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Abstract. Functions of bounded deformation (BD) arise natu-
rally in the study of fracture and damage in a geometrically lin-
ear context. They are related to functions of bounded variation
(BV ), but are less well understood. We discuss here the relation
to BV under additional regularity assumptions, which may re-
quire the regular part of the strain to have higher integrability
or the jump set to have finite area or the Cantor part to van-
ish. On the positive side, we prove that BD functions which are
piecewise affine on a Caccioppoli partition are in GSBV , and we
prove that SBDp functions are approximately continuous Hn−1-
a.e. away from the jump set. On the negative side, we construct a
function which is BD but not in BV and has distributional strain
consisting only of a jump part, and one which has a distributional
strain consisting of only a Cantor part.

1 Introduction

The space BD(Ω) of functions of bounded deformation is characterized by
the fact that the symmetric part of the distributional gradient Eu := (Du+
DuT )/2 is a bounded Radon measure,

BD(Ω) := {u ∈ L1(Ω;Rn) : Eu ∈M(Ω;Rn×n
sym )}, (1.1)

where Ω ⊆ Rn is an open set. BD constitutes the natural setting for the
study of plasticity, damage and fracture models in a geometrically linear
framework [34, 35, 36, 5, 29]. Despite its importance, it is not yet completely
understood.

One crucial property of BD functions is that the strain can be decom-
posed in a part absolutely continuous with respect to the Lebesgue measure
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Ln, a jump part and a third part, called Cantor part,

Eu = e(u)Ln +
[u]⊗ ν + ν ⊗ [u]

2
Hn−1 Ju + Ecu . (1.2)

Here Ju is the jump set, which is a (n − 1)-rectifiable subset of Ω, [u] :
Ju → Rn is the jump of u, and ν the normal to Ju, see [3] for details. This
decomposition is very similar to the one holding for the space of functions of
bounded variation (BV ), which is defined as the set of L1 functions whose
gradient is a bounded measure [4], but BD is strictly larger than BV . A
function such that the symmetric part of the gradient is integrable, but the
full gradient is not integrable, was first constructed by Ornstein in 1962 [31],
a simpler construction was obtained in [19] using laminates with unbounded
support, a much more general statement was then proven in [28]. In all these
examples only the first term in (1.2) is nonzero. It is therefore natural to
ask whether a function u ∈ BD(Ω) such that e(u) has higher integrability
may be in BV (Ω). We address this question in Section 3 below. We remark
that the answer would obviously be positive if instead Eu = e(u)Ln with
e(u) ∈ Lp, since in this case u ∈ W 1,p by Korn’s inequality.

In the modeling of fracture in linear elasticity one often focuses on the
set of special functions of bounded deformation

SBD(Ω) := {u ∈ BD(Ω) : Ecu = 0} ,

see for example [25, 14, 33, 11, 24, 27]; here e(u) is interpreted as an elastic
strain, and the jump part as a fracture term. The space SBD is however only
closed with respect to topologies that entail a bound stronger than L1 on the
regular part e(u) of the strain, and a constraint on the Hn−1 measure of the
jump set. Therefore one naturally considers the subspace SBDp, defined for
p ∈ (1,∞) as

SBDp(Ω) := {u ∈ BD(Ω) : Ecu = 0, e(u) ∈ Lp(Ω), Hn−1(Ju) <∞} ,
(1.3)

see for example [7, 15, 16].
The analysis of models based on BD and SBDp functions often requires

knowledge of their fine properties, which are still not well understood. In
contrast, in the BV framework fine properties are known in much more de-
tail [4], and have proven useful for example in studying relaxation [8, 10, 9].
Correspondingly, the study of lower semicontinuity and relaxation in BD is
still in its beginnings. Lower semicontinuity was studied in SBDp by Bellet-
tini, Coscia and Dal Maso [7] (see [26] for further results on surface integrals
and related references), and more recently in BD by Rindler [32] (see [23] for
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partial results). Relaxation in BD was studied in [12, 13, 20] for specific plas-
ticity models, in [6] for autonomous functionals with linear growth defined on
W 1,1, an extension to the full space BD is provided in [32]. General integral
representation result have been established for certain functionals with linear
growth restricted to SBD in [22]. Compactness and approximation results
in SBDp with more regular functions have been obtained in [7, 15, 16, 27].

It is therefore important to understand the relation between BD, SBDp

and BV . In this paper, we contribute to this topic in studying three different
problems.

First, we show that if u ∈ SBD(Ω) is a piecewise rigid displacement, in
the sense that the strain Eu only consists of a jump part and the total length
of the jumps is finite, then u ∈ GSBV (Ω;Rn), see Theorem 2.2 for a precise
formulation. In particular, if u is bounded then u ∈ SBV (Ω;Rn). The
class of piecewise rigid displacements arises naturally in analyzing rigidity
properties in the framework of linearly elastic fracture mechanics (see, for
example, [18]).

Secondly, we construct a function in SBD(Ω) \ GBV (Ω;Rn) which has
e(u) = 0 almost everywhere (Theorem 3.1). This is based on a modification of
the construction from [19]. A variant of our construction leads to a function
in BD(Ω)\GBV (Ω;Rn) which has e(u) = 0 almost everywhere and no jump,
so that Eu = Ecu, see Theorem 3.6.

One of the main properties of BV functions is that they are approximately
continuousHn−1-almost everywhere away from the jump points, and not only
Ln-almost everywhere as any integrable function. It is still unknown if this
property holds also for functions in BD. In Section 4 we show that SBDp

functions, p > 1, are approximately continuous at Hn−1-almost every point
away from the jump set, see Theorem 4.1.

