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Introduction

This thesis is devoted to the topic which I investigated more in my years of PhD: the theory
of Sobolev and BV Spaces in Metric Measure Spaces. The first attempts to define spaces
of weakly differentiable functions in Rn, what we now call Sobolev Spaces, go back to the
beginning of the twentieth century. The theory then reached a mature stage at the end of the
’50. We now know that several equivalent definitions can be given, but we refer only to three
of them.

(1) The H definition, namely the definition by relaxation: H1,p(Rn) is defined as the closure
of C∞c (Rn) under the norm ‖u‖p1,p = ‖u‖pp + ‖∇u‖pp. Another equivalent definition of
H1,p (which will be more useful in our point of view) is simply the domain of finiteness
of the relaxation of the functional

Fp(u) =

{´
Rn |∇u|

p dx if u ∈ C∞c (Rn)

+∞ otherwise
,

in the Lp topology. There exists also a local representation for the relaxation of this
functional. Indeed, for every u ∈ H1,p we can define the relaxed gradient ∇u as the weak
limit of ∇un where un → u in Lp and supn ‖∇un‖p < +∞, and this limit is unique.

(2) The W definition, namely the definition via an integration by parts formula: W 1,p(Rn)
is the set of functions u ∈ Lp such that there exists a function g ∈ Lp(Rn,Rn), called
weak gradient of u, such that

ˆ
Rn

div(ϕ)udx = −
ˆ
Rn
〈ϕ, g〉 dx ∀ϕ ∈ C∞c (Rn;Rn). (1)

(3) The BL definition, namely the definition on curves: BL1,p(Rn) is the set of function
u such that u(·, x2, . . . , xn) : R → R has an absolutely continuous representative for
L n−1-a.e. (x2, . . . , xn), and ∂u

∂x1
∈ Lp(Rn), and a similar property holds for every other

direction x2, . . . , xn.

These three definitions turn out to be equivalent, but the last definition, due to Beppo Levi
[60], wasn’t taken in great consideration, because it is not frame indifferent and it doesn’t seem
very useful either. A major improvement of (3), overcoming the lack of frame indifference,

iii



iv Introduction

is due to Fuglede: we look at the behaviour of the function u not only along the lines t 7→
(t, x2, . . . , xn) but along all rectifiable curves. In fact in [37] he proved that a function u is in
H1,p if and only if the function u ◦ γ is absolutely continuous for “almost every” curve γ and
| d
dtu ◦ γ| ≤ g|γ

′| for some g ∈ Lp: we can summarize this condition by saying that

|u(γ1)− u(γ0)| ≤
ˆ 1

0
g(γt)|γ′t| dt for “almost every” curve γ.

The minimal function that realizes this property is precisely the modulus of the weak
gradient |∇u|. Of course, it is important to recall the concept of negligibility of sets of curves
used by Fuglede, but we will come back to this later.

In the last years, since the seminal work of Cheeger [25], a large attention has been devoted
to the field of Sobolev Spaces in metric measure spaces (X, d,m), see for example [9], [43], [45],
[51], [75]; the mild assumptions we require on this metric measure structure is that (X, d) is
a separable and complete metric space, and that m is finite on bounded sets.

In [25] a major role is played by functions which have an upper gradient : we recall that a
nonnegative Borel function g : X → [0,∞] is an upper gradient for f if

|f(γ1)− f(γ0)| ≤
ˆ
γ
g ds ∀γ rectifiable, (2)

where γ is said to be rectifiable if γ ∈ AC([0, 1];X). The set of upper gradients of f is denoted
by UG(f). The basic examples of functions which have an upper gradient are Lipschitz
functions: given a Lipschitz function f we have that lipa(f) ∈ UG(f), where lipa(f) is the
asymptotic Lipschitz constant

lipa(f) = lim sup
y,z→x

|f(y)− f(z)|
d(y, z)

. (3)

Cheeger’s definition of Sobolev Space in metric measure spaces is based upon the H defi-
nition, replacing the role of C∞c functions with functions which have an Lp-integrable upper
gradient. Another similar definition, used for example in [4], uses only Lipschitz functions
with bounded support as “good” functions. Already in [25] these definitions are seen to be
equivalent, but under the assumption that m is doubling (namely that there exists a constant
C > 1 such that m(B(x, 2r)) ≤ Cm(B(x, r))), and a (1, p)-Poincaré inequality holds true, that
is, there exist constants τ > 1, C > 0 such that

min
m∈R
−
ˆ
B(x0,r)

|u(x)−m|dm ≤ C

(
−
ˆ
B(x0,τr)

|g|p
)1/p

∀g ∈ UG(f).

These two conditions will be often recalled as doubling measure and p-Poincaré assumption.
Up to now, we have already two different definitions of Sobolev Spaces in general metric

spaces:

(1a) H1,p
c (X, d,m) is the domain of finiteness of the functional

Fpc (f) = inf

{
lim inf
n→∞

ˆ
X
|gn|p dm : fn → f in Lp, gn ∈ UG(fn)

}
;
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(1b) H1,p
v (X, d,m) is the domain of finiteness of the functional

Fpv(f) = inf

{
lim inf
n→∞

ˆ
X
|lipa(fn)|p dm : fn → f in Lp, fn ∈ Lip0(X, d)

}
.

Unfortunately there is not uniqueness of the weak limit of lipa(fn) as fn → f in Lp and
so a good definition for the (modulus of the) gradient is to consider, among all possible weak
limits, the one with minimal Lp-norm. This will be called the minimal relaxed gradient.

As for the generalization of BL space, we have to introduce some concept of negligibility
of set of curves. The original Fuglede approach on Rn has been generalized in metric measure
spaces by Koskela, MacManus in [57] and subsequently by Shanmugalingam in [75], and it
relies on the p-modulus Modp,m. We recall that, given a set Γ of curves, we have

Modp,m(Γ) = inf

{ˆ
X
fp dm : f : X → [0,∞] Borel,

ˆ
γ
f ds ≥ 1 for all γ ∈ Γ

}
. (4)

A property is said to hold for Modp,m-almost every curve if the set of curves on which it fails
is Modp,m-negligible. Another relevant notion of negligibility of curves is obtained via the
so-called q-plans (introduced in [10] for q = 2 and then in [9] for a generic q ∈ (1,+∞)), that
are probability measures on AC([0, 1];X), concentrated on ACq, such that (et)]π ≤ C(π)m
for some C(π) ≥ 0. Then a Borel set Γ ⊂ C([0, 1];X) is said p-negligible if π(Γ) = 0 for every
q-plan π. Now we are ready to state two more definitions of Sobolev Spaces:

(3a) N1,p(X, d,m) is the set of function f such that there exists g ∈ Lp(X,m) such that

|f(γ1)− f(γ0)| ≤
ˆ 1

0
g(γt)|γ̇t|dt for Modp,m-almost every curve γ.

The minimal such g is called the minimal p-upper gradient.

(3b) BL1,p(X, d,m) is the set of function f such that there exists g ∈ Lp(X,m) such that

|f(γ1)− f(γ0)| ≤
ˆ 1

0
g(γt)|γ̇t| dt for p-almost every curve γ.

The minimal such g is called the minimal p-weak upper gradient.

In [9] it is proved that (1a), (1b), (3a), (3b) are equivalent; it is important to underline
that we have not only equivalence of spaces, but also equality for the minimal gradients. From
now on we will refer to any of this equivalent Sobolev Spaces as W 1,p(X, d,m).

In this thesis we will describe and improve the results present in the articles [4]–[6], [34]
about Sobolev and BV spaces written in these years, as well as new unpublished results.

The first Chapter contains some preliminary results needed in the the rest of the thesis;
the other chapters are devoted to specific parts of the theory, usually based on one of the
articles. We give briefly an outline here and then we introduce every specific Chapter with a
little more specifics.

• Chapter 2: in [6], in collaboration with L. Ambrosio and G. Savaré, we look more closely
to the relation between Modp,m-negligibility and p-negligibility (also at the level of sets
of measures), providing a dual formulation of Modp,m. We obtain also another proof that
N1,p = BL1,p, exploiting the structural properties of the set where the upper gradient
inequality (2) fails.
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• Chapter 3: we generalize the equivalence theorem in [9] to the Orlicz-Sobolev case.

• Chapter 4: in [5], in collaboration with L. Ambrosio, we prove the analogous of the
equivalences stated before in the context of BV spaces.

• Chapter 5: in [4], in collaboration with L. Ambrosio and M. Colombo, we prove that
under the mild assumption that (X, d) is a doubling space, the space W 1,p(X, d,m) is
reflexive, extending the result in [25], where the author proves it under doubling and
Poincaré assumptions.

• Chapter 6: in [34], in collaboration with G. Speight, we answer positively to the question
“does |∇f |w,p depends on p?”, showing for every α > 0 the existence of a measure µ on
R, absolutely continuous with respect to L 1, such that for any Lipschitz function f we
have |∇f |p,µ = 0 for p ≤ 1 + α while |∇f |p,µ = |f ′| for p > 1 + α.

• Chapter 7: we extend theW definition of Sobolev Space to a very general metric setting,
with an integration by parts formula made up with Weaver’s derivations. This latter
chapter contains also an (abstract) characterization of the weak gradient in Hilbert
spaces endowed with a general measure, extending a previous result in [22].

Negligibility of set of curves

The notion of p-modulus Modp(Γ) for a family Γ of curves has been introduced by Beurling
and Ahlfors in [1] and then it has been deeply studied by Fuglede in [37], as we recalled, also
in connection with the theory of Sobolev Spaces in Rn. It is obvious that the definition of
p-Modulus (4) (as the notion of length) is parametric-free, because the curves are involved in
the definition only through the curvilinear integral

´
γ f . Furthermore, as in [37], one can even

go a step further, realizing that this curvilinear integral can be written as
ˆ
X
f dJγ,

where Jγ is a positive finite measure in X, the image under γ of the measure |γ̇|L 1 I,
namely

Jγ(B) =

ˆ
γ−1(B)

|γ̇t|dt ∀B ∈ B(X) (5)

(here L 1 I stands for the Lebesgue measure on I). It follows that one can define in a similar
way the notion of p-modulus for families of measures in X.

In more recent times, Koskela-Mac Manus [57] and then Shanmugalingham [75] used the
p-modulus to define the notion of p-weak upper gradient for a function f , while, even more
recently, Ambrosio, Gigli and Savaré introduced another notion of weak upper gradient, based
on suitable classes of probability measures on curves, described more in detail in the final
section of this chapter.

Since the axiomatization in [11] is quite different and sensitive to parameterization, it is
a surprising fact that the two approaches lead essentially to the same Sobolev space theory
(see Remark 5.12 of [11]). We say essentially because, strictly speaking, the axiomatization of
[11] is invariant (unlike Fuglede’s approach) under modification of f in m-negligible sets and
thus provides only Sobolev regularity and not absolute continuity along almost every curve;
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however, choosing properly representatives in the Lebesgue equivalence class, the two Sobolev
spaces can be identified.

With the goal of understanding deeper connections between the Modp,m and the proba-
bilistic approaches, we show in Chapter 2 that the theory of p-modulus has a “dual” point of
view, based on suitable probability measures π in the space of curves; the main difference with
respect to [11] is that, as it should be, the curves here are non-parametric, namely π should
be rather thought as measures in a quotient space of curves. Actually, this and other techni-
cal aspects (also relative to tightness, since much better compactness properties are available
at the level of measures) are simplified if we consider p-modulus of families of measures in
M+(X) (the space of all nonnegative and finite Borel measures on X), rather than p-modulus
of families of curves: if we have a family Γ of curves, we can consider the family Σ = J(Γ)
and derive a representation formula for Modp,m(Γ), see Section 2.4. Correspondingly, π will
be a measure on the Borel subsets of M+(X).

Assuming only that (X, d) is complete and separable and m is finite, we prove in Theo-
rem 2.3.1 that for all Borel sets Σ ⊂M+(X) (and actually in the more general class of Souslin
sets) the following duality formula holds:[

Modp,m(Σ)
]1/p

= sup
η

η(Σ)

cq(η)
= sup
η(Σ)=1

1

cq(η)
,

1

p
+

1

q
= 1. (6)

Here the supremum in the right hand side runs in the class of Borel probability measures η
in M+(X) with barycenter in Lq(X,m), so that

there exists g ∈ Lq(X,m) s.t.
ˆ
µ(A) dη(µ) =

ˆ
A
g dm ∀A ∈ B(X);

the constant cq(η) is then defined as the Lq(X,m) norm of the “barycenter” g. A byproduct
of our proof is the fact that Modp,m is a Choquet capacity in M+(X), see Theorem 2.3.1. In
addition, we can prove in Corollary 2.3.2 existence of maximizers in (6) and obtain out of this
necessary and sufficient optimality conditions, both for η and for the minimal f involved in
the definition of p-modulus. See also Remark 2.1.3 for a simple application of these optimality
conditions involving pairs (µ, f) on which the constraint is saturated, namely

´
X f dµ = 1.

In the second part of Chapter 2 we show how the basic duality result of the first part can
be read in terms of measures and moduli in spaces of curves. For non-parametric curves this
is accomplished in Section 2.4, mapping curves in X to measures in X with the canonical map
J in (5); in this case, the condition of having a barycenter in Lq(X,m) becomes∣∣∣∣ˆ ˆ 1

0
f(γt)|γ̇t|dtdπ(γ)

∣∣∣∣ ≤ C‖f‖Lp(X,m) ∀f ∈ Cb(X). (7)

Section 2.5 is devoted instead to the case of parametric curves, where the relevant map curves-
to-measures is

Mγ(B) := L 1(γ−1(B)) ∀B ∈ B(X).

In this case the condition of having a parametric barycenter in Lq(X,m) becomes∣∣∣∣ˆ ˆ 1

0
f(γt) dt dπ(γ)

∣∣∣∣ ≤ C‖f‖Lp(X,m) ∀f ∈ Cb(X). (8)

The parametric barycenter can of course be affected by reparameterizations; a key result,
stated in Theorem 2.5.5, shows that suitable reparameterizations improve the parametric
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barycenter from Lq(X,m) to L∞(X,m). Then, in Section 2.6 we discuss the notion of null set
of curves according to [11] and [9] (where (8) is strengthened by requiring

∣∣´ f(γt) dπ(γ)
∣∣ ≤

C‖f‖L1(X,m) for all t, for some C independent of t) and, under suitable invariance and stability
assumptions on the set of curves, we compare this notion with the one based on p-modulus.
Eventually, in Section 2.7 we use there results to prove that if a Borel function f : X → R
has a continuous representative along a collection Γ of the set AC∞([0, 1];X) of the Lipschitz
parametric curves with Modp,m

(
M(AC∞([0, 1];X) \ Γ)

)
= 0, then it is possible to find a

distinguished m-measurable representative f̃ such that m({f 6= f̃}) = 0 and f̃ is absolutely
continuous along Modp,m-a.e.-nonparametric curve. By using these results to provide a more
direct proof of the equivalence of the two above mentioned notions of weak upper gradient,
where different notions of null sets of curves are used to quantify exceptions to (2).

Orlicz-Sobolev spaces in metric measure spaces

In Chapter 3 we generalize the equivalence result in [9] to the Orlicz-Sobolev case. Orlicz spaces
are a natural generalization of Lebesgue spaces Lp(X,m), where the role of the function t 7→ tp

is replaced by an even convex function Φ : R → [0,∞] such that Φ(0) = 0. Then one can
define the norm

‖g‖(Φ),m =

{ˆ
X
fg dm :

ˆ
X

Ψ(f) ≤ 1

}
,

where Ψ is the convex conjugate of Φ. The Orlicz space LΦ(X,m) is simply the set of m-
measurable functions which have finite (Φ)-norm.

The Sobolev-Orlicz space W 1,Φ(X, d,m) is, roughly speaking, the set of functions f ∈ L1

such that |∇f | ∈ LΦ. In the Euclidean case this makes sense since there is an a priori gradient
(namely the distributional gradient), while in general metric measure spaces this is no more
possible, and thus one can think of several different definitions, as in the W 1,p case. In the
literature, the dominant approach is the Newtonian space one, based upon the Φ-modulus:
this space is called N1,Φ(X, d,m), and the definition follows precisely the one we introduced
before for the homogeneous case: a function g ∈ LΦ(X,m) is a Φ-upper gradient for f if
the upper gradient inequality (2) holds for Mod(Φ),m-almost every curve γ (see [2], [78] and
subsequently [65], [68] for the generalization to Banach and quasi-Banach function spaces).

Here we give different definitions, in the spirit of (1a) and (3b): first we define the space
H1,Φ
v (X, d,m) as the domain of finiteness of the following functional

FΦ
v (f) = inf

{
lim inf
n→∞

‖lipa(fn)‖(Φ),m : fn → f in L1(X,m), (fn) ⊂ Lip0(X, d)
}
.

The definition of BL1,Φ(X, d,m) is a little more subtle: f ∈ BL1,Φ if there exists a constant
E ≥ 0 such that for every finite Radon measure π on AC([0, 1];X) such that (et)]π ≤ Cm for
some C(π) ≥ 1, we have

ˆ
|f(γ0)− f(γ1)|dπ ≤ E · C(π) ·

ˆ 1

0
‖γ̇t‖Ψ,π dt. (9)

Notice that it is necessary to have the weaker integral form in order to deal with a generic
N -function Φ (see also the BV case below for comparison). The main result of this chapter
is that BL1,Φ = H1,Φ

v and moreover FΦ
v (f) = FΦ

BL(f), where FΦ
BL(f) is the minimal constant

E such that (9) holds. That is, Lipschitz functions are dense in energy in BL1,Φ.
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The proof that BL1,Φ(X, d,m) includes H1,Φ
v (X, d,m) and that FΦ

BL ≤ FΦ
v is not too

difficult. Notice that proving equivalence of the two definitions amounts to passing from
a (quantitative) information on the behavior of the function along random curves to the
construction of a Lipschitz approximation. Remarkably, this result does not rely on doubling
and Poincaré assumptions on the metric measure structure. As in [9] (based essentially on
ideas come from [11], dealing with the case of W 1,2 Sobolev spaces), the proof is not really
constructive: it is obtained with optimal transportation tools and using the theory of gradient
flows of convex and lower semicontinuous functionals in Hilbert spaces. Specifically, in our
case we shall use the gradient flow in L2(X,m) of the functional f 7→ FΦ

v (f). We will not enter
in further details of the proof; a summary with the main ideas can be found at the beginning
of the chapter.

A consequence of this equivalence theorem is that f ◦ γ is BV along Φ-almost every curve
whenever f ∈ BL1,Φ, but we can’t expect more, as shown by the example in Subsection 3.4.1,
where a characteristic function is proved to belong to H1,Φ

v , where Φ(t) = (t+ 1)log(t+ 1)− t.
In Section 3.4.2 the easier case when Ψ is doubling is treated, i.e. when there exists C > 1

such that Ψ(2x) ≤ CΨ(x) for all x ∈ R. In this case we have that f ◦ γ is W 1,1 along Φ-
almost every curve, and also there exists a well defined gradient |∇f |w,Φ; moreover under this
assumption, in Theorem 3.5.6 we prove that

H1,Φ
v (X, d,m) = BL1,Φ(X, d,m) = N1,Φ(X, d,m),

along with the equality between |∇f |w,Φ and the minimal Φ-upper gradient. Then a strict
relationship between W 1,Φ(X, d,m) and the L1-relaxation of the functional

GΦ(f) =

{´
X Φ(lipa(f)) dm if f ∈ Lip0(X, d)

+∞ otherwise

is made clear, proving a representation formula that involves the Φ-weak gradient |∇f |w,Φ. All
these results in the case in which Ψ is doubling are achieved thanks to a Mazur-type lemma
for weak-∗ convergence in LΦ(X,m), contained in Lemma 3.4.3.

Functions of Bounded Variation in metric measure spaces

In this chapter we provide a positive answer to a problem raised in [9]. Recall that, following
the notion of BV function given in [67], a function f ∈ L1(X,m) belongs to BV∗(X, d,m)
if there exist Lipschitz functions with bounded support fn convergent to f in L1(X,m) such
that

lim sup
n→∞

ˆ
X

lipa(fn) dm <∞.

By localizing this construction one can define

|Df |∗(A) := inf

{
lim inf
n→∞

ˆ
A

lipa(fn) dm : (fn) ⊂ Liploc(A), fh → f in L1(A)

}
, (10)

for any open set A ⊆ X. In [67], it is proved (with minor variants in the definition, namely
the convergence is in L1

loc and the asymptotic Lipschitz constant is replaced by the slope) that
this set function is the restriction to open sets of a finite Borel measure, called total variation
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measure and, following basically the same strategy, we will extend this result to our more
general setup.

Then we consider a new definition of BV function in the spirit of the theory of weak,
rather than relaxed, upper gradients [57], [75] that we already recalled. Without entering in
this introduction in too many technical details, we say that f ∈ w−BV (X, d,m) if there exists
a finite Borel measure µ with this property: for any probability measure π on Lip([0, 1];X)
the function t 7→ f ◦ γt belongs to BV (0, 1) for π-a.e. curve γt and

1

C(π)‖Lip(γ)‖L∞(π)

ˆ
γ]|D(f ◦ γ)|dπ ≤ µ.

Here C(π) is the least constant C such that (et)]π ≤ Cm for all t ∈ [0, 1], where et(γ) := γt
are the evaluation maps at time t. The smallest measure µ with this property will be denoted
by |Df |w.

We will prove that these two definitions are equivalent, and we have also |Df |∗ = |Df |w;
this result extends also to intermediate spaces, such as the one considered by Cheeger, and to
even weaker definitions, in the spirit of the BL definition in the Orlicz case.

