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Abstract. We study by Γ-convergence the stochastic homogenization of dis-

crete energies on a class of random lattices as the lattice spacing vanishes.
We consider general bounded spin systems at the bulk scaling and prove a

homogenization result for stationary lattices. In the ergodic case we obtain a

deterministic limit.

1. Introduction. In this paper we study the discrete-to-continuum limit of bounded
spin systems defined on stochastic lattices at the bulk scaling. In particular we
focus on the properties of these discrete systems at zero temperature where the
abstract methods of Γ-convergence have already proved to be an effective tool for
the asymptotic analysis (see [2], [3], [4], [5], [10], [11]). More specifically we con-
sider systems parameterized over the points of a lattice L ⊂ (Rd)Zd that we see
as the outcome of a random variable on the probability space (Ω,F ,P), namely
ω ∈ Ω 7→ L(ω) = {L(ω)(i)}i∈Zd . On the geometry of the lattices we make two as-
sumptions preventing arbitrarily big empty regions and cluster of points. We then
scale the lattices by a small parameter ε that will be eventually sent to 0 in the
continuum limit. On these admissible lattices we define a spin field u : εL(ω)→ K
where K ⊂ Rm is a bounded set and consider non negative energies of the form

Fε(u) =
∑

εx,εy∈D
εdfε(x, y, u(εx), u(εy)). (1)

Under standard coercivity, growth and long-range decay conditions on the densities
fε we prove a compactness and integral representation result for a Γ-limit of Fε.
In this analysis the assumptions on the geometry of the lattice play an important
role. In particular they allow us to regard our spin system as defined on a periodic
lattice and to take advantage of the results in [5], where an analogous system on a
cubic lattice was considered, to show that the limit functional fulfills the assumption
of an integral representation theorem proved in [14]. As a result the compactness
and integral representation Theorem 3.2 follows. In Theorem 3.4 we extend the
Γ-convergence result for the functionals Fε to the case when the spin field is con-
strained to realize a certain prescribed mean value. As a corollary we obtain the
convergence of minimum problems under mean value constraints which turns out
to be a key element in order to prove a stochastic homogenization theorem for spin
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systems on stationary random lattices. It is at this point that we need to combine
the abstract methods of Γ-convergence with the sub-additive ergodic theorem in [1].
This argument has been first used in the framework of stochastic homogenization in
[16] and in the context of discrete-to-continuum limits under bulk scaling in [5] for
functionals defined on Sobolev spaces. Here we prove it in the context of Lebesgue
spaces as a first result for the analysis of general spin systems at surface scaling
(for the analysis of Ising systems on stochastic lattices at surface scaling, where the
application of the ergodic theorem is more involved, we refer to [7]).

2. Stochastic lattices and discrete energies. In this section we introduce the
stochastic framework we will use in the rest of the paper.

2.1. Basic notation. Given x ∈ Rd we denote by |x| the Euclidean norm on x.
If B ⊂ Rd is a Borel set we denote by |B| its Lebesgue measure. Given an open
set D ⊂ Rd we denote by B(D) the Borel σ-algebra on D, by A(D) the class of all
bounded open subsets of D and by AR(D) the family of those sets in A(D) with
Lipschitz boundary. We denote by dimH(·) the Hausdorff dimension and by Hd−1

the (d − 1)-dimensional Hausdorff measure. The triple (Ω,F ,P) denotes a fixed
probability space Ω with a complete σ-algebra F and a probability measure P. In
the proofs C denotes a generic constant that may change from line to line.

2.2. Random networks. The random lattices in terms of which we will define our
discrete systems need to satisfy some geometric properties. These are listed below
and characterize what we call admissible sets of points.

Definition 2.1 (admissible sets). Given a countable set of points Σ = {xi}i∈N in
Rn, we say that Σ is admissible if

(i) there exists R > 0 such that infz∈Rd #(Σ ∩ B(z,R)) ≥ 1 (i.e., arbitrarily big
empty regions are forbidden),

(ii) there exists r > 0 such that inf{|x − y|, x, y ∈ Σ, x 6= y} ≥ r (i.e., clusters
are forbidden).

To an admissible set of points we associate the Voronoi tessellation (C(x))x∈Σ

defined by
C(x) := {y ∈ Rd : |x− y| ≤ |x− y|, ∀x ∈ Σ\{x}}.

Two points in Σ are said to be nearest neighbors if the Voronoi cells having them
as centers share a (d − 1)-dimensional edge. Hence we define the set of nearest
neighbors of Σ as

NN (Σ) := {(x, y) ∈ Σ2 : dimH(C(x) ∩ C(y)) = d− 1}. (2)

The following two properties are straightforward:

Lemma 2.2 (geometric properties of admissible sets). Let Σ be an admissible set
of points with constants r,R as in Definition 2.1. Then there exists a constants
M > 0 depending only on r and R such that, for all x ∈ Σ,

(i) B r
2
(x) ⊂ C(x) ⊂ BR(x),

(ii) #{y ∈ Σ : C(x) ∩ C(y) 6= ∅} ≤M .

By stochastic lattices we mean a random variable realizing almost surely sets
which are admissible with respect to the same constants r,R in Definition 2.1. To
describe the stochastic properties of these lattices we need some additional defini-
tion.
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Definition 2.3 (group action). Let (τz)z∈Zd , τz : Ω → Ω, be an additive group
action on Ω. We say that it is measure preserving if

P(τzB) = P(B) ∀B ∈ F , z ∈ Zd.

