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Chapter 1

Introduction

This treatise summarizes and contextualizes the main results of the author’s publications [P1,
P2, P3, P4, P5], among which [P1, P3, P5] are joint works with L. Beck. In order to provide a
treatment within a unified framework, several results are presented in a slightly modified form,
and, particularly in Chapter 4, some minor refinements are accomplished. We emphasize,
however, that in many cases the exposition at hand does not contain complete proofs of the
stated results. Instead, the aim is to sketch and illustrate the essential ideas and to point out
connections between the relevant methods and statements, while we do not enter into all the
technical details of the proofs, which can be found in the original articles.

The publications match the subsequent chapters as follows. Chapter 2, which discusses the
basic existence theory for BV minimizers, is not based on a specific reference. Chapter 3 de-
scribes the duality theory developed in [P3]. Chapter 4 presents the regularity and uniqueness
theorems obtained in [P1, P5], and Chapter 5 is concerned with the local and partial regularity
results of [P2]. Finally, the approximation results of [P4] are already utilized in the other chap-
ters, but their detailed discussion, which points into a slightly different direction, is postponed
to Appendix A.

Primarily, the present exposition is concerned with minimization problems for first-order
variational integrals

F [w] ..=

∫
Ω

f( · ,∇w) dx among admissible functions w : Ω→ RN . (1.1)

Here, the dimension n and the codimension N are arbitrary positive integers, Ω denotes an open
subset of Rn, and dx stands for the integration with respect to the n-dimensional Lebesgue
measure Ln. Moreover, f : Ω×RN×n → R is a given Borel integrand which satisfies the linear
growth condition

|f(x, z)| ≤ Ψ(x) + Γ|z| for all (x, z) ∈ Ω×RN×n (1.2)

with a fixed (L1 or L∞) function Ψ on Ω and a fixed non-negative constant Γ <∞.
In what follows, C2 functions w satisfying a suitable boundary condition will always be

admissible, and we record that, in this case, the necessary first-order criterion closely relates
the minimization problem to a partial differential equation: If f is C2 in the z-variable, every
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4 CHAPTER 1. Introduction

C2 minimizer u of F satisfies the Euler(-Lagrange) equation

div
[
∇zf( · ,∇u)

]
≡ 0 on Ω , (1.3)

where the RN -valued divergence of the matrix-valued function ∇zf( · ,∇u) is computed row-
wise. For n ≥ 2, the equation (1.3) is a second-order quasilinear PDE, and for N ≥ 2 it is
actually meaningful to regard (1.3) not as a single PDE for a single function, but rather as a
system of N PDEs for the N component functions of u. In the sequel, we never explicitly rely on
(1.3), but we prefer to work with its more convenient weak reformulation. This reformulation
makes sense whenever ∇zf exists as a bounded continuous function and asserts, even for all
W1,1 minimizers u of F , that we have1∫

Ω

∇zf( · ,∇u) · ∇ϕ dx = 0 for all ϕ ∈W1,1
0 (Ω,RN) . (1.4)

A model class of convex integrals of the above type — which we use in this introduction to
illustrate some results of [P1, P2, P5] — is given by

Mp[w] ..=

∫
Ω

(1 + |∇w|p)
1
p dx with a parameter p ∈ [1,∞) . (1.5)

Specifically, in the case N = 1, p = 2 and for sufficiently smooth w, the quantity M2[w]
equals the n-dimensional measure Hn(Graphw) of the graph of w, and M2 is known as the
non-parametric area functional (in the hypersurface case). This functional has been extensively
studied in classical literature, and its well-developed theory, described in the monograph [73],
for instance, has widely inspired the approach to more general functionals of the type (1.1)–(1.2)
or (1.5).

For general N , instead, the n-dimensional area Hn(Graphw) of a smooth graph is given by
the integral ∫

Ω

√
1 + |M(∇w)|2 dx . (1.6)

Here, M(z) ∈ Rτ(n,N) denotes the vector of all minors of z ∈ RN×n of all orders from 1
up to min{n,N}, and τ(n,N) stands for the total number of such minors. Thus, in higher
codimension N ≥ 2, the non-parametric area functional (1.6) is non-convex with a non-standard
growth behavior. This functional does not coincide, anymore, with M2 (except in the trivial
case n = 1) and is much more difficult to handle. In fact, we are not aware of a developed
theory of (non-smooth minimizers of) the higher-codimension non-parametric area, and though
we will not pursue this in the sequel, we hope that some of the arguments employed in order to
treat M2 in the higher-codimension case might eventually be useful to make a tiny step towards
a better understanding of the functional (1.6).

Another specific integral, which coincides with M1 from the model class (1.5) (up to the
irrelevant additive constant Ln(Ω)), is the total variation, given by∫

Ω

|∇w| dx . (1.7)

1We write z · z̃ for the Hilbert-Schmidt product of two matrices z, z̃ ∈ RN×n, that is the inner product
obtained by identifying RN×n with RNn. The corresponding (Hilbert-Schmidt or Frobenius) norm of z is
simply denoted by |z|.
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5

Minimizers of the total variation are known as functions of least gradient, and in the case N = 1
they have been studied, for instance, in [100, 36, 110, 109, 124] — partially out of intrinsic in-
terest and partially motivated by the geometric fact that their level sets are parametric minimal
hypersurfaces. Moreover, the term (1.7) is frequently used in a variety of proposed minimization
approaches for image restoration, since it has a specific mild regularization effect on minimiz-
ers. In this treatise, M1 and thus the total variation will be included in the considerations of
Chapters 2 and 3. However, since M1 is merely convex, but not strictly convex or differentiable,
it will be excluded in most of Chapters 4 and 5, where positivity of the second derivative of the
integrand is a crucial assumption (nevertheless, the estimates of Section 4.1 cover the case of
M1, and Section 5.3 allows some non-strict convexity and includes regularizations of M1, which
are partially used in image restoration).

Next we discuss the solvability of minimization problems for the integrals Mp[w] from (1.5).
As a first attempt, it seems natural to study such problems in the Sobolev space W1,1(Ω,RN), on
which the functionals Mp are finite and strongly continuous. Unfortunately, since W1,1(Ω,RN)
is neither a reflexive space nor a dual space, it has bad compactness properties, and minimizers
in W1,1(Ω,RN) need not exist in general; and even if they exist, their existence is often hard
to prove. For this reason, one is naturally led to consider the integrals Mp on the space
BV(Ω,RN) of functions of bounded variation, that is, the space of functions w ∈ L1(Ω,RN)
whose distributional derivative is represented by a finite RN×n-valued Radon measure Dw on Ω.
Since BV(Ω,RN) can be seen as a dual space, it exhibits good (weak-∗) compactness properties,
but in exchange one faces the problem to reasonably define Mp[w] in the case that the gradient
of w is merely a measure. However, this problem can be overcome by working with functionals
of measures (or BV functions) in the sense of Goffman & Serrin [75] (or Giaquinta & Modica &
Souček [71]); see Section 2.1 for a detailed account. In the case considered here, one approach
to this concept amounts to defining BV extensions Mp of the functionals Mp as follows. For
every Borel set A in Rn and every w ∈ BVloc(U,R

N), defined on an open neighborhood U of
A, we set

Mp[w;A] ..=

∫
A

(1 + |∇w|p)
1
p dx+ |Dsw|(A) ∈ [0,∞] ,

where we have adopted the notation Dw = (∇w)Ln+Dsw for the Lebesgue decomposition of the
gradient measure Dw into its Ln-absolutely continuous part with density ∇w ∈ L1

loc(U,R
N×n)

and its Ln-singular part Dsw (notice that, in this context, ∇w is not a gradient of its own). Once
these extensions are at hand, one can deal with minimization problems for Mp in BV(Ω,RN),
and it is well known that one can generally solve a BV version of the Dirichlet minimization
problem, which is the natural counterpart of the corresponding W1,1 version; see Sections 2.3
and 2.4.

Taking the existence of BV minimizers for granted, we next turn to their regularity prop-
erties. In the scalar case N = 1, this issue can be approached by classical methods based on
the usage of global gradient estimates in the spirit of Serrin [121] and Trudinger [128], and, in
particular, Giaquinta & Modica & Souček [72] adapted a method of Gerhardt [69] in order to
establish interior Lipschitz regularity for BV minimizers of a class of functionals of the type
(1.1)–(1.2). Moreover, under suitable assumptions on the boundary data, Tausch [125] has
shown the existence of regular minimizers also for some functionals with explicit w-dependence
and for the model integrals (1.5) with 2 6= p > 1. The treatment of BV minimizers of Mp in
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6 CHAPTER 1. Introduction

arbitrary codimension N ∈ N, however, seems to require different methods, and the situation
is less completely understood. The known results from [21, 29, 31, P1, P2, P5] are indeed
cumulated in the following statement, which we formulate in terms of local minimizers and
without explicit reference to a boundary condition. We stress, however, that the conclusions
apply, in particular, to minimizers of the Dirichlet problem, for which also the general existence
result in the later Theorem 2.8 is available.

Theorem 1.1 (gradient regularity for local BV minimizers of Mp, 1 < p <∞). Consider an
open subset Ω of Rn and an exponent p ∈ (1,∞). If u ∈ BVloc(Ω,R

N) is a local minimizer of
Mp on Ω, that is

Mp[u; Br(x0)] ≤ Mp[u+ϕ; Br(x0)]

for all balls Br(x0) b Ω and all ϕ ∈ BV(Ω,RN) with sptϕ ⊂ Br(x0), then

(A) in the case 1 < p < 2, we have

u ∈ C1,α
loc (Ω,RN) for some α(n,N, p) ∈ (0, 1] ,

(B) in the case p = 2, we have

u ∈W1,1
loc(Ω,R

N) and |∇u| log(1+|∇u|) ∈ L1
loc(Ω) ,

(C) generally, there exists an open subset Ω0 of Ω such that we have

u ∈ C1,α
loc (Ω0,R

N) for some α(n,N, p) ∈ (0, 1] and Ln(Ω \ Ω0) = 0 .

Here the exponent α in parts (A) and (C) can be made explicit and is essentially2 the optimal
Hölder exponent for the gradient of RN -valued p-harmonic functions in n variables. In par-
ticular, in the case p = 2, the statement in (C) holds true with α = 1 and in fact even with
C1,α

loc (Ω0,R
N) replaced by C∞(Ω0,R

N).

The chronology of Theorem 1.1 is as follows. First, Anzellotti & Giaquinta [21] established
part (C) for p = 2 and, with the weaker conclusion that the singular set Ω \ Ω0 is merely
nowhere dense, even for all p ∈ (1,∞). Then, Bildhauer [29, 31] proved part (B) for specific
BV minimizers u, and a subsequent result of [P1] yields (B) even for arbitrary BV minimizers.
Finally, the full claim of (C) has been established in [P2], while the result in part (A) has been
obtained in the recent preprint [P5]. Extensions of parts (A), (B), and (C) of Theorem 1.1 to

2More precisely, [P2] makes the following assertions about the Hölder exponent α in Theorem 1.1. Whenever
the excess estimates leading to interior C1,α∗ regularity of RN -valued p-harmonic functions in n variables
generally hold for some α∗ ∈ (0, 1], then the claims of Theorem 1.1 hold for every α ∈ (0, α∗). The relevant
excess estimates are known to hold for all n,N ∈ N and p ∈ (1,∞) with some positive α∗(n,N, p), but in most
cases the optimal value of α∗ is not known.
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more general variational integrals are discussed in Sections 4.3, 4.4, and 5.1–5.3 of this treatise,
respectively, and these sections also provide some information on the proofs.

At this stage, we intend to explain that the case distinction above can actually be understood
by looking at the second derivatives ∇2mp of the integrand mp given by

mp(z) ..= (1 + |z|p)
1
p for z ∈ RN×n .

Indeed, also for the general functional F in (1.1), the weak formulation (1.4) of the Euler
equation, involves the first z-derivatives ∇zf of the integrand f . Thus, whenever one linearizes
or differentiates the Euler equation (which is an ingredient in essentially all3 known methods for
establishing gradient regularity), then the second derivatives ∇2

zf come into play. Specifically,
for the integrands mp with p > 1, explicit computations show that, for z, ξ ∈ RN×n, we have

C−1
p |z|p−2|ξ|2 ≤ ∇2mp(z)(ξ, ξ) ≤ Cp|z|p−2|ξ|2 if |z| ≤ 1 ,

C−1
p |z|−1−p|ξ|2 ≤ ∇2mp(z)(ξ, ξ) ≤ Cp|z|−1|ξ|2 if |z| ≥ 1

with a constant Cp ∈ (0,∞). Here, from the first line of inequalities one reads off that ∇2mp(z)
vanishes at z = 0 in the case p > 2, while it becomes singular at z = 0 in the case p < 2.
Thus, for p 6= 2 one is confronted with a singular/degenerate behavior near points x ∈ Ω
where ∇u(x) vanishes. This phenomenon occurs also, in essentially the same manner, in the
theory of vector-valued p-harmonic functions; it has been well-understood by now, and the
relevant methods carry over to the integrals Mp at the cost of some technical effort, which is
partially described in Sections 4.2, 4.3, 5.2. But then another — actually more serious and more
interesting — degeneration phenomenon manifests in the second line of inequalities above: The
dispersion ratio of ∇2mp(z), that is the ratio between the largest and the smallest eigenvalue
of the bilinear form ∇2mp(z), may (and does) blow-up for |z| → ∞ at the rate of |z|p. It is the
rate of this blow-up which is truly responsible for the distinction between parts (A), (B), and
(C) of Theorem 1.1. In the case p < 2, the blow-up is subquadratic, it can be handled by known
techniques developed for the treatment of non-standard growth conditions, and one obtains the
C1,α regularity in (A). The limit case p = 2 of a quadratic blow-up is more difficult, but, to
some extent, similar methods still apply and yield the weaker regularity gain in (B). For general
p > 1, finally, it is an open problem whether one can obtain any form of everywhere gradient
regularity, but the localization technique of Anzellotti & Giaquinta [21] allows to establish —
independent of the speed of the blow-up — the partial regularity in (C).

Next we focus on the Dirichlet problem with boundary values given by a globally defined
function u0 ∈ W1,1(Rn,RN). The BV formulation of this problem corresponds to the mini-
mization of the functional Mp

[
· ; Ω

]
in the admissible class

BVu0

(
Ω,RN

)
..= {w ∈ BV(Rn,RN) : w = u0 holds Ln-a.e. on Rn \Ω} .

We emphasize that this BV Dirichlet problem incorporates the boundary values u0 in a general-
ized sense. In fact, the admissible functions w ∈ BVu0

(
Ω,RN

)
may jump across ∂Ω and need

3The only exception from this rule is the Gehring improvement which yields, for instance for variational
problems with standard superlinear growth conditions, a small gain of gradient integrability. To the author’s
knowledge, it has remained an open problem whether there is any analogue of this improvement for the linear
growth problems considered here.
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8 CHAPTER 1. Introduction

not coincide with u0 on ∂Ω in the sense of (interior) trace, but rather the extension of w by
the values of u0 outside of Ω influences the measure Dw on ∂Ω and consequently the functional
Mp

[
w; Ω

]
. This amounts to a very natural penalization of functions with wrong boundary val-

ues, and this procedure is basically inevitable in the existence theory for BV minimizers. We
postpone a more detailed discussion to Sections 2.3 and 2.4, but record already that parts (A)
and (B) of Theorem 1.1 imply, in a very simple way, the following uniqueness statement.

Corollary 1.2 (uniqueness modulo constants for BV minimizers of Mp, 1 < p ≤ 2). Consider
a connected open set Ω in Rn with Ln

(
Ω
)
< ∞, an exponent p ∈ (1, 2], and a function

u0 ∈W1,1(Rn,RN). If u, v ∈ BVu0

(
Ω,RN

)
are such that

Mp

[
u; Ω

]
≤ Mp

[
w; Ω

]
and Mp

[
v; Ω

]
≤ Mp

[
w; Ω

]
hold for all w ∈ BVu0

(
Ω,RN

)
, then, for some constant y ∈ RN , we have

u = v + y Ln-a.e. on Ω .

Extensions of Corollary 1.2 to more general variational integrals are later provided in Corol-
laries 4.5 and 4.7.

Proof of Corollary 1.2. If we assume that ∇u differs from ∇v on a subset of Ω with positive

Ln-measure, then, relying on the strict convexity of the mapping z 7→ (1 + |z|p)
1
p , we can

compute

Mp

[
1
2
(u+v); Ω

]
=

∫
Ω

(
1 +

∣∣1
2
(∇u+∇v)

∣∣p) 1
p dx+

∣∣1
2
(Dsu+Dsv)

∣∣(Ω)
<

1

2

(∫
Ω

(1 + |∇u|p)
1
p dx+ |Dsu|

(
Ω
)

+

∫
Ω

(1 + |∇v|p)
1
p dx+ |Dsv|

(
Ω
))

=
1

2

(
Mp

[
u; Ω

]
+ Mp

[
v; Ω

])
= inf

BVu0 (Ω,RN )
Mp

[
· ; Ω

]
.

In view of 1
2
(u+v) ∈ BVu0

(
Ω,RN

)
this yields a contradiction, and we have shown that

∇u = ∇v holds Ln-a.e. on Ω .

Now we involve Theorem 1.1. Since u and v are local minimizers of Mp with p ∈ (1, 2] on Ω,
the theorem guarantees, in particular, Dsu = Dsv ≡ 0 on Ω. Consequently, the derivatives of u
and v coincide on Ω, and the constancy theorem yields the claim.

We point out that the de facto proof of the uniqueness statement in the subsequent sections
proceeds by the above argument only in the case p = 2. In the case 1 < p < 2, instead, we
proceed in a different manner: We first establish the regularity in part (A) of Theorem 1.1
only for specific, but not yet for all BV minimizers, then we exploit a duality trick to deduce
the uniqueness statement of Corollary 1.2, and only eventually we obtain the regularity claim
for all BV minimizers as stated in Theorem 1.1. Thus, it is not only true that everywhere
regularity implies uniqueness, but also uniqueness can serve as a tool in obtaining regularity,
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and, all in all, in the BV framework these two topics are more bidirectionally connected than
the above argument may suggest.

We also stress that the uniqueness modulo constants which is asserted in Corollary 1.2
cannot be improved to full uniqueness of BV minimizers. This effect is due to the general-
ized understanding of the boundary values, which enter through the non-strictly convex term

u0≡Mu0≡−M

u0≡M u0≡−M

x1

x2

Figure 1: Santi’s domain

u0≡0

x1

x2

u0u0≡M

Figure 2: Finn’s domain

|Dsw|
(
Ω
)
, and a concrete occurrence of non-uniqueness is

demonstrated, already in the two-dimensional scalar case
n = 2, N = 1, by a classical example of Santi [115, Sec-
tion 2] for the non-parametric area functional M2. Indeed,
Santi’s example works on a specific, symmetric bounded Lip-
schitz domain Ω in R2 with boundary values equal to a large
constant M on one half of the boundary and equal to −M on
the other half; see Figure 1. It is then shown that a specific
minimizer u ∈ C∞(Ω) of M2

[
· ,Ω

]
in BVu0

(
Ω
)

is bounded
on Ω independently of M . For sufficiently large M , it thus
follows that the (interior) trace of u is at distance at least
M/2 from u0 on ∂Ω, and also u+1Ωy with y ∈ [−M/2,M/2]
minimizes M2

[
· ,Ω

]
in BVu0

(
Ω
)
.

Santi’s example actually builds on the comparison with
explicit solutions known from a previous example of Finn
[62]. Finn’s example also concerns the area functional M2 in
the case n = 2, N = 1, but now on the annulus B2 \B1 ⊂ R2

with boundary values equal to M on ∂B1 and zero boundary
values on ∂B2; see Figure 2. In this case, the minimizer u
smoothly attains the boundary values on the boundary por-
tion ∂B2 and is thus unique, and indeed, by exploiting the
rotational symmetry of the problem, u can be made explicit
by solving an ODE. The graph of u is a part of a catenoid,
and u is found to be M -independently bounded. Thus, this
more basic example already shows that the minimizer u de-
viates, for large M , from the given boundary values on the
boundary portion ∂B1. In fact, Finn’s example can be fur-
ther understood by observing that the parametric Plateau
problem with the given boundary values is always solved by
a part of a catenoid, but for large M the parametric solution
does not stay in the cylinder over the non-convex domain
B2 \ B1 and is not admissible for the non-parametric prob-
lem considered here. Instead, the graph of the minimizer
u is a part of another catenoid whose bottleneck of diame-
ter 2 lies far below the boundary curve ∂B1×{M}; compare
[91, 108, 82] for further related examples.

We also mention a noteworthy, complementary criterion of Miranda [101, 102] for the non-
occurrence of deviations on the boundary (in case of arbitrary n ∈ N and for N = 1): If Ω is
a bounded Lipschitz domain in Rn such that ∂Ω has non-negative generalized mean curvature

9



10 CHAPTER 1. Introduction

near a point x0 ∈ ∂Ω and if u0 (restricted to Rn \Ω) is continuous at x0, then every minimizer
of M2

[
· ,Ω

]
in BVu0

(
Ω
)

continuously attains the boundary value u0(x0) at x0. In particular,
whenever this applies for a single point x0 ∈ ∂Ω, the BV minimizer is unique. Miranda’s
criterion is in accordance with the solvability results for the classical Dirichlet problem for
the minimal surface equation [83], and comparison with the examples shows that the criterion
is indeed quite sharp. In Finn’s example, the mean curvature of ∂Ω is negative at the inner
boundary ∂B1, in Santi’s example, the mean curvature of ∂Ω is negative except for four corners,
at which continuity fails; and, finally, an example of Baldo & Modica [23] shows that non-
uniqueness may even happen if Ω is a two-dimensional ball (so that ∂Ω has positive curvature,
of course), but the boundary values are everywhere discontinuous on ∂Ω. Consequently, one
may not hope to extend Miranda’s criterion to points x0 ∈ ∂Ω where either u0 is discontinuous
or ∂Ω has negative mean-curvature, but still some interesting results on the boundary regularity
and the regularity of the trace of minimizers of M2

[
· ,Ω

]
in such points have been obtained;

see [122, 132, 90, 133, 92], for instance.
As already said above, the described examples indicate that the conclusion of Corollary 1.2

cannot be strengthened, without making further assumptions, to full uniqueness of BV minimiz-
ers. However, returning to the case of arbitrary codimension N ∈ N, the corollary leaves open
the possibility that, for fixed u0 ∈W1,1(Rn,RN), the minimizers may differ by an N-parameter
family of constants y ∈ RN , and this aspect can still be improved. Indeed, an observation of
[P1] guarantees that, for every p ∈ (1, 2] and u0 ∈W1,1(Rn,RN), the functional Mp

[
· ,Ω

]
pos-

sesses at most a 1-parameter family of minimizers in BVu0

(
Ω,RN

)
. This improvement follows

from Corollary 1.2 by an elementary convexity argument, and we refer to Sections 4.5 and 4.6
for a further discussion — and also for some related vector-valued refinements, devised in [P1],
of the examples of Finn and Santi. In addition, we believe that it would be very interesting to
obtain analogues of Miranda’s criterion (or other attainment results for the boundary values)
also for general integrands f and in codimension N ≥ 2. However, so far, this has remained an
open issue.

In the subsequent chapters, we mostly discuss various extensions of the above-described ex-
istence, uniqueness, and regularity results to general variational integrals of the type (1.1)–(1.2).
Additionally, we are also concerned with a corresponding duality theory for BV minimizers,
which serves as a tool in some regularity and uniqueness proofs, but may also be of independent
interest. We usually strive to state the results under sharp assumptions, and particularly we will
be able to include the case of non-smooth, unbounded Ω and f in some of our considerations.
Despite these attempts to reach a large generality, however, we emphasize that our motivation
stems mostly from the case of the model integrals in (1.5) and that the model statements of
Theorem 1.1 and Corollary 1.2 may be seen as the most relevant outcome of our work.

Acknowledgment. The author’s research leading to the results of [P2, P3, P4, P5] has
received partial funding from the European Research Council under ERC grant agreement
GeMeThnES-246923.
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Some terminology and conventions regarding measures 11

Some terminology and conventions regarding measures

Most notation used in this treatise is either quite standard or explained at the first occurrence.
However, since we extensively work with various types of measures, we explicitly set out some
related conventions.

We only consider measures on locally compact and separable metric spaces X, in fact only
on locally compact subsets X of Rn. Non-negative Borel (or Radon) measures µ are then
understood in the usual way as (locally finite) [0,∞]-valued, σ-additive4 set functions on the
Borel σ-algebra of X; they are occasionally completed by extension to the larger σ-algebra of
µ-measurable sets.

For signed measures, the need to allow merely (one-sided) locally finite ones requires some-
what peculiar conventions in the spirit of [9, Definition 1.40]. Indeed, by a signed Borel measure
ν on X, we mean a (−∞,∞]-valued, σ-additive set function, which is defined, at least, on all
relatively compact Borel subsets of X. Such a ν has unique Jordan decomposition ν = ν+− ν−
into a non-negative Borel measure ν+ on X and a non-negative Radon measure ν− on X such
that ν+ and ν− are mutually singular (where, in particular, ν+ and ν− can be defined on the
whole Borel σ-algebra thanks to the fact that X is σ-compact). Moreover, the variation mea-
sure |ν| = ν+ +ν− makes sense as a non-negative Borel measure on X, and ν can be extended in
unique way as a (−∞,∞]-valued, σ-additive set function to a maximal system of Borel subsets
of X, namely to the system of ν−-finite Borel subsets of X. We call ν a Radon measure on
X if |ν| (or, equivalently, ν+) is a Radon measure on X. Moreover, we say that ν is finite on
X if |ν| is finite on X, and we record that, in this case, ν can be extended to the whole Borel
σ-algebra of X.

Similarly, every Rm-valued, σ-additive set function ν, which is defined, at least, on all
relatively compact Borel subsets of X, is termed an Rm-valued Radon measure on X. This
makes perfect sense, since, in this case, the components of ν are always signed Radon measures
on X and the variation measure |ν| is a non-negative Radon measure on X. The space of
Rm-valued Radon measures on X is called RMloc(X,R

m), and we observe that every ν ∈
RMloc(X,R

m) can be extended in a unique way to the system of |ν|-finite Borel subsets of X.
We call ν finite if |ν| is finite (or, equivalently, whenever ν can be extended to the whole Borel
σ-algebra of X), and write RM(X,Rm) for the space of finite Rm-valued Radon measures on
X. In the case m = 1, this terminology is consistent with the one for signed measures, and we
omit the target space in all the abbreviations.

By local weak-∗ convergence in either RMloc(X,R
m) or RM(X,Rm), we mean the weak

convergence of Rm-valued measures which arises by duality with C0
cpt(X,R

m) test functions.

