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Abstract. The measure contraction property, MCP for short, is a weak Ricci curvature lower
bound conditions for metric measure spaces. The goal of this paper is to understand which
structural properties such assumption (or even weaker modifications) implies on the measure,
on its support and on the geodesics of the space.

We start our investigation from the euclidean case by proving that if a positive Radon measure
m over Rd is such that (Rd, | · |,m) verifies a weaker variant of MCP, then its support spt(m)
must be convex and m has to be absolutely continuous with respect to the relevant Hausdorff
measure of spt(m). This result is then used as a starting point to investigate the rigidity of MCP

in the metric framework.

We introduce the new notion of reference measure for a metric space and prove that if
(X, d,m) is essentially non-branching and verifies MCP, and µ is an essentially non-branching
MCP reference measure for (spt(m), d), then m is absolutely continuous with respect to µ, on the
set of points where an inversion plan exists. As a consequence, an essentially non-branching MCP

reference measure enjoys a weak type of uniqueness, up to densities. We also prove a stability
property for reference measures under measured Gromov-Hausdorff convergence, provided an
additional uniform bound holds.

In the final part we present concrete examples of metric spaces with reference measures, both
in smooth and non-smooth setting. The main example will be the Hausdorff measure over an
Alexandrov space. Then we prove that the following are reference measures over smooth spaces:
the volume measure of a Riemannian manifold, the Hausdorff measure of an Alexandrov space
with bounded curvature, and the Haar measure of the subRiemannian Heisenberg group.

1. Introduction

The notion of curvature for a smooth space, i.e. a Riemannian n-dimensional manifold (M, g),
is one of most basic geometrical concepts and goes back to the work of Gauss and Riemann; the
idea being to consider suitable combinations of second derivatives of the metric g. If the space M
is non-smooth this approach has few chances to be carried out, so one has to understand what are
the fundamental geometric consequences of the curvature and then set these as defining properties.
This was the approach by Alexandrov who, in last century, defined what it means for a metric space
(X, d) to satisfy an upper or lower bound on the sectional curvature. Such non-smooth spaces are
now called Alexandrov spaces and there is a huge literature about their properties (we do not even
attempt to give a selection of papers; we just recall that Alexandrov, Gromov and Perelman among
others gave major contributions to this theory and we refer to the textbook [8] for more references).

While, as just recalled, the notion of lower bound on the sectional curvature makes perfect sense
for a metric space (X, d), i.e. a set endowed with a distance function, for defining what it means
for a non-smooth space to satisfy a lower Ricci curvature bound one also has to fix a measure m

on (X, d), thus getting a so called metric measure space (X, d,m), m.m.s. for short. In the last
ten years there has been a flourishing of literature about different notions and properties of lower
Ricci curvature bounds for m.m.s.: on one hand Bakry-Émery-Ledoux [6, 7] developed the so called
Gamma-calculus based on the fact that, roughly speaking, the Bochner inequality characterizes
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lower Ricci bounds; on the other hand there is a parallel theory via optimal transport based on
the idea that one can detect Ricci curvature by examining how the volume changes when opti-
mally transported along geodesics. A third way to study the non-smooth spaces with lower Ricci
bounds, having its origins in the work of Gromov and mainly due to Cheeger-Colding [13, 14, 15]
(see also the more recent developments by Colding-Naber [16]), is to concentrate the attention on
those m.m.s. arising as limits (in the measured Gromov-Hausdorff sense) of smooth Riemannian
manifolds satisfying Ricci curvature lower bounds; such a point of view is very powerful if one is
interested in the structure of these limit spaces.

In this paper we will focus on the second approach via optimal transportation, but let us mention
that there is a precise correspondence between the first two (see [2] for the infinite dimensional case
and [18, 4] for the finite dimensional one) and there are some recent results on the local structure
of such spaces even in the abstract framework (see [22, 23, 30]).

The weakest Ricci curvature condition for a m.m.s. is the so called measure contraction property,
MCP for short, which keeps track of the distortion of the volume of a set when it is transported
to a Dirac delta. The quantitative formalization of having Ricci bounded from below by K ∈
R and dimension bounded from above by N > 1 via this approach, the so called MCP(K,N)
condition, is due to Ohta [34] and has its roots in earlier works by Grigor’yan [24], Sturm [36]
and Kuwae-Shioya [27]. Such condition is compatible with the smooth counterpart (i.e. a smooth
Riemannian manifold of dimension N has Ricci curvature bounded below by K if and only if
it satisfies MCP(K,N)) and is stable under pointed measured Gromov-Hausdorff convergence,
pmGH for short, so that the limit spaces of Cheeger-Colding are included in this theory. Also
finite dimensional Alexandrov spaces with lower curvature bounds endowed with the corresponding
Hausdorff measure satisfy the measure contraction property [34] (see also [28] for a subsequent
independent proof) as well as the Heisenberg group endowed with the Haar measure and the
Carnot-Carathéodory distance [25].

Stronger notions of “Ricci bounded from below by K ∈ R and dimension bounded above by
N ∈ (1,∞]” for m.m.s. are the so called CD(K,N)-conditions introduced independently by Lott-
Villani [29] and by Sturm [37, 38], and the even stronger notions of RCD(K,∞) and RCD∗(K,N)-
spaces (the first were introduced in [3] and further investigated in [1, 2], for the second ones see
[4, 18, 22, 23, 30, 39]). All these classes include the smooth Riemannian manifolds satisfying the
corresponding curvature-dimension bounds and their pmGH-limits, as well as finite dimensional
Alexandrov spaces with curvature bounded from below. On the other hand let us recall that the
Heisenberg group does not satisfy any CD(K,N) condition but it does verify MCP, see [25]. So
MCP is a strictly weaker notion of curvature than CD.

The goal of the present paper is to investigate the structural properties (in particular on the
measure, on its support, and on the geodesics) forced by MCP.
In order to introduce the problem let us start by analyzing the behavior of the euclidean space
Rd, endowed with the d-dimensional Lebesgue measure Ld and the Euclidean distance | · |. It is
almost trivial to check that the triple (Rd, | · |,Ld) verifies the measure contraction property with
curvature K = 0 and dimension N = d, i.e. MCP(0, d). Moreover it is well known that, at the
price of changing the lower bound on the curvature and the upper bound on the dimension, in the
triple (Rd, | · |,Ld) it is possible to replace the Lebesgue measure with some equivalent measure
and still obtain MCP, provided the density verifies some concavity estimates.
A first goal of this work is to investigate, and give affermative answer to, the reverse question:
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• Let m be a positive Radon measure on Rd such that the triple (Rd, | · |,m) verifies MCP

(or even a weaker condition). Can we deduce that m is absolutely continuous with respect
to Lk, for some k ≤ d?

• Moreover, does the support of m have some nice geometric properties?

The next theorem contains an affirmative answer to these natural questions; before stating it let
us remark that the non-degeneracy condition for a positive Radon measure m is given in Definition
3.1 and it is ensured by the measure contraction property (it is indeed much weaker since no
quantitative or uniform lower bound on the transported measure is assumed).

Theorem 1.1. Let m be a positive Radon measure over Rd and denote with Ω its support. If the
metric measure space (Ω, | · |,m) verifies the non-degeneracy condition then there exists a natural
number k ≤ d so that:

• Ω is convex and contained in a k-dimensional affine subspace of Rd, say V k;
• the measure m is absolutely continuous with respect to Lk

xV k.

The same question can be reformulated in the metric framework only once the choice of a favorite
measure is done. More precisely, given a m.m.s. (X, d, µ) satisfying MCP and maybe some other
structural assumption, one can ask:

• Is the support of µ convex?
• If m is a positive Radon measure on X also satisfying MCP, can we deduce that m is
absolutely continuous with respect to µ?

This kind of properties were proved by Cheeger-Colding [15] in the framework of pmGH-limits of
Riemannian manifolds satisfying lower Ricci curvature bounds: more precisely they showed that
in the limit space the “favorite measure” is the Hausdorff measure of the relevant dimension, and
any other possible limit measure has to be absolutely continuous with respect to it. Therefore this
paper can be seen as an intrinsic-non smooth analogue of the Cheeger-Colding result.

Regarding the first question, in Proposition 4.5, we will prove the affirmative answer: the support
of any Radon measure satisfying MCP has to be weakly convex (more precisely the support of any
measure satisfying the strong qualitative MCP condition, defined in (4.3), must be weakly convex;
i.e. every couple of points of spt(m) is joined by a geodesic entirely contained in spt(m)).

In order to solve the second problem, we will give a precise meaning of what is for us a “favorite
measure”: this is what we call reference measure (see Definition 5.1) for a complete and separable
metric space (X, d). The crucial property being to behave nicely under geodesic inversion with
respect to almost every point of the space.

Definition 1.2 (Reference measure). A positive Radon measure µ ∈ M+(X) is a reference mea-
sure for (X, d) provided it is non-zero, and for µ-a.e. z ∈ X there exists πz ∈ M+(X × X) so
that

(P1)♯ π
z = µ, πz(X ×X \H(z)) = 0, (P2)♯ π

z ≪ µ,

where Pi : X ×X → X is the projection on the i-th component, for i = 1, 2 and

H(z) := {(x, y) ∈ X ×X : d(x, y) = d(x, z) + d(z, y)}.
The measure πz will be called inversion plan and those points where an inversion plan exists will
be called inversion points and denoted by Ip(µ).

Let us stress that this concept is completely new, to best of our knowledge. In Remark 5.2
we will also point out that existence of an inversion plan in a point z is closely related to the
regularity of the ambient space (X, d) at z. In particular if a conical singularity happens in z then
no inversion plan at z exists.
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Another ingredient in the next theorem will be the essentially non-branching condition (re-
called in Section 2.1): it is an important structural assumption on a m.m.s. and it is fulfilled
by a large class of geometrically relevant examples, for instance Riemannian manifolds, Alexan-
drov spaces with lower curvature bounds, pmGH-limits of Riemannian manifolds with lower Ricci
curvature bounds, metric measure spaces verifying RCD(K,∞) or RCD∗(K,N), the Heisenberg
Group endowed with the Carnot-Carathéodory metric, etc.. Moreover, since in the proof of the
next result we do not need the quantitative controls assumed in MCP(K,N), we just assume a
weaker qualitative MCP condition (for the precise notion see Definition 4.1).

Theorem 1.3. Let (X, d,m) be an essentially non-branching m.m.s. that verifies the qualitative
MCP condition (4.1). Assume the existence of a reference measure µ for (Ω, d), where Ω = spt(m),
so that (Ω, d, µ) verifies the qualitative MCP condition (4.1) and it is essentially non-branching.
If m(Ω \ Ip(µ)) = 0, then

m ≪ µ.

In particular, if also m is a reference measure and spt(m) = spt(µ) with µ(Ω \ Ip(m)) = 0, then µ
and m are equivalent measures, i.e.

µ≪ m and m ≪ µ.

In other words, once the support is fixed, a reference measure satisfying MCP is uniquely determined
up to densities.

Once observed that metric measure spaces verifying RCD are all essentially non-branching,
Theorem 1.3 can be used straightforwardly to obtain the next uniqueness result.

Theorem 1.4. Let (X, d, µ) be a m.m.s. that verifies RCD∗(K,N), with N <∞ and X = spt(µ).
Assume that µ is a reference measure for (X, d). If (X, d,m) is a m.m.s. verifying RCD∗(K ′, N ′),
possibly for different K ′ and N ′, with X = spt(m) and m(X \ Ip(µ)) = 0, then

m ≪ µ.

In particular, if also m is a reference measure with µ(X \ Ip(m)) = 0, then µ and m are equivalent
measures, i.e. µ≪ m and m ≪ µ.

The second part of Theorem 1.4 therefore says that once the support X and a metric d are fixed,
there is a unique reference measure, up to densities, so that the triple (X, d, µ) verifies RCD∗.

Both Theorem 1.3 and Theorem 1.4 can be restated dropping the assumption of m(Ω\Ip(µ)) = 0
(and the analogous one in the uniqueness part) at the price of assuming regularity properties on
the geometry of Ip(µ) (and on Ip(m)): one way (see Theorem 5.5) is to assume that Ip(µ) is µ-
connected. For the precise meaning of this assumption see Definition 5.4, here we only mention that
it is inspired by, and resemble, the convexity property of regular points in Alexandrov geometry.
Another way is to assume that Ip(µ) forms an open set in X , see Theorem 5.6.

Section 6 is devoted to the investigation of general properties of reference measures: we will
establish the local-to-global property of reference measures under the non-branching assumption,
we will show that the multiplication by a density does not affect the property of being a reference
measure and finally we will address the problem of stability of reference measures with respect
to measured Gromov-Hausdorff convergence: it will be proved that if the reference measures are
probabilities and if a uniform bound on the second marginal of the inversion plan holds, the notion
of reference measure is stable. See Theorem 6.6 for the precise statement and Theorem 6.9 for its
application to uniqueness of limit reference measures. This last result should be compared with
the aforementioned analogous statement for Ricci limits spaces obtained by Cheeger-Colding [15].
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The final part of the paper, that is formed by Section 7 and Section 8, is devoted to discuss
examples and applications of the introduced techniques.

The main result will be the existence of an inversion plan at almost every regular point of
an Alexandrov space with curvature bounded from below, where the almost everywhere and the
inversion plan are referred to the Hausdorff measure of the right dimension, see Theorem 7.3. This
shows that the Hausdorff measure is a reference measure and permits to apply all the general
theorems stated so far to Alexandrov spaces.

In the last section we then present smooth examples. The term smooth here is used to emphasize
that in those spaces every point admits an inversion plan. The smooth examples will be: the stan-
dard volume measure on a smooth Riemannian manifold, the Hausdorff measure on an Alexandrov
space with curvature bounded from above and below (see Corollary 8.3) and the Heisenberg group
endowed with the Carnot-Carathéodory distance and the Haar measure (see Corollary 8.9).

As a final comment we want to stress that, while the proof of the existence of an inversion
plan in a smooth context relies mainly on the bi-Lipschitz regularity of the exponential map, such
ingredient on a general Alexandrov space fails to hold. Hence a finer analysis is needed. Combining
the Lipschitz regularity of the exponential map together with the fact that it maps sets of positive
measure to sets of positive measure, using also Disintegration Theorem, one can construct a “local”
inversion plan. Suitably iterating this construction one can obtain a “global” inversion plan and
prove Theorem 7.3. The existence of an inversion plan can be therefore understood as a measure-
theoretic reformulation of a bi-Lipschitz control on the behavior of geodesic hinges and, as for a
general Alexandrov space not so much can be proved on the regularity of the exponential map,
Theorem 7.3 seems to be a novelty also in this direction.