If in addition, for all B ∈ F we have

(τz(B) = B ∀z ∈ Zd) ⇒ P(B) ∈ {0, 1},

then (τz)z∈Zd is called ergodic.

Let us specify the assumptions on the random variable generating the network.

Definition 2.4 (stochastic lattice). A random variable L : Ω → (Rd)Zd , ω 7→
L(ω) = {L(ω)(i)}i∈Zd is called a stochastic lattice. We say that L is admissible if
L(ω) is admissible in the sense of Definition 2.1 and the constants r,R can be chosen
independent of ω P-almost surely. The stochastic lattice L is said to be stationary if
there exists a measure preserving group action (τz)z∈Zd on Ω such that, for P-almost
every ω ∈ Ω,

L(τzω) = L(ω) + z. (3)

If in addition (τz)z∈Zd is ergodic, then L is called ergodic.

Given a realization L(ω) of a stochastic lattice, we denote by NN (ω) the corre-
sponding nearest neighbors.

Remark 1. We stress that our geometric assumptions on the random lattice rule
out many examples of stationary point processes used in stochastic geometry, e.g.
homogenous Poisson point processes.

We set I = {[a, b) : a, b ∈ Zd, a 6= b}, where [a, b) := {x ∈ Rd : ai ≤ xi < bi ∀i}
and we introduce the notion of discrete subadditive stochastic process.

Definition 2.5. A function µ : I → L1(Ω) is said to be a discrete subadditive
stochastic process if the following properties hold P-almost surely:

(i) for every I ∈ I and for every finite partition (Ik)k∈K ⊂ I of I we have

µ(I, ω) ≤
∑
k∈K

µ(Ik, ω).

(ii) inf
{

1
|I|
∫

Ω
µ(I, w) dP(ω) : I ∈ I

}
> −∞.

Our homogenization results are based on the following pointwise ergodic theorem
(see [1]), which has already been used in the pioneering paper [16] in the context
of stochastic homogenization of elliptic integral functionals and in [6] in the case of
discrete hyperelastic systems.

Theorem 2.6. Let µ : I → L1(Ω) be a discrete subadditive stochastic process and
let I ∈ I. If µ is stationary with respect to a measure preserving group action
(τz)z∈Zd ; i.e.,

∀I ∈ I, ∀z ∈ Zj : µ(I + z, ω) = µ(I, τzω) almost surely,

then there exists Φ : Ω→ R such that, for P-almost every ω,

lim
k→+∞

µ(kI, ω)
|kI|

= Φ(ω).
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2.3. Discrete spin-type energies. Having settled the stochastic environment, we
are now able to define our discrete spin energies on these stochastic lattices. We
restrict ourselves to pairwise interaction energies, but it is worth noticing that the
core of these results can be (modulo details) generalized to multi-body interactions
as well. We let ε > 0 be a small parameter (describing the average distance between
particles), D ⊂ AR(Rd) be a regular reference domain and let L(ω) be admissible.

The energies we have in mind are defined on functions u : εL(ω) → Rm. We
consider the u as generalized spin fields parameterized over the ε lattice εL(ω), with
ε eventually going to zero in what is usually referred to as a discrete-to-continuum
limit. As our proofs rely on an integral representation result, as usual in this setting
we need to define a localized version of the energies. Given A ∈ AR(D), we consider

Fε(ω)(u,A) = Fε,nn(u,A)(ω) + Fε,lr(u,A)(ω), (4)

where the nearest neighbor interactions and long-range interactions are respectively
given by functionals of the form

Fε,nn(u,A)(ω) =
∑

(x,y)∈NN (ω)
εx,εy∈A

εdfε,nn(x, y, u(εx), u(εy)),

Fε,lr(u,A)(ω) =
∑

(x,y)/∈NN (ω)
εx,εy∈A

εdfε,lr(x, y, u(εx), u(εy)).

Note that the random character of our energies depend on the underlying random
geometry of the lattice but not in the interaction coefficients fε,nn, fε,lr, which are
instead considered deterministic.

As usual in the discrete-to-continuum analysis, we embed the problems in a
suitable Lebesgue space (depending on the scalings). In general, note that we can
identify each function u : εL(ω)→ Rm with its piecewise constant interpolation on
the Voronoi cells of εL(ω). Therefore, given a bounded set K ⊂ Rm let us introduce
the class

Cε(ω,K) := {u : Rd → K : u|C(εx) = const. ∀εx ∈ εL(ω)}.

Since the intersection of two Voronoi cells has zero Lebesgue-measure, this class is
well defined and Cε(ω,K) ⊂ Lp(D) for every 1 ≤ p ≤ +∞. Without specifying the
exponent p for the moment we may define Fε(u,A)(ω) : L1(D)→ (−∞,+∞] as

Fε(ω)(u,A) =

{
Fε(ω)(u,A) if u ∈ Cε(ω,K),
+∞ otherwise.

(5)

Following some ideas in [6], we now introduce an auxiliary deterministic square
lattice on which we will conveniently rewrite the energies Fε. This lattice will turn
out to be useful in order to provide uniform (with respect to the stochastic variable)
estimates on the discrete energies.

