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Introduction

In the last years the study of optimal transport problems has received a lot of attention
and the underlying theory has found applications in many fields like non-linear partial
differential equations, calculus of variations, probability, economics, fluidodynamics and
many others fields. In particular we can approach problems as optimization of transport
networks, urban planning, location and irrigation, traffic models with congestion or
concentration effects and many others with the Monge-Kantorovich mass transport
theory.

This thesis is dedicated to the study of some new models in the framework of location
problems and in traffic problems with congestion, based on the works [23] and [22], in
collaboration with Giuseppe Buttazzo, Guillaume Carlier and Fabrizio Oliviero.

Mass transport theory starts in 1781 with the work of Gaspard Monge (see his
famous work [51]), that proposes a mathematical model to describe the way to transport
a given mass density to a final configuration with the minimum total cost. Given two
densities ρ0 and ρ1, the mass in each point x, that is ρ0(x)dx, has to be moved to
the destination T (x). Supposing that all the mass located in some point must go to
the same destination, the infinitesimal work to transport the mass in x to T (x) is
|x− T (x)|ρ0dx. Summing all the contributions, the total cost is given by∫

Rn
|x− T (x)|ρ0(x) dx. (1)

The above quantity has to be minimized among all the so called transport maps T ,
i.e. measurable functions such that for every Borel set A the following mass balance
condition ∫

T−1(A)
ρ0(x)dx =

∫
A
ρ1(y)dy

holds. Clearly this means that the initial and final densities have the same total mass.
Many generalizations can be taken into account. The unit transport |x−T (x)| cost

can be replaced by a more general function, for examples of the type |x − T (x)|p and
ρ0 and ρ1 can be replaced by two positive measures µ and ν, that we may take as
probabilities if we normalize to 1 the initial and final total masses.

The problem of the minimization of the transport cost (1), among all transport maps
T sending ρ0 into ρ1 contains some substantial intrinsic difficulties mainly due to the
non-linearity of the unknown and to the strong requirement that all the mass located
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in x must go to the same destination T (x). There has been no significant progress
until 1940 when Leonid Kantorovich proposed (see his famous papers [43], [44]) an
alternative approach to the mass transportation problem. In the Kantorovich point of
view the transport of ρ0 into ρ1 is represented by a probability measure π ∈ P(Rn×Rn),
called transport plan, such that dπ(x, y) is the quantity of mass in x which is sent into
y. Of course each transport plan has to transport ρ0 into ρ1: this condition is expressed
by requiring that π(A× Rn) = ρ0(A) and π(Rn × B) = ρ1(B), i.e. π has ρ0 and ρ1 as
marginals. In this framework the total cost of transporting ρ0 into ρ1 with respect to
Monge’s criterium is given by ∫

Rn×Rn
|x− y| dπ(x, y). (2)

The cost functional is linear with respect to the transport plans π so the existence of
an optimal transport plan minimizing the above cost functional, follows by a standard
argument. Kantorovich’s approach allows to easily generalize the transport problem to
the case of general cost function c(x, y).

Kanotorovich’s formulation is a relaxed version of Monge’s one. The advantages
of this approach can be found in the linearity of the functional with respect to the
unknown, in the good properties of the set of admissible plans (that is non-empty con-
vex and weakly compact in the space of probability measures P(Rn × Rn)) and in the
admissibility of mass splitting. The existence of an optimal transport map is, on the
contrary a very difficult issues; after the work of Sudakov on the existence of a solution
(see [55]) many other authors develop the subject with a lot of generalizations.

In many optimal transport problems the initial configuration of the mass is known,
while the final measure is not prescribed but only has to satisfies some suitable re-
quirements. A typical example are the location problems, in which the final measure
is concentrated in a finite number of points.

Let us now focus on the location problem, that can be described as follows: a given
bounded and closed region Ω ⊂ Rn is considered, together with a given nonnegative
function ρ : Ω → R+ which represents the distribution density of resources in Ω. The
goal is to concentrate the resources into a given number N of points x1, . . . , xN in
an optimal way. The simplest way to find the optimal configuration is to consider
the average distance between the initial and final location of a unit of resources and
minimize it. Let us denote by mi the quantity of resources that will be concentrated
at the point xi and by Ωi the so-called Voronoi cell corresponding to xi, that is, the
subregion of Ω that sends its resources to the point xi. In other words, we have

mi =

∫
Ωi

ρ(x) dx.

Then we have that the total cost to concentrate the resources spread on Ωi into every
xi is given by

A

∫
Ωi

|x− xi|pρ(x) dx
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where A is a proportionality constant and p is a given number. We are assuming that
the cost to move a unit mass along a distance l is Alp. Summing up over all the N , we
have that the total cost is given by

A

N∑
i=1

∫
Ωi

|x− xi|pρ(x) dx

that can be written also in the form

A

∫
Ω

(
dist(x,Σ)

)p
ρ(x) dx,

where Σ is the unknown set of N points to be determined.
The most efficient choice of the positions is then obtained by solving the minimiza-

tion problem

min
{
F (Σ) =

∫
Ω

(
dist(x,Σ)

)p
ρ(x) dx : Σ ⊂ Ω, #Σ = N

}
. (3)

Here #Σ is the cardinality of Σ, and dist(x,Σ) is the distance function

dist(x,Σ) = min
{
|x− y| : y ∈ Σ

}
.

The existence of a solution ΣN for a fixed N follows immediately by applying the
direct methods of the calculus of variations but the numerical approximation of the
solution is a hard problem, when N is large, because of the high number of local
minima of the functional F (Σ) in the class of admissible sets. This prevents the use
of fast gradient methods and require the slow global optimization methods, as is often
the case in this kind of problems.

For this reason, it is interesting to study the asymptotic behavior of the optimal
sets ΣN as N → +∞. In order to do it, we identify each set Σ ⊂ Ω of N points with
the measure

µN =
1

N

N∑
i=1

δxi .

Thanks to the theory of Γ-convergence introduced by De Giorgi in the seventies (see [38],
and the book [37]), in [11] it was shown that the location cost for large N is asymptot-
ically equivalent to the limit cost:

ACp,dN
−p/d

∫
Ω

ρ(x)(
µ(x)

)p/d dx,
where µ is the absolutely continuous part of the limit of the µN and Cp,d is a constant
depending on the dimension d and the exponent p. The value of the constant Cp,d is
known only for d = 2:

Cp,2 =

∫
E
|x|pdx,
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where E is the regular hexagon of unitary area centered at the origin. In Figure 1 is
depicted a plot of the value of Cp,2 for p ∈ [0, 2).

Figure 1: Plot of the value of Cp,2 for p ∈ [0, 2).

Determining Cp,d for d ≥ 3 is still an open problem but upper and lower estimates
are possible. Observing that Cp,d ≥ min{

∫
K |x|

p dx : |K| = 1}, the minimum is

realized by the ball so that we have the lower bound Cp,d ≥ ω
−p/d
d

d
p+d . The upper

bound is obtained considering a random distribution of points with a certain law as

in [35] where is proved the estimate Cp,d ≤ ω
−p/d
d Γ(1 + p

d). Then we have

ω
−p/d
d

d

p+ d
≤ Cp,d ≤ ω

−p/d
d Γ(1 +

p

d
).

In Figure 2 we plot the value of the estimates of C2,dω
2/d
d .

Figure 2: Plot of the value of d
d+2 and Γ(1 + 2

d)
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One of the main objects of our study is a location problem which models an airfreigth
system with an extra term in the cost in functional F (Σ), which appears due to the
transport of mass between the various airports of the system. We start thinking at
Ω ⊂ R2 as a region or a state with a distribution of resources ρ in which we want to
locate N airports, say x1, x2, · · · , xN , in the optimal way as in the location problem.
The airports collect the resources, distributed in Ω, which are then transported between
the airports along point to point trajectories. This possibility is modeled by an extra
cost in the optimization problem that we will call routing cost. If we suppose that the
cost of connection between two airports xi, xj does not depend on the transported mass
but only on a q-power of the distance, multiplied by a suitable constant K, the total
routing cost is given by:

K
∑
i,j

|xi − xj |q = KN2

∫
Ω×Ω
|x− y|q d(µN ⊗ µN ).

Again, we are interested in the asymptotical problem: taking into account location and
routing contributions and setting ε = ACp,dN

−2−p/d/K, we have to solve the minimum
problem

min

{
ε

∫
Ω

ρ(x)

(µ(x))p/d
dx+

∫
Ω×Ω
|x− y|q d(µ⊗ µ)

}
.

When ε → 0 the optimal densities µε of this problem tend to a Dirac mass δx0 for a
suitable point x0. In order to identify the limit problem as ε→ 0, and so to identify the
point x0 around which the optimal densities µε concentrate, it is convenient to rescale
the cost above dividing it by its minimum value; this minimum value is shown to be
asymptotical to ε1/(1+p/d) so that the quantity to be minimized is

Gε(µ) = ε(p/d)/(1+p/d)

∫
Ω

ρ(x)(
µ(x)

)p/d dx+ ε−1/(1+p/d)

∫
Ω×Ω

V (x− y) d(µ⊗ µ).

We prove the following

Theorem. The Γ-limit of the sequence of functionals Gε, computed on the Dirac mass
δx0 and with respect to the weak* convergence of measures, coincides with the functional

H(δx0) = C

∫
Ω

(
ρ(x)

)β|x− x0|αq dx,

where α = p/d
1+p/d , β = 1

1+p/d and C =
(

1 + p
d

)(
2d
p

)α
.

One of our main motivations is the application of the location-routing model to the
real case, so the choice of the exponents p and q will be done according to the specific
case considered. In particular, p is related to the ground transportation cost and q to
the air transportation cost. For the location term we may suppose a linear dependence
with respect to the distance but we cannot assume the same for the routing term.
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Specifically, the air cost is mainly related to the fuel consumption during the flight: a
suitable value for the exponent q (see Paragraph 5.2 in [23]) is:

q = 0.7.

Notice that a value of q lower than 1 is reasonable for our case because in real aircraft
for a certain travel the costs of taking off and landing are fixed and not negligible, so
the air cost transport is well modeled by a concave function of the distance.

Starting from the theoretical results, we perform some numerical simulations using
the parameters described above. We use an iterative scheme based on an optimality
condition for the minimizer of the total cost functional. Starting from the uniform
distribution U(Ω) with total mass 1, the scheme is given byµ0 = U(Ω)

µn+1 =
(

ερ
c+V ∗µn

)p/d+1
,

where V (x) = xq and c is a Lagrange multiplier.

The applications to some real cases require also a good model for the distribution
of the population ρ; such models are available for some occidental areas: we will focus
for numerical simulations on the USA airfreight system.

This iterative scheme allows us to identify the main hub for the interesting example
of the USA.

Of course the presented model is obtained through many simplifications but a cor-
rect choice of the involved parameters, first of all the exponents p and q, makes it quite
appropriate to describe reality and the numerical simulations confirm the theoretical
results.

The second part of the thesis is devoted to a model of traffic congestion: in some
application in fact it is necessary to take into account how much the transportation
appears to be concentrated. The effects of traffic congestion in the modeling of a road
network has to reflect the very natural situation in which the transport speed decreases
as soon as the traffic density increases. So it seems reasonable to find a way to measure
how much the transportation is concentrated. From this point of view, Monge’s problem
can be seen as a concentration-neutral one and all the variants depart from this one.

The first formalization of congestion effects is due to Wardrop in the 50’s (see [58])
and is based on two principles: all paths connecting two points which are actually
followed by some vehicles must provide the same traveling time (which depends on
their length as well as congestion) and all other paths provide much time. This means
that we use only the geodesic paths for a metric that is induced by the use of the paths
themselves. This gives an equilibrium problem, that can be seen as a fixed point and
that has a variational characterization discovered by Beckmann (see [8]).

In the continuous transportation model of Beckmann, an open bounded connected
region Ω ⊂ Rd is given, with two probability measures ρ0 and ρ1 representing says, the
distribution of residents and working places in Ω. We assume that the traffic is a vector
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field σ : Ω → Rd whose direction is the travel direction and whose modulus |σ| is the
intensity of traffic. Following Beckmann’s model the relationship between the excess of
demand ρ = ρ1 − ρ0 and the traffic flow σ is given by the equilibrium of the outflow of
consumers and the excess of demand in very subregion K ⊂ Ω:∫

∂K
σ · ndHd−1 = (ρ1 − ρ0)(K),

where n is the outer unit vector. The previous relationship has to hold for arbitrary
K, so formally we have

div σ = ρ0 − ρ1.

We suppose also that the region is isolated, i.e. no traffic flow should cross the boundary:

σ · n = 0 on ∂Ω.

In order to take into account congestion effects, we assume that the transportation
cost per consumer at a point x depends on the intensity of traffic at x itself. Let
H : R+ → R+ be a convex nonneagtive function and assume that the transportation
cost at x is H(|σ(x)|). Then we may define the total transportation cost between ρ0

and ρ1 as the value of the minimal flow problem

inf

{∫
Ω
H(|σ(x)|)dx : −div = ρ1 − ρ0, σ · n = 0 on ∂Ω

}
.

This problem is tightly connected with the Monge-Kantorovich optimal transporta-
tion: when H(|σ|) = |σ| no congestion effect occurs and the transport problem reduces
to Monge’s transport where particles travels along geodesics. On the contrary, when
H is superlinear congestion effect may occur and the mass particles trajectories follow
more complicated paths.

The question we address concerns the design of low congested regions; more pre-
cisely, two congestion functions H1 and H2 are given, with H1 ≤ H2, and the goal is
to find a region C ⊂ Ω where the low congested traffic may travel. Since reducing the
congestion in a region C is a costly issue, a term m(C) is added, to describe the cost of
improving the region C, thus penalizing too large low congested regions. On the region
Ω \ C we then have the normally congested traffic governed by the function H2, while
on the low congested region C the traffic is governed by the function H1.

Putting the problem into a mathematical formulation, for every region C we consider
the cost function

F (C) = min

{∫
Ω\C

H2(σ) dx+

∫
C
H1(σ) dx : −div σ = ρ in Ω, u · n = 0 on ∂Ω

}

so that we deal with the minimization problem

min
{
F (C) +m(C) : C ⊂ Ω

}
. (4)
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We consider several choices of the congestion region C and the corresponding cost
m(C), related to different traffic congestion models. Our first result concern the case
when C is a d-dimensional subdomain of Ω and the penalization m(C) involves the
perimeter of C: in this situation an optimal region C is shown to exist.

Theorem. Assume that the cost F (C) is finite for at least a subset C of Ω with finite
perimeter and that m(C) = kPer(C) with k > 0. Then there exists at least an optimal
set Copt for problem (4).

When m(C) is simply proportional to the Lebesgue measure of C, the optimal
choice for the planner is to have a low congested area C0, a normally congested area
C1, together with an area Ω \ (C0 ∪ C1) with intermediate congestion.

In the case with volume constraint, passing to a relaxed formulation in which the
set C is replaced by a density function θ(x) with 0 ≤ θ(x) ≤ 1, we end up with the
minimization problem

min

{∫
Ω

(
H2(σ) ∧

(
H1(σ) + k

))∗∗
dx : σ ∈ Γρ

}
that is of type (13) where H(σ) = (H2(σ) ∧ (H1(σ) + k))∗∗ and

Γρ =
{
σ ∈ L1(Ω;Rd) : −div σ = ρ in Ω, σ · n = 0 on ∂Ω

}
.

Using a convex analysis formula, we can write the dual formulation

min
{∫

Ω
H(σ) dx : σ ∈ Γρ

}
= sup

{∫
Ω
u dρ−

∫
Ω
H∗(∇u) dx

}
(5)

where the flux σ and the dual variable u are linked by σ = ∇H∗(∇u) and the Euler-
Lagrange equation of problem (5) is formally written as{

−div∇H∗(∇u) = ρ in Ω

∇H∗(∇u) · ν = 0 on ∂Ω.
(6)

When the admissible sets C are networks, that is closed connected one-dimensional
sets, and the penalization cost m(C) is proportional to the total length of C (the
1-dimensional Hausdorff measure H1(C)), we obtain the existence of optimal configu-
rations.

We observe that the analysis above is similar to a two-phase optimization problem
(a complete analysis and numerical methods to treat them are available in [1]). This
consists in finding an optimal design for a domain that is occupied by two constituent
media with constant conductivities α and β with 0 < α < β < +∞, under an objec-
tive function and a state equation that have a form similar to (5). Some numerical
calculations and examples have been done using finite element method.
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Plan of the work

This thesis consists of three chapters. We give here a brief summary of each Chapter.

In Chapter 1 we give a non exhaustive presentation of the theory of optimal trans-
portation starting from the classical Monge-Kantorovich formulation up to the recent
developments performed by Benamou and Brenier. We begin with the description of
Monge and Kantorovich problems in a quite general setting.

Problem (Monge). Let X and Y be two Polish spaces and denote by M1(X) (re-
spectively M1(Y )), the set of probability measures on X, (respectively Y ). Given
ρ0 ∈ M1(X), ρ1 ∈ M1(Y ) and a cost function c : X × Y → [0,+∞), the Monge
problem is:

inf
T]ρ0=ρ1

∫
X
c(x, T (x)) dρ0(x). (7)

Problem (Kantorovich). Let X and Y be two Polish spaces. Given a cost function
c(x, y) and two densities ρ0 ∈M1(X) and ρ1 ∈M1(Y ), minimize the total cost, among
all possible transport plans π with marginals ρ0 and ρ1:

min

∫
X×Y

c(x, y) dπ(x, y). (8)

It is discussed the existence of an optimal transport map or plan and the connec-
tion between the two problems. Then a dual formulation of Kantorovich problem is
presented, the so called Kantorovich duality and the main tools necessary to its proof.

Theorem. Let X and Y be two Polish spaces and let ρ0 ∈ M1(X) and ρ1 ∈ M1(Y )
be probability measures. Define Π(ρ0, ρ1) to be the set of all Borel probability measures
π on X × Y with marginals ρ0 and ρ1. Given a lower semicontinuous function c :
X × Y → R+ ∪ {+∞}, then:

min
π∈Π(ρ0,ρ1)

∫
X×Y

c(x, y) dπ(x, y) = sup
(ϕ,ψ)

{∫
X
ϕdρ0 +

∫
Y
ψ dρ1

}
(9)

with the pair (ϕ,ψ) ∈ L1(ρ0)× L1(ρ1) and satisfying ϕ+ ψ ≤ c.

A different, dynamical approach to mass transportation theory was proposed by
Benamou and Brenier in [9]. Although Monge mentioned the notion of trajectories
between given data in his work (see [51]), the frst time-dependent optimal transport
problem was not formulated until 1999 by J.D. Benamou and Y. Brenier. Looking at
the trajectory of each particle Tt, it is studied the evolution of the measure ρt = (Tt)]ρ0

at intermediate time t. It is convenient to switch to the Eulerian point of view and to
introduce the variables ρ, v representing respectively the density and velocity field, and
the flux vector q = ρv. The dynamical formulation of mass transport problem is then

min{A(ρ, v) : ∂tρ+∇ · q = 0 , ρ(0, ·) = ρ0 , ρ(1, ·) = ρ1} (10)
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where A(ρ, v) is the time integral of energy

A(ρ, v) =

∫ T

0

(∫
Rd
ρ(t, x)|v(t, x)|2dx

)
dt.

Denote by Q = [0, 1]× Ω ⊂ Rd+1 the time-space domain, by n its outer normal versor
and by σ = (ρ, v) the measure with value in Rd+1 belonging to the spaceMb(Q̄,Rd+1).
Taking the scalar measure f = δ1(t)⊗ ρ1(x)− δ0(t)⊗ ρ0(x), we can rewrite (10) in the
more common form:

min{A(σ) : −div σ = f in Q̄, σ · n = 0 on [0, 1]× ∂Ω} (11)

Afterwards, we discuss the main properties of the p-Wasserstein distance, defined
as follows.

Definition. The p-Wasserstein distance between µ, ν ∈ Pp(X) is:

Wp(µ, ν) =

(
inf

π∈Π(µ,ν)

∫
X×X

d(x, y)pdπ(x, y)

)1/p

. (12)

Another important preliminary notion is the theory of Γ-convergence, introduced by
De Giorgi, that permits to characterize the asymptotic behavior of families of infimum
problems.

Definition. Let Fh : X → R ∪ {+∞} be a sequence of functionals on a metric space
X. Then we define the Γ− lim inf : X → R∪ {+∞} and Γ− lim sup : X → R∪ {+∞}
as:

• (Γ− lim inf Fh)(x) = infxh→x lim infh→∞ Fh(xh),

• (Γ− lim supFh)(x) = infxh→x lim suph→∞ Fh(xh).

If F = (Γ− lim supFh) = (Γ− lim inf Fh) we say that the sequence Γ-converges to the

Γ-limit F , and we write, Fh
Γ→ F

In the further Paragraphs of the first Chapter, we describe some models present in
the literature which are used in the successive Chapters of this thesis. In particular
we describe the location problem and one of its generalization, the so called irrigation
problem. In the last Paragraph we describe an extension of the theory introduced by
Benamou-Brenier modelling the situation in which congestion effects are present, for
instance traffic on a highway, crowds moving in a domain with obstacles and in general
when the transportation does not behave in the classical Monge setting.

