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Abstract. We study, by means of Γ-convergence, the asymptotic behavior of a variational model
for dislocations moving on a slip plane. The variational problem is a two-dimensional multi-phase

transition-type energy given by a nonlocal term and a nonlinear potential which penalizes noninteger

values for the components of the phase. In the limit we obtain an anisotropic sharp interfaces model.
The relevant feature of this problem is that optimal sequences in general are not given by a one

dimensional profile, but they can create microstructure.

1. Introduction

We study, by means of Γ-convergence, the asymptotic behavior as ε→ 0 of the functionals

Fε(u) =
1

| log ε|

∫
T 2

∫
T 2

(u(x)− u(y))T J(x− y) (u(x)− u(y)) dx dy(1)

+
1

ε| log ε|

∫
T 2

dist2(u(x),ZN ) dx ,

where ε > 0 is a small parameter, T 2 = R2/Z2 is the unit torus of R2, u : T 2 → RN is a 1-periodic
vector field, J : T 2 → MN×N is a singular matrix-valued kernel which defines a quadratic form
equivalent to the square of the H

1
2 seminorm of u and dist(·,ZN ) is the distance function from the

set of multi-integers ZN .
An energy of type (1) has been proposed by Koslowski and Ortiz ([20], and also [19]) as a multi-phase

model for planar dislocations in crystals, inspired to the classical model of Nabarro-Peierls (see [8]).
When an external stress is imposed, the specific geometry of a crystal constrains deformations along
planes (slip planes), on which some preferred slip directions (slip systems) are identified. This process,
known as crystallographic slip, may produce crystal lattice defects of topological kind. Dislocations are
one-dimensional defects that can move along slip planes with a low energy cost, drastically modifying
the mechanical properties of the crystal. In particular, dislocations are responsible for many interesting
phenomena, such as plasticity and hardening ([8]). In [20] the authors consider an elastic crystal with
a single slip plane undergoing periodic plastic slips, described by a vector field u (defined on the
torus T 2). The plastic slip is given by a linear combination of N slip systems (with coefficients given
by u), where N depends on the geometry of the crystal. In functional (1) the first term represents
the long-range elastic distortion induced by the slip and the second term penalizes slips that are not
compatible with the lattice structure.

The asymptotic behavior of energy (1) as ε→ 0 provides an anisotropic line-tension model for line
defects, in which dislocations are identified with the discontinuity lines of a ZN -valued slip field where
all the energy concentrates. It is well known that Γ-convergence of energies is essentially equivalent
to the convergence of the corresponding minimum problems and that it is stable with respect to the
addition of lower-order terms (like external stresses or a twist boundary condition). This means that
a minimum problem involving the Nabarro-Peierls model can be substituted with the corresponding
minimum problem for the line-tension model.

In analytical terms functional (1) belongs to the class of multi-well functionals singularly perturbed
by an higher-order term. We show that their limit is given by a sharp interface model as expected
in these cases. Nevertheless the interest of these functionals lies in that the behavior of the optimal
sequences may be very different from the usual one and the interfaces may produce microstructure,
which is the main result of this paper.
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Starting with the well-known Γ-convergence result by Modica and Mortola ([22]), related to the
Cahn-Hilliard model for two-phase fluids (see [12] and [23]), a large literature is now available where a
sharp interface model describe the asymptotic behavior of multi-well potentials singularly perturbed
by local regularizations of Dirichlet type (see among others [9] and [10]) or non-local terms described
by integrable interaction kernels, as in the Ising models with Kac potentials (see for instance [1],[2],[3]).
In all these cases it is well known that the line tension energy density of the Γ-limit is characterized
by an optimal-profile problem, involving both terms of the approximating energy, the non convex
potential and the singular perturbation.

More recently, the analysis of non-local variants of the Cahn-Hilliard model, namely phase-transitions
with a boundary line tension, led to the study of functionals in which the perturbation corresponds to
the H

1
2 seminorm, i.e., it is described by a non integrable interaction kernel with critical singularity

([4],[5]). Due to the singularity of the interaction kernel a logarithmic rescaling of the functional is
needed in order to produce a non trivial limit energy; the effect of this rescaling is that the Γ-limit
functional does not require an optimal-profile problem, all transitions between two wells are optimal as
far as they occur on a layer of width ε around the interface. Moreover the line tension energy density
does not depend on the precise shape of the pontential, but only on the position of its zeros.

The functional of dislocations (1) is a generalization of the case considered in [4]: the non local
term is anisotropic, i.e., it is only equivalent to the H

1
2 seminorm, and the set of wells of the potential

in the local term is not compact (see also [21]).
A first Γ-convergence result for functionals (1) has been obtained in [17] under the additional

assumption that the crystallographic slip is driven by a single slip direction. This condition modifies
the nature of the functional reducing it to a functional of the same type, but defined on scalar functions.
In this case the Γ-limit functional is an anisotropic sharp interface functional of the form∫

Su

γ(n)|[u]| dH1 ,

where u is an integer-valued phase-field representing the slip in a given direction, Su is the jump set
of u, nu the normal vector of Su and [u] the jump of u. The behavior of optimal sequences in this
case is similar to what happens in the simpler case studied in [4]. The transition between two phases
does not depend on the specific choice of the non convex potential that penalizes the misfit of the
lattice and occurs along flat optimal interfaces. In particular optimal sequences can be obtained by
mollifying the limit configuration at a scale ε. This implies that the anisotropic line tension energy
density γ(n) is explicitly computed by integrating the anisotropic kernel on fibers orthogonal to the
vector n.

Dealing with the general case, we find out a relevant difference with respect to the scalar case. We
can in fact show that optimal sequences in general are not given by one dimensional interfaces and can
arrange in complex patterns, strongly depending on the normal to the singular set of the slip fields,
which takes into account the anisotropy of the elastic interactions between the atoms of the crystal.
This makes the identification of the Γ-limit of functionals (1) a hard task and suggests to approach
the problem in a non constructive way. By means of integral representation theory for Γ-limits defined
on Caccioppoli partitions ([6],[7]) we prove (see Section 3) that there exists a subsequence εh → 0 and
a function ϕ : ZN × S1 → R such that the functionals Fεh Γ-converge to∫

Su

ϕ([u], nu) dH1 , u ∈ BV (T 2,ZN ) .

In Section 4, by means of an explicit example in the simple case of a cubic lattice, we show that the
flat interfaces are in general not optimal. Indeed we construct a sequence of transitions that produce
interfacial microstructure and that give an energy lower than the one obtained with one dimensional
transitions.

The main point of this phenomenon is that the limit energy obtained by taking only flat interfaces
(i.e. by mollification of the limit configurations) is in general not lower-semicontinuous and its relax-
ation is responsible for the formation of microstructure. The question that remains open is whether
this relaxation is actually the Γ-limit that we construct abstractly. We conjecture that this is the case.
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2. The functional of dislocations

2.1. Derivation of the multi-phase model. In this section we briefly discuss the phase-transition
model for dislocations proposed by Koslowski and Ortiz in [20] (see also [19]). For the detailed rescaling
argument in the derivation of the model see [16]. We consider an elastic crystal, in the contest of small
strains, on which the plastic slip occurs only on one plane, the plane x3 = 0. Following the Nabarro-
Pieirls model for dislocations, in absence of an applied force-field, the total energy of the crystal is
then given by

(2) E = EElastic + EPeierls .

The first term EElastic is the long range elastic interactions energy and represents the elastic distortion
induced by a given slip on the plane x3 = 0; while EPeierls is the short range interatomic interactions
energy and can be expressed by an interplanar potential which describes the misfits of the crystal
lattice due to the slip.

We assume the additional condition that the slip is periodic and so, after a rescaling, we identify the
slip plane with the torus T 2 of R2. The plastic slip v : T 2 → R2 is then identified with a vector field
u : T 2 → RN that describes the plastic deformations induced by N slip systems, where N depends on
the crystal lattice structure. More precisely, if {si}i=1,...,N are the N slip directions active on the slip
plane T 2, the slip field v can be expressed through the multi-phase slip field u : T 2 → RN as follows:

v =
N∑
i=1

uisi ,

where ui is the ith component of u. Then the misfit energy of the crystal attains its minima when all
the components of u are integral multiples of slip directions, i.e.,

ui = ξisi , ξi ∈ Z, i = 1, ..., N .