The proof follows the same lines of the equivalence theorem in Chapter 3. We recall that
the functional of which we take the gradient flow, namely f 7→ |Df |∗(X), is also called total
variation flow in image processing [16]. We will not enter into details of the proof here but
we just mention that some properties of BV functions readily extend to the more general
framework considered in this chapter. For instance, the coarea formula

|Df |∗ =

ˆ ∞
0
|Dχ{f>t}|∗ dt+

ˆ 0

−∞
|Dχ{f<t}|∗ dt

can be achieved following verbatim the proof in [67]. On the other hand, more advanced
facts, as the decomposition alone curves in absolutely continuous and singular part of the
derivative (see [7, Section 3.11]), seem to be open at this level of generality: for instance,
Example 4.5.4 shows that, in contrast to what happens in Euclidean metric measure spaces
(here the supremum is understood in the lattice of measures), the measure

sup
π

1

C(π)‖Lip(γ)‖L∞(π)

ˆ
γ]|Da(f ◦ γ)|dπ,

which is easily seen to be smaller than the absolutely continuous part of |Df |w, may be strictly
smaller.

Reflexivity and discrete approximation of the gradient

In [25], Cheeger investigated the fine properties of Sobolev functions on metric measure spaces,
with the main aim of providing generalized versions of Rademacher’s theorem and, along with
it, a description of the cotangent bundle. Assuming that the Polish metric measure structure
(X, d,m) is doubling and satisfies a Poincaré inequality (see Definitions 1.9.1 and 5.2.1 for
precise formulations of these structural assumptions) he proved that the Sobolev spaces are
reflexive and that the q-power of the slope is Lq(X,m)-lower semicontinuous, namely

fh, f ∈ Lip(X),

ˆ
X
|fh − f |q dm→ 0 =⇒ lim inf

h→∞

ˆ
X
|∇fh|q dm ≥

ˆ
X
|∇f |q dm. (11)
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Here the slope |∇f |, also called local Lipschitz constant, is defined by

|∇f |(x) := lim sup
y→x

|f(y)− f(x)|
d(y, x)

.

These results come also as a byproduct of a generalized Rademacher’s theorem, which can
be stated as follows: there exist an integer N , depending on the doubling and Poincaré
constants, a Borel partition {Xi}i∈I of X and Lipschitz functions f ij , 1 ≤ j ≤ N(i) ≤ N , with
the property that for all f ∈ Lip(X) it is possible to find Borel coefficients cij , 1 ≤ j ≤ N ,
uniquely determined m-a.e. on Xi, satisfying

∣∣∣∇(f −
N(i)∑
j=1

cij(x)f ij)
∣∣∣(x) = 0 for m-a.e. x ∈ Xi. (12)

It turns out that the family of norms on RN(i)

‖(α1, . . . , α
i
N(i))‖x :=

∣∣∣∇N(i)∑
j=1

αjf
i
j

∣∣∣(x)

indexed by x ∈ Xi satisfies, thanks to (12),

‖(ci1(x), . . . , ciN(i)(x))‖x = |∇f |(x) for m-a.e. x ∈ Xi.

Therefore, this family of norms provides the norm on the cotangent bundle on Xi. Since
N(i) ≤ N , using for instance John’s lemma one can find Hilbertian equivalent norms | · |x with
bi-Lipschitz constant depending only on N . This leads to an equivalent (but not canonical)
Hilbertian norm and then to reflexivity. In this chapter we aim mostly at lower semicontinuity
and reflexivity: we recover the latter (and separability as well) without assuming the validity
of the Poincaré inequality and replacing the doubling assumption on (X, d,m) with a weaker
assumption, namely the geometric doubling of (suppm, d).

In particular we prove that the Sobolev space W 1,q(X, d,m) is reflexive when 1 < q <∞,
(suppm, d) is separable and doubling, and m is finite on bounded sets. Instead of looking for
an equivalent Hilbertian norm (whose existence is presently known only if the metric measure
structure is doubling and the Poincaré inequality holds), we rather look for a discrete scheme,
involving functionals Fδ(f) of the form

Fδ(f) =
∑
i

1

δq

∑
Aδj∼Aδi

|fδ,i − fδ,j |qm(Aδi ).

Here Aδi is a well chosen decomposition of suppm on scale δ, fδ,i = −́
Aδi
f and the sum involves

cells Aδj close to Aδi , in a suitable sense. This strategy is very close to the construction of
approximate q-energies on fractal sets and more general spaces, see for instance [52], [76].

It is fairly easy to show that any Γ-limit point F0 of Fδ as δ → 0 satisfies

F0(f) ≤ c(cD, q)
ˆ
X

lipa(f)q dm for all Lipschitz f with bounded support, (13)
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where cD is the doubling constant of (X, d) (our proof gives c(cD, q) ≤ 6qc3
D). More delicate

is the proof of lower bounds of F0, which uses a suitable discrete version of the weak upper
gradient property and leads to the inequality

1

4q

ˆ
X
|∇f |qw,q dm ≤ F0(f) ∀f ∈W 1,q(X, d,m). (14)

Combining (13), (14) and the equivalence of weak gradients gives

1

4q

ˆ
X
|∇f |qw,q dm ≤ F0(f) ≤ c(cD, q)

ˆ
X
|∇f |qw,q dm ∀f ∈W 1,q(X, d,m).

The discrete functionals Fδ(f)+
∑

i |fδ,i|qm(Aδi ) describe L
q norms in suitable discrete spaces,

hence they satisfy the Clarkson inequalities; these inequalities (which reduce to the parallel-
ogram identity in the case q = 2) are retained by the Γ-limit point F0 + ‖ · ‖qq. This leads
to an equivalent uniformly convex norm in W 1,q(X, d,m), and therefore to reflexivity. As a
byproduct one obtains density of bounded Lipschitz functions in W 1,q(X, d,m) and separa-
bility. In this connection, notice that the results of [11], [9] provide, even without a doubling
assumption, a weaker property (but still sufficient for some applications), the so-called density
in energy; on the other hand, under the assumptions of [25] one has even more, namely density
of Lipschitz functions in the Lusin sense.
Notice however that F0, like the auxiliary Hilbertian norms of [25], is not canonical: it might
depend on the decomposition Aδi and we don’t expect the whole family Fδ to Γ-converge as
δ → 0+. We also provide an example showing that reflexivity may fail if the metric doubling
assumption is dropped.

In the final part of the chapter we prove also (11), following in large part the scheme of
[25] (although we get the result in a more direct way, without an intermediate result in length
spaces). In particular we need the Poincaré inequality to establish the bound

|∇f | ≤ C |∇f |w,q for any Lipschitz function f with bounded support,

which, among other things, prevents |∇f |w,q from being trivial.

The p-weak gradient depends on p

Another important issue in the theory is whether the weak gradient depends on p or not
(at least for Lipschitz functions). For example it was known [25] that under p-Poincaré and
doubling assumptions on the measure, the weak gradient equals |∇u| for a Lipschitz function
u and so, it doesn’t depend on the exponent, at least for q ≥ p. Another recent result by
Gigli and Han [40] in this direction is that in every RCD(K,∞) spaces an even stronger
property holds true: if f ∈ W 1,p has a weak gradient |∇f |w,p ∈ Lq(X,m) then f ∈ W 1,q and
|∇f |w,q = |∇f |w,p (the result holds even if f ∈ BV and |Df | = |∇f |w,1m).

In Chapter 6, based on the results of [34], given α we find a result in the opposite direction:
we construct a weighted Lebesgue measure on Rn for which the family of non constant curves
has p-modulus zero for p ≤ 1 + α but the weight is a Muckenhoupt Ap weight for p > 1 + α.
In particular, the p-weak gradient is trivial for small p but non trivial for large p. We also
give a full description of the p-weak gradient for any locally finite Borel measure on R.

This is the main theorem:
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Theorem 1 Let n ∈ N and α > 0. Then there exists a Borel function w : Rn → R+ such that
the measure µ := wLn is doubling and:

• For p ≤ 1 + α we have Modp,µ(Γc) = 0 where Γc is the family of non constant abso-
lutely continuous curves in Rn. This implies that the p-weak gradient on (Rn, | · |, µ) is
identically zero for every function.

• For p > 1 + α the function w is a Muckenhoupt Ap-weight. This implies that a weak
p-Poincaré inequality holds; it follows that the p-weak gradient on (Rn, | · |, µ) agrees with
the slope for Lipschitz functions.

The simple structure of curves in R gives rise to a simple description of the p-weak gradient
with respect to each measure. In Theorem 6.4.2 we show that, for any locally finite Borel
measure on R and p > 1, the corresponding p-weak gradient of a Lipschitz function f : R→ R
is, at almost every point x, either equal to zero or equal to |f ′(x)|. Roughly speaking, the
points where the p-weak gradient is non zero are those points which have a neighborhood that,
when considered as a set containing a single curve, has positive p-modulus.

A definition via derivation and integration by parts

In Chapter 7 we want to give a definition of Sobolev spaces via integration by parts formula,
in the spirit of (2) in euclidean spaces; the role of the vector field will be played by derivations.

The derivations were introduced in the seminal papers by Weaver [80], and then in more
recent times widely used in the Lipschitz theory of metric spaces, for example in connection
with Rademacher theory for metric spaces, but also as a generalization of sections of the
tangent space [14], [15], [39], [73], [74]. Here we see that the derivations are also powerful
tools in the Sobolev theory, as already point out in [39]. A derivation, in our definition, is
simply a linear map b : Lip0(X, d)→ L0(X,m) such that the Liebniz rule holds and it has the
locality property |b(f)| ≤ g · lipa(f) for some g ∈ L0(X,m). Now we simply say that f ∈ Lp
is a function in W 1,p if there is a Lipb(X)-linear map Lf such that integration by part holds:

ˆ
X
Lf (b) dm = −

ˆ
X
f · div b dm ∀b ∈ Derq,q,

where Derq,q is the subset of derivation for which |b|, div b ∈ Lq(X,m).
We will see that it is well defined a proper “differential" df : Derq,q → L1, and so it

is possible to provide also a notion of modulus of the gradient |∇f | in such a way that
|df(b)| ≤ |∇f |·|b|; in Section 7.2 we see that this notion coincides with all the other (equivalent)
notion of modulus of the gradient given in [9] (namely (1a), (1b), (3a) and (3b)), and in
particular there is also identification of the Sobolev spaces.

The easy part is the inclusion of the Sobolev Space obtained via relaxation of the asymp-
totic Lipschitz constant into the one defined by derivations. The other inclusion uses the fact
that q-plans, namely measures on the space of curves with some integrability assumptions,
induces derivations thanks to the basic observation that, even in metric spaces, we can always
take the derivative of Lipschitz functions along absolutely continuous curves; this observation
has already been used in [15], [73], [74] to find correlation between the differential structure of
(X, d) and the structure of measures on the set of curves (a peculiar role is played by Alberti
representation).
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In Section 7.3.1 we extend this equivalence to the BV space, using the results in [5].
In the last section, we eventually apply this new definition in order to find an abstract

characterization of the weak gradient for C1 functions, when X is a Banach space. This
characterization has already been obtained in [22] for Rn, while in Theorem 6.4.2 we re-obtain
it in the one dimensional case. However here we employ a different strategy and the proof
will follow the line of [3], where a similar bundle (the differentiability bundle) is constructed
in order to find the directions of “almost everywhere” differentiability of Lipschitz functions
given an arbitrary measure m in Rn.

It is important to remark that the differentiability bundle is always contained in the Sobolev
bundle Sp that we construct; this link is not at all trivial and we believe that this connection
has to be inspected deeply.
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Other works

Here we give a short summary of the other research made during the PhD studies. We briefly
report the results obtained and we refer to the original papers for a complete treatment of the
problems and the relevant and related literature.

Equality between Monge and Kantorovich multi marginal problems with
Coulomb cost

In [30], in collaboration with M. Colombo, we generalize a previous result of Pratelli [71] to
the multimarginal case. Given a probability measure µ on a Polish metric space (X, d), and
integer n ≥ 2 and a lower semicontinuous cost function c : Xn → [0,∞], we introduce the
following infimum problems:

(K) := inf
{ˆ

Xn

c(x1, . . . , xn) dπ : π ∈P((X)n), (ei)]π = µ ∀i ∈ {1, ..., n}
}

;

(M) = inf
{ˆ

Rd
c(x, T (x), ..., T (n−1)(x)) dµ(x) : T]µ = µ, T (n) = Id

}
.

It is obvious that (K) ≤ (M) since given an admissible T in (M) we have that π =
(Id, T, T (2), . . . , T (n−1))]µ is admissible in (K) and has the same cost. We prove the following:

Theorem 2 Let µ be a non atomic probability measure and let c : Xn → [0,∞] be a
l.s.c. cost that is continuous in its finiteness domain and cyclical, namely c(x1, x2, . . . , xn) =
c(xn, x1, . . . xn−1). Then (M) = (K).

In particular this is true when X = Rd and c is the Coulomb cost

c(x1, x2, . . . , xn) =
∑
i<j

1

|xi − xj |
.

This was our model cost, whose multimarginal optimal transport problem is studied in a
mathematical model for the strong interaction limit in the density functional theory; the
mathematical quest in this setting is to prove that the minimum in (K) is attained by a
cyclical map admissible in (M). The equality (M) = (K) can be seen as a first validation of
this conjecture.
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Multimarginal optimal transport maps for 1-dimensional repulsive costs

In [29], in collaboration with M. Colombo and L. De Pascale, we deal with a particular multi
marginal optimal transportation problem. Referring to the previous subsection, we prove that
in the case X = R with the cost c with the peculiar structure

c(x1, . . . , xn) =
∑
i<j

f(xi − xj), (15)

where f is an even nonnegative l.s.c. function, that restricted to (0,∞) is convex and decreas-
ing, we have that the minimum in (M) is reached, and moreover we find also explicitly its
form:

Theorem 3 Let c be the cost (15). Let ρ be a non-atomic probability measure on R such that
(K) <∞. Let −∞ = d0 < d1 < . . . < dN = +∞ be such that

ρ([di, di+1]) = 1/N ∀i = 0, . . . , N − 1. (16)

Let T : R→ R be the unique (up to ρ-null sets) function increasing on each interval [di, di+1],
i = 0, ..., N − 1, and such that

T](1[di,di+1]ρ) = 1[di+1,di+2]ρ ∀i = 0, . . . , N − 2, and T](1[dN−1,dN ]ρ) = 1[d0,d1]ρ. (17)

Then T is an admissible map for (M) and

(K) =

ˆ
R
c(x, T (x), T (2)(x), . . . , T (N−1)(x)) dρ. (18)

Moreover the only symmetric optimal transport plan is the symmetrization of the plan
induced by the map T .

We recall that a symmetric transport plan is a transport plan π such that (σ)]π = π for
every permutation of the coordinates σ.
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Lower semicontinuity for non-coercive polyconvex integrals in the limit case

In [32], in collaboration with G. De Philippis and M. Focardi, we deal with the problem of
lower semicontinuity for integrals F : W 1,m−1(Rn;Rm) of the form

F (u) =

ˆ
Ω
f(x, u(x),Ml(∇u)) dx,

where l := min{m,n} and Ml(A) denotes the vector whose components are all the minors
of order un to l of the matrix A ∈ Rm×n.

In this paper, we investigate the lower semicontinuity properties of energies with densities
f satisfying

(Hp) f = f(x, u, ξ) : Ω×Rn ×Rσ → [0,∞) is in C0(Ω×Rn ×Rσ) and f(x, u, ·) is convex for
all (x, u) ∈ Ω× Rn

along sequences

(Seq) (uj)j ⊂W 1,`(Ω,Rm) satisfying

uj ⇀ u in W 1,`−1. (19)

Our main results are:

Theorem 4 Let 2 ≤ m ≤ n, let f satisfy (Hp), and suppose in addition that

f(·, ·, ξ) is locally Lipschitz continuous for all ξ ∈ Rσ. (20)

Then, for every sequence (uj)j ⊂W 1,m(Ω,Rm) satisfying (Seq) we have

F (u) ≤ lim inf
j

F (uj).

Theorem 5 Let 2 ≤ m = n, and let f enjoy (Hp).
Then, for every sequence (uj)j ⊂W 1,n(Ω,Rn) satisfying (Seq) we have

F (u) ≤ lim inf
j

F (uj). (21)

Theorem 6 Let 2 ≤ m = n+ 1, let f : Rσ → [0,∞) be convex, and

F (u) =

ˆ
Ω
f
(
M n(∇u(x))

)
dx .

Then, for every sequence (uj)j ⊂W 1,n(Ω,Rn+1) satisfying (Seq) we have

F (u) ≤ lim inf
j

F (uj).
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CHAPTER 1

Preliminary notions

In this section we introduce some notation and recall a few basic facts about capacities and
Choquet theorem, absolutely continuous functions and Lipschitz functions, gradient flows of
convex functionals, Orlicz spaces and optimal transportation, see also [8], [79], [72] as general
references.

Furthermore we will recall Hopf-Lax formula and Hamilton-Jacobi equation in metric
spaces, a tool that will be useful in Chapter 3.

1.1 Topological spaces and Choquet theorem

In a topological Hausdorff space (E, τ), we denote by P(E) the collection of all subsets of E,
by F (E) (resp. K (E)) the collection of all closed (resp. compact) sets of E, by B(E) the
σ-algebra of Borel sets of E. We denote by Cb(E) the space of bounded continuous functions
on (E, τ), by M+(E), the set of σ-additive measures µ : B(E)→ [0,∞), by P(E) the subclass
of probability measures. For a set F ⊂ E and µ ∈ M+(E) we shall respectively denote by
χF : E → {0, 1} the characteristic function of F and by µ F the measure χFµ, if F is
µ-measurable. For a Borel map L : E → F we shall denote by L] : M+(E) → M+(F ) the
induced push-forward operator between Borel measures, namely

L]µ(B) := µ
(
L−1(B)

)
∀µ ∈M+(E), B ∈ B(F ).

We shall denote by N = {0, 1, . . .} the natural numbers, by L d the Lebesgue measure on the
d-dimensional Euclidean space Rd.

1.1.1 Polish spaces

Recall that (E, τ) is said to be Polish if there exists a distance ρ in E which induces the
topology τ such that (E, ρ) is complete and separable. Notice that the inclusion of M+(E)
in (Cb(E))∗ may be strict, because we are not making compactness or local compactness
assumptions on (E, τ). Nevertheless, if (E, τ) is Polish we can always endow M+(E) with
a Polish topology w-Cb(E) whose convergent sequences are precisely the weakly convergent

1
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ones, i.e. sequences convergent in the duality with Cb(E). Obviously this Polish topology is
unique. A possible choice, which can be easily adapted from the corresponding Kantorovich-
Rubinstein distance on P(E) (see e.g. [20, §8.3] or [8, Section 7.1]) is to consider the duality
with bounded and Lipschitz functions

ρKR(µ, ν) := sup
{∣∣∣ˆ

E
f dµ−

ˆ
E
f dν

∣∣∣ : f ∈ Lipb(E), sup
E
|f | ≤ 1,

|f(x)− f(y)| ≤ ρ(x, y) ∀x, y ∈ E
}
.

1.1.2 Souslin, Lusin and analytic sets, Choquet theorem

Denote by N∞ the collection of all infinite sequences of natural numbers and by N∞0 the
collection of all finite sequences (n0, . . . , ni), with i ≥ 0 and ni natural numbers. Let A ⊂
P(E) containing the empty set (typical examples are, in topological spaces (E, τ), the classes
F (E), K (E), B(E)). We call table of sets in A a map C associating to each finite sequence
(n0, . . . , ni) ∈ N∞0 a set C(n0,...,ni) ∈ A .

Definition 1.1.1 (A -analytic sets) S ⊂ E is said to be A -analytic if there exists a table
C of sets in A such that

A =
⋃

(n)∈N∞

∞⋂
i=0

C(n0,...,ni).

Recall that, in a topological space (E, τ), B(E)-analytic sets are universally measurable
[20, Theorem 1.10.5]: this means that they are σ-measurable for any σ ∈M+(E).

Definition 1.1.2 (Souslin and Lusin sets) Let (E, τ) be an Hausdorff topological space.
S ∈ P(E) is said to be a Souslin (resp. Lusin) set if it is the image of a Polish space under
a continuous (resp. continuous and injective) map.

Even though the Souslin and Lusin properties for subsets of a topological space are in-
trinsic, i.e. they depend only on the induced topology, we will often use the diction “S Suslin
subset of E” and similar to emphasize the ambient space; the Borel property, instead, is not
intrinsic, since S ∈ B(S) if we endow S with the induced topology. Besides the obvious
stability with respect to trasformations through continuous (resp. continuous and injective)
maps, the class of Souslin (resp. Lusin) sets enjoys nice properties, detailed below.

Proposition 1.1.3 The following properties hold:

(i) In a Hausdorff topological space (E, τ), Souslin sets are F (E)-analytic;

(ii) if (E, τ) is a Souslin space (in particular if it is a Polish or a Lusin space), the notions of
Souslin and F (E)-analytic sets concide and in this case Lusin sets are Borel and Borel
sets are Souslin;

(iii) if E, F are Souslin spaces and f : E → F is a Borel injective map, then f−1 is Borel;

(iv) if E, F are Souslin spaces and f : E → F is a Borel map, then f maps Souslin sets to
Souslin sets.
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Proof. We quote [20] for all these statements: (i) is proved in Theorem 6.6.8; in connection
with (ii), the equivalence between Souslin and F (E)-analytic sets is proved in Theorem 6.7.2,
the fact that Borel sets are Souslin in Corollary 6.6.7 and the fact that Lusin sets are Borel
in Theorem 6.8.6; finally, (iii) and (iv) are proved in Theorem 6.7.3. �

Since in Polish spaces (E, τ) we have at the same time tightness of finite Borel measures
and coincidence of Souslin and F (E)-analytic sets, the measurability of B(E)-analytic sets
yields in particular that

σ(B) = sup {σ(K) : K ∈ K (E), K ⊂ B} for all B ⊂ E Souslin, σ ∈M+(E). (1.1.1)

We will need a property analogous to (1.1.1) for capacities [33], whose definition is recalled
below.

Definition 1.1.4 (Capacity) A set function I : P(E)→ [0,∞] is said to be a capacity if:

• I is nondecreasing and, whenever (An) ⊂P(E) is nondecreasing, the following holds

lim
n→∞

I(An) = I

( ∞⋃
n=0

An

)
;

• if (Kn) ⊂ K (E) is nonincreasing, the following holds:

lim
n→∞

I(Kn) = I

( ∞⋂
n=0

Kn

)
.

