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Abstract

This paper is devoted to the study of integral functionals defined on the space
SBV (Ω; IRk) of vector-valued special functions with bounded variation on the open set
Ω ⊂ IRn, of the form

F (u) =

∫
Ω

f(∇u(x))dx+

∫
Su∩Ω

g((u+ − u−)⊗ νu) dHn−1.

On f we suppose only that it is finite at one point, and on g we assume that it is
positively 1-homogeneous, and that it is locally bounded on the sets IRk ⊗ νm, where
{ν1, . . . , νn} ⊂ Sn−1 is a basis of IRn. We prove that the lower semicontinuous envelope

of F in the L1(Ω; IRk)-topology is finite and with linear growth on the whole BV (Ω; IRk),
and that it admits the integral representation

F (u) =

∫
Ω

ϕ(∇u(x))dx+

∫
Ω

ϕ∞
(
Dsu

|Dsu|

)
|Dsu|

A formula for ϕ is given, which takes into account the interaction between the bulk
energy density f and the surface energy density g.

1. Introduction

Many problems in Mathematical Physics, Computer Vision, and Mechani-
cal Engineering involve surface energies on some “free boundary” or “free
discontinuity” set. These energies account for several phenomena such as
crack growth and crack initiation in the theory of brittle fracture, interface
formation between different phases of Cahn-Hilliard fluids, surface tension
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between small drops of liquid crystals, and are utilized for pattern recog-
nition in computer vision to determine surfaces corresponding to sudden
changes in the image (e.g., edges of objects, shadows, changes in colour).

We are interested in a variational formulation for some of the static
free discontinuity problems, in the light of recent research on functionals
which depend on discontinuous functions. From the point of view of the
calculus of variations, a rather complete theory has been developed by
L. Ambrosio & A. Braides [5] and [6], in the case of absence of a “volume”
counterpart of the surface energy, in the framework of partitions of sets
of finite perimeter. When we allow the presence of a bulk energy, it is
natural to take into account spaces of functions of bounded variation. We
recall that if Ω is an open set in IRn, a function u belongs to BV (Ω; IRk)
if it is an integrable function, and its distributional derivative Du is a
finite (matrix-valued) Radon measure on Ω. It turns out that the Lebesgue
decomposition of this measure can be written as Du = ∇u dx+Dsu, where
the density of the absolutely continuous part of Du is denoted by ∇u since
it can be interpreted as an approximate differential for u. For a function u ∈
BV (Ω; IRk) it is possible moreover to define a set of jump points Su where u
is approximately discontinuous, and on which a “normal” νu together with
the traces u+, u− of u on both sides are well-defined. Recently, E. De Giorgi
& L. Ambrosio [18] have introduced the subspace SBV (Ω; IRk) of special
functions of bounded variation, that are characterized by the property that
the singular part of Du can be written as

Dsu = (u+ − u−)⊗ νuHn−1
|Su (1.1)

(Hn−1
|Su denotes the restriction to Su of the (n−1)-dimensional Hausdorff

measure). Remark that in general Dsu contains also a diffuse “Cantor”
part. On the space SBV (Ω; IRk) it is natural to consider functionals of the
form ∫

Ω

f(x, u(x),∇u(x)) dx+
∫
Su∩Ω

g(x, u+, u−, νu) dHn−1. (1.2)

These integrals model many of the problems so far considered in the lit-
erature, and provide a good functional setting for problems that had been
considered before only under additional un-natural hypotheses, imposed to
obtain a priori smoothness on Su.

A natural question for the functionals above concerns the possibility
of application of the so-called Direct Method of the Calculus of Variations,
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that is summarized in the equation

lower semicontinuity + compactness = existence of minimizers,

and hence the study of necessary and sufficient conditions for their lower
semicontinuity in suitable topologies. A general lower semicontinuity result
is not yet available. Partial results are due to L. Ambrosio [4], which
assure the lower semicontinuity when f is convex (in the last variable)
and has a superlinear growth at infinity, and g is BV -elliptic and has a
superlinear growth for |u+ − u−| → 0 (for example if g ≥ c > 0). These
conditions guarantee compactness separately for the bulk and jump part of
the derivative, so that the two integrals in (1.2) can be dealt with separately.
This result has been recently extended in [**] to the case of vector-valued
u , under the natural assumption of quasiconvexity on f in the sense of C.
B. Morrey (see [26], [25], [15], [1], [22]). If Mk×n denotes the space of k×n
matrices, we recall that a continuous function f : Mk×n → [0,+∞[ is said
to be quasiconvex if for every ξ ∈ Mk×n, A bounded subset of IRn, and
v ∈ C1

0(A; IRk) we have the inequality

|A|f(ξ) ≤
∫
A

f(ξ +∇v(x)) dx.

In this framework, an interesting result, due to L. Ambrosio &
G. Dal Maso [7], is the L1-lower semicontinuity of the integral defined on
BV (Ω; IRk) by ∫

Ω

f(∇u(x)) dx+
∫

Ω

f∞
( Dsu

|Dsu|

)
|Dsu|, (1.3)

under the assumption of f being quasiconvex and with linear growth (f∞ is

the recession function of f and
Dsu

|Dsu|
denotes the Radon-Nikodym deriva-

tive of the measure Dsu with respect to its total variation |Dsu|). This
result has been recently generalized by I. Fonseca & S. Müller [23], allow-
ing the dependence of f also on x and u. Considering the restriction of the
functional (1.3) to SBV (Ω; IRk), we have

g(u+, u−, ν) = f∞((u+ − u−)⊗ νu). (1.4)

The condition (1.4) is verified in some models, but in general it is not
possible to obtain the effective surface energy density by simply considering
the volume energy density.
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Purpose of this work is to give a relaxation and integral representa-
tion result on the special yet meaningful class of functionals defined on
SBV (Ω; IRk) by integrals of the form

F (u) =
∫

Ω

f(∇u(x)) dx+
∫
Su∩Ω

g((u+ − u−)⊗ νu) dHn−1. (1.5)

The lower semicontinuous envelope in the L1-topology of the functional F ;
i.e., the greatest L1-lower semicontinuous functional less than or equal to
F , is defined by relaxation as

F (u) = inf{lim inf
h

F (uh) : (uh) in SBV (Ω; IRk), uh → u in L1(Ω, IRk)}.

