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Abstract. Given a bounded autonomous vector field b : R2 → R2, we
study the uniqueness of bounded solutions to the initial value problem
for the related transport equation

∂tu + b · ∇u = 0.

Assuming that b is of class BV and it is nearly incompressible, we prove
uniqueness of weak solutions to the transport equation. The starting
point is the result which has been obtained in [7] (where the steady
nearly incompressible case is treated). Our proof is based on splitting
the equation onto a suitable partition of the plane: this technique was
introduced in [2], using the results on the structure of level sets of Lip-
schitz maps obtained in [1]. Furthermore, in order to construct the
partition, we use Ambrosio’s superposition principle [3].
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1. Introduction and notation

In this paper we consider the continuity equation

∂tu+ div(ub) = 0 (1.1)

and the transport equation

∂tu+ b · ∇u = 0, (1.2)

for a scalar field u : I×R2 → R (where I = (0, T ), T > 0) with a vector field
b : I × R2 → R2. We study the initial value problems for these equations
with the same initial condition

u(0, ·) = u(·), (1.3)

where ū : R2 → R is a given scalar field.
Our aim is to investigate uniqueness of weak solutions to (1.1), (1.3) (and

to (1.2), (1.3)) under weak regularity assumptions on the vector field b.
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Even if we are interested only to the two dimensional case, we present here
the main definitions in Rd, with d ∈ N. When b ∈ L∞(I × Rd) then (1.1) is
understood in the standard sense of distributions: u ∈ L∞(I ×Rd) is called
a weak solution of the continuity equation if (1.1) holds in D ′(I × Rd).
One can prove (see e.g. [12]) that, if u is a weak solution of (1.1), then
there exists a map ũ ∈ L∞([0, T ] × Rd) such that u(t, ·) = ũ(t, ·) for a.e.
t ∈ I and t 7→ ũ(t, ·) is weakly? continuous from [0, T ] into L∞(Rd). This
allows us to prescribe an initial condition (1.3) for a weak solution u of the
continuity equation in the following sense: we say that u(0, ·) = ū(·) holds
if ũ(0, ·) = ū(·).

Definition of weak solutions of the transport equation (1.2) is slightly
more delicate. If the divergence of b is absolutely continuous with respect
to the Lebesgue measure then (1.2) can be written as

∂tu+ div(ub)− u div b = 0,

and the latter equation can be understood in the sense of distributions (see
e.g. [13] for the details). We are interested in the case when div b is not
absolutely continuous. In this case the notion of weak solution of (1.2) can
be defined for the class of nearly incompressible vector fields.

Definition 1.1. A bounded, locally integrable vector field b : I × Rd → Rd
is called nearly incompressible if there exists a function ρ : I×Ω→ R (called
density of b) and a constant C > 0 such that C−1 ≤ ρ(t, x) ≤ C for L 1×L d-
a.e. (t, x) ∈ I × Ω and

∂tρ+ div(ρb) = 0 in D ′(I × Ω). (1.4)

Nearly incompressible vector fields were introduced in connection with
the hyperbolic conservation laws, namely, the Keyfitz-Kranzer system [16].
See e.g. [12] for the details. Using mollification one can prove that if div b ∈
L∞(I × Rd) then b is nearly incompressible. The converse implication does
not hold, so near incompressibility can be considered as a weaker version of
the assumption div b ∈ L∞(I × Rd).

Definition 1.2. Let b be a nearly incompressible vector field with density
ρ. We say that a function u ∈ L∞(I ×R2) is a (ρ–)weak solution of (1.2) if

(ρu)t + div(ρub) = 0 in D ′(I × R2).

Thanks to Definition 1.2 one can prescribe the initial condition for a ρ–
weak solution of the transport equation similarly to the case of the continuity
equation, which we mentioned above (see [12] for the details).

Existence of weak solutions to initial value problem for transport equa-
tion with a nearly incompressible vector field can be proved by a standard
regularization argument [12]. The problem of uniqueness of weak solutions
is much more delicate. The theory of uniqueness in the non-smooth frame-
work has started with the seminal paper of R.J. DiPerna and P.-L. Lions
[13] where uniqueness was obtained as a corollary of so-called renormal-
ization property for the vector fields with Sobolev regularity. Thanks to
Definition 1.2 the renormalization property can be defined also for nearly
incompressible vector fields:
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Definition 1.3. We say that a nearly incompressible vector field b with
density ρ has the renormalization property if for every ρ–weak solution u ∈
L∞(I ×Rd) of (1.2) and any function β ∈ C1(R) the function β(u) also is a
ρ-weak solution of (1.2), i.e. it satisfies

∂t (ρβ(u)) + div (ρβ(u)b) = 0 in D ′(I × Rd).

Nearly incompressible vector fields are related to a conjecture, made by
A. Bressan in [9]:

Conjecture 1.4 (Bressan’s compactness conjecture). Let bn : R×Rd → Rd,
n ∈ N, be a sequence of smooth vector fields. Denote by Φn the solutions of
the ODEs

d

dt
Φn(t, x) = bn(t,Φn(t, x)),

Φn(0, x) = x.

Assume that ‖bn‖∞ + ‖∇t,xbn‖L1 is uniformly bounded and there exists a
constant C > 0 such that

C−1 ≤ det(∇xΦn(t, x)) ≤ C
for all (t, x) ∈ R × Rd and all n ∈ N. Then the sequence Φn is strongly
precompact in L1

loc.

It has been proved in [4] that Bressan’s conjecture would follow from the
next one:

Conjecture 1.5 (Renormalization conjecture). Any bounded, nearly incom-
pressible vector field b ∈ BVloc(R× Rd) has the renormalization property (in
the sense of Definition 1.3).

The renormalization property can also be generalized for the systems of
transport equations. Moreover, if η is another density of the nearly in-
compressible vector field b and b has the renormalization property with the
density ρ, then any ρ–weak solution of (1.2) is also an η–weak solution and
vice versa. In other words, the property of being a ρ–weak solution does not
depend on the choice of the density ρ provided that renormalization holds.
We refer to [12] for the details.

If the functions ρ, u and b were smooth, renormalization property would
be an easy corollary of the chain rule. Out of the smooth setting, the validity
of this property is a key step to get uniqueness of weak solutions. Indeed,
if we for simplicity consider Td instead of Rd, then integrating the equation
above over the torus we get

∂t

ˆ
Td

ρβ(u) dx = 0.

So if ū = 0 then for β(y) = y2 we getˆ
Td

ρ(t, x)u2(t, x) dx = 0

for a.e. t which implies u(t, ·) = 0 for a.e. t.
The problem of uniqueness of solutions is thus shifted to prove the renor-

malization property for b: in [13] the authors proved that renormalization
property holds under Sobolev regularity assumptions; some years later, L.
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Ambrosio [3] improved this result, showing that renormalization holds for
vector fields which are of class BV (locally in space) and have absolutely
continuous divergence.
Another approach giving explicit compactness estimates has been introduced
in [11], and further developed in [8, 15]: see also the references therein.

In the two dimensional autonomous case the problem of uniqueness is
addressed in the papers [2], [1] and [7]. Indeed, in two dimensions and
for divergence-free autonomous vector fields, renormalization theorems are
available even under mild assumptions, because of the underlying Hamilton-
ian structure. In [2], the authors characterize the autonomous, divergence-
free vector fields b on the plane such that the Cauchy problem for the con-
tinuity equation (1.1) admits a unique bounded weak solution for every
bounded initial datum (1.3). The characterization they present relies on the
so called Weak Sard Property, which is a (weaker) measure theoretic ver-
sion of Sard’s Lemma. Since the problem admits a Hamiltonian potential,
uniqueness is proved following a strategy based on splitting the equation on
the level sets of this function, reducing thus to a one-dimensional problem.
This approach requires a preliminary study on the structure of level sets of
Lipschitz maps defined on R2, which is carried out in the paper [1].

In [7] the steady nearly incompressible autonomous vector fields on Ω = R2

were considered. Namely, an autonomous vector field b : R2 → R2 is called
steady nearly incompressible if it admits a steady density ρ̃, i.e. there exists
a function ρ̃, uniformly bounded from below and above by some strictly
positive constants, such that div(ρ̃b) = 0. It was proved in [7] that any
steady nearly incompressible BV vector field on R2 has the renormalization
property. In the present paper we extend this result to the non-steady case.
Any steady nearly incompressible vector field is nearly incompressible, but
the inverse implication does not hold in general. For instance, consider a
vector field b : (0, 2)→ R given by b(x) = |x− 1| − 1. If it was steady nearly
incompressible, the function ρ̃ · b would be constant on (0, 2) and thus ρ̃
could not be uniformly bounded from above by a positive constant. On the
other hand this vector field b is nearly incompressible: the solution to the
continuity equation ∂tρ + ∂x(ρb) = 0 with the initial condition ρ|t=0 = 1
satisfies e−t ≤ ρ(t, x) ≤ et, as one can easily demostrate using the classical
method of characteristics, since b is Lipschitz. This simple example can be
generalized to higher dimensions.

The main result of this paper is a partial answer to the Conjecture 1.5:

Main Theorem. Every bounded, autonomous, compactly supported, nearly
incompressible BV vector field on R2 has the renormalization property.

In particular, we obtain the following

Corollary 1.6. Suppose that b : R2 → R2 is a compactly supported, nearly
incompressible BV vector field (with density ρ). Then

(1) ∀u0 ∈ L∞(R2) there exists a unique (ρ-)weak solution u ∈ L∞(I ×
R2) to the transport equation (1.2) with the initial condition u|t=0 =
u0.
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(2) ∀u0 ∈ L∞(R2) there exists a unique weak solution u ∈ L∞(I × R2)
to the continuity equation (1.1) with the initial condition u|t=0 = u0.

1.1. Structure of the paper. The paper is organised as follows.
In Section 2 we present Ambrosio’s Superposition Principle. By this Prin-

ciple, the measure ρ(t, ·)L 2 (where ρ is a nonnegative bounded solution of
the continuity equation (1.4)) can be represented as an image of some prob-
ability measure η on the space of curves C([0, T ];R2) (concentrated on the
solutions of the ODE γ′ = b(γ)) under the evaluation map et : γ 7→ γ(t):

ρ(t, ·)L 2 = (et)#η.

Using this Theorem, we construct a suitable partition of the plane and
we reduce our problem locally to the case when the density ρ is steady,
which has been studied in [7]. In this case, since div(ρb) = 0, there exists a
Lipschitz Hamiltonian H : R2 → R such that

ρb = ∇⊥H,
where ∇⊥ = (−∂2, ∂1).