These special slips determine the location of the wells of the interplanar potential W , which can be
given for instance by the following piecewise quadratic function

W (u) =
µ

2ε

N∑
i=1

min
ξi∈Z
|ui − ξi|2 =

µ

2ε
dist2(u,ZN ) ,

where ε is a small parameter proportional to the interplanar distance and µ is the elastic modulus of
the crystal. Then the short range interactions energy of dislocations is

(3) EPeierls(u) =
∫
T 2
W (u(x)) dx .

The long range elastic interactions energy EElastic in (2) can be obtained as follows. We assume
that crystal deformations are described by a displacement field U : T 2 × R→ R3 and decompose the
gradient ∇U in the Kröner’s additive form:

(4) ∇U = βe + βp ,

where βe, βp denote the elastic and plastic distortion tensors respectively. Since crystallographic slip
is all supported on T 2 we write the plastic distortion as

(5) βp =
(

[U ]⊗ e3

)
H2 T 2 ,

where [U ] = ([U1], [U2], [U3]) is the jump of the displacement across the slip plane, e3 = (0, 0, 1) is the
unit normal to T 2, and H2 T 2 represents the two dimensional Hausdorff measure concentrated on
T 2. It follows that

(6) βp(x1, x2, x3) =

 0 0 [U1](x1, x2)
0 0 [U2](x1, x2)
0 0 0

H2 T 2 .

Then we can obtain the long range elastic interactions energy EElastic, induced by the slip v =∑N
i=1 uisi, by solving the following minimum problem:

(7) EElastic(v) = min
[U ]=v

E(U) ,
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where E(U) is the linear isotropic elastic energy

(8) E(U) =
∫
T 2×R

(
µ|e(βe)|2 +

λ

2
|tr e(βe)|2

)
dx1 dx2 dx3 ,

e(βe) = 1
2 (βe + βeT ) and µ, λ are the Lamé coefficients of the crystal.

The minimization in (7) can be explicitly carried out by means of Fourier variables. It follows that

(9) EElastic(v̂) =
1

(2π)2

µ

4

∑
k∈2πZ2

v̂(k)T Â(k) v̂∗(k) ,

where the interaction matrix Â is given by

(10) Â(k) =

(
1

1−ν
k2
1
|k| + k2

2
|k|

ν
1−ν

k1k2
|k|

ν
1−ν

k1k2
|k|

1
1−ν

k2
2
|k| + k2

1
|k|

)

and ν = λ
2(µ+λ) is the Poisson ratio of the crystal. It is easy to check that Â has the two eigenvalues

λ1 = |k| , λ2 =
1

1− ν
|k| , ν ∈ (−1, 1/2) .

Then (9) defines a positive quadratic form equivalent to the square of H
1
2 seminorm. More precisely

(11) C1

[
v
]2
H

1
2 (T 2)

≤ EElastic(v̂) ≤ C2

[
v
]2
H

1
2 (T 2)

,

where

C1 =
1

(2π)2

µ

4
, C2 =

1
1− ν

1
(2π)2

µ

4

and

(12)
[
v
]
H

1
2 (T 2)

=
( ∑
k∈2πZ2

|k||v̂(k)|2
) 1

2
.

In space variables and in terms of the multi-phase u, energy (9) rewrites

(13) EElastic(u) =
µ

2

∫
T 2

∫
T 2

(u(x)− u(y))T J(x− y)(u(x)− u(y)) dx dy ,

where J : T 2 →MN×N is given by

Jij(x) :=
∑
k∈Z2

sTi J0(x+ k)sj , i, j = 1, ..., N ,

and J0 is the following matrix homogeneous of degree −3:

J0(x) =
1

8π(1− ν)|x|3

 ν + 1− 3ν x2
2
|x|2 3ν x1x2

|x|2

3ν x1x2
|x|2 ν + 1− 3ν x2

1
|x|2

 .

The following properties hold:

i) J is 1-periodic, i.e.,defined on T 2;
ii) J(x) = O(|x|−3) as |x| → 0;
iii) J defines a positive quadratic form equivalent to the square of the H

1
2 seminorm;

iv) J satisfies

lim
δ→0

δ3
(
J(δx)

)
ij

= sTi J0(x)sj , i, j = 1, ..., N ,

uniformly on {x ∈ R2 : |x| ≤ σ} for every σ > 0.
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Finally we put (3) and (13) in (2), we divide by the constant factor µ/2, and we get

Eε(u) :=
∫
T 2

∫
T 2

(u(x)− u(y))T J(x− y) (u(x)− u(y)) dx dy

+
1
ε

∫
T 2

dist2(u(x),ZN ) dx .

The functional above belongs to the class of multi-well potentials singularly perturbed by an higher
order term. The minimization of this energy with the addition of lower-order terms (as external loads
or imposing a twist boundary condition) gives rise to a competition between the two terms in Eε:
the potential forces the slip field u to be close to the phases, namely to assume integer values almost
everywhere; while the kernel J prefers to reduce the long range elastic interactions (the H

1
2 seminorm of

u) by separating the phases as much as possible. This competition is then resolved by slip fields which
make transitions between the phases, inside small regions of width proportional to the interatomic
distance ε, the so called cores of dislocations. The corresponding elastic distortion due to the presence
of the dislocations is of the order of the logarithm of the core radius, i.e.,in this transition between
two integer multi-phases on a layer of width ε the field u has an H

1
2 norm of the order | log ε|.

After normalizing the energy by | log ε| one expects, in the limit as ε goes to zero, that the cores of
dislocations collapse to lines on which the energy concentrates. Dislocation lines are then described
by the singular sets of slip fields of pure phases (i.e., ZN -valued) and the amount of energy carried by
each dislocation is proportional to its length, locally weighted by the kernel J which takes into account
the anisotropy of the elastic interactions.

2.2. What is known in the scalar case. A first analysis of the asymptotic behavior for the model
presented above is due to Garroni and Müller in [17] under the special assumption that the crystal-
lographic slip on the slip plane T 2 is driven by a single slip direction. This assumption reduces the
functional to be defined only on scalar slip functions. More precisely they consider slip fields of the
form u e1 , where e1 is the first element of the canonical basis of R2 and u : T 2 → R is a 1-periodic
scalar function. In this case the functional Eε of dislocations reduces to

(14) Eε(u) :=
∫
T 2

∫
T 2

J(x− y)|u(x)− u(y)|2 dx dy +
1
ε

∫
T 2

dist2(u(x),Z) dx ,

where the kernel J : T 2 → R is given by

J(x) =
∑
k∈Z2

J0(x+ k) , J0(x) =
1

8π(1− ν)|x|3
(
ν + 1− 3ν

x2
2

|x|2
)

and satisfies the same properties of the kernel J stated above.

The following Γ-convergence result holds.

Theorem 1. ([17]) Let Eε be the energy defined in (14). Then the functional

(15) Iε(u) =


1

| log ε|
Eε(u) if u ∈ H 1

2 (T 2)

+∞ otherwise in L1(T 2) ,

Γ(L1)-converges to

I(u) =


∫
Su

γ(n)|[u]| dH1 if u ∈ BV (T 2,Z)

+∞ otherwise in L1(T 2) ,

where n ∈ S1 is the normal on Su, [u] is the jump of u across Su in the direction n and γ(n) is an
anisotropic line tension which only depends on the kernel J:

(16) γ(n) := 2 lim
δ→0

δ2

∫
x·n=δ

J(x) dH1 = 2
∫
x·n=1

J0(x) dH1 .



6 SIMONE CACACE AND ADRIANA GARRONI

Moreover for every sequence {uε} ⊆ L1(T 2) such that

sup
ε>0

Iε(uε) < +∞

there exists a sequence {aε} ⊂ Z such that {uε − aε} is bounded in L2(T 2) and strongly pre-compact
in L1(T 2); every cluster point of {uε − aε} belongs to BV (T 2,Z).

We remark that the density γ(n) does not depend on the kernel J, but only on the homogeneous
part J0. This implies that the problem is actually not affected by periodic boundary conditions and
Theorem 1 still holds for any kernel equivalent to the H

1
2 seminorm.