We prove, under only the hypotheses (besides the necessary measurability
conditions)

f : Mk×n → [0,+∞] finite at one point, say at 0,

g : Mk×n → [0,+∞] positively 1-homogeneous

and locally bounded in n independent directions of IRn,

that F can be represented as an integral on the whole BV (Ω; IRk). In this
case, the relaxation of F takes into account, both in its volume and in its
surface part, the combined effect of f and g, and it can be written

F (u) =
∫

Ω

ϕ(∇u(x)) dx+
∫

Ω

ϕ∞
( Dsu

|Dsu|

)
|Dsu| (1.6)

for u ∈ BV (Ω; IRk). The function ϕ is a quasiconvex function with linear
growth (whatever be the growth conditions satisfied by f), and it satisfies
the formula

ϕ(ξ) = sup{ψ(ξ) : ψ quasiconvex, ψ ≤ f on Mk×n,

ψ∞(w) ≤ g(w) if rank(w) ≤ 1}.
(1.7)

The paper is divided as follows. Section 2 is devoted to the preliminar-
ies about spaces of functions of bounded variation to some relaxation results
in BV and Sobolev spaces, and to the statement of our main result, Theo-
rem 2.1. In Section 3 we prove the theorem in several steps. The first one is
to establish that under the very weak hypotheses on f and g the relaxation
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F is of linear growth, and indeed finite, on the whole BV (Ω; IRk). Then we
prove by a measure theoretical approach, and localization technique, that
the study of the relaxed functional at a fixed u can be reduced to the study
of a regular Borel measure on Ω. This fact allows us to use some integral
representation arguments by G.Buttazzo & G. Dal Maso [13] and to write
the restriction of F to W1,1 as an integral. The final step is to use the lower
semicontinuity results by L. Ambrosio & G. Dal Maso [7] in order to obtain
upper and lower bounds for F on the whole BV (Ω; IRk); the use of formula
(1.7) shows that these bounds coincide, and gives (1.6). Let us remark that
in the scalar case (i.e., when k = 1) this result can be obtained, together
with a simpler formula for ϕ, using a direct construction of the “recovery
sequences” for F (u) (see [11], Theorem 2.1); this approach is not possible
in the vector-valued case. Finally in Section 4 we specialize formula (1.7) in
the case of special f and g, and we provide some applications of our result.

2. Preliminaries and Statement of the Main Result

2.1. Notation

The natural numbers n, k will be fixed. We denote with {ei} the canonical
basis of IRk, and with 〈·, ·〉 the scalar product in IRn; | · | will be the usual
euclidean norm. We shall denote by Mk×n the space of k × n matrices (k
rows, n columns), and by Mk×n

1 the subset of Mk×n of all matrices with
rank less than or equal to one. We shall identify Mk×n with IRkn. If a ∈ IRk

and b ∈ IRn the tensor product a ⊗ b ∈ Mk×n
1 is the matrix whose entries

are aibj with i = 1, . . . , k and j = 1, . . . , n. Conversely if a matrix ξ has
rank one, there are two vectors a ∈ IRk, b ∈ IRn such that ξ = a ⊗ b. If
A ⊂ IRk and b ∈ IRn we will set A⊗ b = {a⊗ b : a ∈ A} ⊂ Mk×n

1 ; remark
that |a⊗ b| = |a| |b| (the norms are taken in the proper spaces).

Let Ω be a bounded open subset of IRn; we shall denote with A(Ω)
(resp. B(Ω)) the family of the open (resp. Borel) subsets of Ω. We shall use
standard notation for the Sobolev and Lebesgue spaces W1,p(Ω; IRk) and
Lp(Ω; IRk). When k = 1 we shall drop the target space IRk in the notation,
and write just W1,p(Ω), Lp(Ω), and the like.

If u is a scalar function defined on Ω, we shall sometimes use the shorter
notation {u < t} for {x ∈ Ω : u(x) < t} (and similar) when no confusion is
possible.
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The Lebesgue measure and the Hausdorff (n−1)-dimensional measure
in IRn will be denoted by Ln and Hn−1 respectively. We shall use also the
notation |E| for Ln(E), the Lebesgue measure of a measurable set E ⊂ IRn.

Let X be a set, and E ⊂ X; we define the characteristic function of E
as

1E(z) =


1 if z ∈ E

0 if z ∈ X \ E,

and the indicator function of E as

χE(z) =


0 if z ∈ E

+∞ if z ∈ X \ E.

If N ≥ 1 is an integer and f : IRN → [0,+∞] is a convex function, we
define f∞ : IRN → [0,+∞], the recession function of f , by setting

f∞(z) = lim
t→+∞

f(tz)
t

. (2.1)

It is immediate to see that the limit in (2.1) exists for all z; we remark
that f∞ is a Borel function, which is convex and positively homogeneous
of degree one.

The symbol [t] will denote the integral part of the number t ∈ IR.
The letter c will denote throughout the paper a strictly positive constant,
whose value may vary from line to line, and which is independent of the
parameters of the problems each time considered.

2.2. Functions of bounded variation

Let n, k ≥ 1 be natural numbers, and Ω be a bounded open subset of IRn.
We say that u ∈ L1(Ω; IRk) is a function of bounded variation (and we
write u ∈ BV (Ω; IRk)) if for any i ∈ {1, . . . , k} and j ∈ {1, . . . , n} there is
a measure µji with finite total variation in Ω such that∫

Ω

u(i) ∂g

∂xj
dx = −

∫
gdµji ∀g ∈ C1

0 (Ω),

where C1
0 (Ω) denotes the space of C1 functions with compact support in

Ω.
We denote by Du the Mk×n-valued measure whose components are

the µji , and by |Du| its total variation.
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We denote by Su the complement of the Lebesgue set of u, that will
be sometimes referred to as the set of jump points of the function u; i.e.,
x /∈ Su if and only if

lim
ρ→0+

ρ−n
∫
Bρ(x)

|u− z| dx = 0

for some z ∈ IRk. If such a z exists, it is unique, and we denote it by ũ(x),
the approximate limit of u at x. For any function u ∈ L1(Ω; IRk) the set Su is
negligible and ũ is a Borel function equal to u almost everywhere. Moreover
if u ∈ BV (Ω; IRk), there is a countable sequence of C1 hypersurfaces Γi
which covers Hn−1-almost all of Su, i.e.,

Hn−1
(
Su \

∞⋃
i=1

Γi
)

= 0.

Furthermore, for Hn−1-almost every x ∈ Su it is possible to find a, b ∈
IRk and ν ∈ Sn−1 such that

lim
ρ→0+

ρ−n
∫
Bνρ (x)

|u− a| dx = 0, lim
ρ→0+

ρ−n
∫
B−νρ (x)

|u− b| dx = 0, (2.2)

where Bνρ (x) = {y ∈ Bρ(x) : 〈y−x, ν〉 > 0}. The triplet (a, b, ν) is uniquely
determined up to a change of sign of ν and an interchange of a and b, and
it will be denoted by (u+(x), u−(x), νu(x)).