If, instead, we admit even test functions in the completion of C0
cpt(X,R

m) with respect to the
sup-norm, we refer to the corresponding concept as (global) weak-∗ convergence in RM(X,Rm).

Finally, we extend all conventions to RN×n-valued measures, simply by identifying RN×n

with RNn.

4We adopt the convention that σ-additivity includes the requirement that the empty set has measure zero.
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Chapter 2

Generalized Dirichlet problem
and existence of BV minimizers

This chapter is concerned with functionals of measures and the corresponding existence theory
for BV minimizers, and the main outcome are the BV framework of Section 2.3 and the existence
and consistency theorems of Section 2.4. The statements are based on the by-now-classical
results of [75, 112, 71] and a recent refinement in [88], and the exposition at hand is loosely
related to parts of [P1, P2, P3].

2.1 Functionals of measures

In this section we explain how a measure can be plugged into a non-linear function(al). As a mo-
tivation, we start by discussing the basic case that the function(al) is positively 1-homogeneous.
Then we pass to the general case of non-homogeneous function(al)s, first studied by Goffman
& Serrin [75].

Indeed, we first consider an open subset Ω of Rn and a lower semicontinuous function
h : Ω×Rm → (−∞,∞], which is positively 1-homogeneous in the second variable in the sense
of h(x, 0) = 0 and h(x, tz) = th(x, z) for all t ∈ (0,∞) and (x, z) ∈ Ω×Rm. Assuming that h
satisfies

h(x, z) ≥ −Γ|z| for all (x, z) ∈ Ω×Rm (2.1)

with a constant Γ < ∞ and that ν ∈ RMloc(X,R
m) is a Radon measure on a locally compact

subset X of Ω, there is a very plausible way to define a signed Borel measure f( · , ν) on X:
Choosing any non-negative Radon measure µ on X such that |ν| � µ (i.e. |ν| is absolutely
continuous with respect to µ), it makes sense to set∫

A

h( · , ν) ..=

∫
A

h

(
· , dν

dµ

)
dµ for every |ν|-finite Borel set A ⊂ X , (2.2)

where dν
dµ

stands for the Radon-Nikodým density of ν with respect to µ. Relying on the 1-
homogeneity of h, it can be checked easily that this definition does not depend on the choice
of µ, and in fact one can always take µ = |ν|.

13



14 CHAPTER 2. Generalized Dirichlet problem and existence of BV minimizers

Now we turn to the case that Ω is open in Rn and that f : Ω × Rm → (−∞,∞] is a
(possibly non-homogeneous) Borel function. Then, following the approach in [71], we introduce
the homogenized function

f̄ :
(
Ω× (0,∞)×Rm

)
∪
(
Ω× {0} ×Rm

)
→ [−∞,∞]

by setting first

f̄(x, t, z) ..= tf(x, z/t) for (x, t, z) ∈ Ω× (0,∞)×Rm,

and then extending the definition to the case t = 0 via f̄(x, 0, 0) ..= 0 for x ∈ Ω and

f̄(x, 0, z) ..= lim inf
(x̃,z̃)→(x,z)

t↘0

f̄(x̃, t, z̃) for (x, z) ∈ Ω× (Rm \{0}) . (2.3)

The recession function
f∞ : Ω×Rm → [−∞,∞]

of f is simply given by

f∞(x, z) ..= f̄(x, 0, z) for (x, z) ∈ Ω×Rm,

and with this terminology both f and f∞ are restrictions of f̄ , namely

f̄( · , 1, · ) = f and f̄( · , 0, · ) = f∞ . (2.4)

Moreover, f̄ is positively 1-homogeneous in (t, z), and f∞ is positively 1-homogeneous in z.
Now we assume that f satisfies

f(x, z) ≥ −Ψ(x)− Γ|z| for all (x, z) ∈ Ω×Rm (2.5)

with some Ψ: Ω → [0,∞) and a constant Γ < ∞. Then we have f̄(x, t, z) ≥ −tΨ(x) − Γ|z|
whenever t > 0. However, in order to guarantee that the value −∞ does not occur and this
estimate carries over to the case t = 0, or in other words to f∞, we need to assume slightly
more than just (2.5). Indeed, if we know, in addition, either that Ψ is bounded on bounded
subsets of Ω or that the lim inf in (2.3) is always a lim, then we have

f∞(x, z) ≥ −Γ|z| for all (x, z) ∈ Ω×Rm, (2.6)

and f̄ is lower semicontinuous at every point of Ω × {0} × Rm so that, in particular, f∞ is
lower semicontinuous on Ω×Rm. Finally, we record that, if f is convex in z, then f̄ is convex
in (t, z) and f∞ is convex in z.

Relying on the preceding specifications and observations, we now apply the basic idea in
(2.2) to the homogenized integrand f̄ as follows.

Definition 2.1 (functionals of measures). Consider an open subset Ω of Rn and a Borel
function f : Ω × Rm → R such that (2.5) and (2.6) are satisfied. If ν ∈ RMloc(X,R

m) is a
Radon measure on a locally compact subset X of Ω with Ln(X ∩ ∂Ω) = 0 and Ψ ∈ L1

loc(X),

14



2.1. Functionals of measures 15

and if µ is a non-negative Radon measure on X such that Ln X + |ν| � µ, then we introduce
a signed Borel measure f( · , ν) on X by setting∫

A

f( · , ν) ..=

∫
A

f̄

(
· , d(Ln X)

dµ
,

dν

dµ

)
dµ for every (ΨLn+|ν|)-finite Borel set A ⊂ X

(where the integrand on the right-hand side is well-defined, as the assumption Ln(X ∩ ∂Ω) = 0

implies that d(Ln X)
dµ

vanishes µ-a.e. on X ∩ ∂Ω).

We observe that if f is lower semicontinuous and positively 1-homogeneous in z, then we
have f( · , t, · ) = f on Ω×Rm for all t ≥ 0. Thus, in this specific case, the measure introduced
in Definition 2.1 coincides on Ω with the one given by (2.2), and in particular we have the
compatibility

∫
A
|ν| = |ν|(A) with the notation |ν| for the variation measure. Furthermore,

back in the general case, it follows from the 1-homogeneity of f̄ that the definition does not
depend on the choice of µ, and, in fact, we can always take µ = Ln X+ |νs|, where ν = νa +νs

denotes the Lebesgue decomposition of ν with respect to Ln X. Exploiting this particular
choice of µ and (2.4), it turns out that f( · , ν) is also characterized by the well-known formula∫

A

f( · , ν) =

∫
A∩Ω

f

(
· , dνa

dLn

)
dx+

∫
A

f∞
(
· , dνs

d|νs|

)
d|νs| (2.7)

for all Borel sets A ⊂ X with ‖Ψ‖L1(A)+|ν|(A) <∞.
We stress that we primarily utilize the concept of Definition 2.1 in two specific cases. On

one hand, mainly in connection with local regularity results, we often assume Ψ ∈ L1
loc(Ω)

and consider Radon measures ν ∈ RMloc(Ω,R
m) on the open set X = Ω. Then, if also a

complementary upper bound for f is in force, i.e. if we require |f(x, z)| ≤ Ψ(x) + Γ|z| instead
of merely (2.5), also f( · , ν) ∈ RMloc(Ω) is a Radon measure. On the other hand, in connection
with the BV Dirichlet problem, we usually assume Ln(∂Ω) = 0 and Ψ ∈ L1(Ω) and consider
finite Radon measures ν ∈ RM

(
Ω,Rm

)
on the closure X = Ω of the open set Ω. If, in this

global case, |f(x, z)| ≤ Ψ(x) + Γ|z| is assumed, then also f( · , ν) ∈ RM
(
Ω
)

is a finite Radon
measure.

To close this section, we provide a side remark on the specific case of the measures |Dw|
and

√
1 + |Dw|2 with w ∈ BV(Rn,RN). Clearly, these measures, which essentially correspond

to the functionals M1 and M2 from (1.5) in the introduction, are defined in the sense of Def-
inition 2.1, but they can also be characterized in a simpler fashion via a well-known partial
integration trick. Indeed, it can be shown that, for every open subset U of Rn, one has∫

U

|Dw| = sup

{
−
∫
U

w · div τ dx : τ ∈ C∞cpt(U,R
N×n), sup

U
|τ | ≤ 1

}
,∫

U

√
1 + |Dw|2 = sup

{∫
U

(
τ0 − w · div τ

)
dx : (τ0, τ) ∈ C∞cpt(U,R×RN×n), sup

U
|(τ0, τ)| ≤ 1

}
,

where the RN -valued divergence of the RN×n-matrix field τ is computed row-wise. However,
it seems that these formulas, which could serve as alternative definitions, carry over only to
functionals with a very similar structure to the above two and not to more general ones. Thus,
we do not further pursue this issue.

15



16 CHAPTER 2. Generalized Dirichlet problem and existence of BV minimizers

2.2 Reshetnyak (semi)continuity

Next we discuss the classical semicontinuity and continuity theorems of Reshetnyak [112] and
a recent refinement, due to Kristensen & Rindler [88], of the continuity result.

We start by restating Reshetnyak’s semicontinuity theorem for 1-homogeneous, convex func-
tionals of measures, in a version which is close to the original one of [112], and which is proved
in [9, Theorem 2.38] with the help of a slicing result for measures; compare also [123] for an
alternative proof.

Theorem 2.2 (Reshetnyak semicontinuity, homogeneous version). Consider an open subset
Ω of Rn and a lower semicontinuous function h : Ω × Rm → [0,∞] which is positively 1-
homogeneous and convex in the second argument. If νk locally weakly-∗ converges to ν in
RMloc(Ω,R

m), then we have

lim inf
k→∞

∫
Ω

h( · , νk) ≥
∫

Ω

h( · , ν) .

After the preparations of Section 2.1, it is straightforward to generalize Theorem 2.2 to
(possibly) non-homogeneous functionals. Indeed, applying Theorem 2.2 with (extensions of) f̄
in place of h and (Ln, νk) ∈ RMloc

(
Ω,Rm+1

)
in place of νk, one obtains the following statement;

see [P3, Appendix B] for details on the deduction.

Corollary 2.3 (Reshetnyak semicontinuity, non-homogeneous version). Consider an open sub-
set Ω of Rn with Ln(∂Ω) = 0 and a lower semicontinuous function f : Ω×Rm → [0,∞], which
is convex in the second argument. If νk locally weakly-∗ converges to ν in RMloc

(
Ω,Rm

)
, then

we have

lim inf
k→∞

∫
Ω

f( · , νk) ≥
∫

Ω

f( · , ν) .

In contrast to the semicontinuity results, the following continuity results do not necessitate
any convexity hypothesis. In exchange, however, they rely on the following stronger notion of
convergence.

Definition 2.4 (strict convergence in RM). Consider a locally compact subset X of Rn. For
a non-negative function Ψ ∈ L1(X), we say that νk converges Ψ-strictly in RM(X,Rm) to ν if
νk weakly-∗ converges to ν in RM(X,Rm) and if there holds

lim
k→∞

∫
X

√
Ψ2 + |νk|2 =

∫
X

√
Ψ2 + |ν|2 .

We start also the discussion of the continuity results with a version for 1-homogeneous
functionals, which is slightly less general than the original statement of [112]. We refer to [9,
Theorem 2.39], once more, for a proof via slicing.

Theorem 2.5 (Reshetnyak continuity, homogeneous version). Consider an open subset Ω of
Rn and a continuous function h : Ω×Rm → R, which is positively 1-homogeneous in the second
argument and satisfies

|h(x, z)| ≤ Γ|z| for all (x, z) ∈ Ω×Rm ,
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2.2. Reshetnyak (semi)continuity 17

with a constant Γ <∞. If νk converges 0-strictly in RM(Ω,Rm) to ν, then we have

lim
k→∞

∫
Ω

h( · , νk) =

∫
Ω

h( · , ν) .

We also refer to [52] for a refined discussion of both the homogeneous semicontinuity and
the homogeneous continuity theorem and the relation between them.

In order to pass on to the non-homogeneous case, we need an assumption which guarantees
that f̄ is continuous in all points of Ω × {0} × Rm. This is indeed achieved by requiring that
the lim inf in (2.3) is always a lim, i.e. that1

lim
(x̃,z̃)→(x,z)

t↘0

tf(x̃, z̃/t) exists in R for all (x, z) ∈ Ω× (Rm \{0}) . (2.8)

If we also impose the linear growth assumption

|f(x, z)| ≤ Ψ(x) + Γ|z| for all (x, z) ∈ Ω×Rm (2.9)

(with an R-valued Ψ and a constant Γ < ∞), then it follows from (2.8) that f∞ = f̄( · , 0, · )
is continuous and that we get the corresponding bound for f∞, that is |f∞(x, z)| ≤ Γ|z| for
all (x, z) ∈ Ω × Rm. Moreover, we emphasize that (2.8) is usually not difficult to check in
concrete cases. In particular, if f is convex in z, it suffices to verify the existence of the limit
for fixed z̃ = z, and if, additionally, (2.9) with finite-valued Ψ is satisfied, (2.8) is equivalent
with continuity of f in x for |z| → ∞ in the following sense. For all x0 ∈ Ω and ε > 0, there
exists a δ > 0 such that, for all x, x̃ ∈ Ω and z ∈ Rm, we have

|x− x0|+ |x̃− x0|+ |z|−1 < δ =⇒ |f(x̃, z)− f(x, z)| < ε|z| .

In particular, one can read off that (2.8) is generally valid for x-independent, convex integrands
f of linear growth.

At this stage, the next statement follows readily, by applying Theorem 2.5 to the homoge-
nized integrand f̄ and the measures (Ln, νk) ∈ RM(Ω,Rm+1).

Corollary 2.6 (Reshetnyak continuity, first non-homogeneous version). Consider an open sub-
set Ω of Rn with Ln(Ω) < ∞ and a continuous function f : Ω × Rm → R. Suppose that we
have

|f(x, z)| ≤ Γ + Γ|z| for all (x, z) ∈ Ω×Rm, (2.10)

with a constant Γ < ∞, and that f satisfies (2.8). If νk converges 1-strictly in RM(Ω,Rm) to
ν, then we have

lim
k→∞

∫
Ω

f( · , νk) =

∫
Ω

f( · , ν) .

1The existence of lim x̃→x
t↘0

tf(x̃, 0) ∈ R implies that f( · , 0) remains bounded near x. Therefore, in order to

include unbounded integrands f in the sequel, we postulate (2.8) only for z 6= 0.
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18 CHAPTER 2. Generalized Dirichlet problem and existence of BV minimizers

However, Corollary 2.6 still has some unsatisfactory features, and in particular the continuity
assumption for f in the joint variable (x, z) appears restrictive. It has been shown only recently,
by Kristensen & Rindler [88], that this assumption can be weakened and that it suffices to
require merely measurability of f in x and continuity in z. This weaker hypothesis is known
as the Carathéodory property and seems indeed more natural at this point, as it also occurs
in connection with (semi)continuity results in Lp spaces. Moreover, the dropping of the joint-
continuity assumption also allows to work, in an elegant way, with measures on Ω instead of
Ω. However, as explained above, also (2.8) comprises some continuity of f in x, and we stress
that this continuity requirement is inevitable (already to ensure continuity along a strictly
convergent sequence of Dirac measures).

Next we restate the described result of [88, Proposition 2] in the slightly more general form
of [P3, Theorem 3.10], which also replaces the assumptions (2.10) and Ln(Ω) < ∞ by (2.9)
with Ψ ∈ L1(Ω) and thus improves on another small technical drawback of Corollary 2.6.

Theorem 2.7 (Reshetnyak continuity, refined non-homogeneous version). Consider an open
subset Ω of Rn with Ln(∂Ω) = 0 and a Carathéodory function f : Ω×Rm → R, which satisfies
(2.9), for some positive Ψ ∈ L1(Ω) which is bounded away from 0 on every bounded subset of
Ω. Moreover, suppose that (2.8) holds. If νk converges Ψ-strictly in RM

(
Ω,Rm

)
to ν, then we

have

lim
k→∞

∫
Ω

f( · , νk) =

∫
Ω

f( · , ν) .

To close this section, we remark that the preceding statements, together with standard
compactness and approximation results, also identify functionals of measures as natural con-
tinuations of functionals on L1. More precisely — under suitable assumptions, for instance the
ones of both Corollary 2.3 and Theorem 2.7 — the functional ν 7→

∫
Ω
f( · , ν) on RM

(
Ω,Rm

)
is

the Lebesgue-Serrin extension (that is, in fact, the sequentially weakly-∗ lower semicontinuous
envelope) of the functional ϕ 7→

∫
Ω
f( · , ϕ) dx on L1(Ω,Rm).

2.3 Generalized Dirichlet problem

In this section, we explain the passage from a W1,1-formulation to a BV formulation of the
Dirichlet problem for a variational integral of the type

F [w] ..=

∫
Ω

f( · ,∇w) dx . (2.11)

To this purpose, we assume, for the remainder of this section, that the Borel integrand f : Ω×
RN×n → (−∞,∞] satisfies

f(x, z) ≥ −Ψ(x)− Γ|z| for all (x, z) ∈ Ω×RN×n ,

with Ψ ∈ L1(Ω) and a constant Γ <∞.
In order to first specify the W1,1-formulation, we work with an arbitrary open subset Ω of

Rn and a function u0 ∈W1,1
loc(Ω,R

N) with ∇u0 ∈ L1(Ω,RN×n). We then abbreviate

W1,1
u0

(Ω,RN) ..= u0 + W1,1
0 (Ω,RN)

18



2.3. Generalized Dirichlet problem 19

and investigate the
minimization of F in W1,1

u0
(Ω,RN) , (2.12)

where the boundary values are prescribed with the help of u0.
A BV reformulation of this problem needs to overcome two technical problems. The first one

is the need to compose the integrand f with the gradient measure of a BV function. However,
the solution to this problem and the right way of implementing the composition have already
been introduced in Definition 2.1. The second problem consists in the specification of the
boundary condition and the admissible class for the minimization problem. Indeed, it is not
easy to say, in general, what it means for two BV functions to have the same boundary datum.
Moreover, even when one restricts oneself to Lipschitz domains Ω and defines the admissible
class as the set of functions in BV(Ω,RN) with a prescribed trace, this does not overcome the
problem, since the admissible class will not be weakly-∗ closed in BV(Ω,RN). Thus, we use a
different approach, which is based on an extension procedure, works on quite general domains,
and reduces to some extent the second problem to the first.

Concretely, we still consider an open subset Ω of Rn, but we assume that

u0 ∈W1,1
loc(R

n,RN) with ∇u0 ∈ L1(Ω,RN×n) (2.13)

is defined on the whole Rn. Then we work with the admissible class

BVu0

(
Ω,RN

)
..= {w ∈ u0 + BV(Rn,RN) : w = u0 holds Ln-a.e. on Rn \Ω} ,

and we sometimes identify w ∈ BVu0

(
Ω,RN

)
with its restriction to Ω (which clearly contains

the same information). To single out the significance of this class and the reason for involving
Ω in the notation, we observe that the Ln-a.e. equality w = u0 on Rn \Ω implies

Dw
(
Rn \Ω

)
= (∇u0)Ln

(
Rn \Ω

)
for all w ∈ BVu0

(
Ω,RN

)
.

Therefore, the relevant, non-prescribed part of Dw is Dw Ω, and we often consider Dw as a
measure on Ω instead of Rn. We also observe that a function w ∈ BVu0

(
Ω,RN

)
generally

satisfies |D(w−u0)|
(
Rn \Ω

)
= 0, but not necessarily |D(w−u0)|(∂Ω) = 0. Just for illustration

purposes, we also introduce a notation for the class of functions for which the last stronger
condition holds, namely we set

BVu0(Ω,R
N) ..=

{
w ∈ BVu0

(
Ω,RN

)
: |D(w−u0)|(Rn \Ω) = 0

}
.

Then we have W1,1
u0

(Ω,RN) ⊂ BVu0(Ω,R
N) ⊂ BVu0

(
Ω,RN

)
⊂ u0 + BV(Rn,RN), all these

classes are non-empty, and most importantly it is easy to check that BVu0

(
Ω,RN

)
is closed2

2One should imagine that BVu0

(
Ω,RN

)
is even the closure of W1,1

u0
(Ω,RN ) and thus also of BVu0

(Ω,RN )
in the reasonable BV topologies. Indeed, under mild assumptions on Ω, Theorem A.2 guarantees that
BVu0

(
Ω,RN

)
is the closure of W1,1

u0
(Ω,RN ) under strict convergence in u0 +BV(Rn,RN ). Moreover, even if Ω

is merely open with countably Hn−1-rectifiable and locally Hn−1-finite boundary ∂Ω, (a simplified version of)
the arguments in [P4, Section 4] and [P3, Section 3.3] can be adapted to show that BVu0

(
Ω,RN

)
is still the

sequential weak-∗ closure of W1,1
u0

(Ω,RN ) in u0 + BV(Rn,RN ). We do not provide a proof of the last assertion,
which is not relevant for the subsequent considerations.
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20 CHAPTER 2. Generalized Dirichlet problem and existence of BV minimizers

under weak-∗ convergence in u0 + BV(Rn,RN), while BVu0(Ω,R
N) need not have the last

closedness property. Moreover, since we assumed only (2.13), for arbitrary w ∈ BVu0

(
Ω,RN

)
,

the measure Dw ∈ RMloc(R
n,RN×n) is not necessarily finite on all of Rn. However, imposing

the assumption
Ln(∂Ω) = 0

from now on, at least Dw Ω ∈ RM(Rn,RN×n) is always globally finite.
With these conventions, it is straightforward to rephrase the Dirichlet problem in BV as

follows. We define

F [w] ..=

∫
Ω

f( · ,Dw) for w ∈ BVu0

(
Ω,RN

)
, (2.14)

where the right-hand side is understood as a functional of measures in the sense of Definition 2.1.
Then, as the BV version of the Dirichlet problem (2.12), we study the

minimization of F in BVu0

(
Ω,RN

)
. (2.15)

It follows from (2.7) that F coincides with F on W1,1
u0

(Ω,RN), and thus the minimization
problems (2.12) and (2.15) are always related by

inf
BVu0 (Ω,RN )

F ≤ inf
W1,1
u0

(Ω,RN )
F . (2.16)

In order to unravel the true meaning of (2.15), let us return, for a moment to the specific case
of a bounded Lipschitz domain Ω. In this case, BVu0(Ω,R

N) is the collection of all functions
w ∈ BV(Ω,RN) whose interior trace wint

∂Ω on ∂Ω equals the trace of u0 on ∂Ω. However, since
BV functions may feature jumps along good hypersurfaces, the class BVu0

(
Ω,RN

)
is actually

the whole space BV(Ω,RN), and for w ∈ BVu0

(
Ω,RN

)
the boundary parts of Dw and F need

not vanish, but rather take the forms

Dw ∂Ω =
((
u0−wint

∂Ω

)
⊗ nΩ

)
Hn−1 ∂Ω , (2.17)∫

∂Ω

f( · ,Dw) =

∫
∂Ω

f∞
(
· ,
(
u0−wint

∂Ω

)
⊗ nΩ

)
dHn−1 , (2.18)

where nΩ denotes the (Hn−1-a.e. on ∂Ω defined) outward unit normal to Ω. Thus, in this
case, the admissible class BVu0

(
Ω,RN

)
is independent of the boundary datum u0, and in-

stead u0 affects, through the way in which we understand Dw on ∂Ω, the functional F . This
can indeed be seen as a penalization procedure, which does not entirely rule out functions
w ∈ BV

(
Ω,RN

)
\ BV(Ω,RN) with ‘wrong’ boundary values, but merely penalizes them, in

comparison with functions w ∈ BV(Ω,RN) having ‘right’ boundary values, through the occur-
rence of the (usually positive) extra term (2.18). The examples discussed after Corollary 1.2 in
the introduction show that this procedure is essentially unavoidable (as long as one does not
impose more restrictive assumptions on Ω and u0).

In case of a rough open Ω, the boundary values u0 affect, in addition to the functional
F , also the class BVu0

(
Ω,RN

)
. For instance, if Ω has sharp external cusps, one can show

by examples that the class BVu0

(
Ω,RN

)
can be strictly smaller than BV(Ω,RN) and can

also depend on u0. However, even then BVu0

(
Ω,RN

)
is closed under weak-∗ convergence in

u0 + BV(Rn,RN), and it should be viewed as a technically very useful BV counterpart of the
Dirichlet class W1,1

u0
(Ω,RN).
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2.4 Existence of BV minimizers

Relying on the results and conventions of the previous sections, we can now prove the existence
of minimizers for the problem (2.15). We come out with the following existence result which is
essentially a revision of [71, Theorem 1.3]. The technical details of the statement resemble the
ones of [P3, Theorem B.2].

Theorem 2.8 (existence of BV minimizers). Consider an open subset Ω of Rn such that we
have Ln(∂Ω) = 0 and such that Ω supports the BV0-Poincaré inequality∫

Ω

|w| dx ≤ C|Dw|
(
Ω
)

for all w ∈ BV0

(
Ω
)
, (2.19)

with a constant C <∞. Moreover, consider some u0 ∈W1,1
loc(R

n,RN) with ∇u0 ∈ L1(Ω,RN×n)
and a lower semicontinuous function f : Ω×RN×n → (−∞,∞], which is convex in the second
argument and satisfies the linear coercivity condition

f(x, z) ≥ ε|z| − `(z) for all (x, z) ∈ Ω×RN×n,

with a constant ε > 0 and a linear function ` : RN×n → R. Under these assumptions, whenever
the functional F from (2.14) is finite on some function from BVu0

(
Ω,RN

)
, then there exists

also a minimizer of F in BVu0

(
Ω,RN

)
.

In connection with the BV0-Poincare inequality (2.19), we point out that it is generally
valid for bounded Ω and that even for unbounded Ω there are comparably simple and sharp
criteria for its availability. Indeed, it is sufficient that, for some δ > 0, the δ-neighborhood of
Ω does not contain balls with arbitrarily large radius, while it is necessary that Ω itself does
not contain balls with arbitrarily large radius; see [P3, Lemma 3.1] for the very simple proof.

The proof of Theorem 2.8 is based on the direct method of the calculus of variations. Indeed,
since the passage from f to the new integrand (x, z) 7→ f(x, z) + `(z) changes the functional F
at most by a constant, we can assume ` ≡ 0. Then we consider a minimizing sequence (wk)k∈N
for F in BVu0

(
Ω,RN

)
. By the coercivity assumption, (Dwk)k∈N is bounded in RM

(
Ω,RN×n),

and by the BV0-Poincaré inequality, (wk−u0)k∈N is bounded in L1(Rn,RN). Thus, using weak-∗
compactness and Rellich’s theorem, we can pass to a subsequence such that wk` converges Ln-
a.e. onRn to u ∈ BVu0

(
Ω,RN

)
and such that Dwk` weakly-∗ converges to Du in RM

(
Ω,RN×n).