Due to the lack of coerciveness of the interplanar potentials in Iε, the compactness property stated
in Theorem 1 turns out to be a quite subtle result and requires to prove a delicate a priori estimate
for the L2 norm of sequences uε with equibounded energy. On the other hand the phenomenology of
the Γ-convergence result is similar to what one has for the simpler case considered in [4]. In fact in
[17] it is shown that the optimal sequences for a given function u ∈ BV (T 2,Z), with |[u]| = 1, are
given by any sequence of the form vε = u ∗ ϕε, where ϕε(x) = ε−2ϕ(x/ε) is any arbitrary mollifier.
We refer to this fact as to the flat optimal interface (or one dimensional optimal profile). As for the
case of a limiting configuration with jumps larger than 1, one has to first split the jumps in jumps of
size 1 and then mollify.

The main step in proving the existence of a flat optimal interface is based on a trunctation and then
a blow-up argument that shows that sequences uε with finite energy are essentially one dimensional
interfaces (i.e. uε take values almost at the bottom of the wells of the potential up to a small strip
of approximate width ε around the jumps of the limit). As we will see with an explicit example in
Section 4 this argument cannot be used when dealing with the general case of multiple slip systems
(corresponding to the vectorial functional of dislocations). The example shows actually that in the
general case we cannot expect a flat optimal interface, i.e., that the optimal sequences cannot be
constructed explicitly as in the scalar case, since a relaxation phenomenon can produce microstructure
for the optimal sequences.

Our strategy to attack the general vector case will be then to prove the existence of the Γ-limit of
the rescaled functional of dislocations in a non constructive way, by means of a compactness argument
together with an integral representation result. This will be done in the next section.

3. The Γ-limit of the functional of dislocations

This section is devoted to the Γ-convergence result as ε→ 0 for the functional of dislocations, that
we rewrite here by introducing the logarithmic rescaling:

Fε(u) =
1

| log ε|

∫
T 2

∫
T 2

(u(x)− u(y))T J(x− y)(u(x)− u(y)) dx dy(17)

+
1

ε| log ε|

∫
T 2

dist2
(
u(x),ZN

)
dx .

We prove that, up to sub-sequences in ε, there exists a density function ϕ : ZN × S1 → [0,+∞), such
that Fε Γ(L1(T 2))-converges to

(18) F (u) =
∫
Su

ϕ([u], nu) dH1 .

According to the variational model discussed in Section 2, the singular set Su of the phase-field u
represents dislocation lines ensembles where the energy concentrates as ε → 0. The density function
ϕ(s, n) estimates at every point x0 ∈ Su the anisotropic elastic interactions of the crystal, in terms of
the normal vector n = nu(x0) and the jump s = [u](x0) across dislocation lines.

From now on for the readers convenience we will use the following notation:

Jε[u](x, y) :=
1

| log ε|

(
u(x)− u(y)

)T
J(x− y)

(
u(x)− u(y)

)
,

Wε[u](x) :=
1

ε| log ε|
dist2

(
u(x),ZN

)
.
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We also introduce the localization of Fε on the open sets A(T 2) in T 2 by

(19) Fε(u,A) :=


∫
A×A

Jε[u](x, y) dx dy +
∫
A

Wε[u](x) dx if u ∈ H 1
2 (T 2) ,

+∞ otherwise .

Remark that the functional Fε is invariant with respect to integer translations, i.e.

Fε(u+ c) = Fε(u) , ∀ c ∈ ZN

and that the kernel J defines a quadratic form equivalent to the square of the H
1
2 (T 2) seminorm. In

particular J(x) = O(|x|−3) as |x| → 0 and there exist constants C1, C2 > 0 such that

(20)
C1

|x|3
|v|2 ≤ vT J(x)v ≤ C2

|x|3
|v|2 , ∀ v ∈ RN e ∀x ∈ T 2 .

The main result of this Section is the following.

Theorem 2. For every sequence of positive real numbers {εh} such that εh → 0 there exists a
sub-sequence, denoted again by {εh}, such that the functionals Fεh defined in (19) Γ(L1)-converge as
h→∞. More precisely:

i) (Coerciveness) for every sequence {uh} ⊆ L1(T 2) such that

sup
h∈N

Fεh(uh, T 2) < +∞

there exists a sequence {ah} ⊂ ZN such that {uh − ah} is bounded in L2(T 2) and strongly
pre-compact in L1(T 2); every cluster point of {uh − ah} belongs to BV (T 2,ZN ).

ii) (Γ-convergence) there exists a density function ϕ : ZN × S1 → [0,+∞) such that, as h→∞,
the functional

F (u,A) = Γ(L1)- lim
h→+∞

Fεh(u,A)

exists for all (u,A) ∈ L1(T 2)×A(T 2) and can be written as

(21) F (u,A) =


∫
Su∩A

ϕ([u], nu) dH1 if u ∈ BV (T 2,ZN ),

+∞ otherwise .

In particular, for every s ∈ ZN and n ∈ S1 we have

(22) ϕ(s, n) = F (uns , Q
n) ,

where Qn is the unit square centered in the origin with a side parallel to n and where uns is
the step function defined by uns (x) = sχ{x·n>0}.

More precisely
a) (Γ-liminf inequality) For every sequence {uh} converging to u in L1(T 2) the following

inequality holds
F (u,A) ≤ lim inf

h→∞
Fεh(uh, A) .

b) (Recovery sequence) For every u ∈ BV (T 2,ZN ) there exists a sequence {uh} converging
to u in L1(T 2) such that

F (u,A) ≥ lim sup
h→∞

Fεh(uh, A) .

Remark 3. We remark that (20) is the only assumption on the kernel J we use in the proof of The-
orem 2. Hence our result can be also applied to different problems, e.g. different boundary conditions.
Similarly the potential dist2(·,ZN ) can be replaced by any other non negative function vanishing exactly
on ZN with some additional assumption on the behavior near the wells.
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We will proceed proving Theorem 2 in a non constructive way (see [11], Chapter 16, for an overview
of the so called localization method). For a given sequence εh → 0 we define the Γ(L1)-liminf and the
Γ(L1)-limsup of Fεh respectively:

(23) F ′(u,A) := inf
{

lim inf
h→∞

Fεh(uεh , A) : uεh
L1

→ u
}
,

(24) F ′′(u,A) := inf
{

lim sup
h→∞

Fεh(uεh , A) : uεh
L1

→ u
}
.

When the Γ-limit exists, it coincides with the Γ-limsup and the Γ-liminf. If the Γ-limit F (u,A)
exists for all open sets A, we extend it by inner regularity to any Borel subset of T 2, B ∈ B(T 2), and
we treat it as a set function for any given u ∈ L1(T 2). The aim is to prove that for any ZN -valued slip
field u, F (u, ·) is a measure which satisfies suitable properties that guarantee an integral representation
of the type (18).

In view of the coerciveness result we expect that the natural domain for the limit energy will be
the space BV (T 2,ZN ), thus we will apply a well-known integral representation result for functionals
defined on Caccioppoli partitions, due to Ambrosio and Braides, that we state below for the reader
convenience in a form suited to our case (see [6], [7] and [11] for details).

Theorem 4. ([6]) Let G : BV (T 2,ZN ) × B(T 2) → [0,+∞) be a functional satisfying the following
assumptions:

i) G(u, ·) is a measure on T 2 for all u ∈ BV (T 2,ZN );
ii) G is local on A(T 2), i.e.,G(u,A) = G(v,A) for all A ∈ A(T 2) and u, v ∈ BV (T 2,ZN ) such

that u = v a.e. on A;
iii) G(·, A) is L1-lower semicontinuous on BV (T 2,ZN ) for all A ∈ A(T 2);
iv) there exist positive constants c1 and c2 such that, for every u ∈ BV (T 2,ZN ), B ∈ B(T 2)

c1

(
Hn−1(B ∩ Su) + |Du|(B)

)
≤ G(u,B) ≤ c2

(
Hn−1(B ∩ Su) + |Du|(B)

)
.

Then G admits the following integral representation:

(25) G(u,B) =
∫
Su∩B

ϕ(x, u+, u−, nu)dH1 , u ∈ BV (T 2,ZN ) , B ∈ B(T 2) ,

with ϕ : T 2 × ZN × ZN × S1 → [0,+∞) defined by

(26) ϕ(x, i, j, n) = lim sup
ρ→0+

1
ρ

min
{
G
(
u,Qnρ (x)

)
: u ∈ X (Qnρ (x))

}
and

(27) X (Qnρ (x)) =
{
u ∈ BV (T 2,ZN ) : u = unxij on T 2 \Qnρ (x)

}
,

where Qnρ (x) denotes the square centered in x with side of length ρ parallel to n, Qnρ (x) its closure and
unxij : T 2 → ZN is the step function defined by

unxij (y) :=

 i if (y − x) · n > 0 ,

j if (y − x) · n ≤ 0 .

