)

which can be rewritten as

θ · ν < 1

L2
+

η

L2
,

so that one inequality in (3.7) is already proved.

Notice now that PQσ ≥ ` − δ̄ > `/2, so we can apply (3.6) also to Q = Qσ and S = R.

By (3.10) and the biLipschitz property of ϕ again, we have then

σ − L(r+ − q)
L2

+
r − p
L
≥ σ − L(r − q)

L2
+
r − p
L

=
σ

L2
+
q − p
L

> PQσ

≥ PR− (QR− σ)

Ç
θ̃ · ν +

η

L2

å
≥ r − p

L
+ (σ − L(r+ − q))

Ç
θ̃ · ν +

η

L2

å
,

where θ̃ is the direction of PQσ. Since L(r+ − q) = QR ≥ σ, we deduce

θ̃ · ν > 1

L2
− η

L2
.

And since |θ̃ − θ| < η/L2 by (3.5), we conclude the validity of (3.7).

Property (3.8) can be directly deduced from (3.10) and (3.7), since

PQ

|q − p|
<

1

L
+

σ

|q − p|

Ç
1

L2
− θ · ν +

η

L2

å
≤ 1

L
+

3ησ

|q − p|L2
≤ 1

L
+

3ηδ

|q − p|L2
.

And finally, to get property (3.9), first we use that ϕ is L-biLipschitz to get

PR ≥ r − p
L

=
q − p
L

+
r − q
L
≥ q − p

L
+
H1(Q̄R)

L2
, (3.11)

and then we use (3.6), (3.8) and (3.7) to get

PR ≤ PQ+ δ

Ç
θ · ν +

η

L2

å
≤ q − p

L
+

δ

L2
(1 + 6η) ,

which inserted in (3.11) gives (3.9). �

Let us now present the main technical tool of this section: thanks to this result, we will be

able to prove the regularity of any short map.

Lemma 3.7. Let `, η and L be fixed, let ϕ : [0, C] → R2 be an L-biLipschitz function with

|ϕ′| ≡ L in (q, r), and take five points P = ϕ(p), Q = ϕ(q), R = ϕ(r), Q′ = ϕ(q′) and

Q′′ = ϕ(q′′) with p < q < q′ < q′′ < r, satisfying PQ ≥ 2` and δ := QR ≤ δ̄(`, η, L). Assume

also that both Q′ and Q′′ have distance at least δ/3 from each of Q and R, that η is small with

respect to L − 1 and 1/L, and that (3.9) holds true. Then, if the inverse L-Lipschitz property

for the function ϕ+
q′q′′ is not satisfied by P and some point in the segment Q′Q′′, one has

|ν − ν ′| ≤ 1

2
min

®
1

L2
, 1− 1

L2

´
=⇒ |ν − ν ′| ≤ 15

√
η , (3.12)

where ν and ν ′ are the directions of the segments QR and Q′Q′′ respectively.
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Proof. First of all, we use property (3.9) for Q and R, which is valid by assumption: we imme-

diately get that every point in the curve Q̄R, hence in particular both Q′ and Q′′, has distance

less than 2δ
√
η from the segment QR. Since QQ′ ≥ δ/3 and Q′′R ≥ δ/3, we deduce that

|ν − ν̃| ≤ 6
√
η , Q′Q′′ ≤ δ

2
≤ 3

2
QQ′ , (3.13)

being ν̃ the direction of QQ′. Moreover, the validity of (3.9) also implies that

QR(1 + 6η) ≥ H1(Q̄R) = H1(Q̄Q′) +H1(Q̄′R) ≥ H1(Q̄Q′) +Q′R ≥ H1(Q̄Q′) +QR−QQ′ ,

which in turn implies by the assumptions

H1(Q̄Q′) ≤ 6ηQR+QQ′ ≤ QQ′(1 + 18η) . (3.14)

Let us now use the fact that the inverse L-Lipschitz property for the function ϕ+
q′q′′ fails for P

and some point in Q′Q′′. As a consequence, we can apply Lemma 3.6 to the points P, Q′ and

Q′′, so by (3.7), calling θ′ the direction of PQ′, we know∣∣∣∣θ′ · ν ′ − 1

L2

∣∣∣∣ ≤ 2
η

L2
. (3.15)

Let us now assume that

|ν − ν ′| ≤ 1

2
min

®
1

L2
, 1− 1

L2

´
, (3.16)

so that the proof will be concluded once we show that

|ν − ν ′| ≤ 15
√
η . (3.17)

First of all, putting together (3.15), (3.16) and (3.13), a simple geometric argument shows that

the directions ν and ν̃ are in the same quadrant with respect to θ′ as soon as η is small enough;

more precisely, this holds true as soon as η is much smaller than both L − 1 and 1/L (keep in

mind that L > 1). As a consequence, a trigonometric argument immediately gives∣∣∣θ′ · ν̃ − θ′ · ν ′∣∣∣ ≥ |ν̃ − ν ′|2
3

.

Just to fix the ideas, we can assume that

θ′ · ν̃ − θ′ · ν ′ ≥ |ν̃ − ν
′|2

3
, (3.18)

otherwise the argument below about QQ′ has to be replaced by a completely similar argument

about RQ′′.

Let us now collect all the information that we have: by (3.6) applied to P, Q′ and Q, by (3.8)

applied to P, Q′ and Q′′, and by (3.13), we get

q − p
L
≤ PQ ≤ PQ′ +QQ′

Ç
θ′ · (−ν̃) +

η

L2

å
≤ q′ − p

L
+

3ηQ′Q′′

L2
+QQ′

Ç
η

L2
− θ′ · ν̃

å
≤ q′ − p

L
+

9ηQQ′

2L2
+QQ′

Ç
η

L2
− θ′ · ν̃

å
≤ q′ − p

L
+QQ′

Ç
6η

L2
− θ′ · ν̃

å
.

