
Mean-Field Pontryagin Maximum Principle

Mattia Bongini∗, Massimo Fornasier†, Francesco Rossi‡, Francesco Solombrino§

July 19, 2017

Abstract

We derive a Maximum Principle for optimal control problems with
constraints given by the coupling of a system of ODEs and a PDE of
Vlasov-type with smooth interaction kernel. Such problems arise natu-
rally as Γ-limits of optimal control problems subject to ODE constraints,
modeling, for instance, external interventions on crowd dynamics by means
of leaders.

We obtain these first-order optimality conditions in the form of Hamil-
tonian flows in the Wasserstein space of probability measures with forward-
backward boundary conditions with respect to the first and second marginals,
respectively. In particular, we recover the equations and their solutions by
means of a constructive procedure, which can be seen as the mean-field
limit of the Pontryagin Maximum Principle applied to the optimal control
problem for the discretized density, under a suitable scaling of the adjoint
variables.

Keywords: Sparse optimal control, mean-field limit, Γ-limit, optimal con-
trol with ODE-PDE constraints, subdifferential calculus, Hamiltonian flows.

AMS Classification: 49J20

1 Introduction

The study of large crowds of interacting agents has received a growing attention
in the mathematical literature of the last decade, with countless applications
in biology, ecology, social sciences, and economics. Starting from the seminal
papers [27, 29, 42, 44], emphasis has been put on self-organization, i.e., the for-
mation of macroscopic patterns from the superimposition of simple, reiterated
binary interaction rules. Several examples show that spontaneous convergence
to pattern formation is not always guaranteed, e.g., for highly dispersed initial
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configurations in consensus problems [18, 19, 23, 34]; hence, the issue of con-
trolling and stabilizing these systems arises naturally. Two major subclasses
of controls of multiagent systems have received substantial attention in the lit-
erature: decentralized controls and centralized ones. With controls of the first
kind, the problem is recast into a game-theoretic framework, where agents op-
timize their individual cost and solutions correspond to Nash equilibria. With
those of the second kind, an external policy-maker controlling the dynamics is
introduced.

When dealing with large populations, in both cases one faces the well-known
problem of the curse of dimensionality, term first coined by Bellman precisely in
the context of dynamic optimization: the complexity of numerical computations
of the solutions of the above problems blows up as the size of the population
increases. A possible way out is the so-called mean-field approach, where the
individual influence of the entire population on the dynamics of a single agent
is replaced by an averaged one. This substitution principle results in a unique
mean-field equation and allows the computation of solutions, cutting loose from
the dimensionality.

In the game-theoretic setting, the mean-field approach has led to the de-
velopment of mean-field games [28, 31], which model populations whose agents
are competing freely with the others towards the maximization of their indi-
vidual payoff, as for instance in the financial market. The landmark feature
of such systems is their capability to autonomously stabilize without external
intervention. However, in reality, societies exhibit either convergence to unde-
sired patterns or tendencies toward instability that only an external government
can successfully dominate. The need of such interventions, together with the
limited amount of resources that governments have at their disposal, makes
the design of stabilization strategies targeting the least number of agents (nick-
named sparse) a key issue, which has been extensively studied in the context
of dynamics given by systems of ODEs, see [8, 9, 10, 11, 13].

Nevertheless, the concept of sparse control has to be handled with care when
trying to generalize it at the level of a mean-field dynamics. Indeed, the indis-
tinguishability of agents is a fundamental property of the mean-field setting,
and it is in sharp contrast with controls acting sparsely on specific agents. Fig-
uratively, trying to stabilize a huge crowds with these controls is like steering
a river by means of toothpicks! A first solution to this ambiguity was given in
[7, 25], where the control is defined as a locally Lipschitz feedback control with
respect to the state variables, and sparsity refers to its property of having a
small support. Such concept was successfully used in [38] to implement sparse
stabilizers for a consensus problem. This interpretation of sparsity appears also
in the framework of the control of more classical PDEs, see [17, 39, 40, 43].
An alternative solution for a proper definition of sparse mean-field control was
proposed in [24], where the control is sparsely applied on a finite number of
individuals immersed in the mean-field dynamics of the rest of the population,
resulting in a system where the controlled ODEs are coupled with a control-
free mean-field PDE (but indirectly controlled via the coupling). This kind of
control was considered in [1] to model the efficient evacuation of a large crowd
of pedestrians with the help of very few informed agents.
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First-order optimality conditions, often referred to as Pontryagin Maximum
Principle, are necessary conditions to be fulfilled by the optimal controls and
they often result in a system of nonlinear equations, which can be solved nu-
merically in a relatively simple way. Hence, they constitute very often the
most viable method towards the numerical computation of (mean-field) opti-
mal controls. In the context of mean-field games and optimal control problems
with PDE constraints, first-order optimality conditions have received enormous
attention, see for instance [6, 12, 14, 41], and they served as a tool for the nu-
merical computation of mean-field controls, see, e.g., [2] and references therein
for an extensive discussion on corresponding numerical methods. To the best of
our knowledge, no corresponding results have appeared so far in the literature
for coupled ODE-PDE systems of the kind considered in [24].

This paper is devoted to the proof of a Pontryagin Maximum Principle to
characterize optima of such control problems. We first remark that we are
not interested in all possible optima, but mainly on those which arise as limits
of optimal strategies of the original discrete problems. We call this subclass
of the set of optima mean-field optimal controls (see Definition 1.7). We
remark that the interest in this class of consistent controls complies with the
wish of using the continuous models (independent of the number N of agents)
as approximations of the finite-dimensional ones, to circumvent the curse of
dimensionality, possibly determined by a large number N of agents. Differently
from [24, 25] here we do not wish just to derive the existence of mean-field
controls as natural limits of the finite dimensional optimal controls, but we
want additionally to enforce that such a consistency passes naturally also at
the level of the first order optimality conditions. This reinforced compatibility
provides a tool for the consistent numerical computation of (mean-field) optimal
controls.

We summarize our result, borrowing a leaf from the diagram in [14], as
follows:

Discretized Optimal Control Problem
m ODEs + N ODEs

Continuous Optimal Control Problem
m ODEs + PDE

Pontryagin Maximum Principle
2m ODEs + 2N ODEs

Extended PMP
2m ODEs + PDE

N → +∞

optimality conditions

N → +∞

optimality conditions

We shall provide a set of hypotheses for which the dashed line from the upper-
right to the bottom-right box is valid, hence closing the consistency diagram.
Our strategy shall be the following: we apply the Pontryagin Maximum Prin-
ciple (see e.g. [16, Theorem 23.11]) to the finite-dimensional optimal control
problems (the solid line from the upper-left to the bottom-left box), and we pass
to the mean-field limit the system of equations obtained with this procedure
(the solid line from the bottom-left to the bottom-right box). The derived limit
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equation for the state and the (rescaled) adjoint variables are obtained in the
form of Hamiltonian flows in the Wasserstein space of probability measures, in
the sense of [4]. The result will be a first-order condition valid for all mean-field
optimal controls. The existence of such controls is also proved (see Corollary
2.12), generalizing the results obtained in [24]. Let us stress again that the
extended Pontryagin Maximum Principle constitutes the set of equations for an
efficient numerical solution of the mean-field optimal control, which can eventu-
ally serve as a surrogate control for approximately solving the finite dimensional
optimal control with N agents for N very large. While in the present paper we
focus on the derivation and the consistency of the extended Pontryagin Maxi-
mum Principle, we postpone to follow up work its efficient numerical solution,
as an adaptation of the approaches recently explored in [2].

More formally, we are interested in deriving optimality conditions for the
solutions of the following optimal control problem subject to coupled ODE-PDE
constraints.

Problem 1. For T > 0 fixed, find u∗ ∈ L1([0, T ];U) minimizing the cost
functional

F (u) =

∫ T

0
[L(y(t), µ(t)) + γ(u(t))] dt, (1)

where (y, µ) solve{
ẏk(t) = (K ? µ(t))(yk(t)) + fk(y(t)) +Bku(t), k = 1, . . . ,m,

∂tµ(t) = −∇x · [(K ? µ(t) + g(y(t)))µ(t)] ,
(2)

for the given initial datum (y(0), µ(0)) = (y0, µ0) ∈ Rdm × Pc(Rd).

Here, K : Rd → Rd is an interaction potential, whose role and properties will
be discussed in details in Remarks 1.4 and 1.5. Let us already stress here that
this kernel will not represent necessarily physical interaction forces (which could
show singular behaviors), rather “social” interactions in multi-agent systems,
which we can take the liberty of assuming smooth. This smoothness assumption
is admittedly a technical and modeling compromise to allow us to consistently
derive the extended Pontryagin Maximum Principle, otherwise not justifiable
rigorously anymore. Additionally the cost functional γ above is assumed to be
strictly convex, the finite dimensional set of controls U is convex and compact,
Bk are constant matrices, and Pc(Rd) is the set of probability measures on Rd
with compact support.

Notice that Problem 1 generalizes the control problems introduced and stud-
ied in [24]. The existence of mean-field optimal controls for Problem 1 can be
indeed obtained along the same lines, and will be shortly discussed in Section
2.

We shall prove the following main result.
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Theorem 1.1. Fix an initial datum (y0, µ0) ∈ Rdm ×Pc(Rd) and assume that
Hypotheses (H) in Section 1.1 below hold. Then there exists a mean-field optimal
control for Problem 1. Furthermore, if u∗ is a mean-field optimal control for
Problem 1 and (y∗, µ∗) is the corresponding trajectory, then (u∗, y∗, µ∗) satisfies
the following extended Pontryagin Maximum Principle:

There exists (q∗(·), ν∗(·)) ∈ Lip([0, T ];Rdm × P1(R2d)) such that

• there exists RT > 0, depending only on
y0, supp(µ0),m,K, g, fk, Bk,U , and T , such that supp(ν∗(·)) ⊆
B(0, RT ) and it satisfies π1#ν

∗(t) = µ∗(t) for all t ∈ [0, T ];

• it holds 
ẏ∗k = ∇qkHc(y

∗, q∗, ν∗, u∗),

q̇∗k = −∇ykHc(y
∗, q∗, ν∗, u∗),

∂tν
∗= −∇(x,r) · ((J∇νHc(y

∗, q∗, ν∗, u∗))ν∗) ,

u∗ = arg maxu∈U Hc(y
∗, q∗, ν∗, u)

(3)

where J ∈ R2d×2d is the symplectic matrix

J =

(
0 Id
−Id 0

)
,

the Hamiltonian Hc : R2dm × Pc(R2d)× RD → R is defined as

Hc(y, q, ν, u) =

{
H(y, q, ν, u) if supp(ν) ⊆ B(0, RT ),

+∞ elsewhere;

and H : R2dm × Pc(R2d)× RD → R is defined as

H(y, q, ν, u) =
1

2

∫
R4d

(r − r′) ·K(x− x′) dν(x, r) dν(x′, r′)

+

∫
R2d

r · g(y)(x)dν(x, r) +
m∑
k=1

∫
R2d

qk ·K(yk − x) dν(x, r)

+
m∑
k=1

qk · (fk(y) +Bku)− L(y, π1#ν)− γ(u).