Finally, in view of the previous results, in Section 5 we discuss the possi-
bility that SBDp functions are actually of bounded variation.

2 Caccioppoli-affine functions have (general-

ized) bounded variation

In this section we show that piecewise affine functions induced by Cacciop-
poli partitions have components in GSBV . For the theory of Caccioppoli
partitions we refer to [4, Section 4.4]. In particular, for a given open set
Ω ⊂ Rn we consider a countable family E = (Ek)k of sets Ek ⊆ Ω with finite
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perimeter in Ω satisfying

Ln
(
Ω \ ∪kEk

)
= 0, Ln(Ei ∩Ek) = 0 for i 6= k,

∑
k

Hn−1(∂∗Ek ∩Ω) <∞,

where ∂∗Ek is the essential boundary of Ek (see [4, Definition 3.60]). The set
of interfaces JE of the Caccioppoli partition E is defined as the union of the
sets ∂∗Ek ∩ Ω. It is known that [4, Theorem 4.23].

Hn−1(JE ) =
1

2

∑
k

Hn−1(∂∗Ek ∩ Ω).

We call a function u : Ω → Rm Caccioppoli-affine if there exist matrices
Ak ∈ Rm×n and vectors bk ∈ Rm such that

u(x) =
∑
k

(
Akx+ bk

)
χEk(x) , (2.1)

where (Ek)k is a Caccioppoli partition of Ω.
Functions of this type have already been studied in the literature. In par-

ticular, in [18, Theorem A.1] it was proven that any function u ∈ SBD(Ω)
with e(u) = 0 Ln-a.e. on Ω and Hn−1(Ju) <∞ is a piecewise rigid displace-
ment, which is defined as Caccioppoli-affine function with m = n and the
matrices Ak skew-symmetric. Moreover, piecewise rigid displacements have
been employed by Dal Maso [21] to provide examples of fields in GSBD \
SBD(Ω). Elementary variations of such constructions prove that SBDp(Ω)\
SBV p(Ω;Rn) 6= ∅ for every p > 1. Even though this is probably a well-known
fact we provide an explicit construction, since we have not been able to find
any reference in literature.

Example 2.1. Set Ω := B1(0) ⊂ Rn and for every k ∈ N, choose Bk :=
Brk(xk) ⊂ Ω, so that the Bk are pairwise disjoint, the centers xk converge to
some point x∞, and the radii are rk := 2−k. We define

u(x) :=
∑
k

dkA(x− xk)χBk(x) ,

where A = (aij) ∈ Rn×n with a12 = −a21 = 1 and aij = 0 otherwise, and

dk :=
2nk

k2
.

Then u ∈ SBD(Ω) ∩ SBV (Ω;Rn) ∩ L∞(Ω;Rn) with e(u) = 0 Ln-a.e. and
Hn−1(Ju) <∞, but for every q > 1 one has ∇u /∈ Lq(Ω;Rn×n).
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Nevertheless Caccioppoli-affine displacements belong to GSBV (Ω;Rm).
We recall that w ∈ GSBV (Ω;Rm) if φ(w) ∈ SBVloc(Ω) for all φ ∈ C1(Rm)
such that ∇φ has compact support (cp. [4, Definition 4.26]). In the scalar
case on can reduce simply to truncations (cp. [4, Remark 4.27])

Theorem 2.2. Let Ω ⊆ Rn be a bounded Lipschitz set, u : Ω → Rm be
Caccioppoli-affine. Then u ∈

(
GSBV (Ω)

)m ⊂ GSBV (Ω;Rm) with

∇u = Ak Ln-a.e. on Ek, and Hn−1(Ju \ JE ) = 0, (2.2)

(in the last formula we use the notation introduced in (2.1)).
In particular, if m = n and u ∈ SBD(Ω) with e(u) = 0 Ln-a.e. on Ω

and Hn−1(Ju) <∞ then u ∈
(
GSBV (Ω)

)m ⊂ GSBV (Ω;Rn).

Proof. It suffices to prove the first assertion in the case m = 1, assuming
that u is a scalar map of the form u =

∑
k(Ak · x + bk)χEk , with Ak ∈ Rn

and bk ∈ R.
For all k ∈ N consider vk := Ak ·x+bk and uk := vkχEk so that u =

∑
k uk.

Clearly, uk ∈ SBV (Ω) with

Duk = Ak Ln Ek + vk νEk Hn−1 (∂∗Ek ∩ Ω), (2.3)

with νEk the generalised inner normal to Ek. For Φ ∈ C1(Ω;Rn) we use the
divergence theorem to calculate

ˆ
Ω

uk div Φ dx+

ˆ
Ω

Φ · dDuk =

ˆ
∂Ω∩∂∗Ek

vk(Φ · ν∂Ω) dHn−1,

where ν∂Ω is the outer normal to ∂Ω. The specific choice Φ ≡ Ak and (2.3)
yield

|Ak|2 Ln(Ek) = −
ˆ
∂∗Ek∩Ω

vk Ak · νEk dHn−1 +

ˆ
∂∗Ek∩∂Ω

vk Ak · ν∂Ω dHn−1,

and, as νEk = −ν∂Ω Hn−1-a.e. on ∂∗Ek ∩ ∂Ω, we conclude that

ˆ
Ek

|∇uk| dx = −
ˆ
∂∗Ek

vk
Ak
|Ak|

· νEk dHn−1 ≤
ˆ
∂∗Ek

|vk| dHn−1. (2.4)

In particular, setting wj :=
∑j

k=1 uk, it is clear that wj ∈ SBV (Ω) and that

Dwj =

j∑
k=1

Duk.
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Therefore, summing on k ∈ {1, . . . , j} inequality (2.4), we deduce that

|Dwj|(Ω) ≤
j∑

k=1

|Duk|(Ω) ≤ 2

j∑
k=1

ˆ
∂∗Ek

|vk|dHn−1. (2.5)

Hence, assuming u ∈ L∞(Ω) we conclude for all j ∈ N that

|Dwj|(Ω) ≤ 4‖u‖L∞(Ω)

(
Hn−1(JE ) +Hn−1(∂Ω)

)
.