In the general nearly incompressible case it is not possible to construct the
Hamiltonian H directly as in the case of steady density. However, we reduce
the problem to the steady case using the following argument. Suppose that
a nonnegative bounded function % solves the continuity equation

%t + div(%b) = 0,
t 7→ %(t, ·) is weak* continuous and for some open set Ω and t1,2 ∈ [0, T ] we
have %(t1, ·) = %(t2, ·) = 0 a.e. on Ω. Integrating the continuity equation
with respect to time on [t1, t2] it is easy to see that

r(x) :=
ˆ t2

t1

%(t, x) dt

solves
div(rb) = 0

in D ′(Ω). Therefore in Ω one can construct a local Hamiltonian HΩ such
that

rb = ∇⊥HΩ

in Ω.
Once we have constructed the local Hamiltonians, we show how we can

split an equation of the form
div(ub) = µ, u : R2 → R (1.5)

where µ is a measure on R2, into an equivalent family of equations along
the level sets of H. This is done in Section 3, where we also recall the main
results of [1, 2, 7] and adapt them to our setting. In Section 4 we establish
the so-called Weak Sard Property for the Hamiltonian H.

Then we turn to study in detail the relationship between level sets of the
local Hamiltonian H and the trajectories of the vector field b: in Section 5,
we present some lemmas which show that (up to a η negligible set) all non
constant integral curves of b are contained in “good” level sets of H.

In Section 6 we prove that the divergence operator is local, in the sense
that the measure µ in (1.5) vanishes on the set M := {b = 0} (Proposition
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6.1). We stress that this result is true for every space dimension and it is
crucial to obtain a better description of the link between the level sets and
the trajectories. This is achieved in Section 7, where in particular, we prove
that “good” level sets of H cover almost all the set M c = {b 6= 0}.

Finally, in Section 8 we first show how the time-dependent problem{
ut + b · ∇u = 0,
u(0, ·) = u0(·),

in D ′((0, T )× R2). (1.6)

can be reduced to a family of one-dimensional problems on level sets of
the Hamiltonians, which can be solved explicitly. This allows to construct
a η-negligible set R of trajectories with the following property, which is
reminiscent of the standard Method of Characteristics (within the smooth
setting): if u is a solution of 1.6, then for all γ /∈ R the function t 7→ u(t, γ(t))
is constant. This crucial result (Lemma 8.8) combined with an elementary
observation (Lemma 8.9) concludes in Section 9 the proof of the Main
Theorem (Theorem 9.1).

1.2. Notation. Throughout the paper, we use the following notation:
• (X, d) is a metric space;
• 1E is the characteristic function of the set E ⊂ X, defined as
1E(x) = 1 if x ∈ E and 1E(x) = 0 otherwise;
• Ω denotes in general a simply connected open set in R2;
• dist(x,E) is the distance of x from the set E, defined as the infimum

of d(x, y) as y varies in E;
• B(x, r) or, equivalently, Br(x) is the open ball in Rd with radius r

and centre x; B(r) is the open ball in Rd with radius r and centre 0;
•
ffl
E f dµ denotes the average of the function f over the set E with

respect to the positive measure µ, that is 
E
f dµ := 1

µ(E)

ˆ
E
f dµ,

• µ A denotes the restriction of a measure µ on a set A.
• |µ| is the total variation of a measure µ;
• µsing the singular component of µ with respect to the Lebesgue mea-

sure;
• L d is the Lebesgue measure on Rd and H k is the k-dimensional

Hausdorff measure;
• Lip(X) is the space of real-valued Lipschitz functions; Lipc(X) is the

space of real-valued compactly supported Lipschitz functions;
• C∞c (Ω) is the space of smooth compactly supported functions, also

called test functions;
• BV(Ω) set of functions with bounded variation;
• D ′(Ω) is the space of distributions on the open set Ω;
• Γ := C([0, T ];R2) will denote the set of continuous curves in R2;
• Γ̇ := {γ ∈ Γ : γ(t) = γ(0), ∀t ∈ [0, T ]} denotes the set of constant

curves (whose graphs are fixed points);
• Γ̃ := Γ\Γ̇ denotes the set of non-constant curves (whose graphs have

positive length);
• et : Γ→ R2 is the evaluation map at time t, i.e. et(γ) = γ(t).
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Moreover, if A ⊂ R2 is a measurable set,
• ΓA :=

{
γ ∈ Γ : L 1({t ∈ [0, T ] : γ(t) ∈ A}) > 0

}
denotes the set of

curves which stay in A for a positive amount of time;
• Γ̃A := Γ̃ ∩ ΓA denotes the set of non-constant curves which stay in
A for a positive amount of time;
• Γ̇A := Γ̇∩ ΓA denotes the set of constant curves which stay in A for

a positive amount of time.
• for every s ∈ [0, T ], we denote by

ΓsA := {γ ∈ Γ : γ(s) ∈ A} ,

Γ̃sA :=
{
γ ∈ Γ̃ : γ(s) ∈ A

}
,

Γ̇sA :=
{
γ ∈ Γ̇ : γ(s) ∈ A

}
accordingly the sets of all curves, non-constant curves and constant
curves, which at time s belong to A;
• TA := {γ ∈ ΓA : γ(0) /∈ A, γ(T ) /∈ A} denotes the set of curves which

stay in A for a positive amount of time and have the endpoints out-
side A.

If A ⊆ R2, we denote by

Conn(A) :=
{
C ⊂ A : C is a connected component of A

}
,

Conn?(A) :=
{
C ∈ Conn(A) : H 1(C) > 0

}
,

and
A? :=

⋃
C∈Conn?(A)

C.

When the measure is not specified, it is assumed to be the Lebesgue
measure, and we often write ˆ

f(x) dx

for the integral of f with respect to L d.

1.3. Disintegration of a measure. Let µ be a Radon measure on a metric
space X. Let Y be a metric space and let f : X → Y be a Borel function.
We denote by f#µ the image measure of µ under the map f . In particular,
for any ϕ ∈ Cc(Y ) we haveˆ

X
ϕ(f(x)) dµ(x) =

ˆ
Y
ϕ(y) d(f#µ)(y).

Let ν be a Radon measure on Y such that f#|µ| � ν. According to
the Disintegration Theorem (Theorem 2.28 of [6] or for the most general
statement Section 452 of [14]) there exists a unique measurable family of
Radon measures {µy}y∈Y such that for ν-a.e. y ∈ Y the measure µy is
concentrated on the level set f−1(y) and

µ =
ˆ
y
µy dν(y),
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that is, for any ϕ ∈ Cc(X)ˆ
X
ϕ(x) dµ(x) =

ˆ
Y

(ˆ
X
ϕ(x) dµy(x)

)
dν(y).

The family {µy}y∈Y is called the disintegration of µ with respect to f (and
ν).

1.4. Coarea formula. Suppose that H : R2 → R is a Lipschitz function.
Coarea formula (see e.g. [6] for the general statement) provides further in-
formation about the structure of the disintegration of |∇H|L 2 with respect
to H:
Lemma 1.7. Let {$h}h∈R denote the disintegration of the measure |∇H|L 2

with respect to H and let Eh := H−1(h). Then for a.e. h ∈ R we have
H 1(Eh) < ∞ and $h = H 1 Eh. In other words, the disintegration of
|∇H|L 2 with respect to H is given by

|∇H|L 2 =
ˆ
R

H 1 Eh dh.

2. Setting of the problem

2.1. Ambrosio’s Superposition Principle. In [3], L. Ambrosio proved
the Superposition Principle. Since we will use it later on in this section, we
present here the statement. Let us consider the continuity equation in the
form {

∂tµt + div(bµt) = 0,
µ0 = µ,

(2.1)

where [0, T ] 3 t 7→ µt is a measure valued function and b : [0, T ]× Rd → Rd
is a bounded, Borel vector field. A solution to (2.1) has to be understood
in distributional sense.

We have the following
Theorem 2.1 (Superposition Principle). Let b : [0, T ] × Rd → Rd be a
bounded, Borel vector field and let [0, T ] 3 t 7→ µt be a positive, locally
finite, measure-valued solution of the continuity equation (2.1). Then there
exists a family of probability measures {ηx}x∈Rd on Γ such that

µt =
ˆ
et#ηxdµ̄(x),

for any t ∈ (0, T ) and (e0)# ηx = δx. Moreover, ηx is concentrated on
absolutely continuous integral solutions of the ODE starting from x, for µ-
a.e. x ∈ Rd.

In other words, any nonnegative measure-valued solution µt of the conti-
nuity equation (2.1) can be represented as

µt = et#η, (2.2)
where η is some nonnegative measure on the space of continuous curves Γ,
which is concentrated on the integral curves of the vector field b. In terms
of Theorem 2.1 this measure η can be defined by

η =
ˆ
Rd

ηx dµ̄(x).
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(I.e. the family {ηx}x∈Rd is the disintegration of η under the map e0.)

2.2. Partition and curves. Let b : R2 → R2 be an autonomous, nearly
incompressible vector field, with b ∈ BV(R2) ∩ L∞(R2); we assume b is
compactly supported (with support in the unit ball of R2, B := B(0, 1)),
defined everywhere and Borel. Let us consider the countable covering B of
R2 given by

B :=
{
B(x, r) : x ∈ Q2, r ∈ Q+

}
.

For each ball B ∈ B, we are interested to the trajectories of b which cross
B, staying inside B for a positive amount of time. We therefore define, for
every ball B ∈ B and for every rational numbers s, t ∈ Q ∩ (0, T ) such that
s < t, the sets

TB,s,t := {γ ∈ ΓB : γ(s) /∈ B, γ(t) /∈ B} .

We recall that (see Notations)

ΓB :=
{
γ ∈ Γ : L 1({t ∈ [0, T ] : γ(t) ∈ B}) > 0

}
.

In this first section we will work for simplicity with the sets TB := TB,0,T ,
where B ∈ B (and without any loss of generality we assume T ∈ Q).

Remark 2.2. It is fairly easy to see that⋃
B∈B

TB = Γ̃.

Indeed, for every curve which is moving there exists a point γ(t) 6= γ(0), γ(T ),
so that one has just to choose a ball in B containing γ(t) but not γ(0), γ(T ).