On setting r′ = r√
d

it follows that for all α ∈ r′Zd it holds #{L(ω) ∩ {α +
[0, r′)d}} ≤ 1. We now set

Zr′(ω) :={α ∈ r′Zd : #
(
L(ω) ∩ {α+ [0, r′)d}

)
= 1},

xα :=L(ω) ∩ {α+ [0, r′)d}, α ∈ Zr′(ω)
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and, for ξ ∈ r′Zd, U ⊂ Rd and ε > 0,

Rξnn,ε(U) := {α : α, α+ ξ ∈ Zr′(ω), εxα, εxα+ξ ∈ U, (xα, xα+ξ) ∈ NN (ω)},

Rξlr,ε(U) := {α : α, α+ ξ ∈ Zr′(ω), εxα, εxα+ξ ∈ U, (xα, xα+ξ) /∈ NN (ω)}.

For fixed ξ ∈ r′Zd we can now rewrite the energy contribution using

F ξnn,ε(ω)(u,A) =
∑

α∈Rξnn,ε(A)

εdfε,nn (xα, xα+ξ, u(xα), u(εxα+ξ)) ,

F ξlr,ε(ω)(u,A) =
∑

α∈Rξlr,ε(A)

εdfε,lr (xα, xα+ξ, u(εxα), u(εxα+ξ)) .

3. The bulk scaling. This section deals with the case, where fε,nn and fε,lr are
of order 1 with respect to ε. In particular, in contrast to [6], there is no gradient
structure in the energy. As a result, the variational limit of the energies Fε(·)(ω)
is given by volume inegrals of the form

∫
D
f(x, u(x)) dx. We divide this section

into three paragraphs. At first we show how to derive an integral representation
result for the variational limit. Then we prove the convergence of minimum prob-
lems under mean-value constraints. Finally we use the first two results to prove
a stochastic homogenization theorem under the assumption of stationarity for the
random lattices
.

In this paragraph, for a fixed bounded set K we consider positive interaction
energies fulfilling the following assumptions:

Hypthesis 1 There exist C > 0 and a decreasing function Jlr : [0,+∞)→ [0,+∞)
with ∫

Rd
Jlr(|x|) dx = J < +∞ (6)

such that

0 ≤ fε,nn(·, ·, u, v) ≤ C for all (u, v) ∈ K ×K,
0 ≤ fε,lr(x, y, u, v) ≤ Jlr(|x− y|) for all (u, v) ∈ K ×K.

The next proposition, whose simple proof we omit, suggests to conveniently embed
Cε(ω,K) ⊂ L∞(D, co(K)) and equip L∞(D, co(K)) with the weak*-topology so
that L∞(D, co(K)) is a separable metric space.

Proposition 1. Let uε ∈ Cε(ω,K) be such that uε
∗
⇀ u in L∞(D). Then u ∈

L∞(D, co(K)). Conversly, for every u ∈ L∞(D, co(K)) there exists a sequence
uε ∈ Cε(ω,K) such that uε

∗
⇀ u.

3.1. Integral representation. As in [5] the key ingredient is the following integral
representation theorem (see [14]).

Theorem 3.1. Let p ∈ [1,+∞) and let F : Lp(D,Rm) × B(D) → [0,+∞] be a
functional satisfying:

(i) F is local on B(D); i.e., for all u, v ∈ Lp(D,Rm) and B ∈ B(D) such that
u = v a.e. on B, then F (u,B) = F (v,B,

(ii) F is additive; i.e., for all u ∈ Lp(D,Rm) and B1, B2 ∈ B(D) such that
B1 ∩B2 = ∅, then F (u,B1 ∪B2) = F (u,B1) + F (u,B2),
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(iii) there exists u0 ∈ Lp(D,Rm) such that F (u0, ·) is a Borel measure on B(D)
which is absolutely continuous with respect to the d-dimensional Lebesgue mea-
sure,

(iv) for all B ∈ B(D) the functional F (·, B) is lower semicontinuous with respect
to the strong (respectively weak) convergence of Lp(D,Rm).

Then there exists a positive measurable function f : D × Rm → [0,+∞], with the
property that f(x, ·) is lower semicontinuous (respectively convex and lower semi-
continuous) for a.e. x ∈ D, such that

F (u,B) =
∫
B

f(x, u(x)) dx

for all u ∈ Lp(D,Rm) and B ∈ B(D).
If in addition there exists α ∈ L1(D,Rm), c, C > 0 such that

c‖u‖pLp(B) − ‖α‖L1(B) ≤ F (u,B) ≤ C‖u‖pLp(B) + ‖α‖L1(B),

then f is a Carathéodory function satisfying

c|z|p − α(x) ≤ f(x, z) ≤ C|z|p + α(x) for all z ∈ Rm and a.e. x ∈ D.

Remark 2. (i) If F (·, A) is lower semicontinuous with respect to weak or strong
convergence in Lp(D,Rm) for every open set and the additional growth hypothesis
in Theorem 3.1 holds, then it is enough to prove the locality on open sets.
(ii) Given locality and additivity, it sufficies to prove lower semicontinuity on open
sets.

For u ∈ L∞(D, co(K)), A ∈ AR(D) let us introduce

F ′(ω)(u,A) := inf {lim inf
ε→0

Fε(ω)(uε, A) : uε
∗
⇀ u in L∞(D,Rm)},

F ′′(ω)(u,A) := inf {lim sup
ε→0

Fε(ω)(uε, A) : uε
∗
⇀ u in L∞(D,Rm)},

i.e. the Γ- lim inf and the Γ- lim sup of the energies Fε(·, A)(ω) with respect to
the weak*-topology on L∞(D, co(K)) (we refer to [9] for an introduction to Γ-
convergence). With the help of the auxiliary deterministic square lattice introduced
in Section 2.3, one can repeat the arguments in [5] to prove the following proposition.