We end the introduction with some comments regarding possible future applications of the
techniques here introduced.

• In the class of those metric measure spaces admitting a bi-Lipschitz map with a subset
of a Euclidean space, one of the relevant questions to ask is whether the image of such a
metric space has positive Lebesgue measure or not. To this aim, let (X, d, µ) satisfy MCP,
φ : X → Rd be a bi-Lipschitz map for some positive d and call η := (φ)♯µ. Proving that η
verifies the non-degeneracy condition (see Definition 3.1) would imply, thanks to Theorem
1.1, that Ld(φ(X)) > 0; yielding the rectifiability property of (X, d, µ).

• In the recent [17], Csornyei and Jones proved that if a Radon measure µ over Rd makes the
triple (Rd, | · |, µ) a Lipschitz differentiability space (see [12] for the definition of Lipschitz
differentiability space), then µ is absolutely continuous with respect to the d-dimensional
Lebesgue measure Ld. Then Theorem 1.1 could be compared with [17]. In particular a
relevant question could be to check if a metric measure space verifying the non-degeneracy
condition is also a Lipschitz differentiability space.

• Understanding and characterizing the singular part of a non smooth space is an important
and challenging issue. As explained above the set of inversion points is strongly linked with
the regular set, i.e. the complementary of the singular set. It would be interesting to further
investigate this link for instance in Alexandrov, or more generally in RCD

∗(K,N)-spaces.
• Given an RCD∗(K,N)-space (X, d,m), it is an interesting open problem whether the mea-
sure m is absolutely continuous with respect to the Hausdorff measure of the relevant
dimension. We believe that the techniques here introduced could be useful to attach this
question which would be the natural generalization to RCD∗(K,N)-spaces to the afore-
mentioned result of Cheeger-Colding [15] in the framework of pmGH-limits of Riemannian
manifolds satisfying lower Ricci curvature bounds.
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• In Section 6 we address the problem of stability of a reference measure with respect to the
pmGH-convergence. As a next step one would like to study measured tangent spaces to
pointed m.m.s. endowed with a reference measure. Recall that the set Tan(X, d, µ, x̄)
of tangent spaces to (X, d, µ) at x̄ is the collection of all pmGH limits of sequences
(X, 1/ri · d, µri

x̄ , x̄) where µ
ri
x̄ is a properly rescaled version of µ.
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2. Setting

We now recall some terminology and general notation. In what follows we say that a triple
(X, d,m) is a metric measure space, m.m.s. for short, if and only if:

• (X, d) is a complete and separable metric space;
• the measure m belongs to M+(X),

whereM+(X) denotes the space of positive Radon measure overX . We will also sometimes assume
m to be a probability measure, that is m(X) = 1, but this will be specified at the beginning of
each section. Moreover a metric space is a geodesic space if and only if for each x, y ∈ X there
exists γ ∈ Geo so that γ0 = x, γ1 = y. Here we are using the following notation for the space of
geodesics:

Geo := {γ ∈ C([0, 1], X) : d(γs, γt) = (s− t)d(γ0, γ1), s, t ∈ [0, 1]}.
The metric ball is denoted with Br(o) := {z ∈ X : d(z, o) < r}. Recall that for complete geodesic
spaces local compactness is equivalent to properness (a metric space is proper if every closed ball is
compact). As we will always deal with spaces enjoying some type of measure contraction property
implying an upper bound on the dimension of the space, we directly assume the ambient space
(X, d) to be proper. Hence from now on we assume the following: the ambient metric space (X, d)
is geodesic, complete, separable and proper.

We will also use quite often the set of geodesics ending in a fixed point of the space: for z ∈ X

Geo(z) := {γ ∈ Geo : γ1 = z} = Geo ∩ e−1
1 (z),

where for any t ∈ [0, 1], et denotes the evaluation map:

et : Geo → X, et(γ) := γt.

A geodesic metric space (X, d) is said to be non-branching if and only if for any γ1, γ2 ∈ Geo, it
holds:

γ10 = γ20 , γ
1
t̄ = γ2t̄ , t̄ ∈ (0, 1) =⇒ γ1s = γ2s , ∀s ∈ [0, 1].

We denote with P2(X) the space of probability measures with finite second moment endowed with
the L2-Wasserstein distance W2 defined as follows: for µ0, µ1 ∈ P2(X) we set

(2.1) W 2
2 (µ0, µ1) = inf

π

∫

X

d2(x, y)π(dxdy),
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where the infimum is taken over all π ∈ P(X × X) with µ0 and µ1 as the first and the second
marginal. Assuming the space (X, d) to be geodesic, also the space (P2(X),W2) is geodesic. It
turns out that any geodesic (µt)t∈[0,1] in (P2(X),W2) can be lifted to a measure ν ∈ P(Geo), so
that (et)♯ν = µt for all t ∈ [0, 1]. Given µ0, µ1 ∈ P2(X), we denote by OptGeo(µ0, µ1) the space
of all ν ∈ P(Geo) for which (e0, e1)♯ν realizes the minimum in (2.1). If (X, d) is geodesic, then the
set OptGeo(µ0, µ1) is non-empty for any µ0, µ1 ∈ P2(X).

It is also convenient to introduce the following closed sets:

H :=
{

(x, y, z) ∈ X3 : d(x, y) = d(x, z) + d(z, y)
}

,

H(z) := P12(H ∩ (X2 × {z})) = {(x, y) ∈ X2 : d(x, y) = d(x, z) + d(z, y)},(2.2)

where for any n ∈ N, Pij : X
n → X2 is the projection on the ij-th component, for i, j = 1, . . . , n.

2.1. The essential non-branching property. We recall the following definition.

Definition 2.1. A metric measure space (X, d,m) is essentially non-branching if and only if for any
µ0, µ1 ∈ P2(X) which are absolutely continuous with respect to m any element of OptGeo(µ0, µ1)
is concentrated on a set of non-branching geodesics.

If (X, d,m) is essentially non-branching, one can deduce some information on the branching
points as follows. Consider the set

(2.3) D := {(z, w) ∈ X ×X : γ1, γ2 ∈ Geo, γ10 = γ20 = w, γ11 = γ21 = z, γ1 6= γ2},
and observe that thanks to the properness assumption, it is σ-compact: it can be written as
countable union of compact sets. Observe that also X2 \D is σ-compact and D is symmetric: if
(z, w) ∈ D also (w, z) ∈ D. From essential non-branching we can deduce that the σ-compact set

D(z) := P2 (D ∩ ({z} ×X)) ,

has m-measure zero (see for instance [39], in any case this statement will follow by the arguments
below which give a more detailed description of the branching set).

We need a more refined property of branching structures that can be obtained observing that
any L2 optimal transportation between any measure and a Dirac delta, say in z ∈ X , is also an
L1-optimal transportation. What follows is contained in [10] and is proved for RCD spaces but the
same result holds for essentially non-branching spaces.

Consider the following closed sets:

Γ :=
{

(x, y, z) ∈ X3 : d(x, z)− d(y, z) = d(x, y)
}

, Γ−1 :=
{

(x, y, z) ∈ X3 : (y, x, z) ∈ Γ
}

,

and R := Γ ∪ Γ−1. We want to analyze possible branching structures inside X ×X . We therefore
consider the set of forward branching:

(2.4) A+ := {(x, z) ∈ X ×X : ∃ y, w ∈ X, (x, y, z), (x,w, z) ∈ Γ, (y, w, z) /∈ R} ,
and the set of backward branching:

(2.5) A− :=
{

(x, z) ∈ X ×X : ∃ y, w ∈ X, (x, y, z), (x,w, z) ∈ Γ−1, (y, w, z) /∈ R
}

.

As the space X is proper by assumption, it is easily seen that both A+ and A− are σ-compact
sets. The information we will use is the following: define

A+(z) := P1 ((X × {z}) ∩ A+) , A−(z) := P1 ((X × {z}) ∩ A−) ,

then it follows from Proposition 4.5 of [10] (notice that what is denoted with T in [10], in the
present framework coincides with the whole X ×X) that

(2.6) m(A+(z)) = m(A−(z)) = 0,
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provided (X, d,m) is essentially non-branching. In particular the σ-compact set

Tnb(z) := X \ (A+(z) ∪ A−(z)) ,

contains all the points, up to a set of m-measure zero, moved via optimal transportation towards
the end point z and the whole set Tnb(z) is covered by a family of non-branching geodesics. It will
also convenient to introduce the set Tnb := X ×X \ (A+ ∪ A−) and to observe that trivially

Tnb(z) = P1 ((X × {z}) ∩ Tnb) .

2.2. Disintegration of measures. We include here a version of the Disintegration Theorem (for
a comprehensive treatment see for instance [19]).

Given a measurable space (R,R), i.e. R is a σ-algebra of subsets of R, and a function r : R→ S,
with S general set, we can endow S with the push forward σ-algebra S of R:

Q ∈ S ⇐⇒ r−1(Q) ∈ R,

which could be also defined as the biggest σ-algebra on S such that r is measurable. Moreover
given a probability measure ρ on (R,R), define a probability measure η on (S,S ) by push forward
via r, i.e. η := r♯ρ.

Definition 2.2. A disintegration of ρ consistent with r is a map (with slight abuse of notation
still denoted with) ρ : R × S → [0, 1] such that, set ρs(B) := ρ(B, s), the following hold:

(1) ρs(·) is a probability measure on (R,R) for all s ∈ S,
(2) ρ·(B) is η-measurable for all B ∈ R,

and satisfies for all B ∈ R, C ∈ S the consistency condition

ρ
(

B ∩ r−1(C)
)

=

∫

C

ρs(B) η(ds).

A disintegration is strongly consistent with respect to r if for all s we have ρs(r
−1(s)) = 1. The

measures ρs are called conditional probabilities.

We recall the following version of the disintegration theorem that can be found in [19, Section
452]. Recall that a σ-algebra J is countably generated if there exists a countable family of sets so
that J coincide with the smallest σ-algebra containing them.

Theorem 2.3 (Disintegration of measures). Assume that (R,R, ρ) is a countably generated pro-
bability space and R = ∪s∈SRs is a partition of R. Denote with r : R → S the quotient map:

s = r(x) ⇐⇒ x ∈ Rs,

and with (S,S , η) the quotient measure space. Assume (S,S ) = (X,B(X)) with X Polish space,
where B(X) denotes the Borel σ-algebra. Then there exists a unique strongly consistent disinte-
gration s 7→ ρs w.r.t. r, where uniqueness is understood in the following sense: if ρ1, ρ2 are two
consistent disintegrations then ρ1,s(·) = ρ2,s(·) for η-a.e. s ∈ S.
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3. Non-degenerate reference measure on Rd

Let m be a positive Radon measure over Rd that we will consider to be equipped with the
Euclidean distance. Denote with Ω the support of m: Ω := spt(m).

Definition 3.1 (Non-Degenerate measure). Consider the m.m.s. (Ω, | · |,m). We say that the
measure m is non-degenerate if and only if for any compact set A ⊂ Ω of positive m-measure it
holds

(3.1) m(At,o) > 0, ∀ t ∈ [0, 1),

where o is any element of Ω and

(3.2) At,o := {z ∈ R
d : z = (1− t)y + to, y ∈ A}.

Remark 3.2. The non degeneracy condition may be regarded as a very weak curvature condition
on the m.m.s. (Ω, | · |,m). Indeed it is implied by MCP(K,n), for any K and n.

For the rest of this section we tacitly assume that m is a non-degenerate measure. We start by
proving a geometric property of Ω.

Lemma 3.3. The set Ω is a convex subset of Rd.

Proof. Consider x, y ∈ spt(m). Then for any positive radius δ it holds m(Bδ(x) ∩ Ω) > 0. Then
(3.1) implies that

m((B̄δ(x) ∩ Ω)t,y) > 0, ∀ t ∈ [0, 1).

Now observe that for any t ∈ [0, 1),

(B̄δ(x) ∩ Ω)t,y ⊂ B(1−t)δ(xt), with xt := (1− t)x+ ty.

It follows that m(B(1−t)δ(xt)) > 0 for any positive δ, therefore xt ∈ spt(m) = Ω and the claim
follows. �

We deduce from Lemma 3.3 that Ω has a well defined dimension: there exists a minimal k ∈ N

with k ≤ d so that Ω is contained in a k-dimensional affine subspace of Rd that we identify with
Rk.

We can therefore consider the relative interior and the relative boundary of Ω in Rk: there exist
U,C ⊂ Rk so that Ω = U ∪C and U ∩ C = ∅ with U maximal open subset in Rk contained in Ω.

Proposition 3.4. If k is the dimension of Ω, the measure mxU is absolutely continuous with
respect to the k-dimensional Lebesgue measure Lk.

Proof. Assume by contradiction the existence of a compact set K ⊂ U so that

m(K) > 0, Lk(K) = 0.

The statement we are proving is local, therefore we can consider x0 ∈ K and δ > 0 so that
Bδ(x0) ⊂ U and K ⊂ Bδ(x0). Since the measure m is non-degenerate in (Ω, | · |,m), for every
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o ∈ ∂Bδ(x0) and t ∈ [0, 1] it holds m(Kt,o) > 0. Therefore we have:

0 <

∫

[0,1]

∫

∂Bδ(x0)

m(Kt,o)Hk−1(do)L1(dt)

= m⊗Hk−1 ⊗ L1
(

{(z, o, t) ∈ Bδ(x0)× ∂Bδ(x0) × [0, 1) : z = (1− t)x + to, x ∈ K}
)

=

∫

Bδ(x0)

Hk−1
x∂Bδ(x0)

⊗L1
x[0,1)({(o, t) : fz(o, t) ∈ K})m(dz)

=

∫

Bδ(x0)

(fz)♯

(

Hk−1
x∂Bδ(x0)

⊗L1
x[0,1)

)

(K) m(dz),(3.3)

where

fz(o, t) :=
z − to

1− t
, ∀t ∈ [0, 1).

Since Hk−1
x∂Bδ(x0)

⊗L1
x[0,1) is equivalent to Lk

xBδ(x0), the function fz can be defined directly on

Bδ(x0). For ease of notation we also assume x0 = 0, then:

fz(w) :=
z − w

1− |w|/δ = δ · z − w

δ − |w| .