The proof of Theorem 2 follows from Section 3.1 where the coerciveness is easily derived by the
scalar case, then by the Fundamental Estimate proved in Section 3.2 that permits to prove the inner
regularity of the Γ-limsup and Γ-liminf and hence existence of a Γ-limit up to a subsequence, and
finally by the application of the representation theorem above performed in Section 3.3.
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3.1. Coerciveness. In this section we briefly deduce the coerciveness result stated in Theorem 2, i),
as a consequence of the analogous result for the scalar case stated in Theorem 1.

Since

dist2(uε,ZN ) =
N∑
i=1

dist2(uiε,Z) ,

by (20) we get

min{C1, 1}
N∑
i=1

( 1
| log ε|

∫
T 2

∫
T 2

|uiε(x)− uiε(y)|2

|x− y|3
dx dy +

1
ε| log ε|

∫
T 2

dist2(uiε,Z) dx
)
≤

≤ Fε(uε, T 2) .

Then all components uiε of uε satisfy

sup
ε>0

Iε(uiε) < +∞ , for all i = 1, ..., N ,

where Iε is the scalar functional of dislocations (15), corresponding to the choice J(x) = |x|−3 for the
elastic interaction kernel.

By Theorem 1 we obtain that for all i = 1, ..., N there exists a sequence {aiε} ⊂ Z such that {uiε−aiε}
is bounded in L2(T 2; R) and strongly pre-compact in L1(T 2; R). Moreover every cluster point of the
translated sequence belongs to BV (T 2; Z). We conclude by setting aε = (a1

ε, ..., a
N
ε ).

3.2. Existence of the Γ-limit: the Fundamental Estimate. In this section we establish the
following compactness result.

Theorem 5. Let Fε(u,A) : L1(T 2) × A(T 2) → [0,+∞] be the functional defined in (19). For every
sequence of positive real numbers {εh} such that εh → 0 there exists a sub-sequence, denoted again by
{εh}, such that the Γ-limit

(28) F (u,A) = Γ(L1) - lim
h→∞

Fεh(u,A)

exists for all (u,A) ∈ L1(T 2)×A(T 2).

Fixed a sequence εh → 0, we begin considering the Γ(L1)-liminf F ′(u,A) and the Γ(L1)-limsup
F ′′(u,A) defined in (23) and (24). Since the functional Fεh is non negative, it follows that for all
u ∈ L1(T 2), the functions F ′(u, ·), F ′′(u, ·) are increasing set functions:

F ′(u,A) ≤ F ′(u,B) , F ′′(u,A) ≤ F ′′(u,B) , ∀A,B ∈ A(T 2) : A ⊆ B .

The main step is to prove that F ′ and F ′′ satisfy the inner regularity property:

(29)
F ′(u,A) = sup

{
F ′(u,A′) : A′ ∈ A(T 2), A′ ⊂⊂ A

}
,

F ′′(u,A) = sup
{
F ′′(u,A′) : A′ ∈ A(T 2), A′ ⊂⊂ A

}
.

This property is ensured by the Fundamental Estimate for the functional Fε, contained in the next
theorem. In what follows by a cut-off function between A′ and A, with A, A′ ∈ A(T 2) and A′ ⊂⊂ A,
we mean a function ϕ : A→ R such that ϕ ∈ C∞0 (A), 0 ≤ ϕ ≤ 1 and ϕ ≡ 1 on A′.

Theorem 6 (The Fundamental Estimate). For every A,A′, B ∈ A(T 2) with A′ ⊂⊂ A and every
σ > 0, there exists a positive constant Cσ = C(σ,A,A′, B) such that, for all u, v ∈ L1(T 2), there
exists a cut-off function ϕ between A′ and A such that

(30) Fε(ϕu+ (1− ϕ)v,A′ ∪B) ≤

(1 + σ)
(
Fε(u,A) + Fε(v,B)

)
+

Cσ
| log ε|

(∫
A

|u|2dx+
∫
B

|v|2dx
)
.
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Proof. By the definition of Fε it is enough to consider pairs of functions u, v ∈ H 1
2 (T 2), otherwise

(30) is trivially fullfilled.
We set δ = dist(A′, ∂A) and for any given n ∈ N we define the following sets

A0 = A′, Ak =
{
x ∈ A : dist(x,A′) < k

δ

n

}
, k ∈ {1, ..., n}.

For any fixed k ∈ {1, ..., n} let ϕ ≡ ϕk be a cut-off function between Ak−1 and Ak such that |∇ϕ| ≤ n
δ .

We set
Ci = (Ai \Ai−1) ∩B , i = 1, ..., n ,

U = A0 ∪
k−1⋃
i=1

Ci , V = B \Ak .

It follows that {U,Ck, V } is a partition of A′∪B, as shown in Figure 1. Then we set w := ϕu+(1−ϕ)v

A

A
,

B

Ck

Figure 1. Choice of a good slice for the cut-off function

and we compute its energy in A′ ∪B

Fε(w,A′ ∪B) =
∫
A′∪B

∫
A′∪B

Jε[w](x, y) dx dy +
∫
A′∪B

Wε[w](x) dx

≤
∫
U

∫
U

Jε[w](x, y) dx dy +
∫
Ck

∫
Ck

Jε[w](x, y) dx dy +
∫
V

∫
V

Jε[w](x, y) dx dy

+2
∫
U

∫
Ck

Jε[w](x, y) dx dy + 2
∫
V

∫
Ck

Jε[w](x, y) dx dy + 2
∫
U

∫
V

Jε[w](x, y) dx dy

+
∫
A

Wε[w](x) dx+
∫
B

Wε[w](x) dx .

By the definition of ϕ it follows that w = u on U , w = v on V and U ⊂ A, V ⊂ B and hence we have

Fε(w,A′ ∪B) ≤ Fε(u,A) + Fε(v,B) +
∫
Ck

∫
Ck

Jε[w](x, y) dx dy(31)

+2
∫
U

∫
V

Jε[w](x, y) dx dy + 2
∫
U

∫
Ck

Jε[w](x, y) dx dy + 2
∫
V

∫
Ck

Jε[w](x, y) dx dy .

By (20) the four double integrals in (31) can be controlled respectively by

I1 :=
C2

| log ε|

∫
Ck

∫
Ck

|w(x)− w(y)|2

|x− y|3
dx dy, I2 :=

2C2

| log ε|

∫
U

∫
V

|w(x)− w(y)|2

|x− y|3
dx dy,

I3 :=
2C2

| log ε|

∫
U

∫
Ck

|w(x)− w(y)|2

|x− y|3
dx dy, I4 :=

2C2

| log ε|

∫
V

∫
Ck

|w(x)− w(y)|2

|x− y|3
dx dy.
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We evaluate the differences |w(x)−w(y)|2 in each integral. For every (x, y) ∈ Ck ×Ck it follows that

|w(x)− w(y)|2 =
N∑
i=1

|wi(x)− wi(y)|2 =

=
N∑
i=1

∣∣∣ϕ(x)ui(x) + (1− ϕ(x))vi(x)− ϕ(y)ui(y)− (1− ϕ(y))vi(y)
∣∣∣2 =

=
N∑
i=1

∣∣∣ϕ(x)
(
ui(x)− ui(y)

)
+ (1− ϕ(x))

(
vi(x)− vi(y)

)
+ (ϕ(x)− ϕ(y))

(
ui(y)− vi(y)

)∣∣∣2 ≤
≤ C

N∑
i=1

(
|ui(x)− ui(y)|2 + |vi(x)− vi(y)|2 + |ϕ(x)− ϕ(y)|2|ui(y)− vi(y)|2

)
,

and then

(32) I1 ≤
C

| log ε|

∫
Ck

∫
Ck

( |u(x)− u(y)|2

|x− y|3
+
|v(x)− v(y)|2

|x− y|3
+
|ϕ(x)− ϕ(y)|2

|x− y|3
(|u(y)|2 + |v(y)|2)

)
dx dy .

For every (x, y) ∈ U × V we have

|w(x)− w(y)|2 =
N∑
i=1

∣∣∣ui(x)− vi(y)
∣∣∣2 ≤ C(|u(x)|2 + |v(y)|2

)
,

and

(33) I2 ≤
C

| log ε|

∫
U

∫
V

|u(x)|2 + |v(y)|2

|x− y|3
dx dy .