A set B ⊂ E is said to be I-capacitable if I(B) = sup
K∈K (E)

I(K).

Theorem 1.1.5 (Choquet) ([33, Thm 28.III]) Every K (E)-analytic set is capacitable.

1.2 Absolutely continuous curves

If (X, d) is a metric space and I ⊂ R is an interval, we denote by C(I;X) the class of continuous
maps (often called parametric curves) from I to X. We will use the notation γt for the value
of the map at time t and et : C(I;X)→ X for the evaluation map at time t; occasionally, in
order to avoid double subscripts, we will also use the notation γ(t). The subclass AC(I;X) is
defined by the property

d(γs, γt) ≤
ˆ t

s
g(r) dr s, t ∈ I, s ≤ t

for some (nonnegative) g ∈ L1(I). The least, up to L 1-negligible sets, function g with property
is the so-called metric derivative (or metric speed)

|γ̇t| := lim
h→0

d(γt+h, γt)

|h|
,
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see [13] for its existence. The classes ACp(I;X), 1 ≤ p ≤ ∞ are defined analogously, requiring
that |γ̇| ∈ Lp(I). The p-energy of a curve is then defined as

Ep(γ) :=

{´
I |γ̇t|

p dt if γ ∈ ACp(I;X),

+∞ otherwise,
(1.2.1)

and E1(γ) = `(γ), the length of γ, when p = 1. Notice that AC1 = AC and that AC∞(I;X)
coincides with the class of d-Lipschitz functions.

If (X, d) is complete the interval I can be taken closed with no loss of generality, be-
cause absolutely continuous functions extend continuously to the closure of the interval. In
addition, if (X, d) is complete and separable then C(I;X) is a Polish space, and ACp(I;X),
1 ≤ p ≤ ∞ are Borel subsets of C(I;X) (see for instance [11]). We will use the short notation
M+(ACp(I;X)) to denote finite Borel measures in C(I;X) concentrated on ACp(I;X). The
integration of a Borel function g along a curve γ ∈ AC(I;X) is well defined by the formula

ˆ
γ
g =

ˆ
I
g(γt)|γ̇t|dt

1.2.1 Reparameterization

We collect in the next proposition a few properties which are well-known in a smooth setting,
but still valid in general metric spaces. We introduce the notation

AC∞c ([0, 1];X) :=
{
σ ∈ AC∞([0, 1];X) : |σ̇| = `(σ) > 0 L 1-a.e. on (0, 1)

}
(1.2.2)

for the subset of AC([0, 1];X) consisting of all nonconstant curves with constant speed. It
is easy to check that AC∞c ([0, 1];X) is a Borel subset of C([0, 1];X), since it can also be
characterized by

γ ∈ AC∞c ([0, 1];X) ⇐⇒ 0 < Lip(γ) ≤ `(γ), (1.2.3)

and the maps γ 7→ Lip(γ) and γ 7→ `(γ) are lower semicontinuous.

Proposition 1.2.1 (Constant speed reparameterization) For any γ ∈ AC([0, 1];X)
with `(γ) > 0, setting

s(t) :=
1

`(γ)

ˆ t

0
|γ̇r|dr, (1.2.4)

there exists a unique η ∈ AC∞c ([0, 1];X) such that γ = η ◦ s. Furthermore, η = γ ◦ s−1 where
s−1 is any right inverse of s. We shall denote by

k :
{
γ ∈ AC([0, 1];X) : `(γ) > 0

}
→ AC∞c ([0, 1];X) γ 7→ η = γ ◦ s−1 (1.2.5)

the corresponding map.

Proof. We prove existence only, the proof of uniqueness being analogous. Les us now define a
right inverse, denoted by s−1, of s (i.e. s◦s−1 is equal to the identity): we define in the obvious
way s−1 at points y ∈ [0, 1] such that s−1(y) is a singleton; since, by construction, γ is constant
in all (maximal) intervals [c, d] where s is constant, at points y such that {y} = s([c, d]) we
define s−1(y) by choosing any element of [c, d], so that γ ◦ s−1 ◦ s = γ (even though it could be
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that s−1 ◦ s is not the identity). Therefore, if we define η = γ ◦ s−1, we obtain that γ = η ◦ s
and that η is independent of the chosen right inverse.

In order to prove that η ∈ AC∞c ([0, 1];X) we define `k := `(γ) + 1/k and we approximate
uniformly in [0, 1] the map s by the maps sk(t) := `−1

k

´ t
0 (k−1 + |γ̇r|) dr, whose inverses s−1

k :

[0, 1]→ I are Lipschitz. By Helly’s theorem and passing to the limit as k →∞ in sk ◦s−1
k (y) =

y, we can assume that a subsequence s−1
k(p) pointwise converges to a right inverse s−1 as p→∞;

the curves ηp := γ ◦ s−1
k(p) are absolutely continuous, pointwise converge to η := γ ◦ s−1 and

|ηp(t)′| =
|γ′(s−1

k(p)(t))|

s′k(p)(s
−1
k(p)(t))

≤ `k(p) for L 1-a.e. in t ∈ (0, 1).

It follows that η is absolutely continuous and that |η̇| ≤ `(γ) L 1-a.e. in (0, 1). If the strict
inequality occurs in a set of positive Lebesgue measure, the inequality `(η) < `(γ) provides a
contradiction. �

1.2.2 Equivalence relation in AC([0, 1];X)

We can identify curves γ ∈ AC([0, 1], X), γ̃ ∈ AC([0, 1];X) if there exists ϕ : [0, 1] → [0, 1]
increasing with ϕ ∈ AC([0, 1]; [0, 1]), ϕ−1 ∈ AC([0, 1]; [0, 1]) such that γ = γ̃ ◦ ϕ. In this case
we write γ ∼ γ̃. Thanks to the following lemma, the absolute continuity of ϕ−1 is equivalent
to ϕ′ > 0 L 1-a.e. in (0, 1).

Lemma 1.2.2 (Absolute continuity criterion) Let I, Ĩ be compact intervals in R and let
ϕ : I → Ĩ be an absolutely continuous homeomorphism with ϕ′ > 0 L 1-a.e. in I. Then
ϕ−1 : Ĩ → I is absolutely continuous.

Proof. Let ψ = ϕ−1; it is a continuous function of bounded variation whose distributional
derivative we shall denote by µ. Since µ([a, b]) = ψ(b)−ψ(a) for all 0 ≤ a ≤ b ≤ 1, we need to
show that µ� L 1. It is a general property of continuous BV functions (see for instance [7,
Proposition 3.92]) that µ(ψ−1(B)) = 0 for all Borel and L 1-negligible sets B ⊂ R. Choosing
B = ψ(E), where E is a L 1-negligible set where the singular part µs of µ is concentrated,
the area formula gives ˆ

B
ϕ′(s) ds = L 1(E) = 0,

so that the positivity of ϕ′ gives L 1(B) = 0. It follows that µs = 0. �

Definition 1.2.3 (The map J) For any γ ∈ AC([0, 1];X) we denote by Jγ ∈ M+(X) the
push forward under γ of the measure |γ̇|L 1 [0, 1], namely the measure that represents the
integration along the curve γ:

ˆ
X
g dJγ =

ˆ 1

0
g(γt)|γ̇t| dt for all g : X → [0,∞] Borel. (1.2.6)

In particular we have that Jγ = Jη whenever γ ∼ η, and that Jγ = Jkγ.
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Although this will not play a role in the sequel, for completeness we provide an intrinsic
description of the measure Jγ. We denote by H 1 the 1-dimensional Hausdorff measure of a
subset B of X, namely H 1(B) = limδ↓0 H 1

δ (B), where

H 1
δ (B) := inf

{ ∞∑
i=0

diam(Bi) : B ⊂
∞⋃
i=0

Bi, diam(Bi) < δ

}

(with the convention diam(∅) = 0).

Proposition 1.2.4 (Area formula) If γ ∈ AC([0, 1];X), then for all g : X → [0,∞] Borel
the area formula holds:

ˆ 1

0
g(γt)|γ̇t|dt =

ˆ
X
g(x)N(γ, x) dH 1(x), (1.2.7)

where N(γ, x) := card(γ−1(x)) is the multiplicity function of γ. Equivalently,

Jγ = N(γ, ·)H 1. (1.2.8)

Proof. For an elementary proof of (1.2.7), see for instance [13, Theorem 3.4.6]. �

1.2.3 Non-parametric curves

We can now introduce the class of non-parametric curves; notice that we are conventionally
excluding from this class the constant curves. We first introduce the notation

AC0([0, 1];X) :=
{
γ ∈ AC([0, 1];X) : |γ̇| > 0 L 1-a.e. on (0, 1)

}
.

It is not difficult to show that AC0([0, 1];X) is a Borel subset of C([0, 1];X). In addition,
Lemma 1.2.2 shows that for any γ ∈ AC0([0, 1];X) the curve kγ ∈ AC∞c ([0, 1];X) is equivalent
to γ.

Definition 1.2.5 (The class C (X) of non-parametric curves) The class C (X) is de-
fined as

C (X) := AC0([0, 1];X)/∼ , (1.2.9)

endowed with the quotient topology τC and the canonical projection πC (X).

We shall denote the typical element of C (X) either by γ or by [γ], to mark a distinction
with the notation used for parametric curves. We will use the notation γ

ini
and γ

fin
the initial

and final point of the curve γ ∈ C (X), respectively.

Definition 1.2.6 (Canonical maps) We denote:

(a) by i := πC ◦ k :
{
γ ∈ AC([0, 1];X) : `(γ) > 0

}
→ C (X) the projection provided by

Proposition 1.2.1, which coincides with the canonical projection πC (X) on the quotient
when restricted to AC0([0, 1];X);

(b) by j := k◦π−1
C : C (X)→ AC∞c ([0, 1];X) the canonical representation of a non-parametric

curve by a parametrization in [0, 1] with constant velocity.
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(c) by J̃ : C (X)→M+(X) \ {0} the quotient of the map J in (1.2.6), defined by

J̃ [γ] := Jγ. (1.2.10)

We notice that AC0/∼ 6= AC/∼; in particular in the latter there are equivalence classes
without representatives in AC∞c ([0, 1];X), for example when we consider the equivalence class
of a curve that stops for positive time on a single point.

Remark 1.2.7 Thanks to (1.2.6) we have that
´
γ g is well defined for γ ∈ C (X); in particular,

we have that
´
γ g =

´
X g dJ̃γ.

Lemma 1.2.8 (Measurable structure of C (X)) If (X, d) is complete and separable, the
space (C (X), τC ) is a Lusin Hausdorff space and the restriction of the map i to AC∞c ([0, 1];X)
is a Borel isomorphism. In particular, a collection of curves Γ ⊂ C (X) is Borel if and only if
j(Γ) is Borel in C([0, 1];X). Analogously, Γ ⊂ C (X) is Souslin if and only if j(Γ) is Souslin
in C([0, 1];X).

Proof. Let us first show that (C (X), τC ) is Hausdorff. We argue by contradiction and
we suppose that there exist curves i(σi) ∈ C (X) with σi ∈ AC∞c ([0, 1];X), i = 1, 2, and a
sequence of parametrizations sni ∈ AC([0, 1]; [0, 1]) with (sni )′ > 0 L 1-a.e. in (0, 1), such that

lim
n→∞

sup
t∈[0,1]

d(σ1(sn1 (t)), σ2(sn2 (t))) = 0.

Denoting by rn1 (t) := sn1 ◦ (sn2 )−1 and rn2 (t) := sn2 ◦ (sn1 )−1, we get

lim
n→∞

sup
t∈[0,1]

d(σ1(t), σ2(rn2 (t))) = 0, lim
n→∞

sup
t∈[0,1]

d(σ1(rn1 (t)), σ2(t)) = 0.

The lower semicontinuity of the length with respect to uniform convergence yields ` := `(σ1) =
`(σ2) and therefore for every 0 ≤ t′ < t′′ ≤ 1

` lim inf
n→∞

(
rn2 (t′′)− rn2 (t′)

)
= lim

n→∞

ˆ t′′

t′
|(σ2 ◦ rn2 )′| dt ≥

ˆ t′′

t′
|σ′1| dt = `(t′′ − t′).

Choosing first t′ = t and t′′ = 1 and then t′ = 0 and t′′ = t we conclude that limn r
n
2 (t) = t

for every t ∈ [0, 1] and therefore σ1 = σ2.
Notice that AC∞c ([0, 1];X) is a Lusin space, since AC∞c ([0, 1];X) is a Borel subset of

C([0, 1];X). The restriction of i to AC∞c ([0, 1];X) is thus a continuous and injective map from
the Lusin space AC∞c ([0, 1];X) to the Hausdorff space (C (X), τC ) (notice that the topology
τC is a priori weaker than the one induced by the restriction of i to AC∞c ([0, 1];X)). It follows
by definition that C (X) is Lusin. Now, Proposition 1.1.3(iii) yields that the restriction of i is
a Borel isomorphism. �

Lemma 1.2.9 (Borel regularity of J and J̃) The map J : AC([0, 1];X) → M+(X) is
Borel, where AC([0, 1];X) is endowed with the C([0, 1];X) topology. In particular, if (X, d) is
complete and separable, the map J̃ : C (X) → M+(X) \ {0} is Borel and J̃(Γ) is Souslin in
M+(X) whenever Γ is Souslin in C (X).
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Proof. It is easy to check, using the formula Jγ = γ](|γ̇|L 1 [0, 1]), that

Jγ = lim
n→∞

n−1∑
i=0

d(γ(i+1)/n, γi/n)δγi/n weakly in M+(X)

for all γ ∈ AC([0, 1];X) (the simple details are left to the reader). Since the approximating
maps are continuous, we conclude that J is Borel. The Borel regularity of J̃ follows by
Lemma 1.2.8 and the identity J̃ = J ◦ j. Since J̃ is Borel, we can apply Proposition 1.1.3(iv)
to obtain that J̃ maps Souslin sets to Souslin sets. �

1.3 Slopes, asymptotic Lipschitz constant and upper gradients

Let (X, d) be a metric space; given f : X → R and E ⊂ X, we denote by Lip(f,E) the
Lipschitz constant of the function f on E, namely

Lip(f,E) := sup
x, y∈E, x 6=y

|f(x)− f(y)|
d(x, y)

.

The Lipschitz constant of f will be denoted by Lip(f) := Lip(f,X). Given f : X → R, we
define asymptotic Lipschitz constant by

lipa(f, x) := lim
r→0

Lip(f,Br(x)),

and slope (also called local Lipschitz constant) by

|∇f |(x) := lim
y→x

|f(y)− f(x)|
d(y, x)

.

We will often drop the x dependence, denoting lipa(f) for the asymptotic Lipschitz constant,
and |∇f | for the slope. For f, g : X → R Lipschitz it clearly holds

lipa(αf + βg) ≤ |α|lipaf + |β|lipag ∀α, β ∈ R, (1.3.1a)
lipa(fg) ≤ |f |lipag + |g|lipaf, (1.3.1b)

and the same is true also for the slope. We recall the basic relation between the asymptotic
Lipschitz constant and the slope in the next proposition.

Proposition 1.3.1 Let f : X → R be a Lipschitz function. Then

Lip(f) ≥ lipa(f, x) ≥ |∇f |∗(x), (1.3.2)

where |∇f |∗ is the upper semicontinuous envelope of the slope of f . In length spaces the second
inequality is an equality.

Proof. The first inequality in (1.3.2) is trivial, while the second one follows by the fact that
lipa(f, ·) is upper semicontinuous and larger than |∇f |. Since |∇f | is an upper gradient of f ,
we have the inequality

|f(y)− f(z)| ≤
ˆ `(γ)

0
|∇f |(γt) dt

for any curve γ with constant speed joining y to z. If (X, d) is a length space we can minimize
w.r.t. γ to get

Lip
(
f,B(x, r)) ≤ sup

B(x,3r)
|∇f | ≤ sup

B(x,3r)
|∇f |∗.

As r ↓ 0 the inequality Lipa(f, x) ≤ |∇f |∗(x) follows. �
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We will need also this refined Liebniz formula:

Lemma 1.3.2 Let A ⊂ X be an open set, and let f, g, ϕ ∈ Liploc(A) such that 0 ≤ ϕ ≤ 1;
then denoting w = ϕf + (1− ϕ)g we have

lipa(w) ≤ ϕ · lipa(f) + (1− ϕ) · lipa(g) + lipa(ϕ)|f − g| (1.3.3)

Proof. First let us not that for every x, y ∈ X we have

w(x)− w(y) = ϕ(x)[f(x)− f(y)] + (1− ϕ(x))[g(x)− g(y)]

+ [ϕ(x)− ϕ(y)] · (f(y)− g(y));

taking the modulus on the lest hand side and dividing for d(x, y) we obtain

|w(x)− w(y)|
d(x, y)

≤ ϕ(x)
|f(x)− f(y)|

d(x, y)
+ (1− ϕ(x))

|g(x)− g(y)|
d(x, y)

+
|ϕ(x)− ϕ(y)|

d(x, y)
· |f(y)− g(y)|.

(1.3.4)

Now taking the supremum in x, y ∈ Br(z) on the left hand side we obtain

Lip(w,Br) ≤ ϕLip(f,Br) + (1− ϕ) Lip(g,Br) + Lip(ϕ,Br) sup
Br

|f − g|;

letting r → 0 we get (1.3.3). �

Given a real valued function f on X, we denote by UG(f) the set of upper gradients of f
(see also [25], [49]), namely the class of Borel functions g : X → [0,∞] such that∣∣∣∣ˆ

∂γ
f

∣∣∣∣ =

ˆ
γ
g ∀ γ ∈ C (X), (1.3.5)

where
´
∂γ f = f(γfin) − f(γini). With a slight abuse of notation we will write g ∈ UG(f)

with f ∈ L1(X,m), but it should be noticed that a priori the concept of upper gradient is
not invariant in the equivalence class of an L1 function, even though Borel representatives
are chosen. It is easy to see that lipa(f) and |∇f | belong to UG(f) whenever f is a locally
Lipschitz function.

We shall also need the following calculus lemma.

Lemma 1.3.3 Let f : (0, 1)→ R, q ∈ [1,∞], g ∈ Lq(0, 1) nonnegative be satisfying

|f(s)− f(t)| ≤
ˆ t

s
g(r) dr for L 2-a.e. (s, t) ∈ (0, 1)2.

Then f ∈W 1,q(0, 1) and |f ′| ≤ g a.e. in (0, 1).

Proof. Let N ⊂ (0, 1)2 be the L 2-negligible subset where the above inequality fails. Choosing
s ∈ (0, 1), whose existence is ensured by Fubini’s theorem, such that (s, t) /∈ N for a.e.
t ∈ (0, 1), we obtain that f ∈ L∞(0, 1). Since the set N1 = {(t, h) ∈ (0, 1)2 : (t, t + h) ∈
N ∩ (0, 1)2} is L 2-negligible as well, we can apply Fubini’s theorem to obtain that for a.e.
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h it holds (t, h) /∈ (0, 1)2 \ N1 for a.e. t ∈ (0, 1). Let hi ↓ 0 with this property and use the
identities ˆ 1

0
f(t)

ϕ(t− h)− ϕ(t)

h
dt =

ˆ 1

0

f(t+ h)− f(t)

h
ϕ(t) dt

with ϕ ∈ C1
c (0, 1) and h = hi sufficiently small to get∣∣∣∣ˆ 1

0
f(t)ϕ′(t) dt

∣∣∣∣ ≤ ˆ 1

0
g(t)|ϕ(t)|dt.

It follows that the distributional derivative of f is a signed measure η with finite total variation
which satisfies

−
ˆ 1

0
fϕ′ dt =

ˆ 1

0
ϕdη,

∣∣∣ˆ 1

0
ϕdη

∣∣∣ ≤ ˆ 1

0
g|ϕ|dt for every ϕ ∈ C1

c (0, 1).

Therefore η is absolutely continuous with respect to the Lebesgue measure with |η| ≤ gL 1.
This gives theW 1,1(0, 1) regularity and, at the same time, the inequality |f ′| ≤ g a.e. in (0, 1).
The case q > 1 immediately follows by applying this inequality when g ∈ Lq(0, 1). �

1.4 Gradient flows of convex and lower semicontinuous func-
tionals

Let H be an Hilbert space, F : H → R ∪ {+∞} convex and lower semicontinuous and
D(F ) = {F <∞} its finiteness domain. Recall that a gradient flow x : (0,∞)→ H of F is
a locally absolutely continuous map with values in D(F ) satisfying

− d

dt
xt ∈ ∂−F (xt) for a.e. t ∈ (0,∞).

Here ∂−F (x) ⊆ H∗ is the subdifferential of F , defined at any x ∈ D(F ) by

∂−F (x) := {p ∈ H∗ : F (y) ≥ F (x) + 〈p, y − x〉 ∀y ∈ H} .

We shall use the fact that for all x0 ∈ D(F ) there exists a unique gradient flow xt of
F starting from x0, i.e. xt → x0 as t ↓ 0, and that t 7→ F (xt) is nonincreasing and locally
absolutely continuous in (0,∞). In addition, this unique solution exhibits a regularizing effect,
namely − d

dtxt is for a.e. t ∈ (0,∞) the element of minimal norm in ∂−F (xt).

1.5 N-functions and Orlicz spaces

We refer to [72] for the general theory; here we will give only a brief overview of the results
we will need. A function Φ : R→ [0,∞) is called an N -function (nice Young function) if

(a) Φ is even and convex;

(b) Φ(x) = 0 iff x = 0;

(c) lim
x→0

Φ(x)
x = 0 and lim

x→∞
Φ(x)
x = +∞.
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Every N -function has a left (right) derivative ϕ = Φ′− (ϕ+ = Φ′+) that is strictly increasing
and lower (upper) semicontinuous, 0 < ϕ(t) < +∞ for 0 < t <∞, and we have ϕ(0) = 0 and
limt→+∞ ϕ = +∞; we denote by ∂−Φ = [ϕ,ϕ+] the subdifferential of Φ.