By Definition 1.1, there exists a function ρ : [0, T ]× R2 → R which satis-
fies continuity equation (1.4) in D ′((0, T ) × R2). Therefore, by Ambrosio’s
Superposition Principle 2.1, there exists a measure η on Γ, concentrated on
the set of trajectories of b, such that

ρ(t, ·)L 2 = (et)#η, (2.3)

where we recall that et : Γ→ R2 is the evaluation map γ 7→ γ(t). For a fixed
ball B ∈ B, we consider the measure ηB := η TB and we define ρB by
ρB(t, ·)L 2 = (et)#ηB. Then we set

rB(x) :=
ˆ T

0
ρB(t, x)dt, x ∈ B. (2.4)

Lemma 2.3. It holds div(rBb) = 0 in D ′(B).
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Proof. For any φ ∈ C∞c (B) we haveˆ
B
rBb(x) · ∇φ(x)dx =

ˆ
B

ˆ T

0
ρB(t, x)b(x) · ∇φ(x) dt dx

=
ˆ T

0

ˆ
TB

b(γ(t)) · (∇φ)(γ(t)) dηB dt

=
ˆ T

0

ˆ
TB

γ̇(t) · (∇φ)(γ(t)) dηB dt

=
ˆ T

0

ˆ
TB

d

dt
φ(γ(t)) dηB dt

=
ˆ

TB

[
φ(γ(T ))− φ(γ(0))

]
dηB = 0.

because for ηB-a.e. γ ∈ TB, γ(0) /∈ B, γ(T ) /∈ B. �

3. Recent results for uniqueness in the two dimensional case

We recall here some facts about uniqueness of bounded solutions for the
continuity equation in the two dimensional case, following in particular [1, 2].

3.1. Structure of level sets of Lipschitz functions. Let Ω ⊂ R2 be a
bounded, open set and let f : Ω→ R be a Lipschitz function. For any r ∈ R,
we denote by Er := f−1(r) the corresponding level set.

Theorem 3.1 ([1, Thm. 2.5]). Suppose that f : Ω → R is a compactly
supported Lipschitz function. For any r ∈ R, let Er := f−1(r). Then the
following statements hold for L 1-a.e. r ∈ f(Ω):

(1) H 1(Er) <∞ and Er is countable H 1-rectifiable;
(2) for H 1-a.e. x ∈ Er the function f is differentiable at x with
∇f(x) 6= 0;

(3) Conn?(Er) is countable and every C ∈ Conn∗(Er) is a closed simple
curve;

(4) H 1(Er \ E∗r ) = 0.

For brevity, we will say that the level set Er is regular with respect to
Ω if it satisfies conditions (1)-(2)-(3)-(4) (or it is empty). In this way, the
theorem above can be stated by saying that for a.e. r ∈ R the level sets Er
are regular with respect to Ω.

3.2. Disintegration of Lebesgue measure with respect to Hamil-
tonians. From Lemma 2.3 we have div(rb) = 0 in B; since B is simply
connected, there exists a Lipschitz potential HB : B → R such that

∇⊥HB(x) = rB(x)b(x), for L 2-a.e. x ∈ B.
Using Theorem 3.1 on the Lipschitz functionHB, we can define the negligible
setN1 such that Eh is regular inB whenever h /∈ N1; moreover, letN2 denote
the negligible set on which the measure ((HB)#L 2)sing is concentrated,
where ((HB)#L 2)sing is the singular part of ((HB)#L 2) with respect to
L 1. Then we set

N := N1 ∪N2 and E∗ := ∪h/∈NE∗h (3.1)
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Therefore we can associate to B a triple (HB, N,E). For any x ∈ E let Cx
denote the connected component of E such that x ∈ Cx. By definition of
E for any x ∈ E the corresponding connected component Cx has strictly
positive length.

Let us fix an arbitrary ball B ∈ B. For brevity let H denote the corre-
sponding Hamiltonian HB.

Lemma 3.2 ([2, Lemma 2.8]). There exist Borel families of measures σh, κh,
h ∈ R, such that

L 2 B =
ˆ (

chH
1 Eh + σh

)
dh+

ˆ
κh dζ(h), (3.2)

where
(1) ch ∈ L1(H 1 E?h), ch > 0 a.e.; moreover, by Coarea formula, we

have ch = 1/|∇H| a.e. (w.r.t. H 1 E?h);
(2) σh is concentrated on E?h ∩ {∇H = 0};
(3) κh is concentrated on E?h ∩ {∇H = 0};
(4) ζ := H#L 2 (B \ E?) is concentrated on N (hence ζ ⊥ L 1);
(5) σh is concentrated on Eh ∩ {b 6= 0, rB = 0}.

Proof. Points (1)-(4) are exactly [2, Lemma 2.8]. Concerning (5), it can be
proved using minor modifications of the proof of [7, Theorem 8.2]: indeed,
we have that, being b of class BV and hence approximately differentiable a.e.,
H#L 2 {b = 0} ⊥ L 1: by comparing two disintegrations of L 2 {b = 0}
we conclude that σh is concentrated on {b 6= 0} for a.e. h. �

Remark 3.3. Using Coarea formula (see Lemma 1.7), we can show

H 1(Eh ∩ {∇H = 0}) = 0

for L 1-a.e. h /∈ N . Therefore σh ⊥H 1 for L 1-a.e. h /∈ N .

Remark 3.4. Thanks to (3.2) we always can add to N , if necessary, an L 1-
negligible set so that for any h /∈ N for H 1-a.e. x ∈ E?h we have r(x) > 0,
b(x) 6= 0 and r(x)b(x) = ∇⊥H(x).

3.3. Reduction of the equation on the level sets. Our goal is now to
study the equation div(ub) = µ, where u is a bounded Borel function on R2

and µ is a Radon measure on R2, inside a ball from the collection B.

Lemma 3.5. Suppose that µ is a Radon measure on R2 and u ∈ L∞(R2).
Then equation

div(ub) = µ (3.3)
holds in D ′(B) if and only if:

• the disintegration of µ with respect to H has the form

µ =
ˆ
µh dh+

ˆ
νh dζ(h), (3.4)

where ζ is defined in Point (4) of Lemma 3.2;
• for L 1-a.e. h

div
(
uchbH

1 Eh
)

+ div(ubσh) = µh; (3.5)



RENORMALIZATION FOR NEARLY INCOMPRESSIBLE BV VECTOR FIELDS 12

• for ζ-a.e. h
div(ubκh) = νh. (3.6)

Proof. Let λs be a measure on R such that H#|µ| � L 1 + ζ + λs, where ζ
is defined as in Lemma 3.2 and λs ⊥ L 1 + ζ. Applying the Disintegration
Theorem, we have that

µ =
ˆ
µhdh+

ˆ
νhdζ(h) +

ˆ
λhdλ

s(h), (3.7)

with µh, νh, λh concentrated on {H = h}. Writing equation (3.3) in distri-
bution form we getˆ

R2
u(b · ∇φ) dx+

ˆ
φdµ = 0, ∀φ ∈ C∞c (B).

By an elementary approximation argument, it is clear that we can use as
test functions φ Lipschitz with compact support.

Using the disintegration of Lebesgue measure (3.2) and the disintegration
(3.7) we thus obtainˆ [ˆ

R2
uch(b · ∇φ) dH 1 Eh +

ˆ
R2
u(b · ∇φ) dσh

]
dh

+
ˆ ˆ

R2
u(b · ∇φ) dκh dζ(h) +

ˆ ˆ
R2
φdµh dh

+
ˆ ˆ

R2
φdνh dζ(h) +

ˆ ˆ
R2
φdλh dλ

s(h) = 0,

(3.8)

for every φ ∈ Lipc(B). In particular we can take
φ = ψ(H(x))ϕ(x), ψ ∈ C∞(R), ϕ ∈ C∞c (B),

so that we can rewrite (3.8) asˆ
ψ(h)

[ˆ
R2
uch(b · ∇ϕ) dH 1 Eh +

ˆ
R2
u(b · ∇ϕ) dσh

)
dh

+
ˆ
ψ(h)

ˆ
R2
u(b · ∇ϕ) dκh dζ(h) +

ˆ
ψ(h)

ˆ
R2
ϕdµh dh

+
ˆ
ψ(h)

ˆ
R2
ϕdνh dζ(h) +

ˆ
ψ(h)

ˆ
R2
ϕdλh dλ

s(h) = 0,

because
b · ∇φ = ψ(H(x))b · ∇ϕ(x)

for L 2-a.e. x ∈ R2.
Since the equalities above hold for all ψ ∈ C∞(R) we haveˆ [ˆ

R2
uch(b · ∇ϕ) dH 1 Eh +

ˆ
R2
u(b · ∇ϕ) dσh

]
dh+

ˆ ˆ
R2
ϕdµh dh = 0,

ˆ [ˆ
R2
u(b · ∇ϕ) dκh +

ˆ
R2
ϕdνh

]
dζ(h) = 0,

ˆ ˆ
R2
ϕdλh dλ

s(h) = 0,

which give, respectively, (3.5), (3.6) and (3.4).
�
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3.4. Reduction on connected components of level sets. If K ⊂ Rd is
a compact then, in general, not any connected component C of K can be
separated from K \ C by a smooth function. However, it can be separated
by a sequence of such functions:

Lemma 3.6 ([1, Section 2.8], [7, Lemma 5.3]). If K ⊂ Rd is compact then
for any connected component C of K there exists a sequence (φn)n∈N ⊂
C∞c (Rd) such that

(1) 0 ≤ φn ≤ 1 on Rd and φn ∈ {0, 1} on K for all n ∈ N;
(2) for any x ∈ C, we have φn(x) = 1 for every n ∈ N;
(3) for any x ∈ K \ C, we have φn(x)→ 0 as n→ +∞;
(4) for any n ∈ N, we have supp∇φn ∩K = ∅.

With the aid of this lemma we can now study the equation (3.5) on the
nontrivial connected components of the level sets. In view of Lemma 3.5 in
what follows we always assume that h /∈ N (see (3.1)).

Lemma 3.7. The equation (3.5) holds iff
• for any nontrivial connected component C of Eh it holds

div
(
uchbH

1 C
)

+ div(ubσh C) = µh C; (3.9)

• it holds

div(ubσh (Eh \ E?h)) = µh (Eh \ E?h). (3.10)

Proof. For any Borel set A ⊂ R2 we introduce the following functional

ΛA(ψ) :=
ˆ
A
uch(b · ∇ψ) dH 1 Eh +

ˆ
A
u(b · ∇ψ) dσh +

ˆ
A
ψ dµh,

for all ψ ∈ C∞c (B).
Now fix a connected component C of Eh and take a sequence of functions

(φn)n∈N given by Lemma 3.6 (applied with K := Eh). By assumption, we
have that Λ(ψφn) = 0 for every ψ ∈ C∞c (B) and for every n. Let us pass to
the limit as n→∞.