Then

dfz(w) = δ(z − w)∇
(

1

δ − |w|

)T

− δ

δ − |w| Id

= δ(z − w)
1

(δ − |w|)2
(

w

|w|

)T

− δ

δ − |w|Id.

Using the following Lemma 3.5, we get

det

(

− (δ − |w|)
δ

dfz(w)

)

= det

(

Id− 1

δ − |w| (z − w)

(

w

|w|

)T
)

= 1− 1

(δ − |w|)|w| 〈z − w,w〉.

Thus det
(

− (δ−|w|)
δ dfz(w)

)

= 0 only when δ|w| = 〈z, w〉. Since z, w ∈ Bδ(0), it follows that

det(dfz(w)) 6= 0 for all w and z. Therefore, Lk(K) = 0 implies (fz)♯

(

Hk−1
x∂Bδ(x0)

⊗L1
x[0,1)

)

(K) =

0 contradicting (3.3) and the claim is proved. �

Lemma 3.5. Let Id be the n× n identity matrix and let a, b be n× 1 column vectors. Then

det(Id+ abT ) = 1 + bT a.

Proof. Observe that one can write
[

Id 0
bT 1

]

·
[

Id+ abT a
0 1

]

·
[

Id 0
−bT 1

]

=

[

Id a
0 1 + bT a

]

The proof follows then by the standard product rules of the determinant and of matrices in block
forms. �

To conclude we analyze the boundary. Putting together the next Proposition and the previous
results, Theorem 1.1 is proved.

Proposition 3.6. If C is the boundary of U for the trace topology of Rk, then m(C) = 0.
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Proof. Since Ω is convex, there exists o ∈ U so that Ct,o ⊂ U for all t ∈ (0, 1), where Ct,o is defined
as in (3.2). Suppose now by contradiction that m(C) > 0. Then by non-degeneracy

m(Ct,o) > 0, ∀ t ∈ (0, 1),

and therefore from Proposition 3.4, Lk(Ct,o) > 0 for all t ∈ (0, 1). But on the other hand, C is the
boundary of a convex set U in Rk, thus Lk(C) = 0; therefore, since the map

C ∋ x 7→ Tt(x) := (1− t)x+ to

is a diffeomorphism, it follows that Lk(Ct,o) = 0. This gives a contradiction and the claim follows.
�

4. General properties of MCP

This Section serves as a general picture of the properties of m.m.s. verifying MCP and it is
divided into two parts. In the first one we analyze the geodesic convexity of the support of the
measure, in the second one we investigate the implications ofMCP on the extendability of geodesics.

So again we recall that (X, d,m) is a metric measure space; i.e. (X, d) is a geodesic, proper,
complete and separable metric space and m is a positive Radon measure on X .

The quantitative dependance of MCP with respect to lower curvature bound K and the di-
mension upper bound N will not play any role in our proofs, we prefer therefore to consider the
following qualitative form of MCP.

Definition 4.1. Let (X, d,m) be a m.m.s. as before, denote with Ω := spt(m) and let x̄ ∈ X .
The triple (X, d,m) verifies the qualitative MCP if and only if there exist a sequence Rj ↑ +∞ and
continuous functions fj : [0, 1] → R+ with fj(0) = 1, fj(1) = 0 and fj(t) > 0 for any t ∈ [0, 1),
j ∈ N, so that for every o ∈ Ω ∩BRj

(x̄):

(4.1) m(At,o) ≥ fj(t) m(A), ∀ t ∈ [0, 1),

where

(4.2) At,o := {γt : γ ∈ Geo(o), γ0 ∈ A },
and A ⊂ Ω ∩BRj

(x̄) is any Borel set.

Clearly the property of satisfying the qualitative MCP condition above is independent of the
center x̄, just by changing the sequence of radii Rj ↑ +∞.

At this level of generality not so much can be said on the geometry of Ω. We therefore introduce
the next stronger version of the qualitative measure contraction property.

Definition 4.2 (Strong Qualitative MCP). A triple (Ω, d,m) as above satisfies the strong qualita-
tive MCP provided there exist a sequence Rj ↑ +∞ and continuous functions fj : [0, 1] → R+ with
fj(0) = 1, fj(1) = 0 and fj(t) > 0 for any t ∈ [0, 1), j ∈ N, so that for every o ∈ Ω ∩BRj

(x̄):

(4.3) m(A) ≥ fj(t) m
(

e0
(

e−1
t (A) ∩Geo(o)

))

, ∀ t ∈ [0, 1),

where A ⊂ Ω ∩BRj
(x̄) is any Borel set.

Remark 4.3. Few comments on Definition 4.2 are in order. The adjective “strong” is due to
the fact that Definition 4.2 is equivalent to impose (4.1) replacing At,o with et(H), for all the
H ⊂ Geo(o) so that e0(H) = A. Hence Definition 4.2 imposes the evolution estimate along
the support of any W2-geodesic connecting m(A)−1mxA to δo. It follows therefore that strong
qualitative MCP implies qualitative MCP.
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On the other hand, if (X, d,m) satisfies the qualitative MCP and it is essentially non-branching
(see (2.3)), then it verifies the strong qualitative MCP:

Fix any o ∈ Ω and A ∈ BRj
(x̄), and let H = e−1

t (A) ∩Geo(o). Denote with X̂ the set X \D(o)
and recall that, by the essentially non-branching condition, one has m(D(o)) = 0. The qualitative
MCP implies that

m(A) ≥ m (et(H)) ≥ m

(

(

e0(H) ∩ X̂
)

t,o

)

≥ fj(t)m(e0(H) ∩ X̂) = fj(t)m(e0(H))

= fj(t)m(e0(e
−1
t (A) ∩Geo(o))),

which is (4.3).

All the constructions that we will consider will be then used for spaces verifying the essentially
non-branching property. Hence we prefer to not pursue the most general result and to prove the
next two statements under the strong version of the qualitative MCP. At the moment we do not
know if they hold under the general qualitative MCP.

The terminology “strong” is justified by the next result.

Lemma 4.4. Let (Ω, d,m) be a metric measure space verifying the strong qualitative MCP condition
(4.3). Then for any A ⊂ Ω measurable set with m(A) ∈ (0,∞), o ∈ Ω and for any geodesic
(µt)t∈[0,1] ⊂ P2(X) so that

µ0 =
1

m(A)
mxA, µ1 = δo,

it holds µt ≪ m for all t ∈ [0, 1).

Proof. Fix A ⊂ Ω measurable with m(A) ∈ (0,∞), a point o ∈ Ω and let (µt)t∈[0,1] ⊂ P2(X) be an

arbitrary W2-geodesic from µ0 := 1
m(A)mxA to µ1 := δo. Since (X, d) is a geodesic space, we can

associate a measure ν ∈ P(Geo) so that for any t ∈ [0, 1] it holds (et)♯ ν = µt; finally denote with

H ⊂ Geo(o) a set where ν is concentrated.
Fix t ∈ [0, 1) and K ⊂ Ω compact subset so that m(K) = 0. Then, by (4.3), we have

m
(

e0
(

e−1
t (K) ∩Geo(o)

))

= 0,

and consequently

µt(K) = (et)♯ ν(K) = ν
(

e−1
t (K) ∩Geo(o)

)

≤ ν
(

e−1
0

(

e0
(

e−1
t (K) ∩Geo(o)

)))

= (e0)♯ ν
(

e0
(

e−1
t (K) ∩Geo(o)

))

=
1

m(A)
mxA

(

e0
(

e−1
t (K) ∩Geo(o)

))

= 0.

�

In analogy of what we proved in Rd, also in this framework one has that the support Ω of m is
convex.

Proposition 4.5. Let (X, d,m) be a m.m.s. and Ω := spt(m) is so that the triple (Ω, d,m) satisfies
the strong qualitative MCP condition (4.3). Then Ω is a weakly geodesically convex subset, i.e for
every x0, x1 ∈ Ω there exists γ̂ ∈ Geo with γ̂i = xi, i = 0, 1, such that γ̂([0, 1]) ⊂ Ω.
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Proof. Let x, y ∈ Ω and δ > 0. We consider the d2-optimal transportation problem between the
marginal measures

µ0 :=
1

m(Bδ(x))
mxBδ(x), µ1 := δy.

The associated measure νδ ∈ P (Geo) is so that (et)♯(ν
δ)t∈[0,1] is a W2-geodesic connecting µ0 to

µ1. We now consider a sequence δn > 0 converging to 0 as n → ∞. The associated measure νδn

gives measure one to the following set

Gn := {γ ∈ Geo : γ0 ∈ Bδn(x), γ1 = y}.
By compactness, there exists a subsequence, still denoted with δn, so that Gn → H in the Hausdorff
distance, with H compact subset of

G := {γ ∈ Geo : γ0 = x, γ1 = y}.
Also the set {νδn}n∈N ⊂ P (Geo) isW2-precompact, and extracting another subsequence we deduce
the existence of ν ∈ P (Geo) so that νδn → ν in the W2-metric. Moreover ν(H) = 1 and there
exists γ̂ ∈ H so that ν(BGeo

α (γ̂)) > 0 for all α > 0, where

BGeo
α (γ̂) := {γ ∈ Geo : sup

t∈[0,1]

d(γt, γ̂t) < α}.

By lower-semicontinuity over open sets,

lim inf
n→∞

νδn(BGeo
α (γ̂)) ≥ ν(BGeo

α (γ̂)) > 0.

Hence for every α > 0 there exists δn so that

0 < νδn(BGeo
α (γ̂)) ≤

(

(et)♯ ν
δn
) (

et(B
Geo
α (γ̂))

)

≤
(

(et)♯ ν
δn
)

(Bα(γ̂t)) ,

for all t ∈ [0, 1]. By Lemma 4.4 we also deduce that
(

(et)♯ ν
δn
)

≪ mxet(Gn), for all n ∈ N and
t ∈ [0, 1). We can therefore summarize what we obtained as follows: there exists γ̂ ∈ Geo(X) so
that

m
(

Bα(γ̂t)
)

> 0, for every α > 0 and t ∈ [0, 1).

It follows that γ̂t ∈ spt(m) = Ω for every t ∈ [0, 1], as desired. �

Thanks to Proposition 4.5, (Ω, d,m) is a geodesic metric measure space. We will identify with
no loss of generality the whole space X with the support Ω of the measure m. Therefore any future
assumption on the smoothness or geometry of the m.m.s. (X, d,m) is indeed an assumption that
should be verified only on Ω.

4.1. Structure of geodesics under MCP. In this section we establish some structural properties
of the geodesics implied by the qualitativeMCP condition (4.1) under the essentially non-branching
condition. The next is a well-known property of m.m.s. enjoying MCP(K,N) and it is valid as
well under the qualitative MCP (see for instance the proof of [23, Lemma 3.1]).

Let the m.m.s. (X, d,m) satisfy the qualitative MCP. Then for any z ∈ X, m-a.e. point of X is
an interior point of some geodesic ending in z:

m ({γt : γ ∈ Geo(z), t ∈ (0, 1)}) = 1.

The goal of this section is to improve such statement. For any point z of the space, consider the
set of geodesics having z as an interior point, called rays through z and the evaluation of them,
called points through z. They are defined in the following way:

R(z) := {γ ∈ Geo : γs = z, for some s ∈ (0, 1)}, e(0,1)(R(z)) := {γt : γ ∈ R(z), t ∈ (0, 1)}.
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We can now state the result.

Proposition 4.6. Let the m.m.s. (X, d,m) be essentially non-branching and satisfy the qualitative
MCP condition (4.1). Then for m-a.e. z ∈ X the following holds:

(4.4) m
(

X \ e(0,1)(R(z))
)

= 0.

Proof. We will prove the following: for any x ∈ X and r > 0, for m-a.e. z ∈ Br(x), it holds

m(Br(x) \ e(0,1)(R(z))) = 0.

So let us fix x ∈ X and r > 0. We also consider the function f = fj given by the qualitative MCP

condition associated to an open ball containing Br(x). Then we have
∫

Br(x)

m
(

(Br(x))t,z

)

m(dz) ≥ f(t)m(Br(x))
2.

In equivalent terms,

m(Br(x))
2 f(t) ≤ m⊗m ({(z, w) ∈ Br(x)×X : w = γt, γ ∈ Geo(z), γ0 ∈ Br(x)})

=

∫

X

m ({z ∈ Br(x) : w = γt, γ ∈ Geo(z), γ0 ∈ Br(x)})m(dw)

=

∫

B(1+2t)r(x)

m ({z ∈ Br(x) : w = γt, γ ∈ Geo(z), γ0 ∈ Br(x)})m(dw)

≤
∫

B(1+2t)r(x)

m
({

z ∈ Br(x) : w ∈ γ(0,1), γ ∈ Geo(z), γ0 ∈ Br(x)
})

m(dw).

Taking the limit as t→ 0, since f is continuous and f(0) = 1, we get that for m-a.e. w ∈ Br(x)

m
({

z ∈ Br(x) : w ∈ γ(0,1), γ ∈ Geo(z), γ0 ∈ Br(x)
})

= m(Br(x)).

To conclude we prove that set in the left hand side of the previous identity coincides with
e(0,1)(R(z)), up to a set of m-measure zero. To this purpose it is enough to show that the set
of initial points of maximal geodesics has m-measure zero; but this follows from Proposition 4.8
below, since m(D(z)) = 0 by the essential non-branching assumption. �

Proposition 4.6 has a nice consequence on the symmetric cut locus. Let us recall that the
symmetric cut locus SC ⊂ X ×X is defined by

SC := X ×X \ {(x, y) ∈ X ×X : ∃ γ ∈ Geo, ∃ s, t ∈ (0, 1) such that γs = x, γt = y}
= {(x, y) ∈ X ×X : x ∈ C(y) or y ∈ C(x)},(4.5)

where, given z ∈ X , the cut locus of z denoted with C(z) ⊂ X is defined by

(4.6) C(z) := X \ {x ∈ X : ∃γ ∈ Geo, ∃t ∈ [0, 1) such that γ0 = z, γt = x}.
It was already well-known that qualitative MCP implies that m(C(z)) = 0, see for instance (2.6).
From Proposition 4.6, once we observe that for every z ∈ X it holds

{z} × e(0,1)(R(z)) ⊂ X ×X \ SC,
it is then possible to deduce the following property of SC.