In general, for a function u ∈ BV (Ω; IRk), we have the Lebesgue de-
composition

Du = Dau+Dsu = ∇u · Ln +Dsu, (2.3)

where we denote by ∇u the density of the absolutely continuous part of
Du with respect to the Lebesgue measure; the notation is motivated by
the fact that ∇u can be interpreted as an approximate differential. The
singular part of Du with respect to the Lebesgue measure can be further
decomposed into to mutually singular measures as

Dsu = (u+ − u−)⊗ νu · Hn−1
|Su + Cu, (2.4)

where (u+ − u−) ⊗ νu · Hn−1
|Su is the Hausdorff part and Cu the Cantor

part of Du. We indicate by
Dsu

|Dsu|
the Radon-Nikodym derivative of Dsu
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with respect to its total variation. The integral on Ω of a function ψ with
respect to the measure |Dsu| will be denoted simply by

∫
Ω
ψ|Dsu|.

We will say that a set E is of finite perimeter in Ω if 1E ∈ BV (Ω; IR).
We will set ∂∗E ∩ Ω = S1E ∩ Ω the reduced boundary of E in Ω. Remark
that |D1E |(Ω) = Hn−1(∂∗E ∩Ω) for every E of finite perimeter in Ω. It is
easy to check that this notion of perimeter coincides with the elementary
one in the smooth case, in particular when E is a polyhedron. A result of
E. De Giorgi [19] shows that if E is a set of finite perimeter in Ω, then there
exists a sequence of polyhedra (Ph) such that |((Ph\E)∪(E\Ph))∩Ω| → 0,
and

Hn−1(∂∗E ∩ Ω) = lim
h
Hn−1(∂Ph ∩ Ω). (2.5)

This result demonstrates that the measure theoretical notion of perimeter
is a sensible extension of the elementary definition.

We recall that if u ∈ BV (Ω; IR), then for a.e. t ∈ IR the set {u > t} is
of finite perimeter in Ω, and we have the so-called coarea formula:

|Du|(Ω) =
∫ +∞

−∞
Hn−1(∂∗{u > t} ∩ Ω) dt. (2.6)

We recall also the Fleming & Rishel coarea formula. Let u be a Lipschitz
function; then for every v ∈ BV (Ω) we have that∫

Ω

v|∇u| dx =
∫ +∞

−∞

∫
∂∗{u>t}∩Ω

ṽ dHn−1 dt (2.7)

(∇u is the a.e. gradient of the function u). Analogous formulas hold with
{u < t} instead of {u > t}.

We say that u is a special function of bounded variation, and we write
u ∈ SBV (Ω; IRk), if u ∈ BV (Ω; IRk) and Cu ≡ 0. The space SBV (Ω; IRk)
has been introduced by E. De Giorgi and L. Ambrosio [18].

For the general exposition of the theory of functions of bounded varia-
tion we refer to [21], [24], [30] and [31]. For an introduction to the properties
of the space SBV we refer to [18], [3], [4].

2.3. Relaxation

We recall the notion of relaxed functional. Let F : X → IR ∪ {+∞} be
a functional on a metric space (X, τ). The relaxed functional F of F , or
relaxation of F , (in the τ -topology) is the greatest τ -lower semicontinuous
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functional less than or equal to F ; i.e., the greatest functional such that
F ≤ F and F (u) ≤ lim infh F (uh) for every sequence (uh) converging to
u in the τ -topology. Throughout the paper we shall consider relaxations
in the L1-topology. We point out here only that the relaxed functional F
allows to describe the behaviour of minimizing sequences for F ; indeed min-
imizing sequences for problems involving F converge, up to a subsequence,
to solutions for the corresponding problems for F . For a general treatment
of this subject we refer to the books by G. Buttazzo [12], and by G. Dal
Maso [17].

2.4. Quasiconvexity and rank one convexity

We recall the notion of quasiconvex function (cf. e.g. C. B. Morrey [26],[25],
B. Dacorogna [15],[16]). We say that a continuous function ϕ : Mk×n →
[0,+∞[ is quasiconvex if for every ξ ∈ Mk×n, A bounded subset of IRn,
and u ∈ C1

0(A; IRk) we have the inequality

|A|ϕ(ξ) ≤
∫
A

ϕ(ξ +∇u(x)) dx.

This property is a well-known necessary and sufficient condition for the
lower semicontinuity of multiple integrals in Sobolev spaces (cf. Acerbi &
Fusco [1], Dacorogna [15]).

Every quasiconvex function ϕ : Mk×n → [0,+∞[ is rank one convex;
i.e., it verifies

ϕ(λξ + (1− λ)ζ) ≤ λϕ(ξ) + (1− λ)ϕ(ζ)

for every ξ, ζ ∈ Mk×n such that rank(ξ − ζ) ≤ 1, and every λ ∈ [0, 1] (cf.
Dacorogna [15],[16]). A recent result by V. Šverák shows that the converse
is not true (see [29]).

2.5. The Main Result

We are in a position to state the main result of the paper, which char-
acterizes the relaxation in the L1-topology of some functionals defined in
SBV (Ω; IRk).
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Theorem 2.1. Let f : Mk×n → [0,+∞] a positive Borel function

such that f(0) 6= +∞, and let g : Mk×n
1 → [0,+∞] be a positively 1-

homogeneous Borel function. On the function g we suppose moreover that

there exist n linearly independent vectors ν1, . . . , νn in Sn−1 such that g is

locally bounded on IRk ⊗ νm for all m = 1, . . . , n.

Let Ω be a bounded open subset of IRn, and let us define the functional

F : BV (Ω; IRk)→ [0,+∞] by setting

F(u) =



∫
Ω

f(∇u(x)) dx+
∫
Su∩Ω

g((u+ − u−)⊗ νu) dHn−1

if u ∈ SBV (Ω; IRk)

+∞ if u ∈ BV (Ω; IRk) \ SBV (Ω; IRk).

Then the lower semicontinuous envelope of F in the L1(Ω; IRk)-topology is

given by

F(u) =
∫

Ω

ϕ(∇u(x)) dx+
∫

Ω

ϕ∞
( Dsu

|Dsu|

)
|Dsu| (2.8)

for every u ∈ BV (Ω; IRk), where the function ϕ : Mk×n → [0,+∞[ is given

by

ϕ(ξ) = sup{ψ(ξ) : ψ quasiconvex, ψ ≤ f on Mk×n,

ψ∞(w) ≤ g(w) if rank(w) ≤ 1},
(2.9)

and verifies 0 ≤ ϕ(ξ) ≤ c(1 + |ξ|) for all ξ ∈Mk×n.