In particular, (wj)j has equi-bounded BV norm. Since wj → u in L1(Ω) we
conclude that u ∈ BV (Ω). Actually, the sequence (wj)k converges in BV (Ω)
norm in view of (2.5), and being SBV (Ω) a closed subspace of BV (Ω) we
infer that u ∈ SBV (Ω).

In the general case the conclusion u ∈ GSBV (Ω) follows by applying the
argument above to the truncated functions wMj :=

∑j
k=1 φM(uk), φM(t) :=

t ∧M ∨ (−M), M ∈ N, and using the chain rule formula to compute the
distributional derivative. The identitities in (2.2) are a consequence of (2.3).

The second assertion follows immediately using the mentioned [18, The-
orem A.1].

Remark 2.3. The first assertion in Theorem 2.2 is optimal: examples of
Caccioppoli affine functions in GSBV \ BV (Ω), though not in BD(Ω), can
be easily constructed.

3 Pure-jump BD functions not in BV

Contrary to the previous section, functions with vanishing symmetrized strain
and jump set of infinite measure are not necessarily in the space GSBV .

Theorem 3.1. For any nonempty open set Ω ⊆ Rn there is u ∈ SBD(Ω) ∩
L∞(Ω;Rn) such that e(u) = 0 Ln-a.e., Hn−1(Ju) =∞, and ∇u /∈ L1(Ω;Rn).
In particular u 6∈ GBV (Ω;Rn).

Our construction is based on a suitable sequence of piecewise affine func-
tions. More precisely we consider functions which are piecewise affine on
polyhedra, but not necessarily continuous. Since there are finitely many
pieces and each has a boundary of finite length, these functions all belong
to SBV . We recall that a convex polyhedron is a bounded set which is the
intersection of finitely many half-spaces.

Definition 3.2. For a convex polyhedron Ω ⊂ Rn we let PA(Ω) be the set
of functions u : Ω→ Rn for which there is a decomposition of Ω into finitely
many convex polyhedra such that u is affine on each of them.
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The next Lemma gives the basic construction step, which corresponds to
the lamination used in [19].

Lemma 3.3. Let u ∈ PA(Ω), A,B ∈ Rn×n with rank(A−B) = 1, λ ∈ (0, 1),
C := λA + (1 − λ)B, ω := {x ∈ Ω : Du(x) = C}. For every ε > 0 there
is v ∈ PA(Ω) such that v = u on Ω \ ω, Dv ∈ {A,B} Ln-a.e. in ω,
Ln
(
{x ∈ ω : Dv(x) = A}

)
= λLn(ω), and

‖u− v‖L∞(Ω,Rn) ≤ ε,

ˆ
Jv∩Ω

|[v]|dHn−1 ≤ ε+

ˆ
Ju∩Ω

|[u]|dHn−1 .

Proof. Let ω1, . . . , ωk be the polyhedra where Du = C. Given ωj, let wj ∈
Lip (Rn;Rn) be a function with Dwj ∈ {A,B} Ln-a.e. in ωj and

‖wj − u‖L∞(ωj ,Rn) ≤ εmin
{

1,
1

4kHn−1(∂ωj)

}
.

To construct wj, let a ∈ Rn and ν ∈ Sn−1 be such that A = C+ (1−λ)a⊗ν,
and set wj(x) := u(x)+N−1ahλ(Nx ·ν), where hλ ∈ Lip (R) is the 1-periodic
function which obeys hλ(0) = 0, h′λ = 1− λ on (0, λ), h′λ = −λ on (λ, 1) and
N is sufficiently large (see for example [30, Lemma 4.3] or [19, Section 2 and
Lemma 3] for details).

By translation we can ensure that the volume fractions are the stated
ones. Indeed, let SA := {x ∈ Rn : Dwj = A} and ν as above. Then Fubini’s
theorem gives

ˆ 1

0

Ln
(
ωj ∩ (SA − tν)

)
dt =

ˆ
Rn

[
χωj(y)

ˆ 1

0

χSA(y + tν)dt
]
dy = λLn(ωj),

where the last equality follows from the fact that χSA is 1/N -periodic in
the direction ν and χSA = 1 on strips each of length λ/N . Choosing a
suitable t through the mean value theorem, the conclusion follows setting
v(x) := wj(x+ tν) on ωj.

In our argument we shall iteratively apply Lemma 3.3 above to increase
the contribution of the skew-symmetric part of the gradient without changing
the contribution of the symmetric part. In order to be sure that no Cantor
term in the distributional derivative is created, we stop the process after
finitely many steps, and introduce an additional iteration later. To treat the
remainder zones where the piecewise affine function has symmetric gradient,
we approximate it with piecewise constant functions.