Let ψ be the left inverse of ϕ, namely ψ(t) = inf{t > 0 : ϕ(t) > s}. Then Ψ,Φ given by

Φ(x) =

ˆ |x|
0

ϕ(t) dt, Ψ(x) =

ˆ |x|
0

ψ(s) ds

are called complementary N -functions and they satisfy Young inequality

Φ(x) + Ψ(y) ≥ xy ∀x, y ∈ R, (1.5.1)

with equality iff x ∈ ∂−Φ(y) or, equivalently, y ∈ ∂−Ψ(x); in particular

Φ(x) + Ψ(ϕ(x)) = xϕ(x) ∀x ≥ 0. (1.5.2)

Another important property of Ψ is that it is the least function satisfying (1.5.1), and so it is
also the convex conjugate of Φ:

Ψ(y) = Φ∗(y) := sup
x∈R

{
xy − Φ(x)

}
.

Basic examples of complementary N -functions are Φp(x) = xp/p and Ψp(y) = yq/q, whose
relative Orlicz space, defined below, is Lp.

1.5.1 Orlicz spaces

Definition 1.5.1 Let us define the vector space

LΦ(X,m) =
{
f m-measurable such that

ˆ
X

Φ(cf) dm <∞ for some c > 0
}
,

along with his two norms: the Luxemburg norm and the dual norm

‖f‖Φ,m = inf
{
t > 0 :

ˆ
X

Φ
(f(x)

t

)
dm ≤ 1

}
,

‖f‖(Φ),m = sup
{ˆ

X
fg dm : g ∈ LΨ(X,m), ‖g‖Ψ,m ≤ 1

}
.

Then we define the Orlicz space LΦ as LΦ/∼ where f ∼ g if ‖f − g‖Φ,m = 0 or, equivalently,
if f = g m-almost everywhere. When there is no ambiguity for the measure we will drop the
dependence on m of the space and of the norms.

Definition 1.5.2 Let us define the vector space

MΦ(X,m) =
{
f measurable such that

ˆ
X

Φ(cf) dm <∞ for every c > 0
}

;

it is readily seen that MΦ = MΦ/∼ is a closed subspace of LΦ.
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Classical results in Orlicz spaces are that the two norms satisfy the triangle inequality, and
that they are comparable, namely

‖f‖Φ ≤ ‖f‖(Φ) ≤ 2‖f‖Φ ∀f ∈ LΦ(X,m).

Furthermore, as it is clear by the definition, a sharp Hölder inequality holds true: whenever
f ∈ LΦ(X,m) and g ∈ LΨ(X,m) we have fg ∈ L1(X,m), more precisely

ˆ
X
fg dm ≤ ‖f‖Φ · ‖g‖(Ψ) and

ˆ
X
fg dm ≤ ‖f‖(Φ) · ‖g‖Ψ.

Lemma 1.5.3 (Dominated convergence in LΦ) Let (fn) ⊂ LΦ such that fn → f m-a.e.
and |fn − f | ≤ g for some g ∈MΦ; then fn → f strongly in LΦ.

Proof. Let us fix m ∈ N; then we can consider hn = Φ(m|f − fn|) and h = Φ(mg). By the
assumption we know that hn ≤ h, h ∈ L1 and hn → 0 as n→∞. By the standard dominated
convergence theorem, this guarantees that

´
X hn → 0, in particular there is an integer n0 such

that for all n ≥ n0 we have
ˆ
X

Φ(m|f − fn|) dm =

ˆ
X
hn dm ≤ 1,

so that ‖f − fn‖Φ ≤ m−1 for n ≥ n0. Since m was arbitrary we can conclude. �

A simple application of dominated convergence and classical approximation results give
that Lip0(X, d) ∩MΦ is dense in MΦ, that thus is also separable; for any function f ∈ MΦ

we get also that the norm is absolutely continuous, meaning that

lim
m(A)→0

‖fχA‖(Φ),m = 0. (1.5.3)

Now we list an important definition for an N -function:

• Φ is doubling if there exist K such that Φ(2x) ≤ KΦ(x) for all x ≥ 0; in the case m
finite we say that Φ is doubling if the inequality for x large enough. We will say that Φ
satisfies (D);

• Φ satisfies the double doubling condition if both Φ and Ψ are doubling. In this case we
will say that Φ (or equivalently Ψ) satisfies (DD).

It is easy to see MΦ = LΦ if and only if Φ is doubling. Another important property is the
characterization of the dual spaces:

Theorem 1.5.4 ([72], Sec. 1.2, Theorem 13) Let m be a finite measure on X, and let Φ
be an N -function. Then (MΦ, ‖·‖Φ,m)∗ = (LΨ, ‖·‖(Ψ),m) (and the same is true with the norms
reversed). In particular if both Ψ and Φ are doubling then LΦ is reflexive.

We remark that the double doubling condition is almost necessary to have reflexivity, in
the sense that as soon as m has also a diffuse part then the reflexivity implies that Φ and Ψ
are doubling (see [72], Sec. 1.2).
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1.5.2 Properties of the (Φ)-norm

In Chapter 3, we will use a couple of properties of the dual norm; the first one is dealing with
the continuity of this norm with respect to the reference measure, while the second one is
dealing with the continuity of a character for an N -function Φ. Here we are always assuming
that m is a σ-finite measure on X.

Lemma 1.5.5 (Representation formula) For every function g we have

‖g‖(Φ),m = inf
k>0

{
1

k

(
1 +

ˆ
X

Φ(kg) dm
)}

. (1.5.4)

In particular ‖g‖(Φ),µ ≤ max{1, C}‖g‖(Φ),m whenever µ ≤ Cm.

Proof. The representation formula is proved in Sec. 1.2 of [72] (see Equation (24)). The
implication is then obvious. �

Definition 1.5.6 (Character of Φ) We define the character of Φ to be the concave function
AΦ : [0,+∞)→ [0,+∞) defined by

AΦ(c) = inf
g∈LΦ

{
1 + c

´
X Φ(g) dm

‖g‖(Φ),m

}
.

This function is continuous in (0, 1] and has the property that AΦ(1) = 1 if the measure is
finite.

Proof. The concavity and the continuity simply follows from the fact that AΦ is an infimum
of linear positive functions, and AΦ(0) = 0. Now we want to prove that AΦ(1) = 1. It is clear
that ‖f‖Ψ ≤ 1 if and only if

´
X Ψ(f) ≤ 1 so we can write

1 +
´
X Φ(g)

‖g‖(Φ)
≥
´
X Ψ(f) +

´
X Φ(g)

‖g‖(Φ)
≥
´
X fg

‖g‖(Φ)
∀f ∈ LΨ s.t. ‖f‖Ψ ≤ 1

taking the supremum over all f and recalling the definition of ‖g‖(Φ) we get precisely

1 +
´
X Φ(g)

‖g‖(Φ)
≥ 1. (1.5.5)

Now we need only to show that there exists a function g that realizes equality in (1.5.5). It
is sufficient to take g = kχB, where B is a set with finite positive measure. Then a simple
computation shows that letting m = m(B), we have ‖g‖(Φ) = k ·m ·Ψ−1(m−1). In particular
we are looking to some k such that

1 +mΦ(k)

kmΨ−1(m−1)
= 1;

If we let Ψ−1(m−1) = x then we can rewrite this equation as

Ψ(x) + Φ(k) = xk,

and so it is sufficient to take k ∈ ∂−Ψ(x), that is always nonempty. �
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1.6 Hopf-Lax formula and Hamilton-Jacobi equation

Aim of this section is to study the properties of the Hopf-Lax formula in a metric space (X, d)
and its relations with the Hamilton-Jacobi equation. Notice that there is no reference measure
m here and that not even completeness is needed for the results of this section. We fix an
N -function Ψ and denote by Φ its convex conjugate; we will assume also that Ψ is of class
C1(R) and strictly convex. In the sequel we will follow [9], despite we notice that in [59]
and [42] the same results are presented, also in more generality (they don’t assume f to be
Lipschitz), but they still use similar methods. We notice also that we need Φ to be C1 in
order to achieve Proposition 1.6.4; we don’t know whether if (1.6.10) remains true at least
in the m × L 1-almost everywhere sense, for every Φ convex. We could avoid the strictly
convexity assumption by modifying some propositions along the proofs (in particular it is
not true anymore that D+(x, t) ≤ D−(x, s) for t < s), but we prefer to keep the exposition
simpler.

Let f : X → R be a Lipschitz function. For t > 0 define

F (t, x, y) := f(y) + tΨ
(d(x, y)

t

)
, (1.6.1)

and the function Qtf : X → R by

Qtf(x) := inf
y∈X

F (t, x, y). (1.6.2)

Notice that Qtf(x) ≤ f(x); on the other hand, if L denotes the Lipschitz constant of f ,
Young’s inequality t

(
Ψ(d/t) + Φ(L)

)
≥ Ld gives

F (t, x, y) ≥ f(x)− Ld(x, y) + tΨ
(d(x, y)

t

)
≥ f(x)− tΦ(L),

so that Qtf(x) ↑ f(x) as t ↓ 0.
Also, we introduce the functions D+, D− : X × (0,∞)→ R as

D+(x, t) := sup lim sup
n→∞

d(x, yn),

D−(x, t) := inf lim inf
n→∞

d(x, yn),
(1.6.3)

where, in both cases, the sequences (yn) vary among all minimizing sequences for F (t, x, ·).
We also set Q0f = f and D±(x, 0) = 0. Arguing as in [8, Lemma 3.1.2] it is easy to check
that the map X × [0,∞) 3 (x, t) 7→ Qtf(x) is continuous. Furthermore, the fact that f is
Lipschitz easily yields

−LD± + tΨ
(D±
t

)
≤ 0 =⇒ Ψ

(D±
t

)
≤ LD

±

t
. (1.6.4)

Thanks to the superlinearity of Ψ in the definition of anN -function, we can found λ = λ(L)
such that Ψ(x) > Lx for all x ≥ λ, and so we get

D−(x, t) ≤ D+(x, t) ≤ tλ(L) (1.6.5)
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Proposition 1.6.1 (Monotonicity of D±) For all x ∈ X it holds

D+(x, t) ≤ D−(x, s) 0 ≤ t < s. (1.6.6)

As a consequence, D+(x, ·) and D−(x, ·) are both nondecreasing, and they coincide with at
most countably many exceptions in [0,∞).

Proof. Fix x ∈ X. For t = 0 there is nothing to prove. Now pick 0 < t < s and for every
ε ∈ (0, 1) choose xt,ε and xs,ε minimizers up to ε of F (t, x, ·) and F (s, x, ·) respectively, namely
such that F (t, x, xt,ε)− ε ≤ F (t, x, w) and F (s, x, xs,ε)− ε ≤ F (s, x, w) for every w ∈ X. Let
us assume that d(x, xt,ε) ≥ (1− ε)D+(x, t) and d(x, xs,ε) ≤ D−(x, s) + ε. The minimality up
to ε of xt,ε, xs,ε gives

f(xt,ε) + tΨ
(d(xt,ε, x)

t

)
≤ f(xs,ε) + tΨ

(d(xs,ε, x)

t

)
+ ε

f(xs,ε) + sΨ
(d(xs,ε, x)

s

)
≤ f(xt,ε) + sΨ

(d(xt,ε, x)

s

)
+ ε.

Adding up we deduce

tΨ
(d(xt,ε, x)

t

)
− tΨ

(d(xs,ε, x)

t

)
≤ sΨ

(d(xt,ε, x)

s

)
− sΨ

(d(xt,ε, x)

s

)
+ ε.

Now, letting ε → 0 we have d(xt,ε, x) → D+(x, t) and d(xs,ε, x) → D−(x, s) and so we can
deduce

tΨ
(D+(x, t)

t

)
− tΨ

(D−(x, s)

t

)
≤ sΨ

(D+(x, t)

s

)
− sΨ

(D−(x, s)

s

)
. (1.6.7)

Let us suppose that D+(x, t) > D−(x, s), then dividing by D+(x, s) − D−(x, t), and
denoting by ∆Ψ(w1, w2) = Ψ(w1)−Ψ(w2)

w1−w2
the difference quotient of Ψ, we can write (1.6.7) as

∆Ψ
(D+(x, t)

t
,
D−(x, s)

t

)
≤ ∆Ψ

(D+(x, t)

s
,
D−(x, s)

s

)
.

This is in contradiction with the strict convexity of Ψ since ∆Ψ is strictly increasing separately
in each variable, and 1

t >
1
s .

In the end we obtained (1.6.6). Combining this with the inequality D− ≤ D+ we immedi-
ately obtain that both functions are nonincreasing. At a point of right continuity of D−(x, ·)
we get

D+(x, t) ≤ inf
s>t

D−(x, s) = D−(x, t).

This implies that the two functions coincide out of a countable set. �

Next, we examine the semicontinuity properties of D±. These properties imply that points
(x, t) where the equality D+(x, t) = D−(x, t) occurs are continuity points for both D+ and
D−.

Proposition 1.6.2 (Semicontinuity of D±) D+ is upper semicontinuous and D− is lower
semicontinuous in X × [0,∞).
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Proof. We prove lower semicontinuity of D−, the proof of upper semicontinuity of D+ being
similar. Let (xi, ti) be any sequence converging to (x, t) such that the limit of D−(xi, ti) exists
and assume that t > 0 (the case t = 0 is trivial). For every i, let (yni ) be a minimizing sequence
of F (ti, xi, ·) for which limn d(yni , xi) = D−(xi, ti), so that

lim
n→∞

f(yni ) + tiΨ
(d(yni , xi)

ti

)
= Qtif(xi).

Using the continuity of Qt we get

Qtf(x) = lim
i→∞

lim
n→∞

f(yni ) + tiΨ
(d(yni , xi)

ti

)
≥ lim sup

i→∞
lim sup
n→∞

f(yni ) + tΨ
(d(yni , x)

t

)
≥ Qtf(x),

where the first inequality follows from the boundedness of yni and the estimate

Ψ
(d(yni , xi)

ti

)
−Ψ

(d(yni , x)

t

)
≤
(
d(yni , xi)

ti
− d(yni , x)

t

)
· ϕ
(d(yni , xi)

ti
∨ d(yni , x)

ti

)
,

which in turn can be proved thanks to the inequality Ψ(a) − Ψ(b) ≤ |a − b|(ϕ(a) ∨ ϕ(b)).
Analogously

lim
i→∞

D−(xi, ti) = lim
i→∞

lim
n→∞

d(yni , xi) ≥ lim sup
i→∞

lim sup
n→∞

d(yni , x).

Therefore by a diagonal argument we can find a minimizing sequence (y
n(i)
i ) for F (t, x, ·) with

lim supi d(y
n(i)
i , x) ≤ limiD

−(xi, ti), which gives the result. �

Proposition 1.6.3 (Time derivative of Qtf) The map t 7→ Qtf is Lipschitz from [0,∞)
to the extended metric space of continuous functions C(X), endowed with the distance

‖f − g‖∞ = sup
x∈X
|f(x)− g(x)|.

Moreover, for all x ∈ X, it satisfies:

d

dt
Qtf(x) = −Φ

(
ψ
(D±(x, t)

t

))
, (1.6.8)

for any t > 0, with at most countably many exceptions; we recall that ψ = Ψ′.

Proof. Let t < s and for every ε ∈ (0, 1) choose xt,ε and xs,ε minimizers up to ε of F (t, x, ·) and
F (s, x, ·) respectively, namely such that F (t, x, xt,ε) − ε ≤ F (t, x, w) and F (s, x, xs,ε) − ε ≤
F (s, x, w) for every w ∈ X. Let us assume that d(x, xt,ε) ≥ D+(x, t) − ε and d(x, xs,ε) ≤
D−(x, s) + ε. We have

Qsf(x)−Qtf(x) ≤ F (s, x, xt,ε)− F (t, x, xt,ε) + ε

= tΨ
(d(x, xt,ε)

t

)
− sΨ

(d(x, xt,ε)

s

)
+ ε,

Qsf(x)−Qtf(x) ≥ F (s, x, xs,ε)− F (t, x, xs,ε)− ε

= tΨ
(d(x, xs,ε)

t

)
− sΨ

(d(x, xs,ε)

s

)
− ε.
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For ε small enough, dividing by s − t, using the definition of xt,ε and xs,ε and using the
inequality Ψ(dt )−

d
tψ(dt ) ≤

tΨ(d/t)−sΨ(d/s)
t−s ≤ Ψ(ds )− d

sψ(ds ) (note that t 7→ tΨ(d/t) is convex)
and using (1.5.2) we obtain

Qsf(x)−Qtf(x)

s− t
≤ −Φ

(
ψ
(D+(x, t)− ε

s

))
+

ε

s− t
,

Qsf(x)−Qtf(x)

s− t
≥ −Φ

(
ψ
(D−(x, s) + ε

t

))
− ε

s− t
,

which gives as ε→ 0 that t 7→ Qtf(x) is Lipschitz in [δ, T ] for any 0 < δ < T uniformly with
respect to x ∈ X. Also, taking Proposition 1.6.1 into account, we get (1.6.8). Now notice that
from (1.6.5) we get that | d

dtQtf(x)| ≤ Φ(ψ(λ(Lip(f)))) for any x ∈ X and a.e. t > 0, which,
together with the pointwise convergence of Qtf to f as t ↓ 0, yields that t 7→ Qtf ∈ C(X) is
Lipschitz in [0,∞). �

We will bound from above the asymptotic Lipschitz constant of Qtf at x with
ψ(D+(x, t)/t).

Proposition 1.6.4 (Bound on the asymptotic Lipschitz constant of Qtf) For
(x, t) ∈ X × (0,∞) it holds:

lipa(Qtf, x) ≤ ψ
(D+(x, t)

t

)
. (1.6.9)

In particular lipa(Qtf) ≤ ψ(λ(Lip(f))), where λ is defined in (1.6.5); if in addition (X, d) is a
geodesic metric space then Lip(Qtf) ≤ Lip(f).

Proof. Fix y, z ∈ X and t ∈ (0,∞). For every ε > 0 let yε ∈ X be such that F (t, y, yε)− ε ≤
F (t, y, w) for every w ∈ X and |d(y, yε)−D+(y, t)| ≤ ε. Since it holds

Qtf(z)−Qtf(y) ≤ F (t, z, yε)− F (t, y, yε) + ε

= f(yε) + tΨ
(d(z, yε)

t

)
− f(yε)− tΨ

(d(y, yε)

t

)
+ ε

≤ tΨ
(d(z, y) + d(y, yε)

t

)
− tΨ

(d(y, yε)

t

)
+ ε

≤ d(z, y)ψ
(d(z, y) +D+(y, t) + ε

t

)
+ ε,

so that letting ε→ 0, dividing by d(z, y) and inverting the roles of y and z gives

Lip
(
Qtf,B(x, r)

)
≤ ψ

(2r + supy∈B(x,r)D
+(y, t)

t

)
.

Letting r ↓ 0 and using the upper semicontinuity of D+ we get (1.6.9); notice that in this
limit it is crucial the continuity of ψ (i.e. the fact that Ψ ∈ C1).

Finally, the bound on the Lipschitz constant of Qtf follows directly from (1.6.5) and
(1.6.9). For the finer estimate in the geodesic case we refer to [42], [59]. �

Theorem 1.6.5 (Subsolution of HJ) For every x ∈ X it holds
d

dt
Qtf(x) + Φ

(
lipa(Qtf, x)

)
≤ 0 (1.6.10)

for every t ∈ (0,∞), with at most countably many exceptions.

Proof. The claim is a direct consequence of Propositions 1.6.3 and 1.6.4. �
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Notice that (1.6.10) is a stronger formulation of the HJ subsolution property

d

dt
Qtf(x) + Φ

(
|∇Qtf |(x)

)
≤ 0, (1.6.11)

with the asymptotic Lipschitz constant lipa(Qtf, ·) in place of |∇Qtf |.

1.7 The space (M+(X),WΨ) and the superposition principle

Let (X, d) be a complete and separable metric space and let M+(X) denote the set of positive
and finite Borel measures on X. Given a lower semicontinuous cost c : X ×X → [0,∞], we
can consider the classical Kantorovich transport problem on X between measures with same
mass, defining

Cc(µ, ν) := min
{ˆ

X×X
c(x, y) dγ | π1

]γ = µ, π2
]γ = ν

}
,

where π1 and π2 are respectively the projections on the first and second factors. We shall
denote by Γ(µ, ν) the collection of admissible plans γ in the Kantorovich minimization problem.
In the case of cp = dp, 1 ≤ p < ∞, we get the classical Wasserstein distances Wp = (Ccp)

1/p;
they can equivalently be written as

Wp(µ, ν) = min{‖d‖Lp(γ) |γ ∈ Γ(µ, ν)}

and so it is somewhat natural to look at the LΨ case, when Ψ is a Young function:

WΨ(µ, ν) := min
{
‖d‖LΨ(γ) |γ ∈ Γ(µ, ν)

}
.

We can recover in this way also the distance W∞, setting Ψ(x) = 0 if |x| ≤ 1 and Ψ(x) = +∞
otherwise. We want to consider also this general LΨ case as a transport problem, in order to
have a dual formulation that will be used later on. Notice that this Orlicz-Wasserstein distance
was already introduced in [77] and subsequently developed in [55]; they looked for properties
of WΨ more related to classical optimal transport, while here we focus on the duality. The
key point is to consider scaled costs: we introduce the “test" distances

W
(s)
Ψ (µ, ν) = min

{ˆ
X×X

sΨ
(d(x, y)

s

)
dγ | γ ∈ Γ(µ, ν)

}
,

called this way because

W
(s)
Ψ (µ, ν) ≤ s ⇐⇒ WΨ(µ, ν) ≤ s for all s > 0. (1.7.1)

These “test" distances are given by transport problems with lower semicontinuous costs
cs(x, y) = sΨ(d(x, y)/s), so they have a dual formulation [8, Theorem 6.1.1]1:

W
(s)
Ψ (µ, ν) = sup

ψ∈Lipb(X)

ˆ
X
ξc dµ+

ˆ
X
ξ dν,

1in the reference they prove it that functions in C0
b (X, d) are sufficient, but if once we fix ϕ ∈ C0

b (X) then
we can take ψ to be the ch-transform of ϕ for some h (following their notation); but then ψ is h-Lipschitz and
bounded. Then again we can substitute ϕ with the ck-transform of ψ for some k, and so also ϕ is Lipschitz
and bounded.
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where ψc denotes the so called c-transform of f , defined as:

ξc(x) = inf
y∈X

{
cs(x, y)− ξ(y)

}
(namely the largest function g(x) satisfying g(x) + ψ(y) ≤ cs(x, y) for all (x, y)). By the
definition of Qsϕ given in the previous section we get:

ξc(y) = inf
y∈X

{
sΨ

(
d(x, y)

s

)
− ξ(y)

}
= Qs(−ξ)(x).