Remark 2.2. Let us suppose that, in addition, the function f is convex
and the function g is rank one convex on IRk⊗ ν for every ν ∈ Sn−1, which
means that

g(λa⊗ ν + (1− λ)b⊗ ν) ≤ λg(a⊗ ν) + (1− λ)g(b⊗ ν),

for every a, b ∈ IRk, λ ∈ [0, 1], and ν ∈ Sn−1. Such a property is veryfied,
for instance, if g is (the restriction to Mk×n

1 of) a quasiconvex function.
The functional F is convex on SBV (Ω; IRk); it is immediate to check

that its relaxation F must be convex too, and hence also the integrand ϕ.
Then we have the formula

ϕ(ξ) = sup{ψ(ξ) : ψ convex, ψ ≤ f on Mk×n, ψ∞ ≤ g on Mk×n
1 }.
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As a corollary to Theorem 2.1, in the scalar case (i.e., k = 1) we get
the following result, which generalizes the relaxation Theorem 2.1 of [11],
where a simpler formula for ϕ is obtained using a direct construction of the
“recovery sequences” for F(u) (see also [10]).

Corollary 2.3. Let k = 1. Under the hypotheses of Theorem 2.1 ϕ verifies

the formula

ϕ(z) =
(
f ∧ (f(0) + g)

)∗∗(z)
for all z ∈ IRn (h∗∗ denotes the greatest convex and lower semicontinuous

function less than or equal to h).

Proof. Let ψ be a convex function such that ψ ≤ f and ψ∞ ≤ g on
IRn. In particular we have ψ(0) ≤ f(0) and it is easy to check then that
ψ ≤ f(0) + g. Recalling Remark 2.2 we conclude that

ϕ(z) = sup{ψ(z) : ψ convex , ψ ≤ f ∧ (f(0) + g)}
=
(
f ∧ (f(0) + g)

)∗∗(z).
For additional remarks and examples, see Section 4.

2.6. Preliminary Results on Relaxation

In order to prove Theorem 2.1 we shall make use of some relaxation results.
The first one deals with functionals defined on Sobolev spaces.

Theorem 2.4. (G. Buttazzo & G. Dal Maso [13] Theorem 1.1 and [12]

Theorem 4.3.2) Let Ω ⊂ IRn be an open set, and F : W1,1(Ω; IRk)×A(Ω)→
[0,+∞[ be a functional verifying for every u, v ∈W1,1(Ω; IRk) and for every

A ∈ A(Ω):

(i) (linear growth condition) |F (u,A)| ≤ c(|A|+
∫
A
|∇u(x)| dx);

(ii) (locality) F (u,A) = F (v,A) whenever u = v on A;

(iii) (semicontinuity) F (·, A) is W1,1-sequentially lower semicontinuous;

(iv) (translation invariance) F (u+b, A) = F (u,A) for every constant vector

b ∈ IRk;

(v) F (u, ·) is the restriction to A(Ω) of a regular Borel measure.

Then there exists a Carathéodory function ψ : Ω × Mk×n → [0,+∞[,
quasiconvex in the second variable for a.e. x ∈ Ω, such that the integral

representation

F (u,A) =
∫
A

ψ(x,∇u(x)) dx
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holds for every u ∈W1,1(Ω; IRk) and for every A ∈ A(Ω).

The second result we recall is a lower semicontinuity and relaxation the-
orem for quasiconvex integrals on the space of vector-valued BV -functions.

Theorem 2.5. (L. Ambrosio & G. Dal Maso [7] Theorem 4.1) Let ϕ :
Mk×n → [0,+∞[ be a quasiconvex function satisfying

0 ≤ ϕ(ξ) ≤ c(1 + |ξ|) for every ξ ∈Mk×n, (2.10)

and let us define on BV (Ω; IRk) the functional F by setting

F(u) =
∫

Ω

ϕ(∇u(x)) dx+
∫

Ω

ϕ∞
( Dsu

|Dsu|

)
|Dsu|. (2.11)

Then F is L1(Ω; IRk)-lower semicontinuous on BV (Ω; IRk), and we have

F = F + χW1,1(Ω;IRk); (2.12)

i.e., F coincides with the relaxation of its restriction to the Sobolev space

W1,1(Ω; IRk).

Remark that in order to have a good definition of F in (2.11) (and
of F in (2.8)) we have to extend the notion of ϕ∞(ξ) to ϕ quasiconvex.
This quantity is well-defined by (2.1) if the rank of ξ is less than or equal
to one since quasiconvex functions are convex in rank one directions. In
general the limit in (2.1) does not exist for all ξ ∈Mk×n (cf. Müller [27]).

Nevertheless, a recent result by G. Alberti [2] assures that the matrix
Dsu

|Dsu|
is of rank 1 |Dsu|-a.e., and hence each quantity is well-defined in (2.11) and
(2.8).

3. Proof of the Main Result

We start by giving an upper bound for the functional F . We shall consider
the functional G ≥ F defined by

G(u) =



∫
Ω

f(∇u(x)) dx+
∫
Su∩Ω

g((u+ − u−)⊗ νu) dHn−1

if u ∈ SBV (Ω; IRk) and Hn−1(Su ∩ Ω) < +∞

+∞ elsewhere in BV (Ω; IRk).

Obviously an upper bound for G will do as well.
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Proposition 3.1. We have G(u) ≤ c(1 + |Du|(Ω)) for all functions u ∈
BV (Ω; IRk).

Proof. We first prove the proposition under the additional hypothesis

g locally bounded on rank one matrices. (3.1)

We define then the constant M < +∞ by setting

M = sup{g(a⊗ ν) : a ∈ Sk−1, ν ∈ Sn−1}. (3.2)

We shall deal first with the scalar case (k = 1), and then extend the proof
to the case of vector-valued u.

Step 1: k = 1. In this case g is defined on the whole IRn = IR ⊗ IRn. Let
us consider a function u ∈ BV (Ω)∩C1(Ω). Let us fix h ∈ IN; by the coarea
formula (2.6) we have

|Du|(Ω) =
∑
j∈ZZ

∫ j+1
h

j
h

Hn−1(∂∗{u > t} ∩ Ω) dt.