On one hand we haveˆ
ψφn dµh =

ˆ
C
ψ dµ+

ˆ
Eh\C

ψφn dµ→
ˆ
C
ψ dµ

because the second term converges to 0 since φn → 0 pointwise on Eh \ C.
On the other hand ∇(ψφn) = ψ∇φn + φn∇ψ. In the terms with φn∇ψ

we pass to the limit as above. The terms with the product ψ∇φn identically
vanish thanks to the condition (4) on φn in Lemma 3.6. Therefore, we have
that for every ψ ∈ C∞c (B)

ΛEh
(ψφn)→

ˆ
C
uch(b · ∇ψ) dH 1 +

ˆ
C
u(b · ∇ψ) dσh +

ˆ
C
ψ dµh = ΛC(ψ),

as n → +∞. Since ΛEh
(ψφn) = 0 for every n, we deduce that ΛC(ψ) = 0

and this gives (3.9).
In order to get (3.10), it is enough to observe that E?h is a countable union

of connected components C, therefore (from the previous step) we deduce
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thatˆ
E?

h

uch(b ·∇ψ) dH 1 +
ˆ
E?

h

u(b ·∇ψ) dσh+
ˆ
E?

h

ψ dµh = 0, ∀ψ ∈ C∞c (B).

Hence

ΛEh\E?
h

:=
ˆ
E?

h
\Eh

uch(b·∇ψ) dH 1+
ˆ
E?

h
\Eh

u(b·∇ψ) dσh+
ˆ
E?

h
\Eh

ψ dµh = 0,

for every ψ ∈ C∞c (B). Remembering that H 1(E?h \ Eh) = 0 by Theorem
3.1 we get (3.10) and this concludes the proof.

The converse implication can be easily obtained by summing the equations
(3.9) and (3.10). �

Lemma 3.8. Equation (3.9) holds iff

div
(
uchbH

1 C
)

= µh C, (3.11a)

div(ubσh C) = 0. (3.11b)

The proof of Lemma 3.8 would be fairly easy in the case when γ is a
straight line. Roughly saying, in this case (3.9) would read asˆ
u(x)ch(x)b(x)ψ′(x) dx+

ˆ
u(x)ch(x)b(x)ψ′(x) dσh(x)+

ˆ
ψ(x) dµ(x) = 0,

ψ ∈ C∞0 (R). Since σh is concentrated on a L 1-negligible set S, any φ ∈ C1
0

can be approximated in C0-norm with a sequence of C1-functions φn having
0-derivative on S. Consequently, φ′n converge to φ′ weak* in L∞ as n→∞.
Then, substituting ψ = φn and passing to the limit as n→∞ we getˆ

u(x)ch(x)b(x)φ′(x) dx+
ˆ
φ(x) dµ(x) = 0.

Hence the only technicality here is to repeat this argument on a curve.
Before presenting the formal proof of Lemma 3.8 we would like to discuss

the parametric version of the equation (3.11a).
Let γ : I → R2 be an injective Lipschitz parametrization of C, where

I = R/`Z or I = (0, `) for some ` > 0 is the domain of γ. In view of
Remark 3.4) we can assume that the directions of b and ∇⊥H agree H 1-
a.e. on C. So there exists a constant $ ∈ {+1,−1} such that

b(γ(s))
|b(γ(s))| = $

γ′(s)
|γ′(s)| (3.12)

for a.e. s ∈ I. We will say that γ is an admissible parametrization of
C if $ = +1. In the rest of the text we will consider only admissible
parametrizations of the connected components C.

Lemma 3.9. Equation (3.11a) holds iff for any admissible parametrization
γ of C

∂s(ûĉh|b̂|) = µ̂h (3.13)
where γ#µ̂h = µh C, û = u ◦ γ, ĉh = ch ◦ γ and b̂ = b ◦ γ.

In the proof of Lemma 3.9 we will use the following result:
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Lemma 3.10 ([1, Section 7]). Let a ∈ L1(I) and µ a Radon measure on
I, where I = R/`Z or I = (0, `) for some ` > 0. Suppose that γ : I → Ω is
an injective Lipschitz function such that γ′ 6= 0 a.e. on I and γ(0, `) ⊂ Ω.
Consider the functional

Λ(φ) :=
ˆ
I
φ′a dt+

ˆ
I
φdµ, ∀φ ∈ Lipc(I).

If Λ(ϕ ◦ γ) = 0 for any ϕ ∈ C∞c (Ω) then Λ(φ) = 0 for any φ ∈ Lipc(I).

Proof of Lemma 3.9. Let us recall a corollary from Area formula: if γ : I →
R2 is an injective Lipschitz parametrization of C then

H 1 C = γ#
(
|γ′|L 1

)
.

Using this formula the distributional version of (3.11a),ˆ
C
uchb · ∇φdH 1 C +

ˆ
C
φdµh = 0, ∀φ ∈ C∞c (B),

can be written asˆ
I
u(γ(s))ch(γ(s))b(γ(s)) · (∇φ)(γ(s))|γ′(s)| ds+

ˆ
I
φ(γ(s))dµ̂h(s) = 0

where µ̂h is defined by µ̂h :=
(
γ−1)

# µh.
Using (3.12) we can write the equation above asˆ
I
u(γ(s))ch(γ(s))γ′(s)(∇φ)(γ(s))|b(γ(s))| ds+

ˆ
I
φ(γ(s))dµ̂h(s) = 0,

which reads asˆ
I
û(s)ĉh(s)∂sφ(γ(s))|b̂(s)| ds+

ˆ
I
φ(γ(s))dµ̂h(s) = 0.

Since the equation above holds for any φ ∈ C∞c (B) it remains to apply
Lemma 3.10. �

Proof of Lemma 3.8. Let us write Λ(φ) = M(φ) +N(φ), where

M(φ) :=
ˆ
C
uch(b · ∇φ) dH 1 +

ˆ
C
φdµh

and
N(φ) :=

ˆ
C
ub · ∇φdσh

for every φ ∈ C∞c (B).
Fix a test function φ: we are going to “perturb” φ in such a way that

N(φ) becomes arbitrarily small and M(φ) remains almost unchanged. Since
Λ(φ) = 0 we will obtain that |M(φ)| < ε and this will imply that M(φ) =
N(φ) = 0.

By Lemma 3.2, we have σh ⊥ H 1 C therefore there exists a H 1-
negligible set S ⊂ C such that σh is concentrated on S. Moreover, by inner
regularity, for every n ∈ N, we can find a compact K ⊂ S such that

σh(S \K) < 1
n
.
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Using the fact that H 1(K) = 0, for every n ∈ N, we can find countably
many open balls {Brj (zj)}j∈N which cover K and whose radii rj satisfy∑

j∈N
rj <

1
n
.

Furthermore, by compactness, we can extract from {Brj (zj)}l∈N a finite
subcovering, {Brj (zj)} with j = 1, . . . , ν where ν = ν(n) ∈ N (we stress
that ν depends on n).

For every j ∈ {1, . . . , ν}, let

P j,ni := (zj,i − rj , zj,i + rj)

denote the projection of Brj (zj) onto the xi-axis, with i = 1, 2. Since P j,ni
is an open interval we can find a smooth function ψj,ni : R→ R such that

ψj,ni (ξ) =
{

0 ξ ∈ P j,ni ,

1 dist(ξ, ∂P j,ni ) > 2ri,

and 0 ≤ ψj,ni ≤ 1 for every ξ ∈ R. Now we consider the product ψni :=
ψ1,n
i ψ2,n

i · · ·ψ
ν,n
i and we define the functions χni : R→ R as

χni (ξ) :=
ˆ ξ

0
ψni (w) dw

for i = 1, 2 and n ∈ N. Now we set χn(x) := (χn1 (x), χn2 (x)) and φn := φ◦χn.
Since ‖χn − id‖∞ ≤ 4

∑
i ri ≤ 4

n we deduce that φn → φ uniformly in C
because

|φn(x)− φ(x)| ≤ ‖∇φ‖∞‖χn − id‖∞ → 0
as n→ +∞.

Let us now take an admissible parametrization of C, γ : I → R, and let
us introduce the functions φ̂n := φn ◦ γ. Using for instance the density
of C1 functions in L1(I), we can actually show that ∂sφ̂n ⇀? ∂sφ̂ in weak?
topology of L∞. Passing to the parametrization as in the proof of Lemma 3.9
we get ˆ

C
uch(b · ∇φn) dH 1 =

ˆ
I
ûĉhb̂ ∂sφ̂n ds,

where we denote by ·̂ the composition with γ.
Using weak? convergence, we obtain thatˆ

C
uch(b · ∇φn) dH 1 →

ˆ
C
uch(b · ∇φ) dH 1.

On the other hand, by uniform convergence, we immediately getˆ
φn dµh →

ˆ
φdµh,

as n→ +∞. In particular, we have that M(φn)→M(φ).
Now observe that ∇φn = 0 on K by construction, hence we get

N(φn) ≤
ˆ
S\K
|ub||∇φn|dσh ≤ ‖ub‖∞‖∇φ‖∞

1
n
→ 0

and this implies that N(φ) = 0. Therefore, 0 = Λ(φ) = M(φ), which
concludes the proof. �
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We note, in particular, that from (3.11b), being b ∈ BV and taking u ≡ 1
in (3.3), we have that div(bσh Eh) = 0 for a.e. h.

Let
F := {b 6= 0, rB = 0} ∩ E. (3.14)

By Point (5) of Lemma 3.2, σh is concentrated on F ∩ Eh hence we have

div(1F bσh) = 0, for L 1-a.e. h. (3.15)

This important piece of information is very useful to prove the following

Lemma 3.11. We have div(1F b) = 0 in D ′(B).

Proof. For every test function φ ∈ C∞c (B), we have
ˆ
F

(b(x)∇φ(x)) dx =
ˆ ˆ

F∩Eh

(b(x) · ∇φ(x)) dσh(x)dh.

Using again Point (5) of Lemma 3.2 and (3.15), we get that
ˆ
F∩Eh

(b(x)∇φ(x)) dσh(x) = 0

and then we conclude. �

Finally, let us mention a covering property of the set E?:

Lemma 3.12. Let E? be the set defined in (3.1). Then

E? ⊃ {∇H 6= 0} mod L 2.

Proof. Suppose that P := {∇H 6= 0} \ E has positive measure. Then

0 <
ˆ
P
|∇H| dx =

ˆ ˆ
1P dH

1 Eh dh = 0

where the first equality is due to Coarea formula (Lemma 1.7) and the second
equality holds since 1P is zero on Eh for a.e. h. �

Note that in general E? can contain a subset of {∇H = 0} with positive
measure (see [1]). However, in the next section we show that, if H has the
so-called weak Sard property, then in fact E? = {∇H 6= 0} mod L 2.