Now, setting ξ = −ϕ in the dual formulation, and using this characterization of the c-
transform, we get

W
(s)
Ψ (µ, ν) = sup

ϕ∈Lipb(X)

ˆ
X
Qsϕdµ−

ˆ
X
ϕdν. (1.7.2)

The last step we need is to pass to ϕ ∈ Lip0(X, d), ϕ ≥ 0:

Lemma 1.7.1 Fix s > 0. For every µ, ν ∈M+(X) with the same mass we have

W
(s)
Ψ (µ, ν) = sup

{ˆ
X
Qsϕdµ−

ˆ
X
ϕdν : ϕ ∈ Lip0(X, d), ϕ ≥ 0

}
. (1.7.3)

Proof. In order to prove the equivalence, given (1.7.2), it is easy to see that, up to translation,
one can choose ϕ ≥ 0; therefore it is enough to show that for every ϕ ∈ Lipb(X) nonnegative
there holds

lim inf
r→∞

{ˆ
X
Qs[χrϕ] dν −

ˆ
X
χrϕdµ

}
≥
ˆ
X
Qsϕdν −

ˆ
X
ϕdµ, (1.7.4)

where χr is a Lipschitz cutoff function which is nonnegative, identically equal to 1 in
B(x0, r) and identically equal to 0 outside B(x0, r + 1) for some x0 ∈ X fixed. Since
χrϕ ≤ ϕ it follows that

´
X χrϕdµ ≤

´
X ϕdµ, so that by Fatou’s lemma suffices to show

that lim infr→∞Qs[χrϕ] ≥ Qsϕ. Let x ∈ X be fixed and let xr ∈ X be satisfying

χr(xr)ϕ(xr) + sΨ
(d(x, xr)

s

)
≤ 1

r
+Qs[χrϕ](x).

Since d(xr, x) is obviously bounded as r →∞, the same is true for d(xr, x0), so that χr(xr) = 1
for r large enough and Qsϕ(x) ≤ r−1 +Qs[χrϕ](x) for r large enough.

�

We will need also the following result, proved in [62]: it shows how to associate to an
absolutely continuous curve µt w.r.t. WΨ a plan π ∈ P(C([0, 1], X)) representing the curve
itself (see also [8, Theorem 8.2.1] for the Euclidean case and [61] for the general Lp case).
This is not possible for any Young function (for example it fails for Ψ(x) = x); we need the
following conditions to hold:

lim
x→0

Ψ(x)

x
= lim

x→∞

x

Ψ(x)
= 0 (1.7.5)

In particular the superposition principle holds for every N -function.

Proposition 1.7.2 (Superposition principle) Let (X, d) be a complete and separable met-
ric space, Ψ a Young function satisfying (1.7.5), and let µt ∈ AC

(
[0, T ]; (P(X),WΨ)

)
. Then

there exists π ∈ P(C([0, 1], X)), concentrated on AC([0, 1], X), such that (et)]π = µt for any
t ∈ [0, T ] and

‖γ̇t|‖LΨ(π) = |µ̇t| for a.e. t ∈ [0, T ]. (1.7.6)
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1.8 Γ-convergence

Definition 1.8.1 Let (X, d) be a metric space and let Fh : X → [−∞,+∞]. We say that Fh
Γ-converge to F : X → [−∞,+∞] if:

(a) For every sequence (uh) ⊂ X convergent to u ∈ X we have

F (u) ≤ lim inf
h→∞

Fh(uh);

(b) For all u ∈ X there exists a sequence (un) ⊂ X such that

F (u) ≥ lim sup
h→∞

Fh(uh).

Sequences satisfying the second property are called “recovery sequences”; whenever Γ-
convergence occurs, they obviously satisfy limh Fh(uh) = F (u).

The following compactness property of Γ-convergence (see for instance [31, Theorem 8.5])
is well-known.

Proposition 1.8.2 If (X, d) is separable, any sequence of functionals Fh : X → [−∞,+∞]
admits a Γ-convergent subsequence.

We quickly sketch the proof, for the reader’s convenience. If {Ui}i∈N is a countable basis
of open sets of (X, d), we may extract a subsequence h(k) such that αi := limk infUi Fh(k)

exists in R for all i ∈ N. Then, it is easily seen that

F (x) := sup
Ui3x

αi x ∈ X

is the Γ-limit of Fh(k).
We will also need an elementary stability property of uniformly convex (and quadratic as

well) functionals under Γ-convergence. Recall that a positively 1-homogeneous function N on
a vector space V is uniformly convex with modulus ω if there exists a function ω : [0,∞) →
[0,∞) with ω > 0 on (0,∞) such that

N(u) = N(v) = 1 =⇒ N

(
u+ v

2

)
≤ 1− ω(N(u− v))

for all u, v ∈ V .

Lemma 1.8.3 Let V be a normed space with the induced metric structure and let ω : [0,∞)→
[0,∞) be continuous, nondecreasing, positive on (0,∞). Let Nh be uniformly convex positively
1-homogeneous functions on V with the same modulus ω, Γ-convergent to some function N.
Then N is positively 1-homogeneous and uniformly convex with modulus ω.

Proof. The verification of 1-homogeneity of N is trivial. Let u, v ∈ V which satisfy N(u) =
N(v) = 1. Let (uh) and (vh) be recovery sequences for u and v respectively, so that both
Nh(uh) and Nh(vh) converge to 1. Hence, u′h = uh/Nh(uh) and v′h = vh/Nh(vh) still converge
to u and v respectively. By assumption

Nh

(
u′h + v′h

2

)
+ ω(Nh(u′h − v′h)) ≤ 1.
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Thanks to property (a) of Γ-convergence, the monotonicity and the continuity of ω and the
superadditivity of lim inf we get

N

(
u+ v

2

)
+ ω (N(u− v)) ≤ lim inf

h→∞
Nh

(
u′h + v′h

2

)
+ ω

(
lim inf
h→∞

Nh(u′h − v′h)

)
≤ lim inf

h→∞

(
Nh

(
u′h + v′h

2

)
+ ω(Nh(u′h − v′h))

)
≤ 1.

�

1.9 Doubling metric measure spaces and maximal functions

From now on, B(x, r) will denote the open ball centered in x of radius r and B̄(x, r) will
denote the closed ball:

B(x, r) = {y ∈ X : d(x, y) < r} , B̄(x, r) = {y ∈ X : d(x, y) ≤ r}.

If not specified, with the term ball we mean the open one.
Recall that a metric space (X, d) is doubling if there exists a natural number cD such that

every ball of radius r can be covered by at most cD balls of halved radius r/2.

Definition 1.9.1 (Doubling m.m. spaces) The metric measure space (X, d,m) is doubling
if there exists c̃D ≥ 0 such that

m(B(x, 2r)) ≤ c̃Dm(B(x, r)) ∀x ∈ suppm, r > 0. (1.9.1)

This condition is easily seen to be equivalent to the existence of two real positive numbers
α, β > 0 which depend only on c̃D such that

m(B(x, r1)) ≤ β
(
r1

r2

)α
m(B(y, r2)) whenever B(y, r2) ⊂ B(x, r1), r2 ≤ r1, y ∈ suppm.

(1.9.2)
Indeed, B(x, r1) ⊂ B(y, 2r1), hence m(B(x, r1)) ≤ c̃kDm(B(y, r2)), where k is the smallest
integer such that 2r1 ≤ 2kr2. Since k ≤ 2 + ln2(r1/r2), we obtain (1.9.2) with α = ln2 c̃D and
β = c̃2

D.
Condition (1.9.2) is stronger than the metric doubling property, in the sense that

(suppm, d) is doubling whenever (X, d,m) is. Indeed, given a ball B(x, r) with x ∈ suppm,
let us choose recursively points xi ∈ B(x, r) ∩ suppm with d(xi, xj) ≥ r/2, and assume that
this is possible for i = 1, . . . , N . Then, the balls B(xi, r/4) are disjoint and

m
(
B
(
xi,

r

4

))
≥ c̃−3

D m(B(xi, 2r)) ≥ c̃−3
D m(B(x, r)),

so that N ≤ c̃3
D; in particular we can find a maximal finite set {xi} with this property, and

from the maximality it follows that for every x′ ∈ B(x, r) ∩ suppm we have d(xi, x
′) < r/2

and so
B(x, r) ∩ suppm ⊂

⋃
i

B(xi, r/2).

It follows that (suppm, d) is doubling, with doubling constant cD ≤ c̃3
D. Conversely (but we

shall not need this fact) any complete doubling metric space supports a nontrivial doubling
measure (see [28], [64]).
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Definition 1.9.2 (Local maximal function) Given q ∈ [1,∞), ε > 0 and a Borel function
f : X → R such that |f |q is m-integrable on bounded sets, we define the ε-maximal function

M ε
q f(x) :=

(
sup

0<r≤ε
−
ˆ
B(x,r)

|f |q dm

)1/q

x ∈ suppm.

The function M ε
q f(x) is nondecreasing w.r.t. ε, moreover M ε

q f(x) → |f |(x) at any
Lebesgue point x of |f |q, namely a point x ∈ suppm satisfying

lim
r↓0

1

m(B(x, r))

ˆ
B(x,r)

|f(y)|q dm(y) = |f(x)|q. (1.9.3)

We recall that, in doubling metric measure spaces (see for instance [47]), under the previous
assumptions on f we have that m-a.e. point is a Lebesgue point of |f |q (the proof is based on
the so-called Vitali covering lemma). By applying this property to |f − s|q with s ∈ Q one
even obtains

lim
r↓0

1

m(B(x, r))

ˆ
B(x,r)

|f(y)− f(x)|q dm(y) = 0 (1.9.4)

for every x ∈ suppm that is a Lebesgue point of |f − s|q for every s ∈ Q. In particular it is
clear that (1.9.4) is satisfied for m-a.e. x ∈ suppm; we call such points q-Lebesgue points of
f . We shall need a further enforcement of the q-Lebesgue point property:

Lemma 1.9.3 Let (X, d,m) be a doubling metric measure space and let f : X → R be a Borel
function such that |f |q is m-integrable on bounded sets. Then, at any point x where (1.9.4) is
satisfied, it holds

lim
n→∞

1

m(En)

ˆ
En

|f(y)− f(x)|q dm(y) = 0 (1.9.5)

whenever En ⊂ X are Borel sets satisfying B(yn, τrn) ⊂ En ⊂ B(x, rn) with yn ∈ suppm and
rn → 0, for some τ ∈ (0, 1] independent of n. In particular −́En f dm→ f(x).

Proof. Since m is doubling we can use (1.9.2) to obtain

1

m(En)

ˆ
En

|f(y)− f(x)|q dm(y) ≤ 1

m(B(yn, τrn))

ˆ
En

|f(y)− f(x)|q dm(y)

≤ 1

m(B(yn, τrn))

ˆ
B(x,rn)

|f(y)− f(x)|q dm(y)

≤ m(B(x, rn))

m(B(yn, τrn))
−
ˆ
B(x,rn)

|f(y)− f(x)|q dm(y)

≤ βτ−α−
ˆ
B(x,rn)

|f(y)− f(x)|q dm(y).

Since (1.9.4) is true by hypothesis, the last term goes to 0, and we proved (1.9.5). Finally, by
Jensen’s inequality, ∣∣∣∣−ˆ

En

f dm− f(x)

∣∣∣∣q ≤ −ˆ
En

|f − f(x)|q dm→ 0.

�



CHAPTER 2

Duality between p-Modulus and probability measures

For the reader’s convenience we collect in the next table and figure the main notation used,
mostly in the second part of the chapter; most of them have been already introduced in the
preliminaries, but we prefer to give also a reference here, with all the relations between them.

Main notation

L
p
+(X,m) Borel nonnegative functions f : X → [0,∞] with

´
X f

p dm <∞
Lp(X,m) Lebesgue space of p-summable m-measurable functions
`(γ) Length of a parametric curve γ
ACq([0, 1];X) Space of parametric curves γ : [0, 1]→ X with q-integrable

metric speed
AC0([0, 1];X) Space of parametric curves with positive speed L 1-a.e. in (0, 1)
AC∞c ([0, 1];X) Space of parametric curves with positive and constant speed
k Embedding of

{
γ ∈ AC([0, 1];X) : `(γ) > 0

}
into AC∞c ([0, 1];X)

C (X) Space of non-parametric and nonconstant curves, see Definition 1.2.5
i Embedding of

{
γ ∈ AC([0, 1];X) : `(γ) > 0

}
in C (X)

j Embedding of C (X) into AC∞c ([0, 1];X)
M+(X) Space of nonnegative finite Radon measures on X
J Embedding of

{
γ ∈ AC([0, 1];X) : `(γ) > 0

}
in M+(X),

see Definition 1.2.3
J̃ Embedding of C (X) in M+(X); quotient map of J , see (1.2.10)
M Embedding of C([0, 1];X) in M+(X) via push forward of Lebesgue

measure, see (2.5.1)

23
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AC∞c ([0, 1];X) C (X)

{γ ∈ AC([0, 1];X)} : `(γ) > 0}

C([0, 1];X) M+(X)

πC

j

J̃

k i

J

M

In this Chapter we will prove a duality result for the p-modulus Modp,m. It can be stated
as follows: a set of measures Σ is not Modp,m-negligible if there exist a probability measure η
concentratedon Σ and a function f ∈ Lq(X,m), called barycenter of η, such that

¨
X
g dµ dη =

ˆ
fg dm ∀g ∈ Cb(X, d).

Quantitatively we have also Modp,m(Σ) = max ‖f‖−1
q , where we take the maximum among all

such barycenters. As a byproduct we obtain that Modp,m is a capacity.
Then we specialize this kind of measures on set of curves, and then we compare them with

the so-called q-plans, that are used in [9] to define Sobolev function in abstract metric spaces.
In particular the notion of negligibility is compared and in the last section we show that the
definition of Sobolev function given in [9] (using the q-plans) coincides with the definition
given in [57], [75] (using the p-modulus). This result is not new since in [9] the authors show
the equivalence also with other definitions, but the method is new, relying on a fine analysis
of the structure of the set of curves where the upper gradient property fails.

2.1 (p,m)-modulus Modp,m

In this section (X, τ) is a topological space and m is a fixed Borel and nonnegative reference
measure, not necessarily finite or σ-finite.

Given a power p ∈ [1,∞), we set

L
p
+(X,m) :=

{
f : X → [0,∞] : f Borel,

ˆ
X
fp dm <∞

}
. (2.1.1)

We stress that, unlike Lp(X,m), this space is not quotiented under any equivalence relation;
however we will keep using the notation

‖f‖p :=

(ˆ
X
|f |p dm

)1/p

as a seminorm on L
p
+(X,m) and a norm in Lp(X,m).

Given Σ ⊆M+ we define (with the usual convention inf ∅ =∞)

Modp,m(Σ) := inf

{ˆ
X
fp dm : f ∈ L

p
+(X,m),

ˆ
X
f dµ ≥ 1 for all µ ∈ Σ

}
, (2.1.2)

Modp,m,c(Σ) := inf

{ˆ
X
fp dm : f ∈ Cb(X),

ˆ
X
f dµ ≥ 1 for all µ ∈ Σ

}
. (2.1.3)
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Equivalently, if 0 < Modp,m(Σ) ≤ ∞, we can say that Modp(Σ)−1 is the least number ξ ∈
[0,∞) such that the following is true(

inf
µ∈Σ

ˆ
X
f dµ

)p
≤ ξ
ˆ
X
fp dm for all f ∈ L

p
+(X,m), (2.1.4)

and similarly there is also an equivalent definition for Modp,m,c(Σ)−1.
Notice that the infimum in (2.1.3) is unchanged if we restrict the minimization to nonnegative
functions f ∈ Cb(X). As a consequence, since the finiteness of m provides the inclusion of this
class of functions in L

p
+(X,m), we get Modp,m,c(Σ) ≥ Modp,m(Σ) whenever m is finite. Also,

whenever Σ contains the null measure, we have Modp,m,c(Σ) ≥ Modp,m(Σ) =∞.

Definition 2.1.1 (Modp,m-negligible sets) A set Σ ⊆ M+(X) is said to be Modp,m-
negligible if Modp,m(Σ) = 0.

A property P on M+(X) is said to be hold Modp,m-a.e. if the set

{µ ∈M+(X) : P (µ) fails}

is Modp,m-negligible. With this terminology, we can also write

Modp,m(Σ) = inf

{ˆ
X
fp dm :

ˆ
X
f dµ ≥ 1 for Modp,m-a.e. µ ∈ Σ

}
. (2.1.5)

We list now some classical properties that will be useful in the sequel, most of them are
well known and simple to prove, but we provide complete proofs for the reader’s convenience.

Proposition 2.1.2 The set functions A ⊆ M+(X) 7→ Modp,m(A), A ⊆ M+(X) 7→
Modp,m,c(A) satisfy the following properties:

(i) both are monotone and their 1/p-th power is subadditive;

(ii) if g ∈ L
p
+(X,m) then

´
X g dµ < ∞ for Modp,m-almost every µ; conversely, if

Modp,m(A) = 0 then there exists g ∈ L
p
+(X,m) such that

´
X g dµ =∞ for every µ ∈ A.

(iii) if (fn) ⊂ L
p
+(X,m) converges in Lp(X,m) seminorm to f ∈ L

p
+(X,m), there exists a

subsequence (fn(k)) such that
ˆ
X
fn(k) dµ→

ˆ
X
f dµ Modp,m-a.e. in M+(X); (2.1.6)

(iv) if p > 1, for every Σ ⊆M+(X) with Modp,m(Σ) <∞ there exists f ∈ L
p
+(X,m), unique

up to m-negligible sets, such that
´
X f dµ ≥ 1 Modp,m-a.e. on Σ and ‖f‖pp = Modp,m(Σ);

(v) if p > 1 and An are nondecreasing subsets of M+(X) then Modp,m(An) ↑ Modp,m(∪nAn);

(vi) if Kn are nonincreasing compact subsets of M+(X) then Modp,m,c(Kn) ↓
Modp,m,c(∩nKn).

(vii) Let A ⊆ M+(X), F : A → (0,∞) be a Borel map, and B =
{
F (µ)µ : µ ∈ A

}
. If

Modp,m(A) = 0 then Modp,m(B) = 0 as well.
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Proof. (i) Monotonicity is trivial. For the subadditivity, if we take
´
X f dµ ≥ 1 on A and´

X g dµ ≥ 1 on B, then
´
X(f + g) dµ ≥ 1 on A ∪ B, hence Modp,m(A ∪ B)1/p ≤ ‖f + g‖p ≤

‖f‖p + ‖g‖p. Minimizing over f and g we get the subadditivity.
(ii) Let us consider the set where the property fails:

Σg =

{
µ ∈M+(X) :

ˆ
X
g dµ =∞

}
.

Then it is clear that Modp,m(Σg) ≤ ‖g‖pp but Σg = Σλg for every λ > 0 and so we get that Σg

is Modp,m-negligible. Conversely, if Modp,m(A) = 0 for every n ∈ N we can find gn ∈ L
p
+(X,m)

with
´
X gn dµ ≥ 1 for every µ ∈ A and

´
X g

p
n ≤ 2−np. Thus g :=

∑
n gn satisfies the required

properties.
(iii) Let fn(k) be a subsequence such that ‖f − fn(k)‖p ≤ 2−k so that if we set

g(x) =
∞∑
k=1

|f(x)− fn(k)(x)|

we have that g ∈ L
p
+(X,m) and ‖g‖p ≤ 1; in particular we have, for (ii) above, that

´
X g dµ

is finite for Modp,m-almost every µ. For those µ we get

∞∑
k=1

ˆ
X
|f − fn(k)| dµ <∞

and thus we get (2.1.6).
(iv) Since we can use (2.1.5) to compute Modp,m(Σ), we obtain from (ii) and (iii) that the

class of admissible functions f is a convex and closed subset of the Lebesgue space Lp. Hence,
uniqueness follows by the strict convexity of the Lp norm.

(v) By the monotonicity, it is clear that Modp,m(An) is an increasing sequence and that
Modp,m(∪nAn) ≥ lim Modp,m(An) =: C. If C = ∞ there is nothing to prove, otherwise,
we need to show that Modp,m(∪nAn) ≤ C; let (fn) ⊂ L

p
+(X,m) be a sequence of functions

such that
´
X fn dµ ≥ 1 on An and ‖fn‖pp ≤ Modp,m(An) + 1

n . In particular we get that
lim supn ‖fn‖

p
p = C < ∞ and so, possibly extracting a subsequence, we can assume that fn

weakly converge to some f ∈ L
p
+(X,m). By Mazur lemma we can find convex combinations

f̂n =
∞∑
k=n

λk,nfk

such that f̂n converge strongly to f in Lp(X,m); furthermore we have that
´
X fk dµ ≥ 1 on

An if k ≥ n and so ˆ
X
f̂n dµ =

∞∑
k=n

λk,n

ˆ
X
fk dµ ≥ 1 on An.

By (iii) in this proposition we obtain a subsequence n(k) and a Modp,m-negligible set Σ ⊆
M+(X) such that

´
X f̂n(k) dµ →

´
X f dµ outside Σ; in particular

´
X f dµ ≥ 1 on ∪nAn \ Σ.