This, also keeping in mind the fact that |ϕ′| ≡ L in (q, r) and (3.14), implies

QQ′
Ç
θ′ · ν̃ − 6η

L2

å
≤ q′ − q

L
=
H1(Q̄Q′)

L2
≤ QQ′(1 + 18η)

L2
,
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which finally gives

θ′ · ν̃ ≤ 1

L2
+

24η

L2
.

Inserting now this estimate and (3.15) in (3.18), we get

|ν̃ − ν ′| ≤
9
√
η

L
< 9
√
η ,

which together with (3.13) finally gives (3.17). �

Even though the estimate (3.12) is quite obscure, it gives an important information, namely,

if the directions ν and ν ′ are not too far away from each other, then they must be very close.

We can now see that this implies the regularity of a short map ϕ. First of all, we prove the

internal regularity in the open segment (a, b).

Lemma 3.8. Let ϕ be an L-biLipschitz function, short on [a, b]. Then, ϕ is of class C1 in the

open interval (a, b).

Proof. Let us take a < a′ < b′ < b, and let us fix some `� 1 such that

PQ > 2` ∀P = ϕ(p), Q = ϕ(q), p /∈ [a, b], q ∈ (a′, b′) .

We aim to show that ϕ is of class C1 in (a′, b′), and this will of course give the thesis since a′

and b′ are arbitrary.

Let us then fix a point S = ϕ(s) with s ∈ (a′, b′), and let also η � 1 be given. Define

δ̄ = δ̄(`, η, L) according to Lemma 3.5: we claim that there exists some direction ν ∈ S1 for

which ∣∣∣∣∣ϕ′(t)L
− ν

∣∣∣∣∣ ≤ 16
√
η ∀ t ∈ (a′, b′) : |t− s| ≤ δ̄

12L
. (3.19)

Since s and η are arbitrary, of course this will immediately imply the required C1 regularity of

ϕ in (a′, b′).

T

Q′

Q

Q+

S

R−
R

Q′′

Figure 1. Situation in Lemma 3.8

Let us now take Q = ϕ(q) and R = ϕ(r) in such a way that QR = δ̄ and that s = (q+ r)/2,

and let us call ν the direction of the segment QR: Figure 1 depicts all the involved points.

Notice that, by construction and since δ̄ � `, both q and r are in (a, b), and both PQ and PR

are larger than ` whenever P = ϕ(p) for some p /∈ [a, b]. If ϕ is linear on QR, then of course ϕ′ is

constantly equal to Lν in (q, r), thus (3.19) is already established. Otherwise, Lemma 3.3 says

that there must be some p /∈ (a, b− (r− r+)) such that the inverse L-Lipschitz property for ϕ+
qr

fails at p and at some point in (q, r+). Thus, we can apply Lemma 3.6 and in particular (3.9) is

true.

As noticed in the proof of Lemma 3.7, this implies that the whole curve Q̄R has distance

less than 2δ̄
√
η from the segment QR. As a consequence, if we call Q+ and R− the first and the

last point of Q̄R having distance δ̄/3 from Q and from R respectively, we clearly have

|ν̃ − ν| ≤ arctan(12
√
η) < 16

√
η , (3.20)
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where ν̃ is the direction of the segment Q+R−. Let us assume now that (3.19) is false, thus

there exists some t with |t− s| ≤ δ̄/12L such that∣∣∣∣∣ϕ′(t)L
− ν

∣∣∣∣∣ > 16
√
η . (3.21)

Observe that, by construction, t must belong to the interval (q+, r−). By continuity, (3.20)

and (3.21) imply the existence of q+ < q′ < t < q′′ < r− such that

|ν ′ − ν| = 16
√
η , (3.22)

where ν ′ is the direction of the segment Q′Q′′. The function ϕ cannot be a segment between

Q′ and Q′′, because otherwise it would be ϕ′(t) = Lν ′, against (3.21) and (3.22). Again by

Lemma 3.3, we deduce the existence of some new point ‹P = ϕ(p̃) with p̃ /∈ [a, b − (q′′+ − q′′)]
such that the inverse L-Lipschitz property for ϕ+

q′q′′ fails at p̃ and some point between q′ and

q′′+ (notice that there is no reason why this point ‹P should coincide with the point P = ϕ(p)

of few lines ago).

We can then apply Lemma 3.7 with P = ‹P , and we get the validity of (3.12). Notice that,

since η has been taken arbitrarily small, by (3.22) we can assume without loss of generality that

|ν − ν ′| = 16
√
η ≤ 1

2
min

®
1

L2
, 1− 1

L2

´
.

As a consequence, (3.12) tells us that |ν−ν ′| ≤ 15
√
η, which is clearly a contradiction with (3.22).

Therefore, the proof of (3.19) is completed, and as noticed above the thesis follows. �

Now, we can extend the regularity up to the extremes of the interval [a, b]. We do this first

for an interval compactly contained in [0, C], and then for an interval reaching the boundary of

[0, C].

Lemma 3.9. Let ϕ : [0, C] → R2 be an L-biLipschitz function, short on some [a, b] ⊂⊂ [0, C],

and assume that for some ε � 1 the function ϕ is linear on (a − ε, a) with |ϕ′| ≡ L. Then, ϕ′

is right-continuous in a.

Proof. Up to a rotation, we can assume for simplicity also that ϕ is horizontal in (a − ε, a) or,

in other words, that ϕ′ = Le1 in (a − ε, a). Since by definition |ϕ′| = L on the whole (a, b),

we have to find a direction ν̄ ∈ S1 such that the directions of ϕ′(t) converge to ν̄ when t ↘ a.

First of all, let us define θ̄ = 2 arcsin(1/L2), and notice that θ̄ converges to π (resp., to 0) if L

converges to 1 (resp., to +∞).

