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ABSTRACT. We provide a vast class of counterexamples to the chain rule for the divergence of
bounded vector fields in three space dimensions. Our convex integration approach allows us to
produce renormalization defects of various kinds, which in a sense quantify the breakdown of the
chain rule. For instance, we can construct defects which are absolutely continuous with respect to
Lebesgue measure, or defects which are not even measures.
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1. INTRODUCTION

In this paper we consider the classical problem of the chain rule for the divergence of a bounded
vector field. Specifically, the problem can be stated in the following way:

Let Ω ⊂ Rd be a domain with Lipschitz boundary. Given a bounded vector field v : Ω→ Rd

tangent to the boundary and a bounded scalar function ρ : Ω→ R, one asks whether is possible
to express the quantity div(β (ρ)v), where β is a smooth scalar function, only in terms of β , ρ and
the quantities λ = divv and ν = div(ρv).

Indeed, formally we should have that

div(β (ρ)v) = (β (ρ)−ρβ
′(ρ))µ +β

′(ρ)λ . (1.1)

However, the extension of (1.1) to a nonsmooth setting is far from trivial. The chain rule problem
is particularly important in view of its applications to the uniqueness and compactness of transport
and continuity equations, whose analysis is nowadays a fundamental tool in the study of various
equations arising in mathematical physics. Indeed continuity equations arise naturally for instance
in compressible fluid mechanics in order to model the evolution of the density of a fluid.

The chain rule problem for nonsmooth vector fields has been considered in several papers,
in particular in [ADLM07]. There, it is proved that if v is of bounded variation and div(ρv) is a
measure, then div(β (ρ)v) is also a measure and in particular formula (1.1) holds for the absolutely
continuous parts of λ and µ . The singular part is partially characterized in the cited article.

In this paper, we prove that in the three dimensional case for vector fields which are merely
bounded the formula (1.1) is invalid in a very strong sense. Specifically, for a strongly convex
function β : (0,∞)→R and a given renormalization defect f : Ω→R we construct a divergence-
free vector field v and a scalar function ρ satisfying

div(ρv) = 0 in Ω

div(v) = 0 in Ω

v ·n = 0 on ∂Ω

(1.2)

1



2 GIANLUCA CRIPPA, NIKOLAY GUSEV, STEFANO SPIRITO, AND EMIL WIEDEMANN

such that

div(β (ρ)v) = f . (1.3)

More precisely, our main theorem reads as follows:

Theorem 1.1. Let Ω ⊂ R3 be a (not necessarily bounded) domain with Lipschitz boundary and
β : (0,∞)→ R be strongly convex. Let moreover f be a distribution such that the equation

divw = f

admits a bounded continuous solution on Ω. Then there exist v ∈ L∞(Ω;R3) and ρ ∈ L∞(Ω;R)
positive and bounded away from 0 such that (1.2) and (1.3) are satisfied in the sense of distribu-
tions.

Remark 1.2. We want to point out that the requirement on f is satisfied for instance when Ω

is bounded and f ∈ Lp(Ω) with p > 3. However, there exist also distributions f which are not
measures for which the divergence equation admits a bounded continuous solution. In particular,
our result shows that if we drop the BV regularity assumption on the vector field v, then the quantity
div(β (ρ)v) can fail to be a measure, even though λ and µ vanish.

Remark 1.3. The theorem is still valid in dimensions higher than 3, with essentially the same
proof.

It is worth pointing out that in Theorem 1.1 it is crucial that d ≥ 3. Indeed, for bounded two
dimensional vector fields and strictly positive density ρ bounded away from 0, formula (1.1) has
been established in [BG]. Our result can thus be interpreted as complementary to the one in [BG].

As mentioned above, the chain rule is strongly connected with the uniqueness problem for trans-
port and continuity equations. Several counterexamples to the uniqueness of continuity equations
in a nonsmooth setting are known, see [Aiz78,CLR03,Dep03,ABC14,ABC13] and also [CGSW],
where a similar approach based on convex integration is used. Some of these counterexamples,
in particular [Dep03], can be modified in order to obtain counterexamples to the chain rule with
vector fields more regular than L∞. However, these examples rely on explicit constructions and
yield only very specific renormalization defects. In particular, diffuse defects and defects which
are not measures have not been known previously.