(4)

• the following conditions for system (3) hold at time 0: y∗(0) = y0 and
ν∗(0)(E × Rd) = µ0(E) for every Borel set E ⊆ Rd,

• the following conditions for system (3) hold at time T : q∗(T ) = 0 and
ν∗(T )(Rd × E) = δ0(E) for every Borel set E ⊆ Rd, where δ0 is the
Dirac measure centered in 0.
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As already mentioned, the formulation given above shows that the dynam-
ics of (y∗, q∗, ν∗) is essentially an Hamiltonian flow in the Wasserstein space of
probability measures with respect to state and adjoint variables with Hamilto-
nian H, in the sense of [4]. The definition of Hc is introduced to simplify some
technical details and does not alter the result. This fact is remarkably consis-
tent with the dynamics (2), since both are flows in a Wasserstein space. This
formulation of the optimality conditions making use of the formalism of subdif-
ferential calculus in Wasserstein spaces of probability measures constitutes one
of the novelties of the work.

Remark 1.2. For every (y, q, ν) with supp(ν) ⊆ B(0, RT ), (4) immediately
implies that

u ∈ arg max
u∈U

Hc(y, q, ν, u) ⇐⇒ u ∈ arg max
u∈U

(
m∑
k=1

qk ·Bku− γ(u)

)
.

Then, the strict convexity of γ and the convexity and the compactness of U imply
that u is uniquely determined by (y, q, ν). This is the reason why we write the
equality symbol in u∗ = arg maxu∈U Hc(y

∗, q∗, ν∗, u) in place of an inclusion.

We point out the difference between the usual gradient in R2d with respect
to the state variables x and the adjoint variables r, denoted by ∇(x,r), and the
Wasserstein gradient ∇ν of Hc. In order to do that, we introduce the functions
` ∈ C2(Rdm × Rd × Rd;R) and ω ∈ C2(Rd;Rd), related to the functional L in
(1) via

L(y, µ) =

∫
Rd
`
(
y, x,

∫
ωµ
)
dµ(x),

where
∫
ωµ := ωµ(Rd). Denoting with ∇ξ` and ∇ς` the partial derivatives of

the function `(η, ξ, ς), and with Dω(x) the Jacobian of the function ω evaluated
at x we will show in Section 3 that, whenever ν has supported contained in
B(0, RT ), ∇νHc can be computed explicitly as follows:

• For l = 1, . . . , d, it holds

∇νHc(y, q, ν, u)(x, r) · el =

∫
R2d

(r − r′) · (DK(x− x′)el) dν(x′, r′)

+ r · (Dxg(y)(x)el)−
m∑
k=1

qk · (DK(yk − x)el)

−∇ξ`(y, x,
∫
ωµ) · el

−
(∫

Rd
∇ς`(y, x′,

∫
ωµ) dµ(x′)

)
· (Dω(x)el).

(5)

These are the components of ∇νHc(y, q, ν, u)(x, r) in the xl coordinates.

• For l = d+ 1, . . . , 2d it holds

∇νHc(y, q, ν, u)(x, r) · el =

∫
R2d

K(x− x′) · el−d dν(x′, r′) + g(y)(x) · el−d. (6)

These are the components of ∇νHc(y, q, ν, u)(x, r) in the rl−d coordinates.
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Notice that ∇νH(y, q, ν, u) actually does not depend on u, as a consequence of
the fact that the control does not act directly on the PDE component of (2).

The main tool we use to prove Theorem 1.1 is the Pontryagin Maximum
Principle (henceforth, simply addressed as PMP) for optimal control problems
with ODE constraint. We shall apply it to the following finite-dimensional prob-
lems, whose constraints converge to the coupled ODE-PDE system of Problem
1, as we will show in Section 2. For this reason, we call Theorem 1.1 the extended
PMP.

Problem 2. For T > 0 fixed, find u∗ ∈ L1([0, T ];U) minimizing the cost
functional

FN (u) =

∫ T

0
[L(y(t), µN (t)) + γ(u(t))] dt, (7)

where (y, µN ) solve{
ẏk = 1

N

∑N
j=1K(yk − xj) + fk(y) +Bku, k = 1, . . . ,m

ẋi = 1
N

∑N
j=1K(xi − xj) + g(y)(xi), i = 1, . . . , N,

(8)

for the given initial datum (y(0), x(0)) = (y0, x0) ∈ Rdm × RdN , where

µN (t)(x) =
1

N

N∑
i=1

δ(x− xi(t)),

is the empirical measure centered on the trajectory x(·) = (x1(·), . . . , xN (·)).

The extended PMP will be derived after reformulating the finite-dimensional
PMP applied to Problem 2 in terms of the empirical measure in the product
space of state variables xi and adjoint variables pi, defined as

νN (x, r) =
1

N

N∑
i=1

δ(x− xi, r −Npi).

Notice that rescaling the adjoint variables pi by the number N of agents is
needed in order to observe a nontrivial dynamics in the limit; indeed, within
this scaling, the right-hand side of the finite-dimensional PMP is brought back
to the form considered, for instance, in [20], with a different Hamiltonian.

The structure of the paper is the following. In Section 1.1 we recall the
basic notations and introduce the main Hypotheses (H). In Section 2, we study
the controlled dynamics subject to a coupled ODE-PDE constraint of the form
(2), establishing existence and uniqueness results for solutions. In Section 3, we
recall basic facts about subdifferential calculus in Wasserstein spaces, and we
explicitly compute ∇νHc. In Section 4 we study the finite-dimensional Problem
2, and apply the PMP to it. In Section 5, we prove the extended PMP, i.e.,
Theorem 1.1.

7



1.1 Notation and Hypotheses (H)

We start this section by recalling the notation used throughout the paper.
The constants d,D are two positive integers (the dimension of the space

of the agents and of the control, respectively), T > 0 (the end time of the
optimization procedure), and U is a convex compact subset of RD (set in which
controls take values).

Elements of Rn are always represented as row vectors. Functionals have the
following expressions: K : Rd → Rd, each fk satisfies fk : Rdm → Rd, and for
every y ∈ Rdm and µ ∈ P1(Rd), g(y) : Rd → Rd and L(y, µ) : Rd → R. The
matrices Bk are constant d×D matrices.

The space P(Rn) is the set of probability measures which take values on
Rn, while the space1 Pp(Rn) is the subset of P(Rn) whose elements have finite
p-th moment, i.e., ∫

Rn
‖x‖pdµ(x) < +∞.

We denote by Pc(Rn) the subset of P1(Rn) which consists of all probability
measures with compact support. Notice that, if (µn)n∈N is a sequence in Pc(Rn)
and it exists R > 0 such that supp(µn) ⊆ B(0, R) for all n ∈ N, then (µn)n∈N
is compact in Pp(Rn) for all p ≥ 1.

For any µ ∈ P(Rn) and any Borel function r : Rn1 → Rn2 , we denote by
r#µ ∈ P(Rn2) the push-forward of µ through r, defined by

r#µ(B) := µ(r−1(B)) for every Borel set B of Rn2 .

In particular, if one considers the projection operators π1 and π2 defined on the
product space Rn1×Rn2 , for every ρ ∈ P(Rn1×Rn2) we call first (resp., second)
marginal of ρ the probability measure π1#ρ (resp., π2#ρ). Given µ ∈ P(Rn1)
and ν ∈ P(Rn2), we denote with Π(µ, ν) the subset of all probability measures
in P(Rn1 × Rn2) with first marginal µ and second marginal ν.

On the set Pp(Rn) we shall consider the following distance, called the
Wasserstein or Monge-Kantorovich-Rubinstein distance,

Wp
p (µ, ν) = inf

{∫
R2n

‖x− y‖pdρ(x, y) : ρ ∈ Π(µ, ν)

}
. (9)

If p = 1 we have the following equivalent expression for the Wasserstein distance:

W1(µ, ν) = sup

{∫
Rn
ϕ(x)d(µ− ν)(x) : ϕ ∈ Lip(Rn), Lip(ϕ) ≤ 1

}
.

We denote by Πo(µ, ν) the set of optimal plans for which the minimum is
attained, i.e.,

ρ ∈ Πo(µ, ν) ⇐⇒ ρ ∈ Π(µ, ν) and

∫
R2n

‖x− y‖pdρ(x, y) =Wp
p (µ, ν).

It is well-known that Πo(µ, ν) is non-empty for every (µ, ν) ∈ Pp(Rn)×Pp(Rn)
(see [45]), hence the infimum in (9) is actually a minimum. The following
definition is motivated by Definition 10.3.1 and Remark 10.3.3 in [5].

1We follow the notation of [5].
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Definition 1.3. Let ψ : P2(R2d)→ (−∞,+∞] be a proper and lower semicon-
tinuous functional, and let ν0 ∈ D(ψ). We say that w ∈ L2

ν0(R2d) belongs to
the (Fréchet) subdifferential of ψ at ν0, in symbols w ∈ ∂ψ(ν0) if and only if
for any ν1 ∈ P2(R2d) it holds

ψ(ν1)− ψ(ν0) ≥ inf
ρ∈Πo(ν0,ν1)

∫
R4d

w(z0) · (z1 − z0)dρ(z0, z1) + o(W2(ν1, ν0)).

It can be seen [4] that whenever ∂ψ(ν0) is nonempty, it has an element with
minimal L2

ν0(R2d)-norm, which we call the Wasserstein gradient ∇νψ(ν0) of ψ
at ν0.

For any µ ∈ P1(Rd) and K : Rd → Rd, the notation K ? µ stands for the
convolution of K and µ, i.e.,

(K ? µ)(x) =

∫
Rd
K(x− x′)dµ(x′);

this quantity is well-defined whenever K is continuous and sublinear, i.e., there
exists C such that ‖K(ξ)‖ ≤ C(1 + ‖ξ‖) for all ξ ∈ Rd. Furthermore we shall
deal also with the convolution (∇(x′,r′)〈r′,K(x′)〉) ? ν in R2d, whose explicit
expression is(
(∇(x′,r′)〈r′,K(x′)〉) ? ν

)
(x, r) =

∫
R2d

(
∇(x′,r′)〈r − r′,K(x− x′)〉

)
dν(x′, r′).

Notice that, under the hypotheses we are going to make, this convolution is not
always well-defined for ν ∈ P1(R2d). It is nonetheless well-defined for measures
ν ∈ Pc(R2d), that is to say for all the cases that will appear in the sequel.

We shall denote with Mb(Rn1 ;Rn2) the space of bounded Radon vector
measures from Rn1 to Rn2 , and with ‖ · ‖Mb(Rn1 ;Rn2 ) the total variation norm

on it. If ω ∈ C(Rd;Rd) is sublinear and µ ∈ P1(Rd), the Radon measure
ωµ ∈Mb(Rd;Rd) is defined as

ωµ(E) :=

∫
E
ω(x)dµ(x), for every E ⊂ Rd bounded.

We shall denote by
∫
ωµ := ωµ(Rd).

