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Abstract

In this paper, we prove Lp estimates for the fractional derivatives of so-
lutions to elliptic fractional partial differential equations whose coefficients
are VMO. In particular, our work extends the optimal regularity known
in the second order elliptic setting to a spectrum of fractional order elliptic
equations.

1 Introduction

In his 1959 paper on some composition formulas for vector-valued potentials,
J. Horváth introduced [7, p. 434] the differential object

Dsu := DI1−su. (1.1)

Here, s ∈ (0, 1) and I1−s is the Riesz potential of order 1− s.
This object was subsequently termed the Riesz fractional gradient by the sec-

ond and third author in [13], where it was utilized to generalize divergence
form elliptic partial differential equations from the second order setting to that
of differential order 2s ∈ (0, 2). In particular, assuming that A is uniformly
elliptic, i.e.

λ|ξ|2 ≤ A(x)ξ · ξ ≤ Λ|ξ|2, (1.2)
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for all x, ξ ∈ RN and some 0 < λ ≤ Λ < +∞, the authors showed that given
ϕ ∈ Hs(RN ) and g ∈ L2(Ω) there exists u ∈ Hs(RN ) that satisfiesˆ

RN

A(x)Dsu(x) ·Dsv(x) dx =

ˆ
RN

gv (1.3)

for all v ∈ C∞c (RN ) and u = ϕ in RN \ Ω. Here, Ω ⊂ RN is open and bounded,
N ≥ 2, and

Hs(RN ) := {u ∈ L2(RN ) : Dsu ∈ L2(RN ;RN )},

which coincides with any standard definition of the fractional Sobolev space.
One observes that when s = 1 and the boundary of Ω is sufficiently nice, the

equation (1.3) agrees with the weak formulation of a divergence form elliptic
PDE, since prescribing u on the complement gives rise to a trace that would be a
more standard way to frame the existence. Meanwhile for s ∈ (0, 1) one obtains
a family of fractional partial differential equations with analogous structure.
The interest in generalizing partial differential equations via (1.1) is two-fold.
Firstly, that one should be concerned with non-integer order differential ob-
jects can be simply explained by quoting Sobolev and Nikol’skiı̆’s 1963 paper
(who even implicitly consider (1.1), see [12, p. 148]) where they note that “an
imbedding theory containing only derivatives of integral order is incomplete
and imperfect.” Secondly, the structure of (1.1) closely resembles the gradient
and therefore such a generalization preserves the structural properties of the
equation, a point which we will return to later. This aspect has been impor-
tant in the development of L1 fractional Sobolev inequalities in terms of (1.1)
in [11], as such inequalities are known to be false for the fractional Laplacian.

In this paper we continue to develop this perspective of classical equations
as a part of a continuous spectrum. In particular, we take the first step in ad-
dressing for this class of equations a question of fundamental importance in
the second order case, that of regularity. As there are a number of possible
assumptions one can make to investigate the question of regularity of u that
satisfies (1.3), let us further describe the hypothesis of interest to us. In addi-
tion to the ellipticity condition (1.2), we will assume A is of vanishing mean
oscillation.

Definition 1.1 We define the semi-norm (on the space of functions of bounded mean
oscillation)

[ϕ]BMO := sup
Q

ˆ
Q

|ϕ−
 
Q

ϕ|.

Then we define the space of functions of vanishing mean oscillation by

VMO(RN ) := {C∞c (RN )}
[·]BMO

.

The main result of this paper is the following theorem on the regularity of
such equations with VMO coefficients.

Theorem 1.2 Suppose thatA ∈ VMO(RN ;RN×N ) satisfies (1.2), thatG ∈ Lp(RN ;RN )
for some 1 < p < +∞ and u ∈ Hs(RN ) satisfiesˆ

RN

A(x)Dsu(x) ·Dsv(x) dx =

ˆ
RN

G ·Dsv (1.4)
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for all v ∈ C∞c (Ω). Then Dsu ∈ Lploc(Ω) and for any K ⊂⊂ Ω there exists a constant
C = C(K,Ω, A, s, p) > 0 such that

‖Dsu‖Lp(K;RN ) ≤ C
(
‖G‖Lp(RN ;RN ) + ‖(−∆)

s
2u‖L2(RN )

)
.