For every (x, y) ∈ U × Ck we have

|w(x)− w(y)|2 =
N∑
i=1

∣∣∣ui(x)− ϕ(y)ui(y)− (1− ϕ(y))vi(y)
∣∣∣2 =

=
N∑
i=1

∣∣∣(ui(x)− ui(y)
)

+ (1− ϕ(y))
(
ui(y)− vi(y)

)∣∣∣2 ≤
≤ C

N∑
i=1

(
|ui(x)− ui(y)|2 + |ϕ(x)− ϕ(y)|2|ui(y)− vi(y)|2

)
and

(34) I3 ≤
C

| log ε|

∫
U

∫
Ck

( |u(x)− u(y)|2

|x− y|3
+
|ϕ(x)− ϕ(y)|2

|x− y|3
(|u(y)|2 + |v(y)|2)

)
dx dy.

Similarly for every (x, y) ∈ V × Ck it follows that

(35) I4 ≤
C

| log ε|

∫
V

∫
Ck

( |v(x)− v(y)|2

|x− y|3
+
|ϕ(x)− ϕ(y)|2

|x− y|3
(|u(y)|2 + |v(y)|2)

)
dx dy.

We set I := I1 + I2 + I3 + I4 and from (32)-(35) we get

I ≤ C

| log ε|

{∫
U∪Ck

∫
Ck

|u(x)− u(y)|2

|x− y|3
dx dy +

∫
V ∪Ck

∫
Ck

|v(x)− v(y)|2

|x− y|3
dx dy

+
∫
A′∪B

∫
Ck

|ϕ(x)− ϕ(y)|2 |u(y)|2 + |v(y)|2

|x− y|3
dx dy +

∫
U

∫
V

|u(x)|2 + |v(y)|2

|x− y|3
dx dy

}
.
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Again by (20) and from the fact that U ∪ Ck ⊂ A, V ∪ Ck ⊂ B, we conclude that

I ≤ C
(∫

A

∫
Ck

Jε[u](x, y) dx dy +
∫
B

∫
Ck

Jε[v](x, y) dx dy
)

(36)

+
C

| log ε|

∫
A′∪B

∫
Ck

|ϕ(x)− ϕ(y)|2 |u(y)|2 + |v(y)|2

|x− y|3
dx dy

+
C

| log ε|

∫
U

∫
V

|u(x)|2 + |v(y)|2

|x− y|3
dx dy .

We now remark that
n∑
k=1

(∫
A

∫
Ck

Jε[u](x, y) dx dy +
∫
B

∫
Ck

Jε[v](x, y) dx dy
)

≤
∫
A

∫
A

Jε[u](x, y) dx dy +
∫
B

∫
B

Jε[v](x, y) dx dy ≤ Fε(u,A) + Fε(v,B) .

Then we can choose k ∈ {1, ..., n} such that

(37)
∫
A

∫
Ck

Jε[u](x, y) dx dy +
∫
B

∫
Ck

Jε[v](x, y) dx dy ≤ 1
n

(
Fε(u,A) + Fε(v,B)

)
.

On the other hand the cut-off function ϕ satisfies

|ϕ(x)− ϕ(y)| ≤ n

δ
|x− y|

by construction and ∫
A′∪B

dx

|x− y|

[
z=x−y

]
=

∫
(A′∪B)−y

dz

|z|
≤
∫
D

dz

|z|
≤ C ,

where D is a disc containing the set (A′ ∪B)− y for all y ∈ Ck. Therefore it follows that∫
A′∪B

∫
Ck

|ϕ(x)− ϕ(y)|2

|x− y|3
(|u(y)|2 + |v(y)|2) dx dy(38)

≤
(n
δ

)2
∫
Ck

(∫
A′∪B

dx

|x− y|

)
(|u(y)|2 + |v(y)|2) dy ≤ C

(n
δ

)2
∫
Ck

(|u(y)|2 + |v(y)|2) dy .

Finally for every (x, y) ∈ U × V we have |x− y| > δ
n and∫

U

∫
V

|u(x)|2 + |v(y)|2

|x− y|3
dx dy ≤

(n
δ

)3(
|V |
∫
U

|u(x)|2dx+ |U |
∫
V

|v(y)|2dy
)

(39)

≤ max{|A|, |B|}
(n
δ

)3(∫
U

|u(x)|2dx+
∫
V

|v(y)|2dy
)
.

We now set

C = C(n,A,A′, B) = C max
{(n

δ

)2

,max{|A|, |B|}
(n
δ

)3}
.

and from (31) and (36)-(39) we conclude that

Fε(ϕu+ (1− ϕ)v,A′ ∪B) ≤ (1 +
C

n
)
(
Fε(u,A) + Fε(v,B)

)
+

C

| log ε|

(∫
U∪Ck

|u|2dx+
∫
V ∪Ck

|v|2dx
)
.

Now choose n = nσ := [C/σ] + 1 and set Cσ := C(nσ, A,A′, B). Since U ∪ Ck ⊂ A and V ∪ Ck ⊂ B
it follows that

Fε(ϕu+ (1− ϕ)v,A′ ∪B) ≤ (1 + σ)
(
Fε(u,A) + Fε(v,B)

)
+

Cσ
| log ε|

(∫
A

|u|2dx+
∫
B

|v|2dx
)
,

and this finishes the proof. �

We now prove the inner regularity property of the Γ-liminf and the Γ-limsup of Fε.

Proposition 7. For every u ∈ L1(T 2) the set functions F ′(u, ·), F ′′(u, ·) : A(T 2) → [0,+∞] defined
in (23) and (24) satisfy the inner regularity property (29).
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Proof. By the coercivity property of Fε it is enough to consider functions u ∈ BV (T 2,ZN ). For
every sequence of positive real numbers {εh} ⊂ R such that εh → 0 and every A, B ∈ A(T 2), let
{uh}, {vh} ⊂ L1(T 2) be recovery sequences for F ′(u,A) and F ′′(u,B) respectively, i.e.,

uh
h→∞−→ u in L1(T 2) , F ′(u,A) = lim inf

h→∞
Fεh(uh, A) ,

vh
h→∞−→ u in L1(T 2) , F ′′(u,B) = lim sup

h→∞
Fεh(vh, B) .

For all h ∈ N we apply the fundamental estimate (30) to uh and vh: for every A′ ∈ A(T 2) with
A′ ⊂⊂ A and every σ > 0 there exists a constant Cσ > 0 such that

(40) Fεh(ϕhuh + (1− ϕh)vh, A′ ∪B) ≤

≤ (1 + σ)(Fεh(uh, A) + Fεh(vh, B)) +
Cσ
| log εh|

(∫
A

|uh|2 +
∫
B

|vh|2
)
,

where {ϕh} is a suitable sequence of cut-off functions between A′ and A. Moreover

|ϕhuh + (1− ϕh)vh − u| ≤ |ϕh||uh − u|+ |1− ϕh||vh − u| ≤ |uh − u|+ |vh − u| ,

i.e.,ϕhuh+ (1−ϕh)vh also converges to u in L1(T 2). Again by the coercivity property we may assume
that the sequences {uh} and {vh} are bounded in L2(T 2). Taking the limit in (40) as h→∞ we get

F ′(u,A′ ∪B) ≤ lim inf
h→∞

Fεh(ϕhuh + (1− ϕh)vh, A′ ∪B)

≤ (1 + σ)
(

lim inf
h→∞

Fεh(uh, A) + lim sup
h→∞

Fεh(vh, B)
)
≤ (1 + σ)

(
F ′(u,A) + F ′′(u,B)

)
,

for all σ > 0, where the first inequality holds by the definition of F ′. By the arbitrariness of σ we
conclude

(41) F ′(u,A′ ∪B) ≤ F ′(u,A) + F ′′(u,B) .

Similarly we get

(42) F ′′(u,A′ ∪B) ≤ F ′′(u,A) + F ′′(u,B) .

Since F ′ and F ′′ are increasing set functions, for every W,A ∈ A(T 2) with A ⊂⊂W it follows that

F ′(u,W ) ≥ sup
{
F ′(u,A) : A ⊂⊂W

}
,

and
F ′′(u,W ) ≥ sup

{
F ′′(u,A) : A ⊂⊂W

}
.