Step I. For every r ∈ (a, a+ ε), the direction of the segment AR is between −(π− θ̄) and π− θ̄.

Let us take a generic r ∈ (a, a+ ε), define σ = AR/L, and notice that

L(r − a) = H1(ÃR) ≥ AR , thus r − a ≥ σ . (3.23)

Call now P = ϕ(p) = ϕ(a − σ), and notice that PA = AR by construction, since the above

inequality in particular ensures that σ < ε. If we assume, by contradiction, that the direction of

AR is not between −(π− θ̄) and π− θ̄, then in particular P “AR < θ̄. As a consequence, by (3.23)

we have

PR < 2AR sin(θ̄/2) =
2AR

L2
=

2σ

L
≤ r − p

L
,

and this gives a contradiction to the L-biLipschitz property of ϕ. Hence, the first step is

concluded.
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Step II. There exists ν̄ ∈
î
− (π− θ̄), π− θ̄

ó
such that the direction of Aϕ(t) converges to ν̄ when

t↘ a.

By compactness of S1, the directions of the segments Aϕ(t) have at least a limit point for t↘ a:

the goal of this step is to show that there is actually only a single such limiting point.

Let us assume that the limiting directions are more than one: since the set of the limiting

directions is clearly a connected subset of S1, which can only contain directions between −(π− θ̄)
and π − θ̄ by Step I, we deduce in particular the existence of ν1, ν2 ∈ S1, and of two sequences

of points Rin = ϕ(rin) for i ∈ {1, 2} and n ∈ N satisfying

ν1, ν2 ∈
Ä
− (π − θ̄), π − θ̄

ä
, ν1 6= ν2 , rin ↘

n→∞
a ,

Rin −A
|Rin −A|

= νi .

Let us now fix a constant ` much smaller than Lε. For every η > 0, calling for brevity r = r1n and

R = R1
n, as soon as n is big enough we have that AR is smaller than δ̄(`, η, L). As a consequence,

since of course ϕ is not linear between a and r but it is short on (a, b), Lemma 3.3 implies that

the inverse L-Lipschitz property for the function ϕ+
ar must fail for some pair Pn = ϕ+

ar(pn) and

S = ϕ+
ar(s), where pn /∈ [a, b − (r − r+)] while s ∈ (a, r+). Notice now the following simple

general trigonometric fact: given two directions α1, α2 ∈ S1, the map τ : R → R2 defined

as τ(x) = Lxα1 for x ≥ 0 and τ(x) = −Lxα2 for x < 0 is L-biLipschitz if and only if the

angle between α1 and α2 is at least the angle θ̄ defined above. Thus, Step I and the fact that

ν1 ∈
Ä
− (π− θ̄), π− θ̄

ä
, ensure that pn cannot belong to (a− ε, a) if r < a+ ε, which is of course

true up to have taken n big enough. As a consequence, we can apply Lemma 3.6 to the points

P = Pn, Q = A and R, and we get that∣∣∣∣∣θn · ν1 − 1

L2

∣∣∣∣∣ ≤ 2
η

L2
, APn ≤

|a− pn|
L

+
3ηAR

L2
.

where θn is the direction of the segment PnA. If we now send η → 0 and consequently n→∞,

we find a point P 1 = ϕ(p1) (which is a limit of some subsequence of the points Pn) such that,

calling θ1 the direction of P 1A, it is

θ1 · ν1 =
1

L2
, AP 1 =

|a− p1|
L

. (3.24)

The very same argument, using the direction ν2 in place of ν1, gives us of course another point

P 2 = ϕ(p2) satisfying

θ2 · ν2 =
1

L2
, AP 2 =

|a− p2|
L

, (3.25)

where θ2 is the direction of P 2A. Again recalling that the set of the limiting directions, among

which we have chosen ν1 and ν2, is a connected subset of S1, from (3.24), (3.25) and the fact

that ν1 6= ν2 we get that, up to swap ν1 and ν2,

θ1 · ν2 <
1− η
L2

(3.26)

for some strictly positive constant η. Let us now again select a point R = R2
n with n big

enough so that AR ≤ δ̄(`, η, L), and let us assume that p1 < a (otherwise one just has to repeat

the argument below swapping the roles of A and R). Recalling that ϕ is L-biLipschitz, so in

particular the inverse L-Lipschitz property holds for the points p1 and r = r2n, using again
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Lemma 3.5 with P = P 1, Q = A and S = R, and by (3.24) and (3.26), we have

AR

L2
≤ r − a

L
=
r − p1

L
− a− p1

L
≤ P 1R− a− p1

L
≤ P 1A+AR

Ç
θ1 · ν2 +

η

L2

å
− a− p1

L

= AR

Ç
θ1 · ν2 +

η

L2

å
<
AR

L2
,

and the contradiction shows the uniqueness of the direction ν, hence this step is concluded.

Step III. Conclusion.

We are now ready to conclude the proof. In Step II we have already found a direction ν̄ such

that
A− ϕ(t)

|A− ϕ(t)|
→ ν̄

for t ↘ a. Hence, we only have to show that ϕ′(t) → Lν̄ for t ↘ a: our argument will be very

similar to the one of Lemma 3.8. Call again ` a constant much smaller than Lε, fix arbitrarily

some η � 1, and consider the first portion of the curve ϕ, after A, of a length δ̄(`, η, L). We

claim that for any point ϕ(t) in this piece of curve one has

|ϕ′(t)− Lν̄| ≤ 16
√
η . (3.27)

Once we prove this, since η is arbitrary the proof is concluded. Assume then the existence of

some t as before for which (3.27) is not satisfied, take a point R = ϕ(r), with r > a, such that

AR = 2AT , and take two more points Q+ = ϕ(q+) and R− = ϕ(r−) with a < q+ < r− < r so

that

AQ+ = R−R =
AR

3
.