Hence, by the mean value theorem, for every j ∈ ZZ we can find shj ∈] j
h
,
j + 1
h

[
such that

1
h
Hn−1(∂∗{u > shj } ∩ Ω) ≤

∫ j+1
h

j
h

Hn−1(∂∗{u > t} ∩ Ω) dt,

so that ∑
j∈ZZ

1
h
Hn−1(∂∗{u > shj } ∩ Ω) ≤ |Du|(Ω). (3.3)

Let us construct now the sequence (uh) in SBV (Ω) by setting

uh(x) =
j

h
on {shj−1 < u < shj }. (3.4)

It is clear that for every h ∈ IN we have ∇uh(x) = 0 for a.e. x ∈ Ω,

Suh ∩ Ω =
⋃
j∈ZZ

∂∗{u > shj } ∩ Ω,
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and
Duh = Dsuh =

∑
j∈ZZ

1
h
νjh H

n−1
|∂∗{u>sh

j
}∩Ω,

where νjh is defined by

D1{u>sh
j
} = νjhH

n−1
|∂∗{u>sh

j
}.

Hence we obtain

F(uh) =
∫

Ω

f(∇uh(x)) dx+
∫
Suh∩Ω

g((u+
h − u

−
h )⊗ νuh) dHn−1

= f(0)|Ω|+
∑
j∈ZZ

∫
∂∗{u>sh

j
}∩Ω

g
( 1
h
νjh
)
dHn−1

≤ f(0)|Ω|+
∑
j∈ZZ

1
h
M Hn−1(∂∗{u > shj } ∩ Ω)

≤ f(0)|Ω|+M |Du|(Ω).

(3.5)

We have made use here of (3.2), (3.3), and of the positive homogeneity of
g. Remark also that for every h

Hn−1(Suh ∩ Ω) =
∑
j∈ZZ

Hn−1(∂∗{u > shj } ∩ Ω) ≤ h|Du|(Ω) < +∞,

hence G(uh) = F(uh).
Since uh → u in L∞(Ω), by the definition of G we conclude that

G(u) ≤ lim inf
h
G(uh) ≤ f(0)|Ω|+M |Du|(Ω).

For a general u ∈ BV (Ω) it suffices to recall that there exists a sequence
(vh) in C∞(Ω) ∩ BV (Ω) (for example obtained by convolution from u; see
[24]) such that vh → u in L1(Ω) and

|Du|(Ω) = lim
h
|Dvh|(Ω) = lim

h

∫
Ω

|∇vh| dx.

By the lower semicontinuity of G we obtain then

G(u) ≤ lim inf
h
G(vh) ≤ lim

h
(f(0)|Ω|+M |Dvh|(Ω))

= f(0)|Ω|+M |Du|(Ω).
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Step 2: k ≥ 2. In this case we can proceed “componentwise”. Let us fix
a function u = (u(1), . . . , u(k)) ∈ C1(Ω; IRk) ∩ BV (Ω; IRk). Proceeding as
in Step 1, for every h ∈ IN, j ∈ ZZ, and every i = 1, . . . , k we can find

si,hj ∈
] j
h
,
j + 1
h

[
such that

1
h
Hn−1(∂∗{u(i) > si,hj } ∩ Ω) ≤

∫ j+1
h

j
h

Hn−1(∂∗{u(i) > t} ∩ Ω) dt.

We can define then the function uh ∈ SBV (Ω; IRk) by setting

uh(i)(x) =
j

h
on {si,hj−1 < u(i) < si,hj }. (3.6)

By (3.6) we have that

Duh = Dsuh =
k∑
i=1

∑
j∈ZZ

1
h
ei ⊗ νji,hH

n−1
|∂∗{u(i)>s

i,h
j
}∩Ω,

where νji,h(x) is defined by

D1{u(i)>s
i,h
j
} = νji,hH

n−1
|∂∗{u(i)>s

i,h
j
}.

We can proceed now as in Step 1 and obtain

G(u) ≤ lim inf
h
G(uh) ≤ f(0)|Ω|+

√
kM |Du|(Ω).

The same inequality is valid on the whole BV (Ω; IRk) by approximation.

Step 3: the case g not locally bounded. Under the general hypotheses of
Theorem 2.1 g is not necessarily locally bounded on Mk×n

1 , but it is on the
subspaces IRk ⊗ νm for m = 1, . . . , n. We have to modify the proof of the
previous steps in order to have jump part densities of the form a⊗ νm. It
suffices to take into account for every i, h, and j a polyhedron P i,hj with

{u(i) >
j + 1
h
} ⊂ P i,hj ⊂ {u(i) >

j

h
},

and such that

Hn−1(∂P i,hj ∩ Ω) ≤ Hn−1(∂∗{u(i) > si,hj } ∩ Ω) +
1
h

2−|j|.
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It is clear that each of these polyhedra can be approximated by polyhedra
each of whose faces is orthogonal to one of the vectors ν1, . . . , νn, increasing
the surface area by at most a constant factor depending on this basis. We
can suppose then that each of the faces of P i,hj is orthogonal to some νm,
and that

Hn−1(∂P i,hj ∩ Ω) ≤ c
(
Hn−1(∂∗{u(i) > si,hj } ∩ Ω) +

1
h

2−|j|
)
.

We can then define uh ∈ SBV (Ω; IRk) by setting

uh(i)(x) =
j

h
on P i,hj−1 \ P

i,h
j ,

and conclude the proof as in Step 2, taking now

M = sup { g(a⊗ νm) : a ∈ Sk−1, m = 1, . . . , n}. (3.7)

Remark. If we take some extra care in Step 2 of the previous proposition,
we can obtain approximating sequences which jump only in the coordinate
directions of the target space IRk (i.e., their jump part densities have the
form ei ⊗ b). It suffices to choose the si,hj so that

Hn−1((∂∗{u(i) > si,hj } ∩ ∂
∗{u(l) > sl,hm }) ∩ Ω) = 0

for every m, j ∈ ZZ and for every i, l ∈ {1, . . . , k} with i 6= l.
Taking into account the construction of Step 3 of the previous propo-

sition we can obtain jump part densities of the form

1
h
ei ⊗ νm.

Hence the conclusion of Proposition 3.1 still holds true under the only
hypothesis of g to be finite on the set

{ei ⊗ νm : i = 1, . . . , k, m = 1, . . . , n}.
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We localize the functional G by defining for every open subset A of Ω

G(u,A) =
∫
A

f(∇u(x)) dx+
∫
Su∩A

g((u+ − u−)⊗ νu) dHn−1 (3.8)

if u ∈ SBV (Ω; IRk) and Hn−1(Su ∩ Ω) < +∞, and by setting

G(u,A) = +∞ elsewhere on BV (Ω; IRk).

In the same way we define

G(u,A) = inf{lim inf
h

G(uh, A) : uh → u in L1(A), uh ∈ BV (Ω; IRk)}.

Localizing the proof of Proposition 3.1 we get the linear growth condition

|G(u,A)| ≤ c
(
|A|+ |Du|(A)

)
(3.9)

for every u ∈ BV (Ω; IRk) and every A ∈ A(Ω).