Here, (−∆)
s
2u denotes the fractional Laplacian of u of order s, which can be

defined as a Fourier multiplier with symbol (2π|ξ|)s, see [14, p. 117]. The
fractional Laplacian is related to the fractional gradient via the identity

Dsu ≡ R(−∆)
s
2u, (1.5)

for s ∈ (0, 1) and u with sufficient smoothness and integrability, and where
R = DI1 is the vector-valued Riesz transform. In the sequel we take (1.5) as
our definition of Dsu, which enables us to include the classical case s = 1
(and more generally s > 1 though one loses the interpretation of a fractional
gradient in this range).

Our proof is based on the beautiful technique of Iwaniec and Sbordone,
introduced in [8] for u satisfying (1.4) with v ∈ C∞c (RN ) and s = 1. We recall
that in this setting they had shown [8, p. 186] that (1.4) has exactly one (up to a
constant) solution with the estimate

‖Du‖Lp(RN ;RN ) ≤ C‖G‖Lp(RN ;RN ).

Comparing this with our result, one sees that the preservation of structure
in the equation results in regularity that is completely analogous to the well-
studied elliptic theory.

As a consequence of this result we can return to the question of regularity
of solutions to (1.3). In particular, one can transform equation (1.3) into (1.4) by
defining G = IsRg (where one extends g by zero outside Ω), since one has

ˆ
RN

gv dx =

ˆ
RN

IsRg ·R(−∆)
s
2 v dx

=

ˆ
RN

G ·Dsv dx

for v ∈ C∞c (RN ) and g ∈ L2(RN ). The assumption g ∈ L2(Ω) then implies that
G ∈ L2N/(N−2s)(RN ;RN ), and so our result allows us to conclude that for the
solution to (1.3) we have for every K ⊂⊂ Ω the estimate

‖Dsu‖L2N/(N−2s)(K;RN ) ≤ C
(
‖g‖L2(Ω) + ‖(−∆)

s
2u‖L2(RN )

)
.

When s = 1 this localizes the result of Iwaniec and Sbordone and can be com-
pared with a result of Di Fazio in [5] (who in fact obtains regularity up to the
boundary).

2 Estimates and proof of the Main Result

The main tool we utilize is the following result of Iwaniec and Sbordone [8, see
p. 187, 201-206].
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Theorem 2.1 (Iwaniec, Sbordone) LetA ∈ VMO∩L∞(RN ;RN×N ) satisfy (1.2).
Then for all 1 < q < +∞, the operator

T := RiAijRj : Lq(RN )→ Lq(RN )

is invertible, and moreover, there exists C = C(A, q) > 0 such that

‖f‖Lq(RN ) ≤ C‖Tf‖Lq(RN ) (2.1)

for all f ∈ Lq(RN ).

From this we obtain the localization:

Proposition 2.2 Let A, T as in Theorem 2.1. Then for any Ω1,Ω2 open and bounded
with Ω1 ⊂⊂ Ω2, 2 < q < +∞, there exists C = C(A, q,Ω1,Ω2) > 0 such that

‖f‖Lq(Ω1) ≤ C(‖Tf‖Lq(Ω2) + ‖f‖L2(RN ))

for all f ∈ L2(RN ).

Before proving Proposition 2.2, let us recall the following commutator esti-
mate, whose proof we provide for the convenience of the reader.

Proposition 2.3 Let b, f : RN → R and define the commutator C(b, Ri)[f ] by

C(b, Ri)[f ] := bRi[f ]−Ri[bf ],

where Ri is the i-th Riesz transform. If b is Lipschitz, then

‖C(b, Ri)[f ]‖Lp(RN ) ≤ C[b]Lip(RN ) ‖I1|f |‖Lp(RN ).

Proof. Since
Rig(x) = cN

ˆ
RN

xi − zi
|x− z|N+1

g(z) dz,

we have

C(b, Ri)[f ](x) = cN

ˆ
RN

xi − zi
|x− z|N+1

(b(x)− b(z)) f(z) dz,

and consequently,

|C(b, Ri)[f ](x)| ≤ cN [b]Lip(RN )

ˆ
RN

|x− z|−N+1 |f |(z) dz = C[b]Lip(RN )I1|f |(x).

Proof of Proposition 2.2. Let η ∈ C∞0 (Ω2) be a usual cutoff function, i.e.
η ≥ 0 and η ≡ 1 on a neighbourhood of Ω1. From (2.1) we have

‖f‖Lq(Ω1) ≤ ‖ηf‖Lq(RN ) ≤ C‖T (ηf)‖Lq(RN ).