We close this introduction with a short comment on our method. We use a convex integration
scheme where the perturbations are obtained from laminates, thus taking an approach reminis-
cent of [MŠ03, AFS08, CS, KRWa, KRWb]. Our convergence strategy relies on Young measures
(cf. [KRWa, KRWb]) and avoids the Baire category method, thus giving a somewhat explicit con-
struction. The core of our proof is a study (in Section 5 below) of the geometry of the nonlinear
constraint sets KC (see (3.2)) in matrix space. It is at this point that the specific properties of our
problem enter. Note that in dimension 2 our rank-2 condition would turn into a rank-1 condition,
which would be too rigid for the geometric constructions of Section 5.
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tion for Basic Research, project no. 13-01-12460. The authors are grateful to S. Bianchini, C. De
Lellis, and L. Székelyhidi for the fruitful discussions about the topic of the paper.
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2. PRELIMINARIES

A function β : (0,∞)→ R is called strongly convex if there exists κ > 0 such that, for all
x1,x2 > 0 and 0≤ λ ≤ 1,

β (λx1 +(1−λ )x2)≤ λβ (x1)+(1−λ )β (x2)−κλ (1−λ )|x1− x2|2. (2.1)

For instance, the map x 7→ x2 is strongly convex with κ = 1. We remark in passing that for the
purposes of this paper, we could replace |x1− x2|2 by ϕ(|x1− x2|), where ϕ : [0,∞)→ [0,∞) is an
increasing function with ϕ(0) = 0 and limt→∞ ϕ(t) = ∞.

Proposition 2.1. If β : (0,∞) is strongly convex for a κ > 0, and if λ < 0 and x1,x2 > 0 are such
that λx1 +(1−λ )x2 > 0, then

λβ (x1)+(1−λ )β (x2)≤ β (λx1 +(1−λ )x2)+κλ (1−λ )|x1− x2|2.

Proof. This follows by replacing x1 by λx1+(1−λ )x2, x2 by x1, and λ by 1/(1−λ ) in (2.1). �

Remark 2.2. An immediate remark is that for the proof of Theorem 1.1 we may assume, without
loss of generality, that β (1) = 1. Indeed, by (1.2), equation (1.3) remains unaffected by adding a
constant to β . We will make this assumption throughout the rest of the paper.

We recall the space of solenoidal vectorfields on Ω (cf. Chapter III of [Gal94]),

H(Ω) =

{
v ∈ L2(Ω;R3) :

∫
Ω

v ·∇pdx = 0 for every p ∈W 1,2(Ω)

}
.

It is known that if (vn)⊂C1(Ω̄;R3) is a sequence of divergence-free vector fields such that v(x)= 0
on ∂Ω, and if the sequence converges weakly in L2(Ω) to a field v, then v ∈ H(Ω).

The problem (1.2), (1.3) can then be formulated in the sense of distributions in the following
way: Find v ∈ H(Ω) such that for every ψ ∈C∞

c (Ω), we have∫
Ω

ρv ·∇ψdx = 0

and ∫
Ω

β (ρ)v ·∇ψdx+
∫

Ω

f ψdx = 0

(if f is merely a distribution, the second integral is of course to be understood as the action of f
on ψ).

In our iteration scheme, the perturbations will be chosen as members of recovery sequences of
rank-2 laminates. These are defined as follows (cf. [Dac85] and also Definition 9.1 in [Ped97]
for the rank-1 analogue):

Definition 2.3. a) Suppose λi > 0 for i = 1, . . . ,n, ∑
n
i=1 λi = 1, and Ui ∈ R3×3 for i =

1, . . . ,n. The family of pairs (λi,Ui)
n
i=1 satisfies the (inductively defined) Hn-condition

if
i) rank(U2−U1)≤ 2 in the case n = 2;

ii) after a relabeling of indices, if necessary, we have rank(U2−U1)≤ 2 and the family
(τi,Vi)

n−1
i=1 satisfies the Hn−1-condition, where

τ1 = λ1 +λ2, τi = λi+1 for i = 2, . . . ,n−1

and

V1 =
λ1

τ1
U1 +

λ2

τ1
U2, Vi =Ui+1 for i = 2, . . . ,n−1
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in the case n > 2.
Moreover we adopt the convention that every pair of the form (1,U) satisfies the H1-
condition.

b) A probability measure ν on R3×3 is said to be a rank-2 laminate of order n if it has the
form

ν =
n

∑
i=1

λiδUi

for a family (λi,Ui)
n
i=1 which satisfies the Hn-condition.

For the expectation of a probability measure, we write

ν̄ :=
∫
R3×3

V dν(V ).

A parametrized probability measure or Young measure is a map Ω 3 x 7→ νx, where νx is a
probability measure on R3×3. It is said to be weakly* measurable if the map

x 7→
∫
R3×3

h(z)dνx(z)

is measurable in the usual sense for every bounded continuous test function h : R3×3→ R.
We also need to define the rank-2 lamination convex hull of a set K ⊂R3×3. A similar notion

for rank-1 laminates is presented e.g. in Section 4.4 of [Mül99].