Corollary 4.7. Let the m.m.s. (X, d,m) be essentially non-branching and satisfy the qualitative
MCP. Then

m⊗m (SC) = 0.
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The next result is already present in literature, see for instance [9] where a more general case is
considered. To keep presentation as self contained as possible, we include it here in a form adjusted
to our framework.

Proposition 4.8 (Disintegration with MCP). Let the m.m.s. (X, d,m) with m(X) = 1 be essen-
tially non-branching, and satisfy the qualitative MCP condition (4.1). Fix any z ∈ X and define

X̂ := X \ {D(z) ∪ {z}}. Consider in X̂ the equivalence relation T :

(x, y) ∈ T ⇐⇒ d(y, z) = d(y, x) + d(x, z), or d(x, z) = d(x, y) + d(y, z),

whose equivalence classes are maximal geodesics in Geo(z). Then there exists an m-measurable

map Q : X̂ → X̂ and a Borel subset K ⊂ X̂ with m(K) = 1 so that

(x, y) ∈ T ⇐⇒ Q(x) = Q(y) and (x,Q(x)) ∈ T, ∀x, y ∈ K.

Moreover

m = mxX̂ =

∫

Q(X̂)

mαq(dα), mα ≪ H1
xγα , q-a.e.α ∈ Q(X̂),

where q = (Q)♯ mxX̂ is the quotient measure and γα ∈ Geo(z) is the maximal geodesic containing

α ∈ Q(X̃).

Proof. Step 1. Since m(X̂) = 1, we can assume the existence of K̂ ⊂ X̂, σ-compact, so that

m(K̂) = 1; observe that the equivalence relation restricted to K̂

T = {(x, y) ∈ K̂ × K̂ : d(y, z) = d(y, x) + d(x, z)} ∪ {(x, y) ∈ K ×K : d(x, z) = d(x, y) + d(y, z)},
is σ-compact as well. With a slight abuse of notation we set T (ω) to be the class of ω, i.e. the

maximal geodesic through ω and z. Fix now a countable dense family of points {xi}i∈N ⊂ K̂ and
consider for i, j, k ∈ N

Wijk := {w ∈ B̄2−j (xi) ∩ K̂ : L(T (w) ∩B21−j (xi)) ≤ 2−k, L(T (w)) ≥ 22−k},
where L(γ) denotes the length of the geodesic γ. It can be proved that Wijk form a countable

cover of K̂ of class A, the σ-algebra generated by the analytic sets, see [9, Lemma 4.1] for the
details. As Wijk ∈ A, there exists Nijk ⊂ Wijk with m(Nijk) = 0 so that Wijk \ Nijk is Borel.
Then

Hijk := T−1(Wijk \Nijk) = P1 ({(v, w) ∈ T : w ∈Wijk \Nijk})
is a countable covering of K̂ \ ∪Nijk into saturated (sets of the form T−1(A)) analytic sets. Ob-
serving that the difference of two saturated sets is still saturated, we can find a countable disjoint
family of sets {Kijk} made of A saturated sets so that

Kijk ⊂ Hijk, ∪ijkKijk = ∪ijkHijk .

For ease of notation we fix a bijection from N → N
3 and denote with Kn the set Ki(n)j(n)k(n). We

can now define the following multivalued map:

Kn ∋ x 7−→ F (x) := T (x) ∩ B̄2−(j(n)) (xi(n)),

that is easily seen to be A-measurable. Observe that F (x) is a closed subset of K̂. Then by [9,
Corollary 2.7] there exists fn : Kn → B̄2−(j(n)) (xi(n)) A-measurable so that

(x, fn(x)) ∈ T, (x, y) ∈ T ⇐⇒ fn(x) = fn(y).

We can repeat the same procedure for any m ∈ N and then define Q(x) := fn(x) for all x ∈ Kn

and arbitrarily outside of K := ∪nKn. As all Kn are disjoint and saturated, the definition of Q
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is well posed and as X̂ \ K has m-measure 0, Q is m-measurable and the first part of the claim
follows.

Step 2. The existence of an m-measurable map Q obtained before is in fact equivalent to
the strong consistency of the disintegration, see Proposition 4.4 of [9] and subsequent discussions.
Hence

m = mxX̂ =

∫

Q(X̂)

mαq(dα), mα(γα) = 1, q-a.e.α ∈ Q(X̂),

where q = (Q)♯ mxX̂ is the quotient measure and γα ∈ Geo(z) is the unique maximal geodesic
containing α. To obtain that q-a.e. mα is absolutely continuous with respect to H1

xγα it is
enough to write the qualitative MCP between any Borel set and the fixed point z ∈ X . Then the
equivalence classes are invariant sets for the evolution and, for q-a.e. α, each measure mα has to
satisfy a non-degeneracy property of the same type of the one introduced in Section 3. Hence the
claim follows (for the details of this second part of the proof, see [9, Theorem 5.7]). �

5. Reference measures

We are now ready to define what is for us a reference measure. Recall that (X, d) is a geodesic,
proper, complete and separable metric space even if the next definition will make sense in a general
complete and separable metric space. During this Section all the assumptions regarding finiteness
of measures are dropped. Denote with M+(X) the space of positive Radon measures.

Definition 5.1. A positive Radon measure µ ∈ M+(X) is a reference measure for (X, d) provided
it is non-zero, and for µ-a.e. z ∈ X there exists πz ∈ M+(X ×X) so that

(5.1) (P1)♯ π
z = µ, πz(X ×X \H(z)) = 0, (P2)♯ π

z ≪ µ,

where Pi : X ×X → X is the projection on the i-th component, for i = 1, 2 and H(z) is defined
in (2.2). The measure πz will be called inversion plan.

Let us briefly observe that, since H(z) ⊂ X × X is closed, clearly the requirement πz(X × X \
H(z)) = 0 is equivalent to spt(πz) ⊂ H(z). Moreover we will use the following notation

(5.2) Ip(µ) := {z ∈ X : ∃πz inversion plan},
to denote the set of Inversion points of µ, those point where an inversion plan exists.

Remark 5.2 (Inversion points are regular points). Let us remark that the condition for a point
p ∈ X to be an inversion point is strictly related to the regularity of the space (X, d) at p. Indeed if
(X, d) has a conical singularity at p then clearly p cannot be an inversion point (unless m({p}) > 0)
since all geodesics end to minimize length once they cross p. Indeed, sinceH(p) ⊂ X×{p}∪{p}∪X ,
if π ∈ M+(X) with π(X ×X \H(p)) = 0 and (P1)♯(π) = m, then (P2)♯(π) = m(X) δp.

On the other hand in Section 7 we will prove that Hn-a.e. regular point in an Alexandrov space
with lower curvature bound is an inversion point (for the precise statement see Theorem 7.3).

In order to have a clear statement for the main result of this section, we drop the identification
between the ambient space X and the support of m, Ω. Notice that, once we assume (X, d,m) to
be essentially non-branching and satisfy the qualitative MCP condition (4.1), then by Proposition
4.5 we have that Ω = spt(m) is a geodesic space.
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Theorem 5.3. Let (X, d,m) be an essentially non-branching m.m.s. that verifies the qualitative
MCP condition (4.1). Assume the existence of a reference measure µ for (Ω, d), where Ω = spt(m),
so that (Ω, d, µ) verifies the qualitative MCP condition (4.1) and it is essentially non-branching.
If m(X \ Ip(µ)) = 0, then

m ≪ µ.

Proof. We start by observing that from Proposition 4.5, the triples (Ω, d,m) and (Ω, d, µ) are
geodesic, essentially non-branching m.m.s. verifying the qualitative MCP. Once the measures will
be restricted to sets of finite measure, we will use the result of Proposition 4.8

Step 1. Assume by contradiction the claim is false. Then there exists A ⊂ Ω, that we can
assume to be a subset of Br(o) ⊂ Ω for some o ∈ Ω and r > 0, so that

m(A) > 0 and µ(A) = 0.

Since m verifies the qualitative MCP, we have the following strict inequality
∫

Br(o)

m(A1/2,x ∩ Tnb(x))µ(dx) > 0,

where Tnb(x) has been introduced in Section 2.1 and guarantees that the transportation towards
x moves along non-branching geodesics (recall that Tnb(x) has full measure thanks to (2.6)). The
measurability of A1/2,x ∩ Tnb(x) follows from the fact that Tnb is σ-compact; note we also used
that Tnb(x) is of full m-measure thanks to the essential non-branching assumption. Using Fubini’s
Theorem to change order of integration, we get

(5.3) 0 <

∫

B2r(o)

µ
({

x ∈ Br(o) : ∃ γ ∈ Geo(x) s.t z = γ1/2, γ0 ∈ A, γ0, z ∈ Tnb(x)
})

m(dz).

As m(X \ Ip(µ)) = 0, the set of integration can be substituted by B2r(o) ∩ Ip(µ) without changing
anything. Fix any z ∈ B2r(o) ∩ Ip(µ). Since (Ω, d,m) is a geodesic m.m.s., from the qualitative

MCP and Proposition 4.8 applied to z and µxB2r(z) it follows that
(a)

(5.4) µxB2r(z) =

∫

Q(B2r(z))

µαq(dα), µα ≪ H1
xγα , q-a.e.α ∈ Q(B2r(z)),

where q = Q♯(µxB2r(z)) is the quotient measure and γα is the maximal geodesic in Geo(z) con-

taining α. Moreover for q-a.e. α ∈ Q(B2r(z)), the density of µα with respect to H1
xγα is strictly

positive at any point and so H1
xγα≪ µα for q-a.e. α ∈ Q(B2r(z)). Hence, µ(A) = 0 implies that
∫

Q(B2r(z))

H1(γα ∩ A) q(dα) = 0.

There exists therefore a q-measurable set B ⊂ Q(B2r(z)) with q(B) = 0 so that

(5.5) H1(γα ∩ A) = 0, ∀α ∈ Q(B2r(z)) \B.
Step 2. We now write the set

E = E(z) :=
{

x ∈ Br(o) : ∃ γ ∈ Geo(x) s.t z = γ1/2, γ0 ∈ A, γ0, z ∈ Tnb(x)
}

(a)Observe that convexity of B2r(z) is not needed to apply Disintegration theorem, we only use that for each
point in x ∈ B2r(z), any intermediate point between x and z belongs to B2r(z). The same property permits to
use MCP to obtain the absolute continuity of the conditional measures with respect to the Hausdorff measure of
dimension 1.
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as union of the following two sets:

E1 := {x ∈ Br(o) : ∃ γ ∈ Geo(x) s.t z = γ1/2, γ0 ∈ A, γ0, z ∈ Tnb(x), Q(γ0) ∈ B},
E2 := {x ∈ Br(o) : ∃ γ ∈ Geo(x) s.t z = γ1/2, γ0 ∈ A, γ0, z ∈ Tnb(x), Q(γ0) ∈ Q(B2r(z)) \B}.

Note that by the definition of E, the map Q is well defined over E and the definitions of E1 and E2

are well posed. In order to get the thesis it is enough to show that both µ(E1) = 0 and µ(E2) = 0;
this will give µ(Ez) = 0, for every z ∈ B2r(o) ∩ Ip(µ), contradicting (5.3).

In order to prove µ(E1) = 0, observe that thanks to the non-branching property of Tnb it holds

(5.6)
(

X ×Q−1(B)
)

∩H(z) ∩ T −1
nb =

(

P1

((

X ×Q−1(B)
)

∩H(z) ∩ T −1
nb

)

×X
)

∩H(z) ∩ T −1
nb ,

where we have used the following notation: T −1
nb := {(z, x) ∈ X ×X : (x, z) ∈ Tnb}. Indeed it is

easily checked that
{

(x, y) ∈ X ×Q−1(B) : (x, y) ∈ H(z) ∩ T −1
nb

}

=
({

x ∈ X : ∃ y ∈ Q−1(B), (x, y) ∈ H(z) ∩ T −1
nb

}

×X
)

∩H(z) ∩ T −1
nb .

The inclusion ⊂ is trivial, and the reverse inclusion follows directly by the non branching property
of Tnb. As the right hand side term can be rewritten as

(

P1

((

X ×Q−1(B)
)

∩H(z) ∩ T −1
nb

)

×X
)

∩H(z) ∩ T −1
nb ,

the identity (5.6) is proved.
Since µ(Q−1(B)) = 0, the definition (5.1) of inversion plan πz implies that

0 = πz
((

X ×Q−1(B)
)

∩H(z) ∩ T −1
nb

)

= πz
((

P1

((

X ×Q−1(B)
)

∩H(z) ∩ T −1
nb

)

×X
)

∩H(z) ∩ T −1
nb

)

= µ
(

P1

((

X ×Q−1(B)
)

∩H(z) ∩ T −1
nb

))

.

As E1 ⊂ P1

((

X ×Q−1(B)
)

∩H(z) ∩ T −1
nb

)

, we have that µ(E1) = 0.
The fact that µ(E2) = 0 follows easily by the disintegration (5.4). Indeed by (5.5), we infer
H1(γα ∩ A) = 0 for every α ∈ Q(B2r(z)) \B. Therefore, after the inversion with respect to z, we
have

H1(γα ∩ E2) = 0, ∀α ∈ Q(E2).

Recalling that µα ≪ H1
xγα , for q-a.e. α ∈ Q(B2r(z)), the disintegration (5.4) then implies

µ(E2) =

∫

Q(E2)

µα(E2) q(dα) = 0.

�

One can drop the hypothesis that m is concentrated on Ip(µ), and still obtain the same claim
at the price of adding regularity properties on the set of inversion points of the reference measure
µ. We see two different cases; but, before that, let us give the following definition.

Definition 5.4. A set C ⊂ X is said to be µ-connected if for any compact set A ⊂ C there exists
a set U ⊂ C with µ(U) > 0 and t̄ ∈ (0, 1) so that

(A,U)t̄ := {γt̄ : γ ∈ Geo, γ0 ∈ A, γ1 ∈ U} ⊂ C.

Let us mention that Definition 5.4 resembles the convexity property of regular points in Alexan-
drov spaces.
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Theorem 5.5. Let (X, d,m) be an essentially non-branching m.m.s. that verifies the qualitative
MCP condition (4.1). Assume the existence of a reference measure µ for (Ω, d), where Ω = spt(m),
so that (Ω, d, µ) verifies the qualitative MCP condition (4.1) and it is essentially non-branching.
If Ip(µ) is µ-connected, then

mxIp(µ)≪ µ.