Let us now recall the definition of the commutator of an operator T and two
functions b, f (which can be thought of as the error term to a product rule). We
have

C(b, T )[f ] := bT [f ]− T [bf ].
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Then we continue the preceding estimate as follows. For supp η ⊂⊂ K0 ⊂⊂
L1 ⊂⊂ Ω2 and denoting χL1

the characteristic function of L1, we estimate

‖T (ηf)‖Lq(RN ) =‖T (ηχL1
f)‖Lq(RN )

≤‖ηT (χL1
f)‖Lq(RN ) + ‖C(η, T )[χL1

f ]‖Lq(RN )

≤‖T (χL1
f)‖Lq(K0) + ‖C(η, T )[χL1

f ]‖Lq(RN )

≤‖T (f)‖Lq(K0) + ‖T (χLc
1
f)‖Lq(K0) + ‖C(η, T )[χL1

f ]‖Lq(RN )

=:‖T (f)‖Lq(K0) + I + II.

Note that in the above with our T we have

C(η, T )[χL1
f ] = RiAij [C(η,Rj)[χL1

f ]] + C(η,Ri)[AijRj(χL1
f)].

As for I , since the supports of Lc1 and K0 are disjoint, we have the estimate

‖T (χLc
1
f)‖Lq(K0) ≤ ||A||∞ CK0,L1‖f‖L2(RN ) (2.2)

Indeed, let K̃ be so that K0 ⊂⊂ K̃ ⊂⊂ L1. Then by the boundedness of the
Riesz transform on Lq(RN ),

‖T (χLc
1
f)‖Lq(K0) ≤ ‖Ri(χK̃AijRj((χLc

1
f))‖Lq(K0) + ‖Ri(χK̃cAijRj((χLc

1
f))‖Lq(K0)

≤ ‖A‖L∞(RN ) ‖Rj(χLc
1
f)‖Lq(K̃) + ‖Ri(χK̃cAijRj((χLc

1
f))‖Lq(K0)

We now apply the Cauchy-Schwarz inequality to obtain

‖Rj(χLc
1
f)‖Lq(K̃) =

(ˆ
K0

∣∣∣∣∣
ˆ
RN\L1

f(y)
xj − yj
|x− y|N+1

dy

∣∣∣∣∣
q

dx

) 1
q

≤

ˆ
K0

‖f‖q
L2(RN )

(ˆ
RN\L1

1

|x− y|2N
dy

)q/2
dx

 1
q

≤ C|K0|1/q‖f‖L2(RN )

(ˆ ∞
c

1

t2N
tN−1 dt

) 1
2

≤ CK0,L1,q‖f‖L2(RN ),

where we have used the disjointness ofK0 andLc1 (in particular that dist(K0, L
c
1) =

c > 0). A similar argument shows that

‖Ri(χK̃cAijRj((χLc
1
f))‖Lq(K0) ≤ CK̃,L1,q

‖AijRj((χLc
1
f))‖L2(RN ),

and so using the boundedness of the Riesz transform on L2(RN ), we conclude
that

‖Ri(χK̃cAijRj((χLc
1
f))‖Lq(K0) ≤ CK̃,K0,q

‖A‖L∞(RN ) ‖f‖L2(RN ).

It thus remains to estimate II . Let us begin by observing that the commuta-
tor estimates with a Lipschitz continuous function (see Proposition 2.3) imply
that

II = ‖C(η, T )[χL1
f ]‖Lq(RN )

≤ Cη(‖I1|χL1
f |]‖Lq(RN ) + ‖I1|AijRj(χL1

f)|‖Lq(RN )).
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In particular, q > 2 implies that Nq/(N + q) > 1 and so I1 : LNq/(N+q)(RN )→
Lq(RN ) is bounded. Moreover, Rj : Lr(RN ) → Lr(RN ) is bounded for 1 <
r < +∞, which combined with the fact that A ∈ L∞(RN ;RN×N ) (recall that
N ≥ 2) implies that

II ≤ C‖f‖LNq/(N+q)(L1).

If we let L0 := Ω1, then our estimates show that

‖f‖Lq0 (L0) ≤ C
(
‖T (f)‖Lq0 (K0) + ‖f‖L2(RN ) + ‖f‖Lq1 (L1)

)
for qi := Nq/(N + iq). Now, if q1 ≤ 2 then an application of Hölder’s inequal-
ity implies the desired result. Otherwise we iterate the previous argument by
finding

K0 ⊂⊂ L1 ⊂⊂ K1 ⊂⊂ L2 ⊂⊂ . . .Ki ⊂⊂ Li+1 ⊂⊂ Ω2

to obtain the estimate

‖f‖Lqi (Li) ≤ C
(
‖T (f)‖Lqi (Ki) + ‖f‖L2(RN ) + ‖f‖Lqi+1 (Li+1)

)
,

provided qi+1 > 1 (in order that I1 : Lqi+1(RN ) → Lqi(RN )). However, qi > 2
implies qi+1 > 1, and so we continue the iteration a finite number of times until
we obtain that qj ≤ 2 for some j ∈ N. Then collecting the terms our estimate
reads

‖f‖Lq(Ω1) ≤ C

(
j−1∑
i=0

‖T (f)‖Lqi (Ki) + ‖f‖L2(RN ) + ‖f‖Lqj (Lj)

)
,

from which the inequality (2.2) is a simple consequence of Hölder’s inequality,
and thus the proposition is established.