4. Weak Sard Property of Hamiltonians

4.1. Matching properties. As we have seen at the beginning of Section
3.2, to every Hamiltonian H we can associate a triple (H,N,E) where N is
the set given by Theorem 3.1 and E = ∪h/∈NE?h.

Suppose now we have another triple (H̃, Ñ , Ẽ); we ask whether, given
x ∈ E ∩ Ẽ it is true that Cx = C̃x. This is essentially the definition of
matching property; moreover, we will prove the “Matching Lemma”, which
states that gradients of H and H̃ being parallel (in a simply connected set)
is a sufficient condition for matching.
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4.2. Matching of two Hamiltonians. Let us consider two Lipschitz Hamil-
tonians H1 and H2, defined on the same open, simply connected set A; ac-
cording to Theorem 3.1, we have two negligible sets N1 and N2 such that
the level sets E1

h and E2
h′ of H1 and H2 are regular for h /∈ N1 and h′ /∈ N2.

We set E1 := ∪h/∈N1E
1
h and E2 := ∪h′ /∈N2E

2
h′ .

Definition 4.1. The Hamiltonians H1 and H2 match in an open subset
A′ ⊂ A if C1

x = C2
x for L 2-a.e. x ∈ A′ ∩ E1 ∩ E2, where Cix denotes the

connected component in A′ of the level sets H−1
i (Hi(x)) which contains x.

As usual, given two vectors a and b in R2 we write a ‖ b if a = αb or
b = αa for some real number α.

We now state and prove the following

Lemma 4.2 (Matching lemma). Let H1, H2 be defined as above. If ∇H1 ‖
∇H2 a.e. on A′ ⊂ A open, then the Hamiltonians H1 and H2 match in A′.

Proof. Let b1 := ∇⊥H1. Then div b1 = 0. Let us prove that

div(H2b1) = 0 (4.1)

in the sense of distributions. Indeed, we have for every ϕ ∈ Lipc(A′)ˆ
H2(b1 · ∇ϕ) dx =

ˆ [
b1 · ∇(H2ϕ)− ϕ(b1 · ∇H2)

]
dx.

The first term is zero because div b1 = 0 (and ϕH2 can be used as test
function since it is Lipschitz); the second term is also zero because ∇H2 ‖
∇H1 a.e. on A′, hence b1 ⊥ ∇H2 a.e. on A′.

From (4.1), using [7, Theorem 4.1 and 6.1], we obtain that there exists a
L 1 negligible set N such that H2 is constant on every non trivial connected
components C ∩A′ of the level sets of H1 which do not correspond to values
in N . By disintegration, we have that the sets of points x ∈ A′ ∩ E1 such
that H1(x) /∈ N are a negligible set and therefore we can infer that for a.e.
x ∈ A′∩E1, H2 is constant along the connected components in A′ of the level
sets of H1. By repeating the same argument for H2 we get the claim. �

4.3. The Weak Sard property. Let f : R2 → R be a Lipschitz function
and let S be the critical set of f , defined as the set of all x ∈ R2 where f is
not differentiable or ∇f(x) = 0. We are interested in the following property:
the push-forward according to f of the restriction of L 2 to S is singular
with respect to L 1, that is

f#
(
L 2 S

)
⊥ L 1.

This property clearly implies the following Weak Sard Property, which is
used in [2, Section 2.13]:

f#
(
L 2 (S ∩ E?)

)
⊥ L 1,

where the set E? is the union of all connected components with positive
length of all level sets of f . We point out that the relevance of the Weak
Sard Property in the framework of transport and continuity equation is
explained is [2, Theorem 4.7].
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Remark 4.3. Informally, the weak Sard property means that the “good”
level sets of H do not intersect the critical set S, apart from a negligible
set. In terms of the disintegration of the Lebesgue measure (3.2), we can
say that H has the weak Sard property if and only if σh = 0 for a.e. h.

Now we give the following

Definition 4.4. We set
r̃B := rB + 1F ,

where we recall that rB is the function defined in (2.4) and F is the set
defined in (3.14).

By linearity of divergence, by Lemma 2.3 and Lemma 3.11, we have

div(r̃Bb) = 0

in D ′(B). Therefore, we conclude that there exists a Lipschitz potential H̃
such that ∇H̃⊥ = r̃Bb.

Moreover, we observe that ∇H ‖ ∇H̃ a.e. in B: therefore we can apply
Matching Lemma 4.2 to get that the regular level sets of H and of H̃ agree.
In particular, we obtain E = Ẽ mod L 2, directly from the definition of
H̃. We note also that the function H̃ has the Weak Sard property: indeed,
directly from the construction, we have ∇H̃ 6= 0 on E hence, since E = Ẽ
mod L 2, it follows that L 2(Ẽ ∩ S̃) = 0.

Finally, disintegrating L 2 E with respect to H we get

L 2 E =
ˆ
R

(chH 1 Eh + σh) dh,

while using the Hamiltonian H̃

L 2 E =
ˆ
R
c̃hH

1 Ẽh dh.

In particular, it follows that σh = 0 for a.e. h, which means that H = H̃
(up to additive constants) and H has the Weak Sard Property.

We collect this result in the following

Lemma 4.5. The Hamiltonian HB has the weak Sard property.

We conclude this section with the following corollary concerning the cov-
ering properties of the set E? defined in (3.1):

Corollary 4.6. Suppose that H has the weak Sard property. Let E? be the
set defined in (3.1). Then

E? = {∇H 6= 0} mod L 2.

Proof. The argument is similar to Lemma 3.12. Let Q = E? \ {∇H 6= 0}.
By (3.2)

L 2(Q) =
ˆ (ˆ

Q
dσh

)
dh = 0

since by Remark 4.3 σh = 0 for a.e. h. �
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Remark 4.7. If we do not assume BV regularity of b, but b(x) 6= 0 for
L 2-a.e. x ∈ R2 the conclusion of Lemma 4.5 still holds. This can be proved
using minor modifications of the above argument. More precisely, since b
is nearly incompressible the function m(x) :=

´ T
0 ρ(τ, x) dτ , where ρ is the

density of b, solves
div(mb) = ρ(T, ·)− ρ(0, ·) (4.2)

in D ′(B), being ρ(T, ·) and ρ(0, ·) the weak-? limits in L∞ of ρ(t, ·) as t→ T
and t → 0 respectively. Applying Lemmas 3.5, 3.7, 3.8 with u = m, from
(3.11b) we obtain

div(mbσh C) = 0. (4.3)
Hence Lemma 3.11 holds replacing 1F b with m1F b: in particular, setting

r̃B := rB +m1F

we can repeat the argument of Section 4.

5. Level sets and trajectories I

In this section, we assume that HB is defined on all R2 (using standard
theorems for the extension of Lipschitz maps).

5.1. Trajectories. We now present some lemmas which relate the trajec-
tories γ ∈ TB to the level sets of the Hamiltonian. The first result we prove
is that η-a.e. γ is contained in a level set.

Lemma 5.1. Let B ∈ B, t1, t2 ∈ [0, T ] and set T := {γ : γ ((t1, t2)) ⊂ B}.
Then η-a.e. γ ∈ T we have (t1, t2) 3 t 7→ H(γ(t)) is a constant function.

Proof. Let (%ε)ε be the standard family of convolution kernels in R2. We
set Hε(x) := H ? %ε(x) for any x ∈ B.

For every t ∈ [t1, t2] define

I(t) :=
ˆ

T
|H(γ(t))−H(γ(0))|dη(γ)

and we will prove I ≡ 0.
First note that I is positive because the integrand is non-negative and η

is positive. On the other hand,

I(t) ≤
ˆ

T
|H(γ(t))−Hε(γ(t))|dη(γ)︸ ︷︷ ︸

Iε
1

+
ˆ

T
|Hε(γ(t))−Hε(γ(0))|dη(γ)︸ ︷︷ ︸

Iε
2

+
ˆ

T
|Hε(γ(0))−H(γ(0))|dη(γ)︸ ︷︷ ︸

Iε
3

.

Now for a.e. x ∈ R2 we have Hε(x)→ H(x): henceˆ
T
|Hε(γ(t))−H(γ(t))| dη(γ) ≤

ˆ
B
|Hε(x)−H(x)|ρ(t, x)dx→ 0

as ε→ 0. Therefore, we can infer that
Iε1 → 0, Iε3 → 0

as ε ↓ 0.
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Let us study Iε2 . We have

Iε2(t) ≤
ˆ

T

ˆ t

t1

|∂sHε(γ(s))| ds dη(γ)

=
ˆ

T

ˆ t

t1

|∇Hε(γ(s)) · b(γ(s))| ds dη(γ)

=
ˆ t

t1

ˆ
|∇Hε(x) · b(x)| d(et#η T)(x) ds

≤
ˆ T

0

ˆ
|∇Hε(x) · b(x)|ρT(t, x) dx ds

=
ˆ
|∇Hε(x) · b(x)|rT(x) dx→

ˆ
|∇H(x) · b(x)|rT(x) dx = 0

where we have used ∇Hε(x)→ ∇H(x) for a.e. x. In the end, we have that
Iε2 → 0 as ε ↓ 0 and this concludes the proof. �

We now show that Lemma 5.1 can be improved, showing indeed that
ηB-a.e. γ is contained in a regular level set of H.

Lemma 5.2. Up to a ηB negligible set, the image of every γ ∈ TB is
contained in a connected component of a regular level set of HB.

Proof. Using Lemma 5.1, we remove ηB-negligible set of trajectories along
which HB is not constant. Set Ec := B \ E and consider the set

P :=
{
γ ∈ TB : γ ((0, T )) ∩B ⊂ Ec

}
.

It is enough to show that η(P) = 0: this means that for η-a.e. γ the image
γ(0, T ) is not contained in the complement of E and thus we must have (in
the ball) γ(0, T ) ⊂ E for η-a.e. γ ∈ TB (this follows remembering that a.e.
γ is contained in a level set).

By Coarea formula (see Lemma 3.2), |∇H|L 2 Ec = 0, i.e.ˆ
1Ec(x)|∇H(x)| dx = 0.

Since ∇H = rBb
⊥ in B and rB ≥ 0 (since ρB > 0), we have

0 =
ˆ
1Ec(x)|rB(x)b(x)| dx

=
ˆ
1Ec(x)rB(x)|b(x)| dx

=
ˆ ˆ T

0
1Ec(x)ρB(t, x)|b(x)| dx dt.