In Chapter 2, we present a generalization of the classical location model. Precisely,
we consider a region Ω ⊂ R2 with a distribution of resources ρ : Ω→ R+ and we want
to locate N points, say x1, x2, · · · , xN , representing N airports, according to some
optimization criteria. The idea is that the airports collect the resources distributed in
Ω and the goods can travel on point-to-point basis.



xiii

Essentially, we present two possibilities for the choice of the cost to transport a
unit of mass from two points regarding the mass dependence. We can suppose that the
unitary cost depends on the distance between two airports or that it also depends on
the transported mass. In both cases, we suppose that the ground transportation cost
and the routing cost are proportional respectively to the p-power and the q-power of
the distance.

In the independent-mass case, we study the following minimization problem, written
in terms of the measures µN = 1

N

∑N
i=1 δxi :

min

{
Cp,dN

−p/d
∫

Ω

ρ(x)

(µ(x))p/d
dx+KN2

∫
Ω×Ω
|x− y|q d(µ⊗ µ)

}
,

where A and K are the proportionality constants.

On the other hand, we can assume that the amount of mass mi located in xi is
dispatched in the other points proportionally to the masses mj so, using the measures

νN =
∑N

i=1miδxi , the model is:

min
{
AW p

p (ρ, ν) +
B

m

∫
Ω×Ω

V (x− y) d(ν ⊗ ν) : #(sptν) = N
}
.

In both cases, we study the asymptotic characterization of the limit problem as
N →∞.

In Chapter 3, we introduce the a model of traffic congestion. We suppose to be in
the framework of continuous traffic congestion even if the original model was introduced
for the discrete case of networks. Let us consider a region Ω ⊂ R2 in which there is a
so-called traffic intensity, i.e. a density of traffic congestion. To correctly describe the
model, we use the formalism of measures on the set of paths, which is a classical tool
in transport theory, in connection with optimal transport. So, denoting by Cx,y the
subset of C = W 1,∞([0, 1],Ω) of continuous paths from x to y, we consider a Monge
transport problem in which the transportation cost depends also on the possible paths
τ ∈ Cx,y followed by the mass transported. Then we define a probability measure Q
on C concentrated on absolutely continuous curves compatible with mass conservation
and we define a measure representing the intensity of traffic iQ associated to Q. The
congestion effects are then captured by the metric associated to Q:

ξQ(x) = g(x, iQ(x)),

for a given increasing function g : R+ → R+. Considering a region Ω in which the
densities of residents and of working places are known represented by two probability
measures ρ0 and ρ1, we consider the following Kantorovich type problem:

inf
π∈Π(ρ0,ρ1)

∫
Ω×Ω

cξQ(x, y) dπ(x, y).

Using a Moser type approach, and denoting by ρ the difference ρ = ρ0 − ρ1 and by
σ the traffic flux, the model with congestion effects, in the stationary regime, reduces
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to the minimal flow problem (see [18])

min

{∫
Ω
H(σ) dx : −div σ = ρ in Ω, σ · n = 0 on ∂Ω

}
. (13)

We study a very simplified model of a given region where the traffic flows according
to two regimes: in a region C we have a low congestion, where in the remaining part
Ω \C the congestion is higher. The two congestion functions H1 and H2 are given, but
the region C has to be determined in an optimal way in order to minimize the total
transportation cost. So the problem is of the following form:

min
{
F (C) +m(C) : C ⊂ Ω

}
,

where

F (C) = min

{∫
Ω\C

H2(σ) dx+

∫
C
H1(σ) dx : σ ∈ Γf

}
and m(C) is a penalization term. In case of perimeter constraint, m(C) = kPer(C),
the existence of an optimal C is proved and an optimality condition is computed. The
optimal set is convex, but higher regularity for ∂C is an open problem.

When m(C) = |C| is the Lebesgue measure, a relaxed formulation of the problem
is considered:

min

{∫
Ω

(
H2(σ) ∧

(
H1(σ) + k

))∗∗
dx : σ ∈ Γf

}
.

It is proved that the optimal set is composed by a low congested region, a normal
congested region and an area with intermediate congestion.

Finally, we consider the optimization problem in the class of one dimensional sets.
The existence is proved for the enlarged sets Σr = Σ +Br(0), where Br(0) is the ball of
radius r centered in the origin but in general the optimization problem with networks
does not admit a solution, because the limits of minimizing sequences may develop
multiplicities.



Notations

M(X) set of measures on X;

M+(X) set of positive measures on X;

M1(X) or P(X) set of probability measures on X;

Pp(X) set of probability measures on X with finite p-moment;

Mac(X) or Pac(X) set of absolutely continuous (w.r.t. Lebesgue measure) prob-
ability measures on X;

C(X) set of continuous functions on X;

Cb(X) set of continuous bounded functions on X;

C0(X) set of continuous functions on X going to 0 at infinity;

D(X) set of C∞(X) functions with compact support on X;

D′(X) set of distributions on X;

Lip(X) set of Liptchitz functions on X;

πi : Rn → R is the project function on the i-th component;

B(X) the Borel subsets of X;

Ld d-dimensional Lebesgue measure;

Hd d-dimensional Hausdorff mesure;

|A| the Lebesgue measure of a set A;

(f)]µ the push forward of the measure µ through the map f ;
dµ
dm Radon-Nikodym derivative of µ with respect to m;

µ� m the measure µ is absolutely continuous with respect to m;

f∗ the Legendre-Fenchel conjugate function of f ;

div v the divergence operator
∑n

i=1
∂vi
∂xi

,

∇v the gradient operator
(
∂v
∂x1

, ∂v∂x2
, · · · , ∂v∂xd

)
;

∆v the Laplace operator
∑n

i=1
∂2vi
∂x2
i

.

1





Chapter 1

Preliminaries

In this chapter we will describe some preliminaries useful for chapters two and three.
First we will describe some generalities in theory of optimal transportation and on
Γ-convergence theory. Then we will illustrate the so-called location and irrigation
problems. In the last paragraph, we describe the model of optimal transport with
congestion effect.

1.1 Monge-Kantorovich’s problem

Monge’s transportation problem, in a simple form is the following: consider an open
subset Ω ⊂ Rd and two mass distributions, identified by two measures ρ0 and ρ1.
Suppose that one wants to transport the amount of mass ρ0 on the place identified by
ρ1. The transportation is put through by a transport map T , that is an application
T : Ω→ Ω such that: ∫

A
dρ0(x) =

∫
T−1(A)

dρ1(y)

for every A ⊂ Ω. This condition explains the fact that the image of the measure ρ0

through the map T has to be ρ1. Usually, this condition is written using the notion of
push-forward denoted by ρ1 = T]ρ0. We suppose that the distributions have the same
mass (that often in the following will be assumed equal to 1):∫

Ω
ρ0(x) =

∫
Ω
ρ1(x).

If we suppose that the cost of moving a unit of mass is proportional to the distance
|x− T (x)|, the total cost to transport all ρ0 on ρ1 using the map T is given by:∫

Ω
|x− T (x)|ρ0(x) dx.

Now, a very basic question could be: Is it possible to find an optimal map (possibly
unique), such that the total cost is minimum?. Giving an answer to this question is

3



4 Preliminaries

equivalent to solve a minimization problem, precisely:

min

{∫
Ω
|x− T (x)| dρ0(x) : T]ρ0 = ρ1

}
. (1.1)

This problem, written in Monge’s formulation, has some intrinsic difficulties as the
following examples explain.

A first observation is: it is not so obvious that the set of the admissible transport
maps is not empty and also if it exists a transport map, the minimun cannot be always
attained. The following two examples show that these situations may occur:

Example 1.1 (Non-existence of transport maps). Let Ω = R, ρ0 = δ0 and ρ1 = δ1+δ−1.
There is no map T such that T]ρ1 = ρ0, so the Monge’s problem has no solution.

Example 1.2 (Non-existence of minimizer). Let X0, X1, X2 ⊂ R2 be the sets given
by:

X0 = {(x, 0) : 0 ≤ x ≤ 1}

X1 = {(x, d) : 0 ≤ x ≤ 1}

X2 = {(x,−d) : 0 ≤ x ≤ 1}

where d > 0, and let ρ0 = H1xX0, ρ1 = 1
2H

1xX1 + 1
2H

1xX2. The set of admissible
transport maps is nonempty, but the minimal value of transport cost maps cannot be
achieved.

Another issue is concerned with the uniqueness of the optimal transport map: the
next example shows how it is possible that every transport map is optimal:

Example 1.3 (Non-uniqueness of minimizer). Let Ω = R2, ρ1 = δA + δB (A,B ∈ R2)
and ρ0 is supported on the middle axis between A and B. Then∫

Ω
|x− T (x)| dρ0(x) =

∫
Ω
|x−A| dρ0(x)

whenever T (x) ∈ {A,B}. Hence any admissible transport map is optimal.

So far, we suppose the elementary cost to be the Euclidean distance and the ambient
space to be Rd, but the problem can be reformulated for more general costs c(x, y) and
spaces. An abstract version of Monge’s problem is:

Problem 1.4 (Monge). Let X and Y be two Polish spaces and denote by M1(X)
(respectively M1(Y )), the set of probability measures on X, (respectively Y ). Given
ρ0 ∈ M1(X), ρ1 ∈ M1(Y ) and a cost function c : X × Y → [0,+∞], the Monge
problem is:

inf
T]ρ0=ρ1

∫
X
c(x, T (x)) dρ0(x). (1.2)
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As we have seen in the previous examples, the problem, at least in Monge’s for-
mulation, is not well-posed and it is of difficult direct approach. In order to apply the
direct methods of the calculus of variations, it would be necessary to find a topology
that makes c(·, ·) lower semicontinuous and the set of admissible maps compact, but in
general there is no such a topology. Only one hundred and fifty years after Monge, with
the work of Kantorovich, a more general viewpoint permits to deduce the existence of
optimal transport maps in several situations.

A big problem in Monge’s version is that the mass can be put together, but cannot
be split. In the 1940’s, Kantorovich proposed a relaxed formulation (see [43], [44]) that
allows mass splitting. We discuss here Kantorovich’s approach to mass transportation
problem: instead of looking for an optimal transportation map, his idea was to consider
transport plans.

Definition 1.5. Let (X, ρ0) and (Y, ρ1) be two probability spaces. We define the set
of ”transport plans”, Π(ρ0, ρ1) as the set of all probability measures on X × Y with
marginals ρ0 and ρ1 respectively on X and Y . Precisely, π ∈ Π(ρ0, ρ1) if and only if,
for all measurable subsets A ⊆ X and B ⊆ Y :

π(A× Y ) = ρ0(A) and π(X ×B) = ρ1(B).

We can reformulate Monge’s problem using transport plans:

Problem 1.6 (Kantorovich). Let X and Y be two Polish spaces. Given a cost function
c(x, y) and two densities ρ0 ∈ M(X) and ρ1 ∈ M(Y ), minimize the total cost, among
all possible transport plans:

min

∫
X×Y

c(x, y) dπ(x, y) : π ∈ Π(ρ0, ρ1). (1.3)

Of course, since not all transport plans are induced by a suitable transport map T ,
it may happen that the optimal value of Problem 1.6 is strictly less than the one of
Problem 1.4.

Clearly, the set of admissible plans Π(ρ0, ρ1) is nonempty, as the product measure
µ = ρ0 ⊗ ρ1 is always admissible, so this formulation avoids ”non-existence” of ad-
missible transports. Thanks to the weak*-compactness of probability measures (using
Prokhorov’s theorem 1.8) and the direct methods of the calculus of variations, it is
possible to prove the existence of an optimal transport plan in Problem 1.6. This will
be proven in Theorem 1.9. For its proof we need some classical results, see [57].

Lemma 1.7. Let ρ0 and ρ1 be Borel probability measures on a Polish space X. The
set Π(ρ0, ρ1) of transport plans is tight.

Theorem 1.8 (Prokhorov). Let S be a tight set of Borel probability measures on a
Polish space X. Then S is relatively sequentially compact with respect to the weak
convergence. That is, given a sequence of {ρn} in S there exists a Borel probability
measure ρ such that for a suitable subsequence ρnk we have

lim
k→+∞

∫
X
ϕdρnk =

∫
X
ϕdρ
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for every ϕ ∈ Cb(X).

Theorem 1.9 (Existence of optimal transport plan). Let ρ0 and ρ1 be Borel probability
measures on a Polish space X. Let c : X × X → R+ ∪ {+∞}. Then there exists a
solution of Problem 1.6.

Proof. If the cost function c is continuous and bounded, thanks to tightness of the
set of transport plans (Lemma 1.7) and Prokhorov’s theorem, the functional (1.3) is
continuous. Also in the case of lower semicountinuous cost function c, Kantorovich
functional is lower semicontinuous (as a consequence of motonotone convergence theo-
rem). In order to apply the direct methods, we need to prove that the set of transport
plans is closed under the weak topology. Let {πn}n∈N be a weakly convergent sequence
in Π(ρ0, ρ1) and let π such that πn ⇀ π. For every couple of functions f , g ∈ Cb(X)
by passing to the limit as πn ⇀ π, we have:∫

X×X
(f, g) dπn =

∫
X×X

(f, g) dπ,

that is, (π1)]π = ρ0 and (π2)]π = ρ1.
Let now {πn}n∈N be a minimizing sequence. By Theorem 1.8, we can extract a

convergent subsequence, πnk ⇀ π∗ for some Borel probability measure π∗. Thanks to
the closedness of Π(ρ0, ρ1) with respect to weak topology, π∗ ∈ Π(ρ0, ρ1) and by the
lower semicontinuity of (1.3), π∗ is a minimizer.

Remark 1.10. This existence theorem does not imply that the optimal cost is finite.
It might be that all transport plans lead to an infinite total cost, i.e.

∫
c dπ = +∞ for

all π ∈ Π(ρ0, ρ1). A simple condition to rule out this annoying possibility is∫
c(x, y) dρ0(x) dρ1(y) < +∞.

Hereafter, we indicate with (MK) the Monge-Kantorovich’s problem, referring to
Problem 1.4 or 1.6. Of course the infimum in (1.3) could be strictly less than the
infimum in (1.2). The following proposition clarifies the “connection”between maps
and plans.

Proposition 1.11. Any transport map T : X → Y between ρ0 and ρ1 induces a
transport plan γT ∈ Π(ρ0, ρ1) given by

γT = (Id× T )]ρ0.

Vice versa, a transport plan γ is induced by a transport map if γ is concentrated on a
γ-measurable graph Γ.

Proof. If T is a map that transports ρ0 in ρ1, we have π1(γT )] = ρ0 and π2(γT )] = ρ1,
where πi is the projection on the i-th component.

On the other side, say that γ is concentrated on a γ-mesurable graph Γ and consider
Γ0 ∈ B(X × Y ), Γ0 ⊂ Γ. Let {Kn}n∈N be an increasing sequence of compact subsets
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of Γ0 such that γ(Γ0 \ Kn) → 0 and denote by Cn = π1(Kn), that is compact in X.
By the disintegration theorem (see [5]), for every x ∈ Cn there exists unique y = fn(x)
such that (x, y) ∈ Kn. By compactness, functions fn : Cn → Y are continuous and
fn = fm on Cn if m ≥ n. Let us define a Borel map T :

⋃
Cn → Y such that T|Cn = fn

and T (x) = y0 for x ∈ X \
⋃
Cn. Then T (x) = y γ-a.e. in X × Y and we have:∫

X×Y
ϕ(x, y) dγ(x, y) =

∫
X×T (X)

ϕ(x, T (x)) dγ(x, y)

=

∫
X
ϕ(x, T (x)) dρ0(x) =

∫
X×Y

ϕd(Id× T )]ρ0

Two basic concepts in the theory of optimal transport are the geometric property
of cyclical monotonicity and the so-called Kantorovich duality, actually the dual for-
mulation of the mass transport problem that permits us to see a minimization problem
as a maximization one.

Definition 1.12. A subset S ⊆ X × Y is said to be c-cyclically monotone if for any
n ∈ N and for any couple (xi, yi) ∈ S, and for any permutation σ of n elements,

n∑
i=1

c(xi, yi) ≤
n∑
i=1

c(xσ(i), yi).

We go on with the dual Kantorovich problem.

Theorem 1.13. Let X and Y be two Polish spaces and let ρ0 ∈ M1(X) and ρ1 ∈
M1(Y ) be probability measures. Given a lower semicontinuous function c : X × Y →
R+ ∪ {+∞}, then:

min
π∈Π(ρ0,ρ1)

∫
X×Y

c(x, y) dπ(x, y) = sup
(ϕ,ψ)

{∫
X
ϕdρ0 +

∫
Y
ψ dρ1

}
(1.4)

with the pair (ϕ,ψ) ∈ L1(ρ0)× L1(ρ1) and satisfying ϕ+ ψ ≤ c.

If in the original (MK) problem the central notion is cost, in the dual problem is
price. There is an interesting interpretation of the duality in terms of ”minimum cost -
maximum profit” (that is a Caffarelli example in Villani’s book [57]): suppose to be an
industrialist and to have to transport a certain quantity of your product from centers of
production to distribution centers. You can do this work to a transportation company
that applies a cost of c(x, y) for each unit of product from x to y. You want to solve
(MK) in order to pay as less than possible. Now, another company says that will do the
same work fixing a loading price ϕ(x) at place x and an unloading price ψ(y) at place
y in such a way that will be convenient for you. Of course you think that necessarily it
will be ϕ(x) +ψ(y) ≤ c(x, y). Kantorovich’s duality tells you that the second company
can arrange the prices in such a way that you will pay at least how much it is requested
by the first company.
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As observed, a competitive pair (ϕ,ψ) satisfies ϕ(x) +ψ(y) ≤ c(x, y), so for fixed ϕ
(and similarly for ψ), the best ψ compatible with the constraint is:

ψ(y) = inf
x
{c(x, y)− ϕ(x)}. (1.5)

From this observation we can reconstruct ψ in terms of ϕ, so we can just take ϕ as the
only unknown in our problem. The unknown cannot be any function, it has to satisfy
(1.5): the next definitions will be useful.

Definition 1.14. A function f : X → R∪{+∞} is said to be c-concave if it is of kind

f(x) = inf
(y,k)∈A

c(x, y) + k

for some subset A ⊆ X × R

Definition 1.15. Given a function f : X → R, the c-subdifferential ∂cf of f is defined
by:

∂cf = {(x, y) ∈ X × Y : f(z) ≥ f(x) + c(z, y)− c(x, y), ∀z ∈ X}

Definition 1.16. Let X and Y be non-empty sets and c : X × Y → R. Given
ϕ : X → R, the c-transform of ϕ is defined by

ϕc(y) = inf
x
{c(x, y)− ϕ(x)}

Theorem 1.17 (Rockafellar). Let X and Y be two Polish spaces. A non empty subset
Γ ⊆ X × Y is c-cyclically monotone if and only if is included in the subdifferential of a
lower semicontinuous c-convex function f , that is Γ ⊆ ∂cf .

As a particular case, we note that if c(x, y) = −x·y on Rn×Rn, then the c-transform
coincides with the usual Legendre transform, and c-convexity is just plain convexity on
Rn.

Definition 1.18. Let X be a normed vector space and let f : X → R ∪ {+∞} be a
convex function. The function f∗ : X∗ → R ∪ {+∞} defined on the dual of X by:

f∗(x∗) = sup
x∈X

[〈x∗, x〉 − f(x)]

is called Legendre-Fenchel transform of f .

Theorem 1.19 (Fenchel-Rockafellar duality). Let X be a normed vector space and let
F,G : X → R ∪ {+∞} be convex functionals. Suppose that there exists x0 ∈ X such
that:

• F (x0) < +∞ and G(x0) < +∞;

• F is continuous at x0.
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Then
inf
x∈X

[F (x) +G(x)] = max
x∗∈X∗

[−F ∗(x∗)−G∗(x∗)]

We can restrict to one variable in the right-hand side of (1.4), rewriting Problem
1.13 as

sup

{∫
X
ϕdρ0 +

∫
Y
ϕc dρ1

}
.

Remark 1.20. We observe that the requirement c(x, y) ≤ ϕ(x) + ϕc(y) is necessary.
In fact, if we remove this hypothesis, there is a counterexample by A. Pratelli that
contradicts the thesis. Let X = Y = [0, 1], consider c(x, y) = ψ(x, y − 1), where

ψ(x, y) =


1 if y = x
2 if y = x+ α
∞ otherwise

,

for a fixed α ∈ R. Taking T (x) = x+ α, it can be observed that it is minimal but not
concentrated on a c-monotone set.

For a complete proof of the Theorem 1.13 we refer to [57] and we give here an
informal idea of the proof.

