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Abstract. We study the discrete-to-continuum limit of the helical XY S2 -spin system on the
lattice Z2 . We scale the interaction parameters in order to reduce the model to a spin chain in
the vicinity of the Landau-Lifschitz point and we prove that at the same energy scaling under
which the S1 -model presents scalar chirality transitions, the cost of every vectorial chirality
transition is now zero. In addition we show that if the energy of the system is modified penalizing
the distance of the S2 field from a finite number of copies of S1 , it is still possible to prove the
emergence of nontrivial (possibly trace dependent) chirality transitions.
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1. Introduction

In the last decades frustrated spin systems with continuous symmetry have attracted a great
interest both in the physical and in the mathematical community as simple models leading to
helical phases, which turn out to be interesting for possible application as multi-ferroics (see [10]
for a recent review on the subject). Despite a great effort, the phase diagram of these systems
is far from being rigorously described. In this paper we consider the helical XY spin model
(see [19]) on the square lattice Z2 as a prototype of such systems and we scale the interaction
parameters in order to study, by variational techniques, the vicinity of the Landau-Lifschitz
point, where the helical behavior is expected, as the continuum limit is approached.

A configuration for the helical XY spin model on the square lattice Z2 is a map u : i ∈
Z2 7→ ui ∈ S2 whose energy reads

E(u) = −
∑
i∈Z2

J0(ui, ui+e1)− J1(ui, ui+2e1) + J2(ui, ui+e2), (1.1)

where J0 and J1 are the interaction parameters for the nearest-neighbors (NN) and the next-
to-nearest-neighbors (NNN) interactions in the direction horizontal e1 , respectively, while J2 is
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the interaction parameter for the NN interactions in the vertical direction e2 . Note that the
behavior of the functional above strongly depends on the values of the interaction parameters
and on the range of the spin field. For instance in the case J1 = 0, J0 = J2 > 0 and S1 -
valued spins, one recovers the classical XY-model whose discrete-to-continuum limit has been
investigated in the variational framework of Γ-convergence in [1] (see also [3] and [4]).

In the present paper we consider J0, J1, J2 > 0. With this choice the behavior of the
system in the two directions is different. In the direction e2 the system is ferromagnetic, the
interaction potential is −J2(ui, ui+e2) and favors spin alignment. In the direction e1 there are
competing ferromagnetic (F) NN interactions whose potential −J0(ui, ui+e1) favors alignment
and anti-ferromagnetic (AF) NNN interactions with potential J1(ui, ui+2e1) favoring antipodal
spins. This competition acts as a source of frustration. More precisely, along each horizontal
line, the energy accounting for interactions in the e1 -direction, namely

F (u) = −
∑
j∈Z

J0(uj , uj+1)− J1(uj , uj+2), (1.2)

is that of a so called F/AF frustrated chain (note that for J2 = 0 the system would behave as a
collection of independent chains). In this context we say that F is frustrated because there isn’t
any configuration minimizing all the interactions at once (see [12] for a comprehensive study of
frustrated spin systems).

In this paper we study the functional (1.1) under the natural scaling of the interaction
parameters leading to the easiest possible geometry for helical ground states (for other possible
scaling in a continuous approximation see [18]). To this end we enforce alignment of the spins
in the direction e2 by letting J2 diverge positively. As a result, finite energy spin fields u have
a one-dimensional profile; i.e., u(i1,i2) = vi1 for some v : Z → S2 . In other words, the system
can be, modulo technicalities, described by studying the behavior of the one-dimensional F/AF
frustrated chain model for S2 -valued spins. For the latter chain model it has been conjectured
in the appendix of [14] (the extended version of [13]) that, when J0 and J1 are close to the
helimagnetic transition point J0/J1 = 4, the system presents chirality transitions as in the case
of S1 -valued spins whose variational analysis has been recently carried out by the first and the
third authors in [11]. In the present paper we disprove this conjecture showing that in the S2 case
the transition energy between ground states with different chiralities is negligible. Furthermore
we propose an alternative minimal model leading to non trivial chirality transitions.

In [11] the continuum limit of the F/AF chain energy in (1.2) has been studied in the case of
S1 -valued spins and for a range of interaction parameters close to the ferromagnetic/helimagnetic
transition point. The outcome of the analysis is summarized below. After scaling the functional
by a small parameter λn

J1
(λn → 0 as n → ∞), and setting Zn = {j ∈ Z : λnj ∈ [0, 1]} one

defines Fn : {u : j ∈ Zn 7→ uj ∈ S1} → R as

Fn(u) = −α
∑
j∈Zn

λn(uj , uj+1) +
∑
j∈Zn

λn(uj , uj+2). (1.3)

where α = J0/J1 is the so called frustration parameter. It turns out that the ground states of Fn
can be completely characterized. Neighboring spins are aligned if α ≥ 4 (ferromagnetic order),
while they form a constant angle ϕ = ± arccos(α/4) if 0 < α < 4 (helimagnetic order). In this
last case the system shows a chirality symmetry: the two possible choices of ϕ correspond to
either clockwise or counter-clockwise spin rotations, or in other words to a positive or a negative
chirality. The energy necessary to break this symmetry as α is close to 4 can be found letting
the frustration parameter α depend on n and replacing in (1.3) α by αn = 4(1− δn) for some
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Figure 1. Connecting the chiralities q1 and q2 by slowly moving the spin rota-
tion axis
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vanishing sequence δn > 0. One then introduces the renormalized energy

Hn(u) =
1

2

∑
j∈Zn

λn
∣∣uj+2 − 2(1− δn)uj+1 + uj

∣∣2 , (1.4)

proves that, under periodic boundary conditions on the scalar product of NN interactions,

Hn(u) = Fn(u)−minFn (1.5)

and computes the Γ-limit of Hn/(λnδ
3/2
n ) with respect to the L1 convergence of the chirality

order parameter (a proper discrete version of the angular increment between two neighboring
spins) as λn → 0. In the case λn/

√
δn → 0 (at other scalings chirality transitions are either

forbidden or not penalized) the limit energy functional is proportional to the number of jumps of
the chirality, namely the number of times the spin configuration changes the sign of its angular
velocity.

In the case of S2 -valued spins the picture drastically changes. In analogy with the S1 case
described above one may still renormalize the energy and prove that the modulus of (a proper
discrete version of) the angular velocity of a ground state, which one may still interprets as
the chirality of the system, is constant. However, we may now prove that at this scaling the
transition energy between two ground states with different chiralities is zero. The proof uses the
fact that, in contrast to the S1 -case, the S2 -spin system does not need to jump from one chiral
state to another in order to modify its chirality. Instead, it lets the chirality vary on a slow scale
paying little energy (see Figure 1). This is proved in Theorem 3.8 exploiting the fact that, at
leading order, the renormalized energy can be rewritten as a discrete vectorial Modica-Mortola
functional presenting a potential term with connected wells. Note that in the continuous setting,
the analysis by Γ- convergence of such functionals has been performed by [5] and [6]. However
the discreteness of our energies as well as the additional differential constraint defining our order
parameter prevents us from directly using the results contained in those papers.

In the second part of the paper we propose and study two possible spin models leading
to nontrivial chirality transitions in the vicinity of the ferromagnetic/helimagnetic transition
point. To this end we modify the functional Hn by adding what we call either a hard or a soft
penalization term. In the hard case we constrain the spin variable to take values only in a subset
of S2 consisting of finitely many copies of S1 , while in the soft case we penalize the distance of
the spin field from such a set. For the first model we show that the optimal transition is obtained
by first slowing down the angular velocity of the spin field in the first phase until it reaches one
intersection point between the two rotation planes between which the transition occurs with
zero velocity, and then speeding up again the angular velocity in the new phase (see Figure
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Figure 2. Chirality transition between q1 and q2 . Ball on the left: the transi-
tion path in the chirality space. Ball on the right: the intersection of the two S1

on the transition direction. Bottom: the transition in the real space. The chiral-
ity slows down in the starting rotation plane until the spin reaches the transition
direction and then it speeds up again in the final rotation plane.
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q1 q2slow down speed up

2). In terms of chirality, the transition corresponds to first decreasing and then increasing the
length of the chirality vector while keeping its orientation constant in each phase. For the second
model the construction is more involved and the optimal path may, depending on the scaling
of the additional penalization term, be either again the one described in Figure 2 or instead
depend on the shape of the penalization potential. As a result, the limit functionals obtained
with the two proposed models are different: while in the first case the chirality transitions lead
to a constant positive limit energy to be paid for each discontinuity in the chirality (no matter
which chiralities the system is trying to connect), in the second one, under appropriate scaling,
the limit energy may depend on the two transition chiral states (see example 3.17). As a final
technical remark, we notice that the analysis of the discrete-to-continuum limit for the second
model can be seen as a generalization in the vector-valued case of some results concerning the
discrete approximation of Modica-Mortola type functionals obtained in [8].

2. The energy model: preliminary considerations

2.1. Basic notation. Let Ω = (0, 1)2 ⊂ R2 and λn a vanishing sequence of positive numbers.
We set Z2

n(Ω) as the set of those i ∈ Z2 such that λni ∈ λnZ2 ∩ Ω and Rn(Ω) := {i ∈ Z2
n(Ω) :

i + 2e1, i + e2 ∈ Z2
n(Ω} . The symbol B(0, 1) stands for the unitary ball of R3 centered at the

origin. The symbols S1, S2 stand as usual for the unit spheres of R2 and R3 , respectively.
Given two vectors a, b ∈ R3 we will denote by (a, b) their scalar product. Moreover we define

U2
n(Ω) as the space of functions u : i ∈ Z2

n(Ω) 7→ ui ∈ S2 and U2
n(Ω) as the subspace of those
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functions u such that, for all m ∈ λnZ ∩ (0, 1), it holds

(u(imin+1,m), u(imin,m)) = (u(imax,m), u(imax−1,m)), (2.1)

where imin and imax are the minimum and the maximum of λnZ ∩ (0, 1), respectively.

2.2. The energy. As pointed out in the introduction, we let the parameters J0, J1, J2 in (1.1)
be scale dependent. Without loss of generality we divide the energy by J1,n > 0 and rename

J0,n and J2,n , accordingly. Given n ∈ N and a function u ∈ U2
n(Ω) we consider the energy

En(u) = −
∑

i∈Rn(Ω)

λ2
n

(
J0,n(ui, ui+e1)− (ui, ui+2e1) + J2,n(ui, ui+e2)

)
. (2.2)

We remark that, by considering the energy defined on u ∈ U2
n(Ω), we are imposing boundary

conditions only in the e1 -direction, while we are leaving the spin field in the e2 -direction un-
constrained. As a matter of fact, as a result of the scaling we are going to choose, constraining
the spins in the e2 -direction would not affect the asymptotic energy.

2.3. Ground states and renormalized energy. In this paragraph we describe the ground
states of the energy En and compute their energy minEn . We then define a renormalized energy
Hn which will be the main object to study in order to discuss the asymptotic behavior of the
system in the next sections.

We begin observing that the minimizers of En can be easily computed if one knows the
minimizers of the energy accounting for the interactions in the e1 -direction only. Indeed the
ground states of the system are then obtained by extending such minimizers constantly in the
e2 -direction as it is explained below. Note that indeed this extension keeps the ferromagnetic
term in the e2 -direction minimal.

We now find the ground states of En adapting the idea in the proof of Proposition 3.2
of [11]. We repeat the argument for the reader’s convenience. Setting the renormalized energy
Hn as

Hn(u) =
1

2

 ∑
i∈Rn(Ω)

λ2
n|ui −

J0,n

2
ui+e1 + ui+2e1 |2 + J2,n

∑
i∈Rn(Ω)

λ2
n|ui+e2 − ui|2

 ,

we observe that

En(u) = Hn(u)−

(
1 +

J2
0,n

8
+ J2,n

)
(1− an), (2.3)

where an = 1−
∑

i∈Rn(Ω)
λ2
n is such that limn an = 0.

In the case J0,n ≤ 4 we take φn ∈
[
−π

2 ,
π
2

]
such that cosφn = (J0,n/4) and, for all i = (l,m),

we define the three dimensional vector uin as

uin = (cos(φnl)| sin(φnl)|0). (2.4)

We have that ui+e2n −uin = 0 for all i while, by means of trigonometrical identities it holds that

uin −
J0,n

2
ui+e1n + ui+2e1

n = 0, (2.5)

therefore un is a ground state and minEn = En(un) = −
(

1 +
J2

0,n

8 + J2,n

)
(1 − an). By the

rotational invariance of the energy, all those states obtained rotating un by a fixed SO(3) matrix
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are ground states, too.
Conversely, let vn be a ground state of En . We have that Hn(vn) = 0 which implies that

vi+e1n =
2

J0,n
(vin + vi+2e1

n ), (2.6)

vi+e2n = vin,

so that vin is independent on the vertical coordinate and lies on a fixed plane. By taking the
modulus squared in (2.6) we further get that

1 =
4

J2
0,n

|vin + vi+2e1
n |2 =

8

J2
0,n

(1 + (vin, v
i+2e1
n )),

by which

(vin, v
i+2
n ) =

J2
0,n

8
− 1.

By this equality, using again (2.6) we also get

(vin, v
i+e1
n ) =

2

J0,n
(vin, v

i
n + vi+2e1

n ) =
2

J0,n
(1 + (vin, v

i+2e1
n )) =

J0,n

4
.

Since all the vin lie on a fixed plane the previous equality implies that vn agrees with the ground
state un defined in (2.4) up to a fixed rotation R ∈ SO(3).

The case J0,n > 4 trivially leads to ferromagnetic ground states (see also remark 3.3 in [11]).
As a result of this preliminary analysis, from now on we will focus on the asymptotics of the

renormalized energy Hn . In particular, in what follows we consider the case when the parameter
J0,n is in the vicinity of the Landau-Lifschitz point J0 = 4 and the parameter J2,n diverges. To
this end we introduce δn → 0 and consider J0,n = 4(1− δn) so that Hn takes now the form:

Hn(u) :=
1

2

 ∑
i∈Rn(Ω)

λ2
n|ui − 2(1− δn)ui+e1 + ui+2e1 |2 + J2,n

∑
i∈Rn(Ω)

λ2
n|ui+e2 − ui|2

 . (2.7)

Within this choice stable states have a one dimensional helical structure and may exhibit chirality
transitions in the propagation direction, which in our case is the horizontal axis. Consequently
the analysis we are going to perform starts by considering energies on one dimensional horizontal
slices of the domain. As we are going to show, this reduction to one dimensional spin chains
still presents relevant differences with the case of S1 -valued spins considered in [11].