Using (2.3) we have

0 =
ˆ T

0

ˆ
1Ec(γ(t))|b(γ(t))| dη(γ) dt =

ˆ T

0

ˆ
P
|b(γ(t))| dη(γ) dt

which implies (by Fubini) that for η-a.e. γ ∈P we haveˆ T

0
|b(γ(t))| dt = 0.
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This gives |b(γ(t))| = 0 for a.e. t ∈ [0, T ] and this contradicts the definition
of TB. Hence η(P) = 0. �

6. Locality of the divergence

In this section we prove that the if div(ub) is a measure, then it is 0 on
the set

M :=
{
x ∈ R2 : b(x) = 0, x ∈ Db and ∇apprb(x) = 0

}
, (6.1)

where Db is the set of approximate differentiability points and ∇apprb is
the approximate differential, according to Definition [6, Def. 3.70]. For
shortness, we will call this property locality of the divergence.

Let U be an open set in Rd, d ∈ N. The main result of this section is the
following

Proposition 6.1. u ∈ L∞(U) and suppose that div(ub) = λ in the sense of
distributions, where λ is a Radon measure on U . Then |λ| M = 0.

Note that we do not assume any weak differentiability of u or ub, so the
conclusion of Proposition 6.1 does not follow immediately from the stan-
dard locality properties of the approximate derivative (see e.g. [6], Proposi-
tion 3.73). Moreover, we also mention a related counterexample (contained
in [1]), where the authors construct a bounded vector field V on the plane
whose (distributional) divergence belongs to L∞, is non-trivial, and is sup-
ported in the set where V vanishes. Our proof is based on Besicovitch-Vitali
covering Lemma ([6, Thm. 2.19]) and uses some basic facts about the trace
properties of L∞ vector fields whose divergence is a measure (we refer to
[10, 5] or [12]). In particular, we recall the following Theorem (for the proof,
see [12, Prop 7.10]):

Theorem 6.2 (Fubini’s Theorem for traces). Let Ω ⊂ Rd be an open set and
B ∈ L∞loc(Ω,Rd) be a vector field whose distributional divergence divB =: µ
is a Radon measure with locally finite variation in Ω. Let F ∈ C1(Ω). Then
for a.e. t ∈ R we have

Tr(B, ∂{F > t}) = B · ν H d−1-a.e. on Ω ∩ ∂{F > t}, (6.2)

where ν denotes the exterior unit normal to ∂{F > t} and the distribution
Tr(B, ∂Ω′) is defined by

〈Tr(B, ∂Ω′), φ〉 :=
ˆ

Ω′
φdµ+

ˆ
Ω′
∇φ ·B dx, ∀φ ∈ C∞c (Ω).

for every open subset Ω′ ⊂ Ω with C1 boundary.

Furthermore, we will use the following elementary

Lemma 6.3. Let G : Rd → R be a bounded, Borel function. For every r > 0
there exists a set of positive measure of real numbers s = s(r) ∈ [r, 2r] such
that ˆ

∂Bs(r)

|G(x)| dH d−1(x) ≤ 1
r

ˆ
B2r

|G(y)| dy.
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Proof of Proposition 6.1. Fix an arbitrary x ∈ M . For brevity let Br :=
Br(x). By (6.2) with F (y) := |x− y|2, there exists an L 1-negligible set Nx

such that for any positive number r /∈ Nx we have

|λ(Br)| =
∣∣∣∣∣
ˆ
∂Br

ub · ν dH d−1
∣∣∣∣∣ ≤ C

ˆ
∂Br

|b| dH d−1,

where ν denotes the exterior unit normal to ∂Br. By Lemma 6.3

C

ˆ
∂Br

|b| dH d−1 ≤ C

r

ˆ
B2r

|b(x)| dx = o(rd)

because, by definition of M , we have
ffl
Br
|b| dx = o(r). Therefore

|λ(Br)| = o(rd). (6.3)

Fix ε > 0. By (6.3) for any x ∈ M there exists δx > 0 such that for any
positive number r < δx such that r /∈ Nx we have

|λ(Br(x))| ≤ εrd. (6.4)

Let S ⊂M be an arbitrary bounded subset.
By regularity of λ, there exists a bounded open set O ⊃ S such that

|λ|(O \S) < ε. Hence, for any x ∈ S there exists ρx > 0 such that B(x, r) ⊂
O for any positive number r < ρx. Consequently

F :=
{
B(x, r) : x ∈ S, r < min(ρx, δx), r /∈ Nx

}
is a fine covering of S.

Hence we can apply Besicovitch-Vitali covering Lemma ([6, Thm. 2.19]):
there exists a countable disjoint subfamily {Bi}i∈N ⊂ F such that

|λ|
(
S \

⋃
i

Bi

)
= 0.

On the other hand, since
⋃
iBi ⊂ O by construction, we have

|λ|
(⋃

i

Bi \ S
)
< ε.

Using (6.4), since the balls Bi are disjoint, we have

λ

(⋃
i

Bi

)
=
∑
i

λ(Bi) ≤ εL 2
(⋃

i

Bi

)
.

Hence

λ(S) = λ

(⋃
i

Bi

)
− λ

(⋃
i

Bi \ S
)
→ 0

as ε ↓ 0. Hence λ S = 0 and, by arbitrariness of S ⊂M , λ M = 0. �
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6.1. Comparison between L 2 and η. We present here two general lem-
mas which relate the Lebesgue measure L 2 and the measure η and are based
on nearly incompressibility of the vector field b.

Lemma 6.4. Let A ⊂ R2 be a measurable set. Then L 2(A) = 0 if and only
if η(ΓA) = 0 where

ΓA :=
{
γ ∈ Γ : L 1({t ∈ [0, T ] : γ(t) ∈ A}) > 0

}
.

Proof. Let us prove first that L 2(A) = 0 implies η(ΓA) = 0. We de-
note by ρA the density such that ρA(t, ·)L 2 = et# (η ΓA) and rA(x) :=´ T

0 ρA(t, x) dt. We have, using Fubini,

0 = L 2(A) = rAL 2(A) =
ˆ T

0

ˆ
Γ
1A(x)ρA(t, x) dx dt

=
ˆ T

0

ˆ
Γ
1A(γ(t)) dη(γ) dt

=
ˆ

Γ

ˆ T

0
1A(γ(t)) dt dη(γ)

=
ˆ

ΓA

ˆ T

0
1A(γ(t)) dt dη(γ)

=
ˆ

ΓA

L 1({t ∈ [0, T ] : γ(t) ∈ A}
)
dη(γ),

hence, L 1({t ∈ [0, T ] : γ(t) ∈ A}) = 0 for η-a.e. γ ∈ ΓA.
For the opposite direction, using that ρ is uniformly bounded from below

by 1/C, we get

T

C
L 2(A) = T

C

ˆ
1A(x) dx = 1

C

ˆ T

0

ˆ
1A(x) dx dt

≤
ˆ T

0

ˆ
1A(x)ρ(t, x) dx dt

=
ˆ T

0

ˆ
Γ
1A(γ(t)) dη(γ) dt

=
ˆ

Γ

ˆ T

0
1A(γ(t)) dt dη(γ)

=
ˆ

ΓA

ˆ T

0
1A(γ(t)) dt dη(γ)

=
ˆ

ΓA

L 1({t ∈ [0, T ] : γ(t) ∈ A}) dη(γ) = 0. �

Lemma 6.5. We have L 2(A) = 0 if and only if η(ΓsA) = 0 for every
s ∈ [0, T ].
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Proof. For direct implication

0 = L 2(A) =
ˆ
1A(x)ρ(s, x) dx

=
ˆ

Γ
1A(γ(s)) dη(γ)

=
ˆ

Γs
A

1A(γ(s)) dη(γ) = η(ΓsA).

For the opposite direction,
1
C

L 2(A) = 1
C

ˆ
1A(x) dx

≤
ˆ
1A(x)ρ(s, x) dx

=
ˆ

Γ
1A(γ(s)) dη(γ)

=
ˆ

Γs
A

1A(γ(s)) dη(γ) = η(ΓsA) = 0.

�

We now recall the set M , defined in (6.1) as

M :=
{
x ∈ R2 : b(x) = 0, x ∈ Db and ∇apprb(x) = 0

}
,

and we consider the sets
Γ̃M := Γ̃ ∩ ΓM

and
Γ̃sM :=

{
γ ∈ Γ̃ : γ(s) ∈M

}
.

Using Proposition 6.1, we can show the following

Lemma 6.6. Let M be the set defined in (6.1) and for every fixed s ∈ [0, T ]
let Γ̃sM := {γ ∈ Γ̃ : γ(s) ∈M}. Then:

• η(Γ̃sM ) = 0 for a.e. s ∈ [0, T ];
• η(Γ̃M ) = 0.

Proof. Let us denote by ηsM := η Γ̃sM and consider the Borel function

ρsM (t, ·)L 2 = et#η
s
M .

It is easy to see that ρsM solves continuity equation

∂tρ
s
M + div(ρsMb) = 0. (6.5)

Integrating in time on [0, t] we get

div
(
b

ˆ t

0
ρsM (τ, ·)dτ

)
= (ρsM (t, ·)− ρsM (0, ·))L 2.

In particular, thanks to Proposition 6.1, we have that(
ρsM (t, ·)− ρsM (0, ·)

)
L 2 M = 0, (6.6)
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hence ρsM (t, ·) = ρsM (0, ·), for a.e. x. Furthermore, integrating in space the
continuity equation (6.5) we get the conservation of mass:

d

dt

ˆ
R2
ρsM (t, x) dx = 0. (6.7)

Therefore, using (6.6) and (6.7), we haveˆ
R2\M

ρsM (t, x)dx =
ˆ
R2
ρsM (t, x)dx−

ˆ
M
ρsM (t, x)dx =

=
ˆ
R2
ρsM (s, x)dx−

ˆ
M
ρsM (s, x)dx =

ˆ
R2\M

ρsM (s, x)dx =

=
ˆ
1R2\M (γ(s))dηM (γ) = 0,

which gives us ρsM (t, ·) = 0 a.e. on R2 \M . Hence

0 =
ˆ T

0

ˆ
R2\M

ρsM (t, x) dx =
ˆ T

0

ˆ
1R2\M (γ(t)) dηsM (γ) dt

and this implies that ηsM (Γ̃sM ) = 0 for s ∈ [0, T ], since γ ∈ Γ̃ are not constant
functions (by definition) and b = 0 on M .

Now the second part easily follows from the first one by a Fubini-like
argument: indeed, we set

I :=
ˆ T

0
η(Γ̃sM ) ds = 0.