In what follows, we shall consider the space X := Rdm × P1(Rd), together
with the following distance

‖(y, µ)− (y′, µ′)‖X := ‖y − y′‖+W1(µ, µ′), (10)

where ‖y − y′‖ :=
∑m

k=1 ‖yk − y′k‖`2(Rd).
Henceforth, we assume that the following regularity properties hold.

Hypotheses (H)
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(K) The function K ∈ C2(Rd;Rd) is odd and sublinear, i.e., there exists
CK > 0 such that for all x ∈ Rd it holds

‖K(x)‖ < CK(1 + ‖x‖).

(L) The function L : Rdm × P1(Rd)→ R is

L(y, µ) =

∫
Rd
`
(
y, x,

∫
ωµ
)
dµ(x),

with ` ∈ C2(Rdm × Rd × Rd;R) and ω ∈ C2(Rd;Rd).

(G) The function g ∈ C2(Rdm; C2(Rd;Rd)) satisfies for all x ∈ Rd and all
y ∈ Rdm

g(y)(x) · x ≤ G1‖x‖2 +G2 max
l=1,...,m

‖yl‖2 +G3,

where the constants G1, G2 and G3 are independent on x and y.

(F) For each k = 1, . . . ,m, the function fk ∈ C2(Rdm;Rd) satisfies for all
y ∈ Rdm

fk(y) · yk ≤ F1 max
l=1,...,m

‖yl‖2 + F2,

where the constants F1 and F2 are independent on y and k.

(U) The set U ⊆ RD is compact and convex.

(γ) The function γ : U → R is strictly convex.

The following remark discusses some examples in literature falling into the
above framework.

Remark 1.4. The set of hypotheses (H) allows to consider interaction kernels
K appearing in several well-established multiagent dynamical models. In par-
ticular the interaction kernel appearing in the Cucker-Smale model [19] which
is given by

K(x) :=

(
0

−φ(‖x‖)v

)
,

for x = (x, v)T ∈ R6 and φ(λ) = κ
(σ2+λ2)β

, for some fixed parameters κ, σ > 0

and β ≥ 0, satisfies the hypothesis (K).
The above kernel is a possible choice for the model considered in [24] in
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combination with the leader-follower interactions given by

fk(~y) :=

(
wk

1
m

∑m
j=1 φ(‖yk − yj‖)(wj − wk)

)
g(~y)(x) :=

(
v

1
m

∑m
j=1 φ(‖x− yj‖)(wj − v)

)
,

where ~y = (y1, w1, . . . , ym, wm) describes the population of leaders. It can be
seen that such fk and g satisfy the hypotheses (F) and (G), respectively.

Another example comes from considering a mollified version of the Hegselmann-
Krause [26] interaction kernel, i.e., φ(x) = (χ[0,R] ? ρε)(x) for some confidence
radius R > 0 and choosing

K(x) := −φ(‖x‖)x for x ∈ R.

Coming back to a second-order system with space-velocity variables, hypoth-
esis (G) remains satisfied also by adding to g(~y)(x) the self-propulsion/friction
term

S(x) := (α− β‖v‖2)v.

where α and β are nonnegative parameters. This term, introduced in [32], bal-
ances the self-propulsion of individuals given by αv and the Rayleigh-type fric-
tion −β‖v‖2v, prescribing the speed of each agent ‖v‖ to approach the asymp-
totic value

√
α/β (if other effects are ignored), which can be seen as a character-

istic limit speed for the dynamics. S is commonly encountered in the modeling
of bacteria and groups of animals, see for instance [15, 23].

Regarding the cost functional, various examples can be considered depending
on the behavior one wants to induce on the population of followers. For instance,
a standard problem in the study of the Cucker-Smale model is to find conditions
to ensure flocking, i.e., alignment of the whole crowd towards the same velocity.
A possible choice, fully complying with our set of hypotheses is the minimization
of the variance2 of the crowd, by choosing

L1(~y, µ) :=

∫
R6

(
2

m

m∑
k=1

‖wk‖2 + 2‖v‖2
)
dµ(x, v)−

∥∥∥∥∥ 1

m

m∑
k=1

wk +

∫
v dµ(x, v)

∥∥∥∥∥
2

=

∫
R6

(
2

m

m∑
k=1

‖wk‖2 + 2‖v‖2 −

(
1

m

m∑
k=1

wk +

∫
v′ dµ(x′, v′)

)
·

(
1

m

m∑
k=1

wk + v

))
dµ(x, v),

that is of the form L =
∫
R6 `(y,x,

∫
ωµ) dµ(x) by choosing ω(x) = v and

`(y,x, ς) :=
2

m

m∑
k=1

‖wk‖2 + 2‖v‖2 −

(
1

m

m∑
k=1

wk + ς

)
·

(
1

m

m∑
k=1

wk + v

)
.

For the control constraints, we assume U := [−1, 1]3m and we choose to penalize
the L2-norm of the control, hence γ(u) := ‖u‖2. Other forms for the cost L can

2For simplicity of computation, we consider minimization of 4 times the variance.
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be of interest. For example, one may want to drive the crowd to a given fixed
velocity v̄, and correspondingly minimize

L2(y, µ) :=

∫
R6

(
1

2m

m∑
k=1

‖wk − v̄‖2 +
1

2
‖v − v̄‖2

)
dµ(x, v),

that is again of the form
∫
R6 `(y,x,

∫
ωµ) dµ(x), with ` not depending on its

third variable, this time. Lastly, we mention the following cost functional con-
sidered in [47] in connection with the control of the Hegselmann-Krause model:
for any fixed x̄ ∈ R, consider

L3(y, µ) :=
1

2
‖y1(T )− x̄‖2 +

1

2

∫ T

0

∫
R2

‖x− z‖2dµ(t, x)dµ(t, z)dt

+
1

2

∫ T

0

∫
R
‖x− y1(t)‖2dµ(t, x)dt+

1

2

∫ T

0
‖u(t)‖2dt.

Remark 1.5. In all the mentioned examples, the interaction potential K is
smooth. In such a context, both a mean-field theory relating the particle model
and its continuum limit and suitable quantitative estimates for convergence are
well-established since the paper [22]. In the present paper, similar estimates,
adapted to our situation, will be obtained in Lemmata 2.8 and 4.5. While such
estimates basically only require Lipschitz continuity of the potential K, we are
however forced to require a C2-regularity for a twofold reason. First of all, at
least continuous differentiability of K (and, as a consequence, of the finite di-
mensional Hamiltonian HN defined in (29) ) is needed to give a meaning to
the PMP (28) in the sense of Peano’s existence Theorem. Requirements of
boundedness and continuity of the gradient are needed in the general context of
existence theory for Hamiltonian flows, although some very technical weaken-
ing of the hypotheses can be allowed (see [4, Assumptions (H1’) and (H2’)]).
Furthermore, an important requirement to be met is the so-called λ-convexity,
or semiconvexity of the Hamiltonian in the sense of Definition 6.1. In the the-
ory of Hamiltonian flows, this is a key assumption, since it guarantees that the
Hamiltonian stays constant along trajectories (see [4, Theorem 5.2]). In our
paper, the semiconvexity assumption allows for the computation of the Wasser-
stein gradient of the functional Hc in Theorem 3.3, along the lines of the general
theory in [5, Chapter 10]. Due to the complicated form of Hc in (4), it is not
possible to enforce this requirement, unless additional smoothness of the involved
terms is considered. This motivates our choice of dealing with a C2 interaction
kernel K.

It is clear from the above discussion that the case of a singular interac-
tion kernel, which arises for important problems in mathematical physics, when
dealing for instance with Newton- or Coulomb-type interactions, cannot fall into
the scope of this paper. On the other hand even a complete existence theory for
these kind of problems has not been achieved so far (see [46, Chapter 1.4] for a
general discussion), although relevant results in this framework have appeared
in recent years starting from the seminal papers [35, 33].

Remark 1.6. We briefly compare Hypotheses (H) with those of [6, 12]. In [6],
which deals with an SDE-constrained optimal control problem, C1,1 functionals
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with respect to state variables and the control are considered. Therefore our hy-
potheses are just slightly more restrictive. On the other hand, we do not require
differentiability of the running cost. The authors of [12] deal, instead, with a
mean-field game type optimality conditions to model evacuation scenarios. They
derive a first-order condition under the hypotheses of continuous differentiability
of the functionals with respect to the state variables together with convexity and
positivity assumptions. Furthermore, they deal specifically with an L2 control
cost, while we allow ours to be strictly convex.

We now give the rigorous definition of mean-field optimal control.

Definition 1.7. Let (y0, µ0) ∈ Rdm × Pc(Rd) be given. An optimal control u∗

for Problem 1 with initial datum (y0, µ0) is a mean-field optimal control if there
exists a sequence (u∗N )N∈N ⊂ L1([0, T ];U) and a sequence (µ0

N )N∈N ∈ Pc(Rd)
such that

1. for every N ∈ N, µ0
N (·) := 1

N

∑N
i=1(· − x0

i,N ) is a sequence of empirical

measures for some x0
i,N ∈ supp(µ0) +B(0, 1) such that µ0

N ⇀ µ0 weakly∗

in the sense of measures;

2. for every N ∈ N, u∗N is a solution of Problem 2 with initial datum (y0, µ0
N );

3. there exists a subsequence of (u∗N )N∈N converging weakly in L1([0, T ];U)
to u∗.

Remark 1.8. As mentioned before, the above definition is motivated by our
interest in optimizers that are close to optimal controls for the original finite-
dimensional problems. Notice also that, since the measures µ0

N have all compact

support contained in supp(µ0)+B(0, 1), they form a compact sequence in Pp(Rn)
for all p ≥ 1, and therefore, due to weak∗ convergence to µ0, we also have that
limN→∞Wp(µ

0
N , µ

0) = 0.

2 The coupled ODE-PDE dynamics

In this section, we first recall results for PDE equations of transport type with
nonlocal interaction velocities, like the one appearing in the second equation of
(2). We then study the coupled ODE-PDE dynamics (2) and we state existence
and uniqueness results of solutions, together with continuous dependence on
the initial data (y0, µ0) and on the control u. The proofs follow closely in the
footsteps of similar results in [4, 24, 36, 37], to which we will refer anytime no
substantial modifications of the argument is needed.

We start by defining the meaning of solution for the equation

∂tµ(t) = −∇x · (v(t, x, µ(t))µ(t)), (11)

where v : [0, T ] × Rn × P1(Rn) → Rn is a given vector field and n ∈ N is the
dimension of the underlying Euclidean space.

Definition 2.1. We say that a map µ : [0, T ] → P1(Rn) is a solution of (11)
if the following holds:
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1. µ has uniformly compact support, i.e., there exists R > 0 such that
supp(µ(·)) ∈ B(0, R);

2. µ is continuous with respect to the Wasserstein distance W1;

3. µ satisfies (11) in the weak sense, i.e. (see [5, Equation (8.1.4)]),

d

dt

∫
Rn
φ(x) dµ(t)(x) =

∫
Rn
∇φ(x) · v(t, x, µ(t)) dµ(t)(x),

for every φ ∈ C∞c (Rn;R).