2.4. One-dimensional slices. In order to deal with one-dimensional energy slices we introduce
the following additional notation. Let I = (0, 1) we define Zn(I) as the set of those points i ∈ Z
such that λni ∈ [0, 1]. We also define Rn(I) := {i ∈ Zn(I) : i + 2 ∈ Zn(I)} . Similar to the
two-dimensional case we will denote by Un(I) the space of functions u : i ∈ Zn(I) 7→ ui ∈ S2

and by Un(I) the subspace of those u such that

(u1, u0) = (u[1/λn], u[1/λn]−1). (2.8)

It is convenient to embed the family of configurations into a common function space. To this
end we associate to any u ∈ Un(I) a piecewise-constant interpolation belonging to the class

Cn(I, S2) := {u ∈ Un(I) : u(x) = u(λni) if x ∈ λn(i+ [0, 1)), i ∈ Zn(I)}. (2.9)

The one-dimensional (sliced) renormalized energy is denoted by Hsl
n : L∞(I,R3)→ [0,+∞] and

takes the form below:

Hsl
n (u) :=

{
1
2

∑
i∈Rn(I) λn

∣∣ui+2 − 2(1− δn)ui+1 + ui
∣∣2 if u ∈ Cn(I, S2),

+∞ otherwise.
(2.10)
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At first let us observe that the zero order Γ-limit is trivial. Indeed, the following result holds
true.

Proposition 2.1. Let Hsl
n : L∞(I,R3)→ [0,+∞] be the functional in (2.10). Then Γ- limnH

sl
n (u)

with respect to the weak-∗ convergence in L∞ is given by

Hsl(u) :=

{
0 if |u| ≤ 1,

+∞ otherwise in L∞(I,R3).

Proof. By [2, Theorem 5.3] there exists a convex function fhom : B(0, 1)→ [0,+∞) such that

Hsl(u) =

{∫
I fhom(u(x)) dx if |u| ≤ 1,

+∞ otherwise in L∞(I,R3).
(2.11)

Let u(x) ≡ u ∈ S2 be a constant function. Then, by a direct computation we have

0 ≤ fhom(u) =

∫
I
fhom(u) dx ≤ lim inf

n
Hsl
n (u) ≤ lim inf

n
2δ2
n = 0. (2.12)

The result follows by the convexity of fhom . �

The degeneracy of the minima of Hsl in the statement of Proposition 2.1 suggests to perform
a higher order analysis by Γ-convergence in the spirit of [7].

Let us recall a preliminary compactness result for scaled energies that was proved in [11,
Proposition 4.3] for spin variables taking values in S1 and whose proof works also for spins in
S2 .

Proposition 2.2. Let µn → 0 and let un ∈ Cn(I, S2) be such that

sup
n
Hsl
n (un) ≤ Cλnµn, (2.13)

then, for all i, we have ∣∣(1− δn)− (ui+1
n , uin)

∣∣ ≤ Cµ 1
2
n .

In particular this implies that (ui+1
n , uin)→ 1 uniformly.

3. Γ-convergence on slices

This section is devoted to the study of the asymptotic behavior of the of one-dimensional
renormalized energy (2.10). We begin by introducing a convenient order parameter. Given a
function u ∈ Cn(I, S2), for all i ∈ {0, . . . , [ 1

λn
]− 1} we set

θi(u) = arccos((ui, ui+1)) ∈ [0, π] (3.1)

and wi = ui × ui+1 . We now introduce a new order parameter z : Zn(I)→ R3 defined by

zi =
1√
2δn

wi =
ui × ui+1

√
2δn

. (3.2)

which stands for a rescaled angular velocity. Such a z will be extended in L1(I,R3) by piecewise-
constant interpolation. Note that the map Tn : Cn(I, S2) → L1(I,R3) associating to u the
corresponding z according to (3.2) is not injective and that if u satisfies periodic boundary
conditions in the sense of 2.8, then |z| is periodic and viceversa. As a result it can easily be
seen that the energy cannot be uniquely defined by the function z . Therefore we define Hsl

n on
L1(I,R3) by setting

Hsl
n (z) =

{
infTn(u)=zH

sl
n (u) if z = Tn(u) for some u ∈ Cn(I, S2),

+∞ otherwise.
(3.3)
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Remark 3.1. We stress that taking the infimum in the definition above has no effect in the
asymptotic analysis we are going to perform. Indeed, if un, vn are two sequences in L∞(I,R3)
satisfying the energy bound (2.13) and such that zn = Tn(un) = Tn(vn), it easily follows
from Proposition 2.2 that for all n large enough n , we have (uin, u

i+1
n ) = (vin, v

i+1
n ) for all

i ∈ {0, . . . , [ 1
λn

]− 1} . This also implies, by means of the identity

(uin × ui+1
n , ui+1

n × ui+2
n ) = (uin, u

i+1
n )(ui+1

n , ui+2
n )− (uin, u

i+2
n )

that (uin, u
i+2
n ) = (vin, v

i+2
n ) so that Hsl

n (zn) does not depend on the element we choose in
T−1
n (zn).

3.1. General energy bounds. As a preliminary result we point out some useful bounds on

Hsl
n at the energy scale λnδ

3/2
n .

Proposition 3.2. Let zn be a sequence in L∞(I,R3) such that

sup
n

Hsl
n (zn)
√

2λnδ
3
2
n

≤ C < +∞,

and let un ∈ Cn(I, S2) be such that zn = Tn(un) for all n. Then there exists a sequence of
positive real numbers γn → 0 such that for n sufficiently large the following two bounds hold
true:

Hsl
n (zn)
√

2λnδ
3
2
n

≥
√

2δn
λn

∑
i∈Rn(I)

λn

(∣∣∣∣ui+1
n − uin√

2δn

∣∣∣∣2 − 1

)2

+
λn√
2δn

(1− γn)
∑

i∈Rn(I)

λn

∣∣∣∣zi+1
n − zin
λn

∣∣∣∣2 (3.4)

Hsl
n (zn)
√

2λnδ
3
2
n

≤
√

2δn
λn

∑
i∈Rn(I)

λn

(∣∣∣∣ui+1
n − uin√

2δn

∣∣∣∣2 − 1

)2

+
λn√
2δn

∑
i∈Rn(I)

λn

∣∣∣∣zi+1
n − zin
λn

∣∣∣∣2 . (3.5)

Proof. Since our assumption implies the energy bound (2.13), following remark 3.1, for n suffi-
ciently large the energy Hsl

n (zn) can be rewritten in terms of un ∈ T−1(zn) and does not depend
on the chosen element in T−1(zn). A straightforward calculations shows that

4|ui+1
n − uin|2 = |ui+1

n − uin|4 + 4(1− (ui+1
n , uin)2). (3.6)

Thus we can rewrite the energy of Hsl
n (zn) in terms of un as

Hsl
n (zn) =

∑
i∈Rn(I)

2(1− δn)λn|ui+1
n − uin|2 −

λn
2
|ui+2
n − uin|2 + 2λnδ

2
n

=
∑

i∈Rn(I)

λn

(
1

2
|ui+1
n − uin|4 − 2δn|ui+1

n − uin|2 + 2δ2
n

)

+
∑

i∈Rn(I)

λn

(
2(1− (ui+1

n , uin)2)− 1

2
|ui+2
n − uin|2

)
(3.7)

=
∑

i∈Rn(I)

2λn

(
1

2
|ui+1
n − uin|2 − δn

)2

+
∑

i∈Rn(I)

λn

(
2(1− (ui+1

n , uin)2)− 1

2
|ui+2
n − uin|2

)

=2δ2
n

∑
i∈Rn(I)

λn

(∣∣∣∣ui+1
n − uin√

2δn

∣∣∣∣2 − 1

)2

+
∑

i∈Rn(I)

λn

(
2(1− (ui+1

n , uin)2)− 1

2
|ui+2
n − uin|2

)
.
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We now claim that there exists a sequence of number γn → 0 such that the following two
inequalities hold:∑

i∈Rn(I)

λn

(
2(1− (ui+1

n , uin)2)− 1

2
|ui+2
n − uin|2

)
≥ (1− γn)δn

∑
i∈Rn(I)

λn
∣∣zi+1
n − zin

∣∣2 (3.8)

∑
i∈Rn(I)

λn

(
2(1− (ui+1

n , uin)2)− 1

2
|ui+2
n − uin|2

)
≤ δn

∑
i∈Rn(I)

λn
∣∣zi+1
n − zin

∣∣2 (3.9)

If the claim is proved the inequalities in the statement follow by (3.7) on dividing by
√

2λnδ
3/2
n .

We are then only left to show the validity of (3.8) and (3.9). We first notice that by definition
of zn we have

1− (uin, u
i+1
n )2 = 2δn|zin|2. (3.10)

Setting θin = θ(un)i according to (3.1) we observe that using the triple product expansion

ui+2
n =− wi+1

n × ui+1
n + cos(θi+1

n )ui+1
n ,

uin =win × ui+1
n + cos(θin)ui+1

n .

Thus we can write

|ui+2
n − uin|2 =

∣∣(wi+1
n + win)× ui+1

n + (cos(θin)− cos(θi+1
n ))ui+1

n

∣∣2
=
∣∣(wi+1

n + win)× ui+1
n

∣∣2 +
∣∣cos(θi+1

n )− cos(θin)
∣∣2

=
∣∣wi+1

n + win
∣∣2 +

∣∣cos(θi+1
n )− cos(θin)

∣∣2 (3.11)

This immediately implies that

1

2
|ui+2
n − uin|2 ≥ δn|zi+1

n + zin|2. (3.12)

By Proposition 2.2 we have that θin → 0 uniformly in i . Combining that with the elementary
fact that around zero | sin(x)| = sin(|x|), it holds:

| cos(θi+1
n )− cos(θin)| = | cos(|θi+1

n |)− cos(|θin|)|
≤ γn|| sin(θi+1

n )| − | sin(θin)|| ≤ γn|wi+1
n − win|

for some sequence γn converging to 0. It then follows that

1

2
|ui+2
n − uin|2 ≤ δn

(
|zi+1
n + zin|2 + γn|zi+1

n − zin|2
)
. (3.13)

Inserting this estimate as well as (3.10) in the left hand side of (3.8) and using the periodicity
of |zn| we have∑

i∈Rn(I)

λn

(
2(1− (ui+1

n , uin)2)− 1

2
|ui+2
n − uin|2

)
≥ δn

∑
i∈Rn(I)

λn
(
4|zin|2 − |zi+1

n + zin|2 − γn|zi+1
n − zin|2

)
= δn

∑
i∈Rn(I)

λn
(
2|zin|2 + 2|zi+1

n |2 − |zi+1
n + zin|2 − γn|zi+1

n − zin|2
)

= δn(1− γn)
∑

i∈Rn(I)

λn|zi+1
n − zin|2.

This proves claim (3.8). A similar argument using (3.12) in place of (3.13) proves claim (3.9). �
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From the previous result we can deduce compactness with respect to the weak*-convergence
in L∞ . The bounds we find are indeed the best we can hope for in this case (see Remark
3.9 below), nevertheless they will play an important role in Section 3.3 when we will discuss
the coupling of the functional with other terms and we will use them in order to improve the
compactness of sequences with equibounded energy. The arguments are similar to the ones used
in the proof of Theorem 1.2 in [16].

Proposition 3.3. Assume that λn√
δn
→ 0 and let zn ∈ L∞(I,R3) be a sequence such that

sup
n

Hsl
n (zn)
√

2λnδ
3
2
n

≤ C < +∞.

Then ‖zn‖∞ is equibounded and, up to subsequences, zn converges weakly* in L∞(I) to some
z ∈ L∞(I,B(0, 1)). If in addition zn → z in L1(I), then z ∈ L∞(I, S2).

Proof. Let un be such that Tn(un) = zn . By (3.4) we have that, for large n ,

C ≥ 2
√
δn

λn

∑
i∈Rn(I)

λn

(∣∣∣∣ui+1
n − uin√

2δn

∣∣∣∣2 − 1

)2

+
λn

2
√
δn

∑
i∈Rn(I)

λn

∣∣∣∣zi+1
n − zin
λn

∣∣∣∣2

≥ 2
∑

i∈Rn(I)

λn

∣∣∣∣∣
∣∣∣∣ui+1

n − uin√
2δn

∣∣∣∣2 − 1

∣∣∣∣∣
∣∣∣∣zi+1
n − zin
λn

∣∣∣∣ .
First we observe that ∣∣∣∣ui+1

n − uin√
2δn

∣∣∣∣2 − |zin|2 =

(
(ui+1
n , uin)− 1

)2
2δn

≥ 0. (3.14)

As a result we can continue the lower bound above deducing that

C ≥ 6
∑

i∈Rn(I): |zin|≥2

λn

∣∣∣∣zi+1
n − zin
λn

∣∣∣∣ . (3.15)

Exploiting again (3.4), we may also deduce that

sup
i
|zi+1
n − zin|2 ≤ 2C

√
δn. (3.16)

We now fix n0 such that 2C
√
δn <

1
4 for all n > n0 . Given n > n0 , we claim that ‖zn‖∞ ≤

max{4, 3 + C
6 } . To this end assume it exists j such that |zjn| ≥ 4, otherwise the claim is proved.

We observe that, combining (3.4) with (3.14), there exists i(n) ∈ Rn(I) such that |zi(n)
n |2 ≤

2. Without loss of generality we may suppose that i(n) < j . Let us define

k(n) + 1 := min{i : i(n) ≤ i ≤ j with |zln| > 3, ∀ i ≤ l ≤ j}.

The minimum is well defined since the set contains at least j . Note that k(n) + 1 > i(n), that

gives k(n) ≥ 0 and |zk(n)
n | ≤ 3. By (3.16) and the choice of n > n0 we also have that |zk(n)

n | ≥ 2.
Therefore we have that |zln| ≥ 2 for all k(n) ≤ l ≤ j and by (3.15) we eventually have that

|zjn| ≤ |zk(n)
n |+

j−1∑
l=k(n)

λn

∣∣∣∣zl+1
n − zln
λn

∣∣∣∣ ≤ 3 +
C

6
,

which proves the claim. As a result equiboundedness as well as L∞ weak* compactness are
shown.
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We now prove that |zn| → 1 almost everywhere in I . Setting θin = θi(un) according to
(3.1) we define the piecewise constant function ζn whose value on the nodes of the lattice is

ζin =

√
2

δn

∣∣∣∣sin(θin2
)∣∣∣∣ .

We notice that for all i ∈ Rn(I) one has by definition that ζin =
∣∣∣ui+1
n −uin√

2δn

∣∣∣ . Since by Proposition

2.2 θin → 0 uniformly in i , by the equiboundedness of |zin| = |
sin(θin)√

2δn
| and trigonometric identities

we get that ‖|zn| − ζn‖∞ → 0. By (3.4) we may now write that, for any interval I ′ ⊂⊂ I ,

0 = lim
n
C

λn

2
√
δn
≥ lim sup

n

∑
i∈Rn(I)

λn

(∣∣∣∣ui+1
n − uin√

2δn

∣∣∣∣2 − 1

)2

≥ lim sup
n

∫
I′

(
ζn(t)2 − 1

)2
dt.