Proposition 2. There exists a constant C > 0 such that for almost every ω ∈ Ω
(i) 0 ≤ F ′(u,A)(ω) ≤ F ′′(u,A)(ω) ≤ C|A|,

(ii) F ′(·, A)(ω) and F ′′(·, A)(ω) are weak* lower semicontinuous,
(iii) F ′′(u,A) = sup{F ′′(u,A′)(ω) : A′ ⊂⊂ A},
(iv) F ′′(u,A ∪B)(ω) ≤ F ′′(u,A)(ω) + F ′′(u,B)(ω)
(v) If A ∩B = ∅, then F ′(u,A ∪B)(ω) ≥ F ′(u,A)(ω) + F ′(u,B)(ω),

(vi) If u, v ∈ L∞(D, co(K)) and u = v a.e. in A, then F ′′(u,A)(ω) = F ′′(v,A)(ω).

From Proposition 2 we deduce our first main theorem.

Theorem 3.2. Let L be an admissible stochastic lattice and let fε,nn and fε,lr sat-
isfy Hypothesis 1. For P-almost every ω and every sequence (εj) converging to 0,
there exists a (not relabelled) subsequence (εj) such that Fεj (ω) Γ-converge with re-
spect to the weak* L∞(D, co(K))-topology to the functional F (ω) : L∞(D, co(K))→
[0,+∞) defined by

F (ω)(u) =
∫
D

f(ω;x, u(x)) dx, (7)
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where f(ω; ·, ·) : D × co(K)→ [0,+∞) is a measurable function such that f(ω;x, ·)
is convex and lower semicontinuous for a.e. x ∈ D.
A local version of the theorem holds. For all A ∈ AR(D) and all u ∈ L∞(D, co(K))
we have

Γ− lim
j
Fεj (ω)(u,A) =

∫
A

f(ω;x, u(x)) dx.

Proof. In order to apply Theorem 3.1, we need to define an appropriate functional
on Lp(D) for some p ∈ [1,+∞). This can be done as follows: by compactness of Γ-
convergence on separable metric spaces (see Proposition 1.42 in [9]) we can construct
a diagonal sequence such that there exists a Γ-limit F̃ (ω)(u,A) of Fε(ω)(u,A) for
all (u,A) ∈ L∞(D, co(K))×AR(D) (in order to pass from countably many sets A
to AR(D) one can argue as in the proof of Theorem 10.3 in [12]). We extend this
limit to all open sets by

F (ω)(u, V ) := sup{F̃ (ω)(u,A) : A ∈ AR(D), A ⊂⊂ V }.
Refering to Proposition 2 we can apply the De Giorgi-Letta-criterion (see e.g. The-
orem 1.62 in [17]) and deduce that F (ω)(u, ·) is the trace of a Borel measure
that is absolutely continuous with respect to the Lebesgue measure (Proposition
2 (i)), so we can extend F (ω)(u, ·) to all Borel sets B ∈ B(D). Let us denote
by pK : Rm → co(K) the projection map onto the compact, convex set co(K).
Consider the functional FK(ω)(·, B) : L1(D)→ [0,+∞) defined by

FK(ω)(u,B) = F (w)(pK ◦ u,B).

One can show that FK(ω)(u,B) satisfies the assumptions of Theorem 3.1 with re-
spect to strong convergence in L1(D). The convexity and lower semicontinuity
of the integrand follows from well known properties of weak* lower semicontinu-
ous integral functionals and the local version is a direct consequence of the above
construction.

Remark 3. In general the integrand f(ω;x, ·) in Theorem 3.2 is not continuous
up to the boundary of co(K). A counter example can be constructed easily using
the discontinuous, convex function on the unit ball given by the first lemma in [18].
However f(ω;x, ·) is continuous on one-dimensional segments contained in co(K).
Thus we can fully characterize it by its values on the relative interior of co(K).
In particular only countably many of these values are needed since the function is
continuous on the relative interior of co(K). In the case co(K) is a convex polytope,
then the results given in [18] show that continuity holds.

3.2. Convergence of minimum problems. In order to prove a (stochastic) ho-
mogenization result we will use a blow-up argument to characterize the limit inte-
grands. To relate the blow-up to our discrete energy functionals we need to prove
a result regarding the convergence of minimum problems under average constraint.
We first introduce a notion of discrete mean value.

Definition 3.3. For A ∈ AR(D), ε > 0, ω ∈ Ω and u ∈ Cε(ω,K) we set

〈u〉ω,εA :=
∑

εx∈εL(ω)∩A

|C(εx)|
|A|

u(εx).

Since the co-domain of our functions will be relaxed in the limit, we do not
require our constrained functionals to be defined only on those functions fulfilling a
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precise mean value constraint. Instead we introduce a threshold δ > 0 and, for fixed
z ∈ co(K), ε > 0 and ω ∈ Ω we define the functional F z,δε (ω) : L∞(D, co(K))) ×
AR(D)→ [0,+∞] as

F z,δε (ω)(u,A) :=

{
Fε(ω)(u,A) if 〈u〉ω,εA ∈ Bδ(z),
+∞ otherwise.