Finally, we require the following result.

Proposition 2.4 Let Ω ⊂ RN be open and bounded, s ∈ [0, N), and 2 ≤ p < +∞.
Assume that for all ϕ ∈ C∞c (Ω),

ˆ
f(−∆)

s
2ϕ =

ˆ
h(−∆)

s
2ϕ.

Then for Ω1 ⊂⊂ Ω, there exists a constant C = C(Ω1) such that

‖f‖Lp(Ω1) ≤ C
(
‖h‖Lp(RN ) + ‖f‖L2(RN )

)
.

Proof. Let Ω1 ⊂⊂ Ω2 ⊂⊂ Ω and ϕ ∈ C∞c (Ω2) be such that

‖f‖Lp(Ω1) ≤ 2

ˆ
f ϕ

and ‖ϕ‖Lp′ (RN ) ≤ 1.
We argue by first reducing to the case where the support of ϕ is a ball.

We can accomplish this by covering Ω2 with finitely many balls B(xj , rj) of
controlled overlap such that B(xj , 4rj) ⊂⊂ Ω, where the number of balls can
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be taken to depends only on the distance of Ω1 to Ωc. Then by subordinating a
partition of unity to balls B(xj , rj) we can write

ϕ =

l∑
j=1

ϕj

with suppϕj ⊂ B(xj , rj) for each j and |ϕj | ≤ |ϕ|. Then for j fixed we have
ˆ
f ϕj = 2

ˆ
f(−∆)

s
2 Isϕj

= 2

ˆ
f(−∆)

s
2 (ηjIsϕ) + 2

ˆ
f(−∆)

s
2 ((1− ηj)Isϕj)

= 2

ˆ
h(−∆)

s
2 (ηjIsϕj) + 2

ˆ
f(−∆)

s
2 ((1− ηj)Isϕj)

≤ 2
(
‖h‖Lp(RN )‖(−∆)

s
2 (ηjIsϕ)‖Lp′ (RN ) + ‖f‖L2(RN )‖(−∆)

s
2 ((1− ηj)Isϕ)‖L2(RN )

)
,

where ηj ∈ C∞c (Ω) with η ≡ 1 on B(xj , 4rj). Then if we can establish the
estimates

‖(−∆)
s
2 (ηjIsϕ)‖Lp′ (RN ) ≤ C‖ϕj‖Lp′ (RN ) (2.3)

‖(−∆)
s
2 ((1− ηj)Isϕ)‖L2(RN ) ≤ C‖ϕj‖Lp′ (RN ), (2.4)

the result will follow by summing in j and using the pointwise inequality
|ϕj | ≤ |ϕ|.

Let us therefore first examine (2.3), and to save notation we drop the de-
pendence in j. If we take the three term commutator Hs introduced by Da Lio
and Rivière [3]

Hs(η, Isϕ) := (−∆)
s
2 (ηIsϕ)− (−∆)

s
2 η Isϕ− ηϕ,

we can use

‖Hs(η, Isϕ)‖Lp′ (RN ) ≤ C‖ϕ‖Lp′ (RN ).

This estimate follows via the Hardy-Littlewood decomposition in [3] or using
the pointwise estimates in [10] (see [4, Theorem 1.2] for a precise version that
can be applied here and also [1, 2] for various extensions). Thus, it suffices to
show that

‖(−∆)
s
2 η Isϕ‖Lp′ (RN ) + ‖ηϕ‖Lp′ (RN ) ≤ C‖ϕ‖Lp′ (RN ).