Definition 2.4. Let K ⊂R3×3. A matrix U ∈R3×3 is contained in the rank-2 lamination convex
hull of K, denoted K2lc, if and only if

U =
n

∑
i=1

λiUi

for a family (λi,Ui)
n
i=1 that satisfies the Hn-condition and such that Ui ∈ K for every i = 1, . . . ,n.

3. PROOF OF THEOREM 1.1

Step 1: Reformulation of the problem. First we rewrite equations (1.2) and (1.3) as the
conjunction of an underdetermined linear differential system and a nonlinear pointwise constraint,
thus adopting a viewpoint similar to the one in [DLS09].

Let us therefore consider the linear system of equations

div(m) = 0

div(v) = 0

div(w) = f

(3.1)

in the unknowns (m,v,w) : Ω→R3×3. We also define the constraint set, with given constant C > 1,
as

KC :=
{
(m,v,w) ∈ R3×3 :

1
C
≤ |v| ≤C

and there is
1
C
≤ ρ ≤C such that m = ρv,w = β (ρ)v

}
.

(3.2)

Thus KC is a non-empty compact subset of R3×3. Then, clearly, if a triplet of measurable maps
(m,v,w) satisfies (3.1) in the sense of distributions, if (m,v,w)(x)∈KC for almost every x∈Ω, and
if v∈H(Ω), then v and ρ(x) := |m(x)|/|v(x)|will be a solution of (1.2) and (1.3) as in Theorem 1.1.
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Step 2: Recovery of rank-2 laminates. It is convenient to identify a triplet (m,v,w) with the
matrix U whose rows are given by m, v and w. Equations (3.1) then mean that

div(U) = (0,0, f )T , (3.3)

where the divergence is taken row-wise as usual.
An important building block for our construction is the fact that rank-2 laminates can be approx-

imated in an appropriate sense by solutions of (3.3). This is the content of the following lemma,
whose proof is largely standard (c.f. e.g. Proposition 9.2 in [Ped97] or Proposition 19 in [SW12]
for similar constructions). We give the full proof for the reader’s convenience, but postpone it to
Section 4.

Lemma 3.1. Let K ⊂ R3×3 be compact and (νx)x∈Ω be a weakly*-measurable family of proba-
bility measures such that

a) the measure νx is a rank-2 laminate of finite order for almost every x ∈Ω,
b) suppνx ⊂ K for almost every x.

Assume further that ψ ∈ C(R3×3;R) is a non-negative function that vanishes on K. Then the
expectation ν̄x is well-defined for almost every x ∈ Ω and for every ε > 0 there exists a matrix-
valued function U such that

i) divU = div ν̄ in the sense of distributions,
ii) ∫

Ω

ψ(U(x))dx < ε,

iii)

‖dist(U(x),K2lc)‖L∞(Ω) < ε,

iv) ∫
Ω

|U(x)− ν̄x|dx <
∫

Ω

∫
R3×3
|V − ν̄x|dνx(V )dx+ ε. (3.4)

Moreover, if ν̄ ∈C(Ω̄), then U can be chosen to satisfy U ∈C(Ω̄) and

U(x) = ν̄x on ∂Ω.

Step 3: Initial step of the iteration. Our iteration process will start with a triplet of the form
(0,0,w), where div(w) = f . Since our construction is in a sense local, we can “freeze” x and
first consider a constant vector w ∈ R3. The goal is to decompose the matrix U corresponding to
(0,0,w) along rank-2 lines as a sum of matrices in KC (of course KC can be viewed as a subset of
the space of 3×3-matrices). More precisely, we have

Lemma 3.2. Let U ∈ R3×3 such that UT e1 = UT e2 = 0 and |UT e3| ≥ 1. Then there exists a
rank-2 laminate ν = ∑

n
i=1 λiδUi such that

U =
n

∑
i=1

λiUi

and a number C > 1 such that

suppν ⊂ KC.

Moreover there exists a constant Cβ depending only on β such that C ≤max{Cβ ,4|UT e3|}.
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The proof will be given in Section 5.

Step 4: Subsequent steps of the iteration. The last lemma we need reads as follows:

Lemma 3.3. Let ε > 0 and C̃ > 1. There exists a strictly increasing continuous function h :
[0,∞)→ [0,∞), depending only on C̃ and β , with h(0) = 0, and a number δ > 0, depending only
on C̃, β , and ε , such that for every 1 <C < C̃−ε and every U ∈R3×3 such that dist(U,K2lc

C )< δ ,
there exists a rank-2 laminate ν = ∑

n
i=1 λiδUi such that

U =
n

∑
i=1

λiUi, (3.5)

n

∑
i=1

λi|Ui−U | ≤ h(dist(U,KC)) , (3.6)

and

suppν ⊂ KC+ε .

The proof is postponed to Section 5.