Proof. The proof follows the same lines of the proof of Theorem 5.3 and we only sketch the first part
of it. Assume by contradiction the claim is false. Then there exists a compact set A ⊂ Ω ∩ Ip(µ),
that we can assume to be a subset of Br(o) ⊂ Ω for some o ∈ Ω and r > 0, so that

m(A) > 0 and µ(A) = 0.

Since m verifies the qualitative MCP, we have the following strict inequality
∫

U

m(At̄,x ∩ Tnb(x))µ(dx) > 0,

where U ⊂ Ip(µ) and t̄ ∈ (0, 1) are given by the µ-connectedness of Ip(µ). Using Fubini’s Theorem
to change order of integration, we get

0 <

∫

(A,U)t̄

µ ({x ∈ Br(o) : ∃ γ ∈ Geo(x) s.t. z = γt̄, γ0 ∈ A, γ0, z ∈ Tnb(x)})m(dz).

Since (A,U)t̄ ⊂ Ip(µ), the proof continues as in Theorem 5.3, obtaining a contradiction and
therefore the claim. �

We can also assume Ip(µ) to be open and prove the next result.

Theorem 5.6. Let (X, d,m) be an essentially non-branching m.m.s. that verifies the qualitative
MCP condition (4.1). Assume the existence of a reference measure µ for (Ω, d), where Ω = spt(m),
so that (Ω, d, µ) verifies the qualitative MCP condition (4.1) and it is essentially non-branching.
If Ip(µ) is open in Ω, then

mxIp(µ)≪ µ.

Proof. Assume by contradiction the claim is false. Then there exists A ⊂ Ω ∩ Ip(µ), that we can
assume to be a subset of BR(o) ⊂ Ω for some o ∈ Ω and R > 0, so that

m(A) > 0 and µ(A) = 0.

By inner regularity we can also assume A to be compact in Ω. As Ip(µ) is open, for any w ∈ A
there exists rw so that B2rw (w) ⊂ Ip(µ). Then by compactness there exists w ∈ A so that

m(A ∩Brw(w)) > 0,

and therefore we can assume with no loss of generality that A ⊂ Brw(w). Since m verifies the
qualitative MCP, we have the following strict inequality

∫

Brw (w)

m(A 1
2 ,x

∩ Tnb(x))µ(dx) > 0.

Using Fubini’s Theorem to change order of integration, we get

0 <

∫

B2rw (w)

µ ({x ∈ Br(o) : ∃ γ ∈ Geo(x) s.t. z = γt̄, γ0 ∈ A, γ0, z ∈ Tnb(x)})m(dz).

Since B2rw(w) ⊂ Ip(µ), the proof continues as in Theorem 5.3, obtaining a contradiction and
therefore the claim. �
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6. Properties of reference measures

In this section we study few natural properties of reference measures.
As one would expect, the property of being a reference measure is invariant under multiplication
by a positive function.

Proposition 6.1 (Invariance). Let (X, d, µ) be a m.m.s. with µ reference measure for (X, d). Let
f : X → R be a Borel function such that m := f · µ is still a Radon measure. If

µ ({x ∈ X : f(x) = 0}) = 0,

then m is a reference measure for (X, d).

Proof. Consider the set of inversion points of µ, Ip(µ), and observe that m(X \ Ip(µ)) = 0. For
z ∈ Ip(µ) let πz be the associated inversion plan and define the rescaled plan

π̂z := f ◦ P1 · πz.

Since clearly (P1)♯π̂
z = m, it only remains to prove that (P2)♯π̂

z ≪ m. To this aim let A ⊂ X be
a Borel set with m(A) = 0 and observe that, by the assumption on f , also µ(A) = 0. By using
that πz is an inversion plan we infer

πz(X ×A) = (P2)♯π
z(A) = 0.

Hence (P2)♯π̂
z(A) = f ◦ P1 · πz(X ×A) = 0 and the claim follows. �

The next property we would like to investigate is the locality, that means to obtain an inversion
plan starting from a local inversion plan. Let us define the latter object:
Given a m.m.s. (X, d, µ) and z ∈ X we say that πz ∈ M+(X ×X) is a local inversion plan for µ
provided

(6.1) (P1)♯ π
z = µxBr(z), πz(X ×X \H(z)) = 0, (P2)♯ π

z ≪ µ,

for some r > 0. The set of those points admitting a local inversion plan will be denoted by Iploc(µ)
and will be called the set of points of local inversion.

Trivially restricting the inversion plan to the set Br(z) × X , any inversion point is a local
inversion point, that is Iploc(µ) ⊂ Ip(µ). Also the converse inclusion holds, provided (X, d) is
non-branching.

Proposition 6.2 (Locality). Let (X, d, µ) be a non-branching m.m.s. that verifies the qualitative
MCP condition. Then

Iploc(µ) = Ip(µ).

Proof. Consider z ∈ Iploc(µ), the corresponding local inversion plan πz and the corresponding open
ball Br(z). We will now construct a measure η ∈ M+(X ×X) such that

(P1)♯η = µxCr,2r(z), η(X ×X \H(z)) = 0, (P1)♯η ≪ µ,

where Cr,2r(z) = B2r(z) \ Br(z). Once such a η is obtained, one can repeat the same argument
for Cnr,(n+1)r(z) and obtain the measure ηn, for any n ∈ N with n ≥ 2. Then

π̂z := πz +
∑

n≥1

ηn,

will be an inversion plan.
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Reasoning as in (5.4) we get

µxB2r(z) =

∫

Q(B2r(z))

µα q(dα), µα ∼ H1
xγα , q-a.e.α ∈ Q(B2r(z)),

where q = Q♯(µxB2r(z)) is the quotient measure and γα is the maximal geodesic in Geo(z) con-
taining α. We can also assume each γα is parametrized with speed 1. From the non-branching
assumption, each γα ∩Br(z) is sent by π

z to a unique γβ(α), that is

πz
(

X ×X \ {(x, y) ∈ Br(z)×X : x ∈ γα, y ∈ γβ(α)}
)

= 0, β : Q→ Q,

with β µ-measurable map. Moreover from Proposition 4.6, for q-a.e. α ∈ Q

L1
(

{s ∈ [r, 2r] : γαr /∈ e(0,1)R(z)}
)

= 0.

In particular for q-a.e. α ∈ Q

sup{τ : (γα2r, γβ(α)τ ) ∈ H(z)} = max{τ : (γα2r, γβ(α)τ ) ∈ H(z)} > 0.

Denote the maximal τ with τα and consider the map

Tα : {γαs : s ∈ [r, 2r]} → {γβ(α)s : s ∈ [τα/2, τα]}, Tα(γα(1−ε)r+ε2r) := γβ
(1−ε) τα

2 +ετα
.

Then the map T : Cr,2r(z) → X , defined by T (x) = Tα(x) for x ∈ γα, is µ-measurable and satisfies

(x, T (x)) ⊂ H(z),

for µ-a.e. x ∈ Cr,2r(z). Now define η := (id, T )♯µxCr,2r(z) and observe that in order to have the
claim it only remains to show that (P2)♯η ≪ µ.

To this aim consider a Borel set A ⊂ X such that µ(A) = 0. The claim is equivalent to prove
that µ(T−1(A)) = 0. Consider the set Q(A) and write it as the union of

Q1(A) := {α ∈ Q(A) : µα(A) > 0}, Q2(A) := {α ∈ Q(A) : µα(A) = 0}.
For each α ∈ Q2(A), since µ

α ∼ H1
xγα ,

µβ−1(α)
(

T β−1(α)(A)
)

= 0.

Moreover, since µ(A) = 0, it follows that q(Q1(A)) = 0. Then since β was also associated with the
local inversion plan, q(β−1(Q1(A))) = 0. Hence µ(T−1(A)) = 0 and the claim follows. �

Remark 6.3. It seems to be a challenging problem to weaken the non-branching assumption in
Proposition 6.2 with the essentially non-branching one. Regarding this issue, a relevant role is
played by the following phenomenon.
Consider a point z ∈ X of local inversion for µ and γ ∈ Geo(z), i.e. γ1 = z. Suppose that γ can
be extended through z with a geodesic η1 of length ε > 0 with η10 = z, so that

d(γ0, η
1
1) = d(γ0, γ1) + d(γ1, η

1
1).

Now consider the constant speed reparametrization γ̂ of γ restricted to [1/2, 1]. With no violation
of essentially non-branching, it could happen that γ̂ admits also a different extension through z,
that is there exists a geodesic η2 6= η1 again such that η20 = z and

d(γ̂0, η
2
1) = d(γ̂0, γ̂1) + d(γ̂1, η

2
1).

Clearly also η1 is a good extension of γ̂.
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Since z is a point of local inversion, we know that the local (multivalued) inverting map sends
sets of positive µ-measure to sets of positive µ-measure. It may be the case that it sends γ̂0 to η21
but γ0 is forced to be moved to a point belonging to η1, if for istance

d(γ0, η
2
1) > d(γ0, z) + d(z, η21).

In this situation no information can be obtained from the existence of the local inversion plan.
Notice that the non-branching assumption indeed forces η1 to coincide with η2.

6.1. Stability. Only for this section the reference measures will be assumed to be a probability
measure.
We consider a sequence of pointed metric measures spaces (Xk, dk, µk, x̄k) with µk almost uniform
reference measure for (Xk, dk). We will show that if (Xk, dk, µk, x̄k) converges to (X, d, µ, x̄) in the
pointed measured Gromov-Hausdorff topology, then µ is an almost uniform reference measure for
(X, d).

Definition 6.4. Let (X, d, µ) be a m.m.s. with µ ∈ P(X) reference measure for (X, d).

• We say that µ is an almost uniform reference measure provided that for µ-a.e. z ∈ X there
exist a constant Cz > 0 and an inversion plan πz satisfying

(6.2) (P2)♯π
z ≤ Cz µ.

• We say that µ is a uniform reference measure provided that there exists a constant C > 0
such that for µ-a.e. z ∈ X there exists an inversion plan πz satisfying (6.2) with Cz ≡ C.

Let us briefly recall the notion of pointed measured Gromov-Hausdorff convergence. A map f :
(X, dX) → (Y, dY ) between metric spaces is an ε-isometry if and only if:

- it almost preserves distances: for all z, w ∈ X ,

|dX(z, w)− dY (f(z), f(w))| ≤ ε;

- it is almost surjective:

∀ y ∈ Y, ∃x ∈ X such that dY (f(x), y) ≤ ε.

The following is a well-known notion of convergence that we will use for pointed m.m.s..

Definition 6.5. Let (Xk, dk, µk, x̄k), (X, d, µ, x̄) be pointed m.m.s. with µk ∈ P(Xk), for all
k ∈ N, and µ ∈ P(X). We say that (Xk, dk, µk, x̄k) → (X, d, µ, x̄) in the pointed measured
Gromov-Hausdorff topology, (pmGH for short) provided there exist sequences Rk → +∞ and
εk → 0 and Borel maps fk : Xk → X so that

i) fk(x̄k) = x̄;

ii) sup {|dk(x, y)− d(fk(x), fk(y))| : x, y ∈ BRk
(x̄k)} ≤ εk;

iii) the εk-neighborhood of fk (BRk
(xk)) contains BRk−εk(x̄);

iv) the sequence of probability measures (fk)♯ µk converges to µ narrowly; i.e calling Cb(X)
the space of bounded continuous functions on X it holds

lim
k→∞

∫

X

ϕd [(fk)♯ µk] =

∫

X

ϕdµ, ∀ϕ ∈ Cb(X).

In Definition 6.5 one can consider also sequences of pointed m.m.s. with measures not necessarily
of total mass one. In the case of measures with possibly infinite total mass, i.e. Radon measures,
one asks the weak convergence of iv) to hold for any f ∈ Cb(X) with bounded support. We can
state the stability result. Recall that during this section we will always assume all the metric
measure spaces to be geodesic, proper, complete and separable.



MEASURE RIGIDITY OF RICCI CURVATURE LOWER BOUNDS 23

Theorem 6.6. Let (Xk, dk, µk, x̄k) be a sequence of pointed m.m.s. which converges in pmGH-
sense to a limit pointed m.m.s. (X, d, µ, x̄). Assume that, for infinitely k, µk is an almost uniform
reference measure for Xk and that for µ-a.e. z ∈ X there exists a sequence {zk}k∈N with zk ∈ Xk,
such that

(6.3) d(z, fk(zk)) → 0 and lim inf
k∈N

Czk <∞.

Then µ is an almost uniform reference measure for (X, d).

Proof. Let z ∈ spt(µ) be as in the assumption and consider a sequence of points zk ∈ Xk so that
d(z, fk(zk)) → 0 and, for infinintely many k’s, zk are inversion points for µk.
Up to extracting a suitable subsequence, for each k ∈ N we can consider the inversion plan πk ∈
P(Xk ×Xk) around zk; moreover, by assumption, there exists C = Cz such that

(P1)♯ π
k = µk, (P2)♯ π

k ≤ Cµk, spt(πk) ⊂ Hk(zk).

It is natural to consider the push-forward of the inversion plan via the εk-isometries as follows:

ηk := (fk, fk)♯ π
k ∈ P(X ×X).

Since by assumption (fk)♯µk → µ, it follows that both (P1)♯ηk = (fk)♯µk and (P2)♯ηk ≤ C ·(fk)♯µk

are tight. This in turn implies that ηk ∈ P(X ×X) are tight and then, by Prokhorov Theorem,
they converge narrowly to some η ∈ P(X ×X), up to subsequences:

∫

X×X

ψ(x, y) dηk →
∫

X×X

ψ(x, y) dη, as k → ∞, ∀ψ ∈ Cb(X ×X).

In the rest of the proof we show that η is an inversion plan for µ at z.

Claim 1: (P1)♯η = µ and (P2)♯η ≤ Cµ.
First of all observe that for ϕ ∈ Cb(X) one has ϕ ◦ Pi ∈ Cb(X ×X), for i = 1, 2. It follows that,
for every ϕ ∈ Cb(X), it holds

∫

X

ϕdµ = lim
k→∞

∫

X

ϕd [(fk)♯µk] = lim
k→∞

∫

X

ϕ d
[

(fk)♯(P1♯πk)
]

= lim
k→∞

∫

X×X

(ϕ ◦ P1) dηk =

∫

X×X

(ϕ ◦ P1) dη =

∫

X

ϕd [(P1)♯η] .