At this stage, Corollary 2.3 implies

F [u] ≤ lim inf
`→∞

F [wk` ] = inf
BVu0 (Ω,RN )

F ,

and the proof is complete.

In addition to the preceding existence theorem, it is clearly desirable to know that a min-
imizer in the W1,1 framework — if it exists, which is indeed only known in specific situations
— is always a BV minimizer as well. In other words, we would like to ensure that the class
of W1,1 minimizers is contained in the class of BV minimizers. This inclusion follows once we
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22 CHAPTER 2. Generalized Dirichlet problem and existence of BV minimizers

show that the inequality (2.16) is actually an equality, and this coincidence, in turn, can be
proven if we impose on ∂Ω the mild regularity assumption

1Ω ∈ BVloc(R
n) and |D1Ω| = Hn−1 ∂Ω . (2.20)

Indeed, (2.20) is only relevant in order to have the approximations of Theorem A.2 at hand.
Thus, we postpone a more detailed discussion of this hypothesis and its necessity to Appendix A,
and for the moment we just record the following facts. The assumption (2.20) is much weaker
than the requirement that Ω has a Lipschitz boundary, but slightly stronger than the condition
that Ω has merely locally finite perimeter. Moreover, (2.20) implies that ∂Ω is Hn−1-σ-finite
and in particular that we have Ln(∂Ω) = 0.

Utilizing (2.20) and Theorem A.2, we can establish the following addendum to Theorem 2.8.
The precise statement is close in spirit to [71, Section 2], and its first part has been recorded
in [P3, Section 2.2].

Theorem 2.9 (consistency of the BV framework). Consider an open subset Ω of Rn with
(2.20) and a function u0 ∈ W1,1

loc(R
n,RN) with ∇u0 ∈ L1(Ω,RN×n). Moreover, suppose that

a Carathéodory function f : Ω × RN×n → R satisfies (with RN×n in place of Rm) the growth
condition (2.9) with Ψ ∈ L1(Ω) and the continuity assumption (2.8). Then, for the functionals
F and F in (2.11) and (2.14), we have

inf
BVu0 (Ω,RN )

F = inf
W1,1
u0

(Ω,RN )
F . (2.21)

If, in addition, Ψ is positive and bounded away from 0 on every bounded subset of Ω, then u
minimizes F in BVu0

(
Ω,RN

)
if and only if there exists a minimizing sequence (wk)k∈N for

F in W1,1
u0

(Ω,RN) such that ‖wk−u‖L1(Ω,RN ) converges to 0 and such that Dwk converges Ψ-

strictly in RM
(
Ω,RN×n) to Du. Finally, the preceding characterization remains valid if we

add the requirement that ∇wk converges Ln-a.e. to ∇u.

We find it worth pointing out that, in contrast to Theorem 2.8, Theorem 2.9 does not
require a convexity assumption on f .

Proof of Theorem 2.9. Theorem A.2 yields, for every w ∈ BVu0

(
Ω,RN

)
, a sequence (wk)k∈N

in W1,1
u0

(Ω,RN) such that ‖wk−w‖L1(Ω,RN ) converges to 0 and Dwk converges Ψ-strictly in

RM
(
Ω,RN×n) to Dw. Moreover, under the positivity assumption for Ψ, Theorem 2.7 implies

that, for such a sequence, we always have

lim
k→∞

F [wk] = F [w] .

All the claims of Theorem 2.9 follow easily from the preceding observations (where in order to
verify (2.21), we can always enlarge Ψ slightly and assume, without loss of generality, that the
positivity assumption is satisfied).

Finally, we remark that the proofs of Theorem 2.8 and Theorem 2.9 show slightly more,
namely they provide, in case of the Dirichlet problem, a first-order analogue of the last remark
in Section 2.2: Under the hypotheses of both theorems (apart from the Poincaré assumption),
the functional F on BVu0

(
Ω,RN

)
is the Lebesgue-Serrin extension (that is, the sequentially

weakly-∗ lower semicontinuous envelope) of the functional F on W1,1
u0

(Ω,RN).
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Chapter 3

Convex duality in the BV setting

This chapter is concerned with the duality theory for BV minimizers from [P3]. The main result
is the characterization of extremal pairs in Theorem 3.8, which crucially relies on Anzellotti’s
concept [13, 14] of a pairing between gradient measures of BV functions and divergence-free
L∞ vector fields. In addition, our considerations implicate the uniqueness criterion of Corol-
lary 3.14, which is particularly useful in the later Section 4.3. The theory presented here
partially generalizes previous considerations of Ekeland & Temam [60], Temam & Strang [126],
Kohn & Temam [85, 86], Anzellotti & Giaquinta [19, 20], Hardt & Kinderlehrer [80], Anzellotti
[15, 17], Bouchitté & Dal Maso [37], Seregin [118, 119, 120], Bildhauer & Fuchs [32, 33], and
Bildhauer [27, 28, 30].

3.1 Dual problem and duality formula

The concept of convex duality relies, first of all, on the following notion of duality for integrands,
which is known as Legendre transformation, Fenchel transformation, convex conjugation, or
convex duality.

Definition 3.1 (convex conjugate). For a set X and a function f : X × Rm → [−∞,∞], the
(convex) conjugate f ∗ : X × Rm → [−∞,∞] of f (with respect to the second variable z) is
defined by

f ∗(x, z∗) ..= sup
z∈RN×n

[
z∗ · z − f(x, z)

]
for (x, z∗) ∈ X ×Rm ,

where z∗ · z stands for the Euclidean inner product of z∗ and z in Rm. Moreover, the function
f ∗∗ ..= (f ∗)∗ is called the bi-conjugate of f (with respect to the z-variable).

We record the following elementary properties of f ∗ and f ∗∗. If we have f(x, · ) 6≡ ∞,
then f ∗(x, · ) is lower semicontinuous and convex with values in (−∞,∞] (and otherwise
f ∗(x, · ) ≡ −∞). Moreover, if such a function exists at all, then f ∗∗(x, · ) is the largest lower
semicontinuous, convex function Rm → (−∞,∞] which is nowhere larger than f(x, · ) (and
otherwise f ∗∗(x, · ) ≡ −∞). The semicontinuity requirement in the characterization of f ∗∗ can
clearly be omitted in case of finite-valued f , and hence, in this case, we call f ∗∗ the convexi-
fication of f with respect to the z-variable. Finally, combining the preceding properties, one
deduces the general validity of the equality f ∗∗∗ = f ∗.
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24 CHAPTER 3. Convex duality in the BV setting

For an open subset Ω of Rn and u0 ∈ W1,1
loc(Ω,R

N) with ∇u0 ∈ L1(Ω,RN×n), we consider
again the minimization problem for the functional F , defined by

F [w] ..=

∫
Ω

f( · ,∇w) dx for w ∈W1,1
u0

(Ω,RN) , (3.1)

where the Borel integrand f : Ω×RN×n → R satisfies

|f(x, z)| ≤ Ψ(x) + Γ|z| for (x, z) ∈ Ω×RN×n (3.2)

with Ψ ∈ L1(Ω) and Γ <∞.
The minimization problem is closely related to a dual problem in the space

L∞div(Ω,RN×n) ..= {τ ∈ L∞(Ω,RN×n) : div τ ≡ 0 in D′(Ω,RN)} ,

where the (row-wise) distributional divergence, acting on RN×n-matrix fields τ , is nothing but
the formal adjoint of the gradient operator on C∞cpt(Ω,R

N). Under (3.2), the dual integrand
satisfies f ∗(x, z∗) =∞ whenever we have |z∗| > Γ and Ψ(x) <∞, and setting

Ru0 [τ ] ..=

∫
Ω

[
τ · ∇u0 − f ∗( · , τ)

]
dx for τ ∈ L∞div(Ω,RN×n) , (3.3)

the dual problem then consists in the

maximization of Ru0 in L∞div(Ω,RN×n) . (3.4)

We remark that the setup and the investigation of (3.4) are to a large extent motivated by ap-
plications of variational calculus in plasticity theory where the dual maximizers are interpreted
as fields of stresses; compare [60, 126, 85, 86, 19, 20, 80, 15, 118, 120], for instance. However,
we here intend to explain the relevance of (3.4) on a purely mathematical level. To this end,
observe that, for all w ∈W1,1

u0
(Ω,RN) and all τ ∈ L∞div(Ω,RN×n), the definition of f ∗ gives

f( · ,∇w) ≥ τ · ∇w − f ∗( · , τ) Ln-a.e. on Ω , (3.5)

while integration by parts yields∫
Ω

[
τ · ∇w − f ∗( · , τ)

]
dx =

∫
Ω

[
τ · ∇u0 − f ∗( · , τ)

]
dx = Ru0 [τ ] . (3.6)

Combining (3.5) and (3.6), we find

inf
W1,1
u0

(Ω,RN )
F ≥ sup

L∞div(Ω,RN×n)

Ru0 . (3.7)

As the first main insight of the convex duality theory, if f is convex in z, then (3.7) turns out
to be an equality; this statement and similar ones for various classes of variational problems
are extensively discussed in the monograph [60]. For our particular case, one can read off the
following theorem.
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3.1. Dual problem and duality formula 25

Theorem 3.2 (duality formula and existence of a dual maximizer). Suppose that Ω is open
in Rn and that the Borel integrand f : Ω × RN×n → R is convex in z and satisfies the linear
growth condition (3.2) with Ψ ∈ L1(Ω). Moreover, consider a function u0 ∈ W1,1

loc(Ω,R
N) with

∇u0 ∈ L1(Ω,RN×n). Then, one has

inf
W1,1
u0

(Ω,RN )
F = sup

L∞div(Ω,RN×n)

Ru0 ∈ [−∞,∞) , (3.8)

and the supremum on the right-hand side is, in fact, a maximum.

One possible proof of Theorem 3.2 is illustrated in Section 3.3.
Clearly, a benefit of (3.8) lies in the identification of the generally solvable variational

problem on the right-hand side, which shares the target value of the often unsolvable problem
on the left-hand side. Beyond that, we now explain that solutions of the two problems are
even coupled by pointwise extremality relations, which generalize the Euler equation (1.3) and
remain valid even for non-differentiable integrands f such as the total variation integrand. To
this end, we make use of the following basic concept of convex analysis.

Definition 3.3 (subdifferential). For a set X and a function f : X × Rm → [−∞,∞], the
subdifferential ∂zf(x, z) of f (with respect to the z-variable) at a point (x, z) ∈ X × Rm is
defined as

∂zf(x, z) ..= {z∗ ∈ Rm : f(x, ξ) ≥ f(x, z) + z∗ · (ξ−z) for all ξ ∈ Rm} .

We also use the abbreviation |∂zf |(x, z) ..= sup{|z∗| : z∗ ∈ ∂zf(x, z)} (and if ∂zf(x, z) is
the empty set, we understand, by convention, |∂zf |(x, z) = 0). Later on, when considering
x-independent functions f : Rm → [−∞,∞], we omit the subscript z and understand ∂f and
|∂f | in the evident way.

Once more, we put some elementary properties on record. If f(x, · ) is convex on Rm, then
∂zf(x, z) is non-empty for all z ∈ Rm, and if f(x, · ) is differentiable at z ∈ Rm, then one has
∂zf(x, z) ⊂ {∇zf(x, z)}. In particular, if f is both C1 and convex in z, then ∂zf(x, z) equals
the singleton {∇zf(x, z)} for all (x, z) ∈ X × Rm. Furthermore, from the definitions of the
convex conjugate and the subdifferential, one reads off the equivalence

z∗ ∈ ∂zf(x, z) ⇐⇒ f(x, z) + f ∗(x, z∗) = z∗ · z (3.9)

for x ∈ X and z, z∗ ∈ Rm. Finally, if (3.2) is in force, then the subdifferential is evidently
bounded by

|∂zf |(x, z) ≤ Γ whenever (x, z) ∈ X ×Rm with Ψ(x) <∞ . (3.10)

At this stage, we are ready to establish the following pointwise characterization of minimizer-
maximizer pairs.

Corollary 3.4 (extremality relations in W1,1
u0

). Under the assumptions of Theorem 3.2, for

u ∈W1,1
u0

(Ω,RN) and σ ∈ L∞div(Ω,RN×n), one has

u minimizes F in W1,1
u0

(Ω,RN) ,

σ maximizes Ru0 in L∞div(Ω,RN×n)

}
⇐⇒ σ ∈ ∂zf( · ,∇u) holds Ln-a.e. on Ω . (3.11)
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Proof of Corollary 3.4. In view of (3.6) and (3.8), u minimizes F and σ minimizes Ru0 if and
only if there holds ∫

Ω

f( · ,∇u) dx =

∫
Ω

[
σ · ∇u− f ∗( · , σ)

]
dx .

Since (3.5) guarantees a pointwise inequality between the two integrands, the last formula
holds, in turn, if and only if one has equality

f( · ,∇u) = σ · ∇u− f ∗( · , σ) Ln-a.e. on Ω . (3.12)

Finally, taking into account (3.9), the equality (3.12) means precisely that σ ∈ ∂zf( · ,∇u)
holds Ln-a.e. on Ω.

We remark that minimizer-maximizer pairs can in fact be characterized by pointwise ex-
tremality relations in (at least) three basic and equivalent formulations: The first one is given
by the right-hand side of (3.11), the second one is recorded in (3.12), and the third formulation
reads as

∇u ∈ ∂z∗f ∗( · , σ) Ln-a.e. on Ω . (3.13)

Here, (3.13) comes in as an equivalent rephrasing of (3.12), which results from the fact that
f ∗∗ = f holds (by convexity of f in z) and from an application of (3.9) with f ∗ in place of f .

Since minimizers in W1,1
u0

(Ω,RN) need not exist, in general, we next return to the BV

framework and the minimization problem for the functional F , defined by

F [w] ..=

∫
Ω

f( · ,Dw) for w ∈ BVu0(Ω,R
N) . (3.14)

Specifically, we study the relation between the minimization problem for F and the dual problem
in (3.4), and we aim at finding analogues of the duality formula (3.8) and the extremality
relation (3.11). Indeed, the analogue of (3.8) is immediate at this stage. Under the respective
assumptions, we can just combine (2.21) and (3.8) to obtain the BV duality formula

inf
BVu0 (Ω,RN )

F = sup
L∞div(Ω,RN×n)

Ru0 ∈ [−∞,∞) . (3.15)

Obtaining the BV version of the extremality relation (3.11), however, is more elaborate and
will only be accomplished, after the preparations of the subsequent section, in Section 3.3.

3.2 Anzellotti’s pairing of gradient measures

and divergence-free L∞ vector fields

This section deals with the multiplication of a divergence-free L∞ vector field τ ∈ L∞div(Ω,RN×n)
and the gradient measure Dw Ω ∈ RM(Rn,RN×n) of a function w ∈ BVu0

(
Ω,RN

)
. The

product τ · Dw Ω ∈ RM(Rn) of these two objects is only defined in an obvious way if either
τ is continuous on Ω or Dw Ω is absolutely continuous with respect to Ln Ω. Indeed, the
common feature of these two cases is that τ is |Dw|-a.e. on Ω (well-)defined, while in general
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this property is not at hand. However, taking an integration-by-parts formula as a motivation,
one can define a generalized product even without any extra assumption on τ and w. This
is achieved by the following up-to-the-boundary version, specified in [P3, Definition 5.1], of
Anzellotti’s pairing from [13, Definition 1.4].

Definition 3.5 (up-to-the-boundary pairing of τ and Dw). Suppose that Ω is open in Rn, and
consider u0 ∈W1,1

loc(R
n,RN) with ∇u0 ∈ L1(Ω,RN), τ ∈ L∞div(Ω,RN×n), and w ∈ BVu0

(
Ω,RN

)
.

Then the pairing of τ and Dw is the distribution Jτ,DwK ∈ D′(Rn), defined by

Jτ,DwK(ϕ) ..=

∫
Ω

ϕτ · ∇u0 dx−
∫

Ω

τ · ((w − u0)⊗∇ϕ) dx for ϕ ∈ C∞cpt(R
n) . (3.16)

We emphasize that, at this stage, the up-to-the boundary feature lies in the fact that we
work with a distribution on Rn, not on Ω and thus require ϕ ∈ C∞cpt(R

n), but not sptϕ ⊂ Ω.
Under the mild regularity hypothesis

1Ω ∈ BVloc(R
n) and |D1Ω| = Hn−1 ∂Ω . (3.17)

of Appendix A, the pairing Jτ,DwK exhibits reasonable properties, which we record in the
following. Most basically, the pairing is a measure supported in Ω.

Lemma 3.6 (the pairing is a measure). Suppose that Ω is open in Rn with (3.17), and consider
u0 ∈ W1,1

loc(R
n,RN) with ∇u0 ∈ L1(Ω,RN×n), τ ∈ L∞div(Ω,RN×n), and w ∈ BVu0

(
Ω,RN

)
.

Then the pairing Jτ,DwK is represented by a finite signed Radon measure on Rn, which is also
denoted by Jτ,DwK ∈ RM(Rn). Furthermore, we have |Jτ,DwK|

(
Rn \Ω

)
= 0 and

|Jτ,DwK| ≤ ‖τ‖L∞(Ω,RN×n)|Dw| (3.18)

as an inequality of measures.

Proof. Working with the approximations wk ∈ u0+ C∞cpt(Ω,R
N) of Theorem A.2 (applied for

Ψ ≡ 0), and using integration by parts, we deduce from Definition 3.5 the estimate

|Jτ,DwK(ϕ)| ≤ ‖τ‖L∞(Ω,RN×n)|Dw|
(
Ω
)

sup
Ω
|ϕ| for all ϕ ∈ C∞cpt(R

n) . (3.19)

Consequently, Jτ,DwK extends to a continuous linear functional on C0
cpt(R

n) with the sup-
norm, and the measure representation follows from the Riesz representation theorem. The
other claims are now immediate consequences of (3.19).

It is easily seen from the constancy theorem and Definition 3.5 that the pairing is a local
operation. Precisely, this means that, for an open set U in Rn, the equalities τ1 = τ2 on U ∩Ω
and Dw1 = Dw2 on U ∩Ω imply Jτ1,Dw1K(ϕ) = Jτ2,Dw2K(ϕ) for ϕ ∈ C∞cpt(U) and equivalently,
in case of (3.17), Jτ1,Dw1K = Jτ2,Dw2K as measures on U . From the locality property, we
deduce, in particular, the very plausible assertion that the restriction of the pairing to Ω does
not depend on the boundary values u0.

In the two simpler cases mentioned at the beginning of the section, the pairing simplifies as
expected. Indeed, integrating by parts in (3.16), it follows directly that we have

Jτ,DwK = (τ · ∇w)Ln Ω for w ∈W1,1
u0

(Ω,RN) . (3.20)

27



28 CHAPTER 3. Convex duality in the BV setting

Moreover, if (3.17) holds and τ is continuous(ly extended) on Ω, we conclude Jτ,DwK = τ ·
Dw Ω essentially from a localized version of (3.18); compare with Proposition 3.10 and the
explanation following it.

Further convenient properties of the pairing are summarized in the next statement.

Lemma 3.7. Suppose that Ω, u0, τ , and w are as in Lemma 3.6. Then, for the measure
Jτ,DwK ∈ RM(Rn), we have

Jτ,DwK
(
Ω
)

=

∫
Ω

τ · ∇u0 dx , (3.21)

Jτ,DwKa = (τ · ∇w)Ln Ω . (3.22)

Here, Jτ,DwKa denotes the absolutely continuous part of Jτ,DwK with respect to Ln.

Proof. In order to establish (3.21), it suffices to insert in (3.16) test functions ϕ ∈ C∞cpt(R
n)

with 1BR ≤ ϕ ≤ 1, |∇ϕ| ≤ 1 on Rn and then send R→∞.
Turning to (3.22), we fix a common Lebesgue point x0 ∈ Ω of τ and Dw (for the base measure

Ln). Here the Dw-Lebesgue-point property corresponds, by definition, to the existence of a
Lebesgue value ∇w(x0) ∈ RN×n such that we have

lim
%↘0

|Dw −∇w(x0)Ln|(B%(x0))

Ln(B%(x0))
= 0 ,

and the τ -Lebesgue-point property is defined similarly via the existence of a Lebesgue value
τ(x0) ∈ RN×n. Now we take into account that Jτ,DwK is supported in Ω, that Ln(∂Ω) = 0
holds by (3.17), and that Ln-a.e. x0 ∈ Ω satisfies the above requirements. Consequently, (3.22)
follows once we show

lim
%↘0

Jτ,DwK(B%(x0))

Ln(B%(x0))
= τ(x0) · ∇w(x0) . (3.23)

Turning to the verification of (3.23), we first introduce the abbreviation a(x) ..= ∇w(x0)·(x−x0),
for which we observe D(w−a) = Dw − ∇w(x0)Ln and, relying on the locality of the pairing
and (3.20),

Jτ,D(w−a)K = Jτ,DwK− Jτ,DaK = Jτ,DwK− (τ · ∇w(x0))Ln on every ball B%(x0) ⊂ Ω .

With the help of these observations and (3.18), we then estimate, for B%(x0) ⊂ Ω,∣∣∣∣Jτ,DwK(B%(x0))

Ln(B%(x0))
− τ(x0) · ∇w(x0)

∣∣∣∣
≤
∣∣∣∣Jτ,D(w−a)K(B%(x0))

Ln(B%(x0))

∣∣∣∣+

∣∣∣∣−∫
B%(x0)

[
τ − τ(x0)

]
dx · ∇w(x0)

∣∣∣∣
≤ ‖τ‖L∞(Ω,RN×n)

|Dw −∇w(x0)Ln|(B%(x0))

Ln(B%(x0))
+−
∫

B%(x0)

|τ − τ(x0)| dx |∇w(x0)| .

By the choice of x0, the right-hand side of the last estimate vanishes in the limit r ↘ 0. Thus
we arrive at (3.23), and the proof is complete.
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We finally remark that Anzellotti [13, Definition 1.4] has also considered pairing operations
for L∞ vector fields whose divergence does not vanish, but is merely in some Lq. Though these
ideas are not relevant for the purposes of the present treatise, we briefly mention that a forth-
coming joint work of C. Scheven and the author develops an even more general pairing, which
incorporates even L∞ divergence-measure fields. We plan to apply this concept in connection
with a duality theory for irregular-obstacle total variation minimization.

3.3 Extremality relations for BV minimizers

In this section we arrive at the announced BV version of the extremality characterization in
(3.11). The statement imposes a continuity hypothesis on the integrand f : Ω×RN×n → R for
|z| → ∞. It requires that

lim
(x̃,z̃)→(x,z)

t↘0

tf(x̃, z̃/t) exists in R for all (x, z) ∈ Ω× (RN×n \ {0}) . (3.24)

We do not further discuss (3.24) here, but instead we refer the reader to Section 2.2, where a
completely analogous condition has already been introduced in (2.8), and we directly proceed
to the restatement of [P3, Theorem 2.2].

Theorem 3.8 (extremality relations in BVu0). Suppose that Ω is open in Rn with (3.17) and
that the Borel integrand f : Ω × RN×n → R is convex in z and satisfies the linear growth
condition (3.2) with Ψ ∈ L1(Ω) and the continuity condition (3.24). Furthermore, consider
a function u0 ∈ W1,1

loc(R
n,RN) with ∇u0 ∈ L1(Ω,RN×n). Then, for u ∈ BVu0

(
Ω,RN

)
and

σ ∈ L∞div(Ω,RN×n), we have

u minimizes F ,

σ maximizes Ru0

}
⇐⇒


σ ∈ ∂zf( · ,∇u) holds Ln-a.e. on Ω ,

f∞
(
· , dDsu

d|Dsu|

)
=

dJσ,DuKs

d|Dsu|
holds |Dsu|-a.e. on Ω

(3.25)

(where clearly minimality and maximality are understood within the classes BVu0

(
Ω,RN

)
and

L∞div(Ω,RN×n), respectively).

Though the first condition on the right-hand side of (3.25) resembles the one in (3.11), we
emphasize that in the present BV framework it receives a different meaning, since ∇u does not
denote the full gradient of u, but only the density of the absolutely continuous part of Du. With
this interpretation, the validity of the relation σ ∈ ∂zf( · ,∇u) for extremals u and σ has been
observed, previously to [P3], by Seregin [118, 119, 120] and Bildhauer & Fuchs [32, 28, 30],
for instance. However, the corresponding statements in these papers impose various strong
assumptions on f (such as x-independence, strict convexity, and C2-regularity with a bound
for ∇2f) and make use of regularity estimates to obtain the extremality relation for only those
BV minimizers which arise as limits of certain minimizing sequences. In contrast, the proof
of [P3] does not involve any extra regularity, yields the extremality relation for arbitrary BV
minimizers, and thus answers a problem posed in [30, Remark 2.30].
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30 CHAPTER 3. Convex duality in the BV setting

The second relation on the right-hand side of (3.25), the one involving Dsu, is inspired by
ideas of Anzellotti [13, 14, 17]. Indeed, Anzellotti developed (a local version of) the pairing
Jσ,DuK in [13] and the unpublished manuscript [14] and arrived at formulas similar to the above
Dsu-relation in [17, Theorem 1.3]. Though his formulas are stated in a somewhat different
framework (in fact without mention of a dual problem), for sufficiently smooth Ω and f , it is
possible to deduce the validity of the second relation in (3.25) for extremals u and σ from [17,
Theorem 1.3] and the validity of the first relation. In addition, still for sufficiently smooth Ω
and f , Anzellotti [16] has also shown that BV minimizers u are characterized by a suitably
adapted Euler equation (which has subsequently inspired the notion of BV solutions of elliptic
equations in [18, 76]). A common feature of (3.25) and the equation in [16, Section 3] is that
both imply, for differentiable f , the vanishing of the distributional divergence of ∇zf( · ,∇u)
on Ω. However, the information on Dsu does not (or not for an obvious reason) coincide, and
indeed the statements in [16] do neither involve any Anzellotti type pairing nor do they identify
∇zf( · ,∇u) as a dual solution.

All in all, even in view of all these previous results, it seems that Theorem 3.8 is new insofar
that a simple and systematic treatment of both extremality relations and a full characterization
of extremal pairs have not been achieved before.

To finalize the illustration of Theorem 3.8, we point out that several reformulations of the
relations on the right-hand side of (3.25) are possible. So, the ∇u-relation is equivalent to
(3.12) and also to (3.13) (with the present understanding of ∇u). Moreover, in the terminology
of Section 2.1, the Dsu-relation expresses nothing but the equality f∞( · ,Dsu) = Jσ,DuKs of
measures on Ω, and one may also unify both relations in the single equality

f( · ,Du) = Jσ,DuK− f ∗( · , σ)Ln Ω on Ω . (3.26)

Finally, if f is, in addition to the above assumptions, positively 1-homogeneous in z, then we
have

f ∗(x, z∗) =

{
0 if z∗ ∈ ∂zf(x, 0)

∞ otherwise
for (x, z∗) ∈ Ω×RN×n .