Remark 3.4. If x 7→U(x) is measurable and satisfies the assumptions of Lemma 3.2 or 3.3 for
almost every x, respectively, then the laminates νx obtained from the respective lemma form a
weakly* measurable family, i.e. a Young measure.

Step 5: Conclusion. We are now ready to prove Theorem 1.1. Let f be as in the statement of
the theorem. Our goal is to inductively define a sequence (mn,vn,wn)n≥0 of solutions to (3.1) that
approaches the constraint set KC in a suitable sense, for a suitable constants C > 1.

First we define the triplet (m0,v0,w0) by setting v0 ≡ 0, m0 ≡ 0; w0 is chosen as a bounded
continuous solution of divw = f , which exists by assumption. Since the divergence is not affected
by adding a constant, we may assume |w0(x)| ≥ 1 in Ω̄.

Next, let C0 > 1 be as required by Lemma 3.2 applied to U0(x) for all x∈ Ω̄ (this is possible since
U0 is bounded). Next, pick a sequence (Cn)n≥0 that is strictly increasing such that Cn↗C0+1=:C
as n→ ∞. We also set εn :=Cn+1−Cn. Then, (εn) is a sequence of positive numbers converging
to zero.

Identifying (m0,v0,w0) with its corresponding matrix field U0, by Lemma 3.2 there exists for
almost every x ∈ Ω a rank-2 laminate ν0

x of finite order whose expectation is U0(x) and whose
support is contained in KC0 . This completes the definition of U0 and ν0.

Suppose now that Un and νn have already been constructed for some n ≥ 0 in such a way that
suppνn ⊂ KCn and (3.3), (3.5), (3.6) are satisfied, that is:

div(Un) = (0,0, f )T ,

Un(x) = ν̄
n
x , (3.7)∫

R3×3
|V −Un(x)|dν

n
x (V )≤ h

(
dist(Un,KCn−1)

)
.

The last estimate is claimed only for n≥ 1. By Lemma 3.3, where we set ε = εn+1 and C̃ =C+1,
there exists δn+1 = δ (εn+1) such that whenever

dist(U,K2lc
Cn

)< δn+1,
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then there exists a rank-2 laminate whose expectation is U and whose support is contained in

KCn+εn+1 ⊂ KCn+1 . (3.8)

Therefore we apply Lemma 3.1 to (νn
x ) with KCn , ε = δn+1, and

ψ = h(dist( q,KCn)) .

This yields a matrix field Un+1 satisfying

div(Un+1) = div(ν̄n
x ) = div(Un) = (0,0, f )T ,

∫
Ω

h(dist(Un+1(x),KCn))dx < δn+1, (3.9)

and

‖dist(Un+1(x),K2lc
Cn

)‖L∞(Ω) < δn+1. (3.10)

Therefore, by (3.8), we can indeed find, for every x, a rank-2 laminate νn+1
x with support in KCn+1

satisfying (3.5) and (3.6). This completes the construction of the sequence (Un).
Next, using (3.7), (3.4), (3.6), and (3.9), we obtain for n≥ 1∫

Ω

|Un+1(x)−Un(x)|dx =
∫

Ω

|Un+1(x)− ν̄
n
x |dx

≤
∫

Ω

∫
R3×3
|V − ν̄

n
x |dν

n
x dx+δn+1

≤
∫

Ω

h
(
dist(Un(x),KCn−1)

)
dx+δn+1

≤ δn +δn+1.

(3.11)

By (3.11) and since we may assume δn ≤ εn, the sequence (Un) is Cauchy in L1(Ω). Indeed,
this follows from ∑

∞
n=0 εn =C−C0 = 1. Therefore, (Un) converges strongly in L1 to a limit matrix

field U∞ ∈ L1(Ω), and up to a subsequence (not relabeled) the convergence even takes place almost
everywhere.

Finally, by (3.10) and the observation that KCn ⊂ KC for every n, the sequence (Un) is bounded
in L∞, and by (3.9)∫

Ω

h(dist(Un+1(x),KC))dx≤
∫

Ω

h(dist(Un+1(x),KCn))dx→ 0

as n→ ∞. It follows then from dominated convergence that∫
Ω

h(dist(U∞(x),KC))dx = 0,

so that U∞(x) ∈ KC for almost every x ∈Ω.
As a final observation, since v0 ≡ 0 and the boundary values of UT

n e2 remain unchanged in
passing from n to n+1 thanks to the last statement of Lemma 3.1, we may conclude UT

∞ e2 ∈H(Ω).
According to Step 1, U∞ thus gives rise to the desired solution. �
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4. RECOVERY SEQUENCES FOR RANK-2 LAMINATES

In this section we prove Lemma 3.1.
The approximating maps for parametrized measures, whose existece is claimed in the Lemma,

will be composed of localized plane waves as in [DLS09], which satisfy the divergence-free
condition

div(m) = 0

div(v) = 0

div(w) = 0.