The existence of t implies that ϕ is not linear between A and R. Therefore, we can apply

once again first Lemma 3.3 and then Lemma 3.6 with Q = A, in particular getting the validity

of (3.9). Exactly as in the proof of Lemma 3.8, this implies that the direction ν of the segment

Q+R− satisfies

|ν − ν̄| < 16
√
η ,

hence by continuity we can find two points Q′ = ϕ(q′) and Q′′ = ϕ(q′′) with q+ < q′ < q′′ < r−

with |ν ′ − ν̄| = 16
√
η, being ν ′ the direction of Q′Q′′. And finally, the points Q′ and Q′′ give

a contradiction with (3.12) of Lemma 3.7. This contradiction show the validity of (3.27), and

then the proof is concluded. �

Lemma 3.10. Let ϕ : [0, C] → R2 be an L-biLipschitz function, short on some interval [a,C].

Then, ϕ is of class C1 on the interval (a,C].

Proof. The C1 regularity on the open interval (a,C) has been already proved in Lemma 3.8,

thus we only have to take care of the situation near b = C. Our argument will be quite similar to

what already done in the proof of Lemmas 3.7 and 3.8, and is divided in two steps for simplicity.

Step I. The directions of the segments QB converge to some ν ∈ S1.

First of all, we consider the segments QB, where as usual Q = ϕ(q) and B = ϕ(b). We aim to

show that the directions of the segments QB converge to some ν ∈ S1 when q → b. Suppose that

this is false and notice that, by compactness, this means that the limit points of the directions

of the segments QB when q → b are a connected subset of S1 made by more than one point. We

can then fix a distance ` such that PB � ` for every P = ϕ(p) and p < a, and η much smaller

than the diameter of the set of the limiting directions just mentioned. Let us now pick any

q < b, with q very close to b so that QB ≤ δ̄(`, η, L); the function ϕ is of course not a segment
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between q and b, thus the function ϕ+
qb does not satisfy the inverse L-Lipschitz property at some

pair (p, t) with p < a and q < t < b, so we can apply Lemma 3.6 and in particular we get∣∣∣∣θ · ν − 1

L2

∣∣∣∣ ≤ 2
η

L2
,

H1(Q̄B)

QB
≤ 1 + 6η , PQ ≤ q − p

L
+

3ηQB

L2
, (3.28)

where θ and ν are the directions of the segments PQ and QB respectively. The very same

argument can be applied to some other Q′ near B, getting another point P ′ and∣∣∣∣θ′ · ν ′ − 1

L2

∣∣∣∣ ≤ 2
η

L2
,

H1(Q̄′B)

Q′B
≤ 1 + 6η , P ′Q′ ≤ q′ − p′

L
+

3ηQ′B

L2
, (3.29)

being θ′ and ν ′ the directions of P ′Q′ and Q′B respectively. Recall now that we are assuming

that the limiting directions of the segments QB form a nontrivial arc of S1: as a consequence,

similarly as in Step II of the proof of Lemma 3.9, we can select two such directions ν, ν ′, assume

by symmetry that

θ′ · ν > 1

L2
+ 10

η

L2
, (3.30)

and chose two points Q, Q′ corresponding to the directions ν and ν ′ in such a way that b− q′ �
b− q, so that H1(Q̄Q′) ≈ H1(Q̄B) and then also using (3.28) we get

Q′B ≤ QQ′

3
, QQ′ ≥ H1(Q̄Q′)(1− 6η) , |ν̃ − ν| ≤ η

L2
, (3.31)

where ν̃ is the direction of QQ′. Using then the estimates (3.31), (3.29) and (3.30), and applying

Lemma 3.5 to the points P ′, Q′ and Q, we obtain

q′ − p′

L
+
ηQQ′

L2
≥ q′ − p′

L
+

3ηQ′B

L2
≥ P ′Q′ ≥ P ′Q+QQ′

Ç
θ′ · ν̃ − η

L2

å
≥ q − p′

L
+QQ′

Ç
θ′ · ν − 2

η

L2

å
≥ q − p′

L
+QQ′

Ç
1

L2
+ 8

η

L2

å
,

which implies, again recalling (3.31),

q′ − q
L
≥ QQ′

Ç
1

L2
+ 7

η

L2

å
≥ H

1(Q̄Q′)

L2
(1− 6η)(1 + 7η) =

q′ − q
L

(1 + η − 42η2) ,

which is impossible as soon as η was chosen small enough. This concludes the proof of this step.

Step II. The derivative ϕ′(q) converge to Lν.

In order to conclude the proof, we have now to check that ϕ′(q)→ Lν when q → b, being ν the

direction found in Step I. Suppose that this is not the case; then, since we already know that

ϕ′ is continuous, with |ϕ′| = L, on the open interval (a, b) by Lemma 3.8, the set of limiting

directions of the vectors ϕ′(t)/L with t → b is a non-trivial arc of S1, containing of course the

direction ν found in Step I. Let us then pick a direction ν̃ 6= ν in the interior of this arc, satisfying

|ν − ν̃| ≤ 1

4
min

®
1

L2
, 1− 1

L2

´
,

and let us select `, η > 0 in such a way that PB � ` for every P = ϕ(p) and p < a, and that

|ν − ν̃| > 16
√
η . (3.32)

Let now t < b be a point such that b− t� δ̄(`, η, L)/L, ϕ′(t) = Lν̃ (which is possible since ν̃ is

in the interior of the arc containing all the limiting directions), and also such that∣∣∣∣∣B − SSB
− ν

∣∣∣∣∣ ≤ η

L2
∀S : SB ≤ 3TB ; (3.33)
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this last estimate is of course admissible thanks to Step I. Moreover, let us fix q < t so that

QB = 2TB. Since ϕ cannot be a segment between q and b, keeping in mind Lemma 3.3 we can

apply as usual Lemma 3.6 with R = B and in particular we get that (3.9) holds true. Now, let

q′ < t < q′′ be two points such that the direction ν ′ of the segment Q′Q′′ satisfies

|ν − ν ′| = 16
√
η , |ν − ν ′| ≤ 1

2
min

®
1

L2
, 1− 1

L2

´
. (3.34)

Notice that such two points surely exist, thanks to (3.32) and the fact that the direction of QB

is very close to ν by (3.33). Moreover, since η � |ν − ν ′| and since the curve Q̄B is very close

to the segment QB by the validity of (3.9), we find that Q′Q′′ � δ = QB, hence in particular

QQ′ ≥ δ

3
, QQ′′ ≥ δ

3
, Q′B ≥ δ

3
, Q′′B ≥ δ

3
.