(8)

The followng convergence result holds true:

Theorem 3.4. Let L be an admissible stochastic lattice and let fε,nn and fε,lr
satisfy Hypothesis 1. Then, for P-almost every ω, the following holds: for every
sequence (εj) converging to 0, let the subsequence (εj) and the function f be as in
Theorem 3.2. For every z ∈ co(K), δ > 0 and every A ∈ AR(D) the functionals
F z,δεj (ω)(·, A) Γ-converge with respect to the weak* L∞(D, co(K))-topology to the
functional F z,δ(ω)(·, A) : L∞(D, co(K))→ [0,+∞] defined by

F z,δ(ω)(u,A) =

{∫
A
f(ω;x, u(x)) dx if 〈u〉A ∈ Bδ(z),

+∞ otherwise.

Proof. We start proving the lower bound inequality: if uj
∗
⇀ u in L∞(D, co(K))

with equi-bounded energy, then we have 〈uj〉
ω,εj
A ∈ Bδ(z). Using Lemma 2.2 and

the regularity of A it is straightforward to check that 〈u〉A ∈ Bδ(z). The claim
follows from F z,δεj (ω)(u,A) ≥ Fεj (ω)(u,A) and Theorem 3.2.

To prove the upper bound, note that if u ∈ L∞(D, co(K)) is such that 〈u〉 ∈
Bδ(z) we can take the same recovery sequence as for the unconstrained functional
and conclude. It remains the case when 〈u〉A ∈ ∂Bδ(z). In this case we argue by
approximation as follows. We have 〈u〉A = z + δν with ν ∈ Sm−1. Then the set

A1 := {x ∈ A : (u(x)− z)T ν ≥ 1}

has positive measure. For η > 0 small enough take Aη ⊂ A1 such that |Aη| ≤ η.
We define uη ∈ L∞(D, co(K)) via

uη(x) =

{
z if x ∈ Aη,
u(x) otherwise.

We have, for η small enough,

|〈uη〉A − z|2 =

∣∣∣∣∣δν − 1
|A|

∫
Aη

u(x)− z dx

∣∣∣∣∣
2

≤
(
δ − |Aη|

|A|

)2

+
(
CK |Aη|
|A|

)2

< δ2.

Since F (ω)(uη, A) → F (ω)(u,A) as η → 0 we deduce the claim from lower semi-
continuity.

By standard arguments in the theory of Γ-convergence we obtain the following
corollary about the convergence of minimum problems.

Corollary 1. Under the assumptions of Theorem 3.4, for almost every ω, for
z ∈ co(K), δ > 0 and A ∈ AR(D), it holds that

(i)

lim
j

(
inf

u∈L∞(D,K)
F z,δεj (ω)(u,A)

)
= min
u∈L∞(D,co(K))

F z,δ(ω)(u,A).
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(ii) Moreover, if (uj)j is a weakly* converging sequence in L∞(D, co(K)) such
that

F z,δεj (ω)(uj , A) = inf
u∈L∞(D,K)

F z,δεj (ω)(u,A) + O(1),

then its limit is a minimizer of F z,δ(ω)(·, A).

3.3. Stochastic homogenization. This section contains the main result of the
paper Theorem 3.7 about the stochastic homogenization of the bulk scaling of dis-
crete (spin type) energies on random lattices.

As a first result needed in the proof of the stochastic homogenization Theorem
3.7 we need a lemma that ensures that we can recover the continuum limit energy
density by a suitable blow-up procedure. We remark that our proof follows the
same arguments of the one of Theorem 1 in [15]. At first let us recall the definition
of nicely shrinking sets.

Definition 3.5. A familiy (Qη)η>0 of Borel sets shrinks nicely to x ∈ Rd if there
exists a constand c > 0 such that

Qη ⊂ Bη(x), |Qη| ≥ c|Bη(x)|.

Lemma 3.6. Let f : D × co(K) → R be bounded function that is measurable in
the first variable and convex and lower semicontinuous in the second one for almost
every x ∈ D. Then there exists a null set N ⊂ D such that

f(x, z) = lim
δ→0

lim
η→0

1
|Qη|

inf

{∫
Qη

f(y, u(y)) dy : u ∈ L∞(D, co(K)), 〈u〉Qη ∈ Bδ(z)

}
for all x ∈ D\N, z ∈ co(K) and every familiy Qη shrinking nicely to x.

Proof. To reduce notation we set

Uδ(z) := Bδ(z) ∩ co(K)

and

mδ(z,Qη) :=
1
|Qη|

inf

{∫
Qη

f(y, u(y)) dy : u ∈ L∞(D, co(K)), 〈u〉Qη ∈ Bδ(z)

}
.

At first we prove the statement if f is Lipschitz continuous on co(K) uniformly
in x ∈ D. Applying Jensen’s inequality we have that

1
|Qη|

inf

{∫
Qη

f(x, u(y)) dy : u ∈ L∞(D, co(K)), 〈u〉Qη ∈ Bδ(z)

}
= inf
v∈Uδ(z)

f(x, v)

for almost every x. It follows that∣∣∣∣ inf
v∈Uδ(v)

f(x, v)−mδ(z,Qη)
∣∣∣∣ ≤ 1
|Qη|

sup
u∈L∞(D,co(K))

∣∣∣∣∣
∫
Qη

f(x, u(y))− f(y, u(y)) dy

∣∣∣∣∣
≤ 1
|Qη|

∫
Qη

sup
q∈co(K)

|f(x, q)− f(y, q)|dy.