(4.1)

A plane wave solution is a solution of (4.1) of the form (m̄, v̄, w̄)h(x ·ξ ), where (m̄, v̄, w̄)∈R3×3

is constant and ξ ∈ R3 \ {0}. The function h : R→ R is called the profile function. The wave
cone of (4.1) is then defined as

Λ :=
{
(m̄, v̄, w̄) ∈ R3×3 : There exists ξ 6= 0 such that

(m̄, v̄, w̄)h(x ·ξ ) satisfies (4.1) for every smooth h : R→ R} .

The characterization of the wave cone is standard. To formulate it, it is convenient to identify a
triplet (m,v,w) with the matrix U whose rows are given by m, v and w. Condition (4.1) then means
that

div(U) = 0, (4.2)

where the divergence is taken row-wise as usual.

Proposition 4.1. The wave cone for (4.2) is the set of all matrices Ū ∈ R3×3 whose determinant
is zero.

Proof. This follows immediately from the fact that div(Ūh(x ·ξ )) = h′(x ·ξ )Ūξ . �

We are now ready to prove Lemma 3.1, which we recall for convenience:

Lemma. Let K be a compact subset of R3×3, and (νx)x∈Ω be a weakly*-measurable family of
probability measures such that

a) the measure νx is a rank-2 laminate of finite order for almost every x ∈Ω,
b) suppνx ⊂ K for almost every x.

Assume further that ψ ∈C(R3×3;R) is a non-negative function that vanishes on K. Then, for every
ε > 0 there exists a matrix-valued function U such that

i) divU(x) = div ν̄x for almost every x ∈Ω,
ii) ∫

Ω

ψ(U(x))dx < ε,

iii)

‖dist(U(x),K2lc)‖L∞(Ω) < ε,

iv) ∫
Ω

|U(x)− ν̄x|dx <
∫

Ω

∫
R3×3
|V − ν̄x|dνx(V )dx+ ε. (4.3)

Moreover, if ν̄ ∈C(Ω̄), then U can be chosen to satisfy U ∈C(Ω̄) and

U(x) = ν̄x on ∂Ω.
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Remark 4.2. In the situation of the Lemma, we say that U approximates the parametrized mea-
sure (νx) with precision ε .

Proof. Step 1. Suppose first that we are dealing with a homogeneous measure with zero expec-
tation, i.e. x 7→ νx is constant almost everywhere and ν̄ = 0. To start an inductive argument,
consider first the case that ν is a rank-2 laminate of order 2, i.e. ν = λδU1 + (1− λ )δU2 with
rank(U2−U1) ≤ 2 and U1,U2 ∈ K. Therefore, by Proposition 4.1, there exists ξ ∈ R3 such that
the matrix field

Un(x) =U1 +(U2−U1)h(nx ·ξ )

is divergence-free for any frequency n and any profile h. We choose here as our profile the 1-
periodic extension of the function

h(t) =

{
1 if t ∈ [0,1−λ )

0 if t ∈ [1−λ ,1).

To achieve zero boundary values, we use a standard cutoff technique as follows: Since div(Un)= 0,
there exists another matrix field Φn such that

Un = curl(Φn),

the curl being taken row-wise. Moreover, it is not hard to see (e.g. by explicitly writing down
a formula for Φn) that the potentials Φn may be chosen in such a way that ‖Φn‖L∞(Ω) → 0 as
n→ ∞. As a further remark, observe that Un (and thus also Φn) can be taken smooth by means of
a mollification of h with a mollification parameter of size asymptotically 1/n2.

For δ > 0 let now ηδ ∈ C∞
c (Ω) be a cutoff function such that 0 ≤ ηδ ≤ 1 and ηδ ≡ 1 for all

x ∈Ω for which dist(x,∂Ω)> δ . Then, by the product rule,

‖ηδUn− curl(ηδ Φn)‖L∞(Ω) ≤C‖ηδ‖C1‖Φn‖L∞(Ω) ≤
C
δ
‖Φn‖L∞(Ω), (4.4)

so that by choosing, say, δ = δ (n) = ‖Φn‖1/2
L∞(Ω), we can make the left hand side of (4.4) arbitrarily

small by choosing n sufficiently large. Thus, choosing U(x) = curl(ηδ (n0)Φn0) for a sufficiently
large n0, we see that U is as desired: Indeed, i) follows from the fact that U is a curl, the continuity
and boundary values follow by construction, iii) is an immediate consequence of (4.4) and the
fact that ηδUn takes values in K2lc for every x ∈ Ω; properties ii) and iv) are both implied by the
observation that the sequence (curl(ηδ (n)Φn))n is uniformly bounded in L∞ and generates ν in the
sense of Young measures (cf. e.g. Chapter 3 in [Mül99]).