In order to prove the inner regularity property we have to prove opposite inequalities. Consider a
compact set K and A′, A,W ∈ A(T 2) such that K ⊂⊂ A′ ⊂⊂ A ⊂⊂W . We apply (41) and (42) with
B = W \K:

F ′(u,W ) ≤ F ′(u,A) + F ′′(u,W \K) ,

F ′′(u,W ) ≤ F ′′(u,A) + F ′′(u,W \K) .

Taking the supremum over all open sets A ⊂⊂W , it follows that

(43) F ′(u,W ) ≤ sup
{
F ′(u,A) : A ⊂⊂W

}
+ F ′′(u,W \K) ,

F ′′(u,W ) ≤ sup
{
F ′′(u,A) : A ⊂⊂W

}
+ F ′′(u,W \K) .

We now prove that the term F ′′(u,W \K) vanishes as K grows in W . From the fact that the functional
Fε is non negative and by (20), for every sequence {uh} converging to u in L1(T 2), we get

(44) 0 ≤ Fεh(uh,W \K) ≤ C
N∑
i=1

Iεh(uih,W \K) ,
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where Iεh(uih,W \ K) is the localization over W \ K of the scalar functional of dislocations (15),
evaluated on the i-th component of {uh} and corresponding to the choice J(x) = |x|−3. By Theorem
1 the functional Iεh Γ(L1)-converges to

I(v,W \K) =
∫
Sv∩(W\K)

γ(n)|[v]| dH1 , ∀ v ∈ BV (T 2,Z) ,

where, for every n ∈ S1,

γ(n) = 2
∫
x·n=1

|x|−3 dH1(x) = 2
∫

R
(1 + x2

2)−
3
2 dx2 = 4

[
x2(1 + x2

2)−
1
2

]+∞
0

= 4 .

We choose {uh} such that for all i = 1, ..., N , the sequence {uih} is a recovery sequence for I(ui,W \K).
Then, taking the limit in (44) as h→∞, we conclude that

0 ≤ F ′′(u,W \K) ≤ lim sup
h→∞

Fεh(uh,W \K) ≤

(45) ≤ C
N∑
i=1

∫
Sui∩(W\K)

|[ui]|dH1 ≤ C|Du|(W \K) ,

where the second inequality holds by definition of F ′′. Finally we take the supremum over all compact
sets K ⊂W , so that the last term in (45) goes to zero. The proof is complete. �

The existence of the Γ-limit of the functional of dislocations Fε is now a simple consequence of
Proposition 7.

Proof of Theorem 5. We denote by R(T 2) the family of all finite unions of rectangles of T 2 whose
vertices have rational coordinates.

By the compactness of the Γ-convergence and a diagonal argument, we can extract a sub-sequence
from {εh}, that we denote again by {εh}, such that the limit

F (u,R) = Γ(L1) - lim
h→∞

Fεh(u,R) = F ′(u,R) = F ′′(u,R)

exists for all u ∈ L1(T 2) and R ∈ R(T 2). Using the inner regularity property stated in Proposition 7
we can show that this limit also exists for all open sets. Indeed for every A′, A ∈ A(T 2) with A′ ⊂⊂ A
there exists an open set R ∈ R(T 2) such that A′ ⊂⊂ R ⊂⊂ A. Then, by inner regularity of F ′ and
F ′′, it follows that

F ′(u,A) = sup
{
F ′(u,A′) : A′ ⊂⊂ A

}
= sup

{
F ′(u,R) : R ⊂⊂ A

}
=

= sup
{
F ′′(u,R) : R ⊂⊂ A

}
= sup

{
F ′′(u,A′) : A′ ⊂⊂ A

}
= F ′′(u,A) ,

i.e.
F (u,A) := F ′(u,A) = F ′′(u,A) , ∀ (u,A) ∈ L1(T 2)×A(T 2) ,

which conclude the proof of the existence of the Γ-limit. �

3.3. Integral representation. In this section we complete the proof of Theorem 2, i.e.,we obtain
the integral representation (21) for the Γ-limit F constructed in the previous section. We apply the
integral representation result by Ambrosio and Braides (Theorem 4) and use the properties of our
functional Fε to simplify the general formula (26) for the energy density ϕ.

Theorem 8. The Γ(L1)-limit F obtained in (28) admits, for every u ∈ BV (T 2,ZN ) and B ∈ B(T 2),
the following integral representation:

F (u,B) =
∫
Su∩B

ϕ([u], nu)dH1 .

The energy density function ϕ : ZN × S1 → [0,+∞) is given by

(46) ϕ(s, n) = F (uns , Q
n),

where Qn is the unit square centered in the origin with a side parallel to n and uns (x) = sχ{x·n>0}.
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Proof. We have to verify that the functional F satisfies properties (i)-(iv) of Theorem 4.
We first remark that, by definition, F inherits from F ′ and F ′′ the inner regularity property

(Proposition 7). In particular, replacing F ′′ with F in (42), it follows that

F (u,A′ ∪B) ≤ F (u,A) + F (u,B) .

Taking the supremum over all A′ ∈ A(T 2) such that A′ ⊂⊂ A, we obtain that F is sub-additive.
We now prove that F is also super-additive. For every A,B ∈ A(T 2) with A ∩ B = ∅, let {uh} be

a recovery sequence for F (u,A ∪B). We have

F (u,A ∪B) = lim
h→∞

Fεh(uh, A ∪B) =

= lim
h→∞

(∫
A∪B

∫
A∪B

Jεh [uh](x, y) dx dy +
∫
A∪B

Wεh [uh](x) dx
)

=

= lim
h→∞

(
Fεh(uh, A) + Fεh(uh, B) + 2

∫
A

∫
B

Jεh [uh](x, y) dx dy
)
≥

≥ lim inf
h→∞

Fεh(uh, A) + lim inf
h→∞

Fεh(uh, B) ≥ F (u,A) + F (u,B) ,

where we used the positiveness of the quadratic form Jεh and the Γ- lim inf inequality for the functional
Fεh .

By the characterization of measures as increasing, sub-additive, super-additive and inner-regular
set functions (see the well known result by DeGiorgi and Letta [14]), we obtain that F (u, ·) is a Borel
measure on T 2, i.e.,property (i) of Theorem 4 is fullfilled.

On the other hand properties (ii) and (iii) of Theorem 4 directly follow from definition of F (u,A);
in particular it is known that each Γ(L1)-limit is always lower semicontinuous with respect to the L1

topology.
Finally by the estimate (20) on the kernel J we get (as in (44) and (45))

C1|Du|(A) ≤ F (u,A) ≤ C2|Du|(A) .

Since u ∈ BV (T 2,ZN ) we have |Du|(A) =
∫
A∩Su |[u]| dH1 and |[u]| ≥ 1 H1-a.e. on Su. Then

C1

2

(
H1(A ∩ Su) + |Du|(A)

)
≤ F (u,A) ≤ C2

(
H1(A ∩ Su) + |Du|(A)

)
,

i.e.,property (iv) of Theorem 4 restricted to A(T 2), that can be exended to B(T 2) using the fact that
F (u, ·) is actually a measure.

Applying Theorem 4 we then obtain the following integral representation for the functional F :

F (u,B) =
∫
Su∩B

ϕ(x, u+, u−, nu)dH1 , u ∈ BV (T 2,ZN ) , B ∈ B(T 2) ,

with ϕ : T 2 × ZN × ZN × S1 → [0,+∞) defined by

(47) ϕ(x, i, j, n) = lim sup
ρ→0+

1
ρ

min
{
F
(
u,Qnρ (x)

)
: u ∈ X

}
and

(48) X =
{
u ∈ BV (T 2,ZN ) : u = unxij su T 2 \Qnρ (x)

}
.

To conclude it remains to prove that formula (47) for the density ϕ reduces to (46).
In what follows we will highlight the dependence of the class X on parameters, setting

X = X (x, s1, s2, n, ρ) with x ∈ T 2, s1, s2 ∈ ZN , n ∈ S1, ρ > 0 .

Moreover when we evaluate F (u, ·) on closed sets Qnρ (x) we mean that we define it by outer approxi-
mation considering open sets A ∈ A(T 2) such that Qnρ (x) ⊂⊂ A.

The proof of formula (46) is split in three steps.