The second term can be estimated in terms of the right hand side trivially since
|η| ≤ 1, while for the first term one applies Hölder’s inequality with exponent
Np′/(N − sp′) and its Hölder conjugate r when N − sp′ > 0 (Note that from
η ∈ C∞c (Rn) we know that (−∆)

s
2 η ∈ Lr(Rn) for any r ∈ (1,∞) e.g. by

interpolation.), which yields

‖(−∆)
s
2 ηIsϕ‖Lp′ (RN ) ≤ ‖(−∆)

s
2 η‖Lr(RN )‖Isϕ‖LNp′/(N−sp′)(RN )

≤ C‖ϕ‖Lp′ (RN ).
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If N − sp′ < 0, then

‖(−∆)
s
2 ηIsϕ‖Lp′ (RN ) ≤ ‖(−∆)

s
2 η‖Lp′ (RN )‖Isϕ‖L∞(RN )

≤ C‖ϕ‖Lp′ (RN )

follows from the fact that ϕ has compact support. When N − sp′ = 0, we take
p̃′ < p′ and set 1

r̃ := 1
p′ −

1
p̃′ , then

‖(−∆)
s
2 ηIsϕ‖Lp′ (RN ) ≤ ‖(−∆)

s
2 η‖Lr̃(RN )‖Isϕ‖LNp̃′/(N−sp̃′)(RN )

≤ C‖ϕ‖Lp̃′ (RN ).

The estimate follows again in this case by the fact that ϕ has compact support.
Finally, to establish (2.4) we write

(1− η) =

∞∑
k=2

θA
2kr
,

where each θA
2kr

is supported on an annulus of width 2kr. Then disjoint sup-
port arguments (see, for example, Lemma 3.7 in [9]) imply the estimate

‖(−∆)
s
2 (θA

2kr
Isϕ)‖L2(RN ) ≤ C(2kr)−N/2rN/p‖ϕ‖Lp′ (RN ),

from which we obtain

‖(−∆)
s
2 ((1− η)Isϕ)‖L2(RN ) ≤

∞∑
k=2

‖(−∆)
s
2 (θA

2kr
Isϕ)‖L2(RN )

≤

(
C

∞∑
k=2

(2kr)−N/2rN/p

)
‖ϕ‖Lp′ (RN ).

As the series is summable we have established the desired inequality and there-
fore the theorem is proved.

We are now ready to prove the main result.
Proof of Theorem 1.2. Suppose G ∈ Lp(RN ;RN ) and u ∈ Hs(RN ) satisfies

the equation (1.4). The claim of this theorem is that for any K ⊂⊂ Ω, one has
the estimate

‖Dsu‖Lp(K;RN ) ≤ C
(
‖G‖Lp(RN ;RN ) + ‖(−∆)

s
2u‖L2(RN )

)
.

We will see that the result is a consequence of a combination of Proposi-
tions 2.2 and 2.4, and we argue as follows. Define g := R∗G = −

∑N
j=1RjGj ,

so that g ∈ Lp(RN ) and u satisfies
ˆ

Ω

T (−∆)
s
2u (−∆)

s
2ϕ =

ˆ
g (−∆)

s
2ϕ ∀ϕ ∈ C∞c (Ω),

where T is as in Proposition 2.1. Moreover, a cutoff argument similar to those
previously employed implies that if K ⊂⊂ Ω1, then one has

‖Dsu‖Lp(K;RN ) = ‖R(−∆)
s
2u‖Lp(K;RN )

≤ C
(
‖(−∆)

s
2u‖Lp(Ω1) + ‖(−∆)

s
2u‖L2(RN )

)
,
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and so this and boundedness of the Riesz transforms (to obtain bounds on g in
terms of G in Lp) imply that it suffices to show the estimate

‖(−∆)
s
2u‖Lp(Ω1) ≤ C

(
‖g‖Lp(RN ) + ‖(−∆)

s
2u‖L2(RN )

)
.

for Ω1 ⊂⊂ Ω.
We first apply Proposition 2.2 with f = (−∆)

s
2u and for Ω1 ⊂⊂ Ω2 ⊂⊂ Ω

yielding

‖(−∆)
s
2u‖Lp(Ω1) ≤ C

(
‖T (−∆)

s
2u‖Lp(Ω2) + ‖(−∆)

s
2u‖L2(RN )

)
.

Now Proposition 2.4 and boundedness of T : L2(RN )→ L2(RN ) gives

‖T (−∆)
s
2u‖Lp(Ω2) ≤ C

(
‖g‖Lp(RN ) + ‖T (−∆)

s
2u‖L2(RN )

)
≤ C

(
‖g‖Lp(RN ) + ‖(−∆)

s
2u‖L2(RN )

)
.

Therefore, we find

‖(−∆)
s
2u‖Lp(Ω1) ≤ C

(
‖g‖Lp(RN ) + ‖(−∆)

s
2u‖L2(RN )

)
,

which is the thesis.
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