Proposition 3.2. For every u ∈ BV (Ω; IRk) the set function G(u, ·) is

(the restriction to the family of the open subsets of Ω of) a regular Borel

measure on Ω.

Proof.

Step 1: G(u, ·) is regular; i.e., for every open set A ⊂ Ω, we have

G(u,A) = sup{G(u,A′) : A′ open, A′ ⊂⊂ A}. (3.10)

We shall first consider the case of g locally bounded; i.e., that there exists
a constant M , defined as in (3.2), such that

g(a⊗ ν) ≤M |a|.

Let us remark that G(u, ·) is an increasing set function; i.e., G(u,A′) ≤
G(u,A) if A′ ⊂ A, hence the inequality “≥” in (3.10) is trivial. Let us
prove now the opposite inequality. Fixed K a compact subset of A, let us
define δ = 1

2dist (∂A,K), dK(x) = dist (x,K),

B(t) = {x ∈ A : dK(x) < t} t ∈]0, δ[,

and B = B(δ) = {x ∈ A : dK(x) < δ}.
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Let us choose two sequences of functions (uh), (vh) in SBV (Ω; IRk)
such that uh → u in L1(B), vh → u in L1(A \K), and

G(u,B) = lim
h
G(uh, B)

G(u,A \K) = lim
h
G(vh, A \K).

Since we have Hn−1(Suh ∩Ω) +Hn−1(Svh ∩Ω) < +∞, then for every h the
set of t ∈]0, δ[ that do not verify

Hn−1(Suh ∩ ∂∗B(t)) +Hn−1(Svh ∩ ∂∗B(t)) = 0 (3.11)

is at most countable (in fact, the set of t for which this quantity is larger
than 1

h is finite). In the same way we have that

|Duh|(∂∗B(t)) + |Dvh|(∂∗B(t)) = 0 (3.12)

except for at most a countable set of t ∈]0, δ[.
We can apply Fleming & Rishel coarea formula (2.7) to the integral∫

B\K
|uh − vh| dx =

∫
B\K
|uh − vh||∇dK | dx

=
∫ δ

0

∫
∂∗B(t)

|ũh(x)− ṽh(x)| dHn−1(x) dt

(recall that the a.e. gradient ∇dK of the Lipschitz function dK has unit
length a.e.). By the mean value theorem for every h we can choose th ∈]0, δ[
such that (3.11) and (3.12) hold, B(th) is a set of finite perimeter, and∫

∂∗B(th)

|ũh − ṽh| dHn−1 ≤ 1
δ

∫
B\K
|uh − vh| dx. (3.13)

We can define the sequence (wh) in L1(A) by setting

wh =

uh in B(th)

vh in A \B(th).

Note that for every h we have wh ∈ SBV (Ω; IRk) and

∇wh = ∇uh1B(th) +∇vh1A\B(th);
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moreover the Hausdorff part of the measure Dwh is given by

(u+
h − u

−
h )⊗ νuh · Hn−1

|Suh∩B(th)+ (v+
h − v

−
h )⊗ νvh · Hn−1

|Svh∩(A\B(th))

+ (ũh − ṽh)⊗ ν∂∗B(th) · Hn−1
|∂∗B(th),

where ν∂∗B(th) denotes the normal to ∂∗B(th) pointing inwards B(th).
We obtain then

G(wh, A) ≤ G(uh, B) + G(vh, A \K) +M

∫
∂∗B(th)

|wh+ − wh−| dHn−1

= G(uh, B) + G(vh, A \K) +M

∫
∂∗B(th)

|ũh − ṽh| dHn−1

≤ G(uh, B) + G(vh, A \K) +M
1
δ

∫
B\K
|uh − vh| dx. (3.14)

Since wh → u in L1(A), and (uh−vh)→ 0 in L1(B \K), we have, by taking
the limit as h→ +∞,

G(u,A) ≤ lim inf
h
G(wh, A) ≤ G(u,B) + G(u,A \K).

By (3.9) we get then

G(u,A) ≤ G(u,B) + c(|A \K|+ |Du|(A \K)).

Since the last term in this inequality can be taken arbitrarily small and
B ⊂⊂ A, we obtain the desired inequality in (3.10).

We can remove now the hypothesis of local boundedness of g, assuming
the only hypotheses of Theorem 2.1. Remark that the only place where
we make use of the local boundedness of g is the inequality (3.14). We
choose now a closed polyhedron P with faces orthogonal to the directions
ν1, . . . , νn such that K ⊂ P ⊂⊂ A. Let us consider, in place of the usual
distance, the new distance distν(x, y) = supm |〈x − y, νm〉|, and dP (x) =
min{distν(x, y) : y ∈ P}. With this new definition of the distance we can
proceed as above with P instead of K, remarking that the sets B(t) are all
polyhedra with faces orthogonal to the directions ν1, . . . , νn. It is clear that
we take into account only the values of g on the sets IRk⊗νm, m = 1, . . . , n,
and therefore we obtain (3.14) with M defined as in (3.7).

Step 2: G(u, ·) is a subadditive set function; i.e., we have

G(u,A1 ∪A2) ≤ G(u,A1) + G(u,A2)
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for every pair of open subsets A1, A2 of Ω.
By the regularity of G(u, ·) (Step 1), it is sufficient to prove that

G(u,A) ≤ G(u,A1) + G(u,A2)

for every open set A ⊂⊂ A1 ∪ A2. This inequality can be proved arguing
as in Step 1, choosing K = A \A2, and

B = {x ∈ A : dist(x,K) <
1
2

dist(K,A \A1)}.

Moreover it is clear that G(u, ·) is additive on disjoint sets; i.e.,

G(u,A1 ∪A2) = G(u,A1) + G(u,A2)

if A1 ∩A2 = Ø.

Step 3: G(u, ·) is the restriction to the open subsets of Ω of a regular Borel
measure. It suffices to remark that the set function G(u, ·) verifies:

(a) G(u, ·) is a positive and increasing set function defined on A(Ω);

(b) G(u, ·) is regular (Step 1);

(c) G(u, ·) is subadditive, and it is additive on disjoint sets (Step 2),
and apply Theorem 5.6 by E. De Giorgi & G. Letta [20].

Proposition 3.3. There exists a quasiconvex function ψ : Mk×n →
[0,+∞[ such that we have

G(u,A) =
∫
A

ψ(∇u(x)) dx (3.15)

for every A ∈ A(Ω) and u ∈W1,1(Ω; IRk). The function ψ verifies

0 ≤ ψ(ξ) ≤ c(1 + |ξ|) (3.16)

for every ξ ∈Mk×n.