In this case, the extremality relations thus simplify to the equality f( · ,Du) = Jσ,DuK, com-
bined with the requirement that f ∗( · , σ) <∞ holds Ln-a.e. on Ω. The simplification applies,
in particular, in case of the total variation, and then the relations read simply as |Du| = Jσ,DuK
together with the Ln-a.e. inequality |σ| ≤ 1 on Ω. This last formulation (with some divergence-
free σ, of course) has been rediscovered and is called the 1-Laplace equation in some more
recent literature, but the corresponding characterization of extremals has been known for quite
some time; compare with the introduction of [86], for instance.

As a corollary of Theorem 3.8 we recover, under more general assumptions, Bildhauer’s
uniqueness result [27, Theorem 7] for the dual problem.

Corollary 3.9 (uniqueness of the dual solution). Assume that Ω, f , and u0 are as in Theo-
rem 3.8 and that moreover f is C1 in z. If a minimizer of F in BVu0

(
Ω,RN

)
exists, then Ru0

has a unique maximizer in L∞div(Ω,RN×n).

We remark that the C1 assumption on f is indeed very natural in order to obtain this
uniqueness result, since this assumption is equivalent with a strict convexity property of f ∗
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3.3. Extremality relations for BV minimizers 31

and of the dual problem. Moreover, we stress that the existence of a BV minimizer is also a
reasonable hypothesis, since Theorem 2.8 yields a sufficient criterion for existence in terms of
mild requirements on Ω and f .

Proof of Corollary 3.9. The existence of a maximizer has already been recorded in Theorem 3.2,
and in view of ∂zf(x, z) = {∇zf(x, z)} it is uniquely determined by the first relation on the
right-hand side of (3.25).

In connection with the proof of Theorem 3.8, two different lines of argument are supplied in
[P3]. The first reasoning works with minimizing sequences in W1,1

u0
(Ω,RN) and widely avoids all

BV and pairing issues. Correspondingly, this reasoning only shows that all pairs of extremals
satisfy the ∇u-relation on the right-hand side of (3.25), but it also comes along with a proof of
the duality formula in Theorem 3.2. The second reasoning crucially works with BV minimizers
and the pairing from Definition 3.5, uses Theorem 3.2 as a prerequisite, and establishes the full
characterization in (3.25). In the following we briefly illustrate both these strategies.

Duality proof. First strategy. We first explain the proof of the duality formula from Theo-
rem 3.2, momentarily only when Ω is bounded and f is C1 in z. In particular, (3.10) then
yields the bound |∇zf(x, z)| ≤ Γ for z ∈ RN×n and Ln-a.e. x ∈ Ω. In view of (3.7), it suffices
to deal with the case that infW1,1

u0
(Ω,RN ) F is finite, and we start our reasoning with a minimizing

sequence for F in W1,1
u0

(Ω,RN), that is a sequence (wk)k∈N in W1,1
u0

(Ω,RN) such that

lim
k→∞

F [wk] = inf
W1,1
u0

(Ω,RN )
F .

We fix a corresponding null sequence (δk)k∈N in (0,∞) with

lim
k→∞

δk‖∇wk−∇u0‖L1(Ω,RN×n) = 0 . (3.27)

By Ekeland’s variational principle [58, 59], applied for each k ∈ N in the complete metric space
W1,1

u0
(Ω,RN) with the δk-multiple of the L1 gradient distance as the metric, we can then find

an improved minimizing sequence (vk)k∈N for F in W1,1
u0

(Ω,RN) with the following properties.
There holds

lim
k→∞

δk‖∇vk−∇wk‖L1(Ω,RN×n) = 0 , (3.28)

and additionally we have, for every k ∈ N, the perturbed minimality property∫
Ω

f( · ,∇vk) dx ≤
∫

Ω

f( · ,∇vk+∇ϕ) dx+ δk‖∇ϕ‖L1(Ω,RN×n) for all ϕ ∈W1,1
0 (Ω,RN) .

As a consequence, we obtain the perturbed Euler equation∣∣∣∣ ∫
Ω

∇zf( · ,∇vk) · ∇ϕ dx

∣∣∣∣ ≤ δk‖∇ϕ‖L1(Ω,RN×n) for all ϕ ∈W1,1
0 (Ω,RN) . (3.29)

We next choose τk ..= ∇zf( · ,∇vk) ∈ L∞(Ω,RN×n) and use (3.9) and integration by parts to
find

F [vk] =

∫
Ω

f( · ,∇vk) dx =

∫
Ω

[
τk · ∇vk − f ∗( · , τk)

]
dx .
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Via (3.29), applied with ϕ = vk−u0 ∈W1,1
0 (Ω,RN), we then arrive at

F [vk] ≤
∫

Ω

[
τk · ∇u0 − f ∗( · , τk)

]
dx+ δk‖∇vk−∇u0‖L1(Ω,RN×n) . (3.30)

Taking into account the boundedness of |∇zf | and possibly passing to a subsequence, we can
assume that τk weakly-∗ converges in L∞(Ω,RN×n) to a vectorfield σ, and thanks to (3.29) we
infer that σ ∈ L∞div(Ω,RN×n) is actually divergence-free. Now we take limits in (3.30). Involving
the weak-∗ upper semicontinuity of the concave functional τ 7→

∫
Ω

[
τ · ∇u0 − f ∗( · , τ)

]
dx and

(3.27)–(3.28), we then end up with

inf
W1,1
u0

(Ω,RN )
F ≤

∫
Ω

[
σ · ∇u0 − f ∗( · , σ)

]
dx = Ru0 [σ] .

Recalling (3.7), we arrive at the claim of Theorem 3.2.
The ∇u-relation in (3.25) can be obtained, still when Ω is bounded and f is C1 in z, by

a closely related argument. Given a pair (u, σ) of extremals, this argument works with the
zero-order functional Fσ, given by

fσ(x, z) ..= f(x, z)− σ(x) · z for (x, z) ∈ Ω×RN×n ,

Fσ[Θ] ..=

∫
Ω

fσ( · ,Θ) dx for Θ ∈ L1(Ω,RN×n) .

Via the estimate f(x, z)−z∗ ·z ≥ −f ∗(x, z∗), Theorem 3.2, and integration by parts, we obtain
the crucial chain of (in)equalities

inf
L1(Ω,RN×n)

Fσ ≥
∫

Ω

[
−f ∗( · , σ)

]
dx = Ru0 [σ]−

∫
Ω

σ · ∇u0 dx

= inf
w∈W1,1

u0
(Ω,RN )

(
F [w]−

∫
Ω

σ · ∇u0 dx

)
= inf

w∈W1,1
u0

(Ω,RN )
Fσ[∇w] .

By Theorem 2.9, there exists a minimizing sequence (wk)k∈N for F in W1,1
u0

(Ω,RN) such that
∇wk converges Ln-a.e. to ∇u, and, taking into account the preceding considerations, (∇wk)k∈N
is a minimizing sequence for the zero-order functional Fσ in L1(Ω,RN×n). Using Ekeland’s
principle once more, we arrive at a refined minimizing sequence (Vk)k∈N for Fσ in L1(Ω,RN×n)
such that Vk still converges Ln-a.e. to ∇u and such that, for some null sequence δk in (0,∞),
we have ∣∣∣∣ ∫

Ω

∇zfσ( · , Vk) · Φ dx

∣∣∣∣ ≤ δk‖Φ‖L1(Ω,RN×n) for all Φ ∈ L1(Ω,RN×n) . (3.31)

It follows by continuity of ∇zfσ in z that τk ..= ∇zfσ( · , Vk) converges Ln-a.e. to ∇zfσ( · ,∇u).
By the boundedness of |∇zfσ|, the same convergence is at hand in Lp(Ω,RN×n), for every
p < ∞, and then (3.31) forces the limit to be 0. Thus, we have shown that ∇zfσ( · ,∇u) ≡ 0
and, equivalently, the targeted extremality relation σ = ∇zf( · ,∇u) hold Ln-a.e. on Ω. We
stress that the Ln-a.e. convergence of ∇wk, which originally results from Theorem A.2 and
comes in implicitly through Theorem 2.9, plays a crucial role in the preceding reasoning.
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3.3. Extremality relations for BV minimizers 33

In order to treat non-differentiable integrands f , [P3, Section 4] provides refinements of the
preceding arguments. Though these refinements apply analogously to the above proof of the
duality formula, we here describe only how they affect the reasoning around (3.31). A main
difficulty in the non-differentiable case is evidently that τk ..= ∇zfσ( · , Vk) is not a meaningful
choice anymore and that the inclusion τk ∈ ∂zfσ( · , Vk) determines τk only partially, so that
one actually needs an additional criterion in order to implement a suitable choice. This is
done in [P3] by exploiting the elementary fact that the convex functions f(x, · ) have one-
sided directional derivatives, which are realized (in their respective direction) by subgradients.
Specifically, this allows to find a null sequence (δk)k∈N and, for every given field of directions
Φ ∈ L1(Ω,RN×n), a field τk ∈ ∂zfσ( · , Vk) of subgradients such that, as a replacement for (3.31),
there holds ∫

Ω

τk · Φ dx ≤ δk‖Φ‖L1(Ω,RN×n) . (3.32)

However, the finding of τk brings up two further technical issues, which we discuss only very
briefly; for more details see [P3, Lemma 4.1, Proposition 4.2].

One issue is that, while the product τk ·Φ is obtained as a directional derivative and is thus
uniquely determined and measurable, there is still some freedom in the choice of τk itself and
it is not obvious from the arguments supplied so far that τk can be chosen as a measurable
function. This measurability problem is overcome in [P3] by reformulating the requirements on
τk in the language of measurable multifunctions, as explained in [113], and then applying the
measurable selection principle [113, Theorem 1.C].

The second issue is that the above explanations yield, for every Φ ∈ L1(Ω,RN×n), a cor-
responding τk, but in order to conclude the proof one needs to find, possibly for smaller δk, a
single τk which works for all Φ ∈ L1(Ω,RN×n). Restricting the considerations from L1 vector
fields to Lp ones with p > 1, it is shown in [P3] that the relevant exchange of quantifiers boils

down to a (weak-∗) separation problem for a convex set and a point in L
p
p−1 . The separation

problem, in turn, is then solved via the Hahn-Banach-Mazur theorem and the reflexivity of Lp.
Once we have found τk ∈ L∞(Ω,RN×n) such that τk ∈ ∂zfσ( · , Vk) holds Ln-a.e. on Ω and

such that (3.32) holds for all Φ ∈ Lp(Ω,RN×n), the proof of the extremality relation continues
essentially as in the differentiable case. Indeed, τk still converges to 0, and a continuity property
of subgradients ensures the Ln-a.e. inclusion 0 ∈ ∂zfσ( · ,∇u) on Ω in the limit, so that we arrive
at the Ln-a.e. relation σ ∈ ∂zf( · ,∇u) on Ω.

Finally, the adaption of the above methods to unbounded domains Ω with possibly infinite
Ln-measure causes some, but comparably minor technical problems, which we do not discuss
here. For all further details we refer once more to [P3, Section 4].

Duality proof. Second strategy. Next we describe the proof of the full characterization of ex-
tremality in (3.25). The main difficulty in this regard is to understand the |Dw|-a.e. behavior of
the pairing Jτ,DwK and obtain an analogue of the basic inequality (3.5) for the singular parts.
Once this is achieved, the remaining arguments are, in principle, analogous to the simple proof
of Corollary 3.4.

Indeed, for Lipschitz domains Ω in the scalar case N = 1, the |Dw|-a.e. behavior of Jτ,DwK
is very accurately described by the representation formula [14, Theorem 3.6] in an unpublished
manuscript of Anzellotti, and we could base our reasoning on a suitable adaption of this formula.
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34 CHAPTER 3. Convex duality in the BV setting

However, in order to avoid several related technicalities, we prefer to use only the weaker
information in the following proposition, which is a restatement of [P3, Theorem 5.2] and still
suffices for our purposes.

Proposition 3.10 (|Dw|-a.e. density control on Jτ,DwK). Suppose that Ω is open in Rn with
(3.17), and consider u0 ∈ W1,1

loc(R
n,RN) with ∇u0 ∈ L1(Ω,RN×n), τ ∈ L∞div(Ω,RN×n), w ∈

BVu0

(
Ω,RN

)
, and a common Lebesgue point x0 ∈ Ω of dDw

d|Dw| and dJτ,DwK
d|Dw| (for the base measure

|Dw|), where all measures are understood as measures on Ω. If, for some closed convex set K
in RN×n, there holds

τ ∈ K Ln-a.e. on a neighborhood of x0 in Ω ,

then there exists a
z∗0 ∈ K

such that we have
dJτ,DwK

d|Dw|
(x0) = z∗0 ·

dDw

d|Dw|
(x0) .

Basically, we have already seen that Proposition 3.10 holds in the case that K is a ball
in RN×n: After reducing to the case that the center of the ball is 0, the statement follows
from a localized version of the previous estimate (3.18), namely from |Jτ,DwK|

(
U ∩ Ω

)
≤

‖τ‖L∞(U∩Ω,RN×n)|Dw|
(
U ∩ Ω

)
for open neighborhoods U in Rn. In the general case, Proposi-

tion 3.10 is established by using the smooth approximations wk of Theorem A.2, by suitably
decomposing the products τ · ∇wk in the directions parallel and orthogonal to dDw

d|Dw|(x0), and
by some elementary estimations. The implementation of this reasoning has been carried out in
[P3, Section 5] and is not detailed here.

Imposing the assumptions of Theorem 3.8 on Ω, f , and u0, but still working with arbitrary
competitors w ∈ BVu0

(
Ω,RN

)
and τ ∈ L∞div(Ω,RN×n), we next claim that Proposition 3.10

induces the following decisive consequence: Whenever f ∗( · , τ) < ∞ holds Ln-a.e. on Ω, then
we have the inequality of measures

f∞( · ,Dw) ≥ Jτ,DwK on Ω . (3.33)

Once (3.33) is at hand, we keep only the information about the singular parts

f∞( · ,Dsw) ≥ Jτ,DwKs on Ω ,

and, bearing (3.22) in mind, we recombine this with (3.5) to

f( · ,Dw) ≥ Jτ,DwK− f ∗( · , σ)Ln Ω on Ω . (3.34)

In order to explain now how (3.33) follows from Proposition 3.10, we first consider the
simpler case that f does not depend of x. It then suffices to reason as follows. By (3.5), for
Ln-a.e. x ∈ Ω and all (t, z) ∈ (0,∞)×RN×n, we have tf(z/t) ≥ τ(x) · z − tf ∗(τ(x)). Sending
t↘ 0 and exploiting the finiteness requirement for f ∗(τ), we conclude

τ(x) ∈ ∂zf∞(0) for Ln-a.e. x ∈ Ω .
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Fixing a common Lebesgue point x0 ∈ Ω of dDw
d|Dw| and dJτ,DwK

d|Dw| , we now apply Proposition 3.10

with the closed convex set K ..= ∂zf
∞(0) ⊂ RN×n. We thus find some z∗0 ∈ ∂zf∞(0) with

dJτ,DwK
d|Dw|

(x0) = z∗0 ·
dDw

d|Dw|
(x0) ≤ f∞

(
dDw

d|Dw|
(x0)

)
.

Exploiting the validity of the last inequality for |Dw|-a.e. point x0 in Ω and recalling (2.2), we
infer

Jτ,DwK ≤ f∞
(

dDw

d|Dw|

)
|Dw| = f∞(Dw) ,

and we have established (3.33) in the simpler, x-independent case.
For an x-dependent integrand f , the derivation of (3.33) is slightly more complicated,

since also the closed convex sets Kx
..= ∂zf

∞(x, 0) ⊂ RN×n vary with x and the situation of
Proposition 3.10 with a fixed K is not directly at hand. However, to overcome this point,
it suffices to observe that, by a short and elementary argument [P3, Lemma 5.4], Kx is set-
upper-semicontinuous in x. Relying on this observation and applying Proposition 3.10 to
neighborhoods of Kx0 , it is straightforward to establish (3.33) also for the general case.

Once (3.33) and thus also (3.34) are established, we proceed to the final proof of the equiv-
alence (3.25) for σ ∈ L∞div(Ω,RN×n) and u ∈ BVu0

(
Ω,RN

)
. It follows from (3.15) that (u, σ)

is a minimizer-maximizer pair if and only if we have F [u] = Ru0 [σ]. The last equality, in turn,
is now rephrased with the help of (3.21); it holds if and only if we have∫

Ω

f( · ,Du) = Jσ,DuK
(
Ω
)
−
∫

Ω

f ∗( · , σ) dx . (3.35)

Since (3.35) implies Ln-a.e. finiteness of f ∗( · , σ), the inequality (3.34) is at hand for the terms
in (3.35), and in view of this pointwise inequality, (3.35) is finally equivalent with the pointwise
equality

f( · ,Du) = Jσ,DuK− f ∗( · , σ)Ln Ω on Ω .

Since we already observed in (3.26) that the formula in the last line is just a reformulation of
those on the right-hand side of (3.25), this finishes the proof of Theorem 3.8.

3.4 Uniqueness of BV minimizers via a duality criterion

In this section we first discuss criteria, which allow to read off uniqueness and regularity results
for BV minimizers from properties of the dual maximizers. As the final — and most interesting
— outcome of these considerations we obtain the uniqueness criterion in Corollary 3.14, which
does not, anymore, involve the dual problem.

In order to proceed to the statements, we first introduce some convenient terminology. For
an open subset Ω of Rn, a point x0 ∈ Ω, and a function η : Ω→ Rm, we write lim supx→x0{η(x)}
for the (necessarily closed) set of all cluster points of sequences of the form (η(xk))k∈N where
(xk)k∈N is a sequence in Ω with limit x0. If τ is a Lebesgue class of functions from Ω to Rm, we
understand lim supx→x0{τ(x)} as the (still closed) intersection of all sets lim supx→x0{η(x)}}
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where η is a representative of τ . Moreover, for a set X, a function f : X × Rm → [−∞,∞],
and x0 ∈ X, we abbreviate

Im ∂zf(x0, · ) ..= {∂zf(x0, z) : z ∈ Rm} ⊂ Rm . (3.36)

With these conventions, we now restate [P3, Theorem 2.4].

Theorem 3.11 (duality criterion for the absence of singular parts). Suppose that Ω is open in
Rn with (3.17) and that the Borel integrand f : Ω×RN×n → R is convex in z and satisfies the
linear growth condition (3.2) with Ψ ∈ L1(Ω) and the continuity condition (3.24). Furthermore,
consider u0 ∈ W1,1

loc(R
n,RN) with ∇u0 ∈ L1(Ω,RN×n), and assume that u minimizes F in

BVu0

(
Ω,RN

)
and that σ minimizes Ru0 in L∞div(Ω,RN×n). If A is a Borel subset of Ω and

lim supx→x0{σ(x)} is contained in the interior of Im ∂zf(x0, · ) for |Dsu|-a.e. x0 ∈ A, then we
necessarily have |Dsu|(A) = 0.

The proof of Theorem 3.11 is closely related to the second strategy from the previous section.
In particular, it makes use of the following statement, which reproduces [P3, Lemma 5.6] and
complements the crucial inequality (3.33) in the previous reasoning.

Lemma 3.12. Suppose that Ω, f , u0 are as in Theorem 3.11, and consider τ ∈ L∞div(Ω,RN×n),

w ∈ BVu0

(
Ω,RN

)
, and a common Lebesgue point x0 ∈ Ω of dDw

d|Dw| and dJτ,DwK
d|Dw| (for the base mea-

sure |Dw|), where once more all measures are regarded as measures on Ω. If lim supx→x0{τ(x)}
is contained in the interior of Im ∂zf(x0, · ), then we have the strict inequality

f∞
(
x0,

dDw

d|Dw|
(x0)

)
>

dJτ,DwK
d|Dw|

(x0) .

The deduction of Lemma 3.12 from Proposition 3.10 is implemented in a similar spirit as
the one of (3.33). We omit the details, which can be found in [P3, Section 5].

The point of Lemma 3.12 is that its strict inequality is, as far as the singular parts are
concerned, incompatible with the extremality relations. Indeed, under the assumption of The-
orem 3.11, the lemma implies, for the minimizer-maximizer pair (u, σ), the strict inequality

f∞
(
· , dDsu

d|Dsu|

)
>

dJσ,DuKs

d|Dsu|
|Dsu|-a.e. on A ,

and this is only compatible with the Dsu-relation in (3.25) if we have |Dsu|(A) = 0. Thus, we
arrive at the claim of Theorem 3.11.

As a corollary of Theorem 3.11 we recover, under slightly different assumptions, a result
of Bildhauer [30, Theorem A.9, Remark A.10], which has previously been established by a
different strategy based on variations for the dual problem.

Corollary 3.13 (continuity of σ implies uniqueness of Du). Suppose that Ω, f , Ψ, u0 are as
in Theorem 3.11 and that, additionally, f(x, · ) : RN×n → R is a strictly convex function for
all x ∈ Ω. If Ru0 has a continuous minimizer σ in L∞div(Ω,RN×n) such that σ(x) lies in the
interior of Im ∂zf(x, · ) for all x ∈ Ω, then all minimizers u and v of F in BVu0

(
Ω,RN

)
are

necessarily in W1,∞
loc (Ω,RN), and ∇u = ∇v holds Ln-a.e. on Ω.
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Proof. Theorem 3.11 gives |Dsu|(Ω) = 0, and uniqueness of ∇u follows straightforwardly from
the strict convexity of f . Finally, the remaining claim ∇u ∈ L∞loc(Ω,R

N×n) follows from the
validity, under the present assumptions, of the following convex analysis facts (compare [P3,
Proposition 3.8, Lemma 3.9] for elementary proofs): The set

Gf
..= {(x, z∗) ∈ Ω×RN×n : z∗ ∈ Im ∂zf(x, · )}

is open in Ω × RN×n, and ∇z∗f
∗ exists and is locally bounded on Gf . With these assertions

and the extremality relation ∇u = ∇z∗f
∗( · , σ) from (3.13) at hand, local boundedness of ∇u

follows by taking into account the continuity of the mapping Ω→ Gf , x 7→ (x, σ(x)).

We point out that, in Corollary 3.13, continuity of σ is assumed only on Ω, but not up to
the boundary. Correspondingly, the conclusion gives |Dsu|(Ω) = 0 and u ∈ u0 + W1,1(Ω,RN),
but not |Dsu|(∂Ω) = 0 or u ∈W1,1

u0
(Ω,RN).

The most important aspect of Theorem 3.11 and Corollary 3.13 is the following uniqueness
criterion, which is formulated only in terms of BV minimizers and does not involve the dual
solution σ anymore. This criterion is conveniently applied in the more concrete situation of the
eventual Corollary 4.5.

Corollary 3.14 (a C1 minimizer is unique modulo constants in BVu0). Suppose that Ω, f , Ψ,
u0 are as in Theorem 3.11 and, additionally, that Ω is connected, that f(x, · ) : RN×n → R is
a strictly convex C1 function for all x ∈ Ω, and that ∇zf is continuous on Ω×RN×n. If F has
a minimizer in BVu0

(
Ω,RN

)
, which is C1 on Ω, then, for each two minimizers u and v of F

in BVu0

(
Ω,RN

)
, there exists a constant y ∈ RN such that u = v + y holds Ln-a.e. on Ω.

Proof. In view of Theorem 3.81 and Corollary 3.9, the existence of the C1 minimizer and the
continuity of ∇zf show that the unique maximizer σ ..= ∇zf( · ,∇u) of Ru0 in L∞div(Ω,RN×n) is
continuous. Therefore, the claim follows from Corollary 3.13 and the constancy theorem.

3.5 Duality for some non-convex cases

In this section, we point out that the duality results of Sections 3.1 and 3.3 remain valid in
some non-convex cases. While we believe that this feature is actually worth recording, we also
emphasize that its practicability is limited, since there are no general existence theorems for
these cases at hand.

In what follows, we restrict2 ourselves to the case that the domain Ω and the function Ψ in
(3.2) are bounded. We utilize the concept of the quasiconvexification, which is also known as
the quasiconvex envelope or the quasiconvex hull and is defined as follows. For a Carathéodory
integrand f : Ω×RN×n → R, its quasiconvexification Qf : Ω×RN×n → [−∞,∞) (with respect
to the z-variable) is given by

Qf(x, z) ..= sup{g(z) : g : RN×n → R is quasiconvex with g ≤ f(x, · ) on RN×n}
1We find it worth pointing out that the simpler extremality relation of Corollary 3.4 cannot be used at this

point, since we do not assume that the C1 minimizer realizes the boundary values given by u0.
2The reason for this slight restriction is that the relaxation results on which we rely are only available in

the literature for bounded Ω and Ψ. It seems very likely that these boundedness assumptions can actually be
dropped, but we do not want to enter into a technical discussion of this aspect.
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for (x, z) ∈ Ω × RN×n. Here we adopt the convention sup ∅ = −∞, and we say that a locally
bounded Borel function g : RN×n → R is quasiconvex if

−
∫

sptϕ

g(z+∇ϕ(x)) dx ≥ g(z) holds for all z ∈ RN×n and 0 6≡ ϕ ∈ C∞cpt(R
n,RN) .

By Jensen’s inequality, every convex function RN×n → R is also quasiconvex, evidently we have
Qf ≤ f on Ω × RN×n, and if Qf > −∞ holds on Ω × RN×n, then it follows that Qf(x, · ) is
quasiconvex for all x ∈ Ω and that also Qf has the Carathéodory property.