Since ϕ ∈ Cb(X) is arbitrary, we infer that (P1)♯η = µ. By analogous computations, using this
time that (P2)♯(πk) ≤ Cµk, we get that, for every ϕ ∈ Cb(X) with ϕ ≥ 0, it holds

∫

X

ϕd [(P2)♯η] = lim
k→∞

∫

X×X

(ϕ ◦ P2) dηk = lim
k→∞

∫

X

ϕd
[

(fk)♯(P2♯πk)
]

≤ C

∫

X

ϕdµ.

Since ϕ ∈ Cb(X) with ϕ ≥ 0 is arbitrary, we infer that (P2)♯η ≤ Cµ and thus the proof of claim 1
is complete.

Claim 2: spt(η) ⊂ H(z).
Fix a point y ∈ X ×X and an increasing sequence of real numbers Ri → ∞ so that

η (∂BRi
(y)) = 0, ∀ i, k ∈ N,

where the ball is taken in X ×X . Thus for each i ∈ N it holds

lim
k→∞

ηk (BRi
(y)) = η((BRi

(y))) > 0.
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Consider then, for each i ∈ N, the following probability measures:

ξk :=
(

ηk(BRi
(y))

)−1
ηkxBRi

(y), ξ := (η(BRi
(y)))

−1
ηxBRi

(y),

and observe that ξk ⇀ ξ narrowly. For ease of notation we have ignored the dependence on i.
Thanks to the inner regularity of probability measures, for each k ∈ N there exists a compact set
Ck ⊂ BRi

(y) so that

ξk(Ck) ≥ 1− 1

k
, Ck ⊂ (fk, fk)(Hk(zk)) ∩BRi

(y).

Up to subsequences, there exists C ⊂ B̄Ri
(y) so that Ck → C in the Hausdorff distance. Therefore

for any δ > 0 there exists kδ ∈ N so that Ck ⊂ Cδ, for all k ≥ kδ where Cδ denotes the closed
tubular neighborhood of C of radius δ. Using upper-semicontinuity over compact sets of weakly
converging measures, we infer

ξ(Cδ) ≥ lim sup
k→∞

ξk(Cδ) ≥ lim sup
k→∞

ξk(Ck) = 1.

Sending δ → 0, one obtains ξ(C) = 1. It remains to show that C ⊂ H(z). As Ck → C, for each
(x, y) ∈ C there exists a sequence {(xk, yk)}k∈N with

(xk, yk) ∈ Ck ⊂ (fk, fk)(Hk(zk)) ∩BRi
(y), (xk, yk) → (x, y).

Hence (xk, yk) = (fk(uk), fk(wk)), with (uk, wk) ∈ Hk(zk). We can deduce from ii) and iii) of
Definition 6.5 that

d(x, y)− d(x, z)− d(z, y) = lim
k→∞

d(xk, yk)− d(xk, fk(zk))− d(fk(zk), yk)

= lim
k→∞

dk(uk, wk)− dk(uk, zk)− dk(zk, wk)

= 0.

It follows that (x, y) ∈ H(z) and therefore ξ(H(z)) = 1. Hence spt(η) ∩BRi
(y) ⊂ H(z).

Letting Ri → ∞ yields spt(η) ⊂ H(z), as desired. �

The first part of the next corollary follows directly from the statement of Theorem 6.6; the
second claim is instead a consequence of the proof above.

Corollary 6.7. • Let (Xk, dk, µk, x̄k) be a sequence of pointed m.m.s. with µk ∈ P(Xk)
uniform reference measure for (Xk, dk) with the constant in (6.2) uniform in k ∈ N.
Assume the existence of a pointed m.m.s. (X, d, µ, x̄) so that (Xk, dk, µk, x̄k) → (X, d, µ, x̄)
in the pmGH-sense, where µ ∈ P(X). Then µ is a uniform reference measure for (X, d).

• If µ is a uniform reference measure for (X, d) then every point z ∈ spt(µ) is an inversion
point.

Remark 6.8. It is a challenging open problem to replace in Theorem 6.6 the assumption that µk

are almost uniform reference measures satisfying (6.3) by a uniform lower bound on the Ricci cur-
vature of (Xk, dk, µk) (in MCP or CD or RCD sense). This would have as remarkable consequence
that the limit measure on a Ricci limit space is unique up to multiplication by an L1 function
(note that this last fact was already established by Cheeger-Colding [15] via a completely different
argument).
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6.2. Uniqueness of the limit. In order to state and prove the uniqueness result, let us introduce
a last small piece of notation: a sequence of pointed m.m.s. (Xk, dk,mk, x̄k) is said to uniformly
satisfy the qualitative MCP condition if there exist a sequence of radii Rj ↑ +∞ and continuous
functions fj : [0, 1] → R+ with fj(0) = 1, fj(1) = 0 and fj(t) > 0 for any t ∈ [0, 1), j ∈ N, such
that the qualitative MCP condition (4.1) holds for every (Xk, dk,mk, x̄k), k ∈ N, with these fixed
sequence {Rj , fj}j∈N .

Theorem 6.9. Let (Xk, dk, µk, x̄k) be a sequence of essentially non-branching pointed m.m.s. that
uniformly verify the qualitative MCP condition in the above sense. Assume also that, for every
k ∈ N, µk ∈ P(Xk) is a uniform reference measure for (Xk, dk), with the constant in (6.2) uniform
in k ∈ N.

Let (X, d, µ, x̄) and (X, d, ξ, ȳ) be two limit points in the pointed measured Gromov Hausdorff
convergence of the two sequences (Xk, dk, µk, x̄k) and (Xk, dk, µk, ȳk), respectively. If (X, d, µ) and
(X, d, ξ) are both essentially non-branching and

spt(ξ) = spt(µ),

then µ ∼ ξ, i.e. µ≪ ξ and ξ ≪ µ.

Proof. The proof of the stability of the uniform qualitative MCP condition is completely analogous
to the proof of the stability of MCP(K,N), see [34, Theorem 6.8]. It follows that both (X, d, µ) and
(X, d, ξ) verify the qualitative MCP and both are proper. Hence if Ω = spt(ξ) = spt(µ), then by
Corollary 6.7 both µ and ξ are uniform reference measures for (Ω, d), in particular Ip(µ) = Ip(ξ) =
Ω. Then by Theorem 5.3 it follows that ξ ≪ µ and µ ≪ ξ, i.e. ξ ∼ µ. �

7. Inversion over Alexandrov spaces with curvature bounded from below

The goal of this section is to show that, given a compact n-dimensional Alexandrov space
(X, d), the n-dimensional Hausdorff measure Hn is a reference measure. The idea is to combine
the Lipschitz regularity of the exponential map together with the fact that it maps sets of positive
measure to sets of positive measure (see Lemma 7.2), and then use Disintegration Theorem in
order to construct a “local” inversion plan. Suitably iterating this construction one can obtain a
“global” inversion plan and prove Theorem 7.3.

We first recall few definitions and notations that will be needed only during this section.
Let (X, d) be an Alexandrov space with curvature bounded below by k ∈ R, that is (X, d) is a
complete, locally compact, geodesic space of curvature ≥ −k and of Hausdorff dimension n <∞.

7.1. Exponential map. Fix any p ∈ X and consider the set of segments emanating from p

W̃p := {pq : q ∈ X} ,
where pq : [0, 1] → X with pq ∈ Geo, pq0 = p and pq1 = q. Denote then with Σ̃p the set of
equivalence classes of minimal segments emanating from p where pq is equivalent to pr if and only
if one of pq and pr is contained in the other. The space Σ̃p has distance naturally induced by the
angle ∠ between minimal segments from p (for the definition of ∠ see for instance [8] or [35]) . The

completion of Σ̃p is the space of directions and is denoted with Σp. For any minimal segment pq
in X , the symbol vpq denotes the direction at p corresponding to pq. Then for any pq and pr, it
holds

dΣp
(vpq, vpr) := ∠qpr.

For ease of notation we also denote dΣp
with ∠. We say that p is a regular point if (Σp, dΣp

) is

isometric to the standard (n− 1) sphere, Sn−1.
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The tangent cone Kp is obtained from [0,∞) × Σp by identifying together all elements of the
form (0, u0), with u0 ∈ Σp. Its elements are denoted by tu0 for t ≥ 0 and u0 ∈ Σp. The natural
cone distance on Kp is given by

dKp
(tu0, sv0) :=

√

t2 + s2 − 2st cos∠u0v0.

Equivalently, a point p ∈ X is regular if and only if Kp is isometric to Rn. By considering W̃p ⊂ Kp

one can define the exponential map at p as follows

Expp : W̃p → X, Expp(|pq|vpq) := q.

By Toponogov convexity it follows that Exp is Lipschitz on balls: there exists L = L(k) > 0 such
that

(7.1) d(Expp(v),Expp(u)) ≤ L dKp
(v, u), ∀u, v ∈ B

Kp

1 (0),

with L = 1 when k = 0. Denote now with D(Expp) the identification of W̃p in Kp ≡ Rn.

Lemma 7.1. Let p ∈ X be a regular point. Then

(7.2) Ln
(

B
Kp

1 (0) \D(Expp)
)

= 0.

Proof. Consider the cut locus at p, C(p), see (4.6) for its definition. One can prove thatHn(C(p)) =
0. Denote then with E := X \ C(p) and define

logp : E → D(Expp) ⊂ Kp,

so that Expp ◦ logpxE= IdxE. As geodesics do not branch, the definition is well-posed. Moreover,
recalling (7.1), for any x, y ∈ E it trivially holds

d(x, y) ≤ L dKp
(logp(x), logp(y)),

with L depending on k and n, such that L → 1 as k → 0. For any r ∈ (0, 1) consider Xr, the

Alexandrov space X endowed with the rescaled distance r−1d; note that BXr

1 (p) := Br(p) and
that

Hn
Xr

=
1

rn
Hn, curv(Xr) ≥ r2k.

Then we have:
1

rn
Hn(Br(p)) =

1

rn
Hn(E ∩Br(p)) =

1

rn
Hn(E ∩BXr

1 (p))

= Hn
Xr

(E ∩BXr

1 (p))

≤ Ln
r · Ln(logp(E) ∩B1(0))

≤ Ln
r · Ln(D(Expp) ∩B1(0)).

Since p is a regular point, r−nHn(Br(p)) → ωn, where ωn is the volume of the n-dimensional
Euclidean unit ball. Since, as r → 0 we have that curv(Xr) → 0, we get that Ln

r → 1 and the
claim follows. �

We also need the following crucial property of the Exponential map. Since we don’t have a
reference for it, we include our proof.

Lemma 7.2. Let (X, d) be an Alexandrov space with curvature bounded from below and dimension
n. Fix p ∈ X a regular point. Then for any A ⊂ Kp of positive n-dimensional Lebesgue measure,
it holds

Hn
(

Expp(A)
)

> 0.
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Proof. We present here only the proof in the case of non-negative curvature.
Step 1. Suppose by contradiction the claim is false and pick A ⊂ Kp contradicting the claim.

For ease of notation we identify Kp with Rn and for any v ∈ Sn−1 we denote the half line in the
direction v, that is the set {tv : t ≥ 0}, with Span+{v}. Without loss of generality we can also
assume that

L1
(

A ∩ Span+{v}
)

> 0,

for all those v ∈ Sn−1 so that A ∩ Span+{v} 6= ∅.
Observing that on each half line Span+{v} the map Expp is an isometry, and from Disintegration

Theorem

0 = Hn
(

Expp (A)
)

=

∫

Q

(

hα H1
) (

Expp (A) ∩ γα
)

q(dα),

where q is the quotient measure of Hn associated to the rays decomposition and hα H1 the condi-
tional measures associated to the disintegration, we obtain that

q
({

α ∈ Q : Expp(A) ∩ γα 6= ∅
})

= 0.

This implies that we can consider the following set:

Span(A) := {t · v : t ∈ [0, 1], v ∈ Sn−1 s.t. ∃ s > 0, s · v ∈ A} ⊂ R
n,

and still obtain that

Ln (Span(A)) > 0, Hn
(

Expp(Span(A))
)

= 0.

Step 2. We now obtain a contradiction using the non-expanding property of Expp. Since p is

a regular point the volume of the BX
r (p) has the same infinitesimal behavior of rn. So we have

1 = lim
r→0

Hn(BX
r (p))

ωnrn
= lim

r→0

Hn
(

BX
r (p) \ Expp (Span(A))

)

ωnrn

≤ lim
r→0

Ln (Br(0) \ Span(A))
ωnrn

,

where for the last inequality we used Lemma 7.1, the non-exapanding of Expp and ωn is the volume
of the unitary ball in Rn. It follows that 0 ∈ Rn is a point of density 0 for Span(A). From the
definition of Span(A) we conclude that this is possible only if

Hn−1
(

v ∈ Sn−1 : s · v ∈ A, s > 0
)

= 0.

Since the last identity implies that Ln(A) = 0 we have a contradiction and the claim is proved. �

7.2. Inversion plan. We now show that Hn is a reference measure for an n-dimensional compact
Alexandrov space (X, d). More precisely we will construct an inversion plan at Hn-a.e. regular
point p ∈ X .

Theorem 7.3. Let (X, d) be a compact Alexandrov space with curvature bounded from below by k
and Hausdorff dimension n ∈ N. Then Hn is a reference measure for (X, d). More precisely we
show that an inversion plan exists at all regular point p ∈ X so that (4.4) holds.

Proof. Since (X, d) is compact and it is well known that (X, d,Hn) is non-branching and verifies
MCP(k, n). We will construct an inversion plan for any regular point p such that (7.3) holds true.

Step 1. From Proposition 4.6 it follows that for Hn-a.e. p ∈ X

(7.3) Hn
(

e(0,1)(R(p))
)

= Hn(X),



28 FABIO CAVALLETTI AND ANDREA MONDINO

where R(p) = {γ ∈ Geo : γt = p, for some t ∈ (0, 1)}. So we fix once and for all a regular point
p ∈ X so that (7.3) holds true. For ease of notation we denote with Rp the set e(0,1)(R(p)). We
perform the disintegration of Hn

xRp
as in Proposition 4.8:

Hn
xRp

=

∫

S

ηα q(dα), ηα(γα) = 1, q − a.e. α ∈ S,

where γα ∈ Geo(p) is the unique geodesic in Geo(p) through α, S = Q(Rp) is the quotient set and
Q the quotient map. Observe that convexity of Rp is not needed to apply Disintegration theorem,
we only use that for each point in z ∈ Rp, any intermediate point between p and z belongs to
Rp. The same property permits to use MCP to obtain the absolute continuity of the conditional
measures with respect to the Hausdorff measure of dimension 1.