Proof. We want to apply Theorem 2.4, which assures the representation

G(u,A) =
∫
A

ψ(x,∇u(x)) dx (3.17)
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for a suitable quasiconvex Carathéodory function ψ : Ω×Mk×n → [0,+∞[.
Let us check the hypotheses of Theorem 2.4. We have already proved
conditions (i) and (v) (see (3.9) and Proposition 3.2). The property (ii)
follows from the definition of G, while (iii) is verified since G(·, A) is L1-lower
semicontinuous. Finally, it is easy to check that G verifies G(u + z,A) =
G(u,A) for every u ∈ BV (Ω; IRk), A ∈ A(Ω), and for every constant vector
z ∈ IRk, and so does G. Hence we obtain the representation formula (3.17)
for every u ∈W1,1(Ω; IRk).

In order to prove that ψ does not depend on x, we observe that, by the
definition of G and G, if we compute G on the linear function uξ(x) = ξ x,
we obtain ∫

B1

ψ(x, ξ) dx =
∫
B2

ψ(x, ξ) dx

on any pair of congruent balls B1, B2 ⊂ Ω. This equality implies that
ψ(x, ξ) = ψ(y, ξ) at every pair of Lebesgue points of the function ψ(·, ξ). If
we choose a dense sequence (ξh) in Mk×n, using the continuity of ψ(x, ·)
we get the existence of a set N ⊂ Ω with |N | = 0, and such that

ψ(x, ξ) = ψ(y, ξ)

for every ξ ∈ Mk×n and for every x, y ∈ Ω \N . Hence it is not restrictive
to suppose

ψ(x, ξ) = ψ(ξ),

obtaining (3.15). The inequalities in (3.16) follow from the integral repre-
sentation (3.15), using estimate (3.9) and the positivity of G.

Proposition 3.4. The function ψ in Proposition 3.3 verifies

ψ(ξ) ≤ f(ξ) for every ξ ∈Mk×n, (3.18)

ψ∞(a⊗ ν) ≤ g(a⊗ ν) for every a ∈ IRk, ν ∈ Sn−1. (3.19)

Proof. The inequality (3.18) follows for example from

|Ω|ψ(ξ) = G(ξx,Ω) ≤ G(ξx,Ω) = |Ω| f(ξ).
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As for (3.19), let us fix a ∈ IRk and ν ∈ Sn−1. For every t > 0 we can
consider the linear function

ut(x) = ta〈x, ν〉,

so that we have Dut = ta ⊗ ν. We can approximate ut in L1(Ω; IRk) with
a sequence (uht ) in SBV (Ω; IRk) defined by

uht (x) =
1
h
ta [h〈x, ν〉],

which has jumps of size 1
h in the direction a, along hyperplanes orthogonal

to ν at a regular distance of 1
h . Let now Qν be any open cube contained in

Ω with an edge parallel to ν. It is easy to see then that we have

G(uht , Qν) = f(0)|Qν |+ g(
1
h
t a⊗ ν) Hn−1(Suht ∩Qν)

≤ f(0)|Qν |+ t g(a⊗ ν)|Qν |

(note that we use here only the positive homogeneity of g). Hence we obtain

ψ(t a⊗ν) = |Qν |−1G(ut, Qν) ≤ |Qν |−1 lim inf
h
G(uht , Qν) ≤ f(0)+ t g(a⊗ν).

Dividing by t, and letting t→ +∞ we obtain

ψ∞(a⊗ ν) = lim
t→+∞

ψ(t a⊗ ν)
t

≤ lim
t→+∞

f(0) + t g(a⊗ ν)
t

= g(a⊗ ν),

that is, the inequality in (3.19).

Proof of Theorem 2.1 We can proceed now in the proof of Theorem 2.1.
By the definition of F , and by (2.12), for every u ∈ BV (Ω; IRk) we have

F(u) ≤ G(u) ≤ (G + χW1,1(Ω;IRk))(u)

=
∫

Ω

ψ(∇u(x)) dx+
∫

Ω

ψ∞
( Dsu

|Dsu|

)
|Dsu|.

Let now ϕ be the function defined by formula (2.9). By Proposition 3.4 we
have that ψ ≤ ϕ, hence

F(u) ≤
∫

Ω

ϕ(∇u(x)) dx+
∫

Ω

ϕ∞
( Dsu

|Dsu|

)
|Dsu|. (3.20)
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For the opposite inequality we have to prove that ϕ satisfies the hypotheses
of Theorem 2.5. Inequalities 0 ≤ ϕ ≤ f follow immediately from the
definition of ϕ. Let us prove that ϕ verifies the linear growth condition

0 ≤ ϕ(ξ) ≤ c(1 + |ξ|), (3.21)

for every ξ ∈Mk×n. It suffices to show that φ(ξ) ≤ c(1 + |ξ|) on Mk×n for
every φ quasiconvex such that φ ≤ f on Mk×n and φ∞ ≤ g on Mk×n

1 . Let
us fix such a φ. By the rank one convexity of φ it follows that for every
ξ ∈ Mk×n, a ∈ IRk, and m = 1, . . . , n the function t 7→ φ(ξ + t a ⊗ νm)
is convex on IR and Lipschitz with constant max{g(a⊗ νm), g(−a⊗ νm)}.
Since every ξ ∈Mk×n can be uniquely decomposed as ξ =

∑n
m=1 am⊗ νm,

for suitable vectors am ∈ IRk, by the Lipschitz condition on φ we get

φ(ξ) ≤ φ(0) +
n∑

m=1

g(am ⊗ νm) ≤ f(0) + cM |ξ|,

where M is defined as in (3.7). Hence ϕ verifies (3.21), and it is quasiconvex.
Finally it is easy to see that ϕ∞ ≤ g on Mk×n

1 . Therefore we have∫
Ω

ϕ(∇u(x)) dx+
∫

Ω

ϕ∞
( Dsu

|Dsu|

)
|Dsu| ≤ F(u). (3.22)

Moreover, by Theorem 2.5 the left-hand side of (3.22) gives a L1-lower
semicontinuous functional on BV (Ω; IRk), hence we obtain, by definition of
relaxation, ∫

Ω

ϕ(∇u(x)) dx+
∫

Ω

ϕ∞
( Dsu

|Dsu|

)
|Dsu| ≤ F(u).

This inequality, together with (3.20), concludes the proof of Theorem 2.1.

4. Additional Remarks

In this section we provide some examples and remarks for some classes of
special f and g.
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Remark 4.1. (Positively 1-homogeneous functionals) If the bulk energy
density f is positively 1-homogeneous, then it is easy to see that ϕ is pos-
itively 1-homogeneous. In fact it is immediate to check that ψ is a quasi-
convex function such that ψ ≤ f on Mk×n and ψ∞ ≤ g on Mk×n

1 if and
only if for every fixed λ > 0 such is the function φ(ξ) = 1

λψ(λξ).