Finally, since (3.33) and (3.34) give that ν̃ 6= ν ′, and thus that ϕ is not a segment between Q′

and Q′′, and then by Lemma 3.3 the inverse L-Lipschitz property for ϕ+
q′q′′ must fail for some

P = ϕ(p) with p < a and some point between Q′ and Q′′, we can apply Lemma 3.7 with R = B.

However, (3.34) is clearly in contradiction with (3.12), and this shows that ϕ′(q)→ Lν for q → b,

as desired. �

Let us conclude this section by simply observing that Proposition 3.1 is an immediate

consequence of Lemma 3.8, Lemma 3.9 and Lemma 3.10 (and the symmetric counterparts of

the last two): indeed, the internal regularity is given by Lemma 3.8, while the regularity up the

boundary is achieved applying Lemma 3.9 or Lemma 3.10 for points of the boundary which are

in (0, 1) or in {0, 1}.

4. Proof of Theorem 1.2

This section is devoted to show Theorem 1.2. The idea is simply to put together Propo-

sition 2.1 and Proposition 3.1; with the first result, one gets a bi-Lipschitz function which is

piecewise linear on most of [0, 1], and then the second result allows to modify the function on

the small regions which are left out.

Proof of Theorem 1.2. We take a small constant ξ = ξ(L, ε), to be specified at the end. For the

sake of simplicity, we divide the proof in a few steps.

Step I. The function ϕ1 from Proposition 2.1.

We start by applying Proposition 2.1 to ϕ, thus getting an (L + ξ)-biLipschitz function ϕ1 :

[0, 1] → R2, which satisfies (1.1) and which is piecewise linear on a finite union A of closed

intervals which cover a portion of length at least 1− ξ of the whole [0, 1]. Let us then write

[0, 1] \A =
⋃N

i=1
Ji ,

where the Ji’s are a finite number of open intervals, satisfying

N∑
i=1

|Ji| = 1− |A| ≤ ξ .

Step II. The function ϕ2, which “goes fast” near the intervals Ji.

In this step, we make a simple modification of ϕ1, in order to be able to apply Proposition 3.1

later. To do so, we recall that the function ϕ1 is finitely piecewise linear on a subset A of [0, 1];

hence, we can define a very small length ` > 0 such that any interval (contained in A) where ϕ1

is linear, is much longer than `. This is of course possible since such intervals are finitely many.
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In particular, the distance between any two consecutive “bad” intervals Ji and Ji+1 is always

much larger than `. Up to further decrease `, we can also assume that

2`N < ξ . (4.1)

Let us now define A− the subset of [0, 1] made by all the points of A which have distance from

[0, 1]\A smaller than `: by construction, A− is a union of either 2N −2, or 2N −1, or 2N small

subintervals of A, on each of which ϕ1 is linear by construction: the exact number depends on

whether 0 and/or 1 belong to A or not. Let us now consider the function τ : [0, 1] → [0, C]

identified by

τ(0) = 0 , τ ′(x) = 1 ∀x /∈ A− , τ ′(x) =
|ϕ′1(x)|
L+ ξ

∀x ∈ A− .

It is immediate from the definition to observe that τ ′(x) ≤ 1 for every x, and that

1− 2N` ≤ C ≤ 1 ,

which also by (4.1) implies

x− ξ ≤ τ(x) ≤ x ∀ 0 ≤ x ≤ 1 ,

so that in particular

1− ξ ≤ τ(1) = C . (4.2)

Finally, we define the function ϕ2 : [0, C]→ R2 as

ϕ2(x) = ϕ1

Ä
τ−1(x)

ä
.

Since τ ′ ≤ 1, as already observed the inverse Lipschitz property for ϕ2 works better as than

for ϕ1, hence ϕ2 satisfies the L inverse Lipschitz property because so does ϕ1. On the other

hand, |ϕ′2(x)| = |ϕ′1(τ−1(x))| ≤ L as soon as τ−1(x) /∈ A− , while otherwise |ϕ′2(x)| = L+ ξ. As

a consequence, also the (L + ξ)-Lipschitz property for ϕ2 follows. Summarizing, the function

ϕ2 : [0, C] → R2 is an (L + ξ)-biLipschitz function, which is finitely piecewise linear on the

whole [0, C] except on N intervals J̃i, where each J̃i is simply τ(Ji), and so |J̃i| = |Ji|. Observe

that, by construction, the function ϕ2 is linear, with |ϕ′2| = L+ ξ, for a short while before and

after each of the intervals J̃i, except of course before J̃1 if 0 ∈ J̃1, and after J̃N if C ∈ J̃N .

We conclude this step with a couple of observations. First of all, by construction, ϕ2 is finitely

piecewise linear on a subset ‹A of [0, C] which satisfies

C − |‹A| = C − |τ(A)| =
∣∣∣τÄ[0, 1] \A

ä∣∣∣ = |[0, 1] \A| = 1− |A| ≤ ξ . (4.3)

And moreover, for every x ∈ [0, C], we have∣∣∣ϕ2(τ(x))− ϕ(x)
∣∣∣ =

∣∣∣ϕ1(x)− ϕ(x)
∣∣∣ ≤ ξ (4.4)

recalling that (1.1) holds for ϕ1.