Now, we can formally define the concept of solution of the controlled ODE-
PDE system (2), which applies, mutatis mutandis, to system (3) as well.

Definition 2.2. Let u ∈ L1([0, T ];U) and (y0, µ0) ∈ X , with µ0 of bounded
support, be given. We say that a map (y, µ) : [0, T ] → X is a solution of the
system (2) with control u if

1. (y(0), µ(0)) = (y0, µ0);

2. the solution is continuous in time with respect to the metric (10) in X ;

3. the y coordinates define a Carathéodory solution of the following controlled
ODE problem

ẏk(t) = (K ? µ(t))(yk(t)) + fk(y(t)) +Bku(t), k = 1, . . . ,m,

for all t ∈ [0, T ];

4. µ is a solution of (11), where v : [0, T ]× Rd × P1(Rd)→ Rd is the time-
varying vector field defined as follows

v(t, x, µ(t))(x) := (K ? µ(t) + g(y(t)))(x).

We now derive the existence of solutions of (2) as limits for N →∞ of the
system of ODE (8). We first prove that solutions of (8) coincide with specific
solutions of (2). We then prove the limit result with the help of Lemmas 2.4
and 2.5.

Proposition 2.3. Let N be fixed, and the control u ∈ L1([0, T ];U) be given.
Let (y, xN ) : [0, T ] → X be the corresponding solution of (8), with xN (t) =
(x1,N (t), . . . , xN,N (t)). Then, the couple (y, µN ) : [0, T ]→ Rdm+dN , with µN (t)
being the empirical measure

µN (t)(x) :=
1

N

N∑
i=1

(x− xi,N (t)),

is a solution of (2) with control u.

Proof. It can be easily proved by rewriting (2) with µN and arguing exactly as
in [25, Lemma 4.3].
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Lemma 2.4. Let K : Rd → Rd satisfy (K) and µ ∈ P1(Rd). Then K ∗ µ ∈
Liploc(Rd). Furthermore, for all y ∈ Rd it holds

‖(K ? µ)(y)‖ ≤ CK
(

1 + ‖y‖+

∫
Rd
‖x‖dµ(x)

)
.

Proof. See, for instance, [25, Lemma 6.4].

Lemma 2.5. Let K : Rd → Rd satisfy (K) and let µ1 : [0, T ] → Pc(Rd) and
µ2 : [0, T ]→ P1(Rd) be two continuous maps with respect to W1 satisfying

supp(µ1(t)) ∪ supp(µ2(t)) ⊆ B(0, R),

for every t ∈ [0, T ], for some R > 0. Then for every ρ > 0 there exists constant
Lρ,R such that

‖K ? µ1(t)−K ? µ2(t)‖L∞(B(0,ρ)) ≤ Lρ,RW1(µ1(t), µ2(t))

for every t ∈ [0, T ].

Proof. A proof of this result may be found, for instance, in [25, Lemma 6.7].

Proposition 2.6. Let y0 ∈ Rdm, µ0 ∈ Pc(Rd), and µ0
N be as in Definition 1.7–

1. Let (uN )N∈N ⊆ L1([0, T ];U) be a sequence of controls such that uN ⇀ u, for
some u ∈ L1([0, T ];U).

Then, the sequence of solutions (yN , µN ) ∈ Lip([0, T ];X ) of (8) with initial
data (y0, µ0

N ) and control uN converges to a solution (y, µ) ∈ Lip([0, T ];X ) of
(2) with initial data (y0, µ0) and control u. Moreover, there exists ρT > 0,
depending only on y0, supp(µ0),K, g, fk, Bk,U , and T , such that for every N ∈
N, for every k = 1, . . . ,m and for every t ∈ [0, T ] it holds

‖yk,N (t)‖, ‖yk(t)‖ ≤ ρT and supp(µN (t)), supp(µ(t)) ⊆ B(0, ρT ).

Proof. We start by fixing N > 0 and estimating the growth of ‖yk,N (t)‖2 +
‖xi,N (t)‖2 for k = 1, . . . ,m and i = 1, . . . N . Let Σ = {(l, j) : l = 1, . . . ,m and j =
1, . . . N}. From Hypotheses (H), Lemma 2.4 and the compactness of U , it holds

1

2

d

dt

(
‖yk,N‖2 + ‖xi,N‖2

)
= ẏk,N · yk,N + ẋi,N · xi,N

= ((K ? µN )(yk,N ) + fk(y) +Bku) · yk,N + ((K ? µN )(xi) + g(y)(xi,N )) · xi,N
≤ ‖(K ? µN )(yk,N )‖ ‖yk,N‖+ fk(yN ) · yk,N + ‖Bku‖‖yk,N‖
+ ‖(K ? µN )(xi,N )‖‖xi,N‖+ g(yN )(xi,N ) · xi,N

≤ CK

1 + ‖yk,N‖+
1

N

N∑
j=1

‖xj,N‖

 ‖yk,N‖+ F1 max
l=1,...m

‖yl,N‖2 + F2 +M1‖yk,N‖

+ CK

1 + ‖xi,N‖+
1

N

N∑
j=1

‖xj,N‖

 ‖xi,N‖+G1‖xi,N‖2 +G2 max
l=1,...m

‖yl,N‖2 +G3

≤ C1 max
(`,j)∈Σ

{
‖y`,N‖2 + ‖xj,N‖2

}
+ C2,
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with C1 = 4CK + F1 + G2 + M1 and C2 = CK + F2 + G3 + M1. If we denote
with b(k,i)(t) = ‖yk,N (t)‖2 + ‖xi,N (t)‖2 and with a(t) = max(l,j)∈Σ{b(l,j)(t)},
then the Lipschitz continuity of a implies that a is a.e. differentiable, while by
Stampacchia’s Lemma (see for instance [30, Chapter 2, Lemma A.4]) for a.e.
t ∈ [0, T ] there exists a (l, j) ∈ Σ such that

ȧ(t) =
d

dt

(
‖yl,N (t)‖2 + ‖xj,N (t)‖2

)
≤ 2C1a(t) + 2C2.

Hence, Gronwall’s Lemma and Definition 1.7–1 imply that

a(t) ≤ (a(0) + 2C2t)e
2C1t ≤ (C0 + 2C2t)e

2C1t, (12)

for some uniform constant C0 only depending on y0 and supp(µ0). It then
follows that the trajectories (yN (·), µN (·)) are bounded uniformly in N in a
ball B(0, ρT ) ⊂ Rd, for

ρT :=
√
C0 + 2C2Te

C1T ,

that is positive and does not depend on t or on N . This in turn implies that
the trajectories (yN (·), µN (·)) are uniformly Lipschitz continuous in N , as can
be easily verified by computing ‖ẏk,N‖ and ‖ẋi,N‖ and noticing that all the
functions involved are bounded by Hypotheses (H) and the fact that we are
inside B(0, ρT ). Therefore

‖ẏk,N (t)‖ ≤ ρ′T , ‖ẋi,N (t)‖ ≤ ρ′T , (13)

where the constant ρ′T does not depend on t or on N .
By an application of the Ascoli-Arzelà theorem for functions on [0, T ] and

values in the complete metric space X , there exists a subsequence, again de-
noted by (yN (·), µN (·)) converging uniformly to a limit (y(·), µ(·)), whose tra-
jectories are also contained in B(0, ρT ). Due to the equi-Lipschitz continuity
of (yN (·), µN (·)) and the continuity of the Wasserstein distance, we thus obtain
for some LT > 0

‖(y(t2), µ(t2))− (y(t1), µ(t2))‖X (14)

= lim
N→+∞

‖(yN (t2), µN (t2))− (yN (t1), µN (t1))‖X ≤ LT |t2 − t1|,

for all t1, t2 ∈ [0, T ]. Hence, the limit trajectory (y∗(·), µ∗(·)) belongs as well to
Lip([0, T ];X ).

The same proof as in [24, Theorem 3.3] shows now that (y(·), µ(·)) is a
solution of (2).

Corollary 2.7. Let y0 ∈ Rdm, µ0 ∈ Pc(Rd), and u ∈ L1([0, T ];U). Then, there
exists a solution of (2) with control u and initial datum (y0, µ0).

Proof. Follows from Proposition 2.6 by taking any sequence of empirical mea-
sures µ0

N as in Definition 1.7–1, and the constant sequence uN ≡ u for all
N ∈ N.
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We now prove the continuous dependence on the initial data, that also gives
uniqueness of the solution for (2).

Proposition 2.8. Let the Hypotheses (H) hold. Let u ∈ L1([0, T ],U) be given,
and take two solutions (y1, µ1) and (y2, µ2) of (2) with control u and with
initial data (y0,1, µ0,1), (y0,2, µ0,2) ∈ X , respectively, where µ0,1 and µ0,2 have
both compact support. Then there exists a constant CT > 0 such that

‖(y1(t), µ1(t))−(y2(t), µ2(t))‖X ≤ CT ‖(y0,1, µ0,1)−(y0,2, µ0,2)‖X , for all t ∈ [0, T ]

Proof. We start by noticing that, by the definition of a solution, we infer the ex-
istence of a ρT > 0 for which y1(·), y2(·) ∈ B(0, ρT ) ⊂ Rdm and supp(µ1(·)), supp(µ2(·)) ⊆
B(0, ρT ) ⊂ Rd.

As a preliminary estimate, by hypothesis (K), Lemma 2.4 and Lemma 2.5
with the choice ρ = R̂ = ρT , we infer the existence of a constant LKρT > 0 such
that

‖(K ∗ µ1)(x)− (K ∗ µ2)(y)‖ ≤ LKρT (W1(µ1, µ2) + ‖x− y‖) . (15)

holds for every x, y ∈ Rd. Furthermore, if for the sake of brevity we denote by

G := sup
ξ∈B(0,ρT )⊂Rd,ς∈B(0,ρT )⊂Rdm

‖Dyg(ς)(ξ)‖ and F := max
1≤k≤m

LipB(0,ρT )(fk).

then the C2-regularity of g and fk for every k = 1, . . . ,m imply for every
y1, y2 ∈ B(0, ρT )

‖g(y1)− g(y2)‖L∞(B(0,ρT )) ≤ G‖y1 − y2‖ and ‖fk(y1)− fk(y2)‖ ≤ F‖y1 − y2‖.
(16)

We shall show the continuous dependence estimate by chaining the stability
of the ODE

ẏk(t) = (K ? µ(t))(yk(t)) + fk(y(t)) +Bku(t), k = 1, . . . ,m, (17)

with the one of the PDE

∂tµ(t) = −∇x · [(K ? µ(t) + g(y(t)))µ(t)] , (18)

first addressing the dependence of (17). By integration we have

‖y1
k(t)− y2

k(t)‖ ≤ ‖y
0,1
k − y

0,2
k ‖

+

∫ t

0

(
‖(K ? µ1(s))(y1

k(s))− (K ? µ2(s))(y2
k(s))‖+ ‖fk(y1(s))− fk(y2(s))‖

)
ds.