Lemma 3.4. Let ω be a convex polyhedron, and let u : ω → Rn be affine.
For every ε > 0 the following holds:
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(i) There is v ∈ PA(ω) such that ‖u − v‖L∞(ω,Rn) ≤ ε, ∇v = 0 Ln-a.e.,
and

|Dv|(ω) ≤ n|Du|(ω). (3.1)

(ii) There is v ∈ BV ∩ C0(ω;Rn) such that ‖u − v‖L∞(ω,Rn) ≤ ε, ∇v = 0
Ln-a.e., and Dv = Dcv with |Dv|(ω) ≤ n|Du|(ω).

Proof. Let u(x) = Ax+ b on ω. For δ > 0 we set

vδ(x) :=
∑
i

Aei

⌊xi
δ

⌋
δ + b,

where bαc denotes the integer part of α ∈ R. It is easy to see that ‖u −
vδ‖L∞(ω,Rn) ≤ ‖A‖nδ and

lim sup
δ→0

|Dvδ|(ω) ≤
∑
i

|Aei| Ln(ω) ≤
√
n‖A‖Ln(ω) =

√
n|Du|(ω) .

Taking δ sufficiently small the proof is concluded.
To prove the second assertion we let Ψ ∈ C0([0, 1]; [0, 1]) be the usual

Cantor staircase, with Ψ(0) = 0, Ψ(1) = 1, Ψ′ = 0 L1-almost evereywhere,
and define

vδ(x) :=
∑
i

Aei δ
(⌊xi

δ

⌋
+ Ψ

(xi
δ
−
⌊xi
δ

⌋))
+ b .

We are now ready to provide the main step in our argument.

Lemma 3.5. Let Ω be a convex polyhedron and let M > 1. Then there is u ∈
PA(Ω) such that ‖u‖L∞(Ω,Rn) ≤ c, e(u) = 0 Ln-a.e., u = 0 in a neighborhood
of ∂Ω, |Eu|(Ω) ≤ 1/M , and ‖∇u‖L1(Ω,Rn×n) ≥ M . The constant c depends
only on the dimension n.

Proof. We define, for k ∈ N, the matrices Ak, Bk, Ck ∈ Rn×n by

Ak :=

(
0 2k

2k 0

)
, Bk :=

(
0 2k

−2k 0

)
, Ck :=

(
0 2k

2k+1 0

)
,

with the other entries vanishing if n > 2. We construct inductively a sequence
of functions uk ∈ PA(Ω) and sets ωk ⊂ Ω, with Ωk a finite union of convex
polyhedra, such that Ωk := {x ∈ Ω : Duk = Ak} for every k and e(uk) = 0
Ln-a.e. on Ω \ Ωk.
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We start with a convex polyhedron Ω0 ⊂⊂ Ω with Ln(Ω0) ≤ 1 and the
function u0 := χΩ0A0x.

In order to construct (uk+1,Ωk+1) from (uk,Ωk), we observe that

Ak =
1

3
Bk +

2

3
Ck and rank(Bk − Ck) = 1 .

We define ûk by Lemma 3.3, with ε = 2−k, ω = Ωk, and C = Ak. We
set Ω̂k := {x ∈ Ω : Dûk(x) = Ck} and note that Ω̂k ⊂ Ωk and Ln(Ω̂k) =
2
3
Ln(Ωk). Since

Ck =
3

4
Ak+1 +

1

4
(−Bk+1) and rank(Ak+1 +Bk+1) = 1 ,

we can apply Lemma 3.3 again to ûk, with the same ε, ω = Ω̂k, and C = Ck,
to obtain uk+1 ∈ PA(Ω) such that, with Ωk+1 := {x ∈ Ω : Duk+1(x) =
Ak+1} ⊂ Ω̂k, it holds e(uk+1) = 0 on Ω \ Ωk+1, Ln(Ωk+1) = 1

2
Ln(Ωk) =

2−(k+1)Ln(Ω0),

ˆ
Ω∩Juk+1

|[uk+1]|dHn−1 ≤ 2 · 2−k +

ˆ
Ω∩Juk

|[uk]|dHn−1, (3.2)

andˆ
Ω\Ωk+1

|∇uk+1|dx =

ˆ
Ω\Ωk
|∇uk|dx+

1

3
Ln(Ωk) |Bk|+

1

6
Ln(Ωk) |Bk+1|

=

ˆ
Ω\Ωk
|∇uk|dx+

2

3

√
2Ln(Ω0). (3.3)

Therefore, in view of (3.2) and (3.3), for all k we conclude

|Euk|(Ω) ≤ |Ak| Ln(Ωk) +
∑
k

2 · 2−k +

ˆ
∂Ω0

|A0x|dHn−1 ≤ c (3.4)

and ‖∇uk‖L1(Ω,Rn×n) →∞.
Let {Ωi

k}Ni=1 be the set of polyhedra which composes Ωk, and let vik be
the function provided by Lemma 3.4(i) applied to uk on Ωi

k with εi :=

min
{

1, 1/
(
N Hn−1(∂Ωi

k)
)}

. Recall that ‖uk − vik‖L∞(Ωik,Rn) ≤ εi.