With this terminology, if Ω is a bounded open set in Rn, if u0 is a function in W1,1(Ω,RN),
and if the Carathéodory function f satisfies

− Γ− Γ|z| ≤ Qf(x, z) ≤ f(x, z) ≤ Γ + Γ|z| for (x, z) ∈ Ω×RN×n (3.37)

with a constant Γ <∞, then the linear growth version of Dacorogna’s relaxation formula [48]
asserts

inf
w∈W1,1

u0
(Ω,RN )

∫
Ω

Qf( · ,∇w) dx = inf
W1,1
u0

(Ω,RN )
F . (3.38)

This equality (which can be inferred from [49, Theorem 9.8], for instance) and the observation
Qf ≤ f imply that every minimizer of the right-hand problem in (3.38) is also a minimizer of
the left-hand problem. Thus, one may take the position that the passage from the integrand f
to the integrand Qf is not only a (quasi)convexification procedure, but also the passage to a
functional whose minimizers are more likely to exist. This is a very reasonable point of view,
since quasiconvexity has been identified — in quite general situations; see [103, 99, 67, 48, 96,
1, 25, 7, 63, 64, 6, 87, 89], for instance — as the proper assumption in the existence theory for
minimizers, and since the quasiconvex integral on the left-hand side of (3.38) can indeed be
minimized in a suitable BV framework [7, 89]. Nevertheless, for our purposes it is not necessary
to enter further into the quasiconvex analysis, since the duality theory needs, anyway, some
true convexity hypothesis. Indeed, we will assume that at least

the quasiconvexification Qf is convex in z . (3.39)

We emphasize that in the scalar case N = 1 (and also in the 1-dimensional case n = 1), where
quasiconvexity is nothing but convexity, this assumption is tautologically satisfied, so that in
the scalar case we actually manage to work without any convexity assumption. Back to the
general case, (3.39) is equivalent to the requirement that Qf equals the convexification f ∗∗ of
f , and [49, Theorem 6.30] provides a criterion for rotationally symmetric integrands satisfying
Qf = f ∗∗, but still (3.39) may, for N > 1, be considered as a somewhat artificial assumption.

Clearly, under the hypothesis (3.39), our duality results apply to the convex functional on
the left-hand side of (3.38). However, we next observe that eventually these results carry over
even to the (now possibly non-convex) functionals F and F . This is recorded in the following
corollaries of Theorems 3.2 and 3.8, which are taken from [P3, Appendix A].

Corollary 3.15 (W1,1 duality in some non-convex cases). Consider a bounded open set Ω in
Rn, a function u0 ∈W1,1(Ω,RN), and a Carathéodory integrand f : Ω×RN×n → R such that
(3.37) and (3.39) hold. Then, for the functionals in (3.1) and (3.3), we have the equality

inf
W1,1
u0

(Ω,RN )
F = max

L∞div(Ω,RN×n)
Ru0 ∈ [−∞,∞) .
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Moreover, for u ∈W1,1
u0

(Ω,RN) and σ ∈ L∞div(Ω,RN×n), we have

u minimizes F in W1,1
u0

(Ω,RN) ,

σ maximizes Ru0 in L∞div(Ω,RN×n)

}
⇐⇒ σ ∈ ∂zf( · ,∇u) holds Ln-a.e. on Ω .

Proof. Applying Theorem 3.2 to the convex function Qf with (Qf)∗ = f ∗∗∗ = f ∗, we find

inf
w∈W1,1

u0
(Ω,RN )

∫
Ω

Qf( · ,∇w) dx = max
L∞div(Ω,RN×n)

Ru0 ∈ [−∞,∞) .

Taking into account (3.38), we arrive at the claimed equality, and then the characterization of
the minimizer-maximizer pair follows exactly as explained in the proof of Corollary 3.4.

Corollary 3.16 (BV duality in some non-convex cases). Consider a bounded open set Ω in Rn

with (3.17), a function u0 ∈ W1,1
loc(R

n,RN), and a Carathéodory integrand f : Ω × RN×n → R

such that (3.37) and (3.39) hold and such that the continuity condition (3.24) holds for Qf in
place of f . Then, for the functionals in (3.3) and (3.14), we have the equality

inf
BVu0 (Ω,RN )

F = max
L∞div(Ω,RN×n)

Ru0 ∈ [−∞,∞) .

Moreover, for u ∈ BVu0

(
Ω,RN

)
and σ ∈ L∞div(Ω,RN×n), we have

u minimizes F in BVu0

(
Ω,RN

)
,

σ maximizes Ru0 in L∞div(Ω,RN×n)

}
⇐⇒ f( · ,Du) = Jσ,DuK− f ∗( · , σ)Ln Ω on Ω .

In the formulation of Corollary 3.16, we have replaced the two separate extremality relations
of Theorem 3.8 with the single equivalent relation for measures, which has been introduced in
(3.26). Apart from conciseness there is, however, no specific reason for doing so, and indeed all
the other forms of the extremality relations which have been discussed in connection with Corol-
lary 3.4 and Theorem 3.8 can still be employed in the non-convex case with (3.39). The only
small subtlety in this regard concerns the reformulated extremality relation ∇u ∈ ∂z∗f ∗( · , σ),
which is still necessary but not anymore sufficient for F - or F -minimality of u. This results
from the fact that we do not anymore have f ∗∗ = f on Ω × RN×n, but that at least F - or
F -minimality of u and (3.39) imply the Ln-a.e. equality f ∗∗( · ,∇u) = f( · ,∇u) on Ω.

Proof of Corollary 3.16. Applying, in the first step, Theorem 2.9 with Qf in place of f , we
obtain

inf
w∈W1,1

u0
(Ω,RN )

∫
Ω

Qf( · ,∇w) dx = inf
w∈BVu0 (Ω,RN )

∫
Ω

Qf( · ,Dw) ≤ inf
BVu0 (Ω,RN )

F ≤ inf
W1,1
u0

(Ω,RN )
F .

In view of (3.38) it follows that all the infima in the preceding line are in fact equal. Particularly,
we deduce the coincidence of the last two infima, which implies by Corollary 3.15 the claimed
equality.

In addition, we also get the coincidence of the two BV infima, which we now exploit to prove
the forwards implication of the claimed equivalence. Indeed, if (u, σ) is a minimizer-maximizer
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pair for F and Ru0 , then, by the preceding observation and the general inequality Qf ≤ f , it
is also a minimizer-maximizer pair for w 7→

∫
Ω

Qf( · ,Dw) and Ru0 , and u satisfies the equality

of measures Qf( · ,Du) = f( · ,Du) on Ω. In view of the assumption (3.39) and the equality
(Qf)∗ = f ∗, we can then apply Theorem 3.8 with Qf in place of f , and, formulating the
conclusion in the style of (3.26), we obtain Qf( · ,Du) = Jσ,DuK− f ∗( · , σ)Ln Ω on Ω. All in
all, we thus arrive at f( · ,Du) = Jσ,DuK− f ∗( · , σ)Ln Ω on Ω.

To show the backwards implication, we first observe that, involving (3.34) with Qf in place
of f , we have the general inequalities f( · ,Du) ≥ Qf( · ,Du) ≥ Jσ,DuK−f ∗( · , σ)Ln Ω on Ω. If
we assume f( · ,Du) = Jσ,DuK−f ∗( · , σ)Ln Ω on Ω, we can thus deduce that all three measures
in the preceding chain of inequalities coincide on Ω. Applying, once more, Theorem 3.8 with
Qf in place of f , we find that (u, σ) is a minimizer-maximizer pair for w 7→

∫
Ω

Qf( · ,Dw)

and Ru0 . Since we have already reasoned that Qf( · ,Du) equals f( · ,Du) on Ω, we can finally
conclude that (u, σ) is a minimizer-maximizer pair for F and Ru0 . This completes the proof of
Corollary 3.16.

Finally, we remark that also Corollary 3.9 and Theorem 3.11 can be extended to the case of
non-convex integrands f with (3.39). Indeed, the uniqueness assertion for σ from Corollary 3.9
remains valid whenever, in addition to the hypotheses of the preceding Corollary 3.16, Qf = f ∗∗

is C1 in z, and criteria for this differentiability property of the (quasi)convexification can in
turn be found in [77, 26, 24, 84]. Moreover, the conclusion of Theorem 3.11 remains valid under
precisely the assumptions of the preceding Corollary 3.16.
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Chapter 4

Everywhere regularity and
uniqueness of BV minimizers

This chapter revisits the everywhere regularity and uniqueness results of [P1, P5], which gener-
alize previous, closely related considerations of Bildhauer & Fuchs [33], Bildhauer [29, 31, 30],
and Marcellini & Papi [95]. The results presented here have been adapted, whenever possible,
to the setting of the previous chapters with possibly non-smooth domains and integrands, and
thus some statements have not been recorded in the same form before.

In contrast to the other chapters, however, we here restrict the exposition to (local) BV
minimizers of functionals without explicit x-dependence. Indeed, this restriction could partially
be avoided, since regularity results for BV minimizers in some x-dependent framework have
been obtained in [35, Section 3]; see also [30, Section 4.2.2.2] and [P1, Appendix C]. However, up
to now it has not been possible to avoid the unsatisfactory hypothesis1 that the x-dependence
is Lipschitz or even better. We thus prefer not to enter into the technical details of the x-
dependent case.

Concretely, the integrands in this chapter are continuous functions f : RN×n → R which
satisfy

lim sup
|z|→∞

|f(z)|
|z|

<∞ , (4.1)

The linear growth condition (4.1) clearly implies boundedness on RN×n of the function |∂f |
from Definition 3.3, and we can then introduce the oscillation Γf of the subdifferential ∂f as
the finite diameter of the set Im ∂f in (3.36), for short

Γf ..= diam(Im ∂f) <∞ . (4.2)

For such an integrand f and for a function w ∈ BVloc(U,R
N), defined on an open neigh-

borhood U of a Borel set A in Rn, our functionals are now given by

F [w;A] ..=

∫
A

f(Dw) ∈ R whenever Ln(A) + |Dw|(A) <∞ . (4.3)

1The Lipschitz hypothesis is relevant in order to obtain second derivative estimates by differentiation of the
Euler equation. The case of a merely Hölder continuous dependence, instead, does not allow to proceed in this
way and has, due to a lack of suitable freezing techniques, remained inaccessible.
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42 CHAPTER 4. Everywhere regularity and uniqueness of BV minimizers

Here the integral is understood in the sense of Definition 2.1, and we record, as a side remark
for later use, that we can admit Ln(A) = ∞ in (4.3) in case that f is convex with f(0) = 0,

because we then have |f(z)| ≤ Γ̃|z| for all z ∈ RN×n, with the constant Γ̃ ..= |∂f |(0)+Γf <∞.
Since most of this chapter is concerned with local properties in the interior of an open set

Ω ⊂ Rn, it is convenient to formulate the statements independent of boundary values. This is
achieved by employing the following notion of local BV minimizers of F .

Definition 4.1 (local BV minimizers). Suppose that Ω is open in Rn and that f : RN×n → R

is continuous with (4.1). Then we call u ∈ BVloc(Ω,R
N) a local minimizer of the functional F

in (4.3) on Ω if there holds
F [u; Br(x0)] ≤ F [u+ϕ; Br(x0)]

for all balls Br(x0) b Ω and all ϕ ∈ BV(Ω,RN) with sptϕ ⊂ Br(x0).

4.1 L∞ estimates (allowing for non-differentiable cases)

In this section we deal with the first (and simplest) regularity property of (local) BV minimizers,
namely with interior L∞ estimates. To this end we impose the following additional hypothesis
on the integrand f : RN×n → R. We assume the existence of some z∗0 ∈ RN×n such that we
have2

γf ..= lim inf
|z|→∞

f(z)− z∗0 · z
|z|

> 0 , (4.4)

λf ..= sup{ξT(z∗0−z∗)zTξ : z ∈ RN×n, z∗ ∈ ∂f(z), ξ ∈ RN , |ξ| = 1} <∞ . (4.5)

Here, the linear coercivity condition (4.4) resembles the one from the existence result in The-
orem 2.8, and is, for lower semicontinuous f , equivalent with the requirement that z∗0 is an
interior point of Im ∂f . The choice of γf means that z∗0 is at distance γf from the boundary of
Im ∂f , and thus, when also (4.1) is in force, we clearly have γf ≤ 1

2
Γf < ∞. Moreover, since

f ∗ is continuous and [−f(0),∞)-valued in the interior of Im ∂f , we can set

κf ..= f(0) + sup
Bγf /2(z∗0 )

f ∗ ∈ [0,∞) .

We record that Γf , γf , λf , and κf are invariant under addition of an affine function to f
(provided that, in case of γf , λf , κf , we correspondingly modify z∗0). This makes these quantities
very convenient in order to state our estimates, since also (local) minimality is invariant under
addition of an affine function to the integrand.

Before commenting in more detail on the above assumptions and specifically on (4.5), we
next state the L∞ estimates, which extend [P1, Theorem 1.11] to a class of non-differentiable
integrands f including the total variation integrand m1 (for which every z∗0 ∈ B1 is admissible
with Γm1 = 2, γm1 = 1 − |z∗0 |, λm1 = κm1 = 0). For N = 1 and the regularized total variation
integrand f = m1,2 in the later formula (5.9), similar L∞ estimates for BV minimizers have
previously been obtained by Hardt & Kinderlehrer [81, Theorem 2.2]. The method of proof in
[81], however, differs from the one described below.

2We use ( · )T for the transposition of vectors and matrices.
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4.1. L∞ estimates (allowing for non-differentiable cases) 43

Theorem 4.2 (interior L∞ estimates for BV minimizers). Consider an open subset Ω of Rn,
a convex integrand f : RN×n → R, and some z0 ∈ RN×n such that (4.1), (4.4), and (4.5) hold
with Γf ≤ Γ < ∞ and γf ≥ γ > 0. Then every local minimizer u ∈ BVloc(Ω,R

N) of F on Ω
satisfies

u ∈ L∞loc(Ω,R
N) ,

and, for all concentric balls Br(x0) b BR(x0) b Ω, we have the estimate3

sup
Br(x0)

|u|
n,γ,Γ

>
1

(R−r)n

∫
BR(x0)

|u| dx+
Rn

(R−r)n−1
(λf+κf ) . (4.6)

In order to illustrate the assumptions of Theorem 4.2 and to prepare its proof, we next show
that (4.4) induces the quantitative lower bounds

f(z)− f(0)− z∗0 · z ≥
γf
2
|z| − κf for all z ∈ RN×n , (4.7)

(z∗−z∗0) · z ≥ γf
2
|z| − κf for all z ∈ RN×n and z∗ ∈ ∂f(z) . (4.8)

Indeed (4.7) and (4.8) are quickly verified by employing the definitions of ∂f , f ∗, and κf in the
estimate z∗ · z ≥ f(z)− f(0) ≥

(
z∗0 +

γf
2

z
|z|

)
· z − f ∗

(
z∗0 +

γf
2

z
|z|

)
− f(0) ≥ z∗0 · z +

γf
2
|z| − κf for

z 6= 0.
In particular, (4.8) shows that, in the scalar case N = 1, assumption (4.5) with λf ≤ κf

follows automatically from (4.4) and can therefore be dropped. We thus recognize (4.5) as a
structure condition which is specific for the vectorial case N ≥ 2. Indeed, by a well-known series
of counterexamples [51, 74, 107, 79, 130], regularity results in the case n ≥ 3, N ≥ 2 cannot
hold without some additional structural hypothesis, and the most recent work [131] of Šverák &
Yan demonstrates the necessity of such an hypothesis even for L∞ estimates. Reversely, a first
sufficient hypothesis in this connection has been identified by Uhlenbeck [129], who exploited the
rotationally symmetric structure f(z) = f̃(|z|) in case of the vectorial p-energy and established
interior C1,α regularity for the minimizers. Also Theorem 4.2 includes rotationally symmetric
integrands f if they are only non-constant and convex with (4.1), as in this case (4.4) and (4.5)
are automatically satisfied with z∗0 = 0 and λf = 0. However, since we are only interested in
L∞ instead of C1,α estimates, we can weaken rotational symmetry to the one-sided condition
(4.5), which is inspired by Meier’s indicator function from [98] and is also satisfied with z∗0 = 0
and λf = 0 if a convex f takes the form f(z) = f̃(|z1|, |z2|, . . . , |zn|) with the columns zi ∈ RN

of z ∈ RN×n. In the sequel, (4.5) is used in form of the estimate

ξT(z∗−z∗0)zTξ ≥ −λf |ξ|2 for all z ∈ RN×n, z∗ ∈ ∂f(z), and ξ ∈ RN . (4.9)

The proof of Theorem 4.2 follows essentially the lines of [P1, Section 4] and is briefly sketched
now. Since a local minimizer of F on Ω solves a Dirichlet problem4 on every ball Br(x0) b Ω, we

3The symbol
n,γ,Γ

> indicates an estimate up to a multiplicative positive constant which depends only on n,
γ, and Γ. An analogous notation is widely used in the sequel.

4More precisely, a local minimizer of F on Ω minimizes also F
[
· ; Br(x0)

]
in BVu0

(
Br(x0),RN

)
whenever

the trace of u0 ∈ W1,1(Rn,RN ) and the exterior trace of the local minimizer coincide on the boundary of the
ball Br(x0) b Ω. Gagliardo’s characterization of traces [68, Teorema 1.II] guarantees that a suitable u0 exists.
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can assume in the following that Ω is smooth and that u minimizes F
[
· ; Ω

]
in BVu0

(
Ω,RN

)
for

some u0 ∈W1,1(Rn,RN). Then we can approximate u by the sequence (wk)k∈N of Theorem 2.9.
Arguing via Ekeland’s principle as for (3.29) and handling the non-differentiability as explained
around (3.32), it is then possible to improve the situation as follows. We can find a minimizing
sequence (vk)k∈N in W1,1

u0
(Ω,RN), a null sequence (δk)k∈N in (0,∞), and a sequence (τk)k∈N

in L∞(Ω,RN×n) such that vk converges to u in L1(Ω,RN), such that τk ∈ ∂zf( · ,∇vk) holds
Ln-a.e. on Ω, and such that we have the perturbed Euler equation∣∣∣∣ ∫

Ω

τk · ∇ϕ dx

∣∣∣∣ ≤ δk‖∇ϕ‖L1(Ω,RN×n) for all ϕ ∈W1,1
0 (Ω,RN) . (4.10)

We exploit this information in order to implement, in a more or less standard fashion, a version
of Moser’s iteration scheme [104, 105] as follows. As test functions ϕ we insert (suitable trun-
cations of) ηs|vk|t−1vk with parameters s, t ≥ 1 and non-negative cut-off functions η ∈ C∞cpt(Ω).
We then rely on the lower bounds (4.8), (4.9) and the upper bound |∂zf | ≤ Γf in explicit
computations and estimations, which are completely analogous to the ones carried out for dif-
ferentiable f in [P3, Lemma 4.1, Lemma 4.2] and which we do not repeat here. Involving also
the Sobolev embedding and assuming that the perturbation term is controlled by δk ≤ γf

2t
, the

outcome are estimates for the L
n
n−1

t-norm of vk on a ball in terms of its Lt-norm on an enlarged
ball. However, the requirement δk ≤ γf

2t
is always valid for k ≥ k0(t), and thus, after finite

iteration and passage to the limit k →∞, we can estimate the Lq-norm of u on Br(x0), for all
q < ∞, in terms of its L1-norm on BR(x0). Finally, it can be checked that the constants in
these estimates remain bounded in the limit q → ∞, and we can deduce the claimed control
on the L∞-norm of u on Br(x0).

Next we comment on variants of both Theorem 4.2 and its proof.
First of all we point out that once more, at the cost of loosing the corresponding existence

result, the convexity assumption on f can be avoided. Indeed, the following generalization in
the spirit of Section 3.5 is a corollary to Theorem 4.2: If f is just continuous with (4.1), (4.4),
(4.5) and its quasiconvexification Qf is convex, then the estimate of Theorem 4.2 still holds for
local minimizers of F . This statement simply follows by checking that (4.1), (4.4), (4.5) hold
also for Qf in place of f , by applying Theorem 4.2 with Qf in place of f , and by observing
finally that local minimizers of F are also local minimizers of [w;A] 7→

∫
A

Qf(Dw). However,

as already pointed out in [P1, Remark 1.12], for differentiable integrands f ∈ C1(RN×n), one
can even go beyond this, and also convexity of Qf is dispensable. In fact, we have the following
modified statement (only relevant for N ≥ 2, of course): As soon as the continuity hypothesis
(2.8) (which was automatic in the convex case) is ensured and suitable adaptions of (4.2),
(4.8), (4.9) (essentially with {∇f} in place of ∂f) are assumed, the conclusion of Theorem 4.2
remains valid under only these assumptions on f ∈ C1(RN×n).

An alternative way to approach the L∞ estimates of Theorem 4.2, say, for simplicity, for
a bounded Lipschitz domain Ω and u0 ∈ W1,2(Ω,RN), is to choose the vk as minimizers of
suitable regularized functionals like

u0+ W1,2
0 (Ω,RN)→ R , w 7→

∫
Ω

[
f(∇w) + k−1|∇wk|2

]
dx . (4.11)
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On one hand, an advantage of this approach over the Ekeland one is that each vk satisfies
an Euler equation without a perturbation term like the one on the right-hand side of (4.10),
but rather with an additional ‘good’ term with prefactor k−1 coming from the quadratic part
w 7→ k−1

∫
Ω
|∇wk|2 dx of the functional. In contrast to the above reasoning, when one also

tracks the additional k−1 terms throughout the iteration procedure, one can then prove that
the vk are uniformly bounded in L∞loc(Ω,R

N) and indeed we will make use of this fact in the
following Section 4.2. On the other hand, the usage of the regularizations in (4.11) brings also a
disadvantage: This approach does work with an a priori given minimizer u, but rather one gets
some vk and then some BV minimizer u as their weak-∗ limit in BVu0

(
Ω,RN

)
. Therefore, this

strategy establishes, in (quasi)convex cases, the existence of one L∞loc minimizer corresponding
to every given boundary datum u0, but, without an uniqueness result at hand, it does not yield
L∞loc estimates for all minimizers. Eventually, in Section 4.3 below, we overcome this point by
combining the Ekeland and the regularization approach in order to choose approximations vk
with the advantages of both strategies.

Last but not least, we mention that, in many regards, maximum (or convex hull) princi-
ples can serve as a replacement for interior L∞ estimates. Like L∞ estimates, also maximum
principles extend to the vectorial case N ≥ 2 only under additional structural assumptions;
compare with [54, 34], for instance. In a BV framework, the usage of maximum principles has
been discussed in [P1, Appendix D] with the tentative conclusion that they require slightly
stronger hypotheses than our condition (4.5). However, more importantly, an advantage of
maximum principles is that they are often simpler to establish than L∞ estimates, while the
main disadvantage is the imposition of an additional boundedness assumption on u0.

4.2 W1,∞ estimates for

asymptotically µ-elliptic problems

In this section we turn to gradient estimates for BV minimizers. The achievement of such
estimates generally requires stronger assumptions on the integrand f , namely strict positivity
hypotheses and bounds for the second derivatives ∇2f . Concretely, our assumptions are similar
to the µ-ellipticity condition of Bildhauer & Fuchs [33]5

γ IN×n
(1 + |z|)µ

≤ ∇2f(z) ≤ Γ IN×n
1 + |z|

for all z ∈ RN×n , (4.12)

with fixed constants 0 < γ ≤ Γ < ∞ and 1 < µ ≤ 3. A peculiarity of the present setting lies
in the fact that one cannot take µ = 1 in (4.12), as there exists6 no integrand f : RN×n → R

which satisfies (4.1) and (4.12) with µ = 1 and γ > 0. Therefore, in the linear growth case
one is generally faced with a degeneration of the ellipticity ratio for |z| → ∞ — as already
illustrated by means of the model integrands mp in the introduction. In the case µ < 1 + 2/n,

5Here, we understand ∇2f(z) as a bilinear form on RN×n, the symbol IN×n denotes the Euclidean inner
product on RN×n, and an inequality B1 ≤ B2 between bilinear forms B1 and B2 on RN×n evidently means
B1(ξ, ξ) ≤ B2(ξ, ξ) for all ξ ∈ RN×n.

6Indeed, one can see by integration that the lower bound in (4.12) with µ = 1 requires f(z) to grow at least
as fast as |z| log |z|.
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Bildhauer & Fuchs [33] were able to control such degeneration effects via second derivative
estimates, and they obtained interior C1,α regularity for BV minimizers under the assumptions
(4.1) and (4.12) on the integrand. In the two-dimensional case n = 2 and in cases with
L∞ estimates for minimizers (for instance, the ones of the previous section suffice), Bildhauer
[29, 31] has eventually reached the improved bound µ < 3, which corresponds to a subquadratic
blow-up of the ellipticity ratio and seems very natural. Actually, it has been shown in [72,
Section 3] and [30, Section 4.4] that the assumption µ < 3 has some optimality property, and
moreover it is also strongly reminiscent of classical bounds for the Bernstein genre, which occur
in Serrin’s extensive treatise [121] on quasilinear elliptic equations. Unfortunately, the results
of [33, 29, 31] do not directly apply to the integrands mp with p 6= 2, since the degenerate or
singular behavior of ∇2mp(z) for |z| → 0 is not included in (4.12), but a way to incorporate
mp consists in imposing (4.12) only for large values of |z|. This ties in with the known fact
that such asymptotic requirements on f suffice in many cases to guarantee Lipschitz regularity
of minimizers; see [46, 70, 93, 111, 66] and several more recent papers. Specifically, among
the asymptotic regularity results in the vectorial case N ≥ 2 we mention the one of Cupini &
Guidorzi & Mascolo [47, Theorem 1.1] for integrands of superlinear (p, q)-growth and the one
of Marcellini & Papi [95, Theorem B], which includes linear growth cases with µ < 1 + 2/n
but considers only minimizers which are a priori in W1,1(Ω,RN). In order to deal with BV
minimizers of the model integrals Mp, we now report on an analogue of these results which
hypothesizes the following asymptotic version of (4.12), with positive parameters µ, R, γ, and
Γ:

f ∈W2,∞
loc

(
RN×n \ BR

)
, (4.13)

f is rotationally symmetric on RN×n \ BR , (4.14)

γ IN×n
|z|µ

≤ ∇2f(z) ≤ Γ IN×n
|z|

holds for LN×n-a.e. z ∈ RN×n \ BR . (4.15)

We remark that these assumption imply, in particular, the validity of (4.4) and (4.5) with
z∗0 = 0 and λf ≤ ΓfR, and we proceed to a restatement of [P5, Theorem 1.2] in a slightly
modified framework. To this end, we rely once more on the mild regularity hypothesis

1Ω ∈ BVloc(R
n) and |D1Ω| = Hn−1 ∂Ω . (4.16)

of Appendix A.

Theorem 4.3 (interior W1,∞ estimates for one BV minimizer). Suppose that Ω is a bounded
open set in Rn with (4.16), that f : RN×n → R is convex, and that (4.1), (4.13), (4.14), and
(4.15) hold for a positive radius R, an exponent

1 < µ < 3 ,

and constants 0 < γ ≤ γf ≤ Γf ≤ Γ < ∞. Then, for every u0 ∈ W1,1(Rn,RN), there exists a
minimizer u of F

[
· ; Ω

]
in BVu0

(
Ω,RN

)
such that we have

u ∈W1,∞
loc (Ω,RN)
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and

|∇u(x0)|
n,µ,R,γ,Γ

>
(

1 + dist(x0, ∂Ω)−n
∫

Ω

|∇u0| dx
)1+

3(µ−1)
2(3−µ)

for Ln-a.e. x0 ∈ Ω .

By explicit computations, one verifies that the integrands mp with p > 1 satisfy the assump-
tions (4.13), (4.14), (4.15) with µ = 1 + p. Therefore, the model integrals Mp with 1 < p < 2
are included in Theorem 4.3.

Next we sketch the proof of Theorem 4.3. To this end, we follow the reasoning of [P5, Sec-
tion 4], which adapts the approach of Bildhauer & Fuchs [33] to the present setting.

By a mollification procedure, one can reduce to the case that we have u0 ∈ W1,2(Ω,RN),
and in the following we only deal with this slightly simplified situation. Following essentially
the regularization strategy described at the end of Section 4.1, we then work, for k ∈ N, with
the unique minimizers vk of the strictly convex functionals

Fk[w; Ω] ..=

∫
Ω

[
fk−1(∇w) + k−1|∇w|2

]
dx for w ∈ u0+W 1,2

0 (Ω,RN) , (4.17)

where fk−1 stands for a standard mollification of f with mollification radius k−1. It is straight-
forward to show that (vk)k∈N is a minimizing sequence for F

[
· ; Ω

]
in u0 + W1,2

0 (Ω,RN), and

by density the same is true in W1,1
u0

(Ω,RN). Moreover, a subsequence of (vk)k∈N weakly-∗ con-

verges in BV(Rn,RN) to a limit u ∈ BVu0

(
Ω,RN

)
, and via Corollary 2.3 and Theorem 2.9 it

then follows that the limit u is a minimizer of F
[
· ; Ω

]
even in BV

(
Ω,RN

)
. As already pointed

out, as the main advantage of the regularization approach, we can use the corresponding Euler
equation∫

Ω

[
∇fk−1(∇vk) · ∇ϕ+ 2k−1∇vk · ∇ϕ

]
dx = 0 for all ϕ ∈W1,2

0 (Ω,RN) (4.18)

to obtain uniform L∞ estimates for the whole sequence (vk)k∈N. Indeed, using the same test
functions as in the proof of Theorem 4.2 and implementing an analogous Moser type iteration
scheme, we find an analogue of (4.6) for each vk. The only difference lies in an additional L2

term on the right-hand side, and concretely, after subtraction of means and usage of Poincaré’s
inequality, these L∞ estimates read as7

sup
B2r(x0)

|vk−(vk)B2r(x0)|
r

n,µ,R,γ,Γ

> −
∫

B4r(x0)

|∇vk| dx+ k−1−
∫

B4r(x0)

|∇vk|2 dx+ 1 (4.19)

on every ball B4r(x0) b Ω. Here, taking into account the minimality property Fk[vk; Ω] ≤
Fk[u0; Ω], the right-hand side of (4.19) remains bounded for k → ∞. Next we make use of
the fact that, thanks to the quadratic regularization term in (4.17), a standard argument with

7One may wonder why the quantity κf , involved in (4.8), occurs in (4.6) but not in (4.19). The reason for
this is that, under the present stronger assumptions, κf can be controlled in terms of µ, R, γ, and Γ; compare
[P5, Lemma 2.4]
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difference quotients shows that the vk posses second derivatives in L2
loc(Ω). By differentiation

of the Euler equation we then obtain, for every i ∈ {1, 2, . . . , n},∫
Ω

[
∇2fk−1(∇vk)(∂i∇vk,∇ψ) + 2k−1∂i∇vk · ∇ψ

]
dx = 0 for all ψ ∈W1,2

0 (Ω,RN) . (4.20)

As test functions ψ in (4.20) we use (truncations of) T (|∇vk|)η2∂ivk, where η ∈ C∞cpt(Ω) is

arbitrary and where T ∈W1,∞
loc (R) is non-negative and non-decreasing on [0,∞) and constant

on [0, R]. Exploiting the structure assumption (4.14) and the growth condition (4.15), we then
arrive at the general Caccioppoli type inequality∫

Ω

η2(|∇vk|−µ+k−1)|∇2vk|2T (|∇vk|) dx
γ,Γ

>
∫

Ω

|∇η|2(|∇vk|−1+k−1)|∇vk|2T (|∇vk|) dx . (4.21)

In the next step, we return to the Euler equation (4.18) and choose the test function ϕ =

χ
2p

3−µ (|∇vk|−R−2)p+(vk−(vk)B2r(x0)), where R and µ denote the parameters from the assump-
tions of the theorem, and where we have moreover fixed p ∈ (1,∞), a ball B4r(x0) b Ω, and
a cut-off function χ ∈ C∞cpt(Ω) with 1Br(x0) ≤ χ ≤ 1B2r(x0) and |∇χ| ≤ 2/r on Ω. The result
of the testing can be combined, in a longer series of estimations, with both (4.19) and (4.21),

the latter applied with the choices η = χ
p

3−µ+ 1
2 and T (τ) ..= (τ −R− 2)p−1

+ τ
µ−1
2 . After all, this

leads to the W1,p estimate of [P5, Lemma 4.3], which asserts

−
∫

Br(x0)

|∇vk|p
n,µ,R,γ,Γ,p

>
(
−
∫

B4r(x0)

|∇vk| dx+ k−1−
∫

B4r(x0)

|∇vk|2 dx+ 1

)1+ 2
3−µ (p−1)

(4.22)

for every ball B4r(x0) b Ω. The last estimate shows, in particular, ∇u ∈ Lploc(Ω,R
N×n) for

all p ∈ [1,∞), but, as the constant depends on p, we cannot pass to the limit to conclude
∇u ∈ L∞loc(Ω,R

N×n). Indeed, it seems that even somewhat modified estimates (with constants
whose dependence on p is carefully tracked) can only be iterated finitely many times and that
one cannot implement a Moser type argument here. Instead, it seems necessary to involve a
different technique, and the reasoning in [P5] relies in fact on (a slight adaption of) the De
Giorgi approach to L∞ estimates. More precisely, we make use of the following general lemma,
which is a restatement of [P5, Lemma 4.4].

Lemma 4.4 (De Giorgi type lemma with weights). Consider non-negative exponents θ and
σ with θ + σ ≥ 4, an open set Ω in Rn, and a function w ∈ W1,2(Ω,Rm) ∩ Lp(Ω,Rm) with
p > (θ + σ)n/2. If w satisfies, for some constant C ≥ 1, all levels ` ≥ `0 ≥ 1, and all
η ∈ C∞cpt(Ω), the Caccioppoli type inequality on superlevel sets∫

Ω

η2(|w|−`)2
+|w|−θ|∇w|2 dx ≤ C

∫
Ω

|∇η|2(|w|−`)2
+|w|σ−2 dx , (4.23)

then we have
w ∈ L∞loc(Ω,R

m) ,

and, for all balls Br(x0) b Ω, we can estimate

sup
Br/2(x0)

|w| − `0

n,θ,σ,p,C

>
(
−
∫

Br(x0)

|w|p dx

) θ+σ
4p

. (4.24)
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We do not discuss Lemma 4.4 and its proof (which follows essentially the classical strategy
of De Giorgi) in detail here. However, even though we use the lemma only for θ + σ > 4, we
briefly remark that, in the case θ+σ = 4, in which (4.23) becomes ‘homogeneous’, the exponent
θ+σ
4p

on the right-hand side of (4.24) consistently simplifies to 1
p
.

In order to conclude the proof of Theorem 4.3, we now aim at applying the lemma with
the choices w ..= ∇u, θ = µ, σ ∈ {3, 4}, `0 = R + 2, and an arbitrary, but now fixed p =
p(n, µ) > (µ + 4)n/2. The hypothesized inequality (4.23) (first only with σ = 4, but in a
second step and for sufficiently large k, also with the better exponent σ = 3) is then available
as a consequence of the Caccioppoli type inequality (4.21), applied for T (τ) = (τ − `)2

+ with
` ≥ R + 2. Consequently, the lemma yields (4.24) for the above choice of quantities, and by
rewriting this inequality and taking into account the W1,p bound (4.22), we arrive at

lim sup
k→∞

sup
Br/2(x0)

|∇vk|
n,µ,R,γ,Γ

>
(

1 + lim sup
k→∞

−
∫

B4r(x0)

|∇vk| dx
)1+

3(µ−1)
2(3−µ)

(4.25)

for all balls B4r(x0) b Ω. Finally, we recall that (vk)k∈N is a minimizing sequence, which
weakly-∗ converges to the BV minimizer u. Relying on these facts it is now straightforward
to bound the right-hand term in (4.25) in terms of the boundary values u0 and to deduce the
claims of the theorem.

4.3 C1,α regularity for some singular problems

Our next goal are (Hölder) continuity estimates for the gradient of (local) BV minimizers. To
this end, we require the following set of conditions, which is tailored out for the case of the
model integrands mp with 1 < p < 2 and incorporates their singular behavior for |z| → 0.
Precisely, for positive parameters µ, q, β and a non-decreasing function Ξ, we assume:

f ∈ C2(RN×n \ {0}) ∩ C1(RN×n) , (4.26)

f is rotationally symmetric on RN×n , (4.27)

γ IN×n
|z|2−q + |z|µ

≤ ∇2f(z) ≤ Γ IN×n
|z|2−q + |z|

for all z ∈ RN×n \ {0} , (4.28)

|∇2f(z2)−∇2f(z1)| ≤ Ξ(|z1|+|z2|)Sq,β(|z1|, |z2|)|z2−z1|β for all z1, z2 ∈ RN×n \ {0} . (4.29)

Here, the last condition with the scaling factor

Sq,β(s, t) ..=

(s+t)q−2−β for q > 2
1 for q = 2
sq−2tq−2(s+t)2−q−β for q < 2

expresses a local β-Hölder continuity requirement on ∇2f , which is suitably adapted to a
singular (if q < 2) or degenerate behavior (if q > 2) for |z| → 0. Moreover, we remark that
(4.28) reduces to (4.12) in the non-degenerate case q = 2, and we record that the preceding
conditions comprise the ones of the previous section, and thus imply, in particular, (4.4) and
(4.5) with z∗0 = 0 and λf = 0.
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Taking the assumptions for granted, we have the following result on C1,α regularity and
uniqueness of (local) BV minimizers. The non-degenerate case q = 2 of the statement has
been established by Bildhauer in [29, Theorem 2.7], while the general case has eventually been
treated in [P5, Theorem 1.3].

Corollary 4.5 (interior C1,α regularity and uniqueness modulo constants for BV minimizers).
Suppose that Ω is open in Rn and that f : RN×n → R satisfies (4.1), (4.26), (4.27), (4.28), and
(4.29) with exponents

1 < µ < 3 , 1 < q <∞ , 0 < β ≤ 1 ,

constants 0 < γ ≤ γf ≤ Γf ≤ Γ < ∞, and a non-decreasing function Ξ: (0,∞) → [0,∞).
Then, for every local minimizer u ∈ BVloc(Ω,R

N) of F on Ω and every open subset U b Ω,
there exists an α ∈ (0, 1] such that we have

u ∈ C1,α(U,RN) .

If we additionally have that Ω is connected and that either Ln
(
Ω
)
<∞ or f(0) = 0 holds, and

if u0 ∈W1,1
loc(R

n,RN) with ∇u0 ∈ L1
(
Ω,RN×n) is fixed, then, for each two minimizers u and v

of F
[
· ; Ω

]
in BVu0

(
Ω,RN

)
, there exists a constant y ∈ RN such that u = v+ y holds Ln-a.e.

on Ω.

For p > 1, the integrands mp satisfy (4.1), (4.26), (4.27), (4.28), and (4.29) with µ = 1 + p
and q = p, so that the model integrals Mp with 1 < p < 2 are included in Corollary 4.5.
However, the statement of the corollary leaves open the possibility that α depends on U and
that u ∈ C1,α

loc (Ω,RN) does not hold for a fixed positive exponent α. Therefore, part (A) of
Theorem 1.1 in the introduction is not contained in Corollary 4.5, but in fact this result follows
only by combining Corollary 4.5 with the later Theorem 5.5.

For comparison, we briefly mention a recent related result on a model PDE which resembles
the Euler equation of Mp in some aspects, but remains non-degenerate. Indeed, in the two-
dimensional scalar case n = 2, N = 1 and under strong assumptions on Ω and u0, it is shown
in [38] that this equation has a unique C1 solution, which realizes the boundary datum in the
W1,1

u0
-sense.

The proof of Corollary 4.5 is based on three ingredients: the preceding Theorem 4.3, a well-
known regularity result for variational integrals with superquadratic q-growth, and the unique-
ness criterion in Corollary 3.14. These ingredients are combined to prove the regularity claim
for BV minimizers of the Dirichlet problem on a smooth and bounded domain Ω. Then, as
explained in connection with Theorem 4.2, the regularity claim follows also for local minimizers
on arbitrary open Ω, and the uniqueness claim is obtained by the simple reasoning already used
in the proof of Corollary 1.2.

To show regularity in case of smooth and bounded Ω, we now fix an arbitrary datum
u0 ∈ W1,1(Rn,RN) and the minimizer u ∈ W1,∞

loc (Ω,RN) of F
[
· ; Ω

]
in BVu0

(
Ω,RN

)
which

was found in Theorem 4.3. We then argue that, with this regularity at hand, the growth of the
integrand f becomes irrelevant. Indeed, the fact that u solves the Euler equation on an open
U b Ω, depends only on the values of the integrand f on the ball BM ⊂ RN×n with radius
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M ..= supU |∇u| <∞. In particular, it is thus possible to modify f outside BM and construct,
as detailed in [P5, Section 5], a rotationally symmetric C2-integrand fM with q-growth (and
corresponding requirements for ∇2fM) such that u still solves the weak formulation of the Euler
equation ∫

U

∇fM(∇u) · ∇ϕ dx = 0 for all ϕ ∈W1,q
0 (U,RN) .

Carrying out the construction of fM in a sufficiently careful way, it turns out that the above
assumptions on the integrand f induce suitable properties of fM , so that we may apply classical
regularity results [127, 70, 2, 78, 94] in the spirit of Uhlenbeck’s regularity theorem [129] for the
q-Laplace system. These results imply u ∈ C1,α

loc (U,RN) for some exponent α ∈ (0, 1] (which
depends also on M and thus on U). By Corollary 3.14, finally, the regularity gain carries over
from one to all BV minimizers.

4.4 W1,L log L regularity up to a limit case

Next we turn to the case that the µ-ellipticity condition (4.12) is satisfied for f ∈W2,∞
loc (RN×n)

with the limit exponent µ = 3, which has been excluded in the previous sections. In other words,
this means that we choose µ = 3 and q = 2 in (4.28), which then reads as the requirement that

γ IN×n
1 + |z|3

≤ ∇2f(z) ≤ Γ IN×n
1 + |z|

holds for LN×n-a.e. z ∈ RN×n . (4.30)

The relevance of this assumption lies mainly in two facts. On one hand, it is just the condition
satisfied by the model integrand m2, which has not yet been included in the considerations of
Sections 4.2 and 4.3. On the other hand, a specific interest in the case µ = 3 arises from the
fact, already pointed out in the introduction and in Section 4.2, that it is a borderline case.

We observe that (4.30) implies (4.4) with some z∗0 ∈ RN×n, which we fix for the following
restatement of [P1, Theorem 1.10] (in a slightly refined version with a W2,∞

loc instead of a C2

integrand).

Theorem 4.6 (W1,L log L
loc estimates and uniqueness modulo constants for L∞loc-BV minimizers).

Suppose that Ω is open in Rn and that f ∈W2,∞
loc (RN×n) satisfies (4.1) and (4.30) with constants

0 < γ ≤ γf ≤ Γf ≤ Γ < ∞. Then, every locally bounded local minimizer u ∈ L∞loc(Ω,R
N) ∩

BVloc(Ω,R
N) of F on Ω satisfies

u ∈W1,1
loc(Ω,R

N) and |∇u| log(1+|∇u|) ∈ L1
loc(Ω) (4.31)

and is controlled, for all balls B2r(x0) b Ω, by∫
Br(x0)

|∇u| log(1+|∇u|2) dx
n,γ,Γ

>
(
κf + sup

B2r(x0)

|u|
r

)∫
B2r(x0)

(
κf+|∇u|

)
dx . (4.32)

If we additionally have that Ω is connected and that either Ln
(
Ω
)
< ∞ or f(0) = 0 holds,

and if u0 ∈W1,1
loc(R

n,RN) with ∇u0 ∈ L1
(
Ω,RN×n) is fixed, then, for each two locally bounded

minimizers u, v ∈ L∞loc(Ω,R
N) of F

[
· ; Ω

]
in BVu0

(
Ω,RN

)
, there exists a constant y ∈ RN

such that u = v + y holds Ln-a.e. on Ω.
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We emphasize that the regularity gain in (4.31) has first been obtained by Bildhauer in
[29, Theorem 2.5] — under assumptions quite similar to the ones of Theorem 4.6, but for only
one BV minimizer. Precisely, Bildhauer proved that, whenever a bounded datum u0 is fixed,
then F

[
· ; Ω

]
has one minimizer u in BVu0

(
Ω,RN

)
which satisfies (4.31). However, since

the obtained regularity is much weaker than C1, it is not possible to argue as in the previous
section and to pass from only one to every minimizer via Corollary 3.14 or a similar trick.
Therefore, Bildhauer’s result does not imply the uniqueness statement in Theorem 4.6, which
is the principal contribution of [P1] and is basically the outcome of a refined approximation
procedure. We discuss these issues in some more detail below, when describing the proof of
Theorem 4.6.

However, before coming to the proof, we highlight an interesting point, which is also present
in Bildhauer’s previous result. Indeed, neither (4.5) nor rotational symmetry of f are assumed
in Theorem 4.6, and thus, even the vectorial case N ≥ 2, the slight integrability gain of the
theorem holds true if one imposes just growth conditions, but none of the usual structural
hypotheses on f . However, once we bring also (4.5) into play, then we can rely on Theorem 4.2
to eliminate the L∞loc assumption in Theorem 4.6. This accounts for the next statement, which
reproduces [P1, Corollary 1.13].

Corollary 4.7 (W1,L log L
loc estimates and uniqueness modulo constants for all BV minimizers).

In addition to the hypotheses of Theorem 4.6, suppose that (4.4) and (4.5) are satisfied for
some z∗0 ∈ RN×n. Then the local boundedness assumptions on u and v in Theorem 4.6 are
automatically valid and can thus be dropped from the statement. Moreover, for every local
minimizer u ∈ BVloc(Ω,R

N) of F on Ω and every ball B3r(x0) b Ω, we then have the estimate

−
∫

Br(x0)

|∇u| log(1+|∇u|2) dx
n,γ,Γ

>
(
κf + λf +−

∫
B3r(x0)

|∇u| dx
)2

. (4.33)

In particular, Corollary 4.7 applies to the model integrands m2. Thus, the corollary contains
Part (B) of Theorem 1.1 in the introduction as a special case.

It has remained an open problem — even for the model integrands m2 in the vectorial case
N ≥ 2 — whether one can improve the L log L integrability gain to the assertion on the Lp

scale that at least ∇u ∈ L1+ε
loc (Ω,RN×n) holds for some ε > 0. Indeed, the author has tried

to achieve this via an endpoint version of Gehring’s lemma, but this approach fails, essentially
due to the presence of the exponent 2 on the right-hand side of (4.33). However, a version of
the Gehring lemma devised in this connection has eventually found another application in the
quite different context of [116], namely in the regularity theory of Alexandrov solutions of the
Monge-Ampère equation.

We next outline a proof of Theorem 4.6, which proceeds by approximation of u with Sobolev
functions. To this end, we basically follow the ideas in [P1], which combine the regularization
and the Ekeland approximation strategy as already discussed towards the end of Section 4.1.
However, we also put forward a slight refinement of the arguments in [P1, Section 5], which
is related to the function h below and enables us to bypass some quite technical parts of the
reasoning in [P1, Sections 5.2, 5.3].

Now we enter into some of the details. Possibly adding an affine function to the integrand
f , we assume that f(0) equals 0 and that (4.4) holds with z∗0 = 0. Moreover, as in case of
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Theorem 4.2 and Corollary 4.5, we can reduce to establishing (4.31) and (4.32) in the situation
that Ω is smooth and bounded and that u ∈ L∞(Ω,RN) minimizes F

[
· ; Ω

]
in BVu0

(
Ω,RN

)
for some u0 ∈W1,1(Rn,RN). Setting

M ..= sup
Ω
|u| <∞ (4.34)

and relying on the simple convexity argument of [P1, Lemma 2.9], we can further assume
supRn |u0| ≤M . Thus, we confine ourselves to working in the preceding simplified framework,
and in order to avoid an additional mollification procedure we also suppose in the sequel that
we have u0 ∈W1,2n(Rn,RN). We then start with the minimizing sequence (wk)k∈N for F [ · ; Ω]
in W1,1

u0
(Ω,RN) from Theorem 2.9, for which specifically wk converges in L1(Ω,RN) to u and

Dwk converges 1-strictly to Du in RM
(
Ω,RN×n). By density, a simple cut-off argument, and

Theorem 2.7, we can reduce to the case that we additionally have wk ∈ u0 + W1,2n
0 (Ω,RN), and

supΩ |wk| ≤M for all k ∈ N.
By setting, for y ∈ RN ,

h(y) ..=


0 for |y| ≤ 1
(|y|−1)3

(2−|y|)2n for 1 < |y| < 2

∞ for |y| ≥ 2

we next introduce an auxiliary function h : RN → (−∞,∞]. The main properties of this
function, besides the obvious facts that it vanishes on B1 and equals ∞ outside B2, are that h
is continuous and convex on RN and C2 on B2. Abbreviating

g2n(z) ..= (1+|z|2)n for z ∈ RN×n

and writing fk−1 for the standard mollification with mollification radius k−1 of the convex
integrand f , we then define regularized functionals by setting

Fk[w; Ω] ..=

∫
Ω

[
fk−1(∇w) + k−1g2n(∇w) + h

( w
M

)]
dx for w ∈ u0 + W1,2n

0 (Ω,RN) . (4.35)

Here, the introduction of the zero-order term is inspired by a regularization procedure of
Carozza & Kristensen & Passarelli di Napoli [39] and a modification of their idea in [P1,
Section 5]. However, in contrast to the previous procedures, the present approach via the func-
tion h allows to conveniently transform the L∞ control (4.34) on u into a uniform L∞ control
on its approximations; see (4.38) below.

The functionals Fk[ · ; Ω] are (formally) extended to a larger space, namely the negative
Sobolev space W−1,1(Ω,RN) by assigning the value ∞ outside u0 + W1,2n

0 (Ω,RN). We record
that each resulting functional Fk[ · ; Ω] is lower semicontinuous with respect to norm convergence
in W−1,1(Ω,RN), essentially since W−1,1 convergent sequences with bounded energy are also
W1,2n bounded and thus weakly W1,2n convergent. In view of the semicontinuity property we
can next apply the Ekeland principle in the Banach space W−1,1(Ω,RN). From the minimizing
sequence (wk)k∈N we then obtain an Ekeland improved sequence (vk)k∈N in W−1,1(Ω,RN) such
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that, for some null sequence (δk)k∈N and all k ∈ N, we have ‖vk−wk‖W−1,1(Ω,RN ) ≤ δk and the
perturbed minimality property

Fk[vk; Ω] ≤ Fk[w; Ω] + δk‖w−vk‖W−1,1(Ω,RN ) for all w ∈W−1,1(Ω,RN) . (4.36)

Comparing (vk)k∈N with an arbitrary w ∈ u0 + W1,2n
0 (Ω,RN) such that supΩ |w| ≤M , we infer

Fk[vk; Ω] <∞ for all k ∈ N and

lim sup
k→∞

Fk[vk; Ω] ≤ F [w; Ω] . (4.37)

For later usage we next draw a couple of conclusions from these last observations. First, the
finiteness of Fk[vk; Ω] requires that we have vk ∈ u0+W1,2n

0 (Ω,RN). Second, taking into account

the h term in (4.35) and the inclusion vk ∈W1,2n(Rn,RN) ⊂ C
0,1/2
loc (Rn,RN), which results from

the Sobolev embedding, the finiteness of Fk[vk; Ω] also enforces8 the k-uniform bound

max
K
|vk| < 2M for every compact subset K of Ω . (4.38)

Third, relying on (4.37) and the lower bound in (4.4), we find that every subsequence of (vk)k∈N
weakly-∗ converges in BV(Rn,RN) (where clearly the vk are extended on Rn \Ω by the values
of u0). However, the W−1,1-closeness of vk and wk suffices to ensure that the whole sequence
weakly-∗ converges in BV(Rn,RN) to the only possible limit u. Fourth, inserting the members
of the minimizing sequence (wk)k∈N for the comparison function w in (4.37), involving (4.2),
and recalling that we assumed f(0) = 0 and z∗0 = 0, we also get the energy bound

lim sup
k→∞

Fk[vk; Ω] ≤ F
[
u; Ω

]
≤ Γf |Du|

(
Ω
)
,

and in view of (4.7) we infer in particular

lim sup
k→∞

∫
Ω

|∇vk| dx
γ,Γ

> κfLn(Ω) + |Du|
(
Ω
)
. (4.39)

From (4.36) we can now derive, with (4.38) at hand, the perturbed Euler equation∣∣∣∣ ∫
Ω

[
∇fk−1(∇vk) · ∇ϕ+ k−1∇g2n(∇vk) · ∇ϕ+∇h

( vk
M

)
· ϕ
M

]
dx

∣∣∣∣ ≤ δk‖ϕ‖W−1,1(Ω,RN )

for all ϕ ∈W1,2n
cpt (Ω,RN) .

(4.40)

Indeed, in order to verify (4.36), we use w = vk+tϕ with a parameter t ∈ R and a (by the
Sobolev embedding necessarily continuous) ϕ ∈ W1,2n

cpt (Ω,RN) as a comparison function in
(4.36), and then we rely on the first-order necessary criterion for minima. At this point, we
crucially exploit that, thanks to (4.38) and for sufficiently small |t|, the values of vk+tϕ

M
remain

in the ball B2 where h is finite and differentiable.

8Amendment (October 2019): The author is grateful to Franz Gmeineder for pointing out a flaw in the
original version of this thesis, where h above was defined with 2−|y| instead of (2−|y|)2n. While the original
choice does not seem sufficient to deduce the claim (4.38), with the present corrected choice we can justify (4.38)

by the following extra argument. If we assume |vk(x0)| ≥ 2M for some x0 ∈ Ω, then C
0,1/2
loc regularity gives

|vk(x)| ≥ 2M − C|x−x0|1/2 ≥ 3
2M for x ∈ Br(x0) ⊂ Ω, with sufficiently small r > 0 and some C < ∞. The

choice of h and the last estimate yield
∫

Ω
h
(
vk
M

)
dx ≥

∫
Br(x0)

1/8
(2−|vk|/M)2n dx ≥

∫
Br(x0)

1/8
(C/M)2n|x−x0|n dx = ∞.

This contradicts the finiteness of Fk[vk; Ω], and thus we necessarily have |vk| < 2M on Ω.
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4.4. W1,L log L regularity up to a limit case 55

Next we perform several estimations in order to establish higher differentiability and inte-
grability properties of the approximations vk. The first such property is obtained from the Euler
equation (4.40) and the finiteness condition Fk[vk; Ω] < ∞ by an application of the difference
quotient method, and it reads as

vk ∈W2,2
loc(Ω,R

N) and (1+|∇vk|)2n−2|∇2vk|2 ∈ L1
loc(Ω) for all k ∈ N . (4.41)

However, we emphasize that this gain of second derivatives comes with estimates which are
non-uniform in k. Indeed, the derivation of (4.41) is detailed in [P1, Lemma 5.1], and instead
of repeating the details here we only make some comments on the relevance of the various terms
in (4.35) and (4.40). So, we point out that, since at this stage we deal with non-uniform-in-k
estimates, we can decisively exploit the good quantitative strict convexity properties of the g2n

regularization term, which are not impaired by the fk−1 and h terms, essentially due to the
convexity of the integrands fk−1 and h. Moreover, the perturbation term on the right-hand
side of (4.40) is controlled via the simple inequality ‖ϕ‖W−1,1(Ω,RN ) ≤ ‖ϕ‖L1(Ω,RN ), and in the
course of the estimation it can be absorbed on the left-hand side (basically since it contains |ϕ|
only linearly and not quadratically).

Next, with the extra information (4.41) at hand, we differentiate (4.40). Crucially exploiting
the basic estimate ‖∂iψ‖W−1,1(Ω,RN ) ≤ ‖ψ‖L1(Ω,RN ) for the W−1,1-norm, we then obtain∣∣∣∣ ∫

Ω

[
∇2(fk−1+k−1g2n)(∇vk)(∂i∇vk,∇ψ) +∇2h

( vk
M

)(∂ivk
M

,
ψ

M

)]
dx

∣∣∣∣ ≤ δk‖ψ‖L1(Ω,RN )

for all ψ ∈W1,2n
0 (Ω,RN)

(4.42)

(where we have, for brevity, summarized the fk−1 and g2n terms). We test (4.42) with ψ =
η2∂ivk, where η ∈ C∞cpt(Ω) is an arbitrary test function, in order to obtain second derivative
estimates with k-uniform constants and more specifically the Caccioppoli type estimate

lim sup
k→∞

∫
Ω

η2
[
(1+|∇vk|)−3|∇2vk|2 + k−1(1+|∇vk|)2n−2|∇2vk|2

]
dx

n,γ,Γ

> sup
Ω
|∇η|2

(
κfLn(Ω) + |Du|

(
Ω
))
. (4.43)

For the details of the computations leading to (4.43), we refer to [P1, Lemma 5.2], while here we
restrict ourselves to pointing out some specific issues. To begin with, we remark that, clearly,
the strict positivity of both ∇2fk−1 and ∇2g2n, in the former case expressed by (4.30), plays a
crucial role in the derivation of (4.43). Moreover, the ∇2h term in (4.42) is non-negative (after
inserting the test function) and can thus be neglected in the respective estimates. Finally, the
perturbation term involves — this is the crucial benefit of applying the Ekeland principle in the
negative Sobolev space W−1,1 — only first derivatives of vk and is thus well-controlled. We also
remark that the derivation of (4.43) makes use of (4.39), which is indeed responsible for the
form of the term on the right-hand side. Finally, we stress that the second derivative control in
(4.43) does not persist in the limit k →∞ in the sense that it does not (or at least not by an
argument of which the author is aware) imply that the BV minimizer u has second derivatives
as functions or measures; the reason for this lies mostly in the negative ‘homogeneity’ of the
quantity (1+|∇vk|)−3|∇2vk|2 in vk.
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The final step of the proof essentially reproduces a reasoning introduced by Bildhauer [29].
The argument proceeds by testing (4.40) once more and combining the resulting estimate with
(4.43) in order to obtain the final uniform-in-k integrability gain for the first derivatives of the
approximations vk. To illustrate this, we fix a ball B2r(x0) ⊂ Ω and η ∈ C∞cpt(Ω) with 1Br(x0) ≤
η ≤ 1B2r(x0) and |∇η| ≤ 2/r. Then we plug the logarithmic test function ϕ = η2vk log(1+|∇vk|2)
into (4.40) and rely on another series of estimations, which are essentially carried out in [P1,
Lemma 5.3]. As before, these estimations exploit good properties of the integrands fk−1 and
g2n, in particular the inequality (4.8), while the terms involving the integrand h have the right
sign and can be discarded. Moreover, the perturbation term on the right-hand side of (4.40) is
simply estimated via ‖ϕ‖W−1,1(Ω,RN ) ≤ ‖ϕ‖L1(Ω,RN ) and can eventually be absorbed, thanks to
the small prefactor δk, on the left-hand side. Testing and estimating in this way, using Young’s
inequality, and involving both (4.38) and (4.43), we finally end up with the next estimate.
Though we do not enter further into the details of the derivation, we stress that the availability
of (4.38) allows to considerably simplify the original proof of [P1, Lemma 5.3]. Anyway, the
resulting estimate is not significantly changed and reads as

lim sup
k→∞

∫
Br(x0)

|∇vk| log(1+|∇vk|2) dx
n,γ,Γ

>
(
κf +

M

r

)(
κfLn(Ω) + |Du|

(
Ω
))
.

This inequality then carries over to the limit u, and via Theorem 2.2 we conclude, in fact,∫
Br(x0)

|Du| log(1+|Du|2)
n,γ,Γ

>
(
κf +

M

r

)(
κfLn(Ω) + |Du|

(
Ω
))
, (4.44)

where the left-hand integral is understood according to Definition 2.1, or equivalently in the
sense of (2.7). As the recession function of z 7→ |z| log(1 + |z|2) equals ∞ on RN×n \ {0}, the
estimate (4.44) implies |∇u| log(1 + |∇u|2) ∈ L1(Br(x0)) and |Dsu|(Br(x0)) = 0. Since B2r(x0)
is an arbitrary ball in Ω, we have thus verified (4.31), and the estimate (4.32) follows simply
by observing that (4.44) remains true with Ω replaced by B2r(x0).

4.5 Uniqueness modulo a 1-parameter family of con-

stants

In this section we exploit a strict convexity hypothesis on the recession function f∞ in order
to slightly refine the uniqueness assertions in Corollaries 4.5 and 4.7. Since, evidently, the 1-
homogeneous function f∞ is never strictly convex on RN×n, we work with the following concept.
We say that a [−∞,∞]-valued function g on Rm has strictly convex sublevel sets, if, for every
t ∈ R, the set {y ∈ Rm : g(y) < t} is bounded and convex and its boundary does not contain
a line segment of positive length. For our purposes, the main benefit of this definition lies in
the convexity property of the next elementary lemma; compare with [P1, Lemma 6.1].

Lemma 4.8. Suppose that g : Rm → [−∞,∞] is positively 1-homogeneous and has strictly
convex sublevel sets9. If y1, y2 ∈ Rm are not positively collinear, then we have the strict convexity
inequality g(y1 + y2) < g(y1) + g(y2).

9Since our notion of strictly convex sublevel sets includes the boundedness of these sublevel sets, the 1-
homogeneous function g in Lemma 4.8 is necessarily positive on Rm \{0}.
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Our concrete hypothesis on f∞ is now that, for some z∗0 ∈ RN×n and

for all ν ∈ Rn \{0} ,
the function y 7→ f∞(y ⊗ ν)− z∗0 · (y ⊗ ν) on RN has strictly convex sublevel sets.

(4.45)

We remark that there are good criteria for the validity of this assumption. In particular, it is
satisfied whenever z 7→ f∞(z) − z∗0 · z on RN×n has strictly convex level sets, and it is always
satisfied with z∗0 = 0 if f is non-constant, convex, and rotationally symmetric on RN×n (or if f
is non-constant and convex with the less restrictive structure f(z) = f̃(|z1|, |z2|, . . . , |zn|)).

Involving (4.45), we now restate [P3, Theorem 1.16] in a more concrete framework.

Corollary 4.9 (uniqueness of BV minimizers modulo a 1-parameter family of constants).
Suppose that Ω is open and connected in Rn and that f : RN×n → R either satisfies the as-
sumptions of Corollary 4.5 or satisfies the assumptions of Corollary 4.7 and (4.45) for some
z∗0 ∈ RN×n. Moreover, assume that we have either Ln

(
Ω
)
< ∞ or f(0) = 0. Then, for every

u0 ∈W1,1
loc(R

n,RN) with ∇u0 ∈ L1
(
Ω,RN×n), the set of minimizers of F

[
· ; Ω

]
in BVu0

(
Ω,RN

)
can be written as the 1-parameter family

{u+ ty : t ∈ [−1, 1]}

with a fixed function u ∈ BVu0

(
Ω,RN

)
satisfying |Dsu|(Ω) = 0 and a fixed vector y ∈ RN .

Roughly speaking, Corollary 4.9 asserts that, even in the vector-valued case N ≥ 2, non-
uniqueness does not manifest in a form worse than the 1-parameter family of minimizers in
Santi’s scalar example [115, Section 2] (which is described after the statement of Corollary 1.2
in the introduction). However, we stress that this is only true if the assumption (4.45) is in
force, and that the conclusion of Corollary 4.9 does not hold without this assumption. Indeed,
for n = 2, for arbitrary N ∈ N, and for an integrand f which satisfies all assumptions of
Corollary 4.7, but violates (4.45), the refinement [P1, Theorem 3.14] of Santi’s example shows
that even an N -parameter family of BV minimizers may occur.

The proof of Corollary 4.9 in [P1, Section 6] rests on the elementary Lemma 4.8. To explicate
this, we assume z∗0 = 0 and we recall that, by Corollaries 4.5 and 4.7, if we fix one minimizer
u, then we have |Dsu|(Ω) = 0 and all minimizers of F

[
· ; Ω

]
in BVu0

(
Ω,RN

)
have the form

u+y1Ω with some y ∈ RN . In the case 1Ω /∈ BV(Rn) that Ω has infinite perimeter, this clearly
means u+y1Ω /∈ u0 + BV(Rn,RN) for y 6= 0, so that u is the unique minimizer and there is
nothing to prove. Otherwise, we get D(u+ y1Ω) = Du+ y ⊗D1Ω and

F
[
u+ y; Ω

]
=

∫
Ω

f
(
Du+ (u0 − uint

∂∗Ω)⊗D1Ω

)
+

∫
∂∗Ω

f∞
(
(uint

∂∗Ω − u0 + y)⊗D1Ω

)
, (4.46)

where uint
∂∗Ω stands for the interior trace of u on the reduced boundary ∂∗Ω and u0 is evaluated

through its Hn−1-a.e. defined representative. We remark that the deduction of last equality
exploits the subtlety that |Du+ (u0−uint

∂∗Ω)⊗D1Ω| still vanishes on ∂∗Ω, though maybe not on
∂Ω, when Ω has merely finite perimeter; compare [9, Theorem 3.84]. Anyway, it now suffices
to show that the minima of the last term in (4.46) as a function of y ∈ RN form a line segment
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of finite length through the origin. To verify this, we take into account that f∞ is convex with
γf |z| ≤ f∞(z) ≤ Γf |z|, we observe that consequently the set of minima y0 ∈ RN is convex,
closed, and bounded, and we finally demonstrate that

every minimum y0 ∈ RN is collinear to uint
∂∗Ω(x)− u0(x) for |D1Ω|-a.e. x ∈ ∂Ω . (4.47)

Indeed, if (4.47) were false, Lemma 4.8 would yield strict convexity of the maps y 7→ f∞(y⊗ν)
along non-radial line segments [uint

∂∗Ω(x)− u0(x), uint
∂∗Ω(x)− u0(x) + y0], and we would arrive at

a contradiction to the minimality of 0 and y0. This contradiction completes the reasoning.

4.6 Boundary behavior and (non-)uniqueness

Finally, we record that the preceding results entail some restrictions for the boundary behavior
of BV minimizers. This has been formulated in [P1, Theorem 1.17] as follows.

Corollary 4.10 (non-uniqueness comes with 1-dimensional jumps at the boundary). Under
the assumptions of Corollary 4.9, consider the (uniquely determined) function u and the (de-
termined up to change of sign) vector y introduced there. If we are in the case y 6= 0 of
non-uniqueness of minimizers, then Ω has necessarily finite perimeter in Rn, and we have

uint
∂∗Ω(x) + J(x)y = u0(x) for Hn−1-a.e. x ∈ ∂∗Ω (4.48)

for some function J : ∂∗Ω→ R \(−1, 1) which takes values arbitrarily close to 1 and −1 on sets
of positive Hn−1-measure.

The proof of Corollary 4.10 is mostly contained in the arguments already given. Indeed, the
finiteness of the perimeter of Ω has been observed implicitly in the proof of Corollary 4.9,
the existence of J follows straightforwardly by applying (4.47) to the minimizers u + ty with
t ∈ [−1, 1] and the vector y, and the fact that J takes values arbitrarily close to 1 and −1 can be
verified by related arguments. We omit the details which are worked out in [P1, Section 6].

The following restatement of [P1, Theorem 1.5] shows that in the case y = 0, in which u is the

u0≡0

x1

x2

u0(x)u0(x)=Mx

Figure 3: The domain
of Theorem 4.11

unique minimizer, (4.48) need not be at hand, and thus the
non-uniqueness assumption y 6= 0 in Corollary 4.10 cannot be
dropped. Viewing this from a different angle, one may also
say that uniqueness seems to be the generic case, which can
come with a variety of boundary configurations, while non-
uniqueness happens only in specific situations.

Theorem 4.11 (uniqueness may come with more complicated
jumps at the boundary). In the case n = N = 2, consider
the annulus Ω = B2 \ B1 in R2, a constant M ∈ R, and a
function u0 ∈ W1,1(R2,R2) with u0(x) = Mx for |x| = 1 and
u0(x) = 0 for |x| = 2. Then M2

[
· ; Ω

]
has a unique minimizer

u in BVu0

(
Ω,R2

)
, which satisfies supΩ |u| ≤ 2/(1− log 2). In

particular, for |M | > 2/(1− log 2) there is no y ∈ RN such that
(4.48) holds with an R-valued function J .
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Idea of proof. The example of Theorem 4.11 refines Finn’s scalar example [62] on the annulus,
which is presented after Corollary 1.2 in the introduction. Similar to the reasoning in the scalar
case, the proof of Theorem 4.11 proceeds by reduction to an ODE problem. However, since u0

is non-constant on the inner boundary portion ∂B1, in the situation of Theorem 4.11 the ODE
problem takes a more complicated form with an explicit u-dependence and cannot be solved
explicitly. While uniqueness and some basic properties of the minimizer u are still easy to
check, it seems non-trivial to verify the sup-bound for u. Nevertheless, it has been possible to
establish this bound by some explicit, but somewhat tricky estimations with a radially shifted
competitor. The details are contained in [P1, Section 3.2] and go beyond the scope of the
present exposition.

Finally, we mention that further examples in [P1, Section 6] support the presumption that
the above description of the boundary behavior of BV minimizers is quite sharp as far as general
domains Ω and general boundary data u0 are concerned. However, as already emphasized at
the end of the introduction, this leaves open the (seemingly more challenging) issue to provide
good criteria in terms of Ω and u0 for the actual attainment uint

∂∗Ω = u0 of the boundary values
on ∂∗Ω and for full uniqueness of BV minimizers.
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Chapter 5

Partial regularity of BV minimizers

This chapter deals with the local and partial regularity results of Anzellotti & Giaquinta [21]
and their degenerate counterparts from [P2]. The latter results crucially rely on the combination
of the localization method of [21] and the p-harmonic-comparison strategy of [56].

We first discuss the simpler case of autonomous integrals without lower-order terms, but
eventually we also deal with more general functionals. In the simpler case, the integrands are,
as in the preceding chapter, continuous functions f : RN×n → R of linear growth

lim
|z|→∞

|f(z)|
|z|

<∞ , (5.1)

and the corresponding BV integrals F are given as follows. If w ∈ BVloc(U,R
N) is defined on

an open neighborhood U of a Borel set A in Rn, then, in the terminology of Definition 2.1, we
set

F [w;A] ..=

∫
A

f(Dw) ∈ R whenever Ln(A) + |Dw|(A) <∞ . (5.2)

In addition, we continue using the corresponding notion of local minimizers of F , introduced
in Definition 4.1.

5.1 The local regularity result of Anzellotti & Giaquinta

The basis for the investigations of this chapter is a result of Anzellotti & Giaquinta on local-
in-phase-space gradient regularity [21, Theorem 1.1]. We start by restating the linear growth
case of their result, which reads in our setting as follows.

Theorem 5.1 (local-in-phase-space C1,α regularity for BV minimizers). Consider an open
subset Ω of Rn and a convex integrand f : RN×n → R with (5.1) such that f is C2 near some
z0 ∈ RN×n with ∇2f(z0) > 0. If u ∈ BVloc(Ω,R

N) is a local minimizer of F on Ω and if Du
has Lebesgue value z0 at a point x0 ∈ Ω in the sense of

lim
%↘0

|Du− z0Ln|(B%(x0))

Ln(B%(x0))
= 0 ,

then
u is of class C1,α , for all α ∈ (0, 1) , in a neighborhood of x0 .
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The point of Theorem 5.1 lies in the fact that it guarantees regularity under assumptions
which are not only localized near a point x0 in Ω, but are almost localized near a value z0 of
the gradient variable. Here, the formulation ‘almost localized’ is meant to express that the
convexity assumption on f is still imposed globally on RN×n, but that all other assumptions
on f depend only on its restrictions to arbitrarily small neighborhoods of z0. Indeed, it is
not clear (to the author) whether the global convexity assumption can be entirely dropped,
but relaxation methods in the spirit of Section 3.5 show that it can, at least, be weakened as
indicated in the following corollaries: In the case N = 1, Theorem 5.1 remains valid under
the sole hypotheses on f that (5.1) holds and that the convexification f ∗∗ is C2 near z0 with
∇2f ∗∗(z0) > 0; and in the case N > 1, it suffices to require that (5.1) holds and that the
quasiconvexification Qf is convex on RN×n and C2 near z0 with ∇2Qf(z0) > 0. Anyhow, we
do not want to pursue the weakening of the convexity assumption in the sequel, but rather we
turn to the case that ∇2f(z) > 0 holds for every z ∈ RN×n, which clearly implies convexity
of f . In this case, since Ln-a.e. x0 ∈ Ω is a Lebesgue point of Du, Theorem 5.1 implies the
following statement, which has been observed in [21, Corollary 1.1].

Corollary 5.2 (partial C1,α regularity for BV minimizers). Consider an open subset Ω of Rn

and an integrand f ∈ C2(RN×n) with (5.1) such that ∇2f(z) > 0 holds for all z ∈ RN×n. If
u ∈ BVloc(Ω,R

N) is a local minimizer of F on Ω, then there exists an open subset Ω0 of Ω
such that we have

u ∈ C1,α
loc (Ω0,R

N) for all α ∈ (0, 1) and Ln(Ω \ Ω0) = 0 .

The localized hypotheses in Theorem 5.1 are reflected in Corollary 5.2 in the fact that — in
contrast to many other partial regularity results — no growth conditions for ∇2f get involved.
This means, in other words, that Corollary 5.2 covers integrands with an arbitrarily fast blow-
up of the dispersion ratio of ∇2f(z) for |z| → ∞, and in particular the corollary (or a slight
adaption making assumptions only away from z = 0) applies to the model integrands mp also
in the cases p ≥ 2, which were excluded in the previous chapter. Indeed, the precise outcome
in case of the integrals Mp is as follows.

Corollary 5.3 (partial C1,α regularity for BV minimizers of Mp, 1 < p < ∞). Consider an
open subset Ω of Rn and an exponent p ∈ (1,∞). If u ∈ BVloc(Ω,R

N) is a local minimizer of
Mp on Ω, then there exists an open and dense subset Ω0 of Ω such that we have

u ∈ C1,α
loc (Ω0,R

N) for all α ∈ (0, 1) .

In the case p = 2, one moreover has Ln(Ω \ Ω0) = 0.

Here, the conclusion in the case p = 2 follows directly from Corollary 5.2. In the case p 6= 2
instead, one needs to get back to Theorem 5.1, which then applies near all points x0 ∈ Ω where
Du has a Lebesgue value 6= 0. However, since ∇2mp(0) vanishes for p > 2 and does not even
exist for p < 2, the theorem is not applicable in the degeneration points, that are the points
x0 ∈ Ω such that Du has Lebesgue value = 0. This is responsible for the fact that we cannot
yet assert, in these cases, Ln(Ω \ Ω0) = 0, but only that Ω \ Ω0 is nowhere dense. The next
section is essentially concerned with the overcoming of this drawback and the closing of the
gap from Corollary 5.3 to Theorem 1.1(C) by a careful analysis near the degeneration points.
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5.2. C1,α regularity near degeneration points 63

However, before turning to the degeneration points, we describe the proof of Theorem 5.1.
Indeed, the reasoning is based on the principle that the local minimizer u should satisfy the
Euler equation div

[
∇f(Du)

]
≡ 0 on Ω and should thus be close, up to a hopefully small error,

to a weak solution h of the linearization

div
[
∇2f(z0)(∇h−z0, · )

]
≡ 0 on a small ball Br(x0) . (5.3)

The prevalent idea in partial regularity proofs is now to exploit the good regularity theory for
the solution h of the linear elliptic system (5.3) and to carry over C1,α estimates to the local
minimizer u.

Under the assumptions of Theorem 5.1, the rigorous implementation of these heuristic ideas
is highly non-trivial for several reasons. First of all, since Du is not a continuous function, its
values need not be close to z0 in small neighborhoods of x0. Consequently, since f need not be
differentiable away from z0, the weak formulation of the Euler equation does not make sense
(even disregarding the difficulty that Du is merely a measure). Even more decisively, it is not at
all clear that comparison estimates for u and h will not depend on bounds for ∇2f far from z0.
These difficulties are overcome in [21] by permanently working with the minimality property
instead of the Euler equation and by a delicate localization strategy, which is inspired by a
previous regularity proof of Schoen & Simon [117] in the context of geometric measure theory.
The localization strategy, which, as a side benefit, avoids all indirect arguments, proceeds in
two steps. First one constructs a good C1,α competitor w with a well-controlled deviation from
minimality such that ∇w is C0,α-close to z0 on Br(x0). The competitor w is obtained in [21]
by a mollification procedure, and it is at this point where global convexity of f crucially enters
the reasoning. We remark that the mollification step replaces the usage of a classical Lipschitz
approximation lemma in the somewhat different framework of [117]. Anyway, in a second step,
w is approximated by a solution h of the linear system (5.3), with the Dirichlet boundary
condition h = w on ∂Br(x0). It follows, by global Schauder estimates on Br(x0), that ∇h is
still C0,α-close to z0 on the same ball Br(x0). Then, in view of the good control on ∇w and
∇h, it is possible to work with the integrand f only in a small neighborhood of z0 in order to
derive comparison estimates and gain better C1,α-control for w near x0 from the corresponding
control on h. Finally, exploiting the explicit construction of w as a mollification of u, one can
suitably carry over some C1,α estimates to the minimizer u.

We do not enter into further details of the described method, which lie beyond the scope of
the present exposition. Notably, the accomplishment of the last-mentioned steps is technically
demanding and requires a lengthy reasoning, which is detailed in the original article [21].

5.2 C1,α regularity near degeneration points

The publication [P2] aims at improving Theorem 5.1 in several regards. A first objective,
already foreshadowed above, is the investigation of degeneration points and a corresponding
improvement of Corollary 5.3 in the case p 6= 2. A second aim is the treatment of lower-
order terms, and this is in fact achieved in [P2] by working with a general notion of almost-
minimizers. Finally, as a side benefit, [P2] comes up with some technical refinements of the
Anzellotti-Giaquinta localization method.
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64 CHAPTER 5. Partial regularity of BV minimizers

Among these aspects, we first discuss the usage of almost-minimizers. The basic idea in
this regard is to weaken the local minimality property, and, suitably adapting the definitions
of Anzellotti [12] and Duzaar & Gastel & Grotowski [55], a starting point is to require that a
function u ∈ BVloc(Ω,R

N) on an open set Ω in Rn satisfies

F [u; Br(x0)] ≤ F [u+ϕ; Br(x0)] + Lrβ
(
Ln+|Du|+|Dϕ||

)
(Br(x0)) (5.4)

with a fixed exponent β ∈ (0,∞) and a fixed constant L < ∞, for all balls Br(x0) b Ω
and all ϕ ∈ BV(Ω,RN) with sptϕ ⊂ Br(x0). The aim is then to keep working with the simple
functionals from (5.2), but to extend Theorem 5.1 to functions u which are not local minimizers,
but merely almost-minimizers of F in the sense of (5.4). Such an extended result should, in
principle, apply to local minimizers of functionals with lower-order terms (and actually also to
minimizers of problems with volume or other constraints), since these minimizers turn out to
be almost-minimizers of F . Unfortunately, the notion in (5.4) is still too restrictive in order
to include functionals with a genuine zero-order occurrence of the dependent variable w, as it
will be admitted in the subsequent Section 5.3. Indeed, minimizers of such functionals exhibit
only weaker almost-minimality properties with respect to F , and for this reason we found it
necessary to introduce the weaker notion of almost-minimality in the next definition.

Definition 5.4 (Lq-β minimizers). Suppose that Ω is open in Rn and that f : RN×n → R

is continuous with (5.1). Moreover, fix q ∈ [1,∞] and β ∈ (0,∞). Then we say that u ∈
BVloc(Ω,R

N) is an Lq-β minimizer of F at x0 ∈ Ω if there exists a function ω : [0,∞)→ [0,∞)
with the following property: For all balls Br(x0) b Ω, all ϕ ∈ BV(Ω,RN) with sptϕ ⊂ Br(x0),
and all M ∈ [0,∞) with (

|Du|+|Dϕ|
)
(Br(x0)) ≤MLn(Br(x0)) , (5.5)

‖ϕ‖Lq(Br(x0),RN ) ≤M
[
r1+n

q + ‖u−uBr(x0)‖Lq(Br(x0),RN )

]
, (5.6)

there holds
F [u; Br(x0)] ≤ F [u+ϕ; Br(x0)] + ω(M)rβLn(Br(x0)) .

Finally, we say that u ∈ BVloc(Ω,R
N) is an Lq-β minimizer of F on Ω if it is an Lq-β

minimizer of F at every x0 ∈ Ω in such a way that ω can be chosen independent of x0.

We remark that, in the case q ≤ n
n−1

, the inequality (5.6) (possibly with a larger M) is
an automatic consequence of (5.5) and the Sobolev embedding, so that (5.6) can actually be
discarded. Hence, within the range q ∈

[
1, n

n−1

]
, the notion of Lq-β minimizers does actually

not depend on q. Despite this, there is no doubt that the notion of Lq-β minimizers is quite
technical. However, its justification lies in the facts that, on one hand, it is weaker than the
requirement (5.4) but suffices in order to establish regularity results, and that, on the other
hand, in contrast to (5.4) it can be verified in the concrete situations of Section 5.3.

Next we discuss the treatment of degeneration points. Our assumptions in this regard are
tailored out for the case of the model integrands mp, whose second derivatives exhibit at 0 the
same degenerate behavior as those of the p-energy integrand

ep(z) ..= 1
p
|z|p for z ∈ RN×n .
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5.2. C1,α regularity near degeneration points 65

Since our approach proceeds, to some extent, by reduction to the case of the p-energy and
vector-valued p-harmonic functions, it is natural to include not only the integrands mp, but
also other integrands f , which resemble, near some z0 ∈ RN×n, the model integrands mp and
ep near 0. This is achieved by assumption (5.7) below.

Now we are ready to state the variant of Theorem 5.1 which covers almost-minimizers and
applies even in degeneration points. The result is taken from [P2, Theorem 2.5, Remark 2.6].

Theorem 5.5 (C1,α regularity for BV almost-minimizers near degeneration points). Consider
an open subset Ω of Rn, a convex integrand f : RN×n → R with (5.1), and some z0 ∈ RN×n

such that f is either C2 near z0 with ∇2f(z0) > 0 or C2 in a punctured neighborhood of z0 with

lim
z→0

|∇2f(z0+z)− θ∇2ep(z)|
|z|p−2

= 0 (5.7)

for some p ∈ (1,∞) and some θ ∈ (0,∞). If u ∈ BVloc(Ω,R
N) is an Lq-β minimizer of F on

Ω with q ∈ [1,∞] and β ∈ (0,∞) and if Du has Lebesgue value z0 at a point x0 ∈ Ω, then

u is of class C1,α , for some α(n,N, p, β) ∈ (0, 1] , in a neighborhood of x0 .

Here, the exponent α is (in the sense of Footnote 2 in the introduction) the minimum of
β/max{p, 2} and the optimal Hölder exponent for the gradient of RN -valued p-harmonic func-
tions in n variables.

In particular, Theorem 5.5 applies to minimizers of the model integrals Mp from the intro-
duction whenever 1 < p <∞. Therefore, part (C) of Theorem 1.1 is contained here as a special
case.

We remark that the original statement in [P3, Theorem 2.5] actually works with three more
precise and more general assumptions in place of (5.7), but we prefer to avoid the corresponding
technical details here. We further point out that [55, Example 3] implies, at least in the case
p = 2 > β, the optimality of the Hölder exponent α = β/2 described in the theorem.

We only comment on some aspects of the proof of Theorem 5.5 in [P3, Section 5]. Actually,
we here restrict the discussion to the case of true minimizers of F and avoid all issues connected
to almost-minimizers. Then, since the remaining cases are already covered by Theorem 5.1, we
can evidently reduce to the case that (5.7) holds with p 6= 2. The underlying idea of proof in
this case is to complement the localization method of Anzellotti & Giaquinta [21], described
in the previous section, with a p-harmonic comparison technique and corresponding iteration
scheme, similar to the ones of Esposito & Mingione [61] and Duzaar & Mingione [56, 57].

Particularly, this means that our reasoning relies not only on the comparison with solu-
tions of linear systems like (5.3), but rather proceeds by comparison with both p-Laplace and
linear systems. Actually, for each ball Br(x0) in an iteration scheme, one considers the excess
Φ[u; Br(x0)], that is an (in the present situation small) integral quantity which measures the
deviation of u from being affine on Br(x0), and distinguishes between two cases: If the ratio
|(Du)Br(x0)|

p

Φ[u;Br(x0)]
is below a (typically large) threshold, the situation at hand is truly degenerate and

one reasons by comparison with solutions of the p-Laplace system; if, however, the ratio is above
the threshold, the situation is a non-uniformly non-degenerate one, in which the comparison
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with solutions of linear systems is more adequate, but non-uniform factors like |(Du)Br(x0)|p−2

occur and need to be handled with care. The final C1,α estimates are the outcome of a careful
combination of degenerate and non-degenerate estimates in the iteration scheme.

The techniques described so far are already present in [56] or [57], but the framework of
Theorem 5.5 requires further ideas. First of all, since (5.7) fixes only the behavior of ∇2f near
z0, and also since u is — in contrast to the situations of [61, 56, 57] — not a priori in W1,p

loc,
it seems impossible to directly employ the p-harmonic harmonic approximation lemma of [57].
Therefore, all the comparison estimates in [P2] for both the non-degenerate and the degenerate
regime are instead implemented via the direct localization method of [21]. However, also this
method does not directly apply, since the global C1,α Schauder estimates for linear systems
have no analogue for the degenerate p-Laplace system with non-zero boundary values, and
indeed the validity of these estimates for the p-Laplace system is an major unsolved problem.
Motivated by this difficulty, the localization method is customized in [P2] such that it works
with a Lipschitz (instead of C1,α) competitor w and with ∇w just L∞-close (instead of C0,α-
close) to z0 on Br(x0). Relying on global W1,p+ε rather than global C1,α estimates for the
p-Laplace system, we can then control the p-harmonic function h with h = w on ∂Br(x0) at
least in W1,p+ε(Br(x0),RN). A somewhat surprising insight of [P2] is that one actually need
not know that ∇h is L∞-close to z0 at this stage, but that the slight extra control on h in
W1,p+ε (and in some model cases merely the a priori available control in W1,p) already suffices
to suitably implement the comparison of w and h. The reason for this improvement of the
localization approach is technical in nature, but it roughly corresponds to the observation that,
though the W1,p+ε estimates for h in combination with the L∞-smallness of |∇w−z0| do not
anymore imply that the set S ..= {x ∈ Br(x0) : |∇h(x)−z0| � 1} is empty, at least these tools
yield an improved control on Ln(S); compare [P2, Proof of Proposition 5.2] for the precise
implementation of the argument. We remark that an improvement based on the usage of W1,s

estimates, possibly with larger s <∞, carries over, to some extent, to the non-degenerate case
(where it is, however, less crucial) and also to the origins of the method in geometric measure
theory; in the latter regard see the joint work [8] of L. Ambrosio, C. De Lellis, and the author.

At this point we refrain from entering into further details of the proof of Theorem 5.5, which
can be found in [P2, Section 5].

5.3 Selective C1,α regularity for model problems with

lower-order terms

Now we come to the treatment of functionals with lower-order terms, for which the notion of
Lq-β minimizers has been designed, and we roughly describe the results of [P2, Section 3] in
this regard. The considerations apply to local minimizers u ∈ BVloc(Ω,R

N) on an open set Ω
in Rn of splitting-type functionals

[w;A] 7→
∫
A

[
f( · ,Dw) + g( · , w)Ln

]
, (5.8)

defined for Borel sets A in Ω and functions w ∈ BVloc(U,R
N) on an open neighborhood U of

A. Here, the Carathéodory integrands f : Ω × RN×n → R and g : Ω × RN → R are subject
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to fairly mild hypotheses, and indeed it suffices to suppose that f(x, z) is convex and of linear
growth in z and suitably Hölder continuous in x, while g(x, y) satisfies a Hölder condition in
y, but only very mild growth assumptions. Under these assumptions, the essential outcome
of [P2, Proposition 3.1] is that local minimizers of the functionals in (5.8) can be regarded as
Lq-β minimizers in the sense of Definition 5.4, where β is the minimum of the Hölder exponents
of f in x and of g in y and q ∈ [1,∞] is an exponent related to the growth of g. For this
reason, (a minor modification of) Theorem 5.5 is general enough to include local minimizers of
the functionals in (5.8). We do not intend to restate this regularity result, which is recorded
in [P2, Corollary 3.3], with full details, but rather we illustrate its significance by means of an
exemplary case. For the regularizations of the total variation integrand m1 given by

m1,p(z) ..= max
{

1
p
|z|p, |z| − p−1

p

}
for z ∈ RN×n , (5.9)

an instance of the obtained results is contained in the next theorem. While the given statement
is taken from [P2, Theorem 1.3], the case p = 2, ζ ≤ 1 has already been obtained by Anzellotti
& Giaquinta [21, Theorem 6.1], and the scalar, quadratic case N = 1, p = ζ = 2 has been
established by Chen & Rao & Tonegawa & Wunderli [45, Theorem 1.2].

Theorem 5.6 (selective C1,α regularity for BV minimizers of some model problems). Consider
an open subset Ω of Rn, an exponent p ∈ (1,∞), parameters λ ∈ [0,∞), ζ ∈ (0,∞), and a
function S ∈ L∞loc(Ω,R

N). If u ∈ BVloc(Ω,R
N) ∩ Lζloc(Ω,R

N) satisfies∫
Br(x0)

[
m1,p(Du) + λ|u−S|ζLn

]
≤
∫

Br(x0)

[
m1,p(D(u+ϕ)) + λ|u+ϕ−S|ζLn

]
for all balls Br(x0) b Ω and all ϕ ∈ BV(Ω,RN) ∩ Lζ(Ω,RN) with sptϕ ⊂ Br(x0), then the set

Ω]
..=

{
x ∈ Ω : lim

%↘0

|Du− zLn|(B%(x))

Ln(B%(x))
= 0 for some z ∈ RN×n with |z| < 1

}
is open, and we have

u ∈ C1,α
loc (Ω],R

N) , for some α(n,N, p, ζ) ∈ (0, 1] .

In order to prove Theorem 5.6, one first establishes, by more or less the arguments described
in Section 4.1, interior L∞ regularity for u. Then, involving this regularity, one applies the
above-mentioned result of [P2] to conclude that u is an Lq-β minimizer of [w;A] 7→

∫
A

m1,p(Dw)
with β = min{1, ζ} and q = max{(ζ−1)n, 1}. Once this is shown, the claims of Theorem 5.6
follow from Theorem 5.5. For more details on the deduction of Theorem 5.6 and for similar
results under partially weakened assumptions on S, we refer again to [P2, Section 3].

We point out that Theorem 5.6 and the previous results in [45, 134] are partially motivated
by the occurrence of the functionals

w 7→
∫

Ω

[
|Dw|+ λ|w−S|ζ

]
(5.10)

in image restoration; compare, for instance, the work of Chambolle & Lions [42] for a variety
of proposed models in this direction. Here, the function S represents a blurred recording of
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some image, and one attempts to find a reconstruction of the original image as a minimizer of
(5.10) among functions w ∈ BV(Ω,RN). The functionals in (5.10) seem particularly suitable
in this regard. On one hand, the total variation term |Dw| has a mild regularizing effect on
minimizers, but also preserves some jump discontinuities which may correspond to edges in
the original picture. On the other hand, the fidelity term λ|w−S|ζ , with a suitably chosen,
large parameter λ, forces minimizers to stay close to the recorded image S. The parameter ζ
equals 2 in the original celebrated model of Rudin & Osher & Fatemi [114], but a more recent
work of Chan & Esedoḡlu [43] has also raised some interest in the choice ζ = 1 (which may,
however, bring up non-uniqueness of minimizers). Anyhow, difficulties with the approach based
on (5.10) arise from the total variation term, which is difficult to handle in both numerical and
analytical regards. Therefore, it is also common to regularize this term by replacing the total
variation integrand m1 with integrands of the type mp or m1,p, usually with p = 2, however.
Indeed, the most promising replacement for m1 might be the rescalings mε

1,p(z) ..= εm1,p(z/ε),

which are regularized on ε-balls in RN×n and coincide elsewhere (up to an additive constant)
with m1. Needless to say, Theorem 5.6 applies correspondingly with mε

1,p in place of m1,p and

then yields local C1,α regularity of BV minimizers u on the set

Ωε
]

..=

{
x ∈ Ω : lim

%↘0

|Du− zLn|(B%(x))

Ln(B%(x))
= 0 for some z ∈ RN×n with |z| < ε

}
.

Hence, the theorem rigorously confirms that the minimization of the relevant functional has, as
desirable in the image restoration context, a smoothing effect near points with small gradients.

Next we briefly discuss the other desirable effect in image restoration, namely the preserva-
tion of edges or, in other words, the inheritance of jump discontinuous from S to u. We believe
that would be very interesting to complement Theorem 5.6 with a corresponding result, which
specifies conditions on a point x in the approximate jump discontinuity set JS of S in order to
ensure its membership also in Ju. While, we are not aware of any published contribution in this
direction, we briefly mention two converse results of Caselles & Chambolle & Novaga in the
case N = 1, ζ = 2. For S ∈ BV(Ω) ∩ L∞(Ω), they showed in [40, Theorem 3.4] the inclusion
Ju ⊂ JS (up to an Hn−1-negligible set) for every BV minimizer u of (5.10). For n ≤ 7 and
S ∈ C0,α

loc (Ω) with α ∈ (0, 1], they proved in [41, Theorem 4.5] that every BV minimizer u of
(5.10) satisfies u ∈ C0,α

loc (Ω). For a more detailed discussion of BV minimizers of (5.10) (mostly
with ζ ≥ 1) and in particular for a detailed study of their level sets in the case N = 1 < n ≤ 7,
we also refer to Allard’s papers [3, 4, 5].

Finally, we briefly comment on functionals of the general type

[w;A] 7→
∫
A

f( · , w,Dw) ,

where the integrand f has still linear growth in the gradient variable, but exhibits also a
non-splitting dependence on the zero-order variable. Though such general functionals are not
approachable via Definition 2.1, the questions for semicontinuity, relaxation, and existence of
BV minimizers have essentially been settled in a suitably adapted framework [50, 10, 22, 65, 63,
11, 64]. Proving any regularity of the BV minimizers, however, has remained an open problem,
mainly due to the fact that it has not yet been possible to apply any Gehring type result, to
establish any extra gradient integrability, or to implement a suitable freezing method; compare
with [21, Section 6].
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Appendix A

Strict approximation
on non-Lipschitz domains

In this chapter we describe two approximation results, which have been obtained in [P4]. The
second result is in fact stated in a slightly refined form, which extends the corresponding result
of [P4] to possibly unbounded domains and has been worked out in [P3, Section 3.3].

A.1 Strict interior approximation

of a set of finite perimeter

The perimeter P(Ω) of an Ln-measurable subset Ω of Rn is defined as

P(Ω) ..= sup

{∫
Ω

divϕ dx : ϕ ∈ C∞cpt(R
n,Rn), sup

Rn
|ϕ| ≤ 1

}
∈ [0,∞] ,

and in the case P(Ω) <∞ one calls Ω a set of finite perimeter. For smooth sets Ω, it follows from
the divergence theorem that P(Ω) coincides with the (n−1)-dimensional measure Hn−1(∂Ω) of
the boundary ∂Ω, while, in general, one only has the inequality P(Ω) ≤ Hn−1(∂Ω). A basic
question about a set Ω of finite perimeter is whether it can be approximated by smooth sets
Ωk such that P(Ωk) converges to P(Ω). More precisely, one would aim at finding a sequence
of open sets (Ωk)k∈N with smooth boundaries in Rn such that Ωk converges in measure and
perimeter to Ω, that is, in the sense of

lim
k→∞

[
Ln((Ωk \ Ω) ∪ (Ω \ Ωk)) + |P(Ωk)− P(Ω)|

]
= 0 .

If one imposes no additional requirements, such approximations Ωk can be found by a well-
known reasoning, namely by choosing, via the coarea formula, good level sets of mollifications
of the indicator function 1Ω; see [9, Theorem 3.42] for details. However, in case of an open
Ω, it is also reasonable to require that the approximations come strictly from within Ω in the
sense that Ωk b Ω holds for all k ∈ N. Specifically, the latter requirement gets relevant in
connection with a boundary condition (see below) or if some functions considered are defined
only on Ω. In any case, the problem of finding approximations from within is considerably
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harder, and seemingly it has been solved in the classical literature [106, 97, 53] only for the
case of a bounded Lipschitz domain Ω. In [P4, Theorem 1.1], the previous results are extended
to a (possibly) rough Ω as follows.

Theorem A.1 (strict interior approximation of a set of finite perimeter). Suppose that a
bounded open subset Ω of Rn satisfies

P(Ω) = Hn−1(∂Ω) <∞ . (A.1)

Then, there exists a sequence of open sets Ωk b Ω with smooth boundaries such that Ωk con-
verges to Ω in measure and perimeter. Moreover, we can achieve that Ωk converges to Ω and
that ∂Ωk converges to ∂Ω also in the Hausdorff distance1 dH.

Before describing a proof of Theorem A.1, we comment on the decisive hypothesis (A.1). To
this end, we recall that, for every set Ω of finite perimeter in Rn, we have 1Ω ∈ BVloc(R

n), and
moreover, by De Giorgi’s structure theorem, |D1Ω| coincides with the restriction Hn−1 ∂∗Ω
of the Hausdorff measure Hn−1 to the reduced boundary2 ∂∗Ω of Ω; compare [9, Chapter 3.5].

x1

x2

Figure 4: The exemplary domain
Ω and an interior approximation
with perimeter (dashed curves) not
so far from 6.

In this light, (A.1) turns out to be equivalent to hav-
ing P(Ω) < ∞ and Hn−1(∂Ω \ ∂∗Ω) = 0, and thus it
expresses the requirement that the topological bound-
ary exceeds the measure-theoretic boundary at most
by an Hn−1-negligible set. In fact, for n ≥ 2 this
hypothesis (or a similar one) is inevitable in Theo-
rem A.1, as one can see considering the simple exam-
ple Ω = (0, 1)2 \

[{
1
2

}
×(0, 1)

]
⊂ R2 depicted in Fig-

ure 4, where the ‘missing’ line segment
{

1
2

}
×(0, 1) does

not contribute to the perimeter P(Ω) = 4, but con-
tributes once to the measure H1(∂Ω) = 5 of the topo-
logical boundary and contributes essentially twice to
the perimeter of good interior approximations. Beyond
this basic example, the necessity of (A.1) is discussed
in [P4, Section 5]. There, it is also shown that the
assumption (A.1) has a partial optimality property in
dimension n = 2 (which is based on a reasoning with
the path-connected components of ∂Ωk and the Golab
theorem on the lower semicontinuity of H1 along dH-
convergent sequences of connected sets).

Next we sketch the proof of Theorem A.1, given in [P4, Section 3]. We first observe that it
suffices to consider a fixed ε ∈

(
0, 1

2

]
and to construct an Ln-measurable set Ωε b Ω which is

close to Ω in measure and Hausdorff distance and satisfies P(Ωε) ≤ P(Ω) + ε. Indeed, once

1The Hausdorff distance dH(A,B) of two non-empty, bounded subsets A,B ⊂ Rn is defined as
max{supa∈A dist(a,B), supb∈B dist(A, b)}.

2The reduced boundary ∂∗Ω of Ω can be defined as the Lebesgue set of the L1-vector field dD1Ω

d|D1Ω| with

respect to |D1Ω|. Essentially, ∂∗Ω can be imagined as the set of boundary points x ∈ ∂Ω in which Ω possesses
a well-defined inward unit normal, given by the Lebesgue value dD1Ω

d|D1Ω| (x).
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this is achieved, the proof can be completed by the mollification procedure already mentioned
above and by using the lower semicontinuity of the perimeter. The construction of Ωε, in turn,
exploits arguments from the proof of De Giorgi’s structure theorem to find a decomposition
of the reduced boundary ∂∗Ω into countably many pieces R1, R2, R3, . . . such that each Ri is
almost flat in the balls B1/i(x) around all points x ∈ Ri, in the sense that Ri ∩B1/i(x) remains
in a cone with vertex x and opening angle ε around the approximate tangent space to ∂∗Ω at
x. In the next step, each Ri is covered by countably many n-dimensional cylinders Ci,j with
radii ri,j > min{ε, 1/i} and heights hi,j such that the sum

∑∞
j=1 ωn−1r

n−1
i,j of the measures of

the (n−1)-dimensional cross sections is close to Hn−1(Ri). The crux of the proof lies then in
the achievement of the following additional properties of the cylinders, which are illustrated in
Figure 5 below. On one hand, thanks to the choice of the Ri, the Ci,j can be taken almost
flat, in fact hi,j ≈ εri,j. On the other hand, the Ci,j can be arranged such that, up to sets of
small measure, only one half of ∂Ci,j intersects Ω. In combination, these properties imply that∑∞

j=1Hn−1(Ω ∩ ∂Ci,j) is still close to Hn−1(Ri), and all in all (Ci,j)i,j∈N is a cover of ∂∗Ω with∑∞
i,j=1Hn−1(Ω∩∂Ci,j) ≤ Hn−1(∂∗Ω) + 1

2
ε. In addition, by the hypothesis (A.1), the remainder

∂Ω \ ∂∗Ω of ∂Ω is Hn−1-negligible and can be covered, in a much simpler way, by countably
many balls Bi with small radii and total perimeter at most 1

2
ε. At this point, finally, Ωε is

obtained by removing finite subcovers of both the cylinders (Ci,j)i,j∈N and the balls (Bi)i∈N
from Ω. Then, Ωε is close to Ω in measure and Hausdorff distance, and most significantly ∂Ωε

is contained in the union of the boundary portions Ω ∩ ∂Ci,j and ∂Bi, so that we can control
P(Ωε) ≤ Hn−1(∂∗Ω) + ε = P(Ω) + ε. As indicated in the beginning, this suffices to establish
Theorem A.1.

Figure 5: The construction in the proof of Theorem A.1:
A portion Ri (thick curves) of the boundary of Ω (dotted area) is locally contained in a cone
(ruled area) around a tangent space and can locally be covered by an almost flat cylinder Ci,j
(gray shaded area) with boundary portion Ω∩∂Ci,j (dashed lines) of controlled Hn−1-measure.

We point out that it is actually the convergence in perimeter which is responsible for most
difficulties in the above proof. In contrast, it is much simpler to construct interior approxima-
tions Ωk b Ω such that Ωk converges to Ω in measure and such that there holds merely

lim sup
k→∞

P(Ωk) ≤ CHn−1(∂Ω) , with some dimensional constant C <∞ . (A.2)
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To achieve (A.2), there is no need to involve De Giorgi’s structure theorem or ideas from its
proof, further no need to cover ∂Ω by almost flat objects, and also no need to care that only
one half of their boundaries intersects Ω. Instead, a well-known argument based on a simple
covering with balls suffices; see [9, Proof of Proposition 3.62]. We remark that the same basic
argument has also been used in connection with [44, Proposition 8.1] where, unfortunately, a
claim on convergence in perimeter is stated, but only a property of the type (A.2) is established.

A.2 Strict approximation of a BV function

from a Dirichlet class

The publication [P4] also provides a counterpart of Theorem A.1, which concerns the approx-
imation of a given BV function from a prescribed Dirichlet class and which has already been
used extensively in the previous chapters. While the original statement [P4, Theorem 1.2]
applies on bounded open sets Ω ⊂ Rn with (A.1), we here restate the slight refinement of [P3,
Lemma 3.12], which covers even the case of (possibly) unbounded Ω with (possibly) infinite
perimeter. Employing the terminology of Sections 2.1 and 2.3, and imposing on ∂Ω the mild
regularity condition

1Ω ∈ BVloc(R
n) and |D1Ω| = Hn−1 ∂Ω , (A.3)

this refinement reads as follows.

Theorem A.2 (strict approximation of a BV function from a Dirichlet class). Suppose that
an open subset Ω of Rn satisfies (A.3), and fix u0 ∈ W1,1

loc(R
n,RN) with ∇u0 ∈ L1(Ω,RN×n).

Then, for every w ∈ BVu0

(
Ω,RN

)
and every Ψ ∈ L1(Ω), there exists a sequence (wk)k∈N of

approximations in u0+ C∞cpt(Ω,R
N) such that ‖wk−w‖L1(Ω,RN ) converges to 0 and such that Dwk

converges Ψ-strictly in RM
(
Ω,RN×n) to Dw. In addition, we can achieve that ∇wk converges

Ln-a.e. on Ω to ∇w.

In connection with the hypothesis (A.3), we point out that it is nothing but a local version
of (A.1). Indeed, it allows for P(Ω) = ∞ (in case that Ω is unbounded), but is equivalent to
saying that Ω is a set of locally finite perimeter in Rn with Hn−1(∂Ω \ ∂∗Ω) = 0. In particular,
one can deduce from (A.3) that ∂Ω is Hn−1-σ-finite and in fact even countably Hn−1-rectifiable.

We only describe the proof of Theorem A.2 in the slightly simpler case of bounded w, u0, and
Ω, while we refer to [P4, Section 4] and [P3, Section 3.3] for the cut-off arguments relevant to the
general case. In the bounded case, the reasoning follows the proof of [P4, Proposition 4.1] and
refines the previously illustrated proof of Theorem A.1. Indeed, the main issue is to construct,
for fixed ε ∈

(
0, 1

2

]
, an open set Ωε b Ω such that Ωε is close to Ω in measure and such that

the interior trace wint
∂∗Ωε

of w on ∂∗Ωε is controlled by the up-to-an-ε-error estimate∫
∂∗Ωε

|wint
∂∗Ωε − u0| dHn−1 ≤

∫
∂∗Ω

|wint
∂∗Ω − u0| dHn−1 + ε .

Suitable Ωε are constructed in [P4] by covering, as in the previous Section A.1, (parts of) ∂∗Ω
with almost flat cylinders Ci,j and by eventually removing these cylinders and also some balls
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from Ω. Here we also need to choose the Ci,j such that w is ε-almost constant on each of them,
and we additionally rely on some fine properties of traces, but otherwise the reasoning remains
close to the previously described one and we omit further details. Once, suitable Ωε are found,
the desired wk are then obtained as functions of the form u0 + (1Ωε(w−u0))r(ε), where the
subscript r(ε) stands for the mollification with a suitably small radius r(ε) ≤ ε.

What has been said so far does, however, not yet grant the claim on Ln-a.e. convergence
∇wk → ∇w to the density ∇w of the absolutely continuous part of Dw, a claim which occurs
similarly in [18, Lemma 5.1] and in the present connection in [P3, Lemma 3.12]. Anyway,
achieving this convergence is fairly easy once one observes that standard mollifications of w
actually converge in the required fashion (since evidently mollifications of ∇w converge Ln-a.e.
to ∇w, while mollifications of Dsw converge, as functions, Ln-a.e. to 0). Therefore, the required
convergence follows either directly from the above-sketched construction or by patching up the
just-constructed wk near ∂Ω and standard mollifications away from ∂Ω; see [P3, Section 3.3]
for further details.
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