(19)

For the left-hand side of (19) we have that (15), (16), and the uniform bound
on y1(·) and y2(·) yield

‖y1,k(t)− y2,k(t)‖ ≤ ‖y0
1,k − y0

2,k‖+

∫ t

0

(
LKρTW1(µ1(s), µ2(s))+

+ LKρT ‖y1,k(s)− y2,k(s))‖+ F‖y1(s)− y2(s)‖
)
ds (20)
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We now consider (18). Arguing as in the derivation of [24, Formula (3.14)],
together with the estimate (16), we get

W1(µ1(t), µ2(t)) ≤ eC1tW1(µ0,1, µ0,2)

+

∫ t

0
C2e

C1s
(
LKρTW1(µ1(s), µ2(s)) +G‖y1(s)− y2(s)‖

)
ds,(21)

for some Gronwall’s constants C1, C2 > 0. We finally consider the function

ε(t) := ‖(y1(t), µ1(t))− (y2(t), µ2(t))‖X

and, combining (20) for each k = 1, . . . ,m and (21), we obtain

ε(t) ≤‖y0,1 − y0,2‖+

∫ t

0

(
mLKρTW1(µ1(s), µ2(s)) + LKρT ‖y

1(s)− y2(s))‖+mF‖y1(s)− y2(s)‖
)
ds

+ eC1tW1(µ0,1, µ0,2) +

∫ t

0
C2e

C1s
(
LKρTW1(µ1(s), µ2(s)) +G‖y1(s)− y2(s)‖

)
ds

≤ε(0)eC1t +

∫ t

0
(mLKρT +mF + (LKρT +G)C2e

C1s)ε(s) ds.

Gronwall’s lemma then implies

ε(t) ≤ ε(0)eC1t

(
(mLKρT +mF )t+

(LKρT +G)C2

C1
(eC1t − 1)

)
.

Since t ∈ [0, T ], the result is proved.

Remark 2.9. Going back to the application of the Ascoli-Arzelá Theorem in
Proposition 2.6, consider another converging subsequence of (yN , µN ). We can
prove that its limit is another solution of (8). Since the solution is unique for
Proposition 2.8, we have that all converging subsequences of (yN , µN ) have the
same limit, hence the sequence (yN , µN ) has itself limit (y, µ).

Remark 2.10. Since equicompactly supported solutions are unique, given the
initial datum, by Proposition 2.8, combined with Proposition 2.6 we infer that
the support of the unique solution can be estimated as a function of the data.
More precisely, it is contained in a ball B(0, ρT ), where the constant is depending
only on y0, supp(µ0), K, g, fk, Bk, U , and T .

We conclude this section by stating the existence result on mean-field opti-
mal controls for Problem 1. To this end, we fix an initial datum (y0, µ0) ∈ X ,
with µ0 compactly supported, and choose a sequence µ0

N as in Definition 1.7–1.
Consider the functional F (u) on L1([0, T ];U) defined in (1), where the pair

(y, µ) defines the unique solution of (2) with initial datum (y0, µ0) and control
u. Similarly, consider the functional FN (u) on L1([0, T ];U) defined in (7), where
the pair (yN , µN ) defines the unique solution of (2) with initial datum (y0, µ0

N )
and control u. As recalled in Proposition 2.6, such solution coincides with the
solution of the ODE system (8).

The existence is a consequence of the Γ-convergence of the sequence of func-
tionals (FN )N∈N on L1([0, T ];U) to the target functional F . For the definition
of Γ-convergence, we refer the reader to [21, Definition 4.1, Proposition 8.1].
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Theorem 2.11. Let the functionals (1)-(7) and dynamics (2) satisfy Hypothe-
ses (H). Consider an initial datum (y0, µ0) ∈ Rdm × P1(Rd), and a sequence
(µ0
N )N∈N, where µ0

N is as in Definition 1.7–1. Then the sequence of functionals
(FN )N∈N on X = L1([0, T ];U) defined in (7) Γ-converges to the functional F
defined in (1).

Proof. The proof is the same as [24, Theorem 5.3], provided one uses Ioffe’s
Theorem (see, for instance, [3, Theorem 5.8]) to derive

lim inf
N→+∞

∫ T

0
γ(uN (t))dt ≥

∫ T

0
γ(u∗(t))dt,

and conclude that the Γ− lim inf condition also holds in presence of the control
cost γ.

With the same argument as in [24, Corollary 5.4], we get the existence of
mean-field optimal controls for Problem 1 as an immediate corollary.

Corollary 2.12. Let the Hypotheses (H) in Section 1.1 hold. For every initial
datum (y0, µ0) ∈ Rdm×Pc(Rd), there exists a mean-field optimal control u∗ for
Problem 1.

Remark 2.13. Observe that the previous result does not state uniqueness of
the optimal control for the infinite dimensional problem. Indeed, in general, we
cannot ensure that all solutions of Problem 1 are mean-field optimal controls.

3 The Wasserstein gradient

We anticipated in Section 1 that the dynamics of ν∗ in (3) is an Hamiltonian
flow in the Wasserstein space of probability measures, in the sense of [4]. This
means that the vector field ∇νHc(ν

∗) is an element with minimal norm in
the Fréchet subdifferential at the point ν∗ of the maximized Hamiltonian Hc

introduced in the statement of Theorem 1.1 (we drop for simplicity the y, q
and u dependency). The proof of this fact shall follow the strategy adopted to
obtain analogous results in [5, Chapter 10], which however cannot be applied
verbatim to our case due to the peculiar nature of our operators. For the ease of
reading, a technical fact (namely, the proof that the functional Hc is semiconvex
along geodesics) is deferred to the Appendix 6.

In order to use those techniques, we consider our functionals defined on
P2(R2d) instead than on P1(R2d). Since we shall prove in Proposition 4.5 that,
whenever we start from a compactly supported initial datum, the dynamics
remains compactly supported uniformly in time, this assumption does not alter
our conclusions.

In what follows, we shall fix y, q ∈ Rdm and u ∈ L1([0, T ];U) and we write,
for the sake of compactness, Hc(ν) in place of Hc(y, q, ν, u). Moreover we denote
by z = (x, r) a variable in R2d.

Whenever supp(ν) ⊆ B(0, RT ), Hc(ν) can be rewritten as

Hc(ν) =
1

2

∫
R4d

F(z − z′)dν(z)ν(z′) +

∫
R2d

G(z)dν(z)−
∫
R2d

ˆ̀(z,
∫
ω̂ν)dν(z) +Q,
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where we set

F(x, r) = r ·K(x) G(x, r) = r · g(y)(x) +

m∑
k=1

qk ·K(yk − x), ˆ̀= −` ◦ (π1, Id) ω̂ = ω ◦ π1,

(22)

and Q collects all the remaining terms not depending on ν. Notice that F is
an even function.

We define the vector field ∇νL : R2d → R2d as

∇νL(z) = ∇ξ ˆ̀(z,
∫
ω̂ν) + Dω̂(z)T

(∫
R2d

∇ς ˆ̀(z′,
∫
ω̂ν)dν(z′)

)
(23)

for every z ∈ R2d. We can thus define our candidate vector field for the Wasser-
stein gradient ∇νHc(ν0) in the case that supp(ν0) ⊆ B(0, RT ):

w := (∇F) ? ν +∇G −∇νL. (24)

Notice that, by Hypotheses (H), w is a continuous function in z, and hence it
is well-defined ν-a.e.. In view of (22), it is straightforward to see that w agrees
with the vector field defined in (5) and (6), after reintroducing the variables
(y, q, u) which do not affect the Wasserstein differentiation, and setting µ =
π1#ν.

Lemma 3.1. Let ν ∈ Pc(R2d). Then w defined by (24) belongs to Lpν(R2d) for
every p ∈ [1,+∞], and it satisfies∫
R4d

w(z0) · (z1 − z0)dρ(z0, z1) =

∫
R6d

(∇F(z0 − z2) +∇G(z0)−∇νL(z0)) · (z1 − z0)dρ(z0, z1)dν(z2)

(25)

for every plan ρ ∈ Π(ν, ν ′) such that ν ′ ∈ Pc(R2d).

Proof. Since w is continuous, the fact that w is Lpν-integrable follows the fact
that ν has compact support. Equation (25) then follows by Fubini-Tonelli and
from the fact that ρ is compactly supported too by Remark 6.2.

In the proof of the forthcoming Theorem 3.3, we shall use the following
well-known property.

Proposition 3.2 ([5], Theorem 10.3.10). Fix the functional ψ : P2(R2d) →
(−∞,+∞]. Then, for every ν0 ∈ D(ψ), the metric slope

|∂ψ|(ν0) = lim sup
ν1→ν0

(ψ(ν1)− ψ(ν0))+

W2(ν1, ν0)

satisfies |∂ψ|(ν0) ≤ ‖w‖L2
ν0

for every w ∈ ∂ψ(ν0).

Theorem 3.3. Let ν ∈ P2(R2d) be such that supp(ν) ⊆ B(0, RT ). Then ν ∈
D(|∂Hc|) if and only if w as in (24) belongs to L2

ν(R2d). In this case, ‖w‖L2
ν

=
|∂Hc|(ν), i.e., w = ∇νHc(ν).
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Proof. We start by assuming that ν ∈ P2(R2d) satisfies |∂Hc|(ν) < +∞ and
proving that this implies that w belongs to L2

ν(R2d) and that ‖w‖L2
ν
≤ |∂Hc|(ν).

We compute the directional derivative of Hc along a direction induced by the
transport map Id+φ, where φ is a smooth function with compact support. We
use the shortcut νs,φ to indicate the measure (Id + sφ)#ν and we notice that

such that supp(νs,φ) ⊆ B(0, RT ) for any sufficiently small s > 0, since supp(ν)
is well contained in B(0, RT ). Denoting by

L̂(ν) =

∫
R2d

ˆ̀(z,
∫
ω̂ν)dν(z) for every ν ∈ P(R2d),

from the chain rule and the dominated convergence it follows

lim
s→0

L̂(νs,φ)− L̂(ν)

s
=

∫
R2d

∇ˆ̀(z,
∫
ω̂ν) · η(z)dν(z), (26)

where η(z) is the vector defined by

η(z) = lim
s→0

(
z + sφ(z)∫

ω̂νs,φ

)
−
(

z∫
ω̂ν

)
s

which, by a direct computation, is given by

η(z) :=

(
φ(z)∫

R2d Dω̂(z′)φ(z′)dν(z′)

)
(observe that actually the last 2d components are independent of z). Inserting
η into (26) and using Fubini’s Theorem we get

lim
s→0

L̂(νs,φ)− L̂(ν)

s
=

∫
R2d

∇ξ ˆ̀(z,
∫
ω̂ν)·φ(z)dν(z)+

∫
R4d

∇ς ˆ̀(z,
∫
ω̂ν)·

(
Dω̂(z′)φ(z′)

)
dν(z′)dν(z)

whence exchanging z with z′ in the second integral, and recalling (23), we have

lim
s→0

L̂(νs,φ)− L̂(ν)

s
=

∫
R2d

∇νL(z) · φ(z) dν(z)

On top of this, notice that the map

s 7→ F((z0 − z1) + s(φ(z0)− φ(z1)))−F(z0 − z1)

s
+
G(z0 + sφ(z0))− G(z0)

s

as s→ 0 converges to

∇F(z0 − z1) · (φ(z0)− φ(z1)) +∇G(z0) · φ(z0).