Since η(Γ̃sM ) =
´

Γ̃ 1M (γ(s)) dη(γ) and using Fubini’s theorem we get

I =
ˆ

Γ̃

ˆ T

0
1M (γ(s)) ds dη(γ) = 0

i.e. L 1({t ∈ [0, T ] : γ(t) ∈ M}) = 0 for η-a.e. γ ∈ Γ̃M and this concludes
the proof. �

7. Level sets and trajectories II

The results obtained in the Section 6 provide us with a better description
of the relantionship between the trajectories γ ∈ ΓB and the level sets of
HB, thus improving the results of Section 5.

7.1. Trajectories and level sets coincide up to a translation in time.
Let B ∈ B a fixed ball of the collection and, as usual, let HB denote its
Hamiltonian. Thanks to Lemma 5.2, there exists a η-negligible set N such
that for every γ ∈ ΓB \ N the image γ(0, T ) is contained in a connected
component c of a regular level set of HB.

Recalling [1, Theorem 2.5(iv)], there exists a parametrization γc of c with
the following properties:

• γc : Ic → R2 is a Lipschitz map, where Ic = R/`Z or Ic = [0, `] for
some ` > 0 is the domain of γ;
• γc is injective;
• γ′c(s) = b(γc(s)) for L 1-a.e. s ∈ Ic.
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Thus it makes sense to wonder about the relationship between the trajec-
tory γ ∈ ΓB \N and the parametrization γc of the corresponding connected
component. The following proposition precises this relation, showing that γ
and γc coincide up to a translation in time.

Proposition 7.1. Let N be the set given by Lemma 5.2 and γ ∈ Γ̃ \ N .
Then (a suitable restriction of) γ coincides with γc up to a translation in
time.

In order to prove Proposition 7.1, we need the following auxiliary

Lemma 7.2. Let γ : I → R2 be a solution of the ordinary differential equa-
tion

γ′(t) = b(γ(t)), t ∈ I ⊂ R,
where I = [0, T ] and 1

|b| ∈ L1
loc(H 1 γ(I)). Assume that there exists a

injective curve γ̂ defined on I such that γ(I) ⊂ γ̂(I) and that ˙̂γ = b(γ̂).
Then ˆ

γ([0,T ])

dH 1(w)
|b(w)| = T −L 1({t ∈ [0, T ] : γ′(t) = 0

})
.

Proof. Observe that
ˆ
γ([0,T ])

dH 1(w)
|b(w)|

(1)=
ˆ
γ([0,T ])

1{b6=0}(w) dH 1(w)
|b(w)|

(2)=
ˆ
{t∈[0,T ]: γ′(t)6=0}

|γ′(τ)|
|b(γ(τ))|dτ

= T −L 1({t ∈ [0, T ] : γ′(t) = 0
})
,

where
(1) follows by definition;
(2) is the Area formula, i.e. H 1 C = γ#(|γ′|L 1), where C = γ((0, T )),

which can be applied because there exists γ̂ by hypothesis.
This concludes the proof. �

Now we can prove Proposition 7.1.

Proof. Let t ∈ [0, T ] such that γc(0) = γ(t). By Lemma 7.2, we have that
for any s in a suitable subinterval of [0, T ] it holds

ˆ
γ([t,t+s])

dH 1(w)
|b(w)| = (t+ s)− t−L 1([t, t+ s] ∩ γ−1({b = 0})). (7.1)

By Lemma 6.6 and the fact that L 2({b = 0} \M) = 0, where M is defined
in (6.1), we know that for η-a.e. γ ∈ Γ̃,

L 1({t ∈ [0, T ] : γ(t) ∈ {b = 0}
})

= 0,

hence (7.1) is actually
ˆ
γ([t,t+s])

dH 1(w)
|b(w)| = s. (7.2)
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On the other hand, applying again Lemma 7.2 to γc, which is injective, we
get ˆ

γc(0,s)

dH 1(w)
|b(w)| = s. (7.3)

Since, by definition, γc(0) = γ(t), comparing (7.2) and (7.3) and using the
fact that |b| > 0 H 1-a.e. on γ, we deduce that

γ(t+ s) = γc(s)

which means that γ (restricted to a suitable time subinterval of [0, T ]) and
γc coincide up to a translation in time. �

7.2. Covering property of the regular level sets. Let us recall that for
each ball B ∈ B and for any rational numbers s, t ∈ Q ∩ (0, T ) with s < t
we have set

TB,s,t := {γ ∈ ΓB : γ(s) /∈ B, γ(t) /∈ B} .

Remark 7.3. In the same way as in Remark 2.2, we can easily see that⋃
B∈B

s,t∈Q∩[0,T ]

TB,s,t = Γ̃. (7.4)

For each B ∈ B, s ∈ Q ∩ (0, T ), t ∈ Q ∩ (s, T ) restricting η to TB,s,t, we
can construct the local Hamiltonian HB,s,t as in Sections 2.2-3.2.

We now set
Ê :=

⋃
B∈B

s,t∈Q∩[0,T ]

E?B,s,t. (7.5)

The following covering property is a global analog of Lemma 3.12:

Lemma 7.4. It holds that Ê ⊃ {b 6= 0} mod L 2.

Proof. Let P := {b 6= 0} \ Ê. Then for any B ∈ B it holds that P ⊂
{∇HB = 0} mod L 2. Since b 6= 0 on P and ∇H⊥ = rBb it holds that
rB = 0 a.e. on P for all B ∈ B. Then for any B ∈ B

0 =
ˆ
P∩B

rB dx

=
ˆ T

0

ˆ
1P∩B(x)ρB(t, x) dx dt

=
ˆ

Γ̃

ˆ T

0
1P∩B(γ(t)) dη(γ) dt,

hence η-a.e. γ ∈ Γ̃ spends zero amount of time in P ∩B. Since B is arbitrary
and B is countable, we can generalize this claim to the whole set P :

ˆ
Γ̃

ˆ T

0
1P (γ(t)) dt dη(γ) = 0. (7.6)



RENORMALIZATION FOR NEARLY INCOMPRESSIBLE BV VECTOR FIELDS 29

By nearly incompressibility

L 2(P ) ≤ C

ˆ T

0

ˆ
1P (x)ρ(t, x) dx dt

= C

ˆ T

0

ˆ
Γ̇∪Γ̃

1P (γ(t)) dη(γ) dt

(∗)= C

ˆ T

0

ˆ
Γ̇
1P (γ(t)) dη(γ) dt

(∗∗)= C

ˆ T

0

ˆ
Γ̇
1P (γ(t))1{b=0}(γ(t)) dη(γ) dt

≤ C

ˆ T

0

ˆ
1P (γ(t))1{b=0}(γ(t)) dη(γ) dt

≤ C

ˆ T

0

ˆ
1P (x)1{b=0}(x)ρ(t, x) dx dt

(∗∗∗)= 0,
where

• (*) holds by (7.6);
• (**) holds because 1{b=0}(γ(t)) = 1 for any t ∈ [0, T ] and any γ ∈ Γ̇:

indeed, for any γ ∈ Γ̇ which is an integral curve of b we have 0 =
γ′(t) = b(γ(t)), hence γ(t) ∈ {b = 0};
• (***) holds because P and {b = 0} are disjoint. �

In view of Corollary 4.6 the proof above actually leads to a stronger
statement:

Lemma 7.5. Ê = {b 6= 0} mod L 2.

8. Solution of the transport equation on integral curves

8.1. Splitting on the level sets of the time-dependent problem. We
now present the time-dependent version of Lemmas 3.5-3.7-3.8-3.9.

Lemma 8.1. Fix a ball B ∈ B and the corresponding Hamiltonian HB.
Let v ∈ L∞([0, T ]×B) be a solution to the problem{

vt + div(vb) = 0,
v(0, ·) = v0(·),

in D ′((0, T )×B) (8.1)

Then v̂(t, s) := v(t, γ(s)) solves{
∂t
(
v̂ĉh|b̂|

)
+ ∂s

(
v̂ĉh|b̂|

)
= 0,

v̂(0, ·) = v̂0(·),
in D ′((0, T )× I).

for L 1-a.e. h, where γ : I → R2 is an admissible parametrization of a
connected component of the level set Eh of the Hamiltonian HB.

Proof. Multiplying by a function ψ ∈ C∞c ([0, T )) and formally integrating
by parts we get

vtψ + div(vψb) = ψν ⇒ div
(ˆ T

0
vψ dt b

)
=
ˆ T

0
vψt dt− ψ(0)v0,
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i.e.
div(wb) = µ,

where w :=
´ T

0 vψ dt and

µ :=
(ˆ T

0
vψt dt− ψ(0)v0

)
L 2.

Applying Lemma 3.5, we obtain that continuity equation implies
div

(
wchbH

1 Eh
)

= µh in D ′(R2) for L 1-a.e. h ∈ R. (8.2)
The measure µh can be computed explicitly, using Coarea Formula:

µh =
( ˆ T

0
vψt dt− ψ(0)v0

)
H 1 Eh.

Thanks to Lemma 3.9, equation (8.2) is equivalent to

∂s
(
v̂ĉh|b̂|

)
= µ̂h,

in D ′((0, T )× I). Now being γh Lipschitz and injective, we have

(γ−1
h )#

(
H 1 Eh

)
= |γ′h|L 1,

and this allows us to compute explicitly
µ̂h = (γ−1

h )#µh

= (γ−1
h )#

(ˆ T

0
vψt dt chH

1 Eh −
ˆ
R2
ψ(0)v0chdH

1 Fh

)

=
ˆ T

0
v(τ, γ(s))ψτ (τ)ch(γh(s))|b(γh(s))| dτ − ψ(0)v0(γh(s))ch(γ(s)),

which formally means

µ̂h = −
ˆ T

0
∂t
(
v̂|b̂|ĉh

)
.

To sum up, we have obtained that Problem (8.13) implies that{
∂t
(
v̂ĉh|b̂|

)
+ ∂s

(
v̂ĉh|b̂|

)
= 0,

v̂(0, ·) = v̂0(·),

in D ′((0, T )× I) for L 1-a.e. h ∈ R. �

Lemma 8.2. Fix σ ∈ Q∩(0, T ), θ ∈ Q∩(σ, T ) and B ∈ B. Let H := HB,σ,θ.
Let u ∈ L∞([0, T ]× R2) be a ρ-weak solution of the problem{

ut + b · ∇u = 0,
u(0, ·) = u0(·),

in D ′((0, T )× R2).