Then, by the very definition of Modp,m-negligible set, for every ε > 0 we can find gε ∈ L
p
+(X,m)

such that ‖gε‖pp ≤ ε and
´
X gε dµ ≥ 1 on Σ, so that we have

´
X(f + gε) dµ ≥ 1 on ∪nAn and

Modp,m(∪nAn)1/p ≤ ‖gε + f‖p ≤ ‖gε‖p + ‖f‖p ≤ ε1/p + lim inf ‖fn‖p ≤ ε1/p + C1/p.
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Letting ε→ 0 and taking the p-th power the inequality Modp,m(A) ≤ supn Modp,m(An) follows.
(vi) As before, by the monotonicity we get Modp,m,c(K) ≤ Modp,m,c(Kn) and so calling

C the limit of Modp,m,c(Kn) as n goes to infinity, we only have to prove Modp,m,c(K) ≥ C.
First, we deal with the case Modp,m,c(K) > 0: using the equivalent definition, let ϕε ∈ Cb(X)
be such that ‖ϕε‖p = 1 and

inf
µ∈K

ˆ
X
ϕε dµ ≥ 1

Modp,m,c(K)1/p
− ε.

By the compactness of K and of Kn, it is clear that the infimum above is a minimum and
that min

Kn

´
X ϕε dµ→ min

K

´
X ϕε dµ, so that

1

C1/p
= lim

n→∞

1

Modp,m,c(Kn)1/p
≥ lim

n→∞
min
µ∈Kn

ˆ
X
ϕε dµ ≥ 1

Modp,m,c(K)1/p
− ε.

The case Modp,m,c(K) = 0 is the same, taking ϕM ∈ Cb(X) such that ‖ϕM‖p = 1 and´
X ϕM dµ ≥M on K and then letting M →∞.

(vii) Since Modp,m(A) = 0, by (ii) we find g ∈ L
p
+(X,m) such that

´
X g dµ =∞ for every

µ ∈ A: this yields
´
X g d

(
F (µ)µ

)
=∞ for every µ ∈ A, showing that Modp,m(B) = 0. �

Remark 2.1.3 In connection with Proposition 2.1.2(iv), in general the constraint
´
X f dµ ≥ 1

is not saturated by the optimal f , namely the strict inequality can occur for a subset Σ0 with
positive (p,m)-modulus. For instance, if X = [0, 1] and m is the Lebesgue measure, then

Modp,m
(
{L 1 [0,

1

2
],L 1 [

1

2
, 1],L 1 [0, 1]}

)
= 2p and f ≡ 2,

but
´
X f dm = 2. However, we will prove using the duality formula Modp,m = Cpp,m that

one can always find a subset Σ′ ⊆ Σ (in the example above Σ \ Σ′ = {L 1 [0, 1]}) with
the same (p,m)-modulus satisfying

´
X f dµ = 1 for all µ ∈ Σ′, see the comment made after

Corollary 2.3.2.
On the other hand, if the measures in Σ are non-atomic, using just the definition of p-

modulus, one can find instead a family Σ′ of smaller measures with the same modulus as Σ
on which the constraint is saturated: suffices to find, for any µ ∈ Σ, a smaller measure µ′

(a subcurve, in the case of measures associated to curves) satisfying
´
X f dµ

′ = 1. In the
previous example the two constructions lead to the same result, but the two procedures are
conceptually quite different.

Another important property is the tightness of Modp,m in M+(X): it will play a crucial
role in the proof of Theorem 2.3.1 to prove the inner regularity of Modp,m for arbitrary Souslin
sets.

Lemma 2.1.4 (Tightness of Modp,m) If (X, τ) is Polish and m ∈M+(X), for every ε > 0
there exists Eε ⊆M+(X) compact such that Modp,m(Ecε) ≤ ε.

Proof. Since (X, τ) is Polish, by Ulam theorem we can find an nondecreasing family of sets
Kn ∈ K (X) such that

m(Kc
n)→ 0.
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We claim the existence of δn ↓ 0 such that, defining

Ek = {µ ∈M+(X) : µ(X) ≤ k and µ(Kc
n) ≤ δn ∀n ≥ k} ,

then Ek is compact and Modp,m(Eck) → 0 as k goes to infinity. First of all it is easy to see
that the family {Ek} is compact by Prokhorov theorem, because it is clearly tight.

To evaluate Modp,m(Eck) we have to build some functions. Let mn = m(Kc
n), assume with

no loss of generality that mn > 0 for all n, set an = (
√
mn +

√
mn+1)−1/p and note that this

latter sequence is nondecreasing and diverging to +∞; let us now define the functions

fk(x) :=


0 if x ∈ Kk,

an if x ∈ Kn+1 \Kn and n ≥ k,
+∞ otherwise.

Now we claim that if we put δn = a−1
n in the definition of the Ek’s we will have Modp,m(Eck)→

0: in fact, if µ ∈ Eck then we have either µ(X) > k or µ(Kc
n) > δn for some n ≥ k. In either

case the integral of the function fk + 1
k with respect to µ is greater or equal to 1:

• if µ(X) > k then ˆ
X

(
fk +

1

k

)
dµ ≥

ˆ
X

1

k
dµ ≥ 1;

• if µ(Kc
n) > δn for some n ≥ k we have that

ˆ
X

(
fk +

1

k

)
dµ ≥

ˆ
Kc
n

fk dµ ≥
ˆ
Kc
n

an dµ > δnan = 1.

So we have that Modp,m(Eck) ≤ ‖fk + 1
k‖

p
p ≤ (‖fk‖p + ‖1/k‖p)p. But

ˆ
X
fpk dm =

∞∑
n=k

ˆ
Kn+1\Kn

apn dm =

∞∑
n=k

mn −mn+1√
mn +

√
mn+1

=
√
mk,

and so we have Modp,m(Eck) ≤
(

(mk)
1/(2p) + (m(X))1/p/k

)p
→ 0. �

2.2 Plans with barycenter in Lq(X,m) and (p,m)-capacity

In this section (X, τ) is Polish and m ∈ M+(X) is a fixed reference measure. We will endow
M+(X) with the Polish structure making the maps µ 7→

´
X f dµ, f ∈ Cb(X), continuous, as

described in Section 1.1.

Definition 2.2.1 (Plans with barycenter in Lq(X,m)) Let q ∈ (1,∞], p = q′. We say
that a Borel probability measure η on M+(X) is a plan with barycenter in Lq(X,m) if there
exists c ∈ [0,∞) such that

¨
X
f dµdη(µ) ≤ c‖f‖p ∀f ∈ L

p
+(X,m). (2.2.1)

If η is a plan with barycenter in Lq(X,m), we call cq(η) the minimal c in (2.2.1).
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Notice that cq(η) = 0 iff η is the Dirac mass at the null measure in M+(X). We also
used implicitly in (2.2.1) (and in the sequel it will be used without further mention) the fact
that µ 7→

´
X f dµ is Borel whenever f ∈ L

p
+(X,m). The proof can be achieved by a standard

monotone class argument.
An equivalent definition of the class plans with barycenter in Lq(X,m), which explains also

the terminology we adopted, is based on the requirement that the barycenter Borel measure

µ :=

ˆ
µ dη(µ) (2.2.2)

is absolutely continuous w.r.t. m and with a density ρ in Lq(X,m). Moreover,

cq(η) = ‖ρ‖q. (2.2.3)

Indeed, choosing f = χA in (2.2.1) gives µ(A) ≤ (m(A))1/p, hence the Radon-Nikodym
theorem provides the representation µ = ρm for some ρ ∈ L1(X,m). Then, (2.2.1) once more
gives ˆ

X
ρf dm ≤ c‖f‖p ∀f ∈ Lp(X,m)

and the duality of Lebesgue spaces gives ρ ∈ Lq(X,m) and ‖ρ‖q ≤ c. Conversely, if µ has a
density in Lq(X,m), we obtain by Hölder’s inequality that (2.2.1) holds with c = ‖ρ‖q.

Obviously, (2.2.1) still holds with c = cq(η) for all f ∈ Cb(X), not necessarily nonnegative,
when η is a plan with barycenter in Lq(X,m). Actually the next proposition shows that we
need only to check the inequality (2.2.1) for f ∈ Cb(X) nonnegative.

Proposition 2.2.2 Let η be a probability measure on M+(X) such that
ˆ ˆ

X
f dµdη(µ) ≤ c‖f‖p for all f ∈ Cb(X) nonnegative (2.2.4)

for some c ≥ 0. Then (2.2.4) holds, with the same constant c, also for every f ∈ L
p
+(X,m).

Proof. It suffices to remark that (2.2.4) gives
ˆ
X
f dµ ≤ c‖f‖p ∀f ∈ Cb(X),

with µ defined in (2.2.2). Again the duality of Lebesgue spaces provides ρ ∈ Lq(X,m) with
‖ρ‖q ≤ c satisfying

´
X fρdm =

´
X f dµ for all f ∈ Cb(X), hence µ = ρm. �

There is a simple duality inequality, involving the minimization in (2.1.2) and a maximiza-
tion among all η’s with barycenter in Lq(X,m). To see it, let’s take f ∈ L

p
+(X,m) such that´

f dµ ≥ 1 on Σ ⊆ M+(X). Then, if Σ is universally measurable we may take any plan η
with barycenter in Lq(X,m) to obtain

η(Σ) ≤
ˆ ˆ

X
f dµ dη(µ) ≤ cq(η)‖f‖p. (2.2.5)

In particular we have

Modp,m(Σ) = 0 =⇒ η(Σ) = 0 for all η with barycenter in Lq(X,m). (2.2.6)
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In addition, taking in (2.2.5) the infimum over all the f ∈ L
p
+(X,m) such that

´
f dµ ≥ 1

on Σ and, at the same time, the supremum with respect to all plans η with barycenter in
Lq(X,m) and cq(η) > 0, we find

sup
c(η)>0

η(Σ)

cq(η)
≤ Modp,m(Σ)1/p. (2.2.7)

The inequality (2.2.7) motivates the next definition.

Definition 2.2.3 ((p,m)-content) If Σ ⊆M+(X) is a universally measurable set we define

Cp,m(Σ) := sup
cq(η)>0

η(Σ)

cq(η)
. (2.2.8)

By convention, we set Cp,m(Σ) =∞ if 0 ∈ Σ.

A first important implication of (2.2.7) is that for any family F of plans η with barycenter
in Lq(X,m)

C := sup {cq(η) : η ∈ F} <∞ =⇒ F is tight. (2.2.9)

Indeed, η(Ecεp) ≤ εcq(η) ≤ Cε, where the Eε ⊆ M+(X) are the compact sets provided by
Lemma 2.1.4. This allows to prove existence of optimal η’s in (2.2.8).

Lemma 2.2.4 Let Σ ⊆ M+(X) be a universally measurable set such that Cp,m(Σ) > 0 and
supΣ µ(X) <∞. Then there exists an optimal plan η with barycenter in Lq(X,m) in (2.2.8),
and any optimal plan is concentrated on Σ. In particular

Cp,m(Σ) =
η(Σ)

cq(η)
=

1

cq(η)
.

Proof. First we claim that the supremum in (2.2.7) can be restricted to the plans with
barycenter in Lq(X,m) concentrated on Σ. Indeed, given any admissible η with η(Σ) > 0,
defining η′ = (η(Σ))−1χΣη we obtain another plan with barycenter in Lq(X,m) satisfying
η′(Σ) = 1 and

ˆ ˆ
X
f dµdη′(µ) =

1

η(Σ)

ˆ
Σ

ˆ
X
f dµ dη(µ) ≤ 1

η(Σ)

ˆ ˆ
X
f dµ dη(µ) ≤ cq(η)

η(Σ)
‖f‖p

for all f ∈ L
p
+(X,m). In particular the definition of cq(η′) gives

cq(η
′) ≤ cq(η)

η(Σ)
,

and proves our claim. The same argument proves that η′ = η whenever η is a mazimizer.
Now we know that

Cp,m(Σ) = sup
η(Σ)=1

1

cq(η)
,

where the supremum is made over plans with barycenter in Lq(X,m). We take a maximizing
sequence (ηk); for this sequence we have that cq(ηk) ≤ C, so that (ηk) is tight by (2.2.9).
Assume with no loss of generality that ηk weakly converges to some η, that is clearly a
probability measure in M+(X). To see that η is a plan with barycenter in Lq(X,m) and that
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cq(η) is optimal, we notice that the continuity and boundedness of µ 7→
´
X f dµ in bounded

sets of M+(X) for f ∈ Cb(X) gives
ˆ ˆ

X
f dµdη(µ) = lim

k→∞

ˆ ˆ
X
f dµ dηk(µ) ≤ lim

k→∞
cq(ηk)‖f‖p,

so that ˆ ˆ
X
f dµ dη(µ) ≤ 1

Cp,m(Σ)
‖f‖p ∀f ∈ Cb(X).

The thesis follows from Proposition 2.2.2. �

2.3 Equivalence between Cp,m and Modp,m

In the previous two sections, under the standing assumptions (X, τ) Hausdorff topological
space (Polish in the case of Cp,m), µ ∈ M+(X) and p ∈ [1,∞), we introduced a p-Modulus
Modp,m and a p-content Cp,m, proving the direct inequalities (see (2.2.7))

Cpp,m ≤ Modp,m ≤ Modp,m,c on Souslin subsets of M+(X).

Under the same assumptions on (X, τ) and m ∈ M+(X), our goal in this section is the
following result:

Theorem 2.3.1 Let (X, τ) be a Polish topological space and p > 1. Then Modp,m is a Choquet
capacity in M+(X), every Souslin set Σ ⊆M+(X) is capacitable and satisfies Modp,m(Σ)1/p =
Cp,m(Σ). If moreover Σ is also compact we have Modp,m(Σ) = Modp,m,c(Σ).

Proof. We split the proof in two steps:

• first, prove that Modp,m,c(Σ)1/p ≤ Cp,m(Σ) if Σ is compact, so that in particulat
Mod

1/p
p,m = Cp,m on compact sets;

• then, prove that Modp,m and Cp,m are inner regular, and deduce that Mod
1/p
p,m = Cp,m on

Souslin sets.

The two steps together yield Modp,m = Modp,m,c on compact sets, hence we can use Proposi-
tion 2.1.2(v,vi) to obtain that Modp,m is a Choquet capacity in M+(X).
Step 1. Assume that Σ ⊆ M+(X) is compact. In particular supΣ µ(X) is finite and so we
have that the linear map Φ : Cb(X)→ C(Σ) = Cb(Σ) given by

f 7→ Φf (µ) :=

ˆ
X
f dµ

is a bounded linear operator.
If Σ contains the null measure there is nothing to prove, because Modp,m,c(Σ) =∞ by defi-

nition and Cp,m(Σ) =∞ by convention. If not, by compactness, we obtain that infΣ µ(X) > 0,
so that taking f ≡ 1 in (2.1.3) we obtain Modp,m,c(Σ) < ∞. We can also assume that
Modp,m,c(Σ) > 0, otherwise there is nothing to prove.



32 Chapter 2. Duality between p-Modulus and probability measures

Our first step is the construction of a plan η with barycenter in Lq(X,m) concen-
trated on Σ. By the equivalent definition analogous to (2.1.3) for Modp,m,c, the constant
ξ = Modp,m,c(Σ)−1/p satisfies

inf
µ∈Σ

Φf (µ) ≤ ξ‖f‖p ∀f ∈ C(Σ). (2.3.1)

Denoting by v = v(µ) the generic element of C(Σ), we will now consider two functions on
C(Σ):

F1(v) = inf {‖f‖p : f ∈ Cb(X), Φf ≥ v on Σ}
F2(v) = min {v(µ) : µ ∈ Σ} .

The following properties are immediate to check, using the linearity of f 7→ Φf for the first
one and (2.3.1) for the third one:

• F1 is convex;

• F2 is continuous and concave;

• F2 ≤ ξ · F1.

With these properties, standard Banach theory gives us a continuous linear functional L ∈
(C(Σ))∗ such that

F2(v) ≤ L(v) ≤ ξ · F1(v) ∀v ∈ C(Σ). (2.3.2)

For the reader’s convenience we detail the argument: first we apply the geometric form of
the Hahn-Banach theorem in the space C(Σ) × R to the convex sets A = {F2(v) > t} and
B = {F1(v) ≤ t/ξ}, where the former is also open, to obtain a continuous linear functional G
in C(Σ)× R such that

G(v, t) < G(w, s) whenever F2(v) > t, F1(w) ≤ s/ξ.

Representing G(v, t) as H(v) + βt for some H ∈ (C(Σ))∗ and β ∈ R, the inequality reads

H(v) + βt < H(w) + βs whenever F2(v) > t, F1(w) ≤ s/ξ.

Since F1 and F2 are real-valued, β > 0; we immediately get F2 ≤ (γ − H)/β ≤ ξF1, with
γ := supH(v) + βF2(v). On the other hand, F1(0) = F2(0) = 0 implies γ = 0, so that we can
take L = −H/β in (2.3.2).

In particular from (2.3.2) we get that if v ≥ 0 then L(v) ≥ F2(v) ≥ 0 and so, since Σ is
compact, we can apply Riesz theorem to obtain a nonnegative measure η in Σ representing L:

L(v) =

ˆ
Σ
v(µ) dη ∀v ∈ C(Σ).

Furthermore this measure can’t be null since (here 1 is the function identically equal to 1).

η(Σ) = L(1) ≥ F2(1) = 1,

and so η(Σ) ≥ 1. Now we claim that η is a plan with barycenter in Lq(X,m); first we prove
that η(Σ) ≤ 1, so that η will be a probability measure. In fact, we know F2(v)η(Σ) ≤ L(v)
because v ≥ F2(v) on Σ, and then

F2(v)η(Σ) ≤ ξF1(v).
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In particular, inserting in this inequality v = Φϕ with ϕ ∈ Cb(X), we obtain

inf
Σ

Φϕ ≤
ξ

η(Σ)
‖ϕ‖p

and so Modp,m,c(Σ) ≥ (η(Σ)/ξ)p = η(Σ)pModp,m,c(Σ), which implies η(Σ) ≤ 1. Now we have
that ˆ

Σ

(ˆ
X
f dµ

)
dη = L(Φf ) ≤ ξ · F1(Φf ) ≤ ξ · ‖f‖p ∀f ∈ Cb(X) (2.3.3)

and so, by Proposition 2.2.2, this inequality is true for every f ∈ L
p
+(X,m), showing that η

is a plan with barycenter in Lq(X,m); as a byproduct we gain also that cq(η) ≤ ξ that gives
us, that Cp,m(Σ) ≥ Modp,m,c(Σ)1/p, thus obtaining that

Cp,m(Σ) = Modp,m(Σ)1/p = Modp,m,c(Σ)1/p.

Step 2. Now we will prove that Modp,m and Cp,m are both inner regular, namely their value on
Souslin sets is the supremum of their value on compact subsets. Inner regularity and equality
on compact sets yield Cp,m(B) = Modp,m(B)1/p on every Souslin subset B of M+(X).
Modp,m is inner regular. Proposition 2.1.2(v,vi) and the fact that Modp,m,c = Modp,m if
the set is compact, give us that Modp,m is a capacity. For any set L ⊆ M+(X) we have
Modp,m(L) = supε Modp,m(L ∩ Eε), where Eε are the compact sets given by Lemma 2.1.4.
Therefore, suffices to show inner regularity for a Souslin set B contained in Eε for some ε.
Since Eε is compact, B is a Souslin-compact set and from Choquet Theorem 1.1.5 it follows
that for every δ > 0 there is a compact set K ⊆ B such that Modp,m(K) ≥ Modp,m(B)− δ.
Cp,m is inner regular. Since Souslin sets are universally measurable and M+(X) is Polish,
we can apply (1.1.1) to any Souslin set B with σ = η to get

sup
K⊆B

Cp,m(K) = sup
K⊆B

sup
cq(η)>0

η(K)

cq(η)
= sup

cq(η)>0
sup
K⊆B

η(K)

cq(η)
= sup

cq(η)>0

η(B)

cq(η)
= Cp,m(B).

�

The duality formula and the existence of maximizers and minimizers provide the following
result.

Corollary 2.3.2 (Necessary and sufficient optimality conditions) Let p > 1, let Σ ⊆
M+(X) be a Souslin set such that Modp,m(Σ) > 0 and supΣ µ(X) is finite. Then:

(a) there exists f ∈ L
p
+(X,m), unique up to m-negligible sets, such that

´
X f dµ ≥ 1 for

Modp,m-a.e. µ ∈ Σ and such that ‖f‖pp = Modp,m(Σ);

(b) there exists a plan η with barycenter in Lq(X,m) concentrated on Σ such that
Modp,m(Σ)1/p = 1/cq(η);

(c) for the function f in (a) and any η in (b) there holds

ˆ
X
f dµ = 1 for η-a.e. µ and

ˆ
X
µdη(µ) =

fp−1

‖f‖pp
m. (2.3.4)
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Finally, if f ∈ L
p
+(X,m) is optimal in (2.1.2), then any plan η with barycenter in Lq(X,m)

concentrated on Σ such that cq(η) = ‖f‖−1
p is optimal in (2.2.8). Conversely, if η is optimal

in (2.2.8), f ∈ L
p
+(X,m) and

´
X f dµ = 1 for µ-a.e. η then f is optimal in (2.1.2).

Proof. The existence of f follows by Proposition 2.1.2(iv). The existence of a maximizer
η in the duality formula, concentrated on Σ and satisfying Cp,m(Σ) = 1/cq(η) follows by
Lemma 2.2.4. Since (2.2.6) gives

´
X f dµ ≥ 1 for η-a.e. µ ∈ Σ we can still derive the

inequality (2.2.5) and obtain from Theorem 2.3.1 that all inequalities are equalities. Hence,´
X f dµ = 1 for η-a.e. µ ∈ M+(X). Finally, setting µ :=

´
µdη(µ), from (2.2.3) we get

µ = gm with ‖g‖q = cq(η). This, in combination with
ˆ
X
fg dm =

ˆ ˆ
X
f dµ dη(µ) = cq(η)‖f‖p = ‖g‖q‖f‖p,

gives g = fp−1/‖f‖pp.
Finally, the last statements follow directly from (2.2.5) and Theorem 2.3.1. �

In particular, choosing η as in (b) and defining

Σ′ :=

{
µ ∈M+(X) :

ˆ
X
f dµ = 1

}
,

since η(Σ) = η(Σ′) we obtain a subfamily with the same p-modulus on which the constraint
is saturated.

2.4 Modulus of families of non-parametric curves

In this section we assume that (X, d) is a complete and separable metric space and that
m ∈M+(X).