Therefore ζn → 1 pointwise almost everywhere due to the arbitrariness of I ′ which implies that
|zn| → 1 almost everywhere. It follows that any weak limit of zn belongs to L∞(I,B(0, 1)) and
that if in addition zn → z strongly in L1 then z ∈ L∞(I, S2). �

Remark 3.4. If zn is as in Proposition 3.3 and zan denotes the piecewise affine interpolation
on Zn(I) of zn , then it follows from (3.16) that

sup
t∈I
|zan(t)− zn(t)|2 ≤ 2C

√
δn.

This estimate of course also holds if we rescale the variable t .

3.2. Zero energy chirality transitions: In this section we will prove that, in contrast to the
S1 -valued spin system studied in [11], in the present case the functional Hsl

n does not penalize
chirality transitions between ground states. In other words the optimal asymptotic energy for a
transition turns out to be zero, as it is explained below. Before entering into the details of the
proof we need to introduce some notation. Given two unit vectors z−, z+ ∈ S2 we set

H×z−,z+ :=

{
w = u× u′, u ∈ H2

loc(R, S2) : lim
t→±∞

w(t) = z±

}
.

We first prove the following lemma.

Lemma 3.5. Let u ∈ H2
loc(R, S2) and let w = u× u′ . Then w ∈ H1

loc(R,R3) and w′ = u× u′′ .
Moreover, if u ∈ H1

loc(R, S2) and w = u× u′ ∈ H1
loc(R,R3), then u ∈ H2

loc(R, S2).

Proof. The first statement can be proved by approximation with smooth functions. Concerning
the second one, note that

u× w = u× (u× u′) = (u, u′)u− (u, u)u′ = −u′,

where we have used that |u| = 1, so that (u, u,′) = 0 almost everywhere. On every bounded
interval J we have u,w ∈ H1(J,R3) ∩ L∞(J,R3), so that u× w ∈ H1(J,R3). �

We define the transition energy function g : S2 × S2 → [0,+∞) by

g(z1, z2) := inf

{∫
R

(|w(t)|2 − 1)2 dt+

∫
R
|w′(t)|2 dt : w ∈ H×z1,z2

}
. (3.17)

In the following lemma we show that actually the infimum is zero for every z1, z2 ∈ S2 .

Lemma 3.6. For all z1, z2 ∈ S2 we have

g(z1, z2) = 0.



12 MARCO CICALESE, MATTHIAS RUF, AND FRANCESCO SOLOMBRINO

Proof. The function g is invariant under rotations so we may assume that z1 = e3 and z2 =
λe2 + µe3 with λ2 + µ2 = 1. Now we take a C2 cut-off function γ : R→ [0, 1] such that

γ(t) =

{
0 t ≤ 0,

1 t ≥ 1.

Given ρ > 1, we define γρ : R→ [0, 1] as γρ(t) = γ( tρ). We consider the matrix

A =

1 0 0
0 µ λ
0 −λ µ


which belongs to SO(3) and maps z1 to z2 . Let B be an antisymmetric matrix such that
A = exp(B). We define the test function in the infimum problem defining g by

uρ(t) := exp(γρ(t)B)(cos(t), sin(t), 0). (3.18)

Then uρ ∈ H2
loc(R, S2) and, since B commutes with exp(γρ(t)B),

u′ρ(t) = γ′ρ(t)B uρ(t) + exp(γρ(t)B)(− sin(t), cos(t), 0). (3.19)

Since γ′ρ(t) = 0 for t /∈ (0, ρ) it follows that wρ = uρ × u′ρ satisfies

wρ(t) =

{
e3 t ≤ 0,

λe2 + µe3 t ≥ ρ.
(3.20)

By Lemma 3.5, wρ ∈ H1
loc(R) so that wρ ∈ H×z1,z2 . Moreover from (3.19) it follows that there

exists a constant C depending only on |B| and on the C2 -norm of γ in [0, 1], such that

1− Cρ−1 ≤ |u′ρ(t)| ≤ 1 + Cρ−1 if t ∈ (0, ρ).

Taking squares in the previous inequality and since |wρ(t)| = |u′ρ(t)| we deduce that(
|wρ(t)|2 − 1

)2 ≤ Cρ−2. (3.21)

Since the second derivative of uρ reads as

u′′ρ(t) = γ′′ρ (t)B uρ(t) + γ′ρ(t)B u
′
ρ(t) + exp(γρ(t)B)γ′ρ(t)B(− sin(t), cos(t), 0)− uρ(t).

we infer that

|w′ρ(t)|2 = |uρ(t)× u′′ρ(t)|2 ≤ Cρ−2 if t ∈ (0, ρ). (3.22)

For t /∈ (0, ρ) by (3.20)wρ(t) does not contribute to (3.17). It then follows from (3.21) and
(3.22) that

g(z1, z2) ≤ Cρ−1,

which implies g(z1, z2) = 0 by the arbitrariness of ρ . �

We are now going to compute the Γ-limit of Hsl
n with respect to the weak∗ convergence

where we have proved a compactness result (see Proposition 3.3). First notice that this choice
forces us to restrict the domain of the functional to some a priori fixed ball of L∞ where the
weak∗ topology is metrizable. On the other hand, as it will be clear from our Γ-limsup construc-
tion, without the addition of other terms to the functional, there is no hope for compactness in
a finer topology.

The following lemma will be used in the proof of the next theorem as well as in the sequel
of the paper.

Lemma 3.7. Let u ∈ C1((a, b), S2) and w ∈ S2 be such that u(s)×u′(s) = w for all s ∈ (a, b).
Then, for all s1, s2 ∈ (a, b) it holds

u(s1)× u(s2) = sin(s2 − s1)w. (3.23)
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Proof. The result follows from a direct computation. �

For every R > 1 we define the functional Hsl,R
n as follows:

Hsl,R
n (z) =

{
Hsl
n (z) if ‖z‖∞ ≤ R,

+∞ otherwise.
. (3.24)

The following Γ-convergence result holds.

Theorem 3.8. Let R > 1 and Hsl,R
n : L1(I,R3)→ [0,+∞] be defined as in (3.24). Assume that

λn√
δn
→ 0. Then the functionals Hsl,R

n
√

2λnδ
3
2
n

Γ-converge with respect to the weak∗ L∞ -convergence

to the functional

Hsl(z) =

{
0 if z ∈ L∞(I,B(0, 1)),

+∞ otherwise.
.

Proof. liminf-inequality. Since Hsl,R
n ≥ 0 it only suffices to check that any weak∗ limit of

sequences zn such that supn
Hsl,R
n (zn)
√

2λnδ
3
2
n

≤ C < +∞ belongs to L∞(I, S2). This is ensured by

Proposition 3.3.
limsup-inequality: By density it suffices to prove the inequality for a S2 -valued piecewise

constant function z . Since the construction of the recovery sequence will be local we can assume
that z = z11[0, 1

2
) +z21( 1

2
,1] with |z1| = |z2| = 1. Given ε > 0 we find a function u ∈ H2

loc(R, S2)

such that w = u× u′ is admissible in the infimum problem defining g(z1, z2) in (3.17) and∫
R

(|w(t)|2 − 1)2 dt+

∫
R
|w′(t)|2 dt ≤ ε. (3.25)

Having in mind the family constructed in the proof of Lemma 3.6 we can further assume that
u ∈ C2(R, S2), that it has bounded and uniformly continuous first and second derivative, that
it satisfies the bound ‖u′‖∞ ≤ 1 + ε and that there exists tε > 0 such that

w(t) = z1 ∀t ≤ 0, (3.26)

w(t) = z2 ∀t ≥ tε, . (3.27)

We consider the sequence αn = arccos(1−δn)√
2δn

and we observe that 1− δn = cos(αn
√

2δn) and that

limn αn = 1. We now define the function un ∈ Cn(I, S2) setting

uin = u

(
αn

√
2δn
λn

(λni−
1

2
)

)
.

By the uniform continuity of u we have that, for large enough n , for j ∈ {1, 2} |ui+jn −uin| → 0
uniformly with respect to i ∈ Rn(I). In particular this implies that

(ui+jn , uin) > 0, for j ∈ {1, 2}. (3.28)

We now fix i− =
[

1
2λn

]
and i+ =

[
1

2λn
+ tε

αn
√

2δn

]
+ 1 and observe that i± ∈ Rn(I) for n large

enough. Applying Lemma 3.7 to the function u in the interval (−∞, αn
√

2δn
λn

(λni−− 1
2)) we get

that for all i < i− − 1 it holds that

uin × ui+1
n = sin

(
αn
√

2δn

)
z1, uin × ui+2

n = sin
(

2αn
√

2δn

)
z1.

Using (3.28) we get

(uin, u
i+1
n ) = cos

(
αn
√

2δn

)
= 1− δn, (uin, u

i+2
n ) = cos

(
2αn

√
2δn

)
= 2(1− δ2

n)− 1 (3.29)
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which further implies

uin − 2ui+1
n + ui+2

n = 2δnu
i+1
n . (3.30)

Using the same argument in the interval (αn
√

2δn
λn

(λni+− 1
2),+∞) with z2 in place of z1 it can

be shown that (3.29) and (3.30) hold for all i ≥ i+ . In particular the first equality in (3.29)
implies that un satisfies the boundary conditions in (2.8).

We now consider the sequence zn := Tn(un). It holds that for all i ∈ Rn(I)

|zin| = |uin ×
ui+1
n − uin√

2δn
| ≤ |u

i+1
n − uin√

2δn
| ≤ αn‖u′‖∞ ≤ αn(1 + ε). (3.31)

Furthermore, since the first derivative of u is uniformly continuous on R , zn converges pointwise
almost everywhere to z and on applying dominated convergence also in L1 as well as in the
weak-∗ convergence of L∞ by (3.31). Thus zn is an admissible recovery sequence. We now
define the auxiliary functions z̃n : R→ R3 by

z̃n(s) =

{
ui+1
n −uin√

2δn
if s ∈ [αn

√
2δn

λn
(λni− 1

2), αn
√

2δn
λn

(λn(i+ 1)− 1
2)), i ∈ 0, . . . , [ 1

λn
]− 2,

u′(s) otherwise.

By the change of variables s− 1
2 = λn

αn
√

2δn
t we have

√
2δn
λn

[1/λn]−2∑
i=0

λn

(∣∣∣∣ui+1
n − uin√

2δn

∣∣∣∣2 − 1

)2

≤
√

2δn
λn

∫ 1

0

(∣∣∣∣z̃n(αn√2δn
λn

(s− 1

2
)

)∣∣∣∣2 − 1

)2

ds

=
1

αn

∫ αn
√
δn√

2λn

−αn
√
δn√

2λn

(
|z̃n(t)|2 − 1

)2
dt ≤ 1

αn

∫
R

(
|z̃n(t)|2 − 1

)2
dt. (3.32)

Since (−∞,−1
2) ⊂ (−∞, αn

√
2δn
λn

(λni− − 1
2)) and (tε + 1,+∞) ⊂ (αn

√
2δn
λn

(λni+ − 1
2)), using

(3.26), (3.27) and (3.29) one has that

|z̃n(s)| = 1 ∀ s ∈ (−∞,−1

2
) ∪ (tε + 1,+∞). (3.33)

Since u′ is uniformly continuous and αn → 1 it is easy to see that z̃n converges uniformly to
u′ on [−1

2 , tε + 1]. By (3.33) we can apply dominated convergence in the r.h.s of (3.32). Since
|u′(s)| = |w(s)| for all s ∈ R , we deduce

lim sup
n→∞

√
2δn
λn

[1/λn]−2∑
i=0

λn

(∣∣∣∣ui+1
n − uin√

2δn

∣∣∣∣2 − 1

)2

≤
∫
R

(
|w(t)|2 − 1

)2
dt. (3.34)

We now define the auxiliary function zn : R→ R3 as

zn(s) =

{
zi+1
n −zin√

2δn
if s ∈ [αn

√
2δn

λn
(λni− 1

2), αn
√

2δn
λn

(λn(i+ 1)− 1
2)), i ∈ 0, . . . , [ 1

λn
]− 2,

w′(s) otherwise.

Using again the same change of variables as above we get

λn√
2δn

[1/λn]−2∑
i=0

λn

∣∣∣∣zi+1
n − zin
λn

∣∣∣∣2 ≤ √2δn
λn

[1/λn]−2∑
i=0

λn

∣∣∣∣zi+1
n − zin√

2δn

∣∣∣∣2

=

√
2δn
λn

∫ 1

0

∣∣∣∣zn(αn√2δn
λn

(s− 1

2
)

)∣∣∣∣2 ds =
1

αn

∫ αn
√
δn√

2λn

−αn
√
δn√

2λn

|zn(t)|2 dt. (3.35)
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We first claim that zn converges to w′ in L2
loc(R). To see this let us set hn = αn

√
2δn and note

that

zn(s) =
zi+1
n − zin√

2δn
= α2

n u
i+1
n × (ui+2

n − 2ui+1
n + uin)

h2
n

= α2
n u(ξin)× u(ξin + hn)− 2u(ξin) + u(ξin − hn)

h2
n

,

for some |ξin − s| ≤ hn . By the continuity of u′′ , since hn → 0 and αn → 1, we have zn(s) →
u(s)×u′′(s) = w′(s) which proves the pointwise convergence of zn to w′ . Since u′′ is uniformly
bounded on R it follows that zn is equibounded which gives the L2

loc convergence. On the other

hand, thanks to (3.30), we have that zn(s) = 0 for all s ∈ (−∞,−1
2) ∪ (tε + 1,+∞). Therefore

we can let n→ +∞ in (3.35) and deduce

lim sup
n→∞

λn√
2δn

[1/λn]−2∑
i=0

λn

∣∣∣∣zi+1
n − zin
λn

∣∣∣∣2 ≤ ∫
R
|w′(t)|2 dt. (3.36)

Combining (3.5), (3.25), (3.34) and (3.36), by the arbitrainess of ε we infer that

Γ− lim sup
n→∞

Hsl
n (z)

√
2λnδ

3
2
n

≤ 0. (3.37)

�

Remark 3.9. Assume that λn√
δn
→ 0. Then there exists a sequence of functions zn ∈ Cn(I,R3)

such that

Hsl
n (zn) ≤ Cλnδ

3
2
n

such that no subsequence converges strongly in L1(I,R3). In fact, let us fix ηn = cnλn where
cn ∈ N is such that λn√

2δn
<< ηn << 1. Let us consider un ∈ H2

loc(R, S2) such that wn = un×u′n
with wn satisfying the properties (3.26) and (3.27) with z2 = −z1 and such that (3.25) holds

with η2
n in place of ε . For all i ∈ {0, . . . , 2ηn

λn
} we set

uin = un

(
αn

√
2δn
λn

(λni− ηn)

)
and we define un ∈ Cn(I, S2) as the 2ηn -periodic extension of the function above. Setting
zn = Tn(un) by construction we have that zn → 0 in the weak∗ topology of L∞ . By repeating
the same argument in the proof of the Γ-limsup inequality, the energy stored in each interval of
length ηn is at most η2

n , so that

Hsl
n (zn)
√

2λnδ
3
2
n

≤ η2
n

ηn
→ 0.