We define wk := ukχΩ\Ωk +
∑N

i=1 v
i
kχΩik

. Note that wk ∈ PA(Ω), ∇wk =
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∇ukχΩ\Ωk , e(wk) = 0 Ln−1-a.e. on Ω, and

ˆ
Jwk∩Ωk

|[wk]|dHn−1 =
N∑
i=1

ˆ
J
vi
k
∩Ωik

|[vik]|dHn−1 +
N∑
i=1

ˆ
∂Ωik

|[wk]|dHn−1

(3.1)

≤ n|Duk|(Ωk) +
N∑
i=1

‖uk − vik‖L∞(Ωik,Rn)Hn−1(∂Ωi
k) +

ˆ
∂Ωk

|[uk]|dHn−1

≤ cLn(Ω0) + 1 +

ˆ
Juk∩Ω

|[uk]|dHn−1 ≤ c, (3.5)

for some constant c independent from k thanks to (3.2).
In conclusion by (3.4) and (3.5)

|Ewk|(Ω) ≤ |Euk|(Ω \ Ωk) +

ˆ
Jwk∩Ωk

|[wk]|dHn−1 ≤ c,

for a constant c independent from k (and M). The function wk/(cM) has
the stated properties for k sufficiently large.

We are now ready to prove the main result of the section.

Proof of Theorem 3.1. Let {Qk}k∈N be a family of countably many disjoint
cubes contained in Ω. For each of them let uk be the function constructed
in Lemma 3.5 above, using M := 2k. We set u := uk in Qk, u := 0 on the
rest. Note that the sequence (

∑j
k=1 ukχQk)j converges in the BD norm to u

as |Euk|(Qk) ≤ 2−k. Therefore, u ∈ SBD(Ω), e(u) = 0 Ln-a.e., |Eu|(Ω) =∑
k |Eu|(Qk) ≤ 2 and

‖∇u‖L1(Ω,Rn×n) =
∑
k

‖∇uk‖L1(Qk,Rn×n) ≥
∑
k

2k =∞.

Finally, u ∈ L∞(Ω;Rn) by Lemma 3.5, thereby u /∈ GBV (Ω;Rn).

A slight modification of the previous construction provides a function u
in BD \GBV for which Eu = Ecu.

Theorem 3.6. For any nonempty open set Ω ⊆ Rn there is u ∈ BD(Ω) ∩
L∞(Ω;Rn) such that Eu = Ecu and ∇u /∈ L1(Ω;Rn×Rn). In particular
u 6∈ GBV (Ω;Rn).

Proof. The proof is similar to the one of Theorem 3.1, therefore we only high-
light the significant changes in the construction. For notational simplicity
we focus on the two-dimensional situation with Ω = (0, 1)2.
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We introduce first cut-off functions whose gradient only has a Cantor
part. Given ` > 0 and δ ∈ (0, `/2), we define ψ`,δ : [−`, `]→ [0, 1] to be

ψ`,δ(t) :=

{
1 t ∈ [−`+ δ, `− δ] ,
Ψ
(
`−|t|
δ

)
otherwise,

where Ψ : [0, 1]→ [0, 1] is the Cantor staircase as in the proof of Lemma 3.4.
For a rectangle R = [−a, a]×[−b, b] we set

ψR,δ(x1, x2) := ψa,δ(x1)ψb,δ(x2).

Note that ψR,δ ∈ BV ∩ C0(R) with

DψR,δ = DcψR,δ and |DcψR,δ|(R) ≤ H1(∂R).

Moreover, ψR,δ = 1 on [−a+ δ, a− δ]× [−b+ δ, b− δ], ψR,δ|∂R = 0 so that its
extension to 0 on Rc provides a function BV ∩ C0(R2) without altering the
total variation.

We fix γ > 0. We perform the same iterative construction as in Lemma
3.5. We start with Ω0 = (0, 1)2 and u0 = A0x. At step k we use Lemma 3.3
to construct from uk−1 and Ωk−1 the functions ûk and uk, and the sets
Ωk and Ω̂k. However, at the k-th step we apply Lemma 3.3 with εk =
2−kγmin{1, 1/H1(∂Ω̂i

k)}, where {Ωi
k}

Nk
i=1 and {Ω̂i

k}
Mk
i=1 are the the polyhedra

composing Ωk and Ω̂k, respectively. This concludes the construction of uk and
Ωk. We remark that for each k the (Ωi

k)i are disjoint congruent rectangles,
and analogously the (Ω̂i

k)i.
We now construct a sequence of modified functions Uk, where each jump is

replaced by a continuous Cantor staircase. To do this, at each k we consider
the Cantor-type cut-off functions ψk :=

∑
i ψΩik,δk

and ψ̂k :=
∑

i ψ̂Ωik,δk
, where

δk > 0 will be suitably chosen below. We set U0 := u0 and{
Ûk := (1− ψk)Uk + ψkûk for k ≥ 0 ,

Uk := (1− ψ̂k−1)Ûk−1 + ψ̂k−1uk for k ≥ 1 .
(3.6)

Finally, the truncation step at the end is different. We let vik be the function

provided by Lemma 3.4(ii) applied to uk on Ωi
k with εk = min

{
1, 1/

(
NkH1(∂Ωi

k)
)}

.

Recall that ‖uk − vik‖L∞(Ωik,Rn) ≤ εk and Dvik = Dcvik. We extend vik to 0 on

Ω \ Ωi
k and set vk :=

∑
i v

i
k.

Let then
wk := (1− ψk)Uk + ψkvk .

11



By [4, Example 3.97], wk ∈ BV ∩ C0(Ω0;R2), furthermore by construction
Dwk = ∇wkL2 Ω0 +Dcwk with ∇wk skew-symmetric L2-a.e. in Ω0, there-
fore Ewk = Ecwk. More precisely, the chain-rule formula yields

Dcwk = (1− ψk)DcUk + ψkD
cvk + (vk − Uk)⊗Dcψk. (3.7)

In what follows we shall estimate separately the total variations of the three
terms in (3.7). To this aim we first note that in view of (3.6) we get

‖uk − Uk‖L∞(Ω,Rn) ≤ 2
k∑
j=0

εj ≤
4γ

H1(∂Ω̂i
k)

=: σk.