Since ν has compact support, the dominated convergence theorem, the identity
(25) and since ∇F is odd, it holds

+∞ > lim
s→0

Hc((Id+ sφ)#ν)−Hc(ν)

s

=
1

2

∫
R4d

∇F(z0 − z1) · (φ(z0)− φ(z1))dν(z0)dν(z1) +

∫
R2d

(∇G(z0)−∇νL(z0)) · φ(z0)dν(z0)

=

∫
R2d

w(z0) · φ(z0)dν(z0).
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From the last inequality, the assumption that |∂Hc|(ν) < +∞ and using the
trivial estimate

W2((Id+ sφ)#ν, ν) ≤ s‖φ‖L2
ν
,

we get ∫
R2d

w(z0) · φ(z0)dν(z0) ≤ |∂Hc|(ν)‖φ‖L2
ν
,

and hence, up to a change of sign of φ, this proves that ‖w‖L2
ν
≤ |∂Hc|(ν).

We now prove that the vector w belongs to the subdifferential of Hc; this
shall imply that w ∈ D(|∂Hc|) and that it is a minimal selection in ∂Hc(ν), by
the previous estimate and Proposition 3.2.

For proving the claim, we start by remarking that, due to Proposition 3.2,
the vector w ∈ L2

ν(R2d). Now consider a test measure ν, a plan ρ ∈ Πo(ν, ν),
and let us compute the directional derivative of Hc along the direction induced
by ρ. If we denote by νs,ρ the measure ((1−s)π1 +sπ2)#ρ on R2d, since it holds
ν0,ρ = ν, arguing as in the previous step we have

lim
s→0

L̂(νs,ρ)− L̂(ν)

s
=

∫
R4d

∇ˆ̀(z0,
∫
ω̂ν) · ζ(z0, z1)dρ(z0, z1), (27)

where ζ(z0, z1) is the vector defined by

ζ(z0, z1) := lim
s→0

(
(1− s)z0 + sz1∫

ω̂νs,ρ

)
−
(

z0∫
ω̂ν

)
s

=

(
z1 − z0∫

R4d Dω̂(z0)(z1 − z0)dρ(z0, z1)

)

(again, observe that the last 2d components are independent of z0, z1). Inserting
ζ into (27) and using Fubini’s Theorem we get

lim
s→0

L̂(νs,ρ)− L̂(ν)

s
=

∫
R4d

∇ξ ˆ̀(z0,
∫
ω̂ν) · (z1 − z0)dρ(z0, z1)+

+

∫
R8d

∇ς ˆ̀(z0,
∫
ω̂ν) · (Dω̂(z0)(z1 − z0)) dρ(z0, z1)dρ(z0, z1).

Therefore, exchanging z0, z1 with z0, z1 in the second integral, and recalling
(23), we have

lim
s→0

L̂(νs,ρ)− L̂(ν)

s
=

∫
R4d

∇νL(z0) · (z1 − z0) dρ(z0, z1).

Moreover, for every s ∈ [0, 1], the map

s 7→ F((1− s)(z0 − z0) + s(z1 − z1))−F(z0 − z0)

s
+
G((1− s)z0 + sz1)− G(z0)

s

as s→ 0 converges to

∇F(z0 − z0) · ((z1 − z0)− (z1 − z0)) +∇G(z0) · (z1 − z0).
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Hence, from Proposition 6.8, the dominated convergence theorem, the identity
(25) and the fact that ∇F is odd, we get

Hc(ν)−Hc(ν) ≥ lim
s→0

Hc(((1− s)π1 + sπ2)#ρ)−Hc(ν)

s
+ o(W2(ν, ν))

=
1

2

∫
R8d

∇F(z0 − z0) · ((z1 − z0)− (z1 − z0)) dρ(z0, z1)dρ(z0, z1) +

+

∫
R4d

(∇G(z0)−∇νL(z0)) · (z1 − z0)dρ(z0, z1) + o(W2(ν, ν))

=

∫
R4d

w(z0) · (z1 − z0)dρ(z0, z1) + o(W2(ν, ν)).

We have thus proven that w ∈ ∂Hc(ν).

4 The finite-dimensional problem

In this section we study the discrete Problem 2 and state the PMP for it. We
first recall the following existence result for the optimal control problem.

Proposition 4.1 (Theorem 23.11, [16]). Under Hypotheses (H), Problem 2
admits solutions.

We now introduce the adjoint variables of xi and yk, denoted by pi and qk,
respectively, and state the PMP in the following box.

Theorem 4.2 (Theorem 22.2, [16]). Let u∗N be a solution of Problem 2 with
initial datum (y(0), x(0)) = (y0, x0), and denote with (y∗(·), x∗(·)) : [0, T ]→
Rdm+dN the corresponding trajectory. Then there exists a Lipschitz curve
(y∗(·), q∗(·), x∗(·), p∗(·)) ∈ Lip([0, T ],R2dm+2dN ) solving the system

ẏ∗k = ∇qkHN (y∗, q∗, x∗, p∗, u∗)
q̇∗k = −∇ykHN (y∗, q∗, x∗, p∗, u∗)

k = 1, . . . ,m,

ẋ∗i = ∇piHN (y∗, q∗, x∗, p∗, u∗)
ṗ∗i = −∇xiHN (y∗, q∗, x∗, p∗, u∗)

i = 1, . . . , N,

u∗N = arg max
u∈U

HN (y∗, q∗, x∗, p∗, u),

(28)

with initial datum (y(0), x(0)) = (y0, x0) and terminal datum (q(T ), p(T )) =
0, where the Hamiltonian HN : R2dm+2dN → R is given by

HN (y, q, x, p, u) =
N∑
i=1

pi ·

 1

N

N∑
j=1

K(xi − xj) + g(y)(xi)

+

+
m∑
k=1

qk ·

 1

N

N∑
j=1

K(yk − xj) + fk(y) +Bku

− L(y, µN )− γ(u),

(29)

with µN = 1
N

∑N
i=1 δ(x− xi).
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Remark 4.3. The general statement of the PMP contains both normal and
abnormal minimizers. In our case, the simpler formulation of the PMP is
given by the fact that we have normal minimizers only. This is a consequence
of the fact that the final configuration is free, see e.g. [16, Corollary 22.3].

Remark 4.4. The uniqueness of the maximizer of HN follows from the same
motivations reported in Remark 1.2. Indeed, the form of the Hamiltonian im-
plies that for each u∗ ∈ U it holds

u∗ = arg max
u∈U

HN (y∗, q∗, x∗, p∗, u) when u∗ = arg max
u∈U

(
m∑
k=1

q∗k ·Bku− γ(u)

)
.

In other terms, since the control acts on the y variables only, then we have a
simpler formulation for the maximization of the Hamiltonian HN .

We now want to embed solutions of the PMP for Problem 2 as solutions
of the extended PMP for Problem 1. As a first step, we prove that pairs
control-trajectories (u∗N , (y

∗
N , q

∗
N , x

∗
N , p

∗
N )) satisfying system (28) have support

uniformly bounded in time and in N ∈ N. To this end, for every N ∈ N, we
introduce the mapping ΦN : R2dN → P1(R2d) as follows

ΦN : (x1, p1, . . . , xN , pN ) 7→ 1

N

N∑
i=1

δ(· − xi, · −Npi). (30)

Proposition 4.5. Let y0 ∈ Rdm, µ0 ∈ Pc(Rd), and µ0
N be as in Definition

1.7–1. Let u∗N be a solution of Problem 2 with initial datum (y0, µ0
N ), and

let (u∗N , (y
∗
N , q

∗
N , x

∗
N , p

∗
N )) be a pair control-trajectory satisfying the PMP for

Problem 2 with initial datum (y0, µ0
N ) and control u∗N given by Theorem 4.2.

Then the trajectories (y∗N (·), q∗N (·), ν∗N (·)), where ν∗N := ΦN (x∗N , p
∗
N ), are

equibounded and equi-Lipschitz continuous from [0, T ] to Y, where the space
Y := R2dm × P1(R2d) is endowed with the distance

‖(y, q, ν)− (y′, q′, ν ′)‖Y = ‖y − y′‖+ ‖q − q′‖+W1(ν, ν ′). (31)

Furthermore, there exists RT > 0, depending only on y0, supp(µ0),m,K, g, fk, Bk,U ,
and T , such that supp(ν∗N (·)) ⊆ B(0, RT ) for all N ∈ N. In particular, it holds
H(y∗N , q

∗
N , ν

∗
N , u

∗
N ) = Hc(y

∗
N , q

∗
N , ν

∗
N , u

∗
N ).

Proof. As a first step, notice that the pair (y∗N , x
∗
N ) solves the system (8). It

then follows from (12) and (13) that there exist two constants ρT and ρ′T , not
depending on N such that, for all i = 1, . . . , N , for all k = 1, . . . ,m, and a.e.
t ∈ [0, T ] we have

‖y∗k,N (t)‖ ≤ ρT , ‖x∗i,N (t)‖ ≤ ρT (32)

‖ẏ∗k,N (t)‖ ≤ ρ′T , ‖ẋ∗i,N (t)‖ ≤ ρ′T . (33)

From (32) we get that the terms
(

1
N

∑N
j=1K(xi − xj) + g(y)(xi)

)
and
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(
1
N

∑N
j=1K(yk − xj) + fk(y)

)
and all their derivatives are bounded on the

trajectories of (28). It also follows that there exists a uniform constant WT

such that ∥∥∥∥∥∥ 1

N

N∑
j=1

ω(x∗j,N (t))

∥∥∥∥∥∥ ≤WT

for all t ∈ [0, T ]. Furthermore, a direct computation yields

−∇xiL(y, µN ) =
1

N
∇ξ`

y, xi, 1

N

N∑
j=1

ω(xj)

+
1

N2
Dω(xi)

T

 N∑
k=1

∇ς`

y, xk, 1

N

N∑
j=1

ω(xj)


(34)

while the y-derivatives remain uniformly bounded on the trajectories by regu-
larity of ` and (33).

Since the terms Bku do not affect the second and the fourth equation in
(28), by the above discussed bounds and a simple combinatorial argument we
get the existence of a uniform constant LT such that the estimates

‖ṗ∗i,N (t)‖ ≤ LT

‖p∗i,N (t)‖+
1

N

N∑
j=1

‖p∗j,N (t)‖+
1

N

m∑
k=1

‖q∗k,N (t)‖+
1

N

 (35)

and

‖q̇∗k,N (t)‖ ≤ LT

 N∑
i=1

‖p∗i,N (t)‖+ ‖q∗k,N (t)‖+
m∑
j=1

‖q∗j,N (t)‖+ 1

 (36)

hold for each i = 1, . . . , N , k = 1, . . . ,m and a.e. t ∈ [0, T ]. We now rescale the
pi’s by setting r∗i,N := Np∗i,N and consider the function

εN (t) :=

m∑
k=1

‖q∗k,N (t)‖+
1

N

N∑
i=1

‖r∗i,N (t)‖ .