In order to apply the results of the previous sections (with the topology τ induced by d)
to families of non-parametric curves we consider the canonical map J̃ : C (X)→M+(X) \ {0}
of Definition 1.2.5(d). In the sequel, for the sake of simplicity, we will not distinguish between
J and J̃ , writing Jγ or J [γ] = Jγ (this is not a big abuse of notation, since J̃ is a quotient
map).

Now we discuss the notion of (p,m)-modulus, for p ∈ [1,∞). The (p,m)-modulus for
families Γ ⊆ C (X) of non-parametric curves is given by

Modp,m(Γ) := inf

{ˆ
X
gp dm : g ∈ L

p
+(X,m),

ˆ
γ
g ≥ 1 for all γ ∈ Γ

}
. (2.4.1)

We adopted the same notation Modp,m because the identity
´
γ g =

´
X g dJγ immediately gives

Modp,m(Γ) = Modp,m(J(Γ)). (2.4.2)

In a similar vein, setting q = p′, in the space C (X) we can define plans with barycenter
in Lq(X,m) as Borel probability measures π in C (X) satisfying

ˆ
C (X)

Jγ dπ(γ) = gm for some g ∈ Lq(X,m).
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Notice that the integral in the left hand side makes sense because the Borel regularity of J
easily gives that γ 7→ Jγ(A) is Borel in C (X) for all A ∈ B(X). We define, exactly as in
(2.2.3), cq(π) to be the Lq(X,m) norm of the barycenter g. Then, the same argument leading
to (2.2.5) gives

π(Γ)

cq(π)
≤ Modp,m(Γ)1/p for all π ∈ P(C (X)) with barycenter in Lq(X,m) (2.4.3)

for every universally measurable set Γ in C (X).

Remark 2.4.1 (Democratic plans) In more explicit terms, Borel probability measures π
in C (X) with barycenter in Lq(X,m) satisfy

ˆ 1

0
(et)](|γ̇t|π) dt = gm for some g ∈ Lq(X,m) (2.4.4)

when we view them as measures on nonconstant curves γ ∈ AC([0, 1];X). For instance, in the
particular case when π is concentrated on family of geodesics parameterized with constant
speed and with length uniformly bounded from below, the case q = ∞ corresponds to the
class of democratic plans considered in [63].

Defining Cp,m(Γ) as the supremum in the right hand side of (2.4.3), we can now use
Theorem 2.3.1 to show that even in this case there is no duality gap.

Theorem 2.4.2 For every p > 1 and every Souslin set Γ ⊆ C (X) with Modp,m(Γ) > 0
there exists a π ∈ P

(
C (X)

)
with barycenter in Lq(X,m), concentrated on Γ and satisfying

cq(π) = Modp,m(Γ)−1/p.

Proof. From Theorem 2.3.1 we deduce the existence of η ∈ P
(
M+(X)

)
with barycenter in

Lq(X,m) concentrated on the Souslin set J(Γ) and satisfying

1

cq(η)
= Modp,m(J(Γ))1/p = Modp,m(Γ)1/p.

By a measurable selection theorem [20, Theorem 6.9.1] we can find a η-measurable map
f : J(Γ) → C (X) such that f(µ) ∈ Γ ∩ J−1(µ) for all µ ∈ J(Γ). The measure π := f]η is
concentrated on Γ and the equality between the barycenters

ˆ
C (X)

Jγ dπ(γ) =

ˆ
µdη(µ)

gives cq(π) = cq(η). �

2.5 Modulus of families of parametric curves

In this section we still assume that (X, d) is a complete and separable metric space and
that m ∈ M+(X). We consider a notion of p-modulus for parametric curves, enforcing the
condition (2.4.4) (at least when Lipschitz curves are considered), and we compare with the
non-parametric counterpart. To this aim, we introduce the continuous map

M : C([0, 1];X)→ P(X), M(γ) := γ]
(
L 1 [0, 1]

)
. (2.5.1)
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Indeed, replacing Jγ = γ](|γ̇|L 1 [0, 1]) with M we can consider a “parametric” modulus of a
family of curves Σ ⊆ C([0, 1];X) just by evaluating Modp,m(M(Σ)). By Proposition 2.1.2(vii),
if Σ ⊆ AC∞c ([0, 1];X) then

Modp,m(M(Σ)) = 0 ⇐⇒ Modp,m(J(Σ)) = 0. (2.5.2)

On the other hand, things are more subtle when the speed is not constant.

Definition 2.5.1 (q-energy and parametric barycenter) Let ρ ∈ P
(
C([0, 1];X)

)
and

q ∈ [1,∞). We say that ρ has finite q-energy if ρ is concentrated on ACq([0, 1];X) and

ˆ ˆ 1

0
|γ̇t|q dtdρ(γ) <∞. (2.5.3)

We say that ρ has parametric barycenter h ∈ Lq(X,m) if

ˆ ˆ 1

0
f(γt) dt dρ(γ) =

ˆ
X
f h dm ∀f ∈ Cb(X). (2.5.4)

The finiteness condition (2.5.3) and the concentration on ACq([0, 1];X) can be also be
written, recalling the definition (1.2.1) of Eq, as follows:

ˆ
Eq(γ) dρ(γ) <∞.

Notice also that the definition (2.5.1) of M gives that (2.5.4) is equivalent to require the
existence of a constant C ≥ 0 such that

ˆ ˆ
X
f dMγ dρ(γ) ≤ C

(ˆ
X
fp dm

)1/p
∀f ∈ Cb(X), f ≥ 0. (2.5.5)

In this case the best constant C in (2.5.5) corresponds to ‖h‖Lq(X,m) for h as in (2.5.4).

Remark 2.5.2 It is not difficult to check that a Borel probability measure ρ concentrated
on a set Γ ⊆ AC∞([0, 1];X) with ρ-essentially bounded Lipschitz constants and parametric
barycenter in Lq(X,m) has also (nonparametric) barycenter in Lq(X,m). Conversely, if π ∈
P
(
C (X)

)
with barycenter in Lq(X,m) and π-essentially bounded length `(γ), then j]π has

parametric barycenter in Lq(X,m).

Now, arguing as in the proof of Theorem 2.4.2 (which provided existence of plans π in
C (X)) we can use a measurable selection theorem to deduce from our basic duality Theo-
rem 2.3.1 the following result.

Theorem 2.5.3 For every p > 1 and every Souslin set Σ ⊆ C([0, 1];X), Modp,m(M(Σ)) >
0 is equivalent to the existence of ρ ∈ P

(
C([0, 1];X)

)
concentrated on Σ with parametric

barycenter in Lq(X,m).

Our next goal is to use reparameterizations to improve the parametric barycenter from
Lq(X,m) to L∞(X,m). To this aim, we begin by proving the Borel regularity of some
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parametrization maps. Let h : X → (0,∞) be a Borel map with supX h < ∞ and for
every σ ∈ C([0, 1];X) let us set

G(σ) :=

ˆ 1

0
h(σr) dr, tσ(s) :=

1

G(σ)

ˆ s

0
h(σr) dr : [0, 1]→ [0, 1]. (2.5.6)

Since tσ is Lipschitz and t′σ > 0 L 1-a.e. in (0, 1), its inverse sσ : [0, 1] → [0, 1] is absolutely
continuous and we can define

H : AC([0, 1];X)→ AC([0, 1];X), Hσ(t) := σ(sσ(t)). (2.5.7)

Notice that H
(
AC∞c ([0, 1];X)

)
⊆ AC0([0, 1];X).

Lemma 2.5.4 If h : X → R is a bounded Borel function, the map G in (2.5.6) is Borel. If
we assume, in addition, that h > 0 in X, then also tσ in (2.5.6) is Borel and the map H in
(2.5.7) is Borel and injective.

Proof. Let us prove first that the map

σ 7→ t̃σ(t) =

ˆ t

0
h(σr) dr

is Borel from C([0, 1];X) to C([0, 1]) for any bounded Borel function h : X → R. This
follows by a monotone class argument (see for instance [20, Theorem 2.12.9(iii)]), since class
of functions h for which the statement is true is a vector space containing bounded continuous
functions and stable under equibounded pointwise limits. By the continuity of the integral
operator, the map G is Borel as well.

Now we turn to H, assuming that h > 0. By Proposition 1.1.3(iii) it will be sufficient to
show that the inverse of H, namely the map σ 7→ σ ◦ tσ, is Borel. Since the map (σ, t) 7→ σ ◦ t
is continuous from C([0, 1];X)×C([0, 1]) to C([0, 1];X), the Borel regularity of the inverse of
H follows by the Borel regularity of σ 7→ tσ. �

Theorem 2.5.5 Let q ∈ (1,∞) and p = q′. If ρ ∈ P
(
C([0, 1];X)

)
has finite q-energy and

parametric barycenter h ∈ L∞(X,m), then π = i]ρ has barycenter in Lq(X,m) and

cq(π) ≤
( ˆ

Eq(γ) dρ(γ)
)1/q
‖h‖1/pL∞(X,m). (2.5.8)

Conversely, if π ∈ P
(
C (X)

)
has barycenter in Lq(X,m) and π-essentially bounded length

`(γ), concentrated on a Souslin set Γ ⊆ C (X), there exists ρ ∈ P
(
C([0, 1];X)

)
with finite

q-energy and parametric barycenter in L∞(X,m) concentrated in a Souslin set contained in
[j(Γ)].

More generally, let σ ∈ P
(
C([0, 1];X)

)
be concentrated on a Souslin set Γ ⊆

AC∞([0, 1];X), with parametric barycenter in Lq(X,m) and with σ-essentially bounded Lip-
schitz constants. Then there exists ρ ∈ P

(
C([0, 1];X)

)
with finite q-energy and parametric

barycenter in L∞(X,m) concentrated on a Souslin set contained in [Γ].

Proof. Notice that for every nonnegative Borel f there holds¨
γ
f dπ(γ) =

¨ 1

0
f(γt) |γ̇t|dtdρ(γ) ≤

( ˆ
Eq dρ

)1/q(¨ 1

0
fp(γt) dt dρ(γ)

)1/p

≤
(ˆ

Eq dρ
)1/q( ˆ

X
fp hdm

)1/p
≤
( ˆ

Eq dρ
)1/q
‖h‖1/pL∞(X,m)‖f‖Lp(X,m),
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so that (2.5.8) holds.
Let us now prove the last statement from σ to ρ, since the “converse” statement from π

to ρ simply follows by applying the last statement to σ := j]π and recalling Remark 2.5.2.
Let g ∈ Lq(X,m) be the parametric barycenter of σ and let us set h := 1/(ε ∨ g), with ε > 0
fixed. Up to a modification of g in a m-negligible set, it is not restrictive to assume that h
is Borel and with values in (0, 1/ε], so that the corresponding maps G and H defined as in
(2.5.6) and (2.5.7) are Borel.

We set ρ̂ := z−1G(·)σ, where z ∈ (0, 1/ε] is the normalization constant
´
G(γ) dσ(γ).

Let us consider the inverse sσ : [0, 1] → [0, 1] of the map tσ in (2.5.6), which is absolutely
continuous for every σ and the corresponding transformation Hσ in (2.5.7). We denote by
L the σ-essential supremum of the Lipschitz constants of the curves in Γ. Notice that for
σ-a.e. σ

|(Hσ)′|(t) ≤ Ls′σ(t) =
LG(σ)

h(Hσ(t))
L 1-a.e. in (0, 1), (2.5.9)

and for every nonnegative Borel function f there holds
ˆ 1

0
f(Hσ(t)) dt =

ˆ 1

0
f(σ(sσ(t))) dt =

ˆ 1

0
f(σ(s))t′σ(s) ds =

1

G(σ)

ˆ 1

0
f(σ(s))h(σ(s)) ds,

so that choosing f = h−q yields

Eq(Hσ) ≤ LqGq(σ)

ˆ 1

0
h−q(Hσ(t)) dt ≤ Lq

εq−1

ˆ 1

0
h1−q(σ(s)) ds. (2.5.10)

Now we set ρ := H]ρ̂ and notice that, by construction, ρ is concentrated on the Souslin set
H(Γ) ⊆ [Γ]. Integrating the q-energy with respect to ρ we obtain

ˆ
Eq(θ) dρ(θ) =

ˆ
Eq(Hσ) dρ̂(σ) ≤ Lq

zεq−1

ˆ
G(σ)

ˆ 1

0
h1−q(σ(s)) ds dπ(σ)

≤ Lq

zεq

ˆ
X
h1−qg dm ≤ Lq

zεq

(
εq−1

ˆ
X
g dm +

ˆ
X
gq dm

)
,

thus obtaining that ρ has finite q-energy. Similarly
ˆ ˆ 1

0
f(θ(t)) dt dρ(θ) =

ˆ ˆ 1

0
f(Hσ(t)) dt dρ̂(σ)

=
1

z

ˆ
G(σ)

ˆ 1

0
f(σ(s))h(σ(s)) dsdσ(σ) ≤ 1

εz

ˆ
X
fgh dm.

Since gh ≤ 1, this shows that ρ has parametric barycenter in L∞(X,m). �

Corollary 2.5.6 A Souslin set Γ ⊆ C (X) is Modp,m-negligible if and only if ρ∗([jΓ]) = 0 for
every ρ ∈ P

(
C([0, 1];X)

)
concentrated on ACq([0, 1];X) and with parametric barycenter in

L∞(X,m).

Proof. Let us first suppose that Γ is Modp,m-negligible and let us denote by h ∈ L∞(X,m)
the parametric barycenter of ρ and let us prove that ρ∗([jΓ]) = 0. Since ρ is concentrated
on ACq([0, 1];X) we can assume with no loss of generality (possibly restricting ρ to the class
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of curves σ with Eq(σ) ≤ n and normalizing) that ρ has finite q-energy. We observe that if
σ ∈ AC([0, 1];X) and f : X → [0,∞] is Borel, there holds

ˆ 1

0
f(σ(t))|σ̇(t)| dt ≤

( ˆ 1

0
fp(σ(t)) dt

)1/p(
Eq(σ)

)1/q
. (2.5.11)

If f satisfies ˆ
γ
f ≥ 1 ∀γ ∈ Γ

we obtain that
´
σ f ≥ 1 for all σ ∈ [jΓ]. We can now integrate w.r.t. ρ and use (2.5.11) to get

ρ∗([jΓ]) ≤
( ˆ ˆ 1

0
fp(σ(t)) dtdρ(σ)

)1/p( ˆ
Eq(σ) dρ(σ)

)1/q

=
(ˆ

X
fp hdm

)1/p(ˆ
Eq(σ) dρ(σ)

)1/q
≤ ‖f‖p‖h‖1/p∞

(ˆ
Eq(σ) dρ(σ)

)1/q
. (2.5.12)

By minimizing with respect to f we obtain that ρ∗([jΓ]) = 0.
Conversely, suppose that Modp,m(Γ) > 0; possibly passing to a smaller set, by the countable

subadditivity of Modp,m we can assume that ` is bounded on Γ: then by Theorem 2.4.2
there exists π ∈ P

(
C (X)

)
with barycenter in Lq(X,m) concentrated on Γ and therefore

the boundedness of ` allows to apply the final statement of Theorem 2.5.5 to obtain ρ ∈
P
(
C([0, 1];X)

)
with finite q-energy, parametric barycenter in L∞(X,m) and concentrated on

a Souslin subset of [jΓ]. �

In the next corollary, in order to avoid further measurability issues, we state our result
with the inner measure

µ∗(E) := sup{µ(B) : B Borel, B ⊆ E}.

This formulation is sufficient for our purposes.

Corollary 2.5.7 Let Γ ⊆ AC∞([0, 1];X) be a Souslin set such that ρ∗
(
[Γ]
)

= 0 for every
plan ρ ∈ P(C([0, 1];X)) concentrated on ACq([0, 1];X) and with parametric barycenter in
L∞(X,m). Then M(Γ) is Modp,m-negligible.

Proof. Suppose by contradiction that Modp,m(M(Γ)) > 0; possibly passing to a smaller
set, by the countable subadditivity of Modp,m we can assume that Lip is bounded on Γ. By
Theorem 2.5.3 there exists π ∈ P

(
C([0, 1];X)

)
with parametric barycenter in Lq(X,m) con-

centrated on Γ. The boundedness of Lip on Γ allows to appy the second part of Theorem 2.5.5
to obtain ρ ∈ P

(
C([0, 1];X)

)
with parametric barycenter in L∞(X,m), finite q-energy and

concentrated on a Souslin subset of [Γ]. �

2.6 Test plans and their null sets

In this section we will assume that (X, d) is a complete and separable metric space and m ∈
M+(X). The following notions have already been used in [11] (q = 2) and [9] (in connection
with the Sobolev spaces with gradient in Lp(X,m), with q = p′; see also [5] in connection
with the BV theory), with a slight difference: in [9], [11] the authors use only q-test plans



40 Chapter 2. Duality between p-Modulus and probability measures

that satisfy the additional condition
´
Eq dρ < ∞. Here we drop this assumption, requiring

only that ρ is concentrated on ACq([0, 1];X) = {Eq < ∞}. However it is obvious that the
negligible sets described by the two approaches are the same, since every q-plan ρ without the
integrability condition can be approximated by q-plans σ satisfying even (2.6.1) below.

Definition 2.6.1 (q-test plans and negligible sets) Let ρ ∈ P(C([0, 1];X)) and q ∈
[1,∞]. We say that ρ is a q-test plan if

(i) ρ is concentrated on ACq([0, 1];X);

(ii) there exists a constant C = C(ρ) > 0 satisfying (et)]ρ ≤ Cm for all t ∈ [0, 1].

We say that a universally measurable set Γ ⊆ C([0, 1];X) is q-negligible if ρ(Γ) = 0 for all
q-test plans ρ.

Notice that, by definition, C([0, 1];X)\ACq([0, 1];X) is q-negligible. The lack of invariance
of these concepts, even under bi-Lipschitz reparameterizations (dependent on the curve) is due
to condition (ii), which is imposed at any given time and with no averaging (and no dependence
on speed as well). Since condition (ii) is more restrictive compared for instance to the notion
of democratic test plan of [63] (see Remark 2.4.1), this means that sets of curves have higher
chances of being negligible w.r.t. this notion, as the next elementary example shows.

We now want to relate null sets according to Definition 2.6.1 to null sets in the sense of
p-modulus. Notice first that in the definition of q-negligible set we might consider only plans
ρ satisfying the stronger condition

esssup{Eq(σ)} <∞ (2.6.1)

because any q-test plan can be monotonically be approximated by q-test plans satisfying this
condition. Arguing as in the proof of (2.5.12) we easily see that

Γ ⊆ C (X) Modp,m-negligible =⇒ i−1(Γ) q-negligible. (2.6.2)

The following simple example shows that the implication can’t be reversed, namely sets whose
images under i−1 are q-negligible need not be Modp,m-null.

Example 2.6.2 Let X = R2, d the Euclidean distance, m = L 2. The family of parametric
segments

Σ = {γx : x ∈ [0, 1]} ⊆ AC([0, 1];R2)

with γxt = (x, t) is q-negligible for any q, but i(Σ) has p-modulus equal to 1.

In the previous example the implication fails because the trajectories γx fall, at any given
time t, into a m-negligible set, and actually the same would be true if this concentration
property holds at some fixed time. It is tempting to imagine that the implication is restored
if we add to the initial family of curves all their reparameterizations (an operation that leaves
the p-modulus invariant). However, since any reparameterization fixes the endpoints, even
this fails. However, in the following, we will see that the implication

Γ q-negligible =⇒ Modp,m(i(Γ)) = 0
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could be restored if we add some structural assumptions on Γ (in particular a “stability”
condition); the collections of curves we are mainly interested in are those connected with the
theory of Sobolev spaces in [11], [9], and we will find a new proof of the fact that if we define
weak upper gradients according to the two notions, the Sobolev spaces are eventually the
same.

We now fix some additional notation: for I = [a, b] ⊆ [0, 1] we define the “stretching” map
sI : AC([0, 1];X) → AC([0, 1];X), mapping γ to γ ◦ sI , where sI : [0, 1] → [a, b] is the affine
map with sI(0) = a and sI(1) = b. Notice that this map acts also in all the other spaces ACq,
AC0, AC∞c of parametric curves we are considering. Recall also the definition of k given in
Proposition 1.2.1

Definition 2.6.3 (Stable and invariant sets of curves)

(i) We say that Γ ⊆ {γ ∈ AC([0, 1];X) : `(γ) > 0} is invariant under constant speed
reparameterization if kγ ∈ Γ for all γ ∈ Γ;

(ii) We say that Γ ⊆ AC([0, 1];X) is ∼-invariant if [γ] ⊆ Γ for all γ ∈ Γ;

(iii) We say that Γ ⊆ AC([0, 1];X) is stable if for every γ ∈ Γ there exists ε ∈ (0, 1/2) such
that sIγ ∈ Γ whenever I = [a, b] ⊆ [0, 1] and |a|+ |1− b| ≤ ε.

The following theorem provides key connections between q-negligibility and Modp,m-
negligibility, both in the nonparametric sense (statement (i)) and in the parametric case
(statement (ii)), for stable sets of curves.

Theorem 2.6.4 Let Γ ⊆ AC([0, 1];X) be a Souslin and stable set of curves.

(i) If, in addition, `(γ) > 0 for all γ ∈ Γ and Γ is both ∼-invariant and invariant under
constant speed reparameterization, then Γ is q-negligible if and only if J(Γ) is Modp,m-
negligible in M+(X) (equivalently, i(Γ) is Modp,m-negligible in C (X)).

(ii) If Γ is q-negligible and [Γ∩AC∞([0, 1];X)] ⊆ Γ, then M
(
Γ∩AC∞([0, 1];X)

)
is Modp,m-

negligible in M+(X). If Γ is also ∼-invariant then the converse holds, too.

Proof. (i) The proof of the nontrivial implication, from positivity of Modp,m(J(Γ)) to Γ
being not q-negligible is completely analogous to the proof of (ii), given below, by applying
Corollary 2.5.6 to i(Γ) in place of Corollary 2.5.7 to Γ∩AC∞([0, 1];X) and the same rescaling
technique. Since we will only need (ii) in the sequel, we only give a detailed proof of (ii).