From this estimate, using Lebesgue’s differentiation theorem combined with a cov-
ering argument (see the proof of Proposition 1.1 in [15] for details) one concludes
that there exists a null set N ⊂ D such that

inf
v∈Uδ(z)

f(x, v) = lim
η→0

mδ(z,Qη) (9)
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for all x ∈ D\N , z ∈ co(K) and every family Qη shrinking nicely to x. Letting
δ → 0 in the above equality yields the claim.

For a general function f let N ′ be the null set such that f(x, ·) it is not convex
and lower semicontinuous. We define an decreasing sequence fn : D × co(K) → R
by

fn(x, z) = sup
q∈co(K)

{f(x, q)− n|z − q|}.

It is well known that fn(x, ·) is Lipschitz continuous with constant n. By lower
semicontinuity for x ∈ D\N ′ the supremum defining fn can be taken over a count-
able dense set G ⊂ co(K) ensuring the measurability of fn(·, z) for every z ∈ co(K).
Using Lebesgue’s differentiation theorem one can construct a set Nn of measure
zero such that

lim
η→0

1
|Qη|

∫
Qη

|fn(y, q)− fn(x, q)|dy = 0 (10)

for all x ∈ D\Nn, q ∈ G and every familiy Qη shrinking nicely to x. Using the
uniform Lipschitz continuity of fn it is not hard to verify that (10) holds for all
z ∈ co(K). Set N− = N ′ ∪

⋃
n≥1Nn and fix x ∈ D\N−, z ∈ co(K) and a familiy

Qη shrinking nicely to x. By monotonicity and (10) we have

lim sup
η→0

mδ(z,Qη) ≤ lim sup
η→0

mn
δ (z,Qη) (11)

≤ inf
v∈Uδ(z)

lim sup
η→0

1
|Qη|

∫
Qη

fn(y, v) dy ≤ inf
v∈Uδ(z)

fn(x, v). (12)

By Remark 3 it holds that

inf
v∈Uδ(z)

f(x, v) = inf
v∈Bδ(z)∩riaff(co(K))

f(x, v),

where riaff denotes the relative interior. Let v ∈ riaff(co(K)). Since f(x, ·) is con-
tinuous in v we have

lim
n→+∞

fn(x, v) = f(x, v)

which yields by (11)

lim sup
η→0

mδ(v,Qη) ≤ inf
v∈Uδ(z)

f(x, v). (13)

In order to get the converse inequality we define gn : D × co(K)→ R as

gn(x, z) = inf
q∈co(K)

{f(x, q) + n|z − q|}.

This family is increasing, convex and Lipschitz continuous with constant n in z
and, again by Remark 3 we can restrict the infimum over a countable dense set
ensuring measurability in x. In this case, by lower semicontinuity, monotonicity
and Proposition 1.27 in [9], we have

lim
n
gn(x, z) = Γ- lim

n
gn(x, z) = f(x, z).

for all z ∈ co(K). By the first part of the proof, for every gn, we can find null sets
N ′n ⊂ D such that (9) holds for all x ∈ D\N ′n, z ∈ co(K) and every family Qη
shrinking nicely to x. Since gn ≤ f we deduce that

inf
v∈Uδ(z)

gn(x, v) = lim
η→0

mn
δ (z,Qη) ≤ lim inf

η→0
mδ(z,Qη).
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Using the fundamental theorem of Γ-convergence we can pass to the limit in n which
implies together with (13) that

lim
η→0

mδ(z,Qη) = inf
v∈Uδ(z)

f(x, v)

for all x ∈ N := N− ∪
⋃
n≥1N

′
n, z ∈ co(K) and every family Qη shrinking nicely

to x. Letting δ → 0 and using again the fact that f(x, ·) is lower semicontinuous
yields the claim of the proposition.

For a bounded set A ⊂ Rn, ρ > 0, z ∈ Rm and ε > 0 we set

Cz,δε (ω,A) := {u ∈ Cε(ω,K) : 〈u〉ω,εA ∈ Bδ(z)}.

In this section we consider spin-type systems of a particular form. Let us suppose
that fnn, flr : Rn ×K ×K → [0,+∞) are measurable in the first variable, upper
semicontinuous in the remaining couple of variables and such that

fε,nn(x, y, u, v) = fnn(y − x, u, v), (14)

fε,lr(x, y, u, v) = flr(y − x, u, v). (15)

Theorem 3.7. Let L be a stationary admissible stochastic lattice and assume Hy-
pothesis 1 holds with the additional upper semicontinuity and structure assumption
in (14, 15). For P-almost every ω ∈ Ω and for all z ∈ co(K) there exists

fhom(ω; z) := lim
δ→0

lim
N→+∞

1
Nd

inf
{
F1(ω)(u, (0, N)d) : u ∈ Cz,δ1 (ω, (0, N)d)

}
.

The functionals Fε(ω) Γ-converge with respect to the weak* L∞(D, co(K))-topology
to the functional Fhom(ω) : L∞(D, co(K))→ [0,+∞) defined by

Fhom(ω)(u) =
∫
D

fhom(ω;u(x)) dx.

If L is ergodic, then fhom(·, z) is constant almost surely and it is given by

fhom(z) = lim
δ→0

lim
N→∞

1
Nd

∫
Ω

inf
{
F1(ω)(u, (0, N)d) : u ∈ Cz,δ1 (ω, (0, N)d)

}
dP(ω).

Remark 4. The upper semicontinuity assumption can be dropped if K is at most
countable. In fact it is only needed to prove measurability of the stochastic process
defined in (21).