Idea of the proof of Theorem 1.13. Let π be an optimal transport plan (from existence
theorem), and let (ϕ,ψ) a couple satisfies the condition ϕ(x)+ψ(y) ≤ c(x, y). We have∫

c(x, y) dπ(x, y) ≥
∫
ϕ(x) dρ0(x) +

∫
ψ(y) dρ1(y) =

∫
(ϕ(x) + ψ(y)) dπ(x, y).

So if both quantities are equal, then
∫

(c − ϕ − ψ) dπ = 0, and since the integrand is
nonnegative, necessarily

c(x, y) = ϕ(x) + ψ(y).

Now let (xi, yi)0≤i≤n ∈ sptπ, so there is indeed some transfer from xi to yi. Then
we hope that 

ϕ(x0) + ψ(y0) = c(x0, y0)
ϕ(x1) + ψ(y1) = c(x1, y1)
. . .
ϕ(xn) + ψ(yn) = c(xn, yn).

On the other hand, if x is an arbitrary point,
ϕ(x1) + ψ(y0) ≤ c(x1, y0)
ϕ(x2) + ψ(y1) ≤ c(x2, y1)
. . .
ϕ(x) + ψ(yn) = c(x, yn).

By subtracting these inequalities from the previous inequalities and adding up every-
thing, (we can arbitrarily choose ϕ(x0) = 0), one obtains

ϕ(x) ≥ (c(x0, y0)− c(x1, y0)) + · · ·+ (c(xn, yn)− c(x, yn))
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and this should be true for all choice of (xi, yi) in the support of π. So it becomes
natural to define ψ as the supremum of all the functions appearing in the right-hand
side. It means that ψ satisfies the equation

ψc(y) = c(x, y)− ψ(y).

Then, if ψc and ψ are integrable, we can write∫
c dπ =

∫
ψc dπ +

∫
ψ(y) dπ =

∫
ψc dρ0 +

∫
ψ(y) dρ1.

This shows at the same time that π is optimal in the Kantorovich problem and that
the pair (φc, φ) is optimal in the dual Kantorovich problem.

We discuss now some remarkable cases of problem with different cost function
c(x, y).

Since the case of quadratic cost has a prominent role because of the simplicity
of results and the importance of applications, we analyze here a characterization of
classical solutions in the setting X = Y = Rd and c(x, y) = |x − y|2. The following
theorem was proved first by Y.Brenier in [19].

Theorem 1.21 (Brenier). Let X = Y = Rd and ρ0, ρ1 ∈ M1(Rd) with second finite

moment (i.e.,
∫
X |x|

2 dρi(x) < +∞), ρ0 << Ld. If c(x, y) = |x−y|2
2 , then:

• there exists a unique π ∈ Π(ρ0, ρ1), optimal for Problem 1.6 induced by a transport
map T ;

• T = ∇ϕ for some convex l.s.c. ϕ (moreover, ρ0 is concentrated on Dom(ϕ)).

Conversely, if T = ∇ϕ ∈ L2(ρ0,Rd) for some convex ϕ, then T is optimal between ρ0

and T]ρ0

We give here a proof based on Theorem 1.17 but in [57] it can be found a duality-
based proof.

Proof. Let ψ : X → R be a c-convex function such that the graph Γ of its subdifferential
contains the support of any optimal transport plan π. Setting ϕ(x) = ψ(x)− |x|2/2, it
can be seen that

(x0, y0) ∈ Γ⇔ y0 ∈ ∂−ϕ(x0).

Since a convex function is almost everywhere differentiable with respect to the Lebesgue
measure and hence with respect to ρ0, for ρ0-a.e x0 ∈ X there exists a unique point y0

such that (x0, y0), that is y0 = ∇ϕ(x0). Since sptπ ⊂ Γ, we have π = (Id× ϕ)]ρ0.
Finally, assuming the existence of an optimal plan π induced by a transport map

T = ∇ϕ, the uniqueness follows by observing that the combination of two optimal
plans π

′′
= 1

2(π + π
′
) is still optimal and induced by a transport if and only if T = T

′
,

ρ0-a.e.
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Another result was obtained by Gangbo and McCann for a strictly convex cost
in [42].

Theorem 1.22. Let c(x, y) be a strictly convex, superlinear cost on Rd, and let ρ0,
ρ1 be probability measures on Rd such that ρ0 is absolutely continuous with respect to
Lebesgue measure. Then there exist a unique optimal plan π for (MK) problem, and it
has the form

π = (Id× T )]ρ0,

where T is uniquely determined by

T (x) = x−∇c∗(∇ϕ(x))

for some c-concave function ϕ.

Another possible generalization is given by considering a Riemannian setting, taking
X = Y = M a smooth, complete, Riemannian manifold and as cost c(x, y) = d2(x, y)
the square of geodesic distance on M . At the end of nineties McCann in [50] generalized
most of Theorem 1.21 in this sense:

Theorem 1.23 (McCann). Let M be a connected, complete smooth Riemannian man-
ifold equipped with standard volume measure. Let ρ0, ρ1 be two probability measures
on M with compact support, absolutely continuous with respect to volume measure. Let
c(x, y) be equal to the geodesic distance on M , denoted by d(x, y)2. Then, (MK) prob-
lem between ρ0 and ρ1 admits a unique optimal transport plan π = (Id × T )]ρ0 for T
satisfying T]ρ0 = ρ1. Moreover, T is uniquely determined by:

T (x) = expx(−∇ϕ(x))

for some d2-concave function ϕ.

Until now we focused on the basic question about existence and characterization of
Monge-Kantorovich problem. Another interesting question is what informations on ρ0

and ρ1 give us the knowledge of optimal cost? We want to look at optimality from the
metric point of view so we shall work under quite general assumptions on space X.

Let (X, d) be a Polish metric space and denote with P(X) the set of Borel probability
measures on X. Let p > 0 be a positive real number and denote with:

Pp(X) =

{
µ ∈ P(X) :

∫
X
dp(x, x0) dµ(x) < +∞

}
the set of probability measures with finite p-th moment (the finiteness of the integral
formula is independent on the choice of the point x0).

Definition 1.24. The p-Wasserstein distance between µ, ν ∈ Pp(X) is:

Wp(µ, ν) =

(
inf

π∈Π(µ,ν)

∫
X×X

dp(x, y) dπ(x, y)

)1/p

(1.6)

provided µ, ν ∈ Pp(X).
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The Wasserstein distance is really a metric since it satisfies the conditions:

1. Wp(µ, ν) = 0 iff µ = ν;

2. Wp(µ, ν) = Wp(ν, µ);

3. Wp(µ
1, µ3) ≤Wp(µ

1, µ2) +Wp(µ
2, µ3).

Observe that, by Jensen’s inequality, it follows that Wp ≤Wp′ whenever p ≤ p′ .
Some topological properties of Wasserstein distance are known. The following

proposition is a result on the stability of optimality and narrow lower semicontinu-
ity of the Wasserstein distance (see [57] for a proof):

Proposition 1.25. Let (X, d) be a metric space. Let {µ1
n}, {µ2

n} ⊂ Pp(X) be two
sequences narrowly converging to µ1,µ2 respectively, and let πn ∈ Π(µ1

n, µ
2
n) be the

sequence of corresponding optimal transport plans. Then πn is narrowly relatively com-
pact in Pp(X ×X) and any narrow limit point π ∈ Π(µ1, µ2) is an optimal transport
plan for (µ1, µ2) with:

Wp(µ
1, µ2) ≤ lim inf

n→+∞
Wp(µ

1
n, µ

2
n)

There are nice properties of the metric space (Pp(X),Wp) that can be recovered by
analogous properties of (X, d), like compactness, completeness, the property of being a
geodesic space or non-branching. We resume most of them in next theorems.

Theorem 1.26. If (X, d) is a complete metric space, then so is (Pp(X),Wp).

Theorem 1.27. Let (X, d) be a complete and separable metric space. Let {µn} be a
sequence in Pp(X). Then the following are equivalent:

1. Wp(µn, µ)→ 0;

2. µn narrowly converges to µ for n→∞ and∫
X
dp(x, x0) dµn →

∫
X
dp(x, x0) dµ

for all x0 ∈ X.

1.2 Dynamic Benamou-Brenier formulation

In this section we will see a dynamical formulation of the mass transport problem
described in the previous section. A reformulation of Monge-Kantorovich’s problem
is possible by introducing a continuous time variable t ∈ [0, T ], where a time interval
[0, T ] is arbitrarily chosen and fixed. The main motivations of this version of optimal
transport lie in the fact that a time-dependent model gives a more complete description
of the transport and in the rich mathematical structure intrinsically useful.

This different, dynamical approach to mass transportation problem was proposed
by Benamou and Brenier in [9] (see also [19]). Such a time-continuous reformulation
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was implicitly contained in the original problem addressed by Monge. The elimination
of time variable was just a clever way for reducing the dimension of the problem but
we will see in the following some reasons to keep to the time continuous formulation.
Roughly speaking, if the mass transportation problem is viewed as a distance problem,
then time-dependent minimization problem can be viewed as a geodesic problem.

Time-dependence approach is used in a wide range of applications. First exam-
ples could be in fluid dynamics framework, data assimilation in weather forecasting or
imaging processing etc..

So far, we have only considered a time-independent minimization problem in which
the cost function for transporting one unit of mass from one location to another does not
depend on the actual history of the transportation. Let us recall briefly, just to fix the
notation, (MK) problem: two bounded nonnegative measurable functions ρ0 and ρT ,
with compact support in a Polish space X and same mass, are given. Monge’s problem
is: select a map T transporting ρ0dx on ρTdx and minimize the total transportation
cost: ∫

Rd
c(x, T (x))ρ0(x) dx. (1.7)

We saw in Section 1.1 a brief overview on the subject and the main results and tools.
In particular, we saw that in the quadratic case, there is a unique optimal map Topt
defined on the support of ρ0 in the class of admissible transport maps. Moreover, Topt
is characterized as the unique map in this class which can be written as gradient of a
convex potential:

Topt(x) = ∇Φ(x).

We describe here the time-dependent formulation and its connection with the clas-
sical Monge-Kantorovich problem. The introduction of a time variable will allow us to
look also at the transport history of the entire process.

In the new model we shall study a transportation process via the family of the
trajectories of all points. Fix here, for convenience, a time interval [0, 1]; to each x
associate a trajectory (Tt(x))0≤t≤1, and denote by C[(Ttx)0≤t≤1] the corresponding
displacement cost that is the cost of transporting x along the trajectory (Ttx)0≤t≤1.
Requiring t → Ttx to be continuous, the time-dependent minimization problem reads
as:

inf
{∫

X
C[(Tt(x))0≤t≤1] dρ0(x) : T0 = Id, (T1)]ρ0 = ρ1

}
, (1.8)

where the infimum is taken over all trajectories (Tt(x)).
A sufficient condition that ensures the same total cost and the same displacement

map in Problems 1.7 and 1.8 is:

c(x, y) = inf{C(zt) , z0 = x , z1 = y},

where zt denotes a continuous curve from x to y. We can enforce the requirement
asking the trajectory to be optimal, i.e. for ρ0-almost x:

c(x, T (x)) = C(Tt(x)).
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The existence of an optimal solution for the time-dependent problem with the above
condition, using known result for time-independent problem, is guaranteed by the fol-
lowing theorem, consequence of the analogous in time-independent (see [57] for a proof):

Theorem 1.28. Let c(x, y) = c(x − y) be a strictly convex function with c(0) = 0,

C(zt) =
∫ 1

0 c(
·
zt) dt. Let ρ0, ρ1 be two probability functions absolutely continuous with

respect to Lebesgue measure and let ∇Ψ be the unique gradient of a c-concave function
such that (Id−∇c∗(∇Ψ))]ρ0 = ρ1. Then the solution of (1.8), for 0 ≤ t ≤ 1, is given
by:

Tt(x) = x− t∇c∗(∇Ψ). (1.9)

Again, an important particular case occurs when c(x, y) = |x − y|2 and X = Rn.
In this setting the solution of time-dependent problem coincides with the displacement
interpolation.

Now, we think to the initial and final probabilities ρ0 and ρ1 of Monge-Kantorovich’s
problem as densities of some set of particles at time t = 0, t = 1 respectively. If (Tt)0≤t≤1

is the solution of (1.8), consider the probability measure at intermediate times:

ρt = (Tt)]ρ0. (1.10)

The question at this level is: ”what is the natural evolution equation for ρt”? To
answer, and using the time dependence, it is convenient to pass from Lagrangian to
Eulerian point of view. If in the Lagrangian viewpoint it is taken into account the
collection of all trajectories, in the Eulerian scheme it is studied the velocity field of
the particles in the interpolation process.

To switch between these formulations, for every time t ∈ [0, 1], we introduce the
velocity field v(t, x) that represents the velocity of some given particle x at time t and
we set: {

v(t, Tt(x)) = ∂Tt(x)
∂t

T0(x) = x.
(1.11)

Of course it is necessary to assume sufficient regularity, for instance, let v be uni-
formly Lipschitz, then Cauchy-Lipschitz theory ensures the existence of a well-defined
flow in time interval 0 ≤ t ≤ 1. Denote by ρ(t, x) ≥ 0 the density field and look at
pairs (ρ, v). We have:

Theorem 1.29. Let X be Rd. If (Tt) is the solution of (1.8), v = v(t, x) is the
associated velocity field and ρ(t, x) = ρt = (Tt)]ρ0, then ρt is the unique solution of:

∂ρ

∂t
+∇ · (ρv) = 0 0 ≤ t ≤ 1 (1.12)

in C([0, 1],P(X)).

Note that equation (1.12) is known in physics as the identity of conservation of
mass and in fact the notation ρ reminds the density of a fluid.
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Proof. The idea is to show that for all ϕ ∈ C∞c the map t 7→
∫
Rd ϕdρt is Lipschitz on

(0, 1) and has derivative:
d

dt

∫
Rd
ϕdρt =

∫
Rd
∇ϕvt dρt

We have ρt = (Tt)]ρ0, which means:∫
Rd
ϕdρt =

∫
Rd

(ϕ ◦ Tt) dρ0

The function ϕ is compactly supported and T−1
t is continuous, then the function (ϕ◦Tt)

is supported on a compact set and it is Lipschitz with derivative:

∂

∂t
(ϕ ◦ Tt) = (∇ϕ ◦ Tt) ·

∂Tt
∂t

= (∇ϕ ◦ Tt) · (vt ◦ Tt).

Fixing h > 0, we have:

1

h

(∫
Rd
ϕdρt+h −

∫
Rd
ϕdρt

)
=

∫
Rd

(
ρ ◦ Tt+h − ρ ◦ Tt

h
dρ0

)
.

The term on the right is uniformly bounded on [0, 1 − h] × Rd and it converges to
(∇ϕ◦Tt)vt as h→ 0. We deduce, from Lebesgue dominated convergence theorem, that
the map t 7→

∫
Rd ϕdρt is differentiable for almost all t and:

d

dt

∫
Rd
ϕdρt =

∫
Rd

(∇ϕ ◦ Tt) · (vt ◦ Tt) dρ0 =

∫
Rd
∇ϕ · vt dρt.

So ρt solves the continuity equation. Regarding the uniqueness, by linearity, it is
sufficient to prove that if a time-dependent measure ρt solves (1.12), then for all time
s < 1,

ρ0 = 0⇒ ρs = 0.

Assume we can construct a Lipschitz function ϕ(t, x), defined on the time-interval [0, 1],
compactly supported, and solving{

∂ϕ
∂t = −v · ∇ϕ,
ϕ|t=s = ϕs

(1.13)

where ϕs is arbitrarily chosen in D(X). Then, we deduce that t 7→
∫
ϕt dρt is Lipschitz

and satisfies

d

dt

∫
ϕtρt =

∫
∂ϕt
∂t

dρt +

∫
ϕtd

(
∂ρt
∂t

)
= −

∫
vt · ∇ϕt dρt +

∫
ϕt d(∇ · (vtρt)) = 0

for almost all t. So ∫
ϕs dρs =

∫
ϕ0 dρ0 = 0.

By arbitrariness of ϕs, it follows that ρs = 0. It remains to construct a solution of
(1.13) with time condition at t = s. Since (Tt) is a locally Lipschitz function with
compact support satisfying (1.13) almost everywhere, the proof is completed.
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If we define the kinetic energy of particles at each time t as:

E(t) =
1

2

∫
Rd
ρ(t, x)|v(t, x)|2 dx,

one can think to the total effort to be spent for moving particles at speed v: at each
velocity field, it is associated a time integral of energy (up to factor 1/2):

A(ρ, v) =

∫ T

0

(∫
Rd
ρ(t, x)|v(t, x)|2 dx

)
dt. (1.14)

From now, the discussion is made for the case c(x, y) = |x − y|2 but as underlined
in Remark 1.31, similar arguments hold in more general cases.

Benamou and Brenier stated the following equivalence:

Theorem 1.30. Let ρ0, ρ1 ∈ Mac(Rd) (endowed with weak∗ topology) be compactly
supported. Then we have the equivalence:

W 2
2 (ρ0, ρ1) = inf{A(ρ, v) : (ρ, v) ∈ V(ρ0, ρ1)} (1.15)

where V(ρ0, ρ1) denotes the set of all pairs (ρ, v)0≤t≤1 satisfying the continuity equation
(1.12) with the boundary conditions:

ρ(0, ·) = ρ0, ρ(1, ·) = ρ1. (1.16)

Moreover, the infimum is achieved by the unique pair (ρ, v) defined from Ψ in (1.9) by:∫
f(t, x)ρ(t, x) dt dx =

∫
f

(
t, x+ t

∇Ψ(x)− x
T

)
ρ0(x) dt dx. (1.17)

∫
f(t, x)ρ(t, x)v(t, x) dt dx =

∫
∇Ψ(x)− x

T
f

(
t, x+ t

∇Ψ(x)− x
T

)
ρ0(x) dt dx

(1.18)
for all continuous functions f .

Proof. Here we sketch the main steps. Fixing ρ and v smooth, bounded, of class C1,
the steps of the proof will be:

i. the lower bound W 2
2 (ρ0, ρ1) ≤ inf{A(ρ, v) : (ρ, v) ∈ V(ρ0, ρ1)} holds;

ii. it exists (ρ, v) ∈ V(ρ0, ρ1) attaining the minimum in (1.15).

Step (i). To achieve step (i), it is sufficient to consider an admissible pair (ρ, v) and the
flow map of the vector field v, as in (1.11) and the curve ρt as in (1.10). In particular,∫

ρt(x)|vt(x)|2 dx =

∫
ρ0(x)|vt(Ttx)|2 dx =

∫
ρ0(x)

∣∣∣∣ ddtTtx
∣∣∣∣2 dx.
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Integrating in t:

A(ρ, v) ≥
∫
ρ0(x)

(∫ 1

0

∣∣∣∣ ddtTtx
∣∣∣∣2 dt

)
dx ≥∫

ρ0(x)|T1x− T0x|2 dx =

∫
ρ0(x)|T1x− x|2 dx.

(1.19)

Now, an approximation argument is necessary to reduce the minimization to the
case of smooth velocity field and to conclude

inf{A(ρ, v) : (ρ, v) ∈ V(ρ0, ρ1)} ≥W 2
2 (ρ0, ρ1).

A change of variable is necessary, passing form (ρ, v) to (ρ, ρv), in order to convexify
the functional. We do not detail more and we refer to [57] for the precise argument.
Step (ii). We show a couple (ρ, v) ∈ V(ρ0, ρ1) such that the equality holds in (1.15).
Consider T = ∇Ψ the optimum in (MK) problem and set:

vt =

(
d

dt
Tt

)
◦ T−1

t = (T − Id) ◦ T−1
t .

By an argument similar to Theorem 1.29, it is not difficult to see that (ρt, vt) solves
(1.12) in the weak sense:∫

ρtΦ(vt) dx =

∫
ρ0(x)Φ(T (x)− x) dx.

Choosing Φ(v) = |v|2, we conclude.

Remark 1.31. We observe that this equivalence between optimal transportation and
fluid mechanics holds in a more general contex. In particular, it holds for c(x, y) =
|x− y|. Anyway, Theorem 1.30 can be generalized in the setting of a smooth manifold
M : the first part of Step (i) and the Step (ii) work without problems in this situation;
the delicate point is the approximation by smooth velocities, but using an embedding
argument it also holds.