Therefore we obtain the following formula for ϕ:

ϕ(ξ) = sup{ψ(ξ) : ψ quasiconvex and positively 1-homogeneous,

ψ ≤ f on Mk×n, ψ∞ ≤ g on Mk×n
1 },

hence (recall that ψ∞ = ψ for ψ positively 1-homogeneous)

ϕ(ξ) = sup{ψ(ξ) : ψ quasiconvex and positively 1-homogeneous,

ψ ≤ f ∧ g on Mk×n}

(the function g is extended to +∞ on Mk×n \Mk×n
1 ).

Note that the fact that ϕ is positively 1-homogeneous and quasiconvex
does not imply that ϕ is convex (cf. Müller [27]).

Remark 4.2. (Partitions) Let us consider the case

f(ξ) =
{ 0 if ξ = 0

+∞ elsewhere.

Then the functional F is finite only on functions in the space SBV (Ω; IRk)
with ∇u = 0 a.e. These functions can be identified with “partitions of Ω
in sets of finite perimeter” (see Ambrosio & Braides [5], [6], Congedo &
Tamanini [14]). Every such function can be expressed as

u =
∑
j∈IN

cj1Ej , (4.1)

where cj ∈ IRk, and (Ej) is a partition of Ω in sets of finite perimeter. The
functional can be rewritten then in the form

F(u) =
∑
i,j∈IN

1
2

∫
(∂∗Ei∩∂∗Ej)∩Ω

g
(

(cj − ci)⊗ νj
)
dHn−1,

where νj is the interior normal to Ej , and ∂∗Ej denotes the reduced bound-
ary of Ej .
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Since f is positively 1-homogeneous, by Remark 4.1 the relaxed func-
tional F is given by

F(u) =
∫

Ω

ϕ(Du) =
∫

Ω

ϕ(∇u) dx+
∫

Ω

ϕ(
Dsu

|Dsu|
)|Dsu|,

with

ϕ(ξ) = sup{ψ(ξ) : ψ quasiconvex and positively 1-homogeneous,

ψ ≤ g on Mk×n
1 }

(note that ϕ is positively 1-homogeneous, hence ϕ = ϕ∞).
Remark that we obtain as a by-product of Theorem 2.1 (but also di-

rectly from [7]; see also I. Fonseca [22]) that if g is quasiconvex then the cor-
responding functional defined on partitions is lower semicontinuous with re-
spect to the L1-convergence. Hence the integrand g̃(u, v, ν) = g((v−u)⊗ν)
is BV -elliptic (see Ambrosio & Braides [6]).

Remark 4.3. (Partitions in Polyhedral Sets) As a particular case of func-
tionals defined on partitions, we can consider a function g finite and locally
bounded only for n linearly independent directions ν1, . . . , νn in IRn; i.e.,

g(a⊗ν) < +∞ =⇒ ν = νm for some m ∈ {1, . . . , n},
sup{ g(a⊗ νm) : a ∈ Sk−1,m = 1, . . . , n } < +∞.

The domain of the functional F is then the set Pν of all partitions of Ω of
the form (4.1) into polyhedra whose faces are orthogonal to the directions
ν1, . . . , νn.

If for example g(ξ) ≥ c|ξ| on Mk×n (this hypothesis assures the ex-
istence of a minimum in (4.2)), we can apply Remark 4.2 and prove the
equivalence between segmentation problems of the type

inf
{ ∑
i,j∈IN

∫
∂(Ei∩∂Ej)∩Ω

g
(
(cj − ci)⊗ νj

)
dHn−1 +

∑
j∈IN

∫
Ej

|cj − α(x)| dx :

u =
∑
j∈IN

cj1Ej ∈ Pν
}
,

where α is a given L1 function, and the corresponding minimum problems
in BV (Ω; IRk)

min
{

2
∫

Ω

ϕ(Du) +
∫

Ω

|u(x)− α(x)| dx : u ∈ BV (Ω; IRk)
}
. (4.2)
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As an example, if {ei}ni=1 is the canonical basis in IRn and

g(ξ) =
{
|a| if ξ = a⊗ em, m = 1, . . . , n
+∞ otherwise,

the function ϕ can be computed explicitly. Indeed, by Remark 4.1 and 4.2
we have

ϕ(ξ) = g∗∗(ξ) =
n∑
j=1

√√√√ k∑
i=1

ξ2
ij .

A similar representation for ϕ can be obtained for an arbitrary choice of
the basis ν1, . . . , νn in IRn instead of the canonical one.

Remark 4.4. (The two-well problem) Let A and B ∈ Mk×n be two
matrices such that rank(A−B) ≥ 2. If we take

f(ξ) =
{

0 if ξ = A or ξ = B,
+∞ otherwise on Mk×n,

and
g(a⊗ ν) = |a|,

then the function ϕ gived by formula (2.9) is quasiconvex but not convex.
To see this, let us denote by Qψ the quasiconvexification of (i.e., the

greatest quasiconvex function less than or equal to) the function

ψ(ξ) = min{|ξ −A|, |ξ −B|}.

It is already proved (see [28]) that Qψ is zero only on A and B. Moreover
it is clear that Qψ ≤ f on Mk×n and that (Qψ)∞ ≤ g on Mk×n

1 . It follows
that ϕ ≥ Qψ; since ϕ(A) = ϕ(B) = 0, we conclude that ϕ(ξ) = 0 if and
only if ξ = A or ξ = B, hence ϕ is not convex.
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Boston, (to appear).

[18] E. DE GIORGI & L. AMBROSIO: Un nuovo tipo di Funzionale del
Calcolo delle Variazioni. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis.
Mat. Natur. 82 (1988), 199–210.

[19] E. DE GIORGI, F. COLOMBINI, L.C. PICCININI: Frontiere Ori-
entate di Misura Minima e questioni collegate. Quaderno Scuola Nor-
male di Pisa, Pisa, 1972.

[20] E. DE GIORGI & G. LETTA: Une Notion Générale de Conver-
gence Faible pour des Fonctions Croissantes d’Ensemble. Ann. Scuola
Norm. Sup. Pisa Cl. Sci. 4 (1977), 61–99.

[21] H. FEDERER: Geometric Measure Theory. Springer-Verlag, New
York, 1969.

[22] I. FONSECA: Lower Semicontinuity of Surface Energies. Proc. Roy.
Soc. Edinburgh Sect. A 120 (1992), 99–115.
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