Step III. The function ϕ3, which is short on each J̃i.

We can now further modify the function ϕ2. We simply apply Proposition 3.1 (with L+ξ in place

of L) on each of the intervals J̃i; more precisely, we first apply the proposition to the interval J̃1,

finding a map ϕ1
3 : [0, C1]→ R2 which is (L+ ξ)-biLipschitz and satisfies (3.1). Then, we apply

again Proposition 3.1 to the interval J̃1
2 , which is simply the interval J̃2 translated of a distance

C − C1, so that ϕ1
3 on J̃1

2 coincides with ϕ2 on J̃2. Going on with the obvious recursion, after
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N steps we have finally defined the function ϕ3 : [0, C ′]→ R2, which is (L+ ξ)-biLipschitz, and

which by construction is finitely piecewise linear on some subset A′ of [0, C ′] satisfying

C ′ − |A′| = C − |‹A| ≤ ξ ,
recalling (4.3). We can say also something more precise: [0, C ′]\A′ is the union of N intervals J ′i ,

and on the closure of each of them the function ϕ3 is of class C1. In addition, since the function

has been changed only on the intervals J̃i, and doing so those intervals have been shrinked, there

exists a function τ̃ : [0, C]→ [0, C ′] such that

τ̃(‹A) = A′ , τ̃ ′(x) = 1 ∀x ∈ ‹A ,
and by (4.4) we get∣∣∣ϕ3

Ä
τ̃(τ(x))

ä
− ϕ(x)

∣∣∣ =
∣∣∣ϕ2(τ(x))− ϕ(x)

∣∣∣ ≤ ξ ∀x ∈
Ä
τ̃ ◦ τ

ä−1
(A′) . (4.5)

Step IV. The function ϕ4, which is finitely piecewise linear.

From the previous steps, we have now a function ϕ3 : [0, C ′] → R2 which is finitely piecewise

linear on almost the whole [0, C ′], and which is C1 on the closure of each of the N intervals J ′i
where it is not already piecewise linear.

As pointed out in Remark 2.5, it is elementary how to modify a C1 function into a finitely

piecewise linear one, up to increase the biLipschitz constant of an arbitrarily small constant.

Applying this argument N times, to each of the intervals J ′i , we get then a finitely piecewise

linear function ϕ4 : [0, C ′] → R2, which is (L + 2ξ)-biLipschitz and which of course satisfies

ϕ4(0) = ϕ(0) and ϕ4(C
′) = ϕ(1). And moreover, since ϕ4 = ϕ3 on A′, then the estimate (4.5)

holds also with ϕ4 in place of ϕ3.

Step V. The “final” function ϕε.

We are finally in position to conclude the proof of our Theorem. The function ϕ4 was already

almost perfect, its only flaw being that it is defined on the interval [0, C ′] instead than on [0, 1].

Nevertheless, we can easily observe that

1− 2ξ ≤ C ′ ≤ 1 . (4.6)

Indeed, the fact that C ′ ≤ 1 is obvious, since all our modifications of the map ϕ either left the

domain unchanged or shrinked it. On the other hand, recalling (4.3) and (4.2), we have

C ′ ≥ |A′| = |‹A| ≥ C − ξ ≥ 1− 2ξ , (4.7)

so the validity of (4.6) is established.

The function ϕε will then be simply a reparameterization of ϕ4, precisely we set ϕε : [0, 1]→
R2 as

ϕε(x) = ϕ4(C
′x) .

The function ϕε is then finitely piecewise linear by construction, of course it satisfies ϕε(0) = ϕ(0)

and ϕε(1) = ϕ(1), and it is at most (L + ξ)(1 + 3ξ)-biLipschitz, hence in particular (L + ε)-

biLipschitz if ξ(L, ε) is suitably small.

To conclude, we have then just to check that ‖ϕε−ϕ‖L∞ ≤ ε. To do so, let us take a generic

z ∈ [0, 1]; first of all, we can find x ∈ A′′ = A′/C ′ such that, also by (4.7),

|z − x| ≤ 1− |A′′| = 1− |A
′|

C ′
≤ 2ξ .

Then, we define y = (τ̃ ◦ τ)−1(C ′x) and, since

y − 2ξ ≤ y − (1− C ′) ≤ τ̃(τ(y)) = C ′x ≤ y ,
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also recalling that (4.5) holds also with ϕ4 in place of ϕ3 we deduce

|y − x| ≤ |y − C ′x|+ |C ′ − 1| ≤ 4ξ ,
∣∣∣ϕε(x)− ϕ(y)

∣∣∣ =
∣∣∣ϕ4(C

′x)− ϕ(y)
∣∣∣ ≤ ξ .

Recalling that ϕ is L-biLipschitz while ϕε is (L+ ε)-biLipschitz, the above estimates give us

|ϕε(z)− ϕ(z)| ≤ |ϕε(z)− ϕε(x)|+ |ϕε(x)− ϕ(y)|+ |ϕ(y)− ϕ(z)|
≤ (L+ ε)|z − x|+ ξ + L|y − z| ≤ (L+ ε)2ξ + ξ + 6Lξ .

Since z ∈ [0, 1] was generic, and since the last quantity is smaller than ε as soon as ξ = ξ(L, ε)

is small enough, the L∞ estimate has been established, and the proof is concluded. �

A straightforward consequence of our construction is the following.

Corollary 4.1. Assume that ϕ : [0, 1] → R2 is an L-biLipschitz function, linear on [0, a] and

on [1 − a, 1] for some a � 1. Fix two quantities 0 < a′ < a and ε > 0. There exists an

(L+ ε)-biLipschitz function ϕε : [0, 1]→ R2 such that (1.1) holds, ϕε is finitely piecewise linear

on [0, 1], and ϕε coincides with ϕ on the intervals [0, a′] and [1− a′, 1].