Step 1 : ϕ does not depend separately on s1, s2 ∈ ZN , but only on s := s1 − s2.
Fix (x, n) ∈ T 2 × S1. For every s1, s2 ∈ ZN , A ∈ A(T 2) such that Qnρ (x) ⊂⊂ A and every
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u ∈ X (x, s1, s2, n, ρ), let {uh} be a recovery sequence for F (u,A). For every c ∈ ZN it follows that
uh + c→ u+ c in L1(T 2) and

F (u+ c, A) ≤ lim
h→∞

Fεh(uh + c, A) = lim
h→∞

Fεh(uh, A) = F (u,A) ,

where we used the Γ- lim inf inequality and the integer translation invariance of Fεh . Swapping u and
u+ c we get the opposite inequality, so that the functional F is also integer translation invariant.

Choose c = −s2 and set v := u+ c. It follows that v ∈ X (x, s1 − s2, 0, n, ρ) and

min
{
F (u,Qnρ (x)) : u ∈ X (x, s1, s2, n, ρ)

}
= min

{
F (v,Qnρ (x)) : v ∈ X (x, s1 − s2, 0, n, ρ)

}
and hence

ϕ(x, s1, s2, n) = ϕ(x, s1 − s2, 0, n) .

Step 2 : ϕ does not depend on x ∈ T 2.
Fix (s, n) ∈ ZN × S1 and set, with a little abuse of notations, X (x, s, n, ρ) = X (x, s, 0, n, ρ) and
ϕ(x, s, n) = ϕ(x, s, 0, n). For every x0, x1 ∈ T 2, u ∈ X (x0, s, n, ρ) and A ∈ A(T 2) such that Qnρ (x0) ⊂⊂
A, we define

τ [u](x) := u(x+ x0 − x1) and τ−1(A) := A+ (x1 − x0) ,

so that τ [u] ∈ X (x1, s, n, ρ) and Qnρ (x1) ⊂⊂ τ−1(A) ∈ A(T 2).
Let {uh} be a recovery sequence for F (u,A). Then τ [uh] → τ [u] in L1(T 2) and by a change of

variables and the Γ- lim inf inequality for the functional Fεh we get

F (u,A) = lim
h→∞

Fεh(uh, A) = lim
h→∞

Fεh(τ [uh], τ−1(A)) ≥ F (τ [u], τ−1(A)) .

Similarly, we get the opposite inequality, so that we conclude that

min
{
F (u,Qnρ (x0)) : u ∈ X (x0, s, n, ρ)

}
= min

{
F (v,Qnρ (x1)) : v ∈ X (x1, s, n, ρ)

}
and hence

ϕ(x0, s, n) = ϕ(x1, s, n) .

Step 3 : ϕ(s, n) = F (uns , Q
n) for every s ∈ ZN and n ∈ S1.

This step trivially follows by the integral representation of F and from the fact that ϕ does not depend
on x. In fact

F (uns , Q
n) =

∫
Suns∩Qn

ϕ(s, n) dH1 = ϕ(s, n) ,

and hence the proof of Theorem 8 is complete. �

Remark 9. Note that by the fact that F is a Γ-limit we automatically know that it is lower-semi-
continuous with respect to the L1 topology. As a consequence its energy density ϕ defined in (46)
must satisfy the necessary and sufficient condition for the lower-semicontinuity of functionals defined
on partitions, the so called BV-ellipticity. We say that ϕ is BV-elliptic if it satisfies the following
condition

(49) ϕ(s, n) = min
{∫

Su∩Qn
ϕ([u], nu)dH1 : u ∈ X (Qn)

}
for all s ∈ ZN and n ∈ S1, i.e., the step function uns (x) = sχ{x·n>0} minimizes the above minimum
problem.

It is proved in [6] that a necessary (but in general not sufficient) condition for the BV-ellipticity is
the following pair of properties:

i) (Subadditivity in s) For any n ∈ S1 and every s1, s2 ∈ ZN

ϕ(s1 + s2, n) ≤ ϕ(s1, n) + ϕ(s2, n) ;
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ii) (Convexity in n) For every s ∈ ZN the positively homogeneous extension of degree 1 of the
function ϕ(s, ·) : S1 → R to the whole of R2 is convex. This condition can be equivalently
expressed as

ϕ(s, n) ≤ l1ϕ(s, n1) + l2ϕ(s, n2) ,

for all n, n1, n2 ∈ S1 and l1n1 + l2n2 = n.

4. Interfacial microstructure for the cubic lattice

In this section we consider the case of the functional of dislocations for a cubic lattice and we
discuss with an example the important difference between the case under consideration and the scalar
case presented in Section 2.2, which is due to the vector nature of slip fields and the anisotropy of
the elastic interactions of the crystal. More precisely we find out that the structure of the core of a
transition between two phases now plays a fundamental role in the optimization of the limit energy,
depending on the orientation of the normal to dislocation lines.

We consider a crystal with a cubic lattice, in which the crystallographic slip is driven by two slip
directions e1 and e2 (the canonical basis of R2). Then the functional Fε of dislocations, rescaled by
the factor | log ε|, reduces to

Fε(u) =
1

| log ε|

∫
T 2

∫
T 2

(u(x)− u(y))T J(x− y)(u(x)− u(y)) dx dy +
1

ε| log ε|

∫
T 2

dist2(u(x),Z2) dx ,

where u : T 2 → R2 is a 1-periodic vector field and the kernel J is then given by

J(x) =
∑
k∈Z2

J0(x+ k) , J0(x) =
1

8π(1− ν)|x|3

 ν + 1− 3ν x2
2
|x|2 3ν x1x2

|x|2

3ν x1x2
|x|2 ν + 1− 3ν x2

1
|x|2

 .

By Theorem 2 the Γ-limit functional F of Fε exists up to subsequences in ε and can be represented,
for every slip field u ∈ BV (T 2,Z2), by the integral on the singular set Su of a density function ϕ(s, n),
which is implicitly defined, for every s = (s1, s2) ∈ Z2 and n ∈ S1, as the value F (uns , Q

n), where
uns = sχ{x·n>0} is a step field. The characterization of ϕ is equivalent to the construction of a recovery
sequence for F , i.e.,a transition uε such that

uε
ε→0−→ uns and lim

ε→0
Fε(uε, Qn) = F (uns , Q

n) = ϕ(s, n) .

Let us fix s = (1, 1). In view of what happens in the scalar case let us try as a possible recovery
sequence the mollification at scale ε of the step function uns . In other words let us compute the limit
energy for a flat transition. We choose an arbitrary function φ ∈ C∞0 (Qn) such that φ ≥ 0,

∫
Qn

φdx = 1
and set uε := uns ∗ φε with φε(x) = ε−2φ(x/ε). Since uε agrees with uns outside of an ε-neighbour of
Suns , it follows that

lim
ε→0

1
ε| log ε|

∫
Qn

dist2(uε,Z2) dx ≤ lim
ε→0

Cε

ε| log ε|
= 0

and

lim
ε→0

Fε(uε, Qn) = lim
ε→0

1
| log ε|

∫
Qn

∫
Qn

(uε(x)− uε(y))T J0(x− y)(uε(x)− uε(y)) dx dy =

(50) = sT γ(n)s = γ11(n) + γ22(n) + 2γ12(n) ,

where γ(n) is the anisotropic line tension matrix defined by

γij(n) := 2
∫
x·n=1

(J0(x))ij dH
1 , i, j = 1, 2 .

This formula for γ(n) can be obtained as in the scalar case (see [16] for details). Roughly speaking
the terms γ11(n) and γ22(n) in (50) represent the energy cost of a unit jump in the first and in the
second component of uns respectively and γ12(n) is the energy associated to a simultaneous jump of
the two components.
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The matrix γ(n) can be explicitly computed and is given by

(51) γ(n) = γ(θ) =
1

4π(1− ν)

 2− 2ν sin2 θ ν sin 2θ

ν sin 2θ 2− 2ν cos2 θ

 ,

where n ∈ S1 is given by n = (cos θ, sin θ) with θ ∈ [−π, π). Since the Poisson ratio ν of the crystal
ranges in (−1, 1/2), it is not difficult to check that the matrix γ(n) is positive defined, as it should be,
and the entries γ11(θ) and γ22(θ) are both strictly positive for every θ ∈ [−π, π). The relevant fact is
that the entry γ12(θ) changes sign. For instance if ν > 0, then γ12(θ) is negative if θ < 0. This property
has the important consequence. In fact if θ > 0 we can obtain a limit energy smaller than Fflat(uns ) by
approximating uns with a slip field whose components never jump together. For example fix θ = π/4
and suppose that ν > 0. For every δ << 1 we consider the slip field uδ in Figure 2. The singular set

n

nL! us = (0,0)
"

(1,1)1

!