The sequence constructed in this way cannot converge strongly to z = 0, otherwise by Propo-
sition 3.3 we would get z ∈ L1(I, S2).

3.3. S2 -chirality transitions under additional constraints. As discussed in the previous
section, it is not possible to energetically detect chirality transitions by using as energy Hn , that
is the scaled NN and NNN frustrated spin chain model as in [13]. Nevertheless, transitions with
non trivial energy may appear if we modify the functional Hn by adding what we call either a
hard or a soft penalization term. In the hard case we will force the spin variable to take values
only in a subset of S2 consisting of finitely many copies of S1 , while in the soft case we will
penalize the distance of the spin field from such a set. The main difference between the two
cases is that, while in the first case we will prove that chirality transitions leads to a constant
positive limit energy to be paid for each discontinuity in the chirality, in the second one we can
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present some examples showing dependence of the limit energy on the two chiral states between
which the transition occurs.

3.3.1. Chirality transitions via hard penalization. Let q1, . . . , qk be a fixed family of distinct
points in S2 , where k ≥ 1. For l ∈ {1, 2, . . . , k} we set S1

l = S2 ∩ q⊥l . To reduce notation we
set

Qk := {±q1, . . . ,±qk}, Mk :=

k⋃
l=1

S1
l , Lk :=

k⋃
l=1

span(ql). (3.38)

We then restrict the spin variable u to take values only in Mk . We define the space Cn(I,Mk)
as the subset of Cn(I, S2) of those functions taking values in Mk . We define the energy

Hsl,k
n : L1(I)→ [0,+∞] as

Hsl,k
n (z) =

{
infT (u)=zH

sl
n (u) if z = Tn(u) for some u ∈ Cn(I,Mk),

+∞ otherwise.
(3.39)

Moreover we set

H×q−,q+(Mk) :=

{
w = u× u′, u ∈ H2

loc(R,Mk) : lim
t→±∞

w(t) = q±

}
and define the function hk : Qk ×Qk → R by

hk(q−, q+) := inf

{∫
R

(|w(t)|2 − 1)2 dt+

∫
R
|w′(t)|2 dt : w ∈ H×q−,q+(Mk)

}
. (3.40)

In this setting the function hk turns out to be independent of the k as well as of (q−, q+) ∈
Qk × Qk and reduces to the well-known transition energy for scalar problems as shown in the
next lemma.

Lemma 3.10. Let q−, q+ ∈ Qk, q− 6= q+ . Then hk(q−, q+) = 8
3 and we have equivalently

hk(q−, q+) = inf

{∫
R

(|w(t)|2 − 1)2 + |w′(t)|2 dt : w ∈ H1
loc(R, Lk), lim

t→±∞
w(t) = q±

}
,

which is solved by the function wq−,q+ defined as

wq−,q+(t) =

{
| tanh(t)|q− if t ≤ 0,

| tanh(t)|q+ if t > 0.

Proof. We first show that wq−,q+ is the solution of the minimum problem if we replace the cross
product constraint by requiring w ∈ H1(R, Lk). To this end (taking a continuous representative)
note that we don’t increase the energy if we stay in the half line gq+ := {λ q+ : λ ≥ 0} as soon
as we reach the origin for the first time coming from q− . Indeed, if t0 = inf{t ∈ R : w(t) = 0}
and t1 = sup{t ∈ R : w(t) = 0} , then the function

w̃(t) =

{
w(t) if t < t0,

w(t− t0 + t1) if t ≥ t0
(3.41)

gives the same or less energy as w . Now given such a function w we define v ∈ H1(R) setting

v(t) =

{
−|w(t)| if w(t) ∈ gq− ,

|w(t)| otherwise.
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Then we have limt→±∞ v(t) = ±1 and therefore by the usual Modica-Mortola’s trick (see for
example [17])∫

R
(|w(t)|2 − 1)2 + |w′(t)|2 dt =

∫
R

(v(t)2 − 1)2 + v′(t)2 dt

≥
∫
R

(tanh(t)2 − 1)2 + tanh′(t)2 dt =

∫
R

(|wq−,q+(t)|2 − 1)2 + |w′q−,q+(t)|2 dt =
8

3

It therefore only remains to show that wq−,q+ ∈ H×q−,q+(Mk). Therefore we choose rotations

Rq− and Rq+ such that Rq−e3 = −q− and Rq+e3 = q+ and let γ(t) = log(cosh(t)) be a primitive
of tanh(t). We set

u(t) =

{
Rq−(cos(γ(t) + t0), sin(γ(t) + t0), 0) if t ≤ 0,

Rq+(cos(γ(t) + t1), sin(γ(t) + t1), 0) if t > 0,

where t0, t1 are chosen such that Rq−(cos(t0), sin(t0), 0) = Rq+(cos(t1), sin(t1), 0) therefore u is
continuous at t = 0. Observing that γ′(0) = 0 we also have that u′(0) exists and is equal to 0.
Then u ∈ H2

loc(R,Mk), while a direct computation gives u× u′ = wq−,q+ . �

The following compactness result holds true.

Proposition 3.11. Assume that λn√
δn
→ 0 and let zn = Tn(un) for some un ∈ Cn(I,Mk) be

such that

Hsl,k
n (zn) ≤ Cλnδ

3
2
n .

Then (up to subsequences) zn converges strongly in L1 to a function z ∈ BV (I,Qk).

Proof. By Proposition 3.3 we have that supn ‖zn‖∞ < +∞ . Therefore it is enough to show
that, up to subsequences, zn converges in measure to a function z ∈ BV (I,Qk). Given η > 0
we define the set

Aη := {x ∈ R3 : dist(x, Lk) ≥ η}. (3.42)

We now claim that, for n large enough, we have zin /∈ Aη for all i ∈ Rn(I). Assume by
contradiction that the claim does not hold. Passing to a subsequence we have that for each n
there exists i = i(n) such that zi+1

n ∈ Aη . From (3.16) we infer that for n large enough

zi+1
n , . . . , zi+kn ∈ A η

2
. (3.43)

As a result we have that for all j = 1, . . . , k , if ui+jn ∈ S1
l for some l ∈ {1, 2, . . . , k}

then ui+j+1
n ∈ S1

m for some m 6= l . Moreover, up subsequences we may suppose that, for all
j = 1, . . . , k + 1 there exists lj ∈ {1, 2, . . . , k} such that

ui+jn ∈ S1
lj
, (3.44)

where, by the previous discussion we have that lj 6= lj+1 . Let u be a limit point for ui+1
n . Since

by Proposition 2.2 |ui+j
′

n − ui+jn | → 0 uniformly in j, j′ ∈ {1, . . . , k + 1} , we have that that for

all fixed j ∈ {1, . . . , k + 1} , ui+jn → u with the property that u ∈
⋂k+1
j=1 S

1
lj

. Since |zi+jn | ≥ η
2 ,

by the definition of zi+jn and (3.16), for all j = 1, . . . , k + 1 there exists a constant C = Cη > 0
such that

1

C
δn ≤ |ui+j+1

n − ui+jn |2 ≤ Cδn ∀j = 1 . . . , k. (3.45)

Thanks to the second inequality above we have

(zi+j+1
n , zi+jn )

|zi+j+1
n ||zi+jn |

→ 1, ∀j = 1, . . . , k − 1. (3.46)
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We now claim that

1

C
δn ≤ |ui+jn − u|2 ≤ Cδn ∀j = 1 . . . , k + 1. (3.47)

Indeed, suppose by contradiction that |u
i+j
n −u|2
δn

→ 0. Then for j ∈ {1, 2, . . . , k}

zi+jn =
ui+jn × ui+j+1

n√
2δn

=
(ui+jn − u)× ui+j+1

n√
2δn︸ ︷︷ ︸
→0

+
u× ui+j+1

n√
2δn︸ ︷︷ ︸
∈Lk

/∈ Aη/2,

for n large enough, so that the first inequality holds. The case j = k + 1 is proved with the

same argument, exchanging the role of ui+jn and ui+j+1
n . The second inequality in (3.47) can

be proven as follows. By (3.45) we have

C ≥|u
i+j+1
n − ui+jn |2

δn
=
|ui+j+1
n − u|2

δn
+
|ui+jn − u|2

δn
− 2

δn

(ui+j+1
n − u, ui+jn − u)

|ui+j+1
n − u||ui+jn − u|

|ui+j+1
n − u||ui+jn − u|

≥

(
1− (ui+j+1

n − u, ui+jn − u)

|ui+j+1
n − u||ui+jn − u|

)(
|ui+j+1
n − u|2

δn
+
|ui+jn − u|2

δn

)
≥ c |u

i+j
n − u|2

δn
,

where we used that S1
lj
6= S1

lj+1
.

By (3.45) and (3.47), up to extracting a further subsequence, we have that the sequences

(ajn)n∈N definded as

ajn :=
ui+jn − u√

2δn

converge to different points aj for all j = 1, . . . , k + 1. We observe that for all j = 1, . . . , k + 1
we have that aj belongs to the 1-dimensional subspace Vlj := u⊥ ∩ q⊥lj with lj given by (3.44).

Indeed

|(aj , u)| = lim
n

∣∣∣∣∣(ui+jn , u)− 1√
2δn

∣∣∣∣∣ = lim
n

1

2

∣∣∣ui+jn − u
∣∣∣2

√
2δn

= 0

by (3.47). On the other hand (aj , qlj ) = 0 simply follows by (3.44) since qlj ⊥ S1
lj

. We now

show that all aj are collinear. Indeed, by definition (3.2) we have that

|zi+jn | =

√
1− (ui+j+1

n , ui+jn )2

√
2δn

.

On the other hand, again by (3.2) and the well-known formula (a × b, c × d) = (a, c)(b, d) −
(b, c)(a, d) we have that

(ui+j+2
n − ui+j+1

n , ui+j+1
n − ui+jn )− 2δn(zi+j+1

n , zi+jn )

= −(1− (ui+j+2
n , ui+j+1

n ))(1− (ui+j+1
n , ui+jn ))
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From the previous two equalities, together with Proposition 2.2 and (3.46) we then get that for
all j ∈ {1, 2, . . . , k − 1}

1 ≥(aj+2 − aj+1, aj+1 − aj)
|aj+2 − aj+1||aj+1 − aj |

= lim
n→∞

(ui+j+2
n − ui+j+1

n , ui+j+1
n − ui+jn )√

(2− 2(ui+j+2
n , ui+j+1

n ))(2− 2(ui+j+1
n , uji+n ))

= lim
n→∞

2δn(zi+j+1
n , zi+jn ) + (ui+j+2

n − ui+j+1
n , ui+j+1

n − ui+jn )− 2δn(zi+j+1
n , zi+jn )√

(2− 2(ui+j+2
n , ui+j+1

n ))(2− 2(ui+j+1
n , ui+jn ))

≥ lim
n→∞

(zi+j+1
n , zi+jn )

|zi+j+1
n ||zi+jn |

1

2

√
(1 + (ui+j+2

n , ui+j+1
n ))(1 + (ui+j+1

n , ui+jn ))

− lim
n→∞

1

2

√
((1− (ui+j+2

n , ui+j+1
n ))(1− (ui+j+1

n , ui+jn )) = 1,

which is equivalent to say that all aj with j ∈ {1, 2, . . . , k + 1} are collinear. This gives a
contradiction, as the line containing the aj ’s should then intersect in k + 1 distinct points the

set
⋃k
j=1 Vlj , which instead consists of at most k 1-dimensional linear subspaces. This proves

our claim that for n large enough zin 6∈ Aη for all i ∈ Rn(I) which implies that dist(zn, Lk)→
0 uniformly. Since as in the proof of Proposition 3.3 |zn| → 1 almost everywhere in I we
deduce that

dist(zn, Qk)→ 0 in measure. (3.48)

Now we argue similar to the proof of Lemma 6.2 in [9]. At first we chose r > 0 such that
the family of balls {B3r(z)}z∈Qk is pairwise disjoint. We set

d := inf
q1,q2∈Qk
q1 6=q2

dist(B2r(q1), B2r(q2)) > 0.

Suppose zn takes values in different balls Br(q1) and Br(q2). Then, by (3.16) there exists a

path zin, . . . , z
i+j
n such that r < |zin − q1| < 2r and r < |zi+jn − q2| < 2r and such that

zln /∈
⋃
q∈Qk

B2r(q) ∀i < l < i+ j.

Defining Aη as in (3.42), from the first part of the proof we know that zn /∈ Aη for n large
enough. Choosing a suitable η = η(r) we deduce that, for n large enough,

inf
l=i,...,i+j

dist(zln, S
2) ≥ r, |zin − zi+jn | ≥ d. (3.49)

Now we use the classical Modica-Mortola trick to estimate the energy of such a path. By the

uniform energy bound Hsl,k
n (zn) ≤ Cλnδ

3/2
n we get Hsl

n (un) ≤ Cλnδ
3/2
n . Since zn is uniformly

bounded by Proposition 3.3 and (ui+1
n , uin) converges uniformly to 1 by Proposition 2.2 we may

then write, for n large enough, the following estimate

|1− (ui+1
n , uin)| ≤ 3(1− (ui+1

n , uin)2) ≤ 6δn|zin|2 ≤ Cδn. (3.50)

As a result we have ∣∣∣∣∣
∣∣∣∣ui+1

n − uin√
2δn

∣∣∣∣2 − |zin|2
∣∣∣∣∣ =

(1− (ui+1
n , uin))2

2δn
≤ Cδn.
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so that using (3.49) it holds that

d ≤
i+j−1∑
l=i

|zl+1
n − zln| ≤

2

r

i+j−1∑
l=i

λn

∣∣∣∣∣
∣∣∣∣ui+1

n − uin√
2δn

∣∣∣∣2 − 1

∣∣∣∣∣
∣∣∣∣zl+1
n − zln
λn

∣∣∣∣
≤2

r

√
δn
λn

i+j−1∑
l=i

λn

(∣∣∣∣ui+1
n − uin√

2δn

∣∣∣∣2 − 1

)2

+
2

r

λn√
δn

i+j−1∑
l=i

λn

∣∣∣∣zl+1
n − zln
λn

∣∣∣∣2 , (3.51)

from which we deduce that such a transition costs a finite amount of positive energy, depending
only on r . Thus we have only finitely many of these transitions, their number being bounded
uniformly with respect to n . It follows that, up to subsequences, zn converges in measure to a
piecewise constant function with values in Qk . We omit the details.

�

After establishing compactness for sequences with equi-bounded energy, we are in a position
to prove the following Γ-convergence result. In the proof of the lower bound we will make use
of the area formula for absolutely continuous function, which we briefly recall: for every positive
Borel function h , every absolutely continuous function ζ : [a, b]→ R it holds∫

ζ([a,b])

 ∑
s∈ζ−1(v)

h(s)

 dv =

∫ b

a
h(s)|ζ ′(s)|ds (3.52)

(see [15, Theorem 3.65]).