To bound the first term in (3.7) we notice that for some positive constant c
independent from k we have

|DcUk|(Ωk
i )

(3.6)

≤ |DcUk−1|(Ωk
i ) + c σk−1H1(∂Ωi

k−1) + c σkH1(∂Ω̂i
k).

By summing over i we get

|(1− ψk)DcUk|(Ω0) ≤ c γ Nk.

From Lemma 3.4(ii) we infer that

|ψkDcvk|(Ω0) ≤ |Dcvk|(Ωk) ≤ 2 |Duk|(Ωk) = 2 |Euk|(Ωk)
(3.4)

≤ c.

We turn to the last term of (3.7). By the triangle inequality

|(vk−Uk)⊗Dcψk|(Ωi
k) ≤ ‖vk−Uk‖L∞(Ωki ,Rn)|Dcψk|(Ωk

i ) ≤ (εk +σk)H1(∂Ωi
k).

Therefore

|(vk − Uk)⊗Dcψk|(Ω0) = |(vk − Uk)⊗Dcψk|(Ωk) ≤ c(1 + γ Nk).

Collecting terms, we conclude that

|Dcwk|(Ω0) ≤ c(1 + γ Nk). (3.8)

Finally, by arguing as in (3.3) taking into account the definitions in (3.6) we
infer thatˆ

Ω\Ωk
|∇wk|dx =

ˆ
Ω\Ωk
|∇Uk|dx ≥

ˆ
Ω\Ωk−1

|∇Uk−1|dx

+‖Bk‖L2({ψ̂k−1 = 1} \ Ωk) + |Bk−1|L2({ψk−1 = 1} \ Ω̂k−1)

≥
ˆ

Ω\Ωk−1

|∇Uk−1|dx+
1

7

(
|Bk|+ |Bk−1|

)
L2(Ωk−1),

12



by suitably choosing δk in the definition of ψj and ψ̂j, 0 ≤ j ≤ k. Here Bk

is the matrix defined in the proof of Lemma 3.5. In particular, we conclude
that ‖∇wk‖L1(Ω,R2×2) →∞.

Choosing k∗ large enough to have ‖∇wk∗‖L1(Ω0,R2×2) > cM2, the function
z := wk∗/(cM) satisfies ‖∇z‖L1(Ω0,R2×2) > M , and choosing γ = 1/Nk∗ the
bound (3.8) gives

|Ecz|(Ω0) ≤ 1

M
.

To conclude we remark that by the definitions in (3.6) we have z|∂Ω0 = u0|∂Ω0 .
Therefore repeating the same construction on a countable family of disjoint
closed cubes and choosing M = 2−j we obtain a function with the properties
given in the statement.

4 Continuity away from fractures

Let u ∈ BD(Ω), with Ω open. We say that x ∈ Ω is a point of approximate
continuity of u if there is ũ(x) such that

lim
r→0

1

Ln(Br)

ˆ
Br(x)

|u(y)− ũ(x)|dy = 0 .

We denote by Su the set of points x ∈ Ω which are not points of approximate
continuity. Since u ∈ L1(Ω;Rn), one immediately has Ln(Su) = 0.

We say that x ∈ Ω is a jump point of u if there are two vectors u+ 6=
u− ∈ Rn and a normal ν ∈ Sn−1 such that

lim
r→0

1

Ln(Br)

ˆ
B+
r (x)

|u(y)− u+|dy = lim
r→0

1

Ln(Br)

ˆ
B−r (x)

|u(y)− u−|dy = 0 ,

where B±r (x) = Br(x) ∩ {±(y − x) · ν > 0}. Obviously Ju ⊂ Su. If u ∈ BV
it is well known that Hn−1(Su \ Ju) = 0, see, for example, [4].

We further define Θu as the set of points x ∈ Ω such that

lim sup
r→0

|Eu|(Br(x))

rn−1
> 0 .

The set Θu is (n − 1)-rectifiable, Ju ⊂ Θu, and Hn−1(Θu \ Ju) = 0, see [3,
Prop. 3.5].

The main result of the section is the following theorem concerning the
size of the set Su \ Ju when the function u belongs to SBDp(Ω).

Theorem 4.1. If u ∈ SBDp(Ω) for some p > 1, with Ω ⊂ Rn open, then
Hn−1(Su \ Ju) = 0.

13



The proof uses Lemma 4.2 and Lemma 4.4 below. The first is a conse-
quence of the Korn-Poincaré inequality for SBDp functions proven in [17]
and states that a function u ∈ SBD with a small jump set can be approxi-
mated by an affine function away from a special set, with an error depending
only on e(u).

Lemma 4.2. There is η > 0, depending only on n, such that the following
holds. For any r > 0 and u ∈ SBD(Br) such that Hn−1(Ju) < ηrn−1 there
are a set ω ⊂ Br and an affine function ϕ : Rn → Rn such that

Ln(ω) ≤ 1

2n+3
Ln(Br)

and ˆ
Br\ω
|u− ϕ|dx ≤ c r

ˆ
Br

|e(u)|dx .

Proof. This follows from Theorem 1 of [17].

The next lemma is used in the proof of Lemma 4.4 below. It shows that it
is possible to control the L∞-norm of an affine function through its L1-norm
out of a special set.