Proof. To obtain the required function ϕε, it is enough to check the proof of Theorem 1.2 and

to modify it only very slightly.

Indeed, the first step of that proof simply consists in taking a function ϕ1 given by Proposi-

tion 2.1. On the other hand, from a quick look at the proof of Proposition 2.1, it is obvious that

ϕ1 coincides with ϕ in all the intervals [m/N, (m+ 1)/N ] where ϕ is linear. As a consequence,

we can select any δ > 0 and, up to take N much bigger than 1/a and 1/δ in the proof of

Proposition 2.1, we get a function ϕ1 which coincides with ϕ on [0, a− δ] and on [1− (a− δ), 1],

and in particular these two intervals are contained in the set A of Step I.

In the second step of the proof of Theorem 1.2, we just modified ϕ1 in order to make it

faster near the end of the good intervals, getting then a new function ϕ2 : [0, C] → R2. Up to

take ` smaller than δ there, we can do the same construction and we have then that ϕ2 = ϕ on

[0, a− 2δ] and that ϕ2(x+ C − 1) = ϕ(x) for each x ∈ [1− (a− 2δ), 1].

In the third and fourth step of the proof, we defined a function ϕ4 : [0, C ′]→ R2, modifying

ϕ2 only in the bad intervals. Again, we can do exactly the same thing now, and we still have

that ϕ4 coincides with ϕ on [0, a−2δ] and that ϕ4(x+C ′−1) = ϕ(x) for each x ∈ [1−(a−2δ), 1].

Finally, in the last step we defined the approximating function ϕε, which was obtained

simply by “changing the velocity” of ϕ4, namely, we set ϕε(x) = ϕ4(C
′x). This time, we cannot

do the same, otherwise we lose the information that ϕ and ϕε coincide near 0 and 1; nevertheless,

it is clear that a solution is just to define

ϕε(x) =


ϕ4(x) for 0 ≤ x ≤ a ,

ϕ4

Ç
a+

C ′ − 2a

1− 2a
(x− a)

å
for a ≤ x ≤ 1− a ,

ϕ4(x+ C ′ − 1) for 1− a ≤ x ≤ 1 .

Indeed, with this definition, the very same arguments as in Step V of the proof of Theorem 1.2

still ensure that ϕε is (L+ ε)-biLipschitz and that (1.1) holds; moreover, ϕε is finitely piecewise

linear by definition. Finally, ϕε coincides with ϕ on [0, a − 2δ] and on [1 − (a − 2δ), 1] thus,

provided that we have chosen δ smaller than (a− a′)/2, the proof is concluded. �
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5. generalization to S1

In this section we generalize Theorem 1.2 in order to consider the case of a map defined on

S1, instead than on [0, 1]. To do so, we need the following standard definitions.

Definition 5.1. Let π : R→ S1 be the map π(t) = t (mod 2π), let ϕ : S1 → R2 be any function,

and let a < b be any two real numbers such that b− a < 2π. We denote by ϕab : [a, b]→ R2 the

function defined by ϕab(t) = ϕ(π(t)) for any a ≤ t ≤ b. We say that the function ϕ is finitely

piecewise linear if so is the function ϕab for any choice of a and b.

The goal of this last section is to prove is the following statement.

Theorem 5.2. Let ϕ : S1 → R2 be an L-biLipschitz function, and ε > 0. Then, there exists a

finitely piecewise linear, (L+ ε)-biLipschitz function ϕε : S1 → R2 such that ‖ϕ− ϕε‖L∞ ≤ ε.

Proof. First of all, let us fix a small positive quantity ε′, to be specified later, and let us also fix

a small θ > 0 such that

1− ε′ ≤ 2 sin(θ/2)

θ
≤ 1 . (5.1)

We divide the proof in few steps for clarity.

Step I. The Lebesgue points for ϕ and the function ϕ1.

Let p ∈ S1 be a Lebesgue point for ϕ, that is, for any a < z < b such that p = π(z) ∈
Ä
π(a), π(b)

ä
the point z is a Lebesgue point for ϕab. In particular, let us choose z ∈ R so that p = π(z), and

let us set for a moment a = z−θ/2 and b = z+θ/2. Notice that, by (5.1), for any a < x < y < b

one has

(1− ε′)|y − x| ≤ |π(y)− π(x)| ≤ |y − x| . (5.2)

Let us then concentrate ourselves on the function ϕab, which is easily L1-biLipschitz with L1 =

L(1 − ε′)−1 thanks to (5.2). The point z is a Lebesgue point for ϕab, hence we can apply to

it Lemma 2.3, using [a, b] in place of [0, 1] and with constant ε′ in place of ε. We get then a

constant ¯̀ and the sets I`(z) for ` ≤ ¯̀. We can arbitrarily select `� θ and two points s < z < t

in I`(z), and the lemma ensures us that the function ψ : [a, b] → R2 defined as ψ = ϕabst is

L2 = (L1 + ε′)-biLipschitz and satisfies ‖ψ − ϕab‖L∞ ≤ ε′. We can then define the function

ϕ̃ : S1 → R2 as ϕ̃ = ϕ outside the arc π(a)π(b), and ϕ̃(q) = ψ(π−1(q)) inside. By construction

we have that ‖ϕ − ϕ̃‖L∞ ≤ ε′, and moreover ϕ̃ is L3-biLipschitz with L3 = L2(1 − ε′)−1: this

can be obtained arguing exactly as in Lemma 2.3, and keeping in mind that `� θ.

We want now to use a similar argument with many Lebesgue points, instead of just one.