Theorem 3.12. Let Hsl,k
n : L1(I) → [0,+∞] be defined as in (3.39). Assume that λn√

δn
→ 0.

Then the functionals Hsl,k
n

√
2λnδ

3
2
n

Γ-converge with respect to the strong L1 -topology to the functional

Hsl,k(z) =

{
8
3#S(z) if z ∈ BV (I,Qk),

+∞ otherwise.
.

Proof. We start with the lower bound. Without loss of generality we may consider zn = Tn(un)
for some un ∈ Cn(I,Mk) such that zn → z in L1(I,R3) and

lim inf
n

Hsl
n (zn)
√

2λnδ
3
2
n

≤ C < +∞.

From Proposition 3.11 we know that z ∈ BV (I,Qk). Furthermore, if we denote by zan denote
the piecewise affine interpolation of zn on the lattice λnZ ∩ I , we also have that zan → z in
L1(I,R3). Passing to a subsequence (not relabeled) we can assume that zan converges to z
almost everywhere. Furthermore, for all η > 0, defining Aη as in (3.42), for n large enough, we
have zin /∈ Aη for all i ∈ Rn(I) and this in turn implies that

dist(zan, Lk)→ 0 (3.53)

uniformly. Let now t1 < · · · < tl be the jump set of z . Let α > 0 be such that [−2α+ tm, tm +
2α] ∩ [−2α+ tj , tj + 2α] = Ø for all j 6= m . By the choice of α it holds that

lim inf
n

Hsl,k
n (zn)
√

2λnδ
3
2
n

≥
l∑

m=1

lim inf
n

Fmn (zn),

where

Fmn (zn) =

√
2δn
λn

∑
|λni−tm|<2α

λn

(∣∣∣∣ui+1
n − uin√

2δn

∣∣∣∣2 − 1

)2

+
λn√
2δn

∑
|λni−tm|<2α

λn

∣∣∣∣zi+1
n − zin
λn

∣∣∣∣2 .
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We now fix tm and to reduce notation we set q± := z(tm ± α). Our goal is to show that

lim inf
n

Fmn (zn) ≥ 8

3
,

which yields the lower bound.
To prove our claim, we begin by observing that, due to almost everywhere convergence, we

can assume that

zan(tm ± α)→ q± (3.54)

when n→ +∞ . Furthermore, since∣∣∣∣ui+1
n − uin√

2δn

∣∣∣∣2 =
2

1 + (ui+1
n , uin)

|zin|2 (3.55)

we can write
√

2δn
λn

∑
|λni−tm|<2α

λn

(∣∣∣∣ui+1
n − uin√

2δn

∣∣∣∣2 − 1

)2

=

√
2δn
λn

∑
|λni−tm|<2α

λn
(
|βinzin|2 − 1

)2
where we have denoted by βn ∈ Cn(I,R) the sequence of piecewise constant functions such that
βin = 2

1+(ui+1
n ,uin)

which converges uniformly to 1. We now show that we can switch from the

piecewise constant interpolation to the affine one without increasing the energy. Indeed, given
σ > 0, we have∫ α+tm

−α+tm

(
|βn(s)zan(s)|2 − 1

)2
ds ≤ (1 + σ)

∫ α+tm

−α+tm

(
|βn(s)zn(s)|2 − 1

)2
ds

+

(
1 +

1

σ

)∫ α+tm

−α+tm

|βn(s)|4
(
|zan(s)|2 − |zn(s)|2

)2
ds

≤(1 + σ)
∑

|λni−tm|<2α

λn
(
|βinzin|2 − 1

)2
+ C

(
1 +

1

σ

)∫ α+tm

−α+tm

|zan(s)− zn(s)|2 ds

≤(1 + σ)
∑

|λni−tm|<2α

λn
(
|βinzin|2 − 1

)2
+ C

(
1 +

1

σ

) ∑
|λni−tm|<2α

λn|zi+1
n − zin|2

≤(1 + σ)
∑

|λni−tm|<2α

λn
(
|βinzin|2 − 1

)2
+ C

(
1 +

1

σ

)√
δnλn,

where we have used the energy bound (3.4) and the fact that both βn and zn are equibounded

sequences. Multiplying the last inequality by
√

2δn
λn

we obtain

lim inf
n

√
2δn
λn

∫ α+tm

−α+tm

(
|βn(s)zan(s)|2 − 1

)2
ds ≤ (1 + σ) lim inf

n

√
2δn
λn

∑
|λni−tm|<2α

λn
(
|βinzin|2 − 1

)2
.

By the arbitrariness of σ we deduce that

lim inf
n

Fmn (zn) ≥ lim inf
n

√
2δn
λn

∫ α+tm

−α+tm

(
|βn(s)zan(s)|2 − 1

)2
ds

+ lim inf
n

λn√
2δn

∫ α+tm

−α+tm

|(zan)′(s)|2 ds. (3.56)

We now fix an arbitrary ε > 0: due to (3.54), when n is sufficiently large we have

|zan(tm ± α)| ≥ 1

1 + ε
. (3.57)
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Furthermore, using (3.53), the continuity of zan and (3.54), for all n sufficiently large there exists
a point τn ∈ (tm − α, tm + α) such that

|zan(τn)| ≤ ε . (3.58)

We define the absolutely continuous function ζn by ζn(s) := |zan(s)| . Applying the Cauchy-
Schwarz inequality to the right-hand side of (3.56), and taking into account that |ζ ′n| ≤ |(zan)′|
we have

lim inf
n

Fmn (zn) ≥ lim inf
n

2

∫ α+tm

−α+tm

∣∣|βn(s)zan(s)|2 − 1
∣∣ ∣∣(zan)′(s)

∣∣ ds

≥ lim inf
n

2

∫ α+tm

−α+tm

∣∣βn(s)2 ζn(s)2 − 1
∣∣ ∣∣ζ ′n(s)

∣∣ ds (3.59)

≥ lim inf
n

2

∫ τn

−α+tm

∣∣βn(s)2 ζn(s)2 − 1
∣∣ ∣∣ζ ′n(s)

∣∣ ds (3.60)

+ lim inf
n

2

∫ α+tm

τn

∣∣βn(s)2 ζn(s)2 − 1
∣∣ ∣∣ζ ′n(s)

∣∣ ds .

Using formula (3.52) with h(s) =
∣∣βn(s)2 ζn(s)2 − 1

∣∣ and ζ = ζn and observing that, by (3.57)

and (3.58), [ε, 1
1+ε ] ⊆ ζn([−α+ tm, τn]), we have∫ τn

−α+tm

∣∣βn(s)2 ζn(s)2 − 1
∣∣ ∣∣ζ ′n(s)

∣∣ ds ≥
∫ 1

1+ε

ε

 ∑
s∈ζ−1

n (v)

|βn(s)2 v2 − 1|

 dv .

Since βn → 1 uniformly, when n is large enough we have that βn(s) ≤ 1 + ε for all s . Using
the elementary inequality

|θ2v2 − 1| = 1− θ2v2 ≥ 1− (1 + ε)2v2

for all θ ∈ [0, 1 + ε] and v ∈ [ε, 1
1+ε ] , we deduce that∫ τn

−α+tm

∣∣βn(s)2 ζn(s)2 − 1
∣∣ ∣∣ζ ′n(s)

∣∣ ds ≥
∫ 1

1+ε

ε
(1− (1 + ε)2v2) dv .

The same estimate holds also for the other summand in the right-hand side of (3.59). Therefore
we conclude

lim inf
n

Fmn (zn) ≥ 4

∫ 1
1+ε

ε
(1− (1 + ε)2v2) dv .

Since ε was arbitrary, we conclude that

lim inf
n

Fmn (zn) ≥ 4

∫ 1

0
(1− v2) dv =

8

3
,

which gives the required lower bound.

The upper bound follows as in the proof of Theorem 3.8. We only indicate here the major
changes. Since the argument is local, let us assume that z = q11[0, 1

2
) + q21( 1

2
,1] for some

q1, q2 ∈ Qk . Given ε > 0 we set

wε(t) =

{
|fε(t)|q1 if t ≤ 0,

|fε(t)|q2 if t > 0,

where fε is defined by the construction below. Let tε > 0 be such that | tanh(±tε)− (±1)| ≤ ε
and ∫

|t|≤tε

(
| tanh(t)|2 − 1

)2
+ | tanh′(t)|2 dt ≥ 8

3
− ε.
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We then define fε : R→ R as an odd C1 function such that

fε(t) :=


tanh(t) if t ∈ [0, tε],

pε(t) if t ∈ (tε, tε + ε),

1 if t ∈ (tε + ε,+∞),

(3.61)

where pε is a suitable third order interpolating polynomial that we may choose such that
‖p′ε‖∞ ≤ 2. Note that wε ∈ H×q1,q2(Mk) and by construction∫

R

(
|wε(t)|2 − 1

)2
+ |w′ε(t)|2 dt ≤ 8

3
+ Cε

for some constant C > 0. Let u ∈ H2
loc(R,Mk) be such that wε = u × u′ . For each n ∈ N we

let

αn =
arccos(1− δn)√

2δn
.

and then define the function un ∈ Cn(I, S2) setting

uin = u

(
αn

√
2δn
λn

(λni−
1

2
)

)
.

From now on we proceed as in the proof of Theorem 3.8, the only change is that the corresponding
function u is not twice differentiable in the origin. But this does not really affect the argument.
We obtain

Γ− lim sup
n

Hsl,k
n (z)
√

2λnδ
3
2
n

≤ 8

3
+ Cε,

which yields the claim by the arbitrariness of ε . �

3.3.2. Chirality transitions via soft penalization. In the previous model we forced the spin vari-
able to take values only in finitely many rotated copies of S1 . As we have seen, this restriction
leads to a positive limit energy when changing the chirality. However, this energy is independent
of the distance between two chirality vectors in contrast to the results conjectured in [14]. To ob-
tain such a dependence we propose another model, where we penalize the distance of u from the
set Mk with an additional energy term. Choosing the right scaling this penalization preserves
compactness, but yields more freedom for the optimal chirality transition. Given u ∈ Cn(I, S2)
we define the already normalized new energy by

Hp
n(u) = Hsl

n (u) + µn
∑

i∈Rn(I)

λnG(ui × ui+1), (3.62)

where µn > 0 and G : R3\{0} → [0,+∞) is a continuous, zero-homogeneous function that we
consider extended at 0 setting G(0) := 0 and such that

{z ∈ R3 : G(z) = 0} = Lk, (3.63)

with Lk as in (3.38). Without changing notation we define Hp
n : L1(I,R3) → [0,+∞) in the

z -variable setting

Hp
n(z) =

{
infT (u)=zH

p
n(u) if z = T (u) for some u ∈ Cn(I, S2),

+∞ otherwise.
(3.64)

For Qk as in (3.38), we introduce hG : Qk ×Qk → [0,+∞) setting

hG(q1, q2) := inf

{∫
R

(|w(t)|2 − 1)2 +
G(w(t))

2
dt+

∫
R
|w′(t)|2 dt : w ∈ H×q1,q2

}
. (3.65)

Note that hG(q1, q2) ≤ 8
3 since the minimizer of the optimal profile problem defined in (3.40) is

admissible and G vanishes by (3.63).
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For the penalized energies the following compactness result holds true.

Lemma 3.13. Assume that limn
λn√
δn

= 0 and lim infn
µn
δ2
n
≥ cµ > 0. Let zn ∈ Cn(I,R3) be

such that

Hp
n(zn) ≤ Cλnδ

3
2
n .

Then (up to subsequences) zn converges strongly in L1 to a function z ∈ BV (I,Qk).

Proof. Applying Lemma 3.3 we infer that ‖zn‖∞ is uniformly bounded so it is enough to prove

convergence in measure. Without loss of generality we assume that µn
√

2λnδ
3
2
n

≥
√

2δn
λn

. Then, by

(3.4), we may find a vanishing sequence γn > 0 such that

C ≥
√

2δn
λn

∑
i∈Rn(I)

λn

(∣∣∣∣ui+1
n − uin√

2δn

∣∣∣∣2 − 1

)2

+
G(zin)

2

+
(1− γn)λn√

2δn

∑
i∈Rn(I)

λn

∣∣∣∣zi+1
n − zin
λn

∣∣∣∣2 .
Defining W (z) = (|z|2− 1)2 + G(z)

2 we have that W is non-negative, lower semicontinuous with

zeros exactly in S2 ∩ Lk = Qk . Therefore, if we consider the set Qηk := {z ∈ R3 : dist(z,Qk) ≥
η} , by a coercivity argument we have

inf
z∈Qηk

W (z) = min
z∈Qηk

W (z) = cη > 0. (3.66)

Combining (3.66) with (3.50) we deduce that zn converges in measure to the set Qk . The rest
of the statement follows now arguing as in the proof of Proposition 3.11. �

Before we prove a Γ-convergence result, we need the following two auxiliary lemmata.
Roughly speaking, the first one states that we can connect two paths, that are near to the same
point in Qk , by paying very small energy.

Lemma 3.14. Let 0 < η << 1 be small and let w0, w1 ∈ R3 be such that there exists q̂ ∈ Qk
with maxi |wi − q̂| ≤ η . Moreover, for i = 0, 1, let ui ∈ S2 ∩ w⊥i . Then there exists an interval
[0, t∗] ⊂ [0, 3 + 4π] and a C2 -function u : [0, t∗]→ S2 such that, setting w = u× u′ , it holds

u(0) = u0, u(t∗) = u1,

w(0) = w0, w(t∗) = w1,∫ t∗

0

(
|w(t)|2 − 1

)2
+
G(w(t))

2
dt+

∫ t∗

0
|w′(t)|2 dt ≤ Cη,

with limη→0Cη = 0.

Proof. First note that if η is small enough, for i = 0, 1 we have wi 6= 0 and | wi|wi| − q̂| ≤ 2η .

Thus, for every z ∈ {swi + (1− s) wi
|wi| : s ∈ [0, 1]} we have the estimate G(z) ≤ cG(2η), where

cG is a modulus of continuity of G|S2 . Moreover let R0 ∈ SO(3) be such that w0
|w0| = R0e3 and

RT0
w1
|w1| = λe2 + µe3 .

We start constructing a path joining w0 and w0
|w0| . Let us choose a C2 -function γ0 : [0, 1]→ R

with the following properties:

(i) γ0(0) = γ0(1) = 0,
(ii) γ′0(0) = |w0| − 1, γ′0(1) = 0,
(iii) γ′′0 (0) = γ′′0 (1) = 0.