Thinking to the fluid dynamics framework, as in the previous discussion, it is con-
venient to introduce the variable q = ρv that represents the flux of the transported
mass; the continuity equation, in the new variable (ρ, q)

∂tρ+∇ · q = 0

has to be given in the sense of distribution, that is:∫ 1

0

∫
Ω
∂tϕ(t, x) dρ(x) +

∫
Ω
∇ · ϕ(x, t) dq(x) = 0

for every smooth function ϕ with ϕ(0, x) = ϕ(1, x) = 0. Note that, with this change of
variable, the continuity equation is linear with respect to density ρ and momentum q.
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The general dynamical formulation of mass transportation problems, following this
Eulerian point of view, then becomes:

min{A(ρ, v) : ∂tρ+∇ · q = 0 , ρ(0, ·) = ρ0 , ρ(1, ·) = ρ1}. (1.20)

Existence of minimizers for the problem above, with the linear constraint of con-
tinuity equation, follows also by direct methods of the calculus of variation. Denote
by Q = [0, 1] × Ω ⊂ Rd+1 the time-space domain and by n its outer normal versor.
Let σ = (ρ, v) be the measure with value in Rd+1 belonging to the spaceMb(Q̄,Rd+1).
Taking the scalar measure f = δ1(t)⊗ ρ1(x)− δ0(t)⊗ ρ0(x), (1.20) can be rewritten in
the more common form:

min{F(σ) : −div σ = f in Q̄, σ · n = 0 on ∂Q} (1.21)

where we rename A with F to emphasize the change of variable. It follows:

Theorem 1.32. Let F : Mb(Q̄,Rd+1) → [0,+∞] be lower semicontinuous for the
weak∗ convergence, and assume the coercivity condition for a suitable constant C:

F(σ) ≥ C|σ| − 1

C
∀σ ∈Mb(Q̄,Rd+1).

Assume that F(σ0) < +∞ for at least one σ0 satisfying continuity equation with bound-
ary condition as in (1.21). Then the minimum Problem 1.21 admits a solution. If F
is strictly convex, the solution is unique.

Proof. Let (σn)n∈N be a minimizing sequence for (1.21). The coercivity assumption
ensures that (σn) is bounded and then it exists a subsequence (σnk) weakly∗ convergent
to σ ∈Mb(Q̄,Rd+1). Passing to the limit as k → +∞ in the constraint of the problem,
we get an admissible σ. By lower semicontinuity, we have:

inf
σ admis.

F(σ) = lim
k→+∞

F(σnk) ≥ F(σ)

that proves the optimality of minimizer σ.

1.3 Γ-convergence

In this section we make a summary on an important tool of calculus of variations:
Γ-convergence. Introduced by De Giorgi in the seventies, it allows to characterize the
asymptotic behavior of families of infimum problems. It establishes a link between
minima (minimizers) of a sequence of functionals and the minimum (minimizer) of the
limit functional. We consider here the framework of metric spaces and we refer to the
books of Dal Maso [37] and Braides [13].

Let X be a metric space. Since a basic notion in many of our problem is that of
lower semicontinuous function, we start with:
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Definition 1.33. A function f : X → R ∪ {+∞} is said to be (sequentially) lower
semicontinuous at x ∈ X if, for every sequence {xj} converging to x, we have

f(x) ≤ lim inf
j→+∞

f(xj)

We say that f is lower semicontinuous if it is l.s.c. at x for all x ∈ X.

We remark the following condition, equivalent to lower semicontinuity: f has the
sublevel closed for all t ∈ R, or f(x) = lim infy→x f(y). Moreover, the following prop-
erties hold: the sum of l.s.c. functions is l.s.c., the supremum of family of continuous
functions is l.s.c. and the characteristic function of a set E is l.s.c. if and only if
the set is open. Similar can be said for upper semicontinuous functions (f is upper
semicontinuous if and only if −f is l.s.c.).

Definition 1.34. Let Fh : X → R ∪ {+∞} be a sequence of functionals. Then we
define the Γ− lim inf : X → R ∪ {+∞} and Γ− lim sup : X → R ∪ {+∞} as:

• (Γ− lim inf Fh)(x) = infxh→x lim infh→∞ Fh(xh),

• (Γ− lim supFh)(x) = infxh→x lim suph→∞ Fh(xh).

If F = (Γ− lim supFh) = (Γ− lim inf Fh) we say that the sequence Γ-converges to the

Γ-limit F , and we write, Fh
Γ→ F

A more useful characterization of Γ-convergence is shown in the next theorem.

Theorem 1.35. The sequence Fh Γ-converges to F if and only if:

i. for every x ∈ X and every sequence xh ∈ X converging to x, there holds

F (x) ≤ lim inf
h

Fh(xh);

ii. for every x ∈ X, there exists a sequence xh ∈ X converging to x such that:

F (x) ≥ lim supFh(xh).

In Theorem 1.35, condition (ii) can be replaced by one of the following equivalent
conditions:

(ii)
′

for every x ∈ X, there exist a sequence xh ∈ X converging to x such that:

F (x) = lim
h
Fh(xh)

(ii)
′′

for every x ∈ X and for every ε > 0 there exist a sequence xh ∈ X converging to
x such that:

F (x) ≥ lim sup
h

Fh(xh)− ε
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In the next proposition, a characterization of Γ-limit is given, when it exists.

Proposition 1.36. If Fh
Γ→ F , then

F (x) = inf{lim inf
h

Fh(xh) : xh → x}

There are many examples showing Γ-convergence is independent from pointwise
convergence. We summarize in the next remarks some properties of Γ-convergence and
some no-properties for which counterexamples can be found in [37], [13].

Remark 1.37. An important property of Γ-convergence is its stability under continuity

perturbations. Given Fh
Γ→ F , Gh

Γ→ G, in general it is not true that the sum Fh +Gh
Γ-converges to F +G, but if we assume G continuous, then it holds:

(Fh +Gh)
Γ→ (F +G)

Remark 1.38. The uniform convergence of Fh to F , in general does not imply Γ-

convergence, but if we assume F l.s.c., then Fh
Γ→ F .

Remark 1.39. The Γ− lim inf and Γ− lim sup (and, if it exists, the Γ− lim) are lower
semicontinuous functions.

If F is not semicontinuous, it can be useful to do an operation of relaxation, that
is, to compute the lower semicontinuous envelope of F .

Definition 1.40. Let F : X → R∪{+∞}. The lower semicontinuous envelope of F is
the greatest lower semicontinuous function non greater than F :

F̄ (x) = sup{G(x) : G l.s.c ,G ≤ F}

Since the supremum of l.s.c. function is still l.s.c., F̄ is l.s.c..

Proposition 1.41. We have

Γ− lim inf Fh = Γ− lim inf F̄h,

Γ− lim supFh = Γ− lim sup F̄h.

We consider now three classes of Γ-convergent sequences for which the Γ-limit is
determined. They are the monotone sequences: constant, increasing, and decreasing.

• Consider the simplest case Fh = F for all h ∈ N. It is easy to show that Fh
Γ-converges but in general Γ − lim inf Fh 6= F . The equality holds if F is lower
semicontinuous and in such a case we have Γ− limFh = F̄ = F .

• Consider a sequence Fh such that Fh ≤ Fh+1 for all h ∈ N, then

Fh
Γ→ lim

h
F̄h = sup

h
F̄h.
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• Consider a sequence Fh such that Fh ≥ Fh+1 for all h ∈ N. Then

Fh
Γ→ ¯inf

h
F̄h.

We see now as, under some equi-coercivity assumptions, the Γ-convergence of a sequence
Fh to a function F implies the convergence of the minimum values of Fh to the minimum
value of F . If we assume also that Fh and F have a unique minimum point, the sequence
of minimizers of Fh converges to the minimizer of F .

We recall here some definitions and the main results about convergence of minima
and minimizers of Γ-convergent sequences.

Definition 1.42. A function F : X → R ∪ {+∞} is coercive if for every t ∈ R the set
{F ≤ t} is precompact (its closure is compact in X). We say that a sequence Fh is equi-
coercive if there exists a non empty compact set K ⊂ X such that infX Fh = infK Fh
for all h ∈ N.

Theorem 1.43. Let Fh be an equi-coercive sequence that Γ-converges to a function F .
Then F is coercive and

min
x∈X

F = lim
h

inf
x∈X

Fh

Moreover, considering xh ∈ argminFh converging to x ∈ X, then x is a minimizer for
F and

F (x) = lim
h
Fh(xh).

We conclude the overview on Γ-convergence with the property of compactness for
functions from X to R ∪ {+∞}.

Theorem 1.44. Let (X, d) be a separable metric space and let {Fh : X → R ∪ {+∞}}
be a sequence. Then there is a Γ-convergent subsequence {Fhk}.

1.4 Location problem

In this paragraph, we will present in detail the so-called location problem and the known
results about it. Moreover it is presented a brief overview of the various models that
have been studied in the literature in the last years, stressing on the main differences
between them.

In everybody experience, we think that a well-organized city makes life happier for
the citizens that work and live and have to travel every day from home to office. In
general, planning economic activities is an extremely complex problem because of a
high number of parameters that often intervene. Depending on what is the objective
of the modelization, one can do different choices and reach different models.

The common setting of all models is an open connected bounded domain Ω ⊂ Rd
that could represent a region, city or state; in case of explicit examples referring to real
cases, the dimension of the ambient space will be d = 2 or d = 1. One can think that in
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Ω there is a distribution of citizens or resources represented by a nonnegative function
ρ(x) : Ω → R and activity planner consists in determining a configuration of facilities
(for examples, shops, cinemas, offices, etc.) in such a way to minimize the total cost
of travel for moving or concentrating population or resources. The facilities are repre-
sented by a given number N of points x1, . . . , xN in Ω and location problem consists in
determining the N points in order to minimize the work necessary to concentrate the
resources in xi. Assuming that the work to move a unit mass from x to y is |x − y|p,
then the total concentration cost in a region Ωi, corresponding to the point xi inside
Ωi, is given by ∫

Ωi

|x− xi|pρ(x) dx.

Then, the total cost is given by

N∑
i=1

∫
Ωi

|x− xi|pρ(x) dx,

that can be also written in the form∫
Ω

(
dist(x,Σ)

)p
ρ(x) dx,

where Σ = {x1, . . . , xN} is the set of N points.
Precisely, the problem we faced with is the following:

Problem 1.45 (Location). Let Ω ⊂ Rd be an open bounded set with Lipschitz boundary
and let ρ(x) : Ω → R be a nonnegative function. Given N ∈ N, the location problem
consists in minimizing the functional:

FN (ρ,Ω) = min
{∫

Ω

(
dist(x,Σ)

)p
ρ(x) dx : Σ ⊂ Ω, #Σ = N

}
. (1.22)

Here Σ is the unknown set of N points to be determined, #Σ is the cardinality of
Σ, and dist(x,Σ) is the distance function:

dist(x,Σ) = min
{
|x− y| : y ∈ Σ

}
.

The existence of an optimal configuration ΣN for N points is straightforward and
has been studied by several authors (see for instance [25], [52] and the references
therein).

In particular, for a proof see Theorem 1.55 of the next section.

Remark 1.46. Theorem 1.55 can be easily generalized to the case of sets Σ with finite
numbers of connected components, that, in case l = 0 is just the location problem.

Moreover, in [52], Morgan and Bolton proved that regular hexagons beat any other
collections of congruent or noncongruent shapes of equal or nonequal areas, in finite or
infinite domains. We cite the main theorems proved in [52] that solve location problem.
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Theorem 1.47. Consider a partitioning of a square area A into N regions Pi with
associated points (the “centers of production”) pi in R2. Then the average distance ρ,
defined as

ρ =
1

A

N∑
i=1

∫
Pi

|x− pi|,

is greater than the corresponding average distance for a regular hexagon of area A/N
centered at the origin:

ρ > (A/N)1/2ρ0(6),

where ρ0(N) is the average distance from the center in a regular hexagon of unit area.

Observe that approximating an ideal hexagon with a lots of hexagon, it is possible
to generalize the result of Theorem 1.47 to domains that are not squares.

Also we have an analogous result for unbounded domains:

Theorem 1.48. Consider a tilling of the plane by convex polygons Pi with area Ai
and associated points pi in R2. Let Q(r) denote the square [−r/2, r/2]2. Suppose that
{Pi ⊂ Q(r)} is finite and that the average area of every Pi tilling the whole palne is at
least 1, that is

lim inf
r→+∞

ave{Ai : Pi ⊂ Q(r)} ≥ 1.

Let

ρ(r) =
1

r2

∫
Q(r)
|x− pi(x)|,

where pi(x) denotes the point associated to the polygon containing x. Then

lim inf
r→+∞

ρ(r) ≥ ρ0(6).

In [25] and [52] there are some nice figures that show the optimal position of few
points. If we consider the case when Ω is the unit disc in R2, some considerations can
be done. In case N = 1, it is not difficult to prove that the only minimizer is the center
of the disc. When N ≥ 2 is not too large, some numerical approximations, using the
classical finite difference method, done in [25], show that the optimal set ΣN is given
by the vertices of a centered regular polygon, as in Figure 1.1.

On the other hand, the numerical computation of an optimal set when the number
N is large, presents big difficulties, essentially due to the fact that the cost in (1.22)
admits a huge number of local minima, which prevent the use of fast gradient methods
and make necessary the implementation of global optimization methods that are in
general much slower.

So when N is large it is better to perform an asymptotical analysis that gives us
important informations about the limit density of optimal points (see [11], [28] and
references therein).
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Figure 1.1: Optimal location of 5 and 6 points in the unit disc

As N → +∞, instead of looking at the precise position of the xi, we are interested
in the limit density. Observe that, if we identify each set ΣN ⊂ Ω of N points with the
measure

µN =
1

N

N∑
i=1

δxi ,

it is possible to write the optimal location problem in terms of the Wasserstein distance
Wp; for all Σ ⊂ Rd we have:∫

Ω

(
dist(x,Σ)

)p
ρ(x) dx = inf{W p

p (ρ, ν) : ν ∈M+(Ω̄) , spt(ν) ⊂ Σ}. (1.23)

So, when N is large, we want to study the asymptotic behaviour of ΣN as N → +∞.
In order to do this, we define, for all ε > 0, the functional Fε : (M+(Ω̄))2 → R as:

Fε(ν, µ) =

{
1
εWp(ρ, ν) ifµ(·) = εdG(ν, ·) and ](spt ν) < +∞
+∞ otherwise

(1.24)

where G(ν, ·) is the function defined for all Borel sets B by:

G(ν,B) = ](spt(ν) ∩B).

Setting ε = N−p/d and using (1.23), we obtain:

Np/dFN (ρ,Ω) = inf
ν

{1

ε
Wp(ρ, ν) : ](spt ν) ≤ 1

εd

}
= inf

(ν,µ)
{Fε(ν, µ) : µ(Ω̄) ≤ 1} (1.25)

From the equality above, it is clear that the convergence of Np/dFN (ρ,Ω) will be
connected to Γ-convergence of Fε with respect to weak* topology of (M+(Ω̄))2. The
Γ-convergence result is the following:

Theorem 1.49. If ρ is l.s.c. and positive, then the sequence Fε as above (1.24), Γ-
converge to functional:

F (ν, µ) =

{
Cp,d

∫
Ω

ρ(x)

µa(x)p/d
dx if ν = ρ

+∞ otherwise
(1.26)
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where µa = dµ
dx is the absolutely continuous part of µ with respect to the Lebesgue

measure on Ω and Cp,d is a constant depending on d, p.

From (1.25) and Theorem 1.49 we can deduce:

Corollary 1.50. The sequence Np/dFN (ρ,Ω) converges for N → +∞ to a finite posi-
tive limit given by:

F∞(ρ,Ω) = min
{
Cp,d

∫
Ω

ρ(x)

µa(x)p/d
dx : µ ∈M+ ,

∫
Ω
µ ≤ 1

}
= Cp,d

(∫
Ω
ρ(x)pd/(d+1)

)(d+1)/d
.

(1.27)

For the proof of Theorem 1.49, we need a lemma that identifies also the constant
Cp,d in Γ-limit (1.26).

Lemma 1.51. The sequence Np/dFN (ρ,Q), with Q =
(
−1

2 ,
1
2

)d
a d-dimensional cube,

has limit Cp,d > 0 as N → +∞.

Proof. Observing first that FN is decreasing, it is suffice to prove that the subsequence
Np/dFN (1, Q) converges. With change of variable N → Np/d, we have:

NϕNd(1, Q) =
1

Np/d
inf

{∫
[0,N)d

distp(x,Σ) dx : ](Σ) = Np/d

}
=
S([0, N)d)

Np/d
.

Here S(·) is the set function defined by S(A) = inf
{∫

A d
p(x,Σ) dx : ](Σ) ≤ |A|

}
which

is translation invariant and sub-additive with respect to inclusion (for A ∩ B = ∅).
Then the existence of the limit is a classical result.

Proof of Theorem 1.49. In order to obtain the Γ-limit result, we have to achieve the
Γ− lim inf and Γ− lim sup inequalities, that is, ∀(ν, µ) ∈ (M+(Ω))2, ∀(νε, µε)

∗
⇀ (ν, µ)

it follows:
lim inf
ε→0

ϕε(νε, µε) ≥ ϕ(ν, µ),

and, ∀(ν, µ) ∈ (M+(Ω))2 it exists (νε, µε)
∗
⇀ (ν, µ) such that

lim sup
ε→0

ϕε(νε, µε) ≤ ϕ(ν, µ).

Step 1: Γ− lim inf inequality: we take (νε, µε)
∗
⇀ (ν, µ) and, without loss of generality,

we can suppose that ϕε(νε, µε) is bounded, so

Wp(ρ, νε) ≤ Cε µε = εdG(νε, ·) (1.28)

It follows, from l.s.c. of Wp on (M+(Ω))2:

0 ≤Wp(ρ, ν) ≤ lim inf
ε→0

Wp(ρ, νε) ≤ 0
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and so ρ = ν. Denoting with Σε = spt νε, we have:

ϕε(νε, µε) ≥
1

ε

∫
Ω

distp(x,Σε)ρ(x) dx

Moreover, thanks to (1.28), the sequence 1
εdistp(x,Σε) is bounded in L1(Ω) (up to

subsequences), so it exists m ∈M+(Ω) such that

1

ε
distp(x,Σε)Ld

∗
⇀m.

By contradiction, dp(x,Σε)→ 0 uniformly on Ω, so:

lim inf
ε→0

ϕε(νε, µε) ≥ m(Ω̄) ≥
∫

Ω

dm

dx
dx.

To conclude Γ− lim inf inequality, it is sufficient to prove

ma(x) =
dm

dx
≥ Cp,d

ρ(x)

(µa(x))p/d
∀x ∈ Ω.

Fix x0 ∈ Ω, δ > 0 and set Nε = ](Σε ∩Q(x0, δ)). We can suppose that:

lim
ε→0

εp/dNε = lim
ε→0

µε(Q(x0, δ)) = µ(Q(x0, δ)),

lim
ε→0

∫
Q(x0,δ)

1

ε
dist(x,Σε)ρ(x) dx = m(Q(x0, δ)).

By convergence dp(x,Σε)→ 0, we have:∫
Q(x0,δ)

distp(x,Σε) dx ≥
∫
Q(x0,δ)

distp(x,Σε ∩Q(x0, δ)) dx

≥ ϕNε(1, Q(x0, δ)) = (δ)d+1ϕNε(1, Q).

(1.29)

Using Lemma 1.51, as δ → 0, we get the claim.
Step 2: Γ− lim sup inequality: Denoting ϕ+(ν, µ) the upper Γ-limit, we can suppose

ν = ρ and, with a diagonalization argument, it will be sufficient to prove, ∀µ ∈M+(Ω),

ϕ+(ν, µ) ≤ Cd
∫

Ω

ρ(x)

(µa(x))1/d
dx. (1.30)

Assuming (1.30) for µ = u(x)dx with u(x) ∈ L1(Ω), fix a general µ ∈ P+(Ω). Using
a representation formula for integral defined on measures (see [12]) and the l.s.c. of ρ,

there exists a sequence {uh}h ∈ L1(Ω), uh
∗
⇀ µ such that

lim
h→∞

∫
Ω

ρ(x)

(uh(x))p/d
dx =

∫
Ω

ρ(x)

(µa(x))p/d
dx.

To obtain (1.30) it is sufficient to observe that lim inf
h→∞

ϕ+(ρ, uhLdxΩ) ≥ ϕ+(ρ, µ).
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It remains to prove (1.30) in the case µ = u(x)dx with u(x) ∈ L1(Ω). To achieve
this case, fix λ > 0, consider a partition of Ω in little cubes of dimension ε

′
= λε

and a discretization of functions ρ and u on the considered partition. Considering a
discretization of (νε, µε), it is possible to obtain the Γ − lim sup inequality passing to
the limit as λ→ 0. Here we do not give all details but we refer to original work [11].

The constant Cp,d in (1.26) can be explicitly computed only in few cases. In par-
ticular, it is known that in case d = 2 we have:

Cp,2 =

∫
H
|x|p dx

where H is the regular hexagon of unitary area centered in the origin. For instance,
one has C1,2 ∼ 0.377 and C2,2 ∼ 0.16. A plot of the values of Cp,2 for p ∈ [0, 2] is given
in Figure 1.2.
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Figure 1.2: Plot of the value of Cp,2 for p ∈ [0, 2].