We can write Rp in the following way:

Rp =
∞
⋃

m=2

e(0,1) ({γ ∈ Geo : γt = p, t ≤ 1− 1/m}) =
∞
⋃

m=2

e(0,1) (Rm(p)) =
∞
⋃

m=2

Rp,m.

Note that if γ ∈ Geo(p) is so that γ0 ∈ Rp,m, then γs ∈ Rp,m for all s ∈ [0, 1). Indeed γ0 ∈ Rp,m

implies the existence of ξ ∈ Geo so that

ξ0 = γ0, ξt = p.

with t ≤ 1 − 1/m. Then for any s̄ ∈ (0, 1) there exists τ < t so that ξτ = γs̄. Consider
σ(τ) = t+ (1− t)(t− τ)t−1 and define the new curve

ξτs := ξτ(1−s)+σ(τ)s.

Being a subset of ξ, it follows that ξτ ∈ Geo, moreover ξτ0 = γs̄ and ξτt = p. Hence γs̄ ∈ Rp,m. It
follows that for each α ∈ S either γαs /∈ Rp,m for all s ∈ [0, 1) (but this will never happen because
of the definition of Rp) or there exists a minimal s(α) ∈ [0, 1) so that

γαs ∈ Rp,m, ∀ s ∈ [s(α), 1), γαs /∈ Rp,m, ∀s < s(α).

As Rm,p can be written as countable union of closed sets, α 7→ s(α) is measurable. Therefore we
have the following representation:

Hn
xRp,m

=

∫

S

ηαm qm(dα), ηαm(γα,m) = 1, qm-a.e. α ∈ S,

where γα,m is the reparametrization of γα such that γα,m0 = γαs(α) and γ
α,m
1 = p. To keep notation

simple, we will omit the dependence on m of the geodesic, so γα,m = γα.
Step 2. From the definition of Rp,m and the non-branching property of (X, d), for qm-a.e.

α ∈ S there exists a unique β ∈ S, that we will denote with β(α), such that

(7.4) {(γαs , γβt ) ∈ X ×X : s ∈ [0, 1], t ∈ I(α)} ⊂ H(p),

with I(α) :=
{

s ∈ [0, 1] : s ≥ 1− L(γα)
(

(m− 1)L(γβ(α))
)−1
}

, where L denotes the length of the

geodesic. Indeed notice that for qm-a.e. α ∈ S there exists, as before, ξ ∈ Geo so that

ξ0 = γα0 , ξt = p, ξ1 ∈ γ
β(α)
(0,1), d(p, ξ1) ≥

1

m− 1
L(γα)

and moreover {(ξs, ξτ ) : s ≤ t ≤ τ} ⊂ H(p). From the bound t ≤ 1− 1/m it is immediate to check
that if s ∈ I(α) then

γβ(α)s ∈ ξ(t,1)
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and therefore (7.4) is proved. For the next step we find convenient the following abuse of notation:
we denote with γβ(α) the reparametrization of the whole geodesic γβ(α) ∈ Geo(p) to the interval
I(α).

Step 3. We construct the inversion plan. First of all observe that Rp,1 = ∅; for any m ≥ 2 and
for qm-a.e. α ∈ S, we consider the coupling πm ∈ P(X ×X) defined by

πm := (Id, Fm)♯Hn
x(Rp,m\

⋃m−1
l=1 Rp,l)

,

where

Fm : Rp,m 7−→ Rp,m, Fm(γαt ) := γ
β(α)
1−t .

From Step 2, πm is well defined and by construction we have

πm(X ×X \H(p)) = 0 and (P1)♯πm = Hn
x(Rp,m\

⋃m−1
l=1 Rp,l)

.

The fact that (P2)♯πm ≪ Hn follows easily from Lemma 7.2: indeed if by contradiction it was
false, then there would exist a subset A ⊂ Rp,m so that

(P2)♯πm(A) > 0, Hn(A) = 0,

that can be restated as Hn(F−1
m (A)) > 0 and Hn(A) = 0. But since Expp is locally Lipschitz we

have on one hand Ln
(

logp(F
−1
m (A))

)

> 0 and on the other hand, from Lemma 7.2, Ln
(

logp(A)
)

=

0. Now we can map logp(A) to logp(F
−1
m (A)) using the inversion around the origin composed

with a rescaling on each line, therefore either both have Lebesgue measure 0 or Lebesgue measure
strictly positive. Hence we have a contradiction and (P2)♯πm ≪ Hn.

The desired inversion plan is then given by summation:

π :=

∞
∑

m=2

πm.

Indeed, since Rp has full measure by construction, we have

(P1)♯(π) =

∞
∑

m=2

Hn
x(Rp,m\

⋃m−1
l=1 Rp,l)

= Hn
x⋃∞

m=2 Rp,m
= Hn

xRp
= Hn;

it is also clear that (P2)♯(π) ≪ Hn and π(X ×X \H(p)) =
∑∞

m=2 πm(X ×X \H(p)) = 0.
�

The following is a straightforward consequence of Theorem 5.3 and Theorem 7.3.

Corollary 7.4. Let (X, d) be a compact Alexandrov space with curvature bounded from below by
k and with Hausdorff dimension n ∈ N. Let m be a Borel finite measure on X so that (X, d,m)
verifies the qualitative MCP condition (4.1). If m is concentrated on those regular points of X such
that Hn verifies (4.4), then

m ≪ Hn.

8. Examples and applications

In this final section, we give ”smooth” examples where the inversion plan exists at every point;
as a consequence, the application of Theorem 5.3 will be very neat. We will consider the following
examples: smooth Riemannian manifolds, Alexandrov spaces with bounded curvature, and the
Heisenberg group endowed with the Carnot-Carathéodory distance and the Haar measure.
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8.1. Example 1: Riemannian manifolds.

Proposition 8.1 (The volume measure is reference). Let (M, g) be a complete (non necessarily
compact but connected and without boundary) n-dimensional smooth Riemannian manifold and
denote respectively with dg, µg the Riemannian distance and the volume measure induced by g.
Then µg is a reference measure for (M, dg), in the sense of Definition 5.1. More precisely, we
show that there exists an inversion plan at every point, i.e. Ip(µg) =M .

Proof. For every z ∈M we have to construct an inversion plan πz satisfying (5.1).
Step 1. First of all we claim that there exist compact subsets Kn ⊂ M , n ∈ N, satisfying the

following:

• µg(M \⋃n∈N
Kn) = 0;

• for every x ∈ Kn, there exists a unique minimizing geodesic γxz : [0, 1] → M from x to z
and it is extendable to [0, 1 + 2

n ] as minimizing geodesic;

• the map Φn : Kn →M defined by Φn(x) := γxz(1 +
1
n ) is bi-Lipschitz onto its image.

In order to prove the above properties, first of all recall that the cut locus of z has null measure,
i.e. µg(C(z)) = 0. Moreover for every x ∈ M \ C(z) it is known that z /∈ C(x) (see for instance
[26, Lemma 2.1.11]), so that for every x ∈ M \ C(z) there exists a unique minimizing geodesic
γxz : [0, 1] →M from x to z and it is extendable (still as minimizing geodesic) to a bigger interval
[0, 1 + ε] for some ε = ε(x) > 0. Therefore, called

K̃n :=

{

x ∈M : ∃!γxz ∈ Geo, γxz : [0, 1] →M geodesic from x to z,

and it is extendable to
[

0, 1 +
2

n

]

}

,(8.1)

we get thatM \C(z) = ⋃n∈N
K̃n, so µg(M \⋃n∈N

K̃n) = 0; notice also that Kn ⊂ Kn+1, for every
n ∈ N. By continuous dependence on initial data in the geodesic equation (see for instance the

proofs of [26, Lemma 2.1.5,Proposition 2.1.10]), one has that K̃n ⊂ M is a closed subset. Hence,
called

Kn := K̃n ∩Bn(z),

we get that Kn ⊂ M is a compact subset for every n ∈ N, and µg(M \ ⋃n∈N
Kn) = 0. The se-

cond claim is clear from the definition (8.1) and the third claim follows by the compactness of Kn

and the fact that the exponential map centered at z is a diffeomorphism once restricted toM \C(z).

Step 2 Define a map Φ :M → M in the following way:

• if x ∈ ⋃n∈N
Kn, called n0 := min{n ∈ N : x ∈ Kn}, set Φ(x) := Φn0(x);

• if x ∈M \⋃n∈N
Kn, set Φ(x) := z.

Now let πz := (Id,Φ)♯(µg). Clearly we have (P1)♯(π
z) = µg and, by construction, πz is concen-

trated on H(z). Finally we also infer that (P2)♯(π
z) ≪ µg, indeed for every E ⊂M with µg(E) = 0

we have
[

(P2)♯(π
z)
]

(E) = πz
(

P−1
2 (E)

)

= µg

(

Φ−1(E)
)

= µg

(

Φ−1(E) ∩ (
⋃

n∈N

Kn)
)

= µg

(

⋃

n∈N

Φ−1(E) ∩ (Kn \ ∪1≤j≤n−1Kj)
)

≤
∑

n∈N

µg(Φ
−1
n (E)) = 0,
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where in the last equality we used that Φn are bi-Lipschitz by construction. We conclude that πz is
an inversion plan satisfying (5.1) hence, since z ∈M was arbitrary, µg is a reference measure. �

Corollary 8.2 (MCP measures on complete Riemannian manifolds). Let (M, g) be a (possibly non
compact) complete n-dimensional smooth Riemannian manifold with Ricci curvature bounded from
below:

Ricg ≥ Kg, for some K ∈ R.

Let m ∈ M+(M) be a positive Radon measure with spt(m) = M , such that (M, dg,m) verifies the
qualitative MCP condition (4.1). Then, called µg the Riemannian volume measure of (M, g), we
have

(8.2) m ≪ µg.

If moreover m is a reference measure for (M, dg) and µg(M \ Ip(m)) = 0, then m ∼ µg.

Proof. By Proposition 8.1, we know that µg is a reference measure with Ip(µg) = M , moreover
it is clear that (M, dg, µg) is a non-branching metric space satisfying the qualitative MCP (notice
that, more precisely it satisfies the MCP(K,n) condition). The first claim (8.2) is then a direct
consequence of Theorem 5.3. If m is a reference measure, we can reverse the role of m and µg and
conclude that, if µg(M \ Ip(m)) = 0, then µg ≪ m and hence m ∼ µg. �

8.2. Example 2: Alexandrov spaces with bounded curvature.

Corollary 8.3 (MCP measures on Alexandrov spaces with curv. bounded above and below). Let
(X, d) be an n-dimensional geodesically complete Alexandrov space with curvature bounded from
above and below, and let µ := Hn be the n-dimensional Hausdorff measure. Let m ∈ M+(X)
be a positive Radon measure with spt(m) = X, such that (X, d,m) verifies the qualitative MCP

condition (4.1). Then

(8.3) m ≪ µ.

Proof. Thanks to the structural properties of Alexandrov spaces, the proof is not too far from
the Riemannian one above. Indeed it is well known that the curvature bound from below implies
non-branching, so that trivially any measure is essentially non-branching. On the other hand, the
geodesic completeness combined with the upper curvature bound ensures that every point p ∈ X
has a neighborhood U with the following properties (see for instance [8, Sections 9.1.3, 9.1.7]):

• the closure Ū is compact with Lipschitz boundary ∂U ;
• for every x, y ∈ U there exists a unique geodesic γ of X joining them which is contained

in U , i.e. γ(0) = x, γ(1) = y, γ([0, 1]) ⊂ U ; moreover such geodesic is extendable to a
minimizing geodesic until it intersects ∂U ;

• every triple of points xyz ∈ U satisfies the triangle comparison conditions with the two
model spaces corresponding to the upper and lower curvature bounds.

In particular, since (U, d) is itself an Alexandrov space with curvature bounded from below, it is
non-branching and its n-dimensional Hausdorff measure µxU satisfies the qualitative MCP condi-
tion (4.1) (more precisely it satisfies MCP((n−1)K,n) where K ∈ R stands for the lower curvature
bound, see [34, Proposition 2.8] which is based on the previous work [27]).
In order to apply Theorem 5.3 it is then enough to show that µxU is a reference measure for (U, d)
in the sense of Definition 5.1. To this aim, for every z ∈ U , define the following geodesic inversion
map Φz : U → U with center z

(8.4) Φz(x) = Expz
(

−αz(x) ·Exp−1
z (x)

)

, ∀x ∈ U,
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where Expz is the exponential map of the Alexandrov space centered at z and

αz(x) :=
sup{t : Expz(−t Exp−1

z (x)) ∈ U}
sup{t : Expz(t Exp

−1
z (x)) ∈ U} ;

notice that α : U → (0,+∞) is Lipschitz since U is geodesically convex and ∂U is Lipschitz. Hence,
by comparison with geodesic triangles in the two model spaces corresponding to the upper and
lower curvature bounds we get that the above geodesic inversion Φz : U → U with center z is a
bi-Lipschitz map. Therefore (Φz)♯(µxU) ≪ µxU and, setting

πz := (Id|U ,Φz)♯(µxU),

we get that µgxU is a reference measure for (U, d). The thesis follows then by applying Theorem
5.3 locally to µgxU and mxU , since U was a suitable neighborhood of an arbitrary point p ∈ X . �

Remark 8.4. Let us remark that from the work of Nikolaev [33], it is known that a space with
curvature bounded from above and below in the Alexandrov sense has the structure of a C3,α-
manifold with a C1,α-metric tensor. But, since the geodesic equations involve first order derivatives
of the metric which a priori may not be locally Lipschitz, this remarkable structural result is not so
useful to our purpose, that is to show that there is bi-Lipschitz geodesic inversion at every point.
This is the reason why we used the argument above using classical comparison, and why we believe
that the notion of inversion plan is not trivial also for such spaces.