Lemma 4.3. Let ω ⊂ B := Br(y) satisfy

Ln(ω) ≤ 1

4
Ln(B) (4.1)

and let ϕ : Rn → Rn be an affine function. Then

Ln(B)‖ϕ‖L∞(B,Rn) ≤ c‖ϕ‖L1(B\ω,Rn), (4.2)

where the constant c depends only on the dimension n.

Proof. By a scaling argument it is sufficient to prove the statement when
B = B1. First note that for sufficiently small δ > 0 one has for every
i = 1, . . . , n

Ln(B ∩ (B + δei)) ≥
3

4
Ln(B).

Hence the set Ei := (B \ ω) ∩ ((B \ ω) + δei) satisfies

Ln(Ei) ≥
3

4
Ln(B)− 2Ln(ω) ≥ 1

4
Ln(B). (4.3)

Estimating the translation for an affine map ϕ(x) = Ax+ b one gets

δ|Aei|Ln(Ei) =

ˆ
Ei

|ϕ(x)− ϕ(x− δei)|dx ≤ 2

ˆ
B\ω
|ϕ|dx

14



and therefore by (4.3)

|A| ≤ 8
√
n

δLn(B)
‖ϕ‖L1(B\ω,Rn). (4.4)

The constant b can be estimated using (4.4) and (4.1)

Ln(B \ ω)b ≤ ‖ϕ− ϕ(0)‖L1(B\ω,Rn) + ‖ϕ‖L1(B\ω,Rn)

≤ Ln(B \ ω)

Ln(B)

(8
√
n

δ
+

4

3

)
‖ϕ‖L1(B\ω,Rn). (4.5)

Formula (4.2) follows from (4.4) and (4.5).

The following lemma refines the classical estimates for the (n−1)-dimensional
density in a particular case.

Lemma 4.4. Let f ∈ Lp(Rn), for some p > 1, and

F :=

{
x ∈ Rn :

∑
k∈N

1

rn−1
k

ˆ
Brk (x)

|f | dy =∞

}

where rk = 2−k. Then Hn−1(F ) = 0. If additionally p > n then F = ∅.

Remark 4.5. To see that p > 1 is required one can consider f(x) :=
χB1/2

(x)/(xn ln2(1/xn)).

Proof. We start from the second statement. From ‖f‖L1(Br) ≤ rn/p
′‖f‖Lp(Rn),

where 1/p′ = 1− 1/p, one deduces, for any x ∈ Rn,

∑
k

1

rn−1
k

ˆ
Brk (x)

|f |dy ≤
∑
k

r
n/p′

k

rn−1
k

‖f‖Lp(Rn) = ‖f‖Lp(Rn)

∑
k

2k(n−p)/p .

If p > n the last series converges and therefore x 6∈ F .
We now turn to the first statement and assume p ∈ (1, n]. By Lebesgue’s

differentiation theorem one has Ln(F ) = 0.
Fix δ > 0. For every x ∈ F there is k(x) ∈ N such that rk(x) < δ and

ˆ
Brk(x) (x)

|f |dy ≥
rn−1
k(x)

k(x)2
, (4.6)

otherwise the series would converge. By Vitali’s 5r-covering lemma, there is
a family G = {Bρj(xj) : j ∈ N} of disjoint balls, with ρj = rk(xj) and kj =

15



k(xj), such that F ⊂
⋃
j B5ρj(xj). Then by the definition of the Hausdorff

measure
Hn−1

10δ (F ) ≤ c
∑
j

(5ρj)
n−1. (4.7)

By (4.6) and by Hölder’s inequality, we obtain

ρn−1
j ≤ k2

j

ˆ
Bρj (xj)

|f |dy ≤ c‖f‖Lp(Bρj (xj))k
2
jρ

n/p′

j .

For all M ∈ N, using Hölder’s inequality and the fact that the balls are
disjoint one obtains

SM :=
M∑
j=0

ρn−1
j ≤c ‖f‖Lp(Rn)

(
M∑
j=0

k2p′

j ρnj

)1/p′

.

For any p ∈ (1,∞) there is δp such that r1/2| log2 r|2p
′ ≤ 1 for all r ∈ (0, δp).

Therefore for all δ ≤ δp one obtains

SM ≤ c ‖f‖Lp(Rn) δ
1/(2p′)S

1/p′

M . (4.8)

By collecting (4.7) and (4.8) we conclude

Hn−1
10δ (F ) ≤ c ‖f‖pLp(Rn) δ

p/(2p′),

therefore with δ → 0 we obtain Hn−1(F ) = 0.

Proof of Theorem 4.1. Let x ∈ Ω \ Θu, by [3, Corollary 6.7] for any r > 0
there is ax,r ∈ Rn such that

lim sup
r→0

1

rn

ˆ
Br(x)

|u(y)− ax,r|dy = 0 . (4.9)

In the rest of the proof we will show that limr→0 ax,r exists for Hn−1-almost
every x ∈ Ω \Θu. In view of (4.9) it is actually sufficient to prove the claim
for the subsequence rk = 2−k.

Let η be as in Lemma 4.2 and let

Ωk := {x ∈ Ω : Brk(x) ⊂ Ω and Hn−1(Ju ∩Brk(x)) ≤ ηrn−1
k } .