As a conclusion of this paragraph, observe that in the literature the optimal loca-
tion problem was intensively studied and a lot of generalizations have been done. For
example, in [16], the analysis had a different point of view. Since problems of optimal
location would model as far as possible real situations, another question could be in-
teresting: if we are planning economic activities, it is reasonable that after some years
the situation is different and it is necessary to re-plan or to change something. We can
think to a long-term planner that optimizes by thinking to a large time horizon, and to
a short-term planner that has in mind to modify his strategy step by step. With the
short-term point of view in mind, Problem 1.45 can be compare with

Problem 1.52 (Short-term). Let Ω be a region with density ρ. The density of facilities
will be modeled by a discrete set Σk ⊂ Ω such that ]Σ ≤ N at time k ∈ N. Under the
additional constraint Σk−1 ⊂ Σk ⊂ Ω, minimize ϕN (ρ,Ω).

The asymptotic analysis for the short-term case is similar to the long-term and
denoting by sn the minimal value, the asymptotic estimate is snñ

−1/d.
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1.5 Irrigation problem

In this paragraph we study the so-called irrigation problem and we refer in particular
to Buttazzo, Oudet, Stepanov [25] for one of the first works on the subject, and to
Mosconi, Tilli [53] for an asymptotic result. Many other works face with this problem
as, for example, [30], [31], [26].

Let Ω be a bounded connected open set with Lipschitz boundary in Rd, d ≥ 2 and
let S(Ω) be the class of all compact connected sets Σ ⊂ Ω of finite one-dimensional
Hausdorff measure H1(Σ). The irrigation problem consists in minimizing the integral
of the distance function to Σ, that is

∫
Ω dist(x,Σ) dx, among all Σ ∈ S(Ω) of prescribed

length H1(Σ) = l.
This problem has a strong connection with mass transportation. Consider the

Monge-Kantorovich problem with cost c(x, y) of the form c(|x− y|) in Ω. Observe that
if the domain is not convex, then the Euclidean distance has to be replaced by the
geodesic distance distΩ(x, y) on Ω, given by:

distΩ(x, y) = inf

{∫ 1

0
|γ′(t) dt| : γ ∈ Lip([0, 1], Ω̄), γ(0) = x, γ(1) = y

}
Consider also a so-called Dirichlet region Σ ∈ S(Ω), which represent a zone where

the cost of trasportation vanishes. Presence of Σ modifies the ”distance” from two
points in the transport in the sense that, if it is possible, it is better pass throught Σ.
For a fixed set Σ, the semi-distance

distΩ,Σ(x, y) = inf{distΩ(x, y) ∧ (distΩ(x, ξ1) + distΩ(ξ2, y)) : ξ1, ξ2 ∈ Σ}

models cost distance in the ”free of charge zone”. We generalize the notion of a trans-
port plan for the case of the presence of a nonempty Dirichlet region Σ ⊂ Ω, saying
that a Borel measure π over Ω× Ω is a transport plan of ρ0 into ρ1, if

(π1)]π − (π2)]π = ρ0 − ρ1 on Ω \ Σ.

Consider then the quantity:

MK(Σ) = min

{∫
Ω
c(distΩ,Σ(x, y)) dπ(x, y) : π ∈ Π(ρ0, ρ1)

}
(1.31)

that is the total cost of transport associated to a given set Σ ∈ S(Ω). Note that in this
problem, in view of the generalized definition of a transport plan, it is not necessary to
assume that ρ0 and ρ1 have the same mass.

In general case, the optimization problem we faced with is to find the best Dirichlet
region Σ ⊂ Ω subject to certain constraints, that is, optimizing (1.31). So, the irrigation
problem can be formulated in the following form:

min{MK(Σ) : Σ ⊂ Ω closed, H1(Σ) ≤ l} (1.32)

From now, we will make some simplification hypothesis in (1.32). For the moment,
suppose the cost function c to be the identity, we postpone the other cases to the end
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of the section. Moreover, we concentrate on the simpler case when Ω is convex and
ρ0 = ρ0(x)dx and ρ1 = 0. These assumptions reduce (1.32) to minimize the average
distance functional

min

{∫
Ω

dist(x,Σ)ρ0(x) dx : Σ ⊂ Ω closed,H1(Σ) ≤ l
}

As we said, the minimum in (1.31) is computed in the class of the closed subsets
of Ω with finite length, that is the sets Σ with H1(Σ) ≤ l. This constraint seems
very natural, if one thinks to a transport problem with the presence of finite resources.
Observe also that in the limit case H1(Σ) = 0, the above problem is precisely the
location of finite number of points, as seen in the previous section.

It is not difficult to prove the existence of solutions for (1.32). To achieve existence,
some preliminary results are useful, whose proof can be found in [6].

Theorem 1.53 (Golab). If {Σn}n is a sequence of connected closed subsets of Ω which
Hausdorff converges to a set Σ, then

H1(Σ) ≤ lim inf
n→+∞

H1(Σn)

We remark that the connectedness assumption in the Golab theorem is necessary,
otherwise it is easy to find counterexamples.

Theorem 1.54 (Blaschke). Given a metric space E we denote by CE the family of
non-empty closed subset of E. If E is compact, then CE wiht the Hausdorff distance is
a compact metric space.

Then, (1.32) is well posed:

Theorem 1.55. If the function c is continuous, (1.32) admits a solution.

Proof. Let Σn be a minimizing sequence for (1.32) satisfying the condition H1(Σn) ≤ l
for all n ∈ N. Applying the Blaschke compactness theorem, there exists a closed con-
nected Σ such that, up to subsequences, Σn → Σ in the sense of Hausdorff. Further-
more, applying the Golab theorem, it follows H1(Σ) ≤ l. Since Hausdorff convergence
implies distΩ(x,Σn)→ distΩ(x,Σ) for all x ∈ Ω, we have

distΩ,Σn(x, y)→ distΩ,Σ(x, y)

for all (x, y) ∈ Ω×Ω. Using the fact that distΩ,Σn are Lipschitz continuous with the same
constant, the convergence is uniform. Now, denoting with πh the respective optimal
plan in (1.31), up to subsequences, πh ⇀ π in the weak∗ convergence of measure, with
π ∈ Π(ρ0, ρ1). Then

MK(Σ) ≤
∫
c(distΩ,Σ(x, y)) dπ(x, y) ≤ lim

h

∫
c(distΩ,Σh(x, y)) dπh(x, y)

which shows that Σ is a minimizer.
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Besides existence, some considerations on the qualitative and regularity properties
of an optimal set Σ0 can be done. Precisely, the main facts that can be proved, at least
in dimension d = 2, are:

• an optimal set Σ0 cannot contain a cross (i.e. the union of two transversal curves);

• in the bifurcation points of Σ0, curves make angles of 120◦;

• the optimal set does not form closed loops in Ω, in dimension 2, it is equivalent
to say that R2 \ Σ is connected;

• the optimal solution cannot touch the boundary of Ω.

We briefly analyze and comment the properties listed above. The proof of the first
point proceeds by contradiction: centering the cross in the origin and making a Steiner
construction with the four points resulting by the intersection between the cross and
the border of a ball of sufficiently small radius, contradicts the optimality. A similar
argument can be used to prove the second point if the optimal set is sufficiently smooth
regular. Regarding the third point, it is true that the set obtained taking off a ball
of small radius from the optimal set Σ0 is disconnected and this implies that Ω \ Σ0

cannot contain loops. Finally, it can be proved that the intersection Σ0 ∩ ∂Ω cannot
have positive H1 measure. A stronger result holds for small length:

Theorem 1.56. There exist l0 > 0 and d0 > 0 depending on Ω and d such that for all
l < l0 the optimal set Σ0 satisfies dist(Σ0, ∂Ω) > d0. In particular Σ0 ∩ ∂Ω = ∅.

Denoting by Σl the optimal set for (1.32) for fixed length l, it is interesting to study
the asymptotic behavior of Σl as l → +∞, analogously as in the case of location of N
points. This analysis has been done in [53] using the theory of Γ-convergence. Also in
this case, it is convenient to associate at every Σl the probability measure µ = 1

lH
1xΣl

(that is, the normalized Hausdorff measure restricted to Σl). We denote by Fl(µ) the
functionals

Fl(µ) =

{
l
p
d−1
∫

Ω dist(x,Σ)pρ(x) dx ifµ = 1
lH

1xΣl

+∞ otherwise
(1.33)

In (1.33), the term l
p
d−1 is a normalization that prevents the degeneration of the func-

tional. The connection to mass transportation is the same as in location problem:∫
Ω

(
dist(x,Σl)

)p
ρ(x) dx = inf

{
W p
p (ρ, ν) : ν ∈M+(Ω) , spt(ν) ⊂ Σl

}
.

The asymptotic analysis performed in [53] shows:

Theorem 1.57. The sequence Fl(µ), defined in (1.33), Γ-converges, with respect to the
weak∗ topology on M(Ω), to the functional

F∞(µ) = Cp,d

∫
Ω

ρ(x)

µa(x)
p
d−1

dx. (1.34)
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Here µa is the Radon-Nykodym derivative with respect to Lebesgue measure and
Cp,d is a constant depending only on p and d. The proof of Theorem 1.57 uses techniques
quite different from the analogous asymptotic theorem of the previous section. We give
here a sketch of the proof that does not stress on the technical issues necessary for a
detailed argument.

Sketch of the proof of Theorem 1.57. To achieve Γ-limit, as usual, we prove Γ− lim inf
and Γ− lim sup inequalities, in the next two steps.

Step 1: Γ− lim inf inequality: we have to prove that for all µ ∈ P(Ω̄), µn
∗
⇀ µ and

ln →∞
Γ− lim inf Fln(µn) ≥ F∞(µ)

where we can assume µn = 1
ln
H1xΣn and H1(Σn) = ln. First we prove

lim inf
n

ln

∫
Q
ρ(x)dist(x,Σn)p ≥

∫
Cp,d

∫
Q

ρ

µ
p
d−1
a

for every cube Q ⊂ Ω. To reach this inequality we argue by contradiction. Then we
decompose Ω with a finite family of disjoint cubes {Qj} and using previous result on
each cube, we conclude.

Step 2: Γ− lim sup inequality: we have to prove that for all µ ∈ P(Ω̄) there exists

a sequence µn
∗
⇀ µ and ln →∞ such that

Γ− lim supFln(µn) ≤ F∞(µ)

First the claim is proved under the assumption that µ is absolutely continuous, positive
and piecewise constant using technical preliminaries that we have omitted here. Taking
a general µ ∈ P(Ω̄), arguing by density, there exist µk ∈ P(Ω̄) such that µk

∗
⇀ µ and

F∞(µk)→ F∞(µ). Then

Γ− lim sup(µk) ≤ lim inf (Γ− lim sup(µk)) ≤ lim inf Fκ(µk) ≤ F∞(µ),

that concludes for a general µ.
Step 1 and Step 2 prove the Γ-limit.

1.6 Transport with congestion

In the field of traffic modelling, congestion effects often play an important role. In
fact, as in the daily experience, when a large number of vehicles have to go from one
location to another, the choice of the ”best” road takes into account the total flow of
vehicles in each road. In this case, we can think to the ”cost” for every vehicle in terms
of time spent to reach the destination that is of course increasingly dependent on the
total number of vehicles present on some road.

The first models in this direction were developed in 50’s by Wardrop [58] and Beck-
mann [7]. Wardrop’s approach was based on two considerations: all paths connecting
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two points which are actually followed by some vehicles must provide the same trav-
eling time (which depends on their length as well as congestion) and all other paths
provide much time. This means that we use only the geodesic paths for a metric that
is induced by the use of the paths themselves. This gives an equilibrium problem, that
can be seen as a fixed point and that has a variational characterization discovered by
Beckmann (see [8]).

In the classical Monge-Kantorovich transportation problem, the cost of transporting
a unit of mass from x to y, say c(x, y), does not depend on the path followed by the
mass from x to y. In order to consider also congestion effects, the total transportation
cost will depend on the transportation plan between initial and final distributions and
on the way used by travelers.

The results and models describes in this paragraph are principally based on [32–34].

1.6.1 A continuous model based on Wardrop equilibria

The problem setting is a region Ω, say modelling a city, which is an open bounded
subset of Rd and two probability measure f+ and f− representing the distribution of
residents and services in Ω. As in the independent-path model, the set of transportation
plans with marginals f+ and f− is denoted by Π(f+, f−).

The introduction of congestions in the model requests to consider some notations
regarding path space and curves. In the following we denote with Cx,y the subset of
C = W 1,∞([0, 1],Ω), endowed with uniform topology, of continuous path from x to y:

Cx,y = {τ ∈ C : τ(0) = x , τ(1) = y}.

For every τ ∈ C we denote with τ̃ the constant speed reparametrization of τ ∈ C,

i.e. ‖
·
τ̃(t)‖ = λ(τ) =

∫ 1
0 ‖
·
τ(s)|ds. Recall that the classical form of Monge-Kantorovich

problem for a given cost function c is given by:

inf

{∫
Ω×Ω

c(x, y) dγ(x, y) : γ ∈ Π(f+, f−)

}
(1.35)

Since we want to take into account congestion effects, the transportation cost will
depend on the transportation plan γ ∈ Π(f+, f−) and on the possible paths τ ∈ Cx,y
followed by the mass transported. We introduce a probability measure px,y on Cx,y

with the following meaning: px,y(Σ) will be the proportion of travelers from x to y
using a path τ ∈ Σ ⊂ Cx,y. Then, in order to put together these two contributions in
optimization problem, we give the following:

Definition 1.58. Given a plan γ ∈ Π(f+, f−) and a family of probability measures
(px,y) on C such that px,y(Cx,y) = 1, we call transportation strategy the pair (γ, p).

We introduce the notation, for all ϕ ∈ C0(Ω,R+):

Lϕ(τ) =

∫ 1

0
ϕ(τ(t))| ·τ(t)| dt.
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For a given transportation strategy (γ, p), it is possible to define the probability
measure Iγ,p ∈ M+(Ω) of total traffic intensity. For every ϕ ∈ C0(Ω,R+), Iγ,p is
defined by∫

Ω
ϕ(x) dIγ,p(x) =

∫
Ω×Ω

(∫
Cx,y

(∫ 1

0
ϕ(τ(t))| ·τ(t)| dt

)
dpx,y(τ)

)
dγ(x, y).

The finiteness of traffic intensity Iγ,p is guaranteed by Lemma 2.7 in [17], under some
additional hypothesis detailed later.

We consider the probability measure Qγ,p = px,y ⊗ γ ∈M1
+(C) defined by∫

C
F (τ) dQγ,p(τ) =

∫
Ω×Ω

(∫
Cx,y

F (τ) dpx,y(τ)
)
dγ(x, y) ∀F ∈ C0(C,R)

that represents the total number of travelers using a path τ ∈ Σ, for a given the global
transportation strategy (γ, p).

Observe that if we set Q = Qγ,p ∈ M1
+(C), then Iγ,p depends only on Q and we

can write Iγ,p = iQ, where iQ is defined by:∫
Ω
ϕ(x) diQ(x) =

∫
C
Lϕ(τ) dQ(τ), ∀ϕ ∈ C0(Ω,R+).

The measure iQ, the traffic intensity associated to Q, is a generalization of the notion
of transport density: for a region A, iQ(A) is the total traffic in A induced by Q.

We can use the concept of transportation strategy introduced before to define a
model in which traffic congestion is involved, considering the following quantity as cost
for unit of mass transported from x to y:

cγ,p(x, y) =

∫
Cx,y

LGIγ,p (τ) dp
x,y(τ)

where GIγ,p is a nonnegative function which depends on the traffic intensity Iγ,p. Ob-
serve that, in the definition above, GIγ,p has to be continuous.

Now, we can write a traffic congestion model in Monge-Kantorovich’s form, with
the new path-dependent cost function:

inf
{∫

Ω×Ω
cγ,p(x, y) dγ(x, y) : (γ, p) transp. strategy

}
(1.36)

Once observed the link between the traffic intensity Iγ,p and iQ, it will be convenient
to formulate the optimization problem 1.36 in terms of Q = Qγ,p rather than in terms
of the optimization strategy (γ, p). A simple lemma in [32] is useful to the scope:

Lemma 1.59. Let us define

Q(f+, f−) = {Qγ,p : (γ, p) transportation strategy }.

Then
Q(f+, f−) = {Q ∈M1

+(C) : (e0])Q = f+, (e1])Q = f−}
where ei is the projection on the i−th component.
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Setting Q = Qγ,p and using formally the definitions above, we can rewrite:∫
Ω×Ω

cγ,p(x, y) dγ(x, y) =

∫
C
LGiQ (τ) dQ(τ) =

∫
Ω
GiQ(x) diQ(x),

where here G can assume a more general form than the continuous one above. Thanks
to Lemma 1.59, we can reformulate (1.36) in terms of Q only:

inf
{∫

Ω
GiQ(x) diQ(x) : Q ∈ Q(f+, f−)

}
. (1.37)

Assume now that Gi has the following form

Gi(x) = g

(
di

dL2
(x)

)
,

where g : R+ → R+ is a nondecreasing function such that the function H : R+ → R+,
given by H(z) = zg(z), is convex and superlinear (i.e., limz→+∞

H(z)
|z| → +∞).

The optimization problem then becomes

inf

{ ∫
ΩH(iQ(x)) dx if iQ � L2

+∞ otherwise
: for Q ∈ Q(f+, f−)

}
. (1.38)

We say that a transportation strategy (γ, p) is optimal if the associated Qγ,p solves
(1.38).

We briefly discuss now on the regularity issues involved to prove an existence theo-
rem and to make the following definition rigorous. In any case, for the details we refer
to the original work [32] and successive [33].

We assume for function H to be convex and nondecreasing on R+, with H(0) = 0.
On the growth and regularity of H, we assume:

• there exist q > 1 and positive constants a and b such that

azq ≤ H(z) ≤ b(zq + 1) ∀ z ∈ R+;

• H is differentiable on R+ and there exists a positive constant d such that

0 ≤ H ′(z) ≤ d(zq−1 + 1) ∀ z ∈ R+.

Moreover, the admissible Q satisfy iQ � L2,
diQ
dL2 ∈ Lp and belong to the set

Qp(f+, f−) = {Q ∈ Q(f+, f−) : iQ ∈ Lp}.

The assumption Qp(f+, f−) 6= can be easily proved assuming f+ and f− to have
finite support. The existence of a Q ∈ Q(f+, f−) such that iQ ∈ Lp can be proved also
assuming that f+ and f− are in Lp, a hypothesis of a non trivial regularity result of
De Pascale and Pratelli in [39] and [40].
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Observe now that, if H satisfies these conditions, then we can rewrite (1.38) as:

inf
Q∈Qp(f+,f−)

∫
Ω
H(iQ(x)) dx. (1.39)

Using the convexity of H, it is not difficult to see that an optimal Q solving (1.38) is
characterized by:

Q solves (1.39) ⇔
∫

Ω
ξiQ = inf{

∫
Ω
ξiQ : Q ∈ Qq(f+, f−)} (1.40)

where ξ = H
′
(iQ).

Characterization (1.40) above, after some formal manipulations can be expressed in
terms of transportation strategy. Let us call (γ, p) the optimal transportation strategy
associated to Q = Qγ,p solving (1.40). Then formally:

∫
Ω
ξiQ =

∫
C
Lξ(τ) dQ(τ) =

∫
Ω×Ω

(∫
Cx,y

Lξ(τ)dpx,y(τ)
)
dγ(x, y)

= inf
(γ,p)

∫
Ω×Ω

(∫
Cx,y

Lξ(τ) dpx,y(τ)
)
dγ(x, y)

= inf
γ∈Π(f+,f−)

∫
Ω×Ω

(
inf

p∈M1(Cx,y)

∫
Cx,y

Lξ(τ) dpx,y(τ)
)
dγ(x, y)

= inf
γ∈Π(f+,f−)

∫
Ω×Ω

(
inf

τ∈Cx,y
Lξ(τ)

)
dγ(x, y).

(1.41)

Defining
cξ(x, y) = inf

τ∈Cx,y
Lξ(τ), (1.42)

it follows ∫
Ω×Ω

cξ(x, y) dγ(x, y) ≤
∫
C
Lξ dQ = inf

γ∈Π(f+,f−)
cξ(x, y)dγ(x, y)

and then γ solves

inf
γ∈Π(f+,f−)

∫
Ω×Ω

cξ(x, y) dγ(x, y). (1.43)

Moreover we have:∫
C
Lξ(τ) dQ(τ) =

∫
Ω×Ω

cξ(x, y) dγ(x, y) =

∫
C
cξ(τ(0), τ(1)) dQ(τ)

that, since Lξ(τ) ≥ cξ(τ(0), τ(1)), lead to

Lξ(τ) = cξ(τ(0), τ(1)).

This discussion permits us to give the following definition:
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Definition 1.60. A Wardrop equilibrium is a Q ∈ Q(f+, f−) such that

Q
(
{τ : Lξ(τ) ≥ cξ(τ(0), τ(1)) }

)
= 1,

ξ = H
′
(iQ) and (e0, e1)]Q solves (1.43).

In this discussion we have performed all manipulations in a formal way, without
care on the regularity necessary for rigorous proofs.