Since ||w0| − 1| ≤ η we can choose the function γ0 such that

max{‖γ′0‖∞, ‖γ′′0 |∞} ≤ Cη. (3.67)
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Now we define u0 : [0, 1]→ S2 via

u0(t) = R0(cos(t+ γ0(t) + t0), sin(t+ γ0(t) + t0), 0),

where t0 ∈ [0, 2π) is such that R0(cos(t0), sin(t0), 0) = u0 . We further set w0 = u0 × u′0 . Then
we have u0(0) = u0 , w0(t) = (1 + γ′0(t)) w0

|w0| and w′0(t) = γ′′0 (t) w0
|w0| , and therefore w0(0) =

w0, w0(1) = w0
|w0| , and∫ 1

0

(
|w0(t)|2 − 1

)2
+
G(w0(t))

2
dt+

∫ 1

0
|w′0(t)|2 dt ≤ Cη2 + cG(2η).

We continue by joining w0
|w0| and w1

|w1| . Let us take B as a suitable logarithm of the matrix

A =

1 0 0
0 µ λ
0 −λ µ

 .

Now we choose a C2 cut-off function γ1 : R→ [0, 1] such that

γ1(t) =

{
0 t ≤ 1,

1 t ≥ 2,

We set u1 : [1, 2]→ S2 as

u1(t) = R0 exp(γ(t)B)(cos(t+ t0), sin(t+ t0), 0).

Defining w1 : [1, 2]→ R3 via w1 = u1 × u′1 , by the same calculations as in the proof of Lemma
3.6 we get (

|w1(t)|2 − 1
)2 ≤ C (|B|+ |B|2)2 , (3.68)

|w′1(t)|2 ≤ C
(
|B|+ |B|2

)2
. (3.69)

In order to estimate G(w1(t)), observe that for one particular matrix logarithm and the

Frobenius norm, we have ‖B‖F = | arccos( tr(A)−1
2 )| = | arccos(µ)| , so that by the equivalence of

all matrix norms we infer |B| ≤ C| arccos(µ)| . Moreover, it holds that

4η ≥ | w0

|w0|
− w1

|w1|
| = |e3 − λe2 − µe3| ≥ |1− µ|,

so if η is small enough, we have |B| < 1. We deduce that

|w1(t)− w0

|w0|
| = |u1(t)× u′1(t)− w0

|w0|
| ≤ C|B|+ | exp(γ(t)B)e3 − e3|

≤ C|B|+ exp(|B|)− 1 ≤ (C + exp(1))|B|. (3.70)

By calculating the leading order term of arccos2(x) at x = 1 we get

|B|2 ≤ C| arccos(µ)2| ≤ C|1− µ| ≤ C η,

so that, combined with (3.70) we have

| w1(t)

|w1(t)|
− w0

|w0|
| ≤ C√η + |1− |w1(t)|| ≤ C√η, (3.71)

which implies G(w1(t)) ≤ cG(C
√
η). Integrating (3.68), (3.69) and the previous bound we infer∫ 2

1

(
|w1(t)|2 − 1

)2
+
G(w1(t))

2
dt+

∫ 2

1
|w′1(t)|2 dt ≤ C η + cG(C

√
η).
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As a last part we join w1
|w1| and w1 . We define γ2 : [2,+∞)→ R setting

γ2(t) =

{
γ̃0(3− t) if t ≤ 3,

(|w1| − 1)(t− 3) otherwise,

where γ̃0 fulfills the same requirements as γ0 with w1 instead of w0 . Then γ2 is of class C2

and defining u2(t) = R0A(cos(t + γ2(t) + t0), sin(t + γ2(t) + t0), 0) as well as w2 = u2 × u′2 we
have ∫ 3

2

(
|w2(t)|2 − 1

)2
+
G(w2(t))

2
dt+

∫ 3

2
|w′2(t)|2 dt ≤ Cη2 + cG(2η).

By the intermediate value theorem, if η ≤ 1
2 there exists t∗ ∈ [3, 3 + 4π] such that u2(t∗) = u1 ,

where we have used that R0Ae3 = w1
|w1| , so that u2(t) ∈ w⊥1 . Moreover, since 1 + γ′2(t) = |w1|

for t ≥ 3, one can easily show that∫ t∗

3

(
|w2(t)|2 − 1

)2
+
G(w2(t))

2
dt+

∫ t∗

3
|w′2(t)|2 dt ≤ Cη2 + cG(2η).

Finally we set J = [0, t∗] and a lenghty, but straightforward calculation shows that if we define
u : [0, t∗]→ S2 as

u(t) =


u0(t) if t ∈ [0, 1],

u1(t) if t ∈ [1, 2],

u2(t) if t ∈ [2, t∗],

we preserve the C2 -regularity. By construction this function fulfills all required properties since
G|S2 is uniformly continuous. �

For technical reasons we need to show that the class of admissible functions defining hG(q1, q2)
in (3.65) can be taken to be more regular.

Lemma 3.15. Let q± ∈ Qk . Then the infimum in (3.65) can be taken equivalently over all

functions w ∈W 2,∞
loc (R,R3) ∩H×q−,q+ such that

w(t) = q− ∀t ≤ t1,
w(t) = q+ ∀t ≥ t2

for some t1 < t2 , u′′ is piecewise continuous and the set {w(t) = 0} is finite.

Proof. Given ε > 0 we find a function ũ ∈ H2
loc(R, S2) such that w̃ = ũ × ũ′ is admissible in

the infimum problem defining hG(q−, q+) in (3.65) and∫
R

(|w̃(t)|2 − 1)2 +
G(w̃(t))

2
dt+

∫
R
|w̃′(t)|2 dt ≤ hG(q−, q+) + ε.

Without loss of generality we may assume that {t ∈ R : w̃(t) = 0} is at most a singleton,
otherwise a construction as in (3.41) reduces the energy. Moreover, by the existence of the
limits at ±∞ , we find tε > 0 such that

|w̃(t)− q−| ≤ ε ∀t ≤ −tε, (3.72)

|w̃(t)− q+| ≤ ε ∀t ≥ tε, . (3.73)

Approximating ũ in H2((−tε − 3, tε + 3)) (note that C∞c (R, S2) is dense in H2((a, b), S2) for
every bounded interval (a, b)) we can assume that ũ is smooth in [−tε.tε] , that (3.72), (3.73)
still hold at least at t = ±tε respectively and∫ tε

−tε
(|w̃(t)|2 − 1)2 +

G(w̃(t))

2
dt+

∫ tε

−tε
|w̃′(t)|2 dt ≤ hG(q−, q+) + 2ε
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since approximation of ũ in H2((−tε − 3, tε + 3)) implies approximation of w̃ in H1((−tε, tε))
and the discontinuity set of G can be neglected. Preserving at least a bounded weak second
derivative of ũ in (−tε, tε) we can again assume that {w̃ = 0} is at most a singleton.

We now modify the function ũ where |t| > tε in the following way: From (3.27) it follows
that |ũ′(tε)| 6= 0. Consider then the matrix

Rε =

ũ(tε)
ũ′(tε)
|ũ′(tε)| v

 ,

where v ∈ S2 is the vector that makes the matrix orthogonal. Now we take a C2 -function
γ : [tε, tε + 1]→ R with the following properties:

(i) γ(tε) = γ(tε + 1) = 0,
(ii) γ′(tε) = |ũ′(tε)| − 1,
(iii) γ′(tε + 1) = γ′′(tε + 1) = 0

and extend it to 0 for t > tε + 1. This extension (not relabeled) is obviously C2 -regular. γ can
be chosen such that max{‖γ‖∞, ‖γ′‖∞, ‖γ′′‖∞} ≤ Cε with a positive constant independent of
ũ and ε . The modification u of ũ on (−tε, tε + 2) now is defined as

u(t) :=

{
ũ(t) if t ≤ tε,
Rε(cos(t− tε + γ(t)), sin(t− tε + γ(t)), 0) if t ∈ (tε, tε + 2).

Note that u ∈ H2((−tε, tε+2), S2) and its weak second derivative is bounded (but not necessarily
continuous at tε ). A straightforward calculation shows that for t ∈ (tε, tε + 2) we have

|u′(t)| = |1 + γ′(t)|,
|u(t)× u′′(t)| ≤ |γ′′(t)|.

Moreover we have

u(tε + 2)× u′(tε + 2) = v =
ũ(tε)× ũ′(tε)
|ũ′(tε)|

,

so that by the choice of tε

|(u(tε + 2)× u′(tε + 2))− q+| ≤ ε+ |(ũ(tε)× ũ′(tε))−
ũ(tε)× ũ′(tε)
|ũ′(tε)|

| ≤ 2ε. (3.74)

For t ∈ (tε, tε + 2) we also have by the zero-homogeneity of G that

G(u(t)× u′(t)) = G(v) = G(w(tε)) ≤ cG(ε).

We now use the same method as in the second part of the proof of Lemma 3.14 to construct
a further C2 -extension on [tε + 2, tε + 3] that ends in the constant rotation with velocity 1 in
the plane perpendicular to q+ . The same procedure can be applied at −tε . Keeping in mind
(3.74) and Lemma 3.14 we have constructed a new function u ∈ H2

loc(R, S2) with bounded weak
second derivative and t′ε > 0 such that

u(t) = R1(cos(t), sin(t), 0) ∀t ≤ −t′ε,
u(t) = R2(cos(t), sin(t), 0) ∀t ≥ t′ε,

with R1, R2 ∈ SO(3), the function w = u× u′ is admissible in the definition of hG(q−, q+) and
there exists Cε > 0 with limε→0Cε = 0 such that∫

R
(|w(t)|2 − 1)2 +

G(w(t))

2
dt+

∫
R
|w′(t)|2 dt ≤ hG(q−, q+) + Cε.

Moreover, u′′ is continuous except in at most three points. The claim follows by the arbitrariness
of ε , since the other inequality is trivial. �
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Depending on the behaviour of the sequence µn we have different variational limits.

Theorem 3.16. Let Hp
n : L1(I,R3) → [0,+∞] be defined as in (3.64). Assume that βn :=

λn√
δn
→ 0 and let pn := µn

√
2λnδ

3
2
n

. Then the Γ-limit of the functionals Hp
n

√
2λnδ

3
2
n

with respect to

the strong L1 -topology is given by the functional Hp : L1(I,R3) → [0,+∞], depending on the
following four cases:

(i) limn pn = p < +∞:

Hp(z) =

{
p
∫
I G(z(t)) dt if z ∈ L1(I, S2),

+∞ otherwise.

(ii) limn pn = +∞, limn pnβn = 0:

Hp(z) =

{
0 if z ∈ L1(I,Qk),

+∞ otherwise.

(iii) limn pn = +∞, limn pnβn = 1:

Hp(z) =

{∑
t∈S(z) hG(q−, q+) if z ∈ BV (I,Qk),

+∞ otherwise,

where q− and q+ are the left and right limit of z at a discontinuity point t.
(iv) limn pn = +∞, limn pnβn = +∞:

Hp(z) =

{
8
3#S(z) if z ∈ BV (I,Qk),

+∞ otherwise.

Proof. (i): Let zn converge to z in L1(I,R3). By Proposition 3.3 we know that z ∈ L1(I, S2).
We now show that

lim
n
pn

∑
i∈Rn(I)

λnG(zin) = p

∫
I
G(z(t)) dt.

Up to a subsequence, we can assume that zn(t)→ z(t) ∈ S2 for almost every t ∈ I . In particular,
by the continuity of G in R3\{0} we may assume that G(zn(t)) → G(z(t)) for almost every
t ∈ I . Moreover ‖G‖∞ < +∞ , so that by dominated convergence the above limit relation holds
true for the whole sequence. With the above limit, the upper bound follows considering the
same recovery sequence as in Theorem 3.8, while the lower bound is obvious since the remaining
part of the energy is nonnegative.

(ii): To prove the lower bound, note that since pn → +∞ , the penalization forces any L1 -
converging sequence with bounded energy to have a limit z ∈ L1(I,Qk). For the upper bound
we can use exactely the same construction as in the proof of Theorem 3.8 upon noticing that
the assumption pnβn → 0 is enough to kill the penalization term after rescaling.

(iii): Lower bound. Without loss of generality let Cn(I,R3) 3 zn → z in L1(I,R3) such
that

lim inf
n

Hp
n(zn)

√
2λnδ

3
2
n

= lim
n

Hp
n(zn)

√
2λnδ

3
2
n

≤ C < +∞.

From Proposition 3.13 we know that z ∈ BV (I,Qk). Passing to a further subsequence (not
relabeled) we can assume that zn converges to z almost everywhere. Let t1 < · · · < tl be the
jumpset of z . Let α > 0 be such that [−2α + tm, tm + 2α] ∩ [−2α + tj , tj + 2α] = Ø for all
j 6= m . Fix tm and set q± := z(tm±α). Let now un ∈ T−1

n (zn) be such that Hp
n(un) = Hp

n(zn).
By (3.4) it is enough to show that

lim inf
n

FG,mn (zn) ≥ hG(q−, q+),
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where

FG,mn (zn) =

√
2δn
λn

∑
|λni−tm|<2α

λn


(∣∣∣∣ui+1

n − uin√
2δn

∣∣∣∣2 − 1

)2

+
G(zin)

2


+

λn√
2δn

∑
|λni−tm|<2α

λn

∣∣∣∣zi+1
n − zin
λn

∣∣∣∣2 .
Using (3.55), again we can write

√
2δn
λn

∑
|λni−tm|<2α

λn

(∣∣∣∣ui+1
n − uin√

2δn

∣∣∣∣2 − 1

)2

=

√
2δn
λn

∑
|λni−tm|<2α

λn
(
|βinzin|2 − 1

)2
with a function βn ∈ Cn(I,R) converging uniformly to 1. Let uan be the piecewise affine
interpolation of un and observe that by Proposition 3.3 and (3.55) we have

‖(uan)′‖∞ ≤ C
√
δn
λn

. (3.75)

Now we define the rescaled piecewise affine and piecewise constant functions ũan :
√

2δn
λn

(−2α, 2α)→
S2 and z̃n :

√
2δn
λn

(−2α, 2α)→ R3 setting

ũan(t) = uan

(
λn√
2δn

t+ tm

)
, z̃n(t) = zn

(
λn√
2δn

t+ tm

)
.

Note that z̃n is constant on intervals of length
√

2δn , and that (3.16) implies

|z̃n(t1)− z̃n(t2)|2 ≤ C
√
δn (3.76)

whenever |t1 − t2| ≤
√

2δn . Moreover, by the definition of piecewise interpolations, for almost
every t it holds that

z̃n(t) = ũan(t)× (ũan)′(t). (3.77)

while (3.75) implies that
‖(ũan)′‖∞ ≤ C . (3.78)

We also notice that by Remark 3.4 we have

‖z̃n − z̃an‖∞ → 0 , (3.79)

where z̃an denotes the piecewise affine interpolation of z̃n . Rewriting the energy in terms of
these interpolations leads to

lim inf
n

FG,mn (zn) ≥

lim inf
n

√
2δn
λn

∫ tm+α

tm−α

(
|βn(s)zn(s)|2 − 1

)2
+
G(zn(s))

2
ds+

λn√
2δn

∫ tm+α

tm−α
|(zan)′(s)|2 ds = (3.80)

lim inf
n

∫ α
√

2δn
λn

−α
√

2δn
λn

(
|β̃n(t)z̃n(t)|2 − 1

)2
+
G(z̃n(t))

2
dt+

∫ α
√

2δn
λn

−α
√

2δn
λn

|(z̃an)′(t)|2 dt,

where we used the change of variables s =
√

2δn
λn

t+ tm and the function β̃n is defined as β̃n(t) =

βn(s), so that it still converges uniformly to 1. Let 0 < η < 1
4 min{dist(ql, qm) : ql , qm ∈ Qk} .