We also introduce the set

F :=

{
x ∈ Rn :

∑
k∈N

1

rn−1
k

ˆ
Brk (x)

|e(u)| dy =∞

}
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and we fix k ∈ N and x ∈
⋂
h≥k Ωh \ (Θu ∪ F ). By Lemma 4.2 for every

h ≥ k there are an affine map ϕh : Rn → Rn and a set ωh such that
Ln(ωh) < 2−n−3Ln(Brh) and

ˆ
Brh (x)\ωh

|u− ϕh|dy ≤ crh

ˆ
Brh (x)

|e(u)|dy . (4.10)

Lemma 4.3 yields

|ϕh(x)− ax,rh | ≤
c

rnh

ˆ
Brh (x)\ωh

|ax,rh − ϕh|dy

≤ c

rnh

ˆ
Brh (x)\ωh

|ax,rh − u|dy +
c

rnh

ˆ
Brh (x)\ωh

|u− ϕh|dy .

(4.11)

At the same time, using the triangle inequality, (4.10) implies
ˆ
Brh+1

(x)\(ωh∪ωh+1)

|ϕh − ϕh+1|dy ≤ crh

ˆ
Brh (x)

|e(u)|dy .

Lemma 4.3 now implies∑
h

‖ϕh − ϕh+1‖L∞(Brh (x),Rn) ≤ c
∑
h

1

rn−1
h

ˆ
Brh (x)

|e(u)|dy ,

since Ln(Brh+1
\ (ωh ∪ ωh+1)) ≥ (1 − 2−3 − 2−n−3)Ln(Brh+1

) ≥ 3
4
Ln(Brh+1

)
and the maps ϕh are affine. Recalling that x 6∈ F , we have that the series∑

h |ϕh − ϕh+1|(x) converges and we can define ũ(x) := limh→∞ ϕh(x) ∈ Rn.
Then

1

rnh

ˆ
Brh (x)

|u(y)− ũ(x)|dy

≤ 1

rnh

ˆ
Brh (x)

|u(y)− ax,rh|dy + c|ax,rh − ϕh(x)|+ c|ϕh(x)− ũ(x)|

≤ 1

rnh

ˆ
Brh (x)

|u(y)− ax,rh|dy +
c

rn−1
h

ˆ
Brh (x)

|e(u)|dy + c|ϕh(x)− ũ(x)|,

where we have used (4.11), (4.10). The first term converges to zero by (4.9),
the second one by the fact that x 6∈ F , and the third one by the definition
of ũ. Therefore x ∈ Ω \ Su. We conclude that

Su ⊂ Θu ∪ F ∪

(
Ω \

⋃
k

⋂
h≥k

Ωh

)
.
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We finally show that

Ω \
⋃
k

⋂
h≥k

Ωh ⊂ Ju ∪N (4.12)

for some Hn−1-null set N , from which we can conclude Su ⊂ Θu ∪ F ∪ N .
Since Hn−1(Ju) < ∞ by [4, Th. 2.56] there is a set N with Hn−1(N) = 0
such that

lim sup
r→0

Hn−1(Ju ∩Br(x))

rn−1
= 0 for all x ∈ Ω \ (Ju ∪N) .

In particular, for any such x there is a k such that x ∈ Ωh for any h ≥ k, so
that formula (4.12) holds. From e(u) ∈ Lp(Ω;Rn×n), Lemma 4.4 guarantees
that Hn−1(F ) = 0, and the proof is concluded.

5 Discussion

As mentioned in the introduction, in the variational formulation of some
mathematical problems in fracture mechanics, the natural analytical frame-
work is given by the set SBDp(Ω) defined in (1.3). Due to the regular-
ity generated by the higher integrability of the strain and the finite Hn−1-
measure of the jump set, it has been conjectured that SBDp(Ω) functions
might have in fact bounded variation. In this case one would have in par-
ticular SBDp(Ω) ⊂ SBV (Ω;Rn), since Alberti’s rank one theorem [1, 2]
implies |Dcu|(Ω) ≤

√
2|Ecu|(Ω) for each u ∈ BV (Ω;Rn). Moreover one

could reasonably expect that the inclusion above is related to the validity
of a Korn’s type inequality involving the L1-norm of ∇u, the Lp-norm of
e(u), and Hn−1(Ju). A Korn’s type inequality for ∇u alone is, however, not
enough to guarantee that a field u in SBDp(Ω) has bounded variation, since
an equivalent of Alberti’s rank one theorem in BD has not been proved (nor
disproved).

In light of the results described in the previous sections, we are now in
the position to discuss the possible optimality of the immersion above. First
of all let us recall that a generic function u ∈ SBD(Ω) has not necessarily
bounded variation, even in the case in which u has no jumps. This follows
from the counterexample to Korn’s inequality in W 1,1 built in [31], see [3, Ex-
ample 7.7]. A similar idea is the starting point of the construction presented
in Section 3, developed starting from [19, Theorem 1]. Indeed, we have shown
that, if no bound on the size of the jump set is given, not even the condition
e(u) = 0 Ln-a.e. guarantees that a function u ∈ SBD(Ω) has bounded vari-
ation. Analogously, we have constructed a function u ∈ BD(Ω) \BV (Ω;Rn)
with Eu = Ecu.
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On the contrary, in some sense one cannot expect an inclusion stronger
than SBDp(Ω) ⊂ SBV (Ω;Rn), to be precise one cannot hope for a higher
integrability of the gradient, as Example 2.1 shows.

To conclude this discussion about the connections between SBDp and
BV , we mention the result proved in [18, Theorem A.1]. The authors show
that any u ∈ SBD(Ω) with e(u) = 0 Ln-a.e. and Hn−1(Ju) <∞ has in fact
a precise structure, it is a Caccioppoli-affine function. Thanks to the result
proved in Section 2 we thus infer that it has actually (generalized) bounded
variation.
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