Under regularity assumptions on function H and using some technical lemmata,
the main result in [32] can be summarized in:

Theorem 1.61. Problem (1.43) admits a solution. Moreover a Wardrop equilibrium
exists since Q ∈ Q(f+, f−) solves (1.43) if and only if Q is a Wardrop equilibria.

1.6.2 A more tractable form

We will see that Wardrop equilibria have a more tractable form, preferable to the
definition. It is a variational form equivalent to a minimal flow problem, following a
model of Beckmann type (see [7]). Moreover, using a Moser type approach, it reduces
to solve a non linear elliptic PDE.

For every Q ∈ Q(f+, f−), we define the vector field σQ:∫
Ω
X(x)σQ(x) dx =

∫
C([0,1],Ω)

(∫ 1

0
X(τ(t))

·
τ(t)dt

)
dQ(τ) ∀ X ∈ C(Ω,Rd)

Taking X in gradient form, say X = ∇u, the previous equation reduces to∫
Ω
∇uσQ =

∫
C([0,1],Ω)

(u(σ(0))− u(σ(1)))dQ(γ) =

∫
Ω
u(f+ − f−),

that is

∇ · σ = f+ − f−.

It is easy to check that |σQ| ≤ iQ.
From now, we refer to the following problems as scalar problem and problem of

Beckmann type respectively:

inf
Q∈Q(f+,f−)

∫
Ω
H(iQ(x)) dx (1.44)

inf
∇·σ=f+−f−

∫
Ω
H(|σ(x)|) dx (1.45)

First, since H is an increasing function, the value of the scalar problem (1.44) is larger
than the value of (1.45). Conversely, taking σ minimizing (1.45), if we construct Q ∈
Q(f+, f−) such that iQ = |σ|, then Q solves also (1.44). In order to construct such
a Q, we will use a construction following a Moser approach as in [36] and [54]. Once
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again we will use a formal argument: let σ be smooth, f+, f− be absolutely continuous
and sufficiently nice and consider:

Ẋ(t, x) = σ(X(t,x))
(1−t)f+(X(t,x))+tf−(X(t,x))

X(0, x) = x

Define Q by
Q = δX(·,x) ⊗ f+

and consider

v(t, x) =
σ(x)

f t(x)

where f t(x) = (1− t)f+ + tf−. By construction f t solves the continuity equation:

∂tf
t +∇ · (f tv) = 0

and e0]Q = f+. Notice also that, by uniqueness of solution of continuity equation
(recall Theorem 1.29), we have X(t, ·)]f+ = f t and then X(1, ·) = f− that implies
e1]Q = f−. So Q ∈ Q(f+, f−). Moreover, for every test function ϕ:∫

Ω
ϕdiQ =

∫
Ω

∫ 1

0
ϕ(X(t, x))|v(t,X(t, x))| dt df+(x)

=

∫ 1

0

∫
Ω
ϕ(x)|v(t, x)|f t(x) dx dt =

∫
Ω
ϕ(x)|σ(x)| dx

(1.46)

that is iQ = |σ| and then Q is optimal. It is clear that, again as in the previous
paragraph, this argument works under suitable regularity of σ.





Chapter 2

Optimal location problems with
routing cost

This chapter is based on the paper [23], written in collaboration with Giuseppe Buttazzo
and Fabrizio Oliviero.

Locating a given number of points in a region, in order to fulfill a given optimization
criterion, is a widely studied problem, and a large number of references on the field
is available (see Chapter 1), with many of them devoted to several applications to
economy, urban planning, electronics, communication systems.

As said in the preliminar, location problem can be describes as follow: a given
bounded and closed region Ω ⊂ Rd is considered, together with a given nonnegative
function ρ : Ω → R+ which represents the distribution density of resources in Ω. The
goal is to concentrate the resources into a given number N of points x1, . . . , xN in an
optimal way; assuming that the cost to move a unit mass from x to y is proportional to
a suitable power |x − y|p of the distance, allows us to write the optimization problem
as

min
{∫

Ω

(
dist(x,Σ)

)p
ρ(x) dx : Σ ⊂ Ω, #Σ = N

}
. (2.1)

Here Σ is the unknown set of N points to be determined, #Σ is the cardinality of Σ,
and dist(x,Σ) is the distance function

dist(x,Σ) = min
{
|x− y| : y ∈ Σ

}
.

We already presented problems of the form (2.1) for which the existence of an
optimal configuration is straightforward. On the contrary, in spite of its simplicity, the
numerical computation of an optimal set Σ, when the number N is large, presents big
difficulties, essentially due to the fact that the cost in (2.1) admits a huge number of
local minima, which prevents the use of fast gradient methods and makes necessary the
implementation of global optimization methods that are in general much slower.

The asymptotic analysis, asN → +∞, has been performed (see for instance Chapter
1, [11, 28] and references therein) for problem (2.1) and gives important informations

39
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about the limit density of optimal points xi ∈ Σ. In Section 1.4 we have recalled the
main results about this subject.

The problem we deal with in this chapter is concerned with the optimal location
of a given number N of airports in a region Ω. The airports collect the resources that
are distributed in Ω with a known density ρ(x); moreover, the goods travel between
airports on a point-to-point basis, which provides an additional cost, called routing
cost. The complete problem that comes out by adding location and routing costs will
be discussed in Section 2.1. When the number N of airports is large, we replace the
location cost by its asymptotic counterpart and we discuss the corresponding first order
necessary conditions of optimality. Finally, in Section 2.3 some numerical simulations
are shown.

The density of population will be modeled by a given Borel probability measure
ρ in Ω and the configuration of facilities will be modeled by a set Σ ⊂ Ω consisting
of at most n points. The simplest way to measure the optimality of a distribution of
facilities, namely to find the optimal Σ is to consider the average distance that the
people have to cover to reach the nearest facility and minimize it. As described in the
preliminaries, if we suppose that the cost to move a unit of mass along the distance l
is Alp, the total cost of transport is given by

A

∫
Ω

(
dist(x,Σ)

)p
ρ(x) dx (2.2)

where Σ is the unknown set of N points to be determined. The most efficient choice of
the positions is then obtained by solving the minimization problem (2.1).

When the number N tends to +∞, instead of looking at the precise positions xi
in Ω of the airports, one will simply target at determining the limit density µ of the
points xi. In order to do it, we identify each set Σ ⊂ Ω of N points with the measure

µN =
1

N

N∑
i=1

δxi . (2.3)

If we assume that, up to a normalization, the density ρ has a unitary total mass,
the location cost (2.2) is proportional to the p-th power of the Wasserstein distance
between the probabilities ρ dx and µN . The asymptotic analysis of the cost above has
been performed (see for instance [11, 28] and references therein) and we summarize
here below the available results that, to be correctly stated, require the use of the Γ-
convergence, a variational theory developed by De Giorgi and his school starting from
the seventies.

When N → +∞ the cost (2.2) is asymptotically equivalent to the limit cost

ACp,dN
−p/d

∫
Ω

ρ(x)(
µ(x)

)p/d dx (2.4)

expressed in terms of the limit density µ of points, where Cp,d is a constant depending
on the exponent p and on the dimension d. It has to be noticed that in the integral
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above only the absolutely continuous part of µ has to be taken into account, neglecting
the singular part. The constant Cp,d can be explicitly computed only in few cases, as
explained in Section 1.4.

On the other hand, if we are interested not only in the location xi of the i-th airport
but also in the mass mi that is there concentrated, instead of the measures µN above
we have to consider the measures

νN =
N∑
i=1

miδxi

and the optimization problem is written in terms of the p-Wasserstein distance as

min
{
W p
p (ρ, ν) : #(spt ν) = N

}
. (2.5)

We notice that, without the normalization
∫
ρ dx = 1, passing to the probability

ρ(x)
/ ∫

ρ dx, the optimization problems (2.4) and (2.5) remain of the same form.

2.1 A new model with routing costs

In this subsection we assume that the mass mi concentrated at the point xi is dispatched
to the remaining points xj proportionally to the masses mj ; moreover, we assume that
the cost to move a unit mass from a point x to a point y is proportional to |x− y|q for
a suitable power q. Therefore, the cost to move the entire mass mi is

B
∑
j

mi
mj

m
|xi − xj |q

where B is a proportionality constant and m =
∑

jmj =
∫
ρ dx. Finally, the total

routing cost is
B

m

∑
i,j

mimj |xi − xj |q.

If we write the routing cost in terms of the measure νN we obtain

B

m

∫
Ω

∫
Ω
|x− y|q dνN (x) dνN (y) =

B

m

∫
Ω×Ω

V (x− y) d(νN ⊗ νN )

and the total cost taking into account location and routing terms gives the optimization
problem

min
{
AW p

p (ρ, ν) +
B

m

∫
Ω×Ω

V (x− y) d(ν ⊗ ν) : #(sptν) = N
}

(2.6)

The characterization of the limit problem as N → ∞ in this case is easy and we can
write it as

min
{
AW p

p (ρ, ν) +
B

m

∫
Ω×Ω

V (x− y) d(ν ⊗ ν)
}

(2.7)
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where the minimization above is intended in the class of all measures ν having the same
total mass as ρ.

The necessary conditions of optimality for the optimization problem (2.7) can be
obtained by differentiating the Wasserstein distance term (see [27]) and the routing
cost; we obtain

Aφ+
2B

m
V ∗ ν = c ν-a.e. (2.8)

where φ is the Kantorovich potential for the transport from ρ to ν and c is a constant
playing the role of the Lagrange multiplier of the mass constraint on ν. In (2.8) the
measure ν appears in a very implicit way and can be determined only numerically. One
connection between the Kantorovich pontential φ and the transport map T from ρ to
ν is given by the Monge-Ampère equation

ρ = ν(T ) det(∇T ).

Differentiating in (2.8) we obtain

A∇φ+
2B

m
∇V ∗ ν = 0

and T (x) = x−∇φ(x). Therefore we have the systemA(x− T (x)) +
2B

m
∇V ∗ ν = 0

ρ = ν(T ) det(∇T ).
(2.9)

In dimension 1 we can proceed by an iterative scheme, fixing an initial ν0 and obtaining
T0 from the first equation in (2.9). Then we can recover ν1 by the second equation

ν1(T0(x)) =
ρ(x)

T ′0(x)

and, assuming T0 invertible,

ν1(y) =
ρ(T−1

0 (y))

T ′0(T−1
0 (y))

.

We can now proceed by iterating the scheme above.

Example 2.1. In this particular example we can find an explicit solution taking d = 1,
p = 2, and V (s) = |s|2. If we suppose that the barycenter of ν is in the origin, we
obtain:

V ∗ ν = mx2 +

∫
y2 dν(y)

so that
Aφ′(x) + 4Bx = 0

which gives

φ′(x) = −4B

A
x and T (x) =

(
1 +

4B

A

)
x.
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Putting this in the 1-dimensional Monge-Ampère equation and indicating by v the
density of ν, we obtain

ρ(x) = v((1 + 4B/A)x)
(

1 +
4B

A

)
,

and changing variables,

v(y) =
1

1 + 4B/A
ρ
( y

1 + 4B/A

)
.

2.1.1 Mass independent routing costs

In this subsection we assume that the cost to connect the airports located at the points
xi and xj does not depend on the transported mass and amounts simply to K|xi−xj |q
where now the constant K is the cost of flying along a unit distance. In this case it is
more convenient to use the probability measures µN introduced in (2.3) which provides
the routing cost in the form

K
∑
i,j

|xi − xj |q = KN2

∫
Ω×Ω

V (x− y) d(µN ⊗ µN ).

Taking into account the asymptotic expression of the location cost given in (2.4), we
obtain the optimization problem

min
{
ACp,dN

−p/d
∫

Ω

ρ(x)(
µ(x)

)p/d dx+KN2

∫
Ω×Ω

V (x− y) d(µ⊗ µ)
}

where now µ runs in the class of all probabilities on Ω. Setting ε = ACp,dN
−2−p/d/K

we are now faced with the problem

min
{
Fε(µ) := ε

∫
Ω

ρ(x)(
µ(x)

)p/d dx+

∫
Ω×Ω

V (x− y) d(µ⊗ µ)
}
. (2.10)

The necessary conditions of optimality for problem (2.10) simply follow by differ-
entiation of the cost functional and give:

ερ
p

d
µ−1−p/d + 2V ∗ µ = c (2.11)

where ∗ denotes the convolution operator and c is a constant coming from the mass
constraint on µ.

When ε→ 0 the optimal densities µε of problem (2.10) tend to a Dirac mass δx0 for
a suitable point x0. In order to identify the limit problem as ε→ 0, and so to identify
the point x0 around which the optimal densities µε concentrate (it can be seen as the
main hub of the airports system), it is convenient to rescale the cost above dividing it
by its minimum value. Considering the measures

µ = δ
1

|Ω|
+ (1− δ)

1Br(x0)

|Br(x0)|
with rq � δ,
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a simple calculation provides for the minimal cost of problem (2.10):

minFε ∼ Cεδ−p/d + δ

for a suitable constant C. Optimizing with respect to δ the quantity above, we obtain
δ ∼ ε1/(1+p/d), so that

minFε ∼ ε1/(1+p/d).

Therefore the rescaled functionals become

Gε(µ) = ε(p/d)/(1+p/d)

∫
Ω

ρ(x)(
µ(x)

)p/d dx+ ε−1/(1+p/d)

∫
Ω×Ω

V (x− y) d(µ⊗ µ).

Note that the optimal measures for Fε and for Gε are the same.

In order to characterize the asymptotic behavior of the minimizing sequences (µε)
we will compute in the next section the Γ-limit of the sequence of functionals (Gε). The
general theory of Γ-convergence (see for instance Chapter 1 and [37] ) then provides the
identification of the main hub x0 around which the measures µε tend to concentrate.

2.2 The Γ-convergence result

First of all we notice that, due to the presence of the coefficient ε−1/(1+p/d) in front of the
routing term, the Γ-limit on a measure µ will be +∞ whenever

∫
Ω×Ω V (x−y) d(µ⊗µ) 6=

0. Therefore, we may limit ourselves to analyze only the measures for which the routing
term vanishes, i.e. the Dirac masses µ = δx0 .

It is convenient to set

α =
p/d

1 + p/d
, β =

1

1 + p/d
;

notice that α + β = 1 and that α = βp/d. We will show that the Γ-limit of the
sequence of functionals Gε, computed on the Dirac mass δx0 and with respect to the
weak* convergence of measures, coincides with the functional

H(δx0) = A

∫
Ω

(
ρ(x)

)β|x− x0|αq dx where A =
(

1 +
p

d

)(2d

p

)α
.

2.2.1 The Γ-limsup inequality

In order to obtain a Γ-limsup inequality, we have to choose a suitable sequence µε ⇀ δx0

and to compute the limit of Gε(µε). We take

µε = εβφ+
(

1− εβ
∫

Ω
φdx

)
δx0
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where the function φ will be chosen later. Then µε is a probability measure and we
have

Gε(µε) = εα
∫

Ω

ρ(x)

εβp/dφp/d
dx+ ε−β

∫
Ω×Ω

ε2βV (x− y)φ(x)φ(y) dxdy

+ε−β
∫

Ω
2εβ
(

1− εβ
∫

Ω
φdx

)
V (x− x0)φ(x) dx

=

∫
Ω

[ρ(x)

φp/d
+ 2V (x− x0)φ

]
dx+ εβ

∫
Ω×Ω

V (x− y)φ(x)φ(y) dxdy

−2εβ
∫

Ω
φdx

∫
Ω
V (x− x0)φ(x) dx

which gives

lim
ε→0

Gε(µε) =

∫
Ω

[ρ(x)

φp/d
+ 2V (x− x0)φ

]
dx.

We choose now φ in order to minimize the quantity at the right-hand side. An easy
computation gives

φ(x) =
( p

2d

ρ(x)

V (x− x0)

)β
which implies

lim
ε→0

Gε(µε) = H(δx0).

2.2.2 The Γ-liminf inequality

In order to conclude that the Γ-limit of the functionals Gε is the functional H it
remains to show the Γ-liminf inequality, which amounts to prove that for every sequence
µε ⇀ δx0 we have

lim inf
ε→0

Gε(µε) ≥ H(δx0). (2.12)

The following lemma will be useful.

Lemma 2.2. Let µ be a measure on Ω that is singular with respect to the Lebesgue
measure and let µn ⇀ µ. Then there exists a sequence of open sets (An) such that:

i) |An| → 0;

ii) µn(Ω \An)→ 0 (hence µnxAn ⇀ µ).

Proof. Since µ is singular, it is concentrated on a measurable set S with |S| = 0 and
there is a sequence of open sets (Ak) containing S and such that |Ak| → 0. Since Ω\Ak
are closed sets, we have for every k

lim sup
n→∞

µn(Ω \Ak) ≤ µ(Ω \Ak) = 0.

So it exists a subsequence nk such that µnk(Ω \ Ak) → 0. We can assume nk < nk+1.
We now define An = Ak for n ∈ [nk, nk+1]. Then µn(Ω \ An) = µn(Ω \ Ak) ≤ 1

2k
for

n ∈ [nk, nk+1].
We thank D.Bucur for his help to find a precise proof of the lemma above.
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Take now a generic sequence µε ⇀ δx0 , denote by uε(x) the density of the absolutely
continuous part of µε with respect to the Lebesgue measure, and let Aε be the open
sets provided by Lemma 2.2. Define

µ1
ε = µεxAε, µ2

ε = µεxA
c
ε.

We have

Gε(µε) = εα
∫

Ω

ρ

u
p/d
ε

dx+ ε−β
[ ∫

Ω×Ω
V (x− y) d(µ1

ε ⊗ µ1
ε)

+

∫
Ω×Ω

V (x− y) d(µ2
ε ⊗ µ2

ε) +

∫
Ω×Ω

2V (x− y) d(µ1
ε ⊗ µ2

ε)
]

≥
∫

Ω

[
εα

ρ

u
p/d
ε

+ ε−β2(V ∗ µ1
ε)uε1Acε

]
dx

where we used the fact that
∫

Ω×Ω V (x− y) d(ν ⊗ ν) ≥ 0 for every measure ν and that

µ2
ε ≥ uε1Acε dx. Using the Young inequality

Xεα + Y ε−β ≥ XβY α

ααββ
for α+ β = 1,

we obtain

Gε(µ) ≥
∫

Ω

1

ααββ

(
ρ

u
p/d
ε

)β (
2(V ∗ µ1

ε)uε1Acε
)α
dx

= A

∫
Acε

ρβ(V ∗ µ1
ε)
α dx.

Since |Aε| → 0 and (V ∗ µ1
ε)(x) → V (x − x0) by Lemma 2.2 (which guarantees that

µε(Ω \Aε)→ 0 ), we finally obtain (2.12).
As a conclusion, the Γ-limit computation is achieved and the optimal main hub for

the limit location-routing problem of (2.10) is located at the point x0 which minimizes
the quantity ∫

Ω

(
ρ(x)

)1/(1+p/d)|x− x0|q(p/d)/(1+p/d) dx. (2.13)

Note that this minimization problem for x0 is of the form of a Torricelli optimal location
problem with suitable exponents.

2.3 Some numerical simulations

In this section, we perform some numerical simulations, based on the results of the
previous section, that can be applied to real cases. In the first subsection, some 1-
dimension and 2-dimension examples will be presented for different routing costs and
density functions and varying ε. The last subsection introduces an application of the
model to the USA airfreight system in order to compare the results with the current
location of US airfreight hubs.
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We are interested to find minimizer of the functional representing the sum of location
and routing costs and the x0 minimizing the Γ-limit functional H(δx0). In fact, one of
the properties of Γ-convergence is the convergence of minima, so if H is the Γ-limit of
Gε, the limit of minimizers of Gε is a minimizer of H. We will find numerically the
optimal µε and we observe that for small ε they are close to a Dirac mass at a suitable
point x0, according to the result of the previous section.

In Section 2.1 we found an optimality condition for the minimizers of Fε. Unfor-
tunately, condition (2.11) does not admit an explicit solution, so we approximate it
numerically. More specifically, we approximate the minimizer via an iterative scheme:
we start from the uniform distribution with total mass 1 and then we define the iteration
term according to the necessary condition:µ0 = U(Ω)

µn+1 =
(

ερ
c+V ∗µn

)p/d+1
.

(2.14)

Here the Lagrange multiplier c, according to (2.11), is proportional to ε1/(1+p/d). The
numerical scheme (2.14) permits us to do some interesting numerical simulation al-
though we are not able to prove a convergence result, stopping the simulations after a
certain number of iterations. Moreover we can observe that functional (2.13) may be
non convex and then it could has several minima.

2.3.1 1-D and 2-D examples

In the one-dimensional case, the domain Ω is the interval [−1,+1] that is discretized in
order to solve numerically the problem. Consequently, both the functions ρ and µ are
expressed through an array of values in correspondence of the discretization points. At
each step of the convergence procedure shown in Figure 2.1, µn+1 is obtained from the
relationship (2.14) and then normalized to a probability measure.