By (3.76) there exists tn∗ ∈
√

2δn
λn

(−α, α) such that min± |z̃n(tn∗ )−q±| > η . Then let tn− ≤ tn∗ ≤ tn+
be respectively the largest and the smallest point such that

|z̃n(tn±)− q±| ≤ η. (3.81)

We now prove the following claim.
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Claim: to the given η and for all n large enough, it exists an interval In = (τ−n , τ
+
n )

having equibounded measure with respect to n , three sequences wn , w̄n and ūn equibounded
in L∞(In;R3), W 1,∞(In;R3), and W 1,∞(In;S2), respectively, and a sequence β̂n satisfying the
following properties:

|wn(τ−n )− q−| ≤ η , |wn(τ+
n )− q+| ≤ η , ‖β̂n − 1‖L∞(In;R) → 0

‖wn − w̄n‖L∞(In;R3) → 0 , wn = ūn × (ūn)′

lim inf
n

FG,mn (zn) ≥ (3.82)

lim inf
n

∫
In

(
|β̂n(t)wn(t)|2 − 1

)2
+
G(wn(t))

2
dt+

∫
In

|(w̄n)′(t)|2 dt− (2k − 2)C2η ,

for some constant C2η → 0 when η → 0. All the constructed sequences as well as the interval
In will be depending on η , but we omit this dependence in order to ease notation.

In order to prove this claim, we follow an algorithmic construction. We first notice that the
set

Jηn := {t ∈
√

2δn
λn

(−α, α) : dist(z̃n(t), Qk) ≥ η}

has finite measure uniformly in n , due to the energy bound.
Step 0: if |t+n − t−n | is equibounded, the claim is proved with In = (t−n , t

+
n ), wn = z̃n ,

w̄n = z̃an , ūn = ũan , and β̂n = β̃n , due to (3.77), (3.78), (3.80), (3.79), and (3.81). If not, we
proceed to Step 1, upon noticing that, if this is the case, the inclusion (t−n , t

+
n ) ⊆ Jηn is not

satisfied, otherwise |t+n − t−n | would be equibounded.

Step 1: we set τ−n = t−n , τ0,+
n = t+n , and I0

n := (τ−n , τ
0,+
n ). We define the functions β0

n = β̃n ,
w0
n = z̃n , w̄0

n = z̃an and ū0
n = ũan . Let us number the points q1, . . . , q2k−2 ∈ Qk \ {q±} . By

construction of τ−n and τ0,+
n , for all t ∈ (τ−n , τ

0,+
n ) it holds

min{|w0
n(t)− q−| , |w0

n(t)− q+|} > η (3.83)

Since (τ−n , τ
0,+
n ) is not contained in Jηn , also using (3.76), it must exist a minimal time t1,−n ∈

(τ−n , τ
0,+
n ) such that

dist(w0
n(t1,−n ), Qk) ≤ η ;

due to (3.83) and our choice of η , to the time t1,−n it corresponds a uniquely determined point
q1 ∈ Qk \ {q±} such that

|w0
n(t1,−n )− q1| ≤ η .

Notice that by construction t1,−n must be the left endpoint of an interval where w0
n is constant,

therefore

w0
n(t1,−n ) = w̄0

n(t1,−n ) . (3.84)

We define

t1,+n := sup{t ∈ (t1,−n , τ0,+
n ) : |w0

n(t)− q1| <
5

4
η} ,

again noticing that, since |w0
n(τ0,+

n )− q+| ≤ η , the above supremum is well defined and strictly

small than τ0,+
n thanks to (3.76). By construction t1,+n must be the left endpoint of an interval

where w0
n is constant, therefore

w0
n(t1,+n ) = w̄0

n(t1,+n ) . (3.85)

Furthermore, due to (3.76), one has for n large enough that

|w0
n(t1,+n )− q1| ≤ 2η .
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If now |t1,+n −t1,−n | > 3+4π , we consider t∗ ≤ 3+4π and the function u ∈ C2([0, t∗];S2) and

w = u×u′ ∈ H1([0, t∗],R3) given by Lemma 3.14 with data w0 = w0
n(t1,−n ) and w1 = w0

n(t1,+n ) as

well as u0 = ū0
n(t1,−n ) and u1 = ū0

n(t1,+n ). We set τ1,−
n = t1,−n +t∗ , τ1,+

n = τ0,+
n −[(t1,+n −t1,−n )−t∗] ,

and we define

w1
n(t) =


w0
n(t) if t ≤ t1,−n ,

w(t− t1,−n ) if t1,−n ≤ t ≤ τ1,−
n ,

w0
n(t)(t− t1,+n + t1,−n + t∗) if τ1,−

n ≤ t ≤ τ1,+
n ,

w̄1
n(t) =


w̄0
n(t) if t ≤ t1,−n ,

w(t− t1,−n ) if t1,−n ≤ t ≤ τ1,−
n ,

w̄0
n(t)(t− t1,+n + t1,−n + t∗) if τ1,−

n ≤ t ≤ τ1,+
n ,

ū1
n(t) =


ū0
n(t) if t ≤ t1,−n ,

u(t− t1,−n ) if t1,−n ≤ t ≤ τ1,−
n ,

ū0
n(t)(t− t1,+n + t1,−n + t∗) if τ1,−

n ≤ t ≤ τ1,+
n ,

β̄1
n(t) =

{
β̄0
n(t) if t ≤ τ1,−

n ,

β̄0
n(t)(t− t1,+n + t1,−n + t∗) if τ1,−

n ≤ t ≤ τ1,+
n .

We set I1
n := (τ0,−

n , τ1,+
n ). The above construction preserves continuity, and then Sobolev

regularity of w̄1
n because of (3.84) and (3.85).

The bound on the norms of w1
n , w̄1

n and ū1
n on I1

n are satisfied by construction, as well as
the relation w1

n = ū1
n × (ū1

n)′ and it clearly holds

‖w1
n(t)− w̄1

n(t)‖L∞(I1
n;R3) = ‖w0

n − w̄0
n‖L∞(I0

n;R3) (3.86)

as well as

‖β1
n − 1‖L∞(I1

n) ≤ ‖β0
n − 1‖L∞(I0

n) . (3.87)

By construction we have

w1
n(τ−n ) = z̃n(t−n ) , w1

n(τ1,+
n ) = z̃n(t+n ) .

It holds furthermore ∣∣I1
n

∣∣ ≤ |Jηn |+ 1 · (3 + 4π) + |τ1,+
n − τ1,−

n | . (3.88)

Since in (τ−n , t
1,−
n ) and in (τ1,−

n , τ1,+
n ) we contructed the functions w1

n(t), w̄1
n(t), ū1

n(t), and
β1
n(t) are constructed by applying the same translation to the functions w0

n(t), w̄0
n(t), ū0

n(t),
and β0

n(t) it clearly holds

lim inf
n

∫
I1
n\(t

1,−
n ,τ1,−

n )

(
|β1
n(t)w1

n(t)|2 − 1
)2

+
G(w1

n(t))

2
dt+

∫
I1
n\(t

1,−
n ,τ1,−

n )
|(w̄1

n)′(t)|2 dt ≤

lim inf
n

∫
I0
n

(
|β0
n(t)w0

n(t)|2 − 1
)2

+
G(w0

n(t))

2
dt+

∫
I0
n

|(w̄0
n)′(t)|2 dt .

Since (t1,−n , τ1,−
n ) has equibounded measure, using the uniform convergence of β1

n to 1 and
Lemma 3.14 we get

lim sup
n

∫ τ1,−
n

t1,−n

(
|β1
n(t)w1

n(t)|2 − 1
)2

+
G(w1

n(t))

2
dt+

∫ τ1,−
n

t1,−n

|(w̄1
n)′(t)|2 dt ≤∫ t∗

0

(
|w(t)|2 − 1

)2
+
G(w(t))

2
dt+

∫ t∗

0
|w′(t)|2 dt ≤ C2η ,
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so that summing the two above inequalities we arrive at

lim inf
n

∫
I1
n

(
|β1
n(t)w1

n(t)|2 − 1
)2

+
G(w1

n(t))

2
dt+

∫
I1
n

|(w̄1
n)′(t)|2 dt ≤

lim inf
n

∫
I0
n

(
|β0
n(t)w0

n(t)|2 − 1
)2

+
G(w0

n(t))

2
dt+

∫
I0
n

|(w̄0
n)′(t)|2 dt+ C2η . (3.89)

If instead |t1,+n − t1,−n | ≤ 3 + 4π we simply set τ1,−
n = t1,+n , τ1,+

n = τ0,+
n . With this choice,

(3.88) clearly holds and all the properties (3.86), (3.87), and (3.89) are satisfied by simply setting
w1
n = w0

n , w̄1
n = w̄0

n , ū1
n = ū0

n and β1
n = βn0 .

We now define

Jη,1n := {t ∈ I1
n : dist(w1

n(t), Qk) ≥ η}
and observe that by construction

|Jη,1n | ≤ |Jηn |+ 1 · (3 + 4π) . (3.90)

If now (t1,−n , τ1,+
n ) ⊆ Jη,1n the construction stops, if not we go to the next step.

Step ` : first observe that by construction, it holds

dist(w`−1
n (t), {q−, q+, q1, . . . , q`−1}) > η (3.91)

for all t ∈ (τ `−1,−
n , τ `−1,+

n ). One sets w`n(t) = w`−1
n (t) for all t ∈ (τ−n , τ

`−1,−
n ] , etc., and performs

the construction described in Step 1 in the interval (τ `−1,−
n , τ `−1,+

n ). For I`n = (τ−n , τ
`,+
n ) one

can see that all the properties (3.86), (3.87), (3.88),(3.89), and (3.90) hold with ` in place of 1
and `− 1 in place of 0.

Proof of the claim: By (3.91) the construction ends in a finite number ¯̀ of steps with
¯̀≤ (2k− 2). We then set In := I

¯̀
n , and consequently τ+

n = τ
¯̀,+
n . We set wn := w

¯̀
n , w̄n := w̄

¯̀
n ,

ūn := ū`n and β̂n := β
¯̀
n . By construction we have wn = ūn × (ūn)′ and

wn(τ−n ) = z̃n(t−n ) , wn(τ+
n ) = z̃n(t+n ) .

Since at the final step it holds (τ
¯̀,−
n , τ

¯̀,+
n ) ⊆ Jη,¯̀n , combining the inequalities

|In| ≤ |Jηn |+ ¯̀· (3 + 4π) + |τ ¯̀,+
n − τ ¯̀,−

n |

and

|τ ¯̀,+
n − τ ¯̀,−

n | ≤ |Jη,
¯̀

n | ≤ |Jηn |+ ¯̀(3 + 4π)

we get that In has equibounded measure. All the other properties in (3.83) follow by iteratively
applying (3.86), (3.87), (3.88),(3.89), and (3.90) with ` in place of 1 and `− 1 in place of 0 for
all 1 ≤ ` ≤ ¯̀.

Conclusion of the lower bound: Possibly after a translation not changing the energy we can
assume that In = [0, τn] with τn equibounded. Since β̂n converges uniformly to 1 we deduce
from (3.83) that

lim inf
n

FG,mn (zn) ≥

lim inf
n

∫ τn

0

(
|wn(t)|2 − 1

)2
+
G(wn(t))

2
dt+

∫ τn

0
|(w̄n)′(t)|2 dt− (2k − 2)C2η. (3.92)

Let τ = lim infn τn . Since ‖wn−w̄n‖∞ → 0 and the bound on the H1 -norm of w̄n is independent
of n , up to subsequences wn and w̄n are locally uniformly converging to a function w ∈
H1((0, τ);R3). By this convergence we have

|w(0)− q−| ≤ η
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while, by means of a simple equicontinuity argument, we get lim infn |w(τ) − wn(τn)| = 0 and
therefore

|w(τ)− q+| ≤ η .

Since wn = ūn × (ūn)′ and ūn is an equibounded sequence in W 1,∞(I;S2), it exists ū ∈
W 1,∞(I;S2) such that w = ū× (ū)′ . Furthermore by lower semincontinuity we have

lim inf
n

∫ τn

0

(
|wn(t)|2 − 1

)2
+
G(wn(t))

2
dt+

∫ τn

0
|(w̄n)′(t)|2 dt ≥∫ τ

0

(
|w(t)|2 − 1

)2
+
G(w(t))

2
dt+

∫ τ

0
|w′(t)|2 dt (3.93)

Using Lemma 3.14 we can now extend w to a function in H×q−,q+ such that∫
R

(
|w(t)|2 − 1

)2
+
G(w(t))

2
dt+

∫
R
|w′(t)|2 dt ≤∫ τ

0

(
|w(t)|2 − 1

)2
+
G(w(t))

2
dt+

∫ τ

0
|w′(t)|2 dt+ 2Cη .

Since the first member of the inequality is by definition larger than hG(q−, q+), combining this
with (3.92) and (3.93) we finally get

lim inf
n

FG,mn (zn) ≥ hG(q−, q+)− 2Cη − (2k − 2)C2η

and the lower bound follows by letting η → 0.
Upper bound: In order to prove the upper bound, as usual we provide a local construction

and restrict to the case of #S(z) = 1, so without loss generality we may assume z = q11[0, 1
2

] +

q21( 1
2
,1] for some q1 6= q2 . Given ε > 0 we find a function w = u × u′ as in Lemma 3.15 such

that ∫
R

(|w(t)|2 − 1)2 +
G(w(t))

2
dt+

∫
R
|w′(t)|2 dt ≤ hG(q1, q2) + ε.

The interpolation of the function u in order to construct a recovery sequence now is the same
as in the proof of Theorem 3.8. Note that we can pass to the limit in (3.34) again, and the limit
in (3.36) follows since u′′ is bounded and has only finitely many discontinuities.

Therefore, it only remains to prove that

lim sup
n

√
2δn
λn

∑
i∈Rn(I)

λn
G(zin)

2
≤
∫
R

G(w(t))

2
dt.

This is done as usual with a change of variables and using the fact that {w(t) = 0} is finite, so
that the discontinuity of G in the origin can be neglected.

(iv): To prove the lower bound, let Cn(I,R3) 3 zn → z in L1(I,R3) such that

lim inf
n

Hp
n(zn)

√
2λnδ

3
2
n

= lim
n

Hp
n(zn)

√
2λnδ

3
2
n

≤ C < +∞.