From (35) and (36) we deduce, possibly enlarging the constant LT , that

|ε̇N (t)| ≤ LT ((1 +m)εN (t) + 1) . (37)

Defining then the increasing functions ηN (t) through ηN (t) := supτ∈[0,t] εN (T −
τ), and observing that it holds ηN (0) = 0 for the boundary conditions in Theo-
rem 4.2, from (37) and Gronwall’s Lemma we obtain ηN (τ) ≤ LT τeLT τ . With
this, since εN (t) ≤ ηN (T ), and using (37), we get

εN (t) ≤ LTTeLT (1+m)T and |ε̇N (t)| ≤ LT
(
LT (1 +m)TeLT (1+m)T + 1

)
(38)
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for a.e. t ∈ [0, T ]. Since by definition of ν∗N (t) and standard properties of the
Wasserstein distance W1 it holds

W1(ν∗N (t+τ), ν∗N (t)) ≤
√

2

(
1

N

N∑
i=1

‖x∗i,N (t+ τ)− x∗i,N (t)‖+
1

N

N∑
i=1

‖r∗i,N (t+ τ)− r∗i,N (t))‖

)
,

from the previous inequality, (32), (33), (37), and (38) we obtain that y∗N (t)
and q∗N (t) are equibounded, that there exist a constant, denoted by RT , such
that supp(ν∗N (t)) ⊂ B(0, RT ) for all t ∈ [0, T ] and that (y∗N , q

∗
N , ν

∗
N ) are equi-

Lipschitz continuous from [0, T ] with values in Y.

Proposition 4.6. Let N ∈ N and u∗N ∈ Lp([0, T ];U) be an optimal control for
Problem 2 with given initial datum (y0

N , x
0
N ) ∈ Rdm+dN , and (y∗N (·), q∗N (·), x∗N (·), p∗N (·)) ∈

Lip([0, T ],R2dm+2dN ) a corresponding trajectory of the PMP with maximized
Hamiltonian HN .

Define ν∗N := ΦN (x∗1,N , p
∗
1,N , . . . , x

∗
N,N , p

∗
N,N ) with ΦN as in (30), and as-

sume that supp(ν∗N (·)) ⊆ B(0, RT ). Then, the control u∗N is optimal for Problem
1 and (y∗N , q

∗
N , ν

∗
N , u

∗
N ) satisfies the extended Pontryagin Maximum Principle.

Proof. First observe that, by Proposition 4.5, Hc(y
∗
N , q

∗
N , ν

∗
N , u

∗
N ) = H(y∗N , q

∗
N , ν

∗
N , u

∗
N )

and that for every t ∈ [0, T ]

u∗N (t) = arg max
u∈U

HN (y∗N (t), q∗N (t), x∗N (t), p∗N (t), u) ⇐⇒ u∗N (t) = arg max
u∈U

H(y∗N (t), q∗N (t), ν∗N (t), u),

due to the specific form of the Hamiltonian HN and H, see Remark 4.4.
Rewriting HN in terms of ν∗N (·), we have that HN (y∗N , q

∗
N , x

∗
N , p

∗
N , u

∗
N ) and

H(y∗N , q
∗
N , ν

∗
N , u

∗
N ) only differ for a term which is independent on yk and qk,

hence equations for ẏ∗k,N , q̇
∗
k,N in the PMP for Problem 2 and in the extended

PMP for Problem 1 coincide.
We further notice that for all i = 1, . . . , N , since DK is even we have

−N∇xi
1

N2

N∑
h=1

rh ·
N∑
j=1

K(xh − xj) = − 1

N

 N∑
j=1

DK(xi − xj)T ri −
N∑
h=1

DK(xh − xi)T rh


= − 1

N

 N∑
j=1

DK(xi − xj)T (ri − rj)

 = −
∫
R2d

DK(xi − x′)T (ri − r′) dνN (x′, r′)

after setting νN = 1
N

∑N
i=1 δ(x − xi, r − ri). Observe that also the right-hand

side of (34) can be rewritten in terms of νN (through µN = π1#νN ), yielding

−N∇xiL(y, µN ) = −∇ξ`
(
y, xi,

∫
ωµN

)
−Dω(xi)

T

[∫
∇ς`

(
y, x′,

∫
ωµN

)
dµN (x′)

]
.

With the previous equalities, setting r∗i,N = Np∗i,N and ν∗N := ΦN (x∗1,N , p
∗
1,N , . . . , x

∗
N,N , p

∗
N,N ),

the identity

J(∇νHc(y
∗
N , q

∗
N , ν

∗
N , u

∗
N ))(x∗i,N , r

∗
i,N ) =

(
N∇riHN (y∗N , q

∗
N , x

∗
N , p

∗
N , u

∗
N )

−N∇xiHN (y∗N , q
∗
N , x

∗
N , p

∗
N , u

∗
N )

)
,

(39)
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simply follows by differentiating in (29) and comparing with (5), and (6). Since
the boundary conditions of Problem 2 and Problem 1 coincide too, the result
follows now by (39) arguing, for instance, as in [25, Lemma 4.3].

5 Proof of Theorem 1.1

In this section, we prove Theorem 1.1. We first recall that we already proved
in Corollary 2.12 that there exists a mean-field optimal control for Problem 1.
We now want to prove that all mean-field optimal controls are solutions of the
extended PMP.

Let u∗ be a mean-field optimal control for Problem 1 with initial datum
(y0, µ0). Fix µ0

N as in Definition 1.7–1, and consider a sequence (u∗N )N∈N of
optimal controls of Problem 2 with initial datum (y0, µ0

N ), having a subse-
quence (which, for simplicity, we do not relabel) weakly converging to u∗ in
L1([0, T ];U). Denote with (y∗N , x

∗
N ) the trajectory of (8) corresponding to the

control u∗N and the initial datum (y0, µ0
N ) of Problem 2. Compute the cor-

responding pair control-trajectory (u∗N , (y
∗
N , q

∗
N , x

∗
N , p

∗
N )) satisfying the PMP

for Problem 2, that exists due to Theorem 4.2. Set ν∗N := ΦN (x∗N , p
∗
N ) and

r∗N := Np∗N . By Proposition 4.5, the trajectories (y∗N , q
∗
N , ν

∗
N ) are equibounded

and equi-Lipschitz from [0, T ] to the product space Y = R2dm × P1(R2d) en-
dowed with the distance (31), and the empirical measures ν∗N have equibounded
support. Moreover, the pair (u∗N , (y

∗
N , q

∗
N , ν

∗
N )) satisfies the extended PMP by

Proposition 4.6.
By the Ascoli-Arzelà theorem, we have that there exists a subsequence,

which we denote again with (y∗N , q
∗
N , ν

∗
N ), that converges to (y∗, q∗, ν∗) : [0, T ]→

Rdm×P1(R2d) uniformly with respect to t ∈ [0, T ]. Since by definition π1#ν
∗
N =

µ∗N , by the convergence of µ∗N to µ∗ proved in Proposition 2.6, we get π1#ν
∗ =

µ∗. Observe that (y∗, q∗, ν∗) is a Lipschitz function with respect to time and ν∗

has support contained in B(0, RT ) for all t ∈ [0, T ]. Moreover, by the boundary
conditions for each N , we have that y∗(0) = y0, π1#(ν∗(0)) = µ0 and q∗(T ) = 0,
π2#(ν∗(T ))(r) = δ(r).

Fix now t ∈ [0, T ]. To shorten notation, let E : Rdm × RD → R be the
functional, strictly concave with respect to u, defined as

E(q, u) =
m∑
k=1

qk ·Bku− γ(u) .

Recall that by (28) and by Remark 4.4, u∗N (t) satisfies

u∗N (t) = arg max
u∈U

E(q∗N (t), u) ,

since the maximum is uniquely determined by strict concavity. Since U is
bounded, by definition E(·, u) is continuous uniformly with respect to u ∈ U .
The convergence of q∗N (t) to q∗(t) then implies that every accumulation point
vt ∈ U of u∗N (t) must satisfy

vt = arg max
u∈U

E(q∗(t), u) (40)
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and is therefore uniquely determined. This shows that the sequence u∗N is
pointwise converging in [0, T ] to the function v(t) := vt. Due to the boundedness
of U , we further have that u∗N → v in L1((0, T );U). Since u∗N was already
converging to u∗ weakly in L1((0, T );U) it must be u∗(t) = v(t) for a.e. t ∈
(0, T ), which together with (40) implies that

u∗N → u∗ strongly in L1((0, T );U) (41)

and that
u∗(t) = arg max

u∈U
E(q∗(t), u)

for a.e. t ∈ [0, T ]. Due to the explicit expression of H(y, q, ν, u) in (4), this is
equivalent to say that

H(y∗(t), q∗(t), ν∗(t), u∗(t)) = arg max
u∈U

H(y∗(t), q∗(t), ν∗(t), u)

for a.e. t ∈ [0, T ].
We finally prove that (y∗, q∗, ν∗) satisfies the Hamiltonian system (3) with

control u∗. Due to equi-Lipschitz continuity, we have that the derivatives
(ẏ∗N , q̇

∗
N ), and ∂tν

∗
N converge to (ẏ∗, q̇∗), and ∂tν

∗, respectively, weakly in L1([0, T ];R2md)
and in the sense of distributions. Observe now that by (5) and (6) the vector
field ∇νHc(y, q, ν)(·, ·), which is independent of u, depends continuously on
(y, q, ν). By the uniform convergence of (y∗N , q

∗
N , ν

∗
N ) and since supp(ν∗N (t)) ⊂

B(0, RT ) for all t ∈ [0, T ] we get that

∇νHc(y
∗
N (t), q∗N (t), ν∗N (t))(x, r) ⇒ ∇νHc(y

∗(t), q∗(t), ν∗(t))(x, r),

uniformly with respect to t ∈ [0, T ] and (x, r) ∈ B(0, RT ). From this, us-
ing again the narrow convergence of ν∗N (t) to ν∗(t) and since supp(ν∗N (t)) ⊂
B(0, RT ), we then get the uniform bound

‖ (J∇νHc(y
∗
N (t), q∗N (t), ν∗N (t))) ν∗N (t)‖Mb(RD,RD) ≤ CT ,

for some constant CT independent of t ∈ [0, T ], as well as the narrow conver-
gence

(J∇νHc(y
∗
N (t), q∗N (t), ν∗N (t))) ν∗N (t) ⇀ (J∇νHc(y

∗(t), q∗(t), ν∗(t))) ν∗(t)

for all t ∈ [0, T ]. Testing with functions φ ∈ C∞c ([0, T ]×R2d;R), the two above
properties are enough to show that

∇(x,r)·((J∇νHc(y
∗
N (t), q∗N (t), ν∗N (t)))ν∗N (t)) ⇀ ∇(x,r)·((J∇νHc(y

∗(t), q∗(t), ν∗(t)))ν∗(t))

in the sense of distributions, so that ν∗ solves the third equation in (3).
For all k = 1, . . . ,m, taking derivatives in the explicit expression in (4) and

using the definition of Hc, we have that ∇ykHc(y, q, ν, u) is actually independent
of u and is continuous with respect to the Euclidean convergence on (y, q) and
the narrow convergence on measures ν with compact support in a fixed ball
B(0, RT ). Therefore, since (y∗N , q

∗
N , ν

∗
N ) converges to (y∗, q∗, ν∗) uniformly with
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respect to t ∈ [0, T ], and there is no dependence on u, for all k = 1, . . . ,m we
have that

∇ykHc(y
∗
N (t), q∗N (t), ν∗N (t), u∗N (t))→ ∇ykHc(y

∗(t), q∗(t), ν∗(t), u∗(t))

in Rd uniformly with respect to t ∈ [0, T ]. It then follows that q∗ solves the
second equation in (3).