The first simulation, reported in Figure 2.2, is related to a non-symmetric distribu-
tion of population density ρ and a quadratic routing cost function:

ρ(x) =

{
2 if x ∈ [−1, 0]

1 if x ∈ [0,+1],
V = |x− y|2, p = 1.

We assume that the convergence is reached when the maximum error between the
values of µn and µn+1 is less than 2%. In this conditions, about 10 iterations are
requested to solve the problem and the computational time results to be proportional
to the number of point used to discretized the domain; when it is divided into 200
steps, the calculation time is about 100 sec.

The results for different values of ε coefficient show that, as the ε decreases, the
limit density µ tends to have a concentration centered on a single point. At the limit as
ε→ 0, the density µ becomes a Dirac mass located at the point x0 that minimizes the
functional (2.13). The convergence towards the limit conditions of ε→ 0 is slow and it
cannot be reached numerically because the onset of numerical errors below the value of
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Figure 2.1: Numeric procedure for the determination of probability distribution µ.
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Figure 2.2: Results of the first simulation (asymmetric population).

ε ' 10−4. Therefore, the routine can be completed by calculating also the value of the
functional H(δx0) reported in (2.13), and find the point x0 of minimum. In this case,
the minimum of the functional (2.13) can be found explicitly:

H(δx0) =

∫ 1

−1

√
ρ(x)|x− x0| dx

=
√

2

∫ x0

−1
(x0 − x) dx+

√
2

∫ 0

x0

(x− x0) dx+

∫ 1

0
(x− x0) dx

=
√

2x2
0 + x0(

√
2− 1) +

1

2
(
√

2 + 1)

(2.15)
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which gives

x0 =

√
2− 2

4
' −0.146.

The analytical solution equals to the value determined by the numerical procedure
that is also reported in Figure 2.2.

The population ρ often can have an uneven distribution among the domain, and
therefore an adequate function is requested in order to model correctly this aspect. A
first solution can be provided by treating this distribution as a sum of M Gaussian
functions:

ρ(x) =
M∑
j=1

Aje
−Bj |Xj−x|2 (2.16)

where the coefficients Aj ,Bj ,Xj are used to set respectively the height, the width and
the position of the j-th peak.

ε = 10
−4
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Figure 2.3: Second simulation: population modeled through a sum of Gaussian func-
tion.

The results reported in Figure 2.3 refer to the case of a population ρ with 8 peaks of
different position, height, and area of influence (width); also in this case the simulations
have been conducted with two different values of the coefficient ε.

The density of probability µ is highly dependent by the values of the coefficients;
the point x0 is in this case numerically determined:

x0 ' +0.044.

As the ε decrease, the influence of the routing cost becomes larger on despite of
the location ones so that the system tends to minimize the airport distance. The large
differences between the solutions remarks the importance in choosing a value of the
coefficient as realistic as possible. Moreover, one can note that the computational time
is not affected by the “complication level” of the population function but only by the
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used discretization step. The effective decisional process related to the facilities (the
airports) location, can be done in a post-processing phase: in this way, we can decide
how many airports can be located in a given region, proportionally to the area limited
by the density distribution; for example, the numbers on the X-axis of Figure 2.3 equals
to the airport on each step (each step length is 0.2).

The routine has been applied also in the 2-D case, considering a correspondent peaks
distribution shown in Figure 2.4. We remember the Gaussian function in the case of
two variables and also both the routing cost function and the exponent of location:

ρ(x, y) =

M∑
j=1

Aje
−Bj(|Xj−x|2+|Yj−y|2), V (x) = |x|0.5, p = 1.

Figure 2.4: 2-D simulation: population ρ.

Although the calculation procedure does not change, the computational time results
much higher than in the previous cases because of the great number of points requested
to discretize properly the domain. Neverthless, it remains notably lower than the ones
of the common Operating Research models (about 2200 sec. when the domain is divided
into 1600 cells).

The result shows that the probability density follows the shape of the initial popula-
tion ρ(x, y) (we can note that the exponent q=0.5 determines the minor importance of
the routing costs on despite of location ones) the point of maxima can be observed near
the central peaks where the effect of both the location and routing terms are summed.

When the population distribution becomes irregular the position x0 of the “main
hub” cannot be estimated immediately but the functional (2.13) can be easily computed
and its minimum can be found. For the same 2-D case, the values of the functional are
shown in Figures 2.5 and 2.6 while its minimum point is depicted in Figure 2.6 together
with the level curves of the population ρ.
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Figure 2.5: 2-D simulation: result.

Figure 2.6: 2-D main hub result.

2.3.2 Application to the US airfreight system

Two main problems will be faced in order to apply location-routing models to real
cases:

• Location and Routing terms are related with ground and air transportation costs
respectively. Preliminarily, we can suppose a linear dependence of ground cost
with the transport distance but the same assumption becomes not valid in the
case of air transportation.

• The distribution of population ρ identifies the airfreight demand among the do-
main; data are directly available only for some areas (occidental countries) while
in most cases an extrapolation from some socio-economic data is needed.
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Therefore, the aim of the present section is to set the coefficients and exponents
appearing in (2.10) in such the way the terms of cost functional reflect as realistic as
possible the dynamics of the real world. The numerical routine will be finally applied
on the US domain that will be represented as a polygon on a Cartesian system.

Routing and airfreight cost

In the functional (2.13), the routing costs can be modelled as a function of the transport
distance, through the general power relationship V (x) = K|x|q by simply setting the
coefficient K and the exponent q. In the case of airfreight, most of cost terms depend
strongly by the economies of scale in which the company operates (countries connected,
commercial accordances, kind of service done, aircraft used) so that it often is not
possible to determine a general function that could be valid in every case. Nevertheless,
if we cannot determine an explicit function, we can determine its “shape” by supposing
that the part of cost variable with the transport distance, is mainly related to the fuel
consumption during flight. In a first approximation, the amount of fuel required for a
given mission can be determined (for example in the case of constant power aircraft)
by using the so-called Breguet relations:

Costfuel ∝Wfuel = 1− e
−Range∗kc

ηpE , (2.17)

where the Range equals to the transport distance, E is the aerodynamic efficiency of
the considered aircraft, and kc and ηp are respectively the Specific Fuel Consumption
and the propeller efficiency: since these parameters are all known for each aircraft and
engine, the amount of fuel and its cost can be calculated in dependence of the Range
flown. The operating costs are usually reported in terms of Costs per Unit of carried
mass and flown distance, Cost/(Ton · Km)(simply by dividing by the total payload
and the transport distance) and the results of this procedure deriving from Breguet,
has been compared in Figure 2.7 with some statistical models ( [47] and [46]) that use
a regression of both historical data about existing freighter and data collection of the
financial report of transport companies.

The Curves in Figure 2.7 have a similar shape and they differ only by a translating
coefficient that can be related to the different economies of scale which data are ex-
trapolated from. Moreover, the Cost/Ton can be determined by integrating the curves
in Figure 2.7 so that finally a suitable value of the exponent q is determined:

q = 0.7

The value results lower than 1 because, conceptually, the air cannot be considered
as a constant mass transport: in the case of existing aircraft in fact the Weight of
embarked fuel represents until 30-40% of the total mass so that the flight condition
and, consequently, also the fuel vary notably during cruise (as the aircraft is lightening,
the burn fuel decreases).
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Figure 2.7: Variation of air cost with transport distance

Modeling the airfreight demand

The airfreight demand is often not directly measurable so that also the initial population
ρ has to be properly modelled. The identification of the socio-economic parameters
affecting the airfreight demand, results very difficult; also in this case the models are
highly affected by the economies of scale and the geographical region on which the air
transport is operated. In the present study, we assume that the airfreight depends by
some socio-economic parameters in a likely linear regression as proposed in [2]. In the
model proposed, the airfreight demand in some point of the domain is obtained by the
following expression:

ln(AF ) = C0 + C1PC + C2TSE + C3TSL+ C4MD + C5HT (2.18)

where

• C0, .., C5: coefficient coming from linear regression of economic data;

• AF : volume of airfreight demand (TON);

• PC: per capita personal income ($1,000);

• TSE: traffic shadow effect. In first approximation, this parameter will not con-
sidered; in order to avoid any iterative process also for the input data;

• TSL: transportation-shipping-logistics employment market share (%);

• MD: number of medical diagnostic establishments;

• HT : average high-tech employee wage ($1,000);
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Figure 2.8: Centroids of MSAs among the US.

An airport has a relatively small catchment region (cities or districts), so that on the
“ground side”, the airfreight demand has influence on a very small area on despite of the
worldwide dimension of the air transport; for this reason the airfreight function must to
be refined also if the domain is very large and, consequently, the required discretization
step is small. In this contest,the socio-economic data in (2.18) are extrapolated from
common statistical reports (National Bureau for USA or Eurostat for E.U.) for each
metropolitan districts, so that a detailed function can be easily determined.

The points used to define the spatial distribution of airfreight demand, are reported
in Figure 2.8 in blue dots, and their position refers to the centroids of the so called
metropolitan statistical area of the US territory.

Figure 2.9: Model of the airfreight demand in Usa

Since data are known in correspondence of these points, the ρ function is then ob-
tained through a cubic interpolation with a matlab routine. In Figure 2.9 it is reported
the ρ obtained by this procedure: it has an uneven distribution, peaks are concentrated
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in very rich or very populated regions and their area of influence is relatively small.

Results

The Figure 2.10 shows the level curves of the µ function as result of the real case study
in which the coefficient ε is set ε ' 10−1.

Figure 2.10: Density of probability µ among the US domain, level curves

The black dots of Figure 2.10 indicate the positions of the 10 major cargo airports
in US. The global maxima of the µ density results very close to the Memphis airport
which is the busiest center of airfreight transport and the hub of the FedEx: its airfreight
volumes are doubled respect to the other airports. Also the other local maxima are
located near the effective position of the other airports: largest errors are appreciated
along the boundary areas where also the used projection method presents the largest
errors.

The level curves of the functional H(δx0) are plotted in Figure 2.11. Although
the exponent q results lower than the unity, the effects of the routing costs tend to
predominate the location ones and consequently the importance of initial population ρ
is reduced on despite of the distance power relationship.

The position of the minimum point (the “main hub”) differs from the global maxima
of the limit density µ displayed in Figure 2.10. In this case, the difference is due to the
value of the coefficient ε used to determine the limit density µ, which is relatively high
so that the results of the functional (2.10) and (2.13) are not coincidents.

Some considerations can be done. Our initial problem was to determine the optimal
position of a certain number N of airports into a domain with location and routing cost
condition. This problem is hard if we try to solve it with a direct approach because of
its intrinsic complexity. After the modelling phase we concentrate to mass independent
routing cost and we characterized the asymptotic behavior of the total cost problem.
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Figure 2.11: Level curves of the functional H(δx0)

This means that, instead of finding the exact position of the N airports, we compute
a probability density that represents the “importance” of a certain point in the area
taken as domain. Moreover, Γ-limit result allow us to find the position of the optimal
main hub minimizing the functional H(δx0).

Supported by the examples of the one and two dimensional cases, we observe that
these two limit problems are very “easy”, in terms of computational costs. So, instead
of looking at the initial problem it is more convenient be reduce at the other two. This
makes possible to apply the procedure described to real cases, as in the USA airfreight
system.



Chapter 3

Optimal region for congested
transport

This Chapter is based on the work done in collaboration with Giuseppe Buttazzo and
Guillaume Carlier (see [22]). In the present Chapter, we consider a very simplified model
in which the densities of residents and of working places are known, represented by two
probability measures f+ and f−. Congestion effects have been very much studied in the
literature and as describe in Paragraph (1.6), denoting by f the difference f = f+−f−
and by σ the traffic flux, the model, in the stationary regime, reduces to a minimization
problem of the form

min

{∫
Ω
H(σ) dx : −div σ = f in Ω, σ · n = 0 on ∂Ω

}
. (3.1)

Here Ω is the urban region under consideration, a bounded Lipschitz domain of Rd,
the boundary conditions at ∂Ω are usually taken imposing zero normal flux σ · n = 0,
and H : Rd → [0,+∞] is the congestion function, a convex nonnegative function
with lim|s|→+∞H(s) = +∞. In the isotropic case where H(s) only depends on |s|,
the interpretation of H (see [18, 32] and [17] for anisotropic extensions), is that its
derivative represents the congested metric that is the commuting time per unit of
length as a function of the traffic intensity |s|, since transport cannot occur at infinite
speed even when there is no traffic, H(s) typically behaves like |s| close to 0 and is
superlinear when |s| is large. The first order PDE

−div σ = f in Ω, σ · n = 0 on ∂Ω

has to be intended in the weak sense

〈σ,∇φ〉 = 〈f, φ〉 for every φ ∈ C∞(Ω)

and it captures the equilibrium between the traffic flux σ and the difference between
supply and demand f .

In the case H(s) = |s| no congestion effect occurs, and the transport problem
reduces to the Monge’s transport, where mass particles travel along geodesics (segments

57
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in the Euclidean case). As it is well known, in the Monge’s case the integral cost above
is finite for every choice of the probabilities f+ and f−. On the contrary, when H is
superlinear, that is

lim
|s|→+∞

H(s)

|s|
= +∞,

congestion effects may occur and the mass particles trajectories follow more complicated
paths. In this case the integral cost can be +∞ if the source and target measures f+

and f− are singular. For instance, if the congestion function H has a quadratic growth,
in order to have a finite cost it is necessary that the signed measure f = f+− f− be in
the dual Sobolev space H−1; thus, if d > 1 and the measures f+ or f− contain some
Dirac mass, the minimization problem (3.1) is meaningless. In other words, superlinear
congestion costs prevent too high concentrations.

In the present Chapter, we aim to address the efficient design of low-congestion
regions; more precisely, two congestion functions H1 and H2 are given, with H1 ≤ H2,
and the goal is to find an optimal region C ⊂ Ω where we enforce a traffic congestion
reduction. Since reducing the congestion in a region C is costly (because of roads
improvement, traffic devices, . . . ), a term m(C) will be added, to describe the cost of
improving the region C, then penalizing too large low-congestion regions. On the region
Ω \ C we then have the normally congested traffic governed by the function H2, while
on the low-congestion region C the traffic is governed by the function H1. Throughout
the Chapter, we will assume that H1 and H2 are two continuous convex functions such
that 0 ≤ H1 ≤ H2 and

lim
|s|→+∞

Hi(s)

|s|
= +∞, i = 1, 2.

For every region C we may consider the cost function

F (C) = min

{∫
Ω\C

H2(σ) dx+

∫
C
H1(σ) dx : σ ∈ Γf

}
, (3.2)

where
Γf =

{
σ ∈ L1(Ω;Rd) : −div σ = f in Ω, σ · n = 0 on ∂Ω

}
.

Therefore the optimal design of the low-congestion region amounts to the minimization
problem

min
{
F (C) +m(C) : C ⊂ Ω

}
. (3.3)

Several cases will be studied in the sequel, according to the various constraints on
the low-congestion region C and the corresponding penalization/cost m(C).

We also point out that a similar problem arises in some models for the mechanics
of damage, see for instance [15].

3.1 Perimeter constraint on the low-congestion region

In this section we consider the minimum problem (3.3), where the cost F (C) is given
by (3.2) and m(C) = kPer(C), being k > 0 and Per(C) the perimeter of the set C in
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the sense of De Giorgi (see for instance [4]). Thanks to the coercivity properties of the
perimeter with respect to the L1 convergence of the characteristic functions (that we
still call L1 convergence of sets), we have the following existence result.

Theorem 3.1. Assume that the cost F (C) is finite for at least a subset C of Ω with
finite perimeter and that m(C) = kPer(C) with k > 0. Then there exists at least an
optimal set Copt for problem (3.3).

Proof. Let (Cn)n∈N be a minimizing sequence for the optimization problem (3.3); then
the sequence Per(Cn) is bounded. Thanks to the compactness of the embedding of BV
into L1, we may extract a (not relabeled) subsequence converging in L1 to a subset C
of Ω. We claim that this set C is an optimal set for the problem (3.3). Indeed, for the
properties of the perimeter we have

Per(C) ≤ lim inf
n

Per(Cn).

Moreover, if we denote by σn ∈ Γf an optimal (or asymptotically optimal) function for

F (Cn) =

∫
Ω\Cn

H2(σn) dx+

∫
Cn

H1(σn) dx,

by the superlinearity assumption on the congestion functions H1 and H2, and by the
De La Vallée Poussin compactness theorem, we have that (σn)n∈N is compact for the
weak L1 convergence and so we may assume that σn weakly converges in L1(Ω) to a
suitable function σ. This function σ still verifies the condition σ ∈ Γf . Thanks to the
convexity of H1 and H2 the function

Φ(η, σ) = (1− η)H2(σ) + ηH1(σ)

satisfies the assumptions of the strong-weak lower semicontinuity theorem for integral
functionals (see for instance [21]), so that we have

F (C) =

∫
Ω

Φ(1C , σ) dx ≤ lim inf
n

∫
Ω

Φ(1Cn , σn) dx = lim inf
n

F (Cn).

Therefore the set C is optimal and the proof is concluded.

Our aim now is to establish optimality conditions not only on an optimal flow σ but
also on the corresponding optimal low-congestion regions C. Optimality conditions for
σ can be directly derived from the duality formula:

F (C) = inf
σ∈Γf

∫
C
H1(σ) dx+

∫
Ω\C

H2(σ) dx

= − inf
u

{∫
C
H∗1 (∇u) dx+

∫
Ω\C

H∗2 (∇u) dx−
∫

Ω
uf dx

}
,
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from which one easily infers that

σ =

{
σint in C,

σext in Ω \ C

where
σint = ∇H∗1 (∇uint) in C, σext = ∇H∗2 (∇uext), in Ω \ C

the minimizer u in the dual is then given by:

u =

{
uint in C,

uext in Ω \ C
.

We have used the notations σint, σext, uint and uext to emphasize the fact that σ and
∇u may have a discontinuity when crossing ∂C. It is reasonable (by elliptic regularity
and assuming smoothness of C) to assume that σ and ∇u are Sobolev on C and Ω \C
separately but they are a priori not Sobolev on the whole of Ω (see the quadratic
example below). The functions uint and uext are then at least formally characterized
by the Euler-Lagrange equations

−div
(
∇H∗1 (∇uint)

)
= f in C, −div

(
∇H∗2 (∇uext)

)
= f, in Ω \ C

together with

∇H∗1 (∇uint) · n = 0, on ∂Ω ∩ C, ∇H∗2 (∇uext) · n = 0, on ∂Ω ∩ Ω \ C,

and (assuming that f does not give mass to ∂C) the continuity of the normal component
of σ across ∂C: (

∇H∗1 (∇uint)−∇H∗2 (∇uext)
)
· nC = 0, on ∂C ∩ Ω,

where nC denotes the exterior unit vector to C.
Now, we wish to give an extra optimality condition on C itself assuming that is

smooth. To do so, we take a smooth vector field V such that V · n = 0 on ∂Ω, and we
set Ct = ϕt(C), where ϕt denotes the flow of V (i.e. ϕ0 = id, ∂tϕt(x) = V (ϕt(x))). For
t > 0, we then have

0 ≤ 1

t
[F (Ct)− F (C) + kPer(Ct)− kPer(C)]. (3.4)

As for the perimeter term, it is well-known (see for instance [45]) that the first-variation
of the perimeter involves the mean curvature H of ∂C, more precisely, we have:

d

dt
Per(Ct)

∣∣
t=0

=

∫
∂C
H V · nC dHd−1. (3.5)

For the term involving H, we observe that

F (Ct)− F (C) ≤
∫
Ct

H1(σ) dx−
∫
C
H1(σ) dx+

∫
Ω\Ct

H2(σ) dx−
∫

Ω\C
H2(σ) dx
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where σ ∈ Γf is such that

F (C) =

∫
C
H1(σ) dx+

∫
Ω\C

H2(σ) dx.

At this point, we have to be a little bit careful because of the discontinuity of σ at ∂C,
but distinguishing the part of ∂C on which V · nC > 0 that is moved outside C by the
flow, and that on which V · nC < 0 that is moved inside C by the flow, and arguing as
in Theorem 5.2.2 of [45], we arrive at:

lim sup
t→0

F (Ct)− F (C)

t
≤
∫
∂C

((
H1(σext)−H2(σext)

)
(V · nC)+

+
(
H2(σint)−H1(σint)

)
(V · nC)−

)
dHd−1.

(3.6)

Combining (3.4), (3.5) and (3.6), we obtain

0 ≤
∫
∂C

((
H1(σext)−H2(σext)+kH

)
(V ·nC)++

(
H2(σint)−H1(σint)−kH

)
(V ·nC)−

)
dHd−1.

But since V is arbitrary, we obtain the extra optimality conditions:

H2(σint)−H1(σint) ≥ kH ≥ H2(σext)−H1(σext) on ∂C ∩ Ω

which, since H2 ≥ H1, in particular implies that ∂C has nonnegative mean curvature.