Then there exists a negligible set Z = ZB,σ,θ ⊂ R such that
• for any h ∈ Z the level set Eh := H−1(h) is regular;
• if h /∈ Z and Eh is regular then for any nontrivial connected com-

ponent C of Eh with admissible parametrization γC : I → R2, any
t ∈ (0, T ) and any s ∈ I there exists a constant w such that

u(t+ ξ, γC(s+ ξ)) = w (8.3)
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for a.e. ξ ∈ R such that s+ ξ ∈ I and t+ ξ ∈ (0, T ).
In particular, for any s ∈ I it holds that

u(ξ, γC(s+ ξ)) = u0(s) (8.4)
for a.e. ξ ∈ R such that s+ ξ ∈ I.

Proof. Setting v := uρ ∈ L∞([0, T ]× R2) and v0(·) = u0(·)ρ(0, ·), by defini-
tion of ρ-weak solution we have{

vt + div(vb) = 0,
v(0, ·) = v0(·),

in D ′((0, T )× R2). (8.5)

Hence we can apply Lemma 8.1 in B to get{
∂t
(
v̂ĉh|b̂|

)
+ ∂s

(
v̂ĉh|b̂|

)
= 0,

v̂(0, ·) = v̂0(·),
in D ′((0, T )× I). (8.6)

for all h ∈ H(B) \N1, where L 1(N1) = 0.
From (8.6) it immediately follows that the function

ξ 7→
(
ρ̂ûĉh|b̂|

)
(t+ ξ, s+ ξ) (8.7)

is equal a.e. to some constant w1.
Applying the same argument to the problem{

ρt + div(ρb) = 0,
ρ(0, ·) = ρ0(·),

in D ′((0, T )× R2), (8.8)

(which holds thanks to nearly incompressibility assumption) we obtain a
negligible set N2 such that for all h ∈ H(B) \N2, for any connected compo-
nent of Eh the map

ξ 7→
(
ρ̂ĉh|b̂|

)
(t+ ξ, s+ ξ) (8.9)

is equal a.e. to some constant w2.
Let N := N1 ∪N2 and fix h /∈ N .
Comparing (8.10) and (8.8), using that ρch|b| > 0 H 1-a.e. on Eh (for

a.e. h), we obtain that

ξ 7→
(
v̂ĉh|b̂|

)
(t+ ξ, s+ ξ) (8.10)

is equal a.e. to the constant w = w1/w2 for a.e. h /∈ N . �

8.2. Selection of appropriate trajectories.

Lemma 8.3. There exists an η-negligible set N ⊂ Γ such that any integral
curve γ ∈ Γ̃ \N of the vector field b has the following properties:

(1) for any B ∈ B, if γ ∈ TB,s,t then each connected component of
γ([s, t]) ∩B is contained in a regular level set of HB;

(2) for any τ ∈ (0, T ) there exist a ball B ∈ B, s ∈ Q ∩ (0, T ) and
t ∈ Q ∩ (τ, T ) such that γ ∈ TB,s,t.

Proof. First of all, using Lemma 6.6 we can remove a negligible set of integral
curves of b which stay in the set {b = 0} for a positive amount of time.
Applying Lemmas 5.1 and 5.2 countably many times (for each ball B ∈ B
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and all rationals s ∈ Q∩ (0, T ) and t ∈ Q∩ (s, T )) we obtain the set N ⊂ Γ
such that the first property holds.

Next, for any τ ∈ (0, T ) there exists s ∈ Q ∩ (0, τ) such that γ(s) 6=
γ(τ). (Otherwise, since γ is an integral curve of b, it would have to stay
in {b = 0} for a positive amount of time). Similarly there exists t ∈ (s, T )
such that γ(t) 6= γ(τ). Then for any ball B ∈ B with sufficiently small
radius, containing γ(τ) and not containing γ(s) and γ(t) it clearly holds
that γ ∈ TB,s,t. �

Lemma 8.4. Let ZB,s,t denote negligible set given by Lemma 8.2. Then for
η-a.e. γ ∈ Γ̃ it holds that

HB,s,t(γ([0, T ])) ∩ ZB,s,t = ∅. (8.11)

Proof. Set A := H−1
B,s,t(ZB,s,t): by Coarea Formula, L 2(A) = 0. Applying

Lemma 6.4 we deduce that

η
({

γ ∈ Γ : L 1({t ∈ [0, T ] : γ(t) ∈ A}) > 0
})

= 0.

On the other hand b 6= 0 a.e. on EB,s,t, hence{
γ ∈ Γ̃ \N : γ([0, T ]) ∩ EB,s,t ⊂ Eh, h ∈ Z

}
=
{
γ ∈ Γ̃ \N : γ([0, T ]) ∩ EB,s,t ⊂ A

}
⊂
{
γ ∈ Γ : L 1({t ∈ [0, T ] : γ(t) ∈ A}) > 0

}
. �

From the Lemma 8.4 it does not follow immediately that the endpoints
γ(0) and γ(T ) are contained in regular level sets of some Hamiltonians.
But now we are going to establish this property. Being ZB,s,t given by
Lemma 8.2, let ẼB,s,t := EB,s,t \H−1

B,s,t(ZB,s,t) and

Ẽ :=
⋃

B∈B,
s,t∈Q∩(0,T ): s<t

ẼB,s,t. (8.12)

Note that since ẼB,s,t = EB,s,t mod L 2 (by Coarea formula), it follows
that Ẽ = Ê mod L 2.

The following lemma shows that η-a.e. nontrivial trajectory of b starts
from the set Ẽ (and also stops in Ẽ):

Lemma 8.5. For η-a.e. γ ∈ Γ̃ it holds that γ(0) ∈ Ẽ and γ(T ) ∈ Ẽ.

Proof. Consider the set X of η ∈ Γ̃ such that γ(0) 6∈ Ẽ. By Lemma 7.5 it
holds that b = 0 a.e. on the complement of Ẽ. Hence by Lemma 6.6 we
have η(X) = 0. The argument for γ(T ) is similar. �

In the lemmas above we have been removing η-negligible sets of trajecto-
ries of b. Let us summarize some properties of the remaining ones:

Lemma 8.6. There exists a η-negligible set R ⊂ Γ̃ such that for any τ ∈
[0, T ] and any γ ∈ Γ̃\R there exist s ∈ Q∩ (0, T ), t ∈ Q∩ (s, T ) and B ∈ B

such that γ(τ) ∈ ẼB,s,t.
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Proof. We define R as the union of η-negligible sets given by Lemmas 8.3,
8.4 and 8.5. If τ ∈ (0, T ) the claim follows from Lemma 8.3 since we can
always find s and t such that τ ∈ (s, t) and the desired property holds. If
τ = 0 or τ = T then the result follows from Lemma 8.5. �

Corollary 8.7. For any γ ∈ Γ̃ \ R and any τ ∈ [0, T ] there exists δ > 0
and a constant w such that the function ξ 7→ u(ξ, γ(ξ)) is equal to w for a.e.
ξ ∈ (τ − δ, τ + δ)∩ [0, T ]. Moreover, if τ = 0 then the constant w is equal to
u0(γ(0)).

Proof. The result follows directly from Lemma 8.6, Proposition 7.1 and
Lemma 8.2. �

8.3. Solutions are constant along η-a.e. trajectory. Now we are in a
position to recover the method of characteristics in our weak setting:

Lemma 8.8. Suppose that b is a bounded, autonomous, BV compactly sup-
ported, nearly incompressible (with density ρ) vector field on R2 and let
u ∈ L∞([0, T ]× R2) be a ρ-weak solution of the problem

{
ut + b · ∇u = 0,
u(0, ·) = u0(·),

in D ′((0, T )× R2). (8.13)

Then for η-a.e. γ ∈ Γ for a.e. t ∈ [0, T ] it holds that

u(t, γ(t)) = u0(γ(0)).

Proof. It is clear that the thesis holds for any γ ∈ Γ̇. Indeed, by Proposi-
tion 6.1

∂t(ρu1M ) = 0

in D ′, where the set M is defined in (6.1).
Hence it is sufficient to consider only the moving trajectories, i.e. γ ∈ Γ̃.

Let R be the set given by Lemma 8.6. Let γ ∈ Γ̃ \ R. By Corollary 8.7 for
any τ ∈ [0, T ] there exists δ > 0 such that the function t 7→ u(t, γ(t)) is equal
to some constant wτ for a.e. t ∈ (τ − δ, τ + δ) ∩ [0, T ]. Moreover, if τ = 0
then wτ = u0(γ(0)). It remains to extract a finite covering of [0, T ]. �

The following lemma is elementary, we prove it for sake of completeness.

Lemma 8.9. Let u ∈ L∞([0, T ] × R2). If for η-a.e. γ and a.e. t ∈ [0, T ]
it holds that u(t, γ(t)) = u0(γ(t)), then u solves the transport equation with
the initial condition u0, i.e.{

ut + b · ∇u = 0,
u(0, ·) = u0(·).
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Proof. Let ϕ ∈ C∞c ([0, T ) × R2) be a smooth test function which vanishes
at T . Thenˆ T

0

ˆ
R2

(ρuϕt + ρub∇ϕ) dx dt+
ˆ
R2
ρ(0, x)u0(x)ϕ(0, x) dx

=
ˆ T

0

ˆ
Γ
u(t, γ(t))∂tϕ(t, γ(t)) dη(γ) dt+

ˆ
Γ
u0(γ(0))ϕ(0, γ(0)) dη(γ)

=
ˆ T

0

ˆ
Γ
u0(γ(0))∂tϕ(t, γ(t)) dη(γ) dt+

ˆ
Γ
u0(γ(0))ϕ(0, γ(0)) dη(γ)

= −
ˆ

Γ
u0(γ(0))ϕ(0, γ(0)) dη(γ) +

ˆ
Γ
u0(γ(0))ϕ(0, γ(0)) dη(γ) = 0. �

9. Renormalization: proof of the Main Theorem

We are finally ready to state and prove the main result of the paper, which
is the following

Theorem 9.1. Every bounded, autonomous, compactly supported and nearly
incompressible BV vector field on R2 has the renormalization property.

Proof. Let u ∈ L∞([0, T ]× R2) be a solution of{
ut + b · ∇u = 0,
u(0, ·) = u0(·),

in D ′((0, T )× R2).

By Lemma 8.8 the function t 7→ u(t, γ(t)) is constant for η-a.e. γ. Then
for any β ∈ C1(R,R) the function t 7→ β(u(t, γ(t))) is constant for η-a.e. γ.
Hence by Lemma 8.9 the function β(u) is a solution of{

(β(u))t + b · ∇β(u) = 0,
β(u)(0, ·) = β(u0)(·).

This concludes the proof. �
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