(ii) Let us prove that the positivity of Modp,m
(
M(Γ ∩ AC∞([0, 1];X))

)
implies that Γ is

not q-negligible. Since Γ∩AC∞([0, 1];X) is stable, we can assume the existence of ε ∈ (0, 1/2)
such that sIγ ∈ Γ whenever I = [a, b] ⊆ [0, 1] and |a|+ |1− b| ≤ ε.

By applying Corollary 2.5.7 to Γ ∩ AC∞([0, 1];X) we obtain the existence of ρ ∈
P
(
ACq([0, 1];X)

)
concentrated on a Souslin subset of [Γ ∩ AC∞([0, 1];X)], and then on Γ,

with L∞ parametric barycenter, i.e. such that
ˆ 1

0
(et)]ρdt ≤ Cm for some C > 0. (2.6.3)

Let’s define a family of reparametrization maps F τε : ACq([0, 1];X)→ ACq([0, 1];X):

F τε γ(t) = γ
( t+ τ

1 + ε

)
t ∈ [0, 1], ∀γ ∈ ACq([0, 1];X), ∀ τ ∈ [0, ε]. (2.6.4)
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Let us consider now the measure

ρε =
1

ε

ˆ ε

0
(F τε )]ρ dτ.

We claim that ρε is a q-plan: it is clear that ρε is a probability measure on ACq([0, 1];X),
and so we have to check only the marginals at every time:

(et)]ρε =
1

ε

ˆ ε

0
(et)]

(
(F τε )]ρ

)
dτ =

1

ε

ˆ ε

0
(e t+τ

1+ε
)]ρ dτ

=
1 + ε

ε

ˆ t+ε
1+ε

t
1+ε

(es)]ρ ds ≤
1 + ε

ε

ˆ 1

0
(es)]ρ ds ≤ C

1 + ε

ε
m for all t ∈ [0, 1].

Now we reach the absurd if we show that ρε is concentrated on Γ; in order to do so it is
sufficient to notice that F τε = sI with I = Iτε = [ τ

1+ε ,
1+τ
1+ε ] and τ ∈ [0, ε].

Now if we assume also that [Γ] ⊆ Γ then we know that given a curve γ ∈ Γ then γ ◦ s−1
1 =:

η ∈ Γ∩AC∞([0, 1];X), where s1 is the parametrization defined in Proposition 1.2.1. We recall
that by definition we have (1 + `(γ))s′(t) = 1 + |γ̇t|; in particular, by the change of variable
formula

ˆ 1

0
(1 + |γ̇t|)g(γt) dt = (1 + `(γ))

ˆ 1

0
g(ηs) ds ∀g Borel function. (2.6.5)

We suppose thatM
(
Γ∩AC∞([0, 1];X)

)
is Modp,m-negligible; this gives us a p-integrable Borel

function f such that
ˆ 1

0
f(γt) dt =∞ ∀γ ∈ Γ ∩AC∞([0, 1];X). (2.6.6)

Now given any q-plan π we have that

¨ 1

0
(|γ̇t|+ 1)f(γt) dtdπ ≤

(¨ 1

0
(|γ̇t|+ 1)qdtdπ

)1/q (¨ 1

0
f(γt)

pdt dπ

)1/p

≤
((ˆ

Eq(γ) dπ
)1/q

+ 1

)(
C(π) ·

ˆ
X
fp dm

)1/p

<∞. (2.6.7)

Now, using (2.6.6), (2.6.7) and (2.6.5) we get precisely that π(Γ) = 0.

�

Remark 2.6.5 We note that the proof shows that if Γ is ∼-invariant and M
(
Γ ∩

AC∞([0, 1];X)
)
is Modp,m-negligible in M+(X) then Γ is q-negligible, also if the stability

assumption is dropped.

2.7 Weak upper gradients

As in the previous sections, (X, d) will be a complete and separable metric space and m ∈
M+(X).
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Recall that a Borel function g : X → [0,∞] is an upper gradient of f : X → R if

|f(γ
fin

)− f(γ
ini

)| ≤
ˆ
γ
g (2.7.1)

holds for all γ ∈ C (X). Here, the curvilinear integral
´
γ g is given by

´
J g(γt)|γ̇t| dt, where

γ : J → X is any parameterization of the curve γ (i.e., γ = iγ, and one can canonically take
γ = jγ). It follows from Proposition 1.2.4 that the upper gradient property can be equivalently
written in the form

|f(γ
fin

)− f(γ
ini

)| ≤
ˆ
X
g dJγ.

Now we introduce two different notions of Sobolev function and a corresponding notion of
p-weak gradient; the first one was first given in [75] while the second one [11] in for p = 2 and
in [9] for general exponent. When discussing the corresponding notions of (minimal) weak
gradient we will follow the terminology of [9].

Definition 2.7.1 (N1,p and p-upper gradient) Let f be a m-measurable and p-integrable
function on X. We say that f belongs to the space N1,p(X, d,m) if there exists g ∈ L

p
+(X,m)

such that (2.7.1) is satisfied for Modp,m-a.e. curve γ.

Functions in N1,p have the important Beppo-Levi property of being absolutely continuous
along Modp,m-a.e. curve γ (more precisely, this means f ◦ jγ ∈ AC([0, 1];X)), see [75, Proposi-
tion 3.1]. Because of the implication (2.6.2), functions in N1,p(X, d,m) belongs to the Sobolev
space defined below (see [11], [9]) where (2.7.1) is required for q-a.e. curve γ.

Definition 2.7.2 (W 1,p and p-weak upper gradient) Let f be a m-measurable and p-
integrable function on X. We say that f belongs to the space W 1,p(X, d,m) if there exists
g ∈ L

p
+(X,m) such that

|f(γ1)− f(γ0)| ≤
ˆ 1

0
g(γt)|γ̇t|dt

is satisfied for q-a.e. curve γ ∈ ACq([0, 1];X).

We remark that there is an important difference between the two definitions, namely the
first one is a priori not invariant if we change the function f on a m-negligible set, while
the second one has this kind of invariace, because for any q-test plan ρ, any m-negligible
Borel set N and any t ∈ [0, 1] the set {γ : γt ∈ N} is ρ-negligible. Associated to these
two notions are the minimal p-upper gradient and the minimal p-weak upper gradient, both
uniquely determined up to m-negligible sets (for a more detailed discussion, see [9], [75]).

As an application of Theorem 2.6.4, we show that these two notions are essentially equiv-
alent modulo the choice of a representative in the equivalence class: more precisely, for
any f ∈ W 1,p(X, d,m) there exists a m-measurable representative f̃ of f which belongs to
N1,p(X, d,m). This result is not new, because in [11] and [9] the equivalence has already been
shown. On the other hand, the proof of the equivalence in [11] and [9] is by no means elemen-
tary, it passes through the use of tools from the theory of gradient flows and optimal transport
theory and it provides the equivalence with another relevant notion of “relaxed” gradient based
on the approximation through Lipschitz functions. We provide a totally different proof, using
the results proved in this paper about negligibility of sets of curves.
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In the following theorem we provide, first, existence of a “good representative” of f . No-
tice that the standard theory of Sobolev spaces provides existence of this representative via
approximation with Lipschitz functions.

Theorem 2.7.3 (Good representative) Let f : X → R be a Borel function and let us set

Γ =
{
γ ∈ AC∞([0, 1];X) : f ◦ γ has a continuous representative fγ : [0, 1]→ R

}
.

If Modp,m
(
M(AC∞([0, 1];X) \ Γ)

)
= 0 there exists a m-measurable representative f̃ : X → R

of f satisfying
Modp,m

(
M({γ ∈ Γ : f̃ ◦ γ 6≡ fγ})

)
= 0. (2.7.2)

In particular

(i) for q-a.e. curve γ there holds f̃ ◦ γ ≡ fγ;

(ii) for Modp,m-a.e. curve γ there holds f̃ ◦ jγ ≡ fjγ.

Proof. Let us set Γ̃ := AC∞([0, 1];X) \ Γ, so that our assumption reads Modp,m(M(Γ̃)) = 0.
Notice first that the (ii) makes sense because fjγ exists for Modp,m-a.e. curve γ thanks to
(2.5.2) and Modp,m(M(Γ̃∩AC∞c ([0, 1];X))) = 0 (also, constant curves are all contained in Γ).
Also (i) makes sense thanks to 2.6.5 and the fact that the property of having a continuous
representative is ∼-invariant.
Step 1. (Construction of a good set Γg of curves). Since we have Modp,m(M(Γ̃)) = 0, there
exists h ∈ L

p
+(X,m) such that

´ 1
0 h ◦ σ =∞ for every σ ∈ Γ̃. Starting from Γ and h, we can

define the set Γg =
{
η ∈ Γ :

´ 1
0 h ◦ η < ∞

}
of “good” curves, satisfying the following three

conditions:

(a) f ◦ η has a continuous representative for all η ∈ Γg;

(b)
´ 1

0 h ◦ η <∞ for all η ∈ Γg;

(c) M
(
AC∞([0, 1];X) \ Γg

)
is Modp,m-negligible.

Indeed, properties (a) and (b) follow easily by definition, while (c) follows by the inclusion

M
(
AC∞([0, 1];X) \ Γg

)
⊆M

(
AC∞([0, 1];X) \ Γ

)
∪
{
µ :

ˆ
X
hdµ =∞

}
.

Step 2. (Construction of f̃). For every point x ∈ X we consider the set of pairs good curves-
times that pass through x at time t:

Θx = {(η, t) ∈ Γg × [0, 1] : η(t) = x},

and, thanks to property (a) of Γg, we can partition this set according to the value of the
continuous representative fη at t:

Θx =
⋃
r∈R

Θr
x with Θr

x = {(η, t) ∈ Θx : fη(t) = r}.
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Now, the key point is that for every x ∈ X there exists at most one r such Θr
x is not empty.

Indeed, suppose that r1 6= r2 and that there exist (η1, t1) ∈ Θr1
x , (η2, t2) ∈ Θr2

x , so that
r1 = fη1(t1) 6= fη2(t2) = r2; since η1, η2 ∈ Γg, property (b) of Γg gives

ˆ 1

0
h ◦ η1 dt+

ˆ 1

0
h ◦ η2 dt <∞. (2.7.3)

Suppose to fix the ideas that t1 > 0 and t2 < 1 (otherwise we reverse time for one curve,
or both, in the following argument). Now we create a new curve η3 ∈ AC∞([0, 1];X) by
concatenation:

η3(s) :=

{
η1(2st1) if s ∈ [0, 1/2],

η2(1− 2(1− s)(1− t2)) if s ∈ [1/2, 1].

This curve is clearly absolutely continuous and it follows first η1 for half of the time and then
it follows η2; it is clear that, since f ◦ η3 coincides L 1-a.e. in (0, 1) with the function

a(s) :=

{
fη1(2st1) if s ∈ [0, 1/2],

fη2(1− 2(1− s)(1− t2)) if s ∈ [1/2, 1]

which has a jump discontinuity at s = 1/2, f ◦ η3 has no continuous representative. It follows
that η3 belongs to Γ̃ and therefore

´ 1
0 h ◦ η3 =∞. But, since

1

2t1

ˆ 1

0
h ◦ η1 dt+

1

2(1− t2)

ˆ 1

0
h ◦ η2 dt ≥

ˆ 1

0
h ◦ η3 dt

we get a contradiction with (2.7.3).
Now we define

f̃(x) :=

{
fη(t) if (η, t) ∈ Θx for some η ∈ Γg, t ∈ [0, 1]

f(x) otherwise.

By construction, f̃(η(t)) = fη(t) for all t ∈ [0, 1] and η ∈ Γg, so that property (c) of Γg shows
(2.7.2) which implies also that that

Modp,m
(
M({γ ∈ Γ ∩AC∞c ([0, 1];X) : f̃ ◦ γ 6≡ fγ})

)
= 0.

Recalling (2.5.2) and the fact that j is a Borel isomorphism, we can rewrite this last equation
as

Modp,m
(
J({γ ∈ C (X) : f̃ ◦ jγ 6≡ fjγ})

)
= 0,

and so we proved (ii).Using 2.6.5 and the fact that {γ : f̃ ≡ fγ} is clearly a ∼-invariant set
gives (i).
Step 3. (The set F := {f 6= f̃} is m-negligible.) Let γx be the curve identically equal x, that
is γxt = x for all t ∈ [0, 1]. It is clear that γx belongs to Γ for every x ∈ X: in particular
fγx(t) = f(x) for every t ∈ [0, 1]. The basic observation is that if we consider the set Γ̃c
of constant curves γx satisfying f̃ ◦ γx 6≡ fγx , then f(x) 6= f̃(x) for every such curve, hence
Γ̃c = {γx : x ∈ F}. In particular we have that M(Γ̃c) = {δx : x ∈ F}. Now, from (2.7.2),
we know that Modp,m(M(Γ̃c)) = 0; this provides the existence of g ∈ L

p
+(X,m) such that

g(x) =∞ for every x ∈ F , and so we get that F is contained in a m-negligible set. �
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The following simple example shows that, in Theorem 2.7.3, the “nonparametric” assumption
that J(AC([0, 1];X) \ Γ) is Modp,m-negligible is not sufficient to conclude that f̃ = f m-a.e.
in X.

Example 2.7.4 Let X = [0, 1], d the Euclidean distance, m = L 1 + δ1/2, p ∈ [1,∞). The
function f identically equal to 0 on X \ {1/2} and equal to 1 at x = 1/2 has a continuous
(actually, identically equal to 0) representative fjγ for Modp,m-a.e. curve γ, but any function
f̃ such that f̃ ◦ jγ ≡ fjγ for Modp,m-a.e. γ should be equal to 0 also at x = 1/2, so that
m({f 6= f̃}) = 1.

Now, we are going to apply Theorem 2.7.3 to the problem of equivalence of Sobolev spaces.
We begin with a few preliminary results and definitions.

Let f : X → R, g : X → [0,∞] be Borel functions. We consider the sets

I(g) :=
{
γ ∈ AC([0, 1];X) :

ˆ
γ
g <∞

}
, (2.7.4)

and

B(f, g) :=
{
γ ∈ I(g) : f ◦ γ ∈W 1,1(0, 1), | d

dt
(f ◦ γ)| ≤ |γ̇|g ◦ γ L 1-a.e. in (0, 1)

}
. (2.7.5)

We will need the following simple measure theoretic lemma, which says that integration in
one variable maps Borel functions to Borel functions. Its proof is an elementary consequence
of a monotone class argument (see for instance [20, Theorem 2.12.9(iii)]) and of the fact that
the statement is true for F bounded and continuous.

Lemma 2.7.5 Let (Y, dY ) be a metric space and let F : [0, 1] × Y → [0,∞] be Borel. Then
the function IF : Y → [0,∞] defined by y 7→

´ 1
0 F (t, y) dt is a Borel function.

Lemma 2.7.6 Let f : X → R, g : X → [0,∞] be Borel functions. Then I(g) \ B(f, g) is a
Borel set, stable and ∼-invariant.

Proof. Stability is simple to check: if, by contradiction, it were γ ∈ I(g) \ B(f, g) and
s[an,bn]γ ∈ B(f, g) with an ↓ 0 and bn ↑ 1, we would get f ◦ γ ∈ W 1,1(an, bn) and | d

dtf ◦
γ| ≤ |γ̇|g ◦ γ ∈ L1(0, 1) L 1-a.e. in (an, bn). Taking limits, we would obtain γ ∈ B(f, g), a
contradiction.

For the proof of ∼-invariance we note that, first of all, that Lemma 2.7.5 with F (t, γ) :=
g(γt)|γ̇t| guarantees that I(g) is a ∼-invariant Borel set, provided we define F using a Borel
representative of |γ̇|; this can be achieved, for instance, using the lim inf of the metric difference
quotients. Analogously, the set

L :=
{
γ ∈ AC([0, 1];X) :

ˆ 1

0
|f(γt)|dt <∞

}
is Borel. Now, γ ∈ B(f, g) if and only if γ ∈ I(g) ∩ L and∣∣∣∣ˆ 1

0
ϕ′(t)f(γt) dt

∣∣∣∣ ≤ ˆ 1

0
|ϕ(t)|g(γt)|γ̇t| dt for all ϕ ∈W (2.7.6)
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with W = {ϕ ∈ AC([0, 1]; [0, 1]) : ϕ(0) = ϕ(1) = 0}. Now, if both s and s−1 are absolutely
continuous from [0, 1] to [0, 1], setting η := γ ◦ s, we can use the change of variables formula
to obtain that (ϕ ◦ s)′f ◦ η ∈ L1(0, 1) for all ϕ ∈W and that∣∣∣∣ˆ 1

0
(ϕ ◦ s)′(r)f(ηr) dr

∣∣∣∣ ≤ ˆ 1

0
|ϕ ◦ s(r)|g(ηr)|η̇r|dr for all ϕ ∈W.

Since W ◦ s = W we eventually obtain ϕ′f ◦ η ∈ L1(0, 1) for all ϕ ∈W (so that f ◦ η is locally
integrable in (0, 1)) and∣∣∣∣ˆ 1

0
ϕ′(r)f(ηr) dr

∣∣∣∣ ≤ ˆ 1

0
|ϕ(r)|g(ηr)|η̇r|dr for all ϕ ∈W.

It is easy to check that these two conditions, in combination with
´
η g <∞, imply that η ∈ L,

therefore f ◦ η belongs to B(f, g) and ∼-invariance is proved.
In order to prove that B(f, g) is Borel we follow a similar path: we already know that

both I(g) and L are Borel, and then in the class I(g) ∩ L the condition (2.7.6), now with W
replaced by a countable dense subset of C1

c(0, 1) for the C1 norm, provides a characterization
of B(f, g). Since for ϕ ∈ C1

c(0, 1) fixed the maps

η ∈ L 7→
ˆ 1

0
ϕ′(r)f(ηr) dr, η 7→

ˆ 1

0
|ϕ(r)|g(ηr)|η̇r| dr

are easily seen to be Borel in AC([0, 1];X) (as a consequence of Lemma 2.7.5, splitting in
positive and negative part the first integral and using once more a Borel representative of |η̇|
in the second integral) we obtain that B(f, g) is Borel. �

Theorem 2.7.7 (Equivalence theorem) Any f ∈ N1,p(X, d,m) belongs to W 1,p(X, d,m).
Conversely, for any f ∈W 1,p(X, d,m) there exists a m-measurable representative f̃ that belongs
to N1,p(X, d,m). More precisely, f̃ satisfies:

(i) f̃ ◦ γ ∈ AC([0, 1];X) for q-a.e. curve γ ∈ AC∞([0, 1];X);

(ii) f̃ ◦ jγ ∈ AC([0, 1];X) for Modp,m-a.e. curve γ.

Proof. We already discussed the easy implication from N1,p to W 1,p, so let us focus on the
converse one.In the sequel we fix f ∈ W 1,p(X, d,m) and a p-weak upper gradient g. By Fu-
bini’s theorem, it is easily seen that the space W 1,p(X, d,m) is invariant under modifications
in m-negligible sets; as a consequence, since the Borel σ-algebra is countably generated, we
can assume with no loss of generality that f is Borel. Another simple application of Fubini’s
theorem (see [9, Remark 4.10]) shows that for q-a.e. curve γ there exists an absolutely con-
tinuous function fγ : [0, 1] → R such that fγ = f L 1-a.e. in (0, 1) and | d

dtfγ | ≤ |γ̇|g ◦ γ
L 1-a.e. in (0, 1). Since the Lq integrability of g yields that the complement of I(g) is q-
negligible, we can use Lemma 2.7.6 and Theorem 2.6.4(ii) to infer that Σ = I(g) \ B(f, g)
satisfies Modp,m

(
M(Σ ∩AC∞([0, 1];X))

)
= 0.

By Theorem 2.7.3 we obtain a m-measurable representative f̃ of f such that f̃ ◦γ ≡ fγ for
q-a.e. curve γ and f̃ ◦ jγ ≡ fjγ for Modp,m-a.e. γ. Hence, the fundamental theorem of calculus
for absolutely continuous functions gives

|f̃(γ
fin

)− f̃(γ
ini

)| = |fjγ(1)− fjγ(0)| ≤
ˆ 1

0
g((jγ)t)| ˙(jγ)

t
|dt =

ˆ
γ
g

for Modp,m-a.e. γ. �
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CHAPTER 3

Orlicz-Sobolev Spaces

Let (X, d) be a complete and separable metric space and let m be a nonnegative Borel measure
in X that is finite on bounded sets. In this chapter we introduce and compare two notions
of Orlicz-Sobolev space on X, the first obtained by relaxation of the asymptotic Lipschitz
constant, the second obtained by a suitable weak upper gradient property. Eventually we
will show that the two notions of Sobolev functions coincide; the equivalence is valid for any
N -function Φ. In a subsequent section we illustrate how this result generalize [9], showing
that in the case Ψ (the convex conjugate of Φ) is doubling, we can define also a notion of
modulus of gradient that coincides with other notions of gradient, generalization of the ones
introduced in [25], [57], [75], described in the appendix. The proof follows closely [9], but,
choosing properly the energy used for the constriction of the gradient flow, we are able to
achieve the proof looking at dissipation of a functional independent of the function Φ, namely
the squared norm of the function.

We briefly summarize the proof: in Section 1.6 we studied the properties of the Hopf-Lax
semigroup

Qtf(x) := inf
y∈X

f(y) + tΨ
(d(x, y)

t

)
,

for which we proved the differential inequality

d

dt
Qtf(x) + Φ

(
lipa(Qtf, x)

)
≤ 0,

that will play an important role in our analysis. In Section 3.1 and Section 3.2 we present and
compare the two definitions of Φ-Sobolev spaces we already mentioned in the Introduction,
while in Section 3.1.1 we gather a few facts on the gradient flow of FΦ

v that are used in
Section 3.3 to prove our main result.

Basically, the proof is achieved controlling the dissipation of the function f 7→ ‖f‖22 along
the gradient flow of FΦ

v in two different ways: on one side we use properties of the gradient
flow that involves FΦ

v . On the other side we consider ