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We consider systems in a bounded domain Ω ⊂ Rn having two stable states and admitting a
mean field description in terms of a phase function u : Ω→ R and with a free energy of the form

F(u) =

∫
Ω

( ε
2
|∇u|2 +W (u)

)
dx , (1)

where W : R→ R is a suitable double well potential, and ε > 0.
While the zero–temperature dynamics of such a system is given by the gradient flow of (1), the
evolution at a temperature γ > 0 is described by means of the Allen-Cahn equation perturbed
by an additive white noise η, i.e.

ε∂tu = ε∆u− 1

ε
W ′(u) +

√
2γ η . (2)

Large deviation principles for stochastically perturbed Allen–Cahn equations have been consid-
ered among others by [1],[2],[3] and the corresponding action functional for a time T > 0 has
been computed to be

Sε(u) =

∫ T

0

∫
Ω

(
ε(∂tu)2 +

1

ε
(−ε∆u+

1

ε
W ′(u))2

)
dx dt . (3)

For given initial and final states of the system, an action minimizer represents a most likely
connecting path between the two states and the value of the minimum of the action is related to
the probability that the transition between the two states takes place in the given time T .
In [4] we have studied the minimization of the sharp interface limit of Sε for ε→ 0, with prescribed
initial and final states. The limit functional, also called reduced action functional has been
computed in [3], [6] and reads

S0(Σ) =

∫ T

0

∫
Σt

(
|~v(x, t)|2 + |~H(x, t)|2

)
dHn(x) dt+ 4

∑
i∈J
Hn(Σi) , (4)

where Σ := (Σt)t∈[0,T ] is a family of smoothly evolving smooth hypersurfaces (with normal speed

~v and mean curvature ~H) out of a discrete set of times J ⊂ [0, T ] at which new components can
be nucleated.
The straightforward application of the direct method of the Calculus of Variations to the func-
tional (4) in the class of evolving integral varifolds with speed and mean curvature in L2 fails.
This failure is due to the impossibility of keeping track of the initial and final data along a min-
imizing sequence, which in turn is a consequence of the fact that a bound on (4) ensures only
a control in BV((0,T)) for the total area of the evolving varifolds. To overcome this problem,
we complemented the evolution of varifolds with a phase evolution according to the following
definitions

Definition 1. Consider a family µ := (µt)t∈(0,T ) of Radon measures on Rn+1 and set µ := µt⊗L1.

We call µ an L2−flow if (for almost all t ∈ (0, T )) µt is an integral n−varifold with mean curvature
~H ∈ L2(µt; R

n+1), µ has generalized normal speed ~v ∈ L2(µ; Rn+1) (see [5], Definition 3.1) and
sup0<t<T µt(R

n+1) <∞.
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Definition 2. Given T > 0 and two open sets Ω(0), Ω(T ) ⊂ Rn+1 with finite perimeter, let
M = M(T,Ω(0),Ω(T )) be the class of pairs (µ,u), with µ := (µt)t∈(0,T ) and u := (ut)t∈(0,T ),

such that the evolution µ is an L2-flow, for almost all t ∈ (0, T )

u(·, t) ∈ BV (Rn+1, {0, 1}), with |∇u(·, t)| ≤ µt (5)

hold, the evolution of phases u satisfies u ∈ C
1
2 ([0, T ];L1(Rn+1)), u attains the initial and final

data

u(·, 0) = XΩ(0), u(·, T ) = XΩ(T ), (6)

and ∫
Rn+1×(0,T )

∂tη(x, t)u(x, t) dx dt =

∫
Rn+1×(0,T )

η(x, t)~v(x, t) · ν(x, t) d|∇u(·, t)| dt (7)

holds for all η ∈ C1
c (Rn+1 × (0, T )), where ~v is the generalized velocity of µ and where ν(·, t)

denotes the generalized inner normal on ∂∗{u(·, t) = 1}.

In the class M of generalized evolutions, we have given a generalized definition for the action
functional taking into account also the phase evolution u.

Definition 3. For Σ ∈M, Σ = (µ,u) as above, we define

S(Σ) := S+(Σ) + S−(Σ), (8)

S+(Σ) := sup
η

[
2|∇u(·, T )|(η(·, T ))− 2|∇u(·, 0)|(η(·, 0)) (9)

+

∫
Rn+1×(0,T )

−2
(
∂tη +∇η · ~v

)
+ (1− 2η)+

1

2
|~v − ~H|2 dµt dt

]
,

S−(Σ) := sup
η

[
− 2|∇u(·, T )|(η(·, T )) + 2|∇u(·, 0)|(η(·, 0)) (10)

+

∫
Rn+1×(0,T )

2
(
∂tη +∇η · ~v

)
+ (1− 2η)+

1

2
|~v + ~H|2 dµt dt

]
,

where the supremum is taken over all η ∈ C1(Rn+1 × [0, T ]) with 0 ≤ η ≤ 1.

For sufficiently regular evolutions, the generalized action functional agrees with (4), as proven in
the following

Theorem 4. Let Σ be given by an evolution (Ω(t))t∈[0,T ] of open sets Ω(t) ⊂ Rn+1, which means

u(·, t) = XΩ(t) and µt := Hn ∂Ω(t).

Assume that (∂Ω(t))t∈[0,T ] represents, outside of a set (possibly empty) of singular times 0 = t0 <
t1 < · · · < tk < tk+1 = T , a smooth evolution of smooth hypersurfaces. Then

S(Σ) =

∫ T

0

∫
∂Ω(t)

(|~v(·, t)|2 + |~H(·, t)|2) dHn dt+ 2

k+1∑
j=0

sup
ψ
|µtj+(ψ)− µtj−(ψ)|, (11)

where the supremum is taken over all ψ ∈ C1(Rn+1) with |ψ| ≤ 1, and where we have set
µt := Hn ∂Ω(0) for t < 0 and µt := Hn ∂Ω(T ) for t > T .

Within the setting of generalized evolutions, we finally were able to apply the direct method and
prove existence of global minimizers for S.

Theorem 5. Let T > 0 and let Ω(0) ⊂ Rn+1, Ω(T ) ⊂ Rn+1 be two given open bounded sets with
finite perimeter. Consider a family of evolutions (Σl)l∈N ⊂M(T,Ω(0),Ω(T )) with

S(Σl) ≤ Λ for all l ∈ N, (12)
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where Λ > 0 is a fixed constant.
Then there exists a subsequence l→∞ (not relabelled) and a limit evolution
Σ ∈ M(T,Ω(0),Ω(T )), such that

ul → u in L1(QT ) ∩ C0([0, T ];L1(Rn+1)), (13)

µlt → µt for almost all t ∈ (0, T ) as integral varifolds on Rn+1, (14)

µl → µ as Radon measures on QT , (15)

and such that u ∈ C0,1/2([0, T ];L1(Rn+1)) and µ� Hn+1.
Moreover it holds

S(Σ) ≤ lim inf
l→∞

S(Σl) . (16)

In particular, the minimum of S in M(T,Ω(0),Ω(T )) is attained.
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