For the induction step, we use the hypothesis that the Lemma be true for laminates of order n,
and consider a laminate ν of order n+1:

ν =
n+1

∑
i=1

λiUi,

where (λi,Ui)i satisfies the Hn+1-condition. Define a laminate of second order by

ν̃ = λn+1δUn+1 +(1−λn+1)δŪ

where

Ū :=
∑

n
i=1 λiUi

∑
n
i=1 λi

.

Using Definition 2.3, it is not hard to see that rank(Un+1− Ū) ≤ 2 and therefore ν̃ is a rank-2
laminate of second order (we omit the conceivable case that Un+1 = Ū , which is trivial). We may
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hence find an approximating map Ũ for ν̃ with precision ε exactly as in the induction basis (ob-
serve that the expectation of ν̃ is not necessarily zero, which does not matter for our construction
however). By construction, the set

S =
{

x ∈Ω : Ũ(x) = Ū
}

is Lipschitz and we may assume that∣∣∣∣∣ |S||Ω| − n

∑
i=1

λi

∣∣∣∣∣< ε.

By the induction hypothesis together with Definition 2.3, there exists a map U ′ on S which ap-
proximates the measure

∑
n
i=1 λiδUi

∑
n
i=1 λi

with precision ε . Moreover, U ′ = Ū on the set {x ∈ S : dist(x,∂S) < δ} for some δ > 0. Hence
the map defined by

U(x) =

{
U ′(x) if x ∈ S

Ũ(x) if x ∈Ω\S

is smooth and satisfies the requirements of the Lemma.
Step 2. As a next step, consider a possibly non-homogeneous measure (νx)x, whose expectation

ν̄ is however still assumed to be identically zero. This case can be treated as usual by approximat-
ing ν by a piecewise homogeneous measure and applying Step 1 to each piece. For details see e.g.
Section 4.9 in [Mül99]. Observe that, in this step, we may even allow K to depend on x ∈Ω (in a
measurable fashion).

Step 3. Let now (νx)x be of full generality as assumed in the Lemma. Consider the shifted
measure µx defined by duality via∫

Rd×d
h(z)dµx(z) =

∫
Rd×d

h(z− ν̄x)dνx(z)

for a.e. x ∈ Ω and every test function h ∈Cb(Rd×d). Then one sees easily that µx is still a rank-2
laminate, and moreover for its expectation µ̄x we have

µ̄x = 0 for a.e. x ∈Ω.

Applying Step 2 to µ with K replaced by K− ν̄x (cf. the last observation in Step 2) yields an
approximating map W for µ . One can then easily check that

U :=W + ν̄

approximates ν in the sense of the Lemma. �

5. GEOMETRY OF THE NONLINEAR CONSTRAINT

5.1. Proof of Lemma 3.2. In this subsection we prove the first geometric lemma, which we recall
for the reader’s convenience:

Lemma. Let U ∈ R3×3 such that UT e1 = UT e2 = 0 and |UT e3| ≥ 1. Then there exists a rank-2
laminate ν = ∑

n
i=1 λiδUi such that

U =
n

∑
i=1

λiUi
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and a number C > 1 such that

suppν ⊂ KC.

Moreover there exists a constant Cβ depending only on β such that C ≤max{Cβ ,4|UT e3|}.

Proof. Let U be as in the statement of the lemma. As usual, we identify it with the triplet (m,v,w)
of its row vectors, so by assumption, m = v = 0 and |w| ≥ 1. We split (0,0,w) into

(0,0,w) =
1
2
(−w,−w,w)+

1
2
(w,w,w) .

If we call the matrices correponding to the two triplets on the right hand side U− and U+, respec-
tively, we first observe that U− and U+ are rank-2 connected since (U−−U+)e3 = 0. Secondly,
U+ ∈ KC for any C such that

C ≥ |w|

(recall β (1) = 1 by Remark 2.2).
Next, let us further decompose U−. We make the ansatz

(−w,−w,w) =
1
2
(ρ1v1,v1,β (ρ1)v1)+

1
2
(ρ2v2,v2,β (ρ2)v2) (5.1)

with

v1 = w, v2 =−3w. (5.2)

Then clearly (5.1) is a rank-2 decomposition (in fact even rank-1), and (5.1) and (5.2) result in the
conditions

−ρ1 +3ρ2 = 2

−β (ρ1)+3β (ρ2) =−2.
(5.3)

Let us show that these equations can be satisfied thanks to the strong convexity assumption on β .
Indeed, suppose −ρ1 +3ρ2 = 2. Then, using Proposition 2.1, we calculate

−β (ρ1)+3β (ρ2) = 2
(
−1

2
β (ρ1)+

3
2

β (ρ2)

)
≤ 2β

(
−1

2
ρ1 +

3
2

ρ2

)
−2κ

3
4
|ρ1−ρ2|2

= 2− 3
2

κ|ρ1−ρ2|2.