Proof of Theorem 3.7. Let εj → 0. By Theorem 3.2, for almost every ω ∈ Ω there
exists a subsequence (not relabeled) such that

Γ- lim
j
Fεj (ω)(u,A) =

∫
A

f(ω;x, u(x)) dx

for all A ∈ AR(D) and u ∈ L∞(D, co(K)). We divide the proof into several steps.

Step 1 (characterization of the energy density)
Theorem 3.2 allows us to apply Lemma 3.6 to obtain a null set N(ω) ⊂ D depending
only on ω such that

f(ω;x0, z) = lim
δ→0

lim
η→0

1
|Qη|

inf

{∫
Qη

f(ω;x, u(x)) dx : 〈u〉Qη ∈ Bδ(z)

}
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for all x0 ∈ D\N , z ∈ co(K) and a family of open cubes with rational vertices
shrinking nicely to x0. Using Corollary 1 and setting tj = ε−1

j we deduce that

f(ω;x0, z) = lim
δ→0

lim
η→0

lim
j

1
|Qη|

inf
{
Fεj (ω)(u,Qη) : u ∈ Cz,δεj (ω,Qη)

}
= lim
δ→0

lim
η→0

lim
j

1
|tjQη|

inf
{
F1(ω)(u, tjQη) : u ∈ Cz,δ1 (ω, tjQη)

}
.

Suppose we have shown that for every δ > 0 there exists a function φz,δ : Ω → R
such that

φz,δ(ω) = lim
t→+∞

1
|tQ|

inf
{
F1(ω)(u, tQ) : u ∈ Cz,δ1 (ω, tQ)

}
(16)

almost surely for every open cube Q ⊂ D with rational vertices. Then we can
take the limit with respect to δ because φz,δ is increasing when δ → 0. Taking a
countable dense set G ⊂ co(K) we can construct a set Ω′ of full probability such
that for fixed ω ∈ Ω′ we have

f(ω;x0, z) = fhom(ω; z) ∀x0 ∈ D\N(ω), z ∈ G. (17)

Observing that z 7→ fhom(ω; z) is convex and lower semicontinuous, by Remark 3
we have that (17) holds for all z ∈ co(K). Thus the Γ-limit exists and the integrand
is given by fhom(ω; z). It remains to show (16).

Step 2 (truncation of the interaction range)
Let us fix z ∈ co(K) and δ > 0. As a next step we limit the range of interactions
as well as the possible positions of interacting points:

To this end, for ξ ∈ r′Zd and U ⊂ Rd, we set

Iξnn(U) := {α ∈ Rξnn,1(U) : ∃η > 0 : [Bη(xα) ∩ U,Bη(xα+ξ) ∩ U ] ⊂ U}, (18)

Iξlr(U) := {α ∈ Rξlr,1(U) : ∃η > 0 : [Bη(xα) ∩ U,Bη(xα+ξ) ∩ U ] ⊂ U}, (19)

where [A,B] := {tx + (1 − t)y : x ∈ A, y ∈ B, 0 ≤ t ≤ 1}. Note that Iξnn/lr(U) =

Rξnn/lr,1(U) if U is convex. Moreover for L ∈ N ∪ {+∞} we define the (truncated)
energy by

FL1 (ω)(v, U) :=
∑
|ξ|<L

∑
α∈Iξnn(U)

fnn (xα+ξ − xα, v(xα), v(xα+ξ))

+
∑
|ξ|<L

∑
α∈Iξlr(U)

flr (xα+ξ − xα, v(xα), v(xα+ξ)) .

Given a set Q ⊂ Rd we let

µL(ω;Q) := inf
{
FL1 (ω)(u,Q) : u ∈ Cz,δ1 (ω,Q)

}
.

By the decay assumptions on the long-range interactions of Hypothesis 1, it follows
that (16) is proved if we show that for every L ∈ N there exists a function φLz,δ :
Ω→ R with

φLz,δ(ω) = lim
t→+∞

1
|tQ|

inf
{
FL1 (ω)(u, tQ) : u ∈ Cz,δ1 (ω, tQ)

}
(20)

for every open cube Q ⊂ D with rational vertices and all ω ∈ ΩL, where ΩL is a set
of full measure. At this point note that if tk is large enough, then there exists at
least one function u ∈ Cz,δ1 (ω, tkQ) to test the two infimum problems. It remains
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to prove (20).

Step 3 (definition of the stochastic process)
As observed in the previous step, since z and δ are fixed there exists n ∈ N such
that Cz,δ1 (ω, nI) 6= ∅ for all I ∈ I. Let us define a discrete stochastic process
µ̃L : I → L1(Ω) by

µ̃L(I)(ω) :=
µL(ω;nI)

nd
+ γ Per(nI,Rd), (21)

where γ > 0 is a suitable constant to be chosen. Testing the infimum problem
defining µL with any function u ∈ Cz,δ1 (ω, nI) we infer from Hypothesis 1 that
there exists a constant C > 0 such that

µ̃L(I) ≤ C|I|+ γ Per(nI,Rd), (22)

in particular µ̃L(I) ∈ L∞(Ω). The proof of the measurability is more involved and
can be found in the appendix. For the proof of stationarity we can assume without
loss of generality that r′ = 1

l for some l ∈ N. Then, using (3) it is straightforward
to check that

µ̃L(I − z)(ω) = µ̃L(I)(τzω),

which yields stationarity. In order to establish subadditivity, let J be the set of
finite unions of elements in I and let I1, I2 ∈ J be disjoint. Note that by the special
structure of the sets Iξnn(U) and Iξlr(U) two lattice points xα ∈ nI1 and xα+ξ ∈ nI2
can interact only if the ray [xα, xα+ξ] has length at most L + r and intersects a
(d− 1)-dimensional side of n(I1 ∩ I2). Therefore one can argue as in Step 3 of the
proof of Theorem 2 in [6] to show that the stochastic process is subadditive if we
choose γ large enough. The fact that

inf
{

1
|I|

∫
Ω

µ̃L(I)(ω) dP(ω) : I ∈ I
}
> −∞

is trivial since the integrand is always positive.