From Proposition 3.13 we know that z ∈ BV (I,Qk). Passing to a further subsequence (not
relabeled) we can assume that zn converges to z almost everywhere. Let t1 < · · · < tl be the
jumpset of z . Let α > 0 be such that [−2α + tm, tm + 2α] ∩ [−2α + tj , tj + 2α] = Ø for all
j 6= m . Fix tm and set q± := z(tm ± α). We now prove that

dist(zan, Lk)→ 0 uniformly on (tm − α, tm + α). (3.94)



34 MARCO CICALESE, MATTHIAS RUF, AND FRANCESCO SOLOMBRINO

To this end, we fix η > 0 and assume by contradiction, that for every n there exists
τn ∈ (tm−α, tm+α) with dist(zan(τn), Lk) ≥ η . Using L1 -convergence, without loss of generality
we may assume that there exists tm − α < τ ′n < τn such that

τ ′n = sup{t : tm − α < t < τn, dist(zan(t), Lk) ≤
η

2
}.

Since zan is equibounded in L∞(I) we deduce from Remark 3.4 and (3.63) that

cη := inf{G(zn(t)) : t ∈ (τ ′n, τn)} > 0. (3.95)

Let C1 > 0. By the assumptions on µn , for n large enough, applying the Cauchy-Schwarz
inequality and (3.95) we have

C ≥ µn
√

2λnδ
3
2
n

∫ τn

τ ′n

G(zn(s)) ds+
λn√
2δn

∫ τn

τ ′n

|(zan)′(s)|2 ds

≥ C1

∫ τn

τ ′n

√
G(zn(s))|(zan)′(s)| ds ≥ C1

√
cη|zan(τn)− zan(τ ′n)| ≥ C1

√
cη
η

2
.

This yields a contradiction since C1 was arbitrary, so (3.94) holds. From this, arguing as in the
proof of Theorem 3.12, the lower bound follows.

The construction of a recovery sequence is the same as in Theorem 3.12 since we can assure
that G(zn) = 0 up to minor details in the case when 1

2 is not a lattice point. This can solved
by modifying the function fε defined in (3.61) such that fε(t) = 0 if |t| ≤ ε increasing the test
energy only by Cε . �

Having described the different effects of the penalization term that prescribes the possible
directions of the chiralty vector, there is only one case where we see a dependence on the distance
between two chiral vectors, namely case (iii) in Theorem 3.16. Since the nonlinear constraint
w = u×u′ is non-trivial we are not able to solve the optimal profile problem explicitly. However
we can qualitatively discuss an example where the transition energy is not constant.

Example 3.17. Let k = 2, let Q2 = {±q1,±q2} , where q1 = e1 and q2 = (cos(α), sin(α), 0) for
α > 0. Consider G|S2 = dist(·, Q2). Since G is 1-Lipschitz, we can take cG(η) = η as modulus
of continuity in Lemma 3.14. By the construction there, it follows that there exists a universal
constant C , not depending on G , nor on α , such that

hG(q1, q2) ≤ C|q1 − q2|.

Now, for w ∈ H1(R,R3) such that limt→±∞w(t) = ±q1 we take the continuous representative.
Then, provided we have chosen |α| suitably small, the balls B 1

8
(±q1) contain ±q2 . Due to

continuity, there exists an interval (t−, t+) such that w(t) /∈ B 1
4
(±q1) and 1

2 ≤ |w(t)| for all t ∈

(t−, t+) . If now c is the strictly positive infimum of
√

G
2 on R3 \

(
B 1

4
(q1) ∪B 1

4
(−q1) ∪B 1

2
(0)
)

,

we have∫
R

(|w(t)|2 − 1)2 +
G(w(t))

2
+ |w′(t)|2 dt ≥ c

∫ t+

t−

|w′(t)| dt ≥ c|w(t+)− w(t−)| ≥ c

2
.

Thus, hG(q1,−q1) ≥ c
2 . Since the constants c and C are independent of α , for a suitable choice

of α we will have

hG(q1,−q1) > hG(q1, q2).

Therefore the transition energy is in this case actually depending on the left and right limit of
z at a discontinuity point, differently than in the case of hard penalization.

We also notice that with a similar argument we can show that hG(q1, q2) > 0, therefore it
is not possible to have transitions with 0 energy, differently than in the case of Theorem 3.8.
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4. Main results for the helical XY-model

Thanks to the results of the previous section, we can now study the asymptotic behavior of

the renormalized energy Hn defined in (2.7), scaled by λnδ
3
2
n , in the limit of strong ferromagnetic

interaction. To be precise, we will assume that

λn√
δn
→ 0, J2,n

λn√
δn
≥ c > 0. (4.1)

As it is usual in the variational analysis of discrete systems we embed the energies in a common

function space. To this end we identify every function u ∈ U2
n(Ω) with its piecewise-constant

interpolation belonging to the space

Cn,2(Ω, S2) := {u ∈ U2
n(Ω) : u(x) = u(λni) if x ∈ λn(i+ [0, 1)2), i ∈ Z2

n(Ω)}. (4.2)

Thus we can extend the functional Hn to a functional on defined on L∞(Ω,R3) by setting

Hn(u) :=

{
Hn(u) if u ∈ Cn,2(Ω, S2),

+∞ otherwise.

The analysis of one-dimensional slices (see Remark 3.9) has already shown that without
further constraints on the spin variable we cannot expect L1 -compactness for sequences of
bounded energy. This is why we add a penalization term, not changing the minimal energy of
the system, to the normalized helical XY -model. Given a function G as in Section 3.3.2 and
u ∈ Cn,2(Ω, S2), we namely set

PGn (u) = δ2
n

∑
i∈Rn(Ω)

λ2
nG(ui × ui+e1),

For u ∈ Cn,2(Ω, S2) we define z ∈ Cn,2(Ω,R3) via

zi =
ui × ui+e1√

2δn

and write for short z = T2(u). Now we can define the energy HG
n : L1(Ω,R3)→ [0,+∞] setting

HG
n (z) =

{
infT2(u)=zHn(u) + PGn (u) if z = T2(u) for some u ∈ Cn,2(Ω, S2),

+∞ otherwise.
(4.3)

Observe that we only deal with a two-dimensional analogue of the energy in Theorem 3.16 (iii).
A hard penalization like in paragraph 3.3.1, or a different scaling of the additional term PGn like
in Theorem 3.16 (iv) could be also considered, and the arguments we are going to use here would
lead also in those cases to the analog of the results discussed in the one-dimensional case. We
prefer anyway to focus on the choice of PGn that gives in our opinion more significant results.

We now state and prove a compactness result for the energy HG
n (z).

Proposition 4.1. Assume that (4.1) holds and let zn ∈ L1(Ω,R3) be such that

HG
n (zn) ≤ Cλnδ

3
2
n .

Then (up to subsequences) zn converges strongly in L1 to a function z ∈ BV (Ω, Qk) depending
only on x.

Proof. By choosing appropriate candidates for the infimum problem defining HG
n (zn) there exists

a sequence un ∈ Cn,2(Ω, S2) such that T2(un) = zn and HG
n (un) ≤ (C + 1)λnδ

3
2
n . Notice that

for a.e. y ∈ I the function un(·, y) is an element of Cn(I;S2) and zn(·, y) = Tn(un(·, y). Since
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un is a piecewise constant function we have by the assumptions and the definitions (4.3) and
(3.62) of HG

n and Hp
n that

C + 1 ≥
∫ 1

0

Hp
n(un(·, y))
√

2λnδ
3
2
n

dy . (4.4)

Applying Fatou’s lemma we deduce that, for almost every y ∈ I , we have

lim inf
n

Hp
n(un(·, y))
√

2λnδ
3
2
n

< +∞, (4.5)

so that by Lemma 3.13, for almost every y ∈ I zn(·, y) is compact in L1(I;R3). In particular,
given a countable dense set D ⊂ I , by a diagonal argument there exists a common subsequence
nd such that znd(·, y) is converging for all y ∈ D .

Without loss of generality we assume 1 ∈ D . We now show that the sequence znd is a
Cauchy-sequence in L1(Ω,R3). Let ε > 0 and consider 0 = y0 < y1 < · · · < yN = 1 ∈ D∪{0, 1}
such that supl |yl+1 − yl| ≤ 2

N . Then we have

∫
Ω
|zn(x, y)− zm(x, y)|d(x, y) =

∫ 1

0

N∑
l=1

∫ yl

yl−1

|zn(x, y)− zm(x, y)|dy dx

≤
∫ 1

0

N∑
l=1

∫ yl

yl−1

|zn(x, y)− zn(x, yl)|+ |zn(x, yl)− zm(x, yl)|+ |zm(x, yl)− zm(x, y)| dy dx

≤
N∑
l=1

|yl − yl−1|
∫ 1

0
|zn(x, yl)− zm(x, yl)| dx

+

∫ 1

0

N∑
l=1

∫ yl

yl−1

|zn(x, y)− zn(x, yl)|+ |zm(x, y)− zm(x, yl)|dy dx.

We start by bounding the last term. To this end note that, for any n ∈ N ,

N∑
l=1

∫ yl

yl−1

|zn(x, y)− zn(x, yl)| dy ≤
N∑
l=1

2

N
sup

y∈[yl−1,yl]
|zn(x, y)− zn(x, yl)|

≤
N∑
l=1

2

N

∑
j∈Zn([yl−1,yl])

|zn(x, j + λn)− zn(x, j)| ≤ 2

N

∑
j∈Zn(I)

|zn(x, j + λn)− zn(x, j)| (4.6)

From the very definition of zn we infer√
2δn|zi+e2n − zin| = |(ui+e2n × u(i+e1)+e2

n )− (uin × ui+e1n )|

≤ |ui+e2n × (u(i+e1)+e2
n − ui+e1n )|+ |(ui+e2n − uin)× ui+e1n |

≤ |u(i+e1)+e2
n − ui+e1n |+ |ui+e2n − uin|. (4.7)

Combining (4.6), (4.7) and integrating with respect to x we deduce from the periodic boundary
conditions that∫ 1

0

N∑
l=1

∫ yl

yl−1

|zn(x, y)− zn(x, yl)| dy dx ≤
√

2
∑

i∈Rn(Ω)

λ2
n

∣∣∣∣ui+e2n − uin
N
√
δnλn

∣∣∣∣ .
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Applying Jensen’s inequality we obtain(∫ 1

0

N∑
l=1

∫ yl

yl−1

|zn(x, y)− zn(x, yl)|dy dx

)2

≤ 2

N2λ2
nδn

∑
i∈Rn(Ω)

λ2
n|ui+e2n − uin|2

≤

(
HG
n (zn)
√

2λnδ
3
2
n

)( √
δn

λnJ2,n

)(
2

N2

)
≤ C

N2
.

For N large enough, this yields∫
Ω
|zn(x, y)− zm(x, y)|d(x, y) ≤

N∑
l=1

|yl − yl−1|
∫ 1

0
|zn(x, yl)− zm(x, yl)|dx+

ε

2
, (4.8)

from which we deduce the Cauchy property taking m,n large enough for the finitely many
Cauchy sequences znd(·, yl).

Let now z ∈ L1(Ω,R3) be the limit of znd . By Lemma 3.13, z(·, y) ∈ BV (I,Qk) for almost
every y ∈ I , and therefore z ∈ L1(Ω, Qk). We now claim that z is independent of y . Observe
that if this holds, we immediately get z ∈ BV (Ω, Qk).

We are therefore only left to prove the claim. To this aim, for x ∈ I we denote by

zax,n ∈ H1(I,R3) the piecewise affine interpolation between the points {zn(x, λnj)}[1/λn]−1
j=0 .

Since znd converges to z in L1(Ω;R3), up to a subsequence, independent of x and that we do
not relabel, znd(x, ·) converges to z(x, ·) in L1(I;R3) for a.e. x ∈ I . Then also the piecewise
affine interpolations zax,nd(·) converge to z(x, ·) in L1(I;R3)for almost every x ∈ I . Further-
more, by definition ∫ 1

0

∫ 1

0
|(zax,nd)

′(y)|2 dy dx =
∑

i∈Rnd (Ω)

λ2
nd

∣∣∣∣∣zi+e2nd
− zind

λnd

∣∣∣∣∣
2

.

Using now (4.1) and (4.7), and since und ∈ Cnd,2(Ω;S2), we deduce∫ 1

0

∫ 1

0
|(zax,nd)

′(y)|2 dy dx ≤ 1

δnd

∑
i∈Rnd (Ω)

λ2
nd

∣∣∣∣∣ui+e2nd
− uind

λ2
nd

∣∣∣∣∣
2

≤

(
HG
nd

(znd)
√

2λnδ
3
2
n

)( √
2δnd

λndJ2,nd

)
≤ C .

By Fatou’s Lemma this implies

lim inf
nd

∫ 1

0
|(zax,nd)

′(y)|2 dy < +∞

for almost every x ∈ I . It follows that z(x, ·) ∈ H1(I,R3) and since it takes only finitely many
values we have that z(x, ·) is constant, which yields the claim. �

Concerning the Γ-limit of the rescaled and normalized energies, we obtain the following
result.

Theorem 4.2. Let HG
n : L1(Ω,R3)→ [0,+∞] be defined as in (3.39). Assume that λn√

δn
→ 0.

Then the functionals HG
n

√
2λnδ

3
2
n

Γ-converge with respect to the strong L1 -topology to the functional

HG(z) =

{∫
S(z) hG(z−, z+) dH1 if z ∈ BV (Ω, Qk) does not depend on y,

+∞ otherwise,

where hG is defined by (3.65) and z− , z+ are the one-sided limits of z at a discontinuity point.
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Proof. For the lower bound consider a sequence zn ∈ Cn,2(Ω,R3) converging in L1(Ω,R3) to

some z such that supn
HG
n

√
2λnδ

3
2
n

≤ C . By Proposition 4.1 we get immediately that z ∈ BV (Ω, Qk)

and that z does not depend on y . Let us denote by z0 ∈ BV (I,Qk) the slice of z in the x-
direction. For each n let un ∈ Cn,2(Ω,Mk) be such that T2(un) = zn and

Hn(un) + PGn (un)
√

2λnδ
3
2
n

≤ HG
n (zn)
√

2λnδ
3
2
n

+
1

n
.

From Theorem 3.16 we deduce

lim inf
n

Hn(un) + PGn (un)
√

2λnδ
3
2
n

≥
∫ 1

0
lim inf

n

Hp
n(un(·, y))
√

2λnδ
3
2
n

dy

≥
∫ 1

0

∑
t∈S(z0)

hG(z−, z+) dy =

∫
S(z)

hG(z−, z+) dH1,

where we used that z does not depend on y .
The upper bound is proved by taking a recovery sequence ũn ∈ Cn(I, S2) for the one

dimensional energy Hp
n defined by (3.62). Setting uin = ũi1n for all i = (i1, i2) ∈ Rn(Ω) we

obviously have |ui+e2 − ui| = 0 for all i and the result follows from Theorem 3.16 (iii). �
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