The regularity of ∂C is an interesting open question. Note that when d = 2 and Ω is
convex, replacing C by its convex hull diminishes the perimeter and also the congestion
cost, so that optimal regions C are convex, this is a first step towards regularity, note
also that convexity of optimal regions is consistent with the curvature inequality above.

Let us illustrate the previous conditions on the simple quadratic case where H1(σ) =
a
2 |σ|

2, H2(σ) = b
2 |σ|

2 with 0 < a < b. The optimality conditions for the pair u, σ then
read as {

−a∆uint = f in C

−b∆uext = f in Ω \ C,
∂u

∂n
= 0 on ∂Ω,

{
σint = ∇uint

a

σext = ∇uext
b ,

together with (∇uint

a
− ∇uext

b

)
· nC = 0 on ∂C ∩ Ω

(which shows that there is a priori a jump in the normal component of ∇u across ∂C)
and

b− a
2
|σint|2 =

b− a
2a2
|∇uint|2 ≥ kH ≥

b− a
2
|σext|2 =

b− a
2b2
|∇uext|2 on ∂C ∩ Ω

where H again denotes the mean curvature of ∂C.
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3.2 Relaxed formulation for the measure penalization

In this section we consider the case when the penalization on the low-congestion region
is proportional to the Lebesgue measure, that is m(C) = k|C| with k > 0. The
minimization problem we are dealing with then becomes

min
σ,C

{∫
C
H1(σ) dx+

∫
Ω\C

H2(σ) dx+ k|C| : σ ∈ Γf

}
. (3.7)

Passing from sets C to density functions θ with 0 ≤ θ(x) ≤ 1 we obtain the relaxed
formulation of (3.7)

min
σ,θ

{∫
Ω
θH1(σ) dx+

∫
Ω

(1− θ)H2(σ) dx+ k

∫
Ω
θ dx : σ ∈ Γf

}
. (3.8)

Writing the quantity to be minimized as∫
Ω
H2(σ) + θ

(
H1(σ) + k −H2(σ)

)
dx,

the minimization with respect to θ is straightforward; in fact, for a fixed σ ∈ Γf , if
H1(σ) + k > H2(σ) we take θ = 0, while if H1(σ) + k < H2(σ) we take θ = 1. In the
region where H1(σ) + k = H2(σ) the choice of θ is irrelevant. In other words, for a
fixed σ ∈ Γf we have taken

θ = 1{H1(σ)+k<H2(σ)},

which gives

H2 + θ
(
H1 + k −H2

)
= H2 −

(
H1 + k −H2

)−
= H2 ∧

(
H1 + k

)
.

Therefore, in the relaxed problem (3.8) the variable θ can be eliminated and the problem
reduces to

min

{∫
Ω
H2(σ) ∧

(
H1(σ) + k

)
dx : σ ∈ Γf

}
. (3.9)

Clearly the infimum in (3.9) coincides with that of (3.7) but since the new integrand
H2 ∧

(
H1 + k

)
is not convex, a further relaxation with respect to σ is necessary. This

relaxation issue with a divergence constraint has been studied in [14], where it is shown
that the relaxation procedure amounts to convexify the integrand. We then end up
with the minimum problem

min

{∫
Ω

(
H2(σ) ∧

(
H1(σ) + k

))∗∗
dx : σ ∈ Γf

}
(3.10)

where ∗∗ indicates the convexification operation. Recalling that H1 and H2 are super-
linear, and indicating by σ an optimal solution to (3.10), we have that:
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- in the region where (
H2 ∧

(
H1 + k

))∗∗
(σ) = H2(σ)

we take θ = 0. In other words, in this region, it is better not to spend resources
for improving the traffic congestion;

- in the region where (
H2 ∧

(
H1 + k

))∗∗
(σ) = H1(σ) + k

we take θ = 1. In other words, in this region, it is necessary to spend a lot of
resources for improving the traffic congestion;

- in the region where(
H2 ∧

(
H1 + k

))∗∗
(σ) <

(
H2 ∧

(
H1 + k

))
(σ)

we have 0 < θ(x) < 1 so that there is some mixing between the low and the high
congestion functions. In other words, in this region the resources that are spent
for improving the traffic congestion are proportional to θ.

The previous situation is better illustrated in the case where both functions H1 and
H2 depend on |σ| and H2 − H1 increases with |σ|. In this case, we denote by r1 the
maximum number such that(

H2 ∧
(
H1 + k

))∗∗
(r) = H2(r)

and by r2 the minimum number such that(
H2 ∧

(
H1 + k

))∗∗
(r) = H1(r) + k,

then we have

θ(x) =
|σ| − r1

r2 − r1
whenever r1 < |σ| < r2.

In this case, for small values of the traffic flow (|σ| ≤ r1), it is optimal not to spend any
resource to diminish congestion, on the contrary when traffic becomes large (|σ| ≥ r2),
it becomes optimal to reduce the congestion to H1. Finally, for intermediate values
of the traffic, mixing occurs with the coefficient θ above as a result of the relaxation
procedure.

Also, problem (3.10) is of type (3.1) and it is well-known, by convex analysis, that
we have the dual formulation

min
{∫

Ω
H(σ) dx : σ ∈ Γf

}
= sup

{∫
Ω
u df −

∫
Ω
H∗(∇u) dx

}
= − inf

{∫
Ω
H∗(∇u) dx−

∫
Ω
u df

}
, (3.11)
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where H(σ) = (H2(σ) ∧ (H1(σ) + k))∗∗. Notice that the Euler-Lagrange equation of
problem (3.11) is formally written as{

−div∇H∗(∇u) = f in Ω

∇H∗(∇u) · ν = 0 on ∂Ω.
(3.12)

Moreover, the link between the flux σ and the dual variable u is

σ = ∇H∗(∇u).

In our case, the Fenchel tranform is easy computed and we have:

H∗(ξ) = H∗2 (ξ) ∨ (H∗1 (ξ)− k).

As a conclusion of this paragraph, we observe that the treatment above is similar
to the analysis of two-phase optimization problems. This consists in finding an optimal
design for a domain that is occupied by two constituent media with constant conductiv-
ities α and β with 0 < α < β < +∞, under an objective function and a state equation
that have a form similar to (3.11) and (3.12). We refer to [20] (and references therein)
for a general presentation of shape optimization problems and to [1] for a complete
analysis of two-phase optimization problems together with numerical methods to treat
them.

3.3 Low-congestion transportation networks

In this section, our main unknown is a one-dimensional subset Σ of Ω; we consider a
fixed number r > 0 and the low-congestion regions of the form

CΣ,r =
{
x ∈ Ω : dist(x,Σ) ≤ r

}
= Σr ∩ Ω, where Σr := Σ +Br(0).

and Σ is required to be a closed subset of Ω such that H1(Σ) < +∞. The penaliza-
tion term m(CΣ,r) is taken proportional to the Lebesgue measure of CΣ,r, so that our
optimization problem becomes

min
σ,Σ

{∫
CΣ,r

H1(σ) dx+

∫
Ω\CΣ,r

H2(σ) dx+ k|CΣ,r| : σ ∈ Γf

}
(3.13)

with k > 0. A key point in the existence proof below consists in remarking that the
perimeter of an r-enlarged set Σr can be controlled by its measure (see Proposition 3.2).
It also worth remarking that Σr has the uniform interior ball of radius r property ; for
every x ∈ Σr there exists y ∈ Rd such that |x − y| ≤ r and Br(y) ⊂ Σr. Clearly,
r-enlarged sets have the uniform interior ball of radius r property and sets with this
property are r-enlarged sets (i.e. can be written as the sum of a closed set and Br(0)),
we refer to [3] for more on sets with the uniform interior ball property, and in particular
estimates on their perimeter.

For the sake of completeness we show the following result.
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Proposition 3.2. For every set E ⊂ Rd and for every r > 0, setting Er =
{
x ∈ Rd :

dist(x,E) < r
}

, we have

Per(Er) ≤
d

r
|Er|. (3.14)

Proof. The inequality above can be deduced from the results in the appendix of [28];
the present proof was obtained during a discussion with Giovanni Alberti, that we
thank for his help.

Since the set Er only depends on the closure of E, we may assume that E is closed;
moreover, approximating E by smooth sets (for instance by the sets Es with s → 0),
we may also assume that E is smooth.

Consider now the function

f(r) = d|Er| − rPer(Er);

proving (3.14) amounts to show that f(r) ≥ 0 for every r > 0. Since E is assumed
smooth, we have

lim
r→0
|Er| = |E|, lim

r→0
Per(Er) = Per(E),

so that

lim
r→0

f(r) = d|E| ≥ 0.

By the coarea formula we have for all r < s

|Es| − |Er| =
∫
Es\Er

|∇ dist(x,E)| dx =

∫ s

r
Per(Et) dt

so that, indicating by ′ the derivation with respect to r,(
|Er|

)′
= Per(Er).

Denoting by h(x) the mean curvature of ∂Er at x, and taking into account the definition
of Er, we have h(x) ≤ (d− 1)/r, so that

(
Per(Er)

)′
=

∫
∂Er

h(x) dHd−1 ≤ d− 1

r
Per(Er).

Therefore,

f ′(r) = d
(
|Er|

)′ − Per(Er)− r
(

Per(Er)
)′ ≥ 0,

which implies that f(r) ≥ 0 for every r > 0.

Proposition 3.3. Ler r > 0 be fixed, d = 2 and assume that F (CΣ,r) < +∞ for some
closed one-dimensional subset Σ of Ω. Then the optimization problem (3.13) admits a
solution.
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Proof. The sets CΣ,r satisfy the inequality (see for instance Proposition 3.2)

Per(CΣ,r) ≤
K

r
|CΣ,r|

for a suitable constant K depending only on the dimension d. Therefore, for a mini-
mizing sequence (Σn)n∈N, the sets Cn := CΣn,r = Σr

n ∩Ω are compact in the strong L1

convergence, we can thus extract a (not relabeled) subsequence such that Cn converges
strongly in L1 (and a.e.) to some C. One can then repeat the proof of Theorem 3.1,
to obtain

F (C) + k|C| ≤ inf (3.13).

It only remains to show that C can be obtained as C = CΣ,r (up to a negligible
set) for some closed subset of Ω, Σ such that H1(Σ) < +∞. Up to extracting a
subsequence from (Σn), one can assume that Σr

n converges for the Hausdorff distance
to some compact set E (which also satisfies the uniform interior ball property of radius
r). Let us first check that C = E ∩Ω (up to a negligible set), the inclusion C ⊂ E ∩Ω
is standard (see for instance [45]). To prove the converse inclusion, it is enough to show
that |C| = |E ∩ Ω| i.e. |Cn| → |E ∩ Ω| as n→∞. For this, we observe that∣∣|Cn| − |E ∩ Ω|

∣∣ ≤ |Σr
n \ E|+ |E \ Σr

n|.

The convergence of |Σr
n\E| to 0 easily follows from the Hausdorff convergence of Σr

n to E
and the fact that E is closed (see [45] for details). As for the convergence of |E\Σr

n| to 0,
we proceed as follows: let ε > 0 and n be large enough so that E ⊂ Σr

n+Bε(0) = Σr+ε
n .

Thanks to Proposition 3.2, there is a constant M such for any s ∈ [r, r+ ε] and any n,
Σs
n has a perimeter bounded by M , by the coarea formula, we then get that for n large

enough:

|E \ Σr
n| ≤ |Σr+ε

n \ Σr
n| =

∫
Σr+εn \Σrn

|∇dist(x,Σr
n)|dx =

∫ r+ε

r
Per(Σs

n)ds ≤Mε.

We thus have proved that C = E ∩Ω (up to a negligible set). Let us finally denote
by dist the distance to R2 \ E and set

Σ :=

L⋃
l=1

dist−1({lr})

where L is the integer part of r−1 max dist. It is then not difficult to check that
H1(Σ) < +∞ and Σr = E because E satisfies the uniform interior ball property of
radius r so that C = CΣ,r, which ends the proof.

Remark 3.4. We have used the assumption that d = 2 only in the last step that is
to prove that C = CΣ,r for some one-dimensional Σ. In higher dimensions, the same
proof works if one requires Hd−1(Σ) < +∞ (however we believe the result remains true
for one-dimensional sets in any dimension).
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Remark 3.5. If the admissible sets Σ are supposed connected (in this case we call
them networks), or with an a priori bounded number of connected components, then
the penalization term |CΣ,r| can be replaced by the one-dimensional Hausdorff measure
H1(Σ). In fact, for such sets we have

|CΣ,r| ≤M
(
1 +H1(Σ)

)
where the constant M depends on the dimension d, on r, and on the number of con-
nected components of Σ. Therefore the argument of Proposition 3.3 applies, providing
the existence of an optimal solution.

We deal now with the case when the low-congestion region is a one-dimensional
set Σ. We assume Σ connected (or with an a priori bounded number of connected
components) and we take m(Σ) proportional to the one-dimensional Hausdorff measure
H1(Σ). The integral on the low-congestion region has to be modified accordingly and
we have to consider the problem formally written as

min
σ,Σ

{∫
Σ
H1(σ) dH1 +

∫
Ω
H2(σ) dx+ kH1(Σ) : σ ∈ Γf

}
(3.15)

with k > 0. Notice that, in view of the superlinearity assumption on the congestion
functions H1 and H2, the admissible fluxes u have to be assumed absolutely continuous
measures with respect to LdbΩ + H1bΣ. Subsequently, the integral terms in the cost
expression have to be intended as:∫

Σ
H1

( dσ

dH1

)
dH1 +

∫
Ω
H2

( dσ
dLd

)
dx.

By an abuse of notation, when no confusion may arise, we continue to write the terms
above as

∫
ΣH1(σ) dH1 +

∫
ΩH2(σ) dx.

Remark 3.6. At least formally, (3.15) can be thought of as a limit case of (3.13) as
r → 0+ when in (3.13) one replaces H1 by r1−dH1(rd−1σ) and k by kr1−d. A rigorous
Γ-convergence derivation of (3.15) by letting r → 0+ in (3.13) is an interesting issue
even though it is beyond the scope of this work. Also, one should emphasize that the
network model (3.15) is very different from the ones considered in Sections 3.1 and
3.2 because the traffic density on the network Σ is computed with respect to H1. In
some sense, this means that the congestion effect is much weaker on Σ whatever the
congestion functions H1 and H2 are, in particular it is not really meaningful in the
context of network models to assume that H1 ≤ H2.

In general, the optimization problem (3.15) does not admit a solution Σopt, because
the limits of minimizing sequences Σn may develop multiplicities, providing as an opti-
mum a relaxed solution made by a one-dimensional set Σopt and function a ∈ L1(Σopt)
with a(x) ≥ 1. The relaxed version of problem (3.15), taking into account these multi-
plicities, becomes

min
σ,Σ,a

{∫
Σ
H1(σ/a)a dH1 +

∫
Ω
H2(σ) dx+ k

∫
Σ
a dH1 : σ ∈ Γf

}
. (3.16)
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The optimization with respect to a is easy: consider for simplicity the case

H1(σ) = α|σ|p with α > 0, p > 1;

then we have

min
a≥1

(
ka+ α

|σ|p

ap−1

)
= H(σ) =


α|σ|p + k if |σ|p ≤ k

α(p− 1)

|σ|α1/pp
( k

p− 1

)1−1/p
if |σ|p ≥ k

α(p− 1)
.

Therefore the relaxed problem (3.16) can be rewritten as

min
σ,Σ

{∫
Σ
H(σ) dH1 +

∫
Ω
H2(σ) dx : σ ∈ Γf

}
and the multiplicity density a(x) on Σ (that can be interpreted as the width of the road
Σ at the point x) is given by

a(x) = 1 ∨ |σ(x)|
(α(p− 1)

k

)1/p
. (3.17)

To illustrate the necessity of relaxation, let us consider the (somehow extreme)
special case where H2(0) = 0 and H2 = +∞ elsewhere, f+ and f− are Dirac masses
at two distinct points x+ and x− and H1 is the power function above. Let then Σ and
σ be optimal (with σ identified with its density with respect to the one dimensional
measure on Σ). We claim that |σ| has to be larger than 1, somewhere because otherwise
taking the distance to x− as a test-function in the divergence constraint we would get
|x+− x−| < H1(Σ). But when |σ| ≥ 1, (3.17) gives a > 1 as soon as k is small enough,
this means that multiplicity may occur at least when the cost for the length of the
network is small.

3.4 Numerical simulations

Here we wish to give a numerical example which clarifies and confirms what we expected
from the analysis done in Section 3.2. In our examples, we mainly focus on the problem
in the form (3.11):

min
{∫

Ω
H∗(∇u) dx−

∫
Ω
fu dx

}
.

The numerical simulation is based on a very simple situation that however seems
quite reasonable. The two congestion function considered are both quadratic but with
a different coefficient, say H1(σ) = a|σ|2 and H2(σ) = b|σ|2 with a < b. Then, in this
case, the function H∗ involved in (3.11) is easy to compute:

H∗(ξ) =
(ξ2

4b

)
∨
( ξ2

4a
− k
)
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Before we start illustrating the numerical result, it is useful to do some considera-
tions that justify the choice of some parameters in the following. The dual variable u
has to be thought as a price system for a company handling the transport in a congested
situation. An optimizer u then gives the price system which maximizes the profit of
the company. When you take into account a congested transport between sources (here
called f+ and f−), the total mass

∫
df+ =

∫
df− plays an important role: as observed

in [17], in the case of a small mass, the congestion effects are negligible. Therefore we
may expect for highly concentrated sources a distribution of the low-congestion region
around the sources. On the contrary, for sources with a low concentration, we may
expect a distribution of the low-congestion region also between f+ and f−.

In the following examples, we consider as sources f+ and f− two Gaussian distri-
butions with variance λ, centered at two points x0 and x1

f+(x) =
1√
2πλ

e−|x−x0|2/(2λ), f−(x) =
1√
2πλ

e−|x−x1|2/(2λ).

In this case, a large value of λ means less concentration (and, on the contrary, a small
λ captures more concentration). The total mass is taken equal to one and, to capture
the influence of the total quantity of available resources, we use a Lagrange multiplier
k that penalizes the measure |C|. Hence, a large value of the penalization parameter
k corresponds to a small quantity of available resources. Ending this consideration
on parameters involved, we note that the traffic congestion parameters a, b and the
“construction cost” parameter k are linked: we will change value of k according to a
suitable choice of ratio a

b , for fixed λ. Now, concerning the choice of the coefficients a, b
we take a = 1 and b = 4, which means that the velocity in the low-congestion region
is, at equal traffic density, four times the one in the region with normal congestion.

Using the equivalent dual formulation (3.11) of problem (3.8), we find numerically
the solution u, hence the flux σ and the optimal density θ.

Now, using the dual formulation of the problem, we find numerically the solution
u of (3.11) and we obtain the flux σ as explained in Section 3.2. The numerical
procedure to find u uses a Quasi-Newton method that updates an approximation of
the Hessian matrix at each iteration (see [48] and reference therein). First we generate
a finite element space with respect to a square grid. Then we implement the BFGS
method, using a routine included in the packages of software FreeFem3D (available at
http://www.freefem.org/ff3d) that has the follow structure:

BFGS(J,dJ,u,eps=1.e-6,nbiter=20)

The routine above means: find the optimal “u” for the functional J. The necessary
parameters are the functional J , the gradient dJ and the u variable. The value eps of
the stop test and the number nbiter of iterations are fixed.

Example 3.7. The common setting of the simulation is a transportation domain Ω =
[0, 1]2 with a 30× 30 grid; we consider as initial and final distribution of resources two
Gaussian approximations (with common variance λ) of Dirac delta function f− and f+
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respectively centered at x0 = (0.3, 0.3) and x1 = (0.7, 0.7). In the examples below we
take different values of the parameters k and λ according to the considerations above,
to show how the optimal distributions of the low-congestion regions may vary. Using
the same notation as in Section 3.2, there are black and white region (respectively θ = 1
and θ = 0), passing through grey levels for the intermediate congestion.

In Figure 3.1 we take the variance parameter λ = 0.02, which provides the initial
and final mass distributions not too concentrated, as depicted in Figure 3.1 (a). In
Figure 3.1 (b) we take the penalization parameter k = 0.4; we see that in this case, due
to the low concentration of the initial and final mass distributions, the optimal density
θ is higher in the region between x0 and x1.

In Figure 3.2 we take the variance parameter λ = 0.001, which provides the initial
and final mass distributions rather concentrated, as depicted in Figure 3.2 (a). In
Figure 3.2 (b) we take the penalization parameter k = 0.01; we see that in this case,
due to the high concentration of the initial and final mass distributions, the optimal
density θ is high also in the region around x0 and x1.

The computational time results to be proportional to the number of point used to
discretize the domain: when it is divided into a grid 30× 30, the calculation time on a
standard portable PC is about 10 sec.
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(a) λ = 0.02 (b) k = 0.4

Figure 3.1:

(a) λ = 0.001 (b) k = 0.01

Figure 3.2:
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