Step 4 (proof of (20) and the case of ergodic lattices)
Applying Theorem 2.6 to the process µ̃L(I)(ω) we deduce that there exists a function
φLz,δ : Ω→ R such that

φLz,δ(ω) = lim
k→+∞

inf
{

1
|k Q|

FL1 (ω)(u, k Q) : u ∈ Cz,δ1 (ω, k Q)
}

(23)

for almost every ω ∈ Ω and every Q ∈ nI. The extension to arbitrary sequences
and to all open cubes with rational vertices is straightforward since the differences
are lower order terms. Finally note that the function φLz,δ(ω) is invariant under the
group action τz, thus ergodicity implies that it is constant as well as its limit as
L→ +∞.

Appendix A. .

Lemma A.1. For fixed I ∈ I the function µ̃L(I) defined in (21) is measurable.

Proof. Let us write Zd = {z1, z2, . . . }. By Σr,R we denote the set of admissible
point sets, where r,R are as in Definition 2.1. Since F is a complete sigma algebra
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we may assume that L(ω) ∈ Σr,R for all ω ∈ Ω. Identifying every u ∈ C1(ω,K)
with a vector u ∈ (K)Zd we can write

µL(ω; I) := inf
u∈(K)ZnP

i≥1
|C(L(ω)zi )∩I|

|I| uzi=z

{
FL1 (ω)(v, I)

}
.

Substep 1 At first we prove that, for fixed i ∈ N, the mapping ω 7→ |C(L(ω)zi)| is
measurable.
Given L(ω) ∈ Σr,R, there exists M ∈ N such that, for all x = (xzj ) ∈ Σr,R with
supj |L(ω)zj − xzj | ≤ R, we have

C(xzi) = {y ∈ Rd : |y − xzi | ≤ |y − xzj | ∀j = 1, . . . ,M}. (24)

Indeed, let M := max{j ∈ N : |L(ω)zi − L(ω)zj | ≤ 6R}. If y ∈ Rd is such that
|y − xzi | ≤ |y − xzj | for all j ≤M , we can estimate as follows (k > M):

|y − xzk | ≥ |L(ω)zk − L(ω)zi | − |L(ω)zk − xzk | − |xzi − L(ω)zi | − |y − xzi |
≥ 4R− |y − xzi |.

Then (24) follows if we show that |y − xzi | ≤ 2R. Assume by contradiction that
this is not the case. Then, for y := xzi + 2R y−xzi

|y−xzi |
, there exists j ≤M, j 6= i such

that |y − xzj | ≤ R, where we have used that x ∈ Σr,R. We conclude that

|y − xzj | ≤ R+ |y − y| = R+
|y − xzi | − 2R
|y − xzi |

|y − xzi |

= |y − xzi | −R < |y − xzi |,

which leads to a contradiction. Using (24) a short arument based on dominated
convergence shows that for every ε > 0 there exists δ > 0 such that for all x ∈ Σr,R
with supj |L(ω)zj − xzj | ≤ R the following implication holds:

max
j≤M

|xzj − L(ω)zj | ≤ δ ⇒ ||C(xzi)| − |C(L(ω)zi)|| ≤ ε.

Hence for an open set U ⊂ R the preimage of the mapping Σr,R 3 x 7→ |C(xzi)|
can be written as an a priori uncountable union of measurable sets of the form
Σr,R ∩

(∏M
j=1Bδ(xzj )×

∏
j>M BR(xzj )

)
, where M and δ can vary. However, for

fixed M ∈ N, the corresponding union can be taken countable since (Rd)M is
second countable. Therefore the whole union can be written as a countable union
of measurable sets. By the measurability of the mapping ω 7→ L(ω) we have proven
the claim of this substep.
Substep 2
From the previous substep we know that for fixed u ∈ (K)Zd the mapping

ω 7→M(u)(ω) :=

{
0 if

∑
i≥1

|C(L(ω)zi )|
|nI| uzi1nI(L(ω)zi) ∈ Bδ(z),

+∞ otherwise.

is measurable. However the set over which we take the infimum in order to define
µL(ω; I) is not countable and still depends on ω. To overcome this issue we first fix
l ∈ N. Now take a countable dense subset G of K and pick one element g0 ∈ G.
We set

vzi(g1, . . . , gl) :=

{
gi if i ≤ l,
g0 otherwise,
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where gi ∈ G. These are countably many vectors. Using upper semicontinuity of
fnn and flr with respect to the second two variables and the fact that we took the
open ball Bδ(z) for the constraint we deduce by density that

µL(nI)(ω) = lim
l→+∞

inf
(g1,...,gl)∈Gl

{FL1 (ω)(v(g1, . . . , gl), nI) +M(v(g1, . . . , gl))(ω)}

and we conclude the proof if we show that for fixed u ∈ (K)Zd the function
FL1 (ω)(u, nI) is measurable. This is shown in the appendix of [7].
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