A similar argument, also using the L1 convergence of u∗N to u∗ proved in
(41), shows that

∇qkHc(y
∗
N (t), q∗N (t), ν∗N (t), u∗N (t))→ ∇qkHc(y

∗(t), q∗(t), ν∗(t), u∗(t))

in L1([0, T ];Rd) for all k = 1, . . . ,m, so that y∗ solves the first equation in (3).
This concludes the proof of Theorem 1.1.
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6 Appendix: semiconvexity along geodesics of Hc

Throughout the section, K shall denote a convex, compact subset of R2d.
The following property shall be used to prove that the subdifferential of Hc

is nonempty.

Definition 6.1. A proper, lower semicontinuous functional ψ : P2(Rn) →
(−∞,+∞] is semiconvex along geodesics whenever, for every ν0, ν1 ∈ P2(Rn)
and every optimal transport plan ρ ∈ Πo(ν0, ν1) there exists C ∈ R for which it
holds

ψ(((1− s)π1 + sπ2)#ρ) ≤ (1− s)ψ(ν0) + sψ(ν1) + Cs(1− s)W2
2 (ν0, ν1)) for every s ∈ [0, 1].

In order to prove the semiconvexity of Hc, we shall establish the semicon-
vexity of the following functionals:

Ĥ1
c(ν) =

1

2

∫
R4d

F̂(z − z′)dν(z)ν(z′) +

∫
Rd
Ĝ(z)dν(z),

Ĥ2
c(ν) =

∫
Rd

ˆ̀(z,
∫
ω̂ν)dν(z),

where F̂ , Ĝ, ˆ̀, and ω̂ are C2 functions. The desired result will then follow by
noticing that Hc(ν) = Ĥ1

c(ν) + Ĥ2
c(ν) for F̂ = F , Ĝ = G, ˆ̀ = −` ◦ (π1, Id),

ω̂ = ω ◦ π1 and K = B(0, RT ).
The following simple property will be needed to prove semiconvexity of the

above functionals.
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Lemma 6.2. Let ν0, ν1 ∈ Pc(R2d) with support contained in K. Let ρ ∈
Π(ν0, ν1) and set

νs = ((1− s)π1 + sπ2)#ρ, (42)

for every s ∈ [0, 1]. Then, it holds

supp(νs) ⊆ K for all s ∈ [0, 1].

Proof. We first notice, that for every ρ ∈ Π(ν0, ν1) it holds

supp(ρ) ⊆ K ×K . (43)

This follows from the equality

R4d\(K ×K) = (R2d × (R2d\K)) ∪ ((R2d\K)× R2d)

and from the fact that both R2d × (R2d\K)) and (R2d\K)×R2d are ρ-null sets
by hypothesis.

To prove the Lemma, it suffices to show that for all f ∈ C(R2d) satisfying
f ≡ 0 on K it holds ∫

R2d

fdνs = 0. (44)

Indeed, ∫
R2d

fdνs =

∫
R4d

fd((1− s)π1 + sπ2)#ρ(z0, z1)

=

∫
R4d

f((1− s)z0 + sz1)dρ(z0, z1)

=

∫
K×K

f((1− s)z0 + sz1)dρ(z0, z1),

since, by (43), supp(ρ) ⊆ K × K. From the convexity of K follows that (1 −
s)z0 + sz1 ∈ K for every s ∈ [0, 1], which, together with the assumption f ≡ 0
in K, yield (44), as desired.

In what follows, we shall make use of the following, well-known result.

Remark 6.3. Let K be a convex, compact subset of R2d and let f ∈ C2(R2d;R).
Then there exists CK,f ∈ R depending only on K and f such that

f((1− s)x0 + sx1) ≤ (1− s)f(x0) + sf(x1) + CK,fs(1− s)‖x0 − x1‖2, (45)

for every x0, x1 ∈ R2d and s ∈ [0, 1].

We now prove the semiconvexity of Ĥ1
c .

Lemma 6.4. Let ν0, ν1 ∈ Pc(R2d) and let ρ ∈ Π(ν0, ν1). Then, there exists
C ∈ R independent of ν0 and ν1 for which

Ĥ1
c(((1− s)π1 + sπ2)#ρ) ≤ (1− s)Ĥ1

c(ν0) + sĤ1
c(ν1) + Cs(1− s)W2

2 (ν0, ν1)

holds for every s ∈ [0, 1].
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Proof. We may assume supp(ν0), supp(ν1) ⊆ K for some convex and compact
set K ⊂ R2d, otherwise the inequality is trivial. Hence, from Lemma 6.2, it
follows supp(νs) ⊆ K for every s ∈ [0, 1]. But then, since F̂ and Ĝ are both C2,
the result follows as in [5, Proposition 9.3.2, Proposition 9.3.5].

Corollary 6.5. Let ω̂ ∈ C2(R2d;Rd), ν0, ν1 ∈ Pc(R2d), ρ ∈ Π(ν0, ν1) and define
νs as in (42) for s ∈ [0, 1]. If we set

ξs =

∫
R2d

ω̂dνs, (46)

then

‖ξs − (1− s)ξ0 − sξ1‖ ≤ Cs(1− s)W2
2 (ν0, ν1),

for all s ∈ [0, 1], where C is independent of ν0 and ν1.

Proof. Follows from Lemma 6.4 applied first to the functions F̂ ≡ 0 and Ĝ ≡ ω̂,
and then to F̂ ≡ 0 and Ĝ ≡ −ω̂.

The semiconvexity of Ĥ2
c will be deduced as a corollary of the following

estimate.

Lemma 6.6. Suppose that ˆ̀ ∈ C2(R2d × Rd;R), let z0, z1 ∈ K and set zs =
(1−s)z0 +sz1 for all s ∈ [0, 1]. Furthermore, let ν0, ν1 ∈ Pc(R2d), ρ ∈ Π(ν0, ν1)
and define νs and ξs as in (42) and (46) for s ∈ [0, 1]. Then, for all s ∈ [0, 1],
it holds

ˆ̀(zs, ξs) ≤ (1− s)ˆ̀(z0, ξ0) + sˆ̀(z1, ξ1) + CK,ˆ̀,ω̂s(1− s)W
2
2 (ν0, ν1) + CK,ˆ̀,ω̂s(1− s)‖z0 − z1‖2,

for some constant CK,ˆ̀,ω̂ depending only on K, ˆ̀ and ω̂.

Proof. SinceK is compact, zs ∈ K for all s ∈ [0, 1]. Moreover, (1−s)ξ0+sξ1 ∈ K′
for all s ∈ [0, 1], for some convex and compact set K′ ⊂ Rd. Notice that from
(45) follows

ˆ̀(zs, (1− s)ξ0 + sξ1) ≤ (1− s)ˆ̀(z0, ξ0) + sˆ̀(z1, ξ1) + CK,K′s(1− s)
(
‖z0 − z1‖2 + ‖ξ0 − ξ1‖2

)
,

(47)

and from the definition of ξs and Jensen’s inequality, we get

‖ξ0 − ξ1‖2 ≤ LipK(ω)W2
1 (ν0, ν1) ≤ LipK(ω)W2

2 (ν0, ν1). (48)

Moreover, for every s ∈ [0, 1] it holds

‖ˆ̀(zs, ξs)− ˆ̀(zs, (1− s)ξ0 + sξ1)‖ ≤ LipK×K′‖ξs − (1− s)ξ0 − sξ1‖
≤ LipK×K′s(1− s)CW2

2 (ν0, ν1).
(49)

Hence, for every s ∈ [0, 1], using (47), (48) and (49), we get

ˆ̀(zs, ξs) = ˆ̀(zs, ξs)− ˆ̀(zs, (1− s)ξ0 + sξ1) + ˆ̀(zs, (1− s)ξ0 + sξ1)

≤ (1− s)ˆ̀(z0, ξ0) + sˆ̀(z1, ξ1) + CK,ˆ̀,ω̂s(1− s)W
2
2 (ν0, ν1) + CK,ˆ̀,ω̂s(1− s)‖z0 − z1‖2.
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Corollary 6.7. Let ν0, ν1 ∈ Pc(R2d) and ρ ∈ Πo(ν0, ν1). Then, there exists
C ∈ R independent of ν0 and ν1 for which

Ĥ2
c(((1− s)π1 + sπ2)#ρ) ≤ (1− s)Ĥ2

c(ν0) + sĤ2
c(ν1) + Cs(1− s)W2

2 (ν0, ν1)

holds for every s ∈ [0, 1].

Proof. Notice that, by Lemma 6.2, Ĥ2
c (νs) can be rewritten as

Ĥ2
c(νs) =

∫
K×K

ˆ̀(zs, ξs)dρ(z0, z1),

Furthermore, since ρ ∈ Πo(ν0, ν1) it holds∫
K×K

‖z0 − z1‖2dρ(z0, z1) =

∫
R4d

‖z0 − z1‖2dρ(z0, z1) =W2
2 (ν0, ν1),

the thesis follows from Lemma 6.6.

Proposition 6.8. The functional Hc is semiconvex along geodesics.

Proof. Follows directly from Lemma 6.4 and Corollary 6.7, by noticing that
Hc(ν) = Ĥ1

c(ν) + Ĥ2
c(ν) for F̂ = F , Ĝ = G, ˆ̀ = −` ◦ (π1, Id), ω̂ = ω ◦ π1 and

K = B(0, RT ).
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Sparse control of force field dynamics. In International Conference on
NETwork Games, COntrol and OPtimization, October 2014.

[10] Mattia Bongini, Massimo Fornasier, Oliver Junge, and Benjamin Scharf.
Sparse control of alignment models in high dimension. Netw. Heterog.
Media, 10(3):647 – 697, 2014.

[11] Mattia Bongini, Massimo Fornasier, and Dante Kalise. (Un)conditional
consensus emergence under feedback controls. Discrete Contin. Dyn. Syst.,
35(9):4071 – 4094, 2015.

[12] Martin Burger, Marco Di Francesco, Peter Markowich, and Marie-Therese
Wolfram. Mean field games with nonlinear mobilities in pedestrian dy-
namics. Discrete Contin. Dyn. Syst. Ser. B, 19:1311–1333, 2014.

[13] Marco Caponigro, Massimo Fornasier, Benedetto Piccoli, and Emmanuel
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