(5.4)

Finally, the equation −ρ1 +3ρ2 = 2 can be rewritten as ρ1−ρ2 = 2ρ2−2, and therefore by (5.4)
we can achieve (5.3) by choosing ρ2 > 1 sufficiently large and then setting ρ1 = 3ρ2−2 > 1.

Since, with this choice of ρ1,ρ2, the triplets (ρ1v1,v1,β (ρ1)v1) and (ρ2v2,v2,β (ρ2)v2) are in
KC for a suitable C, the proof is finished. In particular, the estimate for C in the statement of the
lemma follows directly from our construction. �

5.2. Proof of Lemma 3.3. Recall Lemma 3.3:

Lemma. Let ε > 0 and C̃ > 1. There exists a strictly increasing continuous function h : [0,∞)→
[0,∞), depending only on C̃ and β , with h(0) = 0, and a number δ > 0, depending only on C̃, β ,
and ε , such that for every 1 < C < C̃− ε and every U ∈ R3×3 such that dist(U,K2lc

C ) < δ , there
exists a rank-2 laminate ν = ∑

n
i=1 λiδUi such that

U =
n

∑
i=1

λiUi, (5.5)
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n

∑
i=1

λi|Ui−U | ≤ h(dist(U,KC)) , (5.6)

and

suppν ⊂ KC+ε . (5.7)

Proof. As usual we denote by (m,v,w) the rows of the matrix U . We proceed in five steps:
Step 1. Suppose the vectors (m,v,w) are collinear, so that there exist real numbers α , γ such

that m = αv and w = γv. Note that if δ ′ is sufficiently small, then dist(U,KC)< δ ′ implies

1
C+ ε

< |v|<C+ ε. (5.8)

Note that the meaning of “sufficiently small” here can be understood to depend only on ε and C̃.
We want to find a decomposition using the ansatz

(m,v,w) = λ (m1,v1,w1)+(1−λ )(m2,v2,w2),

where v1 = τ1v and v2 = τ2v. Clearly, this defines a rank-2 (even rank-1) decomposition regardless
of the values of λ , τ1 and τ2. The requirement that (m1,v1,w1) and (m2,v2,w2) lie in the set KC+ε

then leads to the requirement that there exist ρ1,ρ2 > 0 such that

λτ1 +(1−λ )τ2 = 1

λτ1ρ1 +(1−λ )τ2ρ2 = α

λτ1β (ρ1)+(1−λ )τ2β (ρ2) = γ.

(5.9)

If it happens that γ = β (α) +η for some η ≥ 0, we set τ1 = τ2 = 1 so that the first equation
of (5.9) is automatically satisfied and the other two equations become

λρ1 +(1−λ )ρ2 = α

λβ (ρ1)+(1−λ )β (ρ2) = β (α)+η .
(5.10)

By the first of these equations and the strong convexity of β , we have

λβ (ρ1)+(1−λ )β (ρ2)≥ β (α)+κλ (1−λ )|ρ1−ρ2|2.

Therefore, it is possible to find functions λ (η), ρ1(η), and ρ2(η), depending on β and α , that are
continuous in η and satisfy λ (0) = 1, ρ1(0) = ρ2(0) = α such that (5.10) is satisfied for every
η ≥ 0. Since, if dist(U,KC) < δ ′, we can make η arbitrarily small by choosing δ ′ sufficiently
small (depending only on C̃, β , and η), we can ensure

1
C+ ε

< ρ1,ρ2 <C+ ε

for δ ′ small enough. Together with (5.8) we conclude that

(m1,v1,w1),(m2,v2,w2) ∈ KC+ε .

Thus we have established (5.5) and (5.7).
Next, suppose γ = β (α)−η for some η > 0. Then, in (5.9) we choose τ1 = (2−λ )/λ and

τ2 =−1 to eliminate the first equation and arrive at

λτ1ρ1− (1−λ )ρ2 = α

λτ1β (ρ1)− (1−λ )β (ρ2) = β (α)−η .
(5.11)
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Then, by Proposition 2.1 (replacing λ by −(1−λ ), x1 by ρ2 and x2 by ρ1 and keeping in mind
λτ1− (1−λ ) = 1), we have

λτ1β (ρ1)− (1−λ )β (ρ2)≤ β (α)−κ(2−λ )(1−λ )|ρ1−ρ2|2.

Assertions (5.5) and (5.7) then follow by the same arguments as above, observing that again η = 0
corresponds to λ = 1, ρ1 = ρ2 = α . This completes Step 1.