8.3. Example 3: the Heisenberg group. Let us start by recalling some basic facts about the
n-dimensional Heisenberg group Hn. Such space is a non-commutative stratified nilpotent Lie
group; as a set it can and will be identified with its Lie algebra R

2n+1 ≃ C
n × R. We denote a

point in Hn indifferently by x = (ξ, η, t) = [ζ, t], where ξ = (ξ1, . . . , ξn), η = (η1, . . . , ηn) ∈ Rn,
t ∈ R and ζ = ξ + iη ∈ Cn. The group law in this system of coordinates is given by

[ζ, t] · [ζ′, t′] =



ζ + ζ′, t+ t′ + 2

n
∑

j=1

Imζj ζ̄
′
j



 .

The center of the group is

(8.5) L := {[0, s] ∈ H
n : s ∈ R};

define also L∗, L+, L− restricting s to belong to, respectively, R \ {0}, [0,+∞), (−∞, 0]. The Haar
measure of the group is given by the Lebesgue measure Ln+1 on Hn ≃ R2n+1. The left invariant
vector fields

(8.6) Xj := ∂ξj + 2ηj∂t, Yj := ∂ηj
− 2ξj∂t

Lie generate the Lie algebra of the group (which is R2n+1), the only nontrivial bracket relation
being [Xj , Yj ] = −4Z, where Z := ∂t. We endow Hn with the standard Carnot-Carathéodory
distance dc defined as follows. An absolutely continuous curve γ : [0, T ] → R2n+1 is said to be
horizontal if there exist measurable functions hj : [0, T ] → R such that

(8.7) γ̇(s) =

n
∑

j=1

hj(s)Xj(γ(s)) + hn+j(s)Yj(γ(s)).

We say that γ is sub-unit if moreover
∑2n

j=1 hj(s)
2 ≤ 1 for a.e. s ∈ [0, T ]. Since (X1, . . . , Xn, Y1, . . . , Yn)

Lie generate the Lie algebra of the group it follows from Chow’s Theorem that any couple of points
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x, y in Hn can be joined by a sub-unit curve. Then the Carnot-Carathéodory distance dc between
x and y is defined as

(8.8) dc(x, y) := inf{T > 0 : ∃ a sub-unit curve γ : [0, T ] → H
n such that γ(0) = x, γ(T ) = y}.

It follows easily from the left invariance and homogeneity with respect to the dilations of the vector
fields Xj and Yj that dc is a left invariant and homogeneous distance on Hn. We say that a curve
γ : [0, T ] → Hn is a minimal geodesic with unit speed if

dc(γ(t), γ(t
′)) = |t− t′|, ∀t, t′ ∈ [0, T ].

By the work of Pansu [40] on differentiability of Lipschitz functions between stratified and nilpotent
Lie groups (see also [5, Theorem 3.2]), it follows that for any x, y ∈ Hn there exists a sub-unit (a
fortiori unit speed) minimal geodesic joining x to y. The equations for the minimal geodesics can
be explicitly computed and can be found in the literature (see for instance [20, 31, 32]), here we
follow the presentation of [5] by recalling just the main results that we will need to prove Corollary
8.9.

Set S := {a+ ib ∈ Cn : |a+ ib| = 1}. For any a+ ib ∈ S, v ∈ R and r > 0, we say that a curve
γ : [0, r] → Hn is a curve with parameter (a+ ib, v, r), if γ(s) = (ξ(s), η(s), t(s)), where

ξj(s) :=
bj
(

1− cos vs
r

)

+ aj sin
vs
r

v
r, ηj :=

−aj(1−cos vs
r )+bj sin vs

r

v r, t = 2
vs
r
−sin vs

r

v2 r2, if v 6= 0;

ξj(s) := ajs, ηj := bjs, t ≡ 0, if v = 0.(8.9)

As the next theorem states (for the proof see for instance [5, Theorem 3.4]), these are the only
geodesics in Hn starting from the origin.

Theorem 8.5 (Geodesics in Hn). Sub-unit minimal geodesics starting from the origin 0 are curves
γ with parameter (a + ib, v, r), for some (a + ib, v, r) ∈ S × [−2π, 2π] × (0,+∞). In particular,
curves γ with parameter (a+ ib, v, r) ∈ S× R× (0,+∞) with |v| > 2π are not minimal geodesics.
Conversely, any curve γ with parameter (a+ib, v, r) ∈ S×[−2π, 2π]×(0,+∞) is a sub-unit minimal
geodesic starting from 0. More precisely the following holds:

• For any x = [0, t] ∈ L∗ with t > 0, resp. t < 0, sub-unit minimal geodesics from 0 to x
form a family of curves parametrized on S, each one being obtained from one another by
a rotation around the axis L. More precisely this family is composed by all curves γ with
parameter (a+ ib, 2π,

√
πt), resp. (a+ ib,−2π,

√

π|t|), where a+ ib ∈ S.
• For any x ∈ Hn \ L there exists a unique (a + ib, v, r) ∈ S × (−2π, 2π) × (0,+∞) so

that the curve γ with parameter (a + ib, v, r) joins 0 to x and in particular γ : [0, r] →
Hn is the unique sub-unit minimal geodesic from 0 to x. Moreover such γ is extendable
to a minimizing geodesic (via the same formulas (8.9)) defined on the maximal interval
[0, 2πr/|v|] ⊃ [0, r].

Consider now the endpoint map Φ : S × [−2π, 2π] × (0,+∞) → Hn, (a + ib, v, r) 7→ (ξ, η, t),
which associates to each geodesic γ with parameter (a+ ib, v, r) its endpoint (ξ, η, t) given by

ξj :=
bj(1− cos v) + aj sin v

v
r, ηj :=

−aj(1− cos v) + bj sin v

v
r, t = 2

v − sin v

v2
r2, if v 6= 0;

ξj := ajr, ηj := bjr, t ≡ 0, if v = 0.(8.10)

Theorem 8.5 directly implies that

• the range of Φ is Hn;
• dc(0,Φ(a+ ib, v, r)) = r, for all (a+ ib, v, r) ∈ S× [−2π, 2π]× (0,+∞);
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• the map Φ is bijective from D to Hn \ L, where
(8.11) D := S× (−2π, 2π)× (0,+∞);

• the map Φ is not injective on {(a + ib, v, r) : a + ib ∈ S, |v| = 2π, r > 0} whose image
corresponds to the center L of the group. More precisely

L+ \ {0} = {Φ(a+ ib, v, r) ∈ H
n : a+ ib ∈ S, v = 2π, r > 0} ;

L− \ {0} = {Φ(a+ ib, v, r) ∈ H
n : a+ ib ∈ S, v = −2π, r > 0} .

Moreover, an explicit computation of the Jacobian of Φ (see [32, Page 161] or [25, Propositions
1.7,1.12]) shows that it does not vanish on D. Therefore we have the next

Proposition 8.6. The map Φ is a diffeomorphism from D onto Hn \ L.
The next lemma of linear algebra will be useful in the sequel.

Lemma 8.7. Let v 6= 0 and consider the linear map Lv : R2 → R2 defined by

(x1, x2) 7→ Lv(x1, x2) := (x1 sin v + x2 (1− cos v) , −x1 (1− cos v) + x2 sin v).

Then the operator Av : R2 → R2 given by Av := (L−v)
−1Lv is an orthogonal transformation of

R
2.

Proof. First of all observe that det(Lv) = det(L−v) = 2(1− cos v) 6= 0, since by assumption v 6= 0.
Moreover the inverse map is given by

(8.12) (Lv)
−1 =

1

det(Lv)
LT
v ,

where LT
v is the transpose operator of Lv. We conclude that

AvA
T
v =

1

det(Lv)2
(

LT
−v Lv

) (

LT
−v Lv

)T
= L−1

−v Lv L
−1
v L−v = Id.

�

Let us consider the following map

Ψ : S×
(

(−2π, 0) ∪ (0, 2π)
)

× (0,+∞) → S×
(

(−2π, 0) ∪ (0, 2π)
)

× (0,+∞)

(a+ ib, v, r) 7→
(

Av(a+ ib), −v (2π − |v|)
2|v| ,

2π − |v|
2|v| r

)

,(8.13)

where Av was defined in Lemma 8.7, and Av(a+ ib) is a short notation for the 2n-vector (Av(aj +
ibj))j=1,...,n. Notice that Av maps S to S thanks to Lemma 8.7. The next lemma is the key to
show that the Heisenberg group Hn enters into the framework of Theorem 5.3.

Lemma 8.8. The following hold:

(1) The map Ψ : S ×
(

(−2π, 0) ∪ (0, 2π)
)

× (0,+∞) → S ×
(

(−2π, 0) ∪ (0, 2π)
)

× (0,+∞)

defined in (8.13) is a diffeomorphism.
(2) The map

(8.14) Λ : Hn \
(

L∪{[ζ, t] ∈ H
n : t = 0}

)

→ H
n \
(

L∪{[ζ, t] ∈ H
n : t = 0}

)

, Λ := Φ◦Ψ◦Φ−1

is a diffeomorphism. Moreover

(8.15) dc(x,Λ(x)) = dc(x, 0) + dc(0,Λ(x)), ∀x ∈ H
n \
(

L ∪ {[ζ, t] ∈ H
n : t = 0}

)

.
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In other words (x,Λ(x)) ∈ H(0), for every x ∈ Hn \
(

L ∪ {[ζ, t] ∈ Hn : t = 0}
)

, where

H(0) was defined in (2.2).

Proof. The first claim directly follows from the formula (8.13) and Lemma 8.7, we pass then to
the proof of the second claim. Recalling the definition (8.10) of Φ, Theorem 8.5 and Proposition
8.6, we have that

Φ : S×
(

(−2π, 0) ∪ (0, 2π)
)

× (0,+∞) → H
n \
(

L ∪ {[ζ, t] ∈ H
n : t = 0}

)

is a diffeomorphism.

In particular, for every x ∈ Hn \
(

L ∪ {[ζ, t] ∈ Hn : t = 0}
)

we can set

(8.16) (a+ ib, v, r) := Φ−1(x), with (a+ ib, v, r) ∈ S×
(

(−2π, 0) ∪ (0, 2π)
)

× (0,+∞).

Let us denote with γa+ib,v,r the curve with parameter (a + ib, v, r) defined in (8.9). By Theorem
8.5, we know that γa+ib,v,r : [0, 2πr/|v|] → Hn is a minimizing geodesic and, by construction,
γa+ib,v,r(0) = 0, γa+ib,v,r(r) = x. Clearly the reverse-parametrized curve

s ∈ [0, r] 7→ γa+ib,v,r(r − s)

is a geodesic from x to 0. Since x−1 = −x and the left translation in Hn is an isometry, we infer
that

s ∈ [0, r] 7→ −x · γa+ib,v,r(r − s)

is a geodesic from 0 to −x = x−1. On the other hand, from the definition of Av in Lemma 8.7 and
the explicit expression of the endpoint map Φ given in (8.10), it is readily checked that

Φ(Av(a+ ib),−v, r) = −Φ(a+ ib, v, r) = −x.
In other words γAv(a+ib),−v,r : [0, r] → Hn is a geodesic from 0 to −x. Since x /∈ L, the geodesic
from 0 to −x is unique thanks to Theorem 8.5, so in particular we have that

γAv(a+ib),−v,r(s) = −x · γa+ib,v,r(r − s), ∀s ∈ [0, r].

Recalling that actually γAv(a+ib),−v,r is length minimizing on the larger interval [0, 2πr/|v|], it
follows that we can extend s 7→ γa+ib,v,r(r − s) up to [0, 2πr/|v|] to a length minimizing geodesic.

By observing that |v|+2π
2|v| r ∈ (r, 2πr/|v|), in particular we get

γAv(a+ib),−v,r

(2π − |v|
2|v| r

)

= γa+ib,v,r

( |v| − 2π

2|v| r
)

dc

(

x, γAv(a+ib),−v,r

(2π − |v|
2|v| r

)

)

= dc(x, 0) + dc

(

0, γAv(a+ib),−v,r

(2π − |v|
2|v| r

)

)

.(8.17)

The explicit parametrizations given in (8.9) and (8.10) imply that
(8.18)

γAv(a+ib),−v,r

(2π − |v|
2|v| r

)

= Φ

(

Av(a+ ib), −v (2π − |v|)
2|v| ,

2π − |v|
2|v| r

)

= Φ ◦Ψ ◦Φ−1(x) = Λ(x),

where we used (8.16), (8.13) and (8.14). The claim (8.15) follows then by the combination of (8.17)
and (8.18); finally, Λ is a diffeomorphism since composition of diffeomorphisms. �

We are now ready to prove the main result of this subsection.
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Corollary 8.9. Let (Hn, dc) be the n-dimensional Heisenberg group endowed with the Carnot-
Carathéodory distance and let m ∈ M+(Hn) be a positive Radon measure with spt(m) = H

n, such
that (Hn, dc,m) satisfies the qualitative MCP condition (4.1). Then m is absolutely continuous with
respect to the Haar measure on (Hn, dc), which coincides with the (2n+1)-Lebesgue measure L2n+1

under the identification Hn ≃ R2n+1.

Proof. First of all it is well known (for example it follows from Theorem 8.5) that (Hn, dc) is a non-
branching geodesic metric space, moreover the Heisenberg group (Hn, dc) endowed with the Haar
measure L2n+1 satisfies the qualitative MCP condition (4.1) (more precisely it satisfies MCP(0, N)
if and only if N ≥ 2n + 3 by the work of Juillet [25]). In order to apply Theorem 5.3 it is then
enough to show that L2n+1 is a reference measure for (Hn, dc).
To this aim, observe since that the map

Λ : Hn \
(

L ∪ {[ζ, t] ∈ H
n : t = 0}

)

→ H
n \
(

L ∪ {[ζ, t] ∈ H
n : t = 0}

)

defined in (8.14) is a diffeomorphism, and since

L2n+1 (L ∪ {[ζ, t] ∈ H
n : t = 0}) = 0,

then

(8.19) Λ♯(L2n+1) ≪ L2n+1.

Defining then π0 := (L2n+1,Λ♯(L2n+1)), we get that π0 is concentrated on the graph of Λ, which
is contained in H(0) thanks to Lemma 8.8. Therefore π0(X ×X \H(0)) = 0 and (5.1) holds at
0. The construction of πx for x ∈ Hn, satisfying (5.1), can be reduced to the one of π0 just by
conjugation with x. We conclude that Ip(L2n+1) = Hn and the thesis follows directly by Theorem
5.3. �
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