!
2L

0!
=!u

N (1,1)

(1,0)

!

(0,0)

Figure 2. Splitting the jumps is energetically favorable

Suns is replaced by its δ-neighbour Nδ, in which the third phase (1, 0) appears and the jump sets of the
two components of uδ (segments L1

δ and L2
δ respectively) are disjoint. We choose a sequence δ = δε

converging to zero such that δε >> ε (precisely such that | log δε|/| log ε| → 0). Clearly uδε ∗φε → uns ,
where φε is a mollifier, and since γ12(θ) > 0 it follows that

lim
ε→0

Fε(uδε ∗ φε, Qn) = γ11(θ) + γ22(θ) < γ11(θ) + γ22(θ) + 2γ12(θ) = lim
ε→0

Fε(uns ∗ φε, Qn) .

On the other hand if θ < 0 as in Figure 3 then γ12(θ) < 0. In this case it is better do not split the

n

nnnL1

2L!

N!

!

!

(1,1)"(0,0)=suus = (0,0) (1,1)(1,1)(0,0)=su
0!

=!u
(1,1)

(1,0)

(0,0)

Figure 3. Piling up the jumps is energetically favorable

jump and having the two components jumping together, i.e., with the same notation as above we have

lim
ε→0

Fε(uns ∗ φε, Qn) = γ11(θ) + γ22(θ) + 2γ12(θ) < γ11(θ) + γ22(θ) = lim
ε→0

Fε(uδε ∗ φε, Qn) .

Here is the main difference with respect to the scalar case: the anisotropy and the additional phase (1, 0)
(or equivalently (0, 1)) make a good transition between (0, 0) and (1, 1) dependent on the orientation
of the interface, in some directions it is better to split the jumps of uns , in others it is better to pile
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them up. This suggests that in same cases this two effects may combine and create a more complex
good transition.

We now describe an interesting construction, which uses the observations above, for the interface
with normal n = e1, corresponding to the choice θ = 0. Since γ12(0) = 0, in this case the splitting
of the jump of uns has no effect on the limit energy value. We then consider, for every σ << 1, the
following three-phase field uσ := (u1

σ, u
2
σ), as in Figure 4. The singular set Suσ is the union of the

n

1

2

n1

2

1

n

n
n

L2

L

2

1S1

S
S

S

4

5

S3!

!(0,0)

(1,1)

! 0u! = u

(1,0)

zig−zag= (1,1)
(0,0)

2"

1"

Figure 4. A new combination of jumps

segments Si, with i = 1, ..., 5, the first four of which delimit a small region filled by the third phase
(1, 0). Note that u1

σ jumps only across S1, S2, u2
σ across S3, S4 and both across S5. Moreover the

normal n1, corresponding to θ1, to S2, S3 is such that γ12(θ1) > 0, the normal n2, corresponding to
θ2, to S5 satisfies γ12(θ2) < 0 and the length of S1 and S4 is of order σ. We choose a sequence σ = σε
converging to zero such that σε >> ε and compute the limit energy of a regularization of uσε . It
follows that

(52) lim
ε→0

Fε(uσε ∗ φε, Qn) =
(
γ11(θ1) + γ22(θ1)

)
|L1|+

(
γ11(θ2) + 2γ12(θ2) + γ22(θ2)

)
|L2| ,

where L1, L2 and θ1, θ2 denote respectively the jump sets and the angles of the corresponding normals
of the phase field uzig-zag := limσ→0 uσ (see Figure 4). The key point is that we can choose θ1 and θ2

such that

Fzig-zag(uns ) :=
(
γ11(θ1) + γ22(θ1)

)
|L1|+

(
γ11(θ2) + 2γ12(θ2) + γ22(θ2)

)
|L2|(53)

< γ11(0) + γ22(0) =: Fflat(uns ) ,

where the right hand side is the limit energy of a regularization of uns : the greater length of the
jump set Suzig-zag with respect to Suns is compensated by the fact that γ12(θ2) is negative along L2,
so that the total energy decreases. The existence of such a choice for the angles θ1 and θ2 can be
determined analytically or justified as in Remark 10. This observation finally permits to construct a
good competitor in the approximation of uns .

s nnu!," =

"

(0,0)

!

(1,1)

(1,1)

! (0,0)
"

=

0
0 u

Figure 5. zig-zag approximation

We extend uσ on R2 by periodicity in the variable x2 and constant for |x1| > 1
2 , namely equal to

(0, 0) if x1 < − 1
2 and equal to (1, 1) if x1 >

1
2 . For every δ such that σ << δ << 1, we define the slip
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field uσ,δ(x) = uσ(x/δ), which is shown in Figure 5. Finally we choose two sequences σ = σε, δ = δε
converging to zero such that ε << σε << δε, with | log σε|/| log ε| → 0. By (52) and (53) we then
conclude that

lim
ε→0

Fε(uσε,δε ∗ φε, Qn) < lim
ε→0

Fε(uns ∗ φε, Qn) .

This example shows another important feature of the vector problem: in general the profile of a
recovery sequence for the Γ-limit functional of dislocations can not be one-dimensional, i.e., it can
not be obtained, as in the scalar case, by means of a simple regularization of the flat interface of step
fields, neither in the case of unit jumps.

Remark 10. The zig-zag construction given above can be motivated by the following analysis. If we
call ϕsplit(θ) and ϕpile-up(θ) the two energy obtained by splitting or piling-up the jumps as in Figure 2
and 3 respectively, namely

ϕsplit(θ) = γ11(θ) + γ22(θ) ϕpile-up(θ) = γ11(θ) + γ22(θ) + 2γ12(θ)

and we consider their homogeneous extension of degree 1, we get two cones determined by level set
1 (represented in Figure 6 below). In view of the necessary condition for the BV-ellipticity of energy
densities for functionals defined on partitions (see Remark 9) we deduce that the function ϕ(s, n) given
by Theorem 2 must be smaller than the convex envelope the minimum between ϕsplit(θ) and ϕpile-up(θ).
In terms of level sets this means that the level set 1 of the homogeneous extension of degree 1 of ϕ must
contain the convex envelope of the union of the corresponding sets for ϕsplit(θ) and ϕpile-up(θ). Thus,
as shown in Figure 6, a low energy approximation of the step function uns , with n = e1 (i.e. θ = 0)
and s = (1, 1) as constructed in the zig-zag example above, is nothing else that the approximation of
the point in the convex envelope obtained mixing with inclination θ1 and θ2 splitting and piling up.

θ1

θ2

{ϕsplit =1}

{ϕpile-up=1}

Figure 6. Zig-zag approximation in terms of the level sets of the energy density

We conclude this paper highlighting that a crucial point in the construction above is that for every
u ∈ BV (T 2,ZN ) the energy Fflat(u) obtained by taking the limit of Fε(u ∗ φε) is in general not
lower-semicontinuous with respect to the L1 topology. In other words the energy density ϕflat(s, n) :=
sT γ(n)s of Fflat is not BV-elliptic. Clearly its BV -elliptic envelope ϕflat(s, n) is an upper bound for
the energy density ϕ(s, n) of the Γ-limit. In view of the necessary conditions for the BV -ellipticity
(see Remark 10), the convex envelope of the minimum between the homogeneous extensions of degree
1 of ϕsplit(θ) and ϕpile-up(θ) is a good candidate for ϕflat(s, n) (or at least is greater than ϕflat(s, n)
and smaller than ϕflat(s, n)).

The idea is then that if the sequences with low energy are essentially regularizations of some multi-
phase field in BV (T 2,ZN ) without too fine microstructures, then one could first reduce the functional
Fε to the sharp interface limit (given by Fflat) and then relax. This gives rise of the following conjecture.
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Conjecture. The energy density of the Γ-limit of Fε, ϕ(s, n), is given by the BV -elliptic envelope of
ϕflat(s, n) = sT γ(n)s, i.e.

ϕ(s, n) = ϕflat(s, n) := min
{∫

Su∩Qn
ϕflat([u], nu)dH1 : u ∈ X (Qn)

}
for all s ∈ ZN and n ∈ S1, where the notations are those of Remark 9.
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