Notice again that δ ′ > 0 constructed in Step 1 depends on ε , β , and C̃, but not on U , or C.
Step 2. Suppose now that m and v are parallel, that is, there exists a real number α such that

m = αv. (We are no longer assuming that w be parallel with m and v.) Again, we wish to represent
(m,v,w) as a rank-2 combination of two triplets,

(m,v,w) = λ (m1,v1,w1)+(1−λ )(m2,v2,w2),

where mi, vi, wi are collinear (i = 1,2), so that we can proceed as in Step 1. To this end, take the
ansatz mi = αvi, wi = µivi, and set λ = 1/2:

v1 + v2 = 2v

αv1 +αv2 = 2αv

µ1v1 +µ2v2 = 2w.

(5.12)

First, clearly (m2,v2,w2)− (m1,v1,w1) has rank at most 2 with this ansatz. Secondly, if v1 and v2

are chosen linearly independent and in the plane spanned by v and w, then they form a basis of
this subspace and therefore (5.12) can be solved (if w and v are already parallel, it can be trivially
solved). More specifically, if η > 0, then by choosing δ ′′ > 0 small enough (depending only on
C̃, β , and η) we can ensure that dist(U,KC) < δ ′′ implies |w−β (α)v| < η . When w = β (α)v
exactly, we can simply set v1 = v2 = v and µ1 = µ2 = β (α). Therefore, there exist continuous
maps vi(w), µi(w) (i = 1,2) depending on α , β such that vi(β (α)v) = v and µi(β (α)v) = β (α)

and such that (5.12) is satisfied for any w. It follows that, by choosing δ ′′ > 0 sufficiently small,
dist(U,KC)< δ ′′ guarantees

dist((mi,vi,wi),KC)< δ
′ (i = 1,2)

for the number δ ′ established in Step 1. We may therefore decompose each (mi,vi,wi) further as
in Step 1, which yields a rank-2 decomposition of (m,v,w) into (at most) four triplets in KC+ε ,
each satisfying (5.5), (5.6). Note again that δ ′′ depends only on C̃, β , and ε .

Step 3. Consider now a general triplet (m,v,w). We want to decompose (m,v,w) into two
triplets along rank-2 lines,

(m,v,w) = λ (m1,v1,w1)+(1−λ )(m2,v2,w2),

such that there exist α1,α2 such that m1 = α1v1, m2 = α2v2, so that Step 2 can be applied to
both (mi,vi,wi) individually. We take the ansatz λ = 1/2, w1 = w2 = w (thereby ensuring our
decomposition runs along a rank-2 line), to obtain the equations

v1 + v2 = 2v

α1v1 +α2v2 = 2m.

The exact same reasoning as in Step 2 then yields a δ > 0 depending only on C̃, β , and ε such that
dist((m,v,w),KC)< δ ensures that

dist((mi,vi,wi),KC)< δ
′′ (i = 1,2),

where δ ′′ is the number from Step 2.
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Step 4. So far we have produced δ > 0 such that the assertions of Lemma 3.3 are true provided
dist(U,KC)< δ . Let now U be such that only

dist(U,K2lc
C )< δ .

By assumption and the definition of the rank-2 lamination convex hull (Definition 2.4), U can be
written as

U =
n

∑
i=1

λiUi +Ũ =
n

∑
i=1

λi(Ui +Ũ),

where |Ũ | < δ , the family (λi,Ui) satisfies the Hn-condition, and Ui ∈ KC (i = 1 . . .n). But for
every i, we can now apply Steps 1–3 to Ui +Ũ , which completes the proof of Lemma 3.3 modulo
the estimate (5.6).

Step 5. It remains to exhibit a function h that renders (5.6) correct. To this end, recall that the λi

and Ui which we constructed in the previous steps depended solely on U and β , so that in particular
the left hand side of (5.6) is independent of C. Moreover, if U ∈ KC̃, our construction leaves U
unchanged, so that the left hand side of (5.6), considered as a function of U (with β fixed), is
zero on KC̃. The last observation needed is that, by construction, the left hand side ∑

n
i=1 λi|Ui−U |

depends on U continuously in a δ -neighborhood of K2lc
C̃ .

The distance function dist(U,KC̃) is of course zero on KC̃ and positive elsewhere (since KC̃ is
compact). Therefore, we may define

h(t) = max
Ut

{
n

∑
i=1

λi|Ui−U |

}
,

where we set Ut = {U ∈ R3×3 : dist(U,KC̃) = t}. Again we considered the left hand side of (5.6)
as a continuous function of U . We may further assume h to be strictly increasing by choosing it
larger if necessary.

Then, by definition of h we have
n

∑
i=1

λi|Ui−U | ≤ h(dist(U,KC̃))≤ h(dist(U,KC))

for any C ≤ C̃, since then KC, ⊂ KC̃. The proof is thus complete. �
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