To do so, let us select finitely many Lebesgue points p1, p2, . . . , pM in S1, such that every arc

ṗipi+1 in S1 has length less than θ, and it does not contain other points pj (of course, as usual

we denote pM+1 ≡ p1). For each of these points, say pi, we can repeat the argument above,

selecting ` much smaller than the minimal distance between two of the points pj , and finding a

function ϕ̃i which is a segment between ϕ̃i(si) = ϕ(si) and ϕ̃i(ti) = ϕ(ti). Hence, each function

ϕ̃i coincides with ϕ in all S1 except a small arc s̃iti around pi, and these arcs are all well disjoint.

We can then define ϕ1 : S1 → R2 as the function which coincides with ϕ̃i in every s̃iti, and with

ϕ otherwise. Arguing as in Section 2, in particular keeping in mind that each length ` has been

chosen much smaller than the distance between different points pj , we obtain immediately that

ϕ1 is L4-biLipschitz, with L4 = L3 + ε′. Moreover, by construction ϕ1 is linear on each arc

(si, ti), and ‖ϕ1 − ϕ‖L∞ ≤ ε′.
Step II. Modification in each arc ṗipi+1 and the function ϕε.

We now restrict our attention to the function ϕ1 on the arc ṗipi+1. This is an L4-biLipschitz
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function, and its image is a segment at the beginning and at the end, that is, from pi to ti and

from si+1 to pi+1. Let us then take two real numbers a < b with b − a < 2π and π(a) = pi,

π(b) = pi+1, and let us call ψ = ϕab1 . Moreover, let a+, b− ∈ (a, b) be such that π(a+) = ti
and π(b−) = si+1: hence, the function ψ : [a, b] → R2 is an L5-biLipschitz function with

L5 = L4(1 − ε′)−1, again by (5.2), and it is linear in [a, a+] and in [b−, b]. We can then apply

Corollary 4.1, so we get a piecewise linear function ψ̃ : [a, b] → R2, biLipschitz with constant

L6 = L5 +ε′, such that ‖ψ̃−ψ‖L∞ ≤ δ, and coinciding with ψ (thus, linear) on the two intervals

[a, a′] and [b′, b], for two points a < a′ < a+ and b− < b′ < b, and for a suitable constant δ > 0

to be specified later.

We define then ϕi2 : S1 → R2 as the function which coincides with ϕ1 out of the arc ṗipi+1,

and with ψ̃ ◦π−1 inside the arc. Notice that the function ϕi2 is piecewise linear in the arc ṗipi+1,

and in particular it is linear and coincides with ϕ1 in the small arcs p̃it′i and ˝�s′i+1pi+1, where

the points t′i ∈ p̃iti and s′i+1 ∈˝�si+1pi+1 are π−1(a′) and π−1(b′) respectively. Moreover, we also

have ‖ϕi2 − ϕ1‖L∞ = ‖ψ̃ − ψ‖L∞ ≤ δ.
Finally, we repeat the same construction for each 1 ≤ i ≤M , and we define the final function

ϕε as the function coinciding with ϕi2 in each arc ṗipi+1, so that ‖ϕε − ϕ1‖L∞ ≤ δ.
Step III. Conclusion.

It is now only left to check that the function ϕε satisfies the requirement of the Theorem. By

construction we have that ϕε is finitely piecewise linear, and moreover

‖ϕε − ϕ‖L∞ ≤ ‖ϕε − ϕ1‖L∞ + ‖ϕ1 − ϕ‖L∞ ≤ δ + ε′ ,

so we have ‖ϕε − ϕ‖L∞ ≤ ε as soon as we have chosen δ and ε′ small enough. To conclude, we

only have to check that ϕε is (L+ ε)-biLipschitz.

To do so, let us take two points x, y ∈ S1. Suppose first that they belong to a same arc

ṗipi+1. Then, by construction we have, setting L7 = L6(1− ε′)−1,

|ϕε(y)− ϕε(x)| = |ϕi2(y)− ϕi2(x)| =
∣∣∣ψ̃(π−1(y))− ψ̃(π−1(x))

∣∣∣ ≤ L6|π−1(y)− π−1(x)|

≤ L6(1− ε′)−1|y − x| = L7|y − x| ,
(5.3)

since ψ̃ is L6-biLipschitz by Step II and again by (5.2).

Suppose now, instead, that x and y belong to two different arcs, in particular let us take

x ∈ ṗipi+1 and y ∈ ˚�pjpj+1. We can divide this case in two subcases, namely, if the equality

ϕε = ϕ1 holds at both x and y, or not. If ϕε(x) = ϕ1(x) and ϕε(y) = ϕ1(y), then since ϕ1 is

L4-biLipschitz we have that

|ϕε(y)− ϕε(x)| = |ϕ1(y)− ϕ1(x)| ≤ L4|y − x| . (5.4)

Finally, assume (by symmetry) that ϕε(x) 6= ϕ1(x). By construction, this implies that x ∈ ṫ′is′i+1;

since y /∈ ṗipi+1, we derive that |y − x| ≥ η, where we define

η = min
{
|d− c| : ∃ 1 ≤ h ≤M, d /∈ ˚�phph+1, c ∈ ˚�t′hs′h+1

}
.

Notice that η is strictly positive, since the arcs ˚�phph+1 are only finitely many. Moreover, notice

that we are free to decide δ depending on η, thanks to the construction of Step II. As a con-

sequence, recalling that ϕ1 is L4-biLipschitz and that ‖ϕε − ϕ1‖L∞ ≤ δ, we have for this last

case
|ϕε(y)− ϕε(x)|
|y − x|

≤ |ϕ1(y)− ϕ1(x)|
|y − x|

+
2δ

η
≤ L4 +

2δ

η
≤ L4 + ε′ , (5.5)

where the last inequality is true as soon as δ has been chosen small enough.
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We are then in position to conclude: it is straightforward to check that all the constants Lj
for 1 ≤ j ≤ 7 converge to L when ε′ go to 0, then the estimates (5.3), (5.4) and (5.5) give that

ϕε is (L+ ε)-biLipschitz as soon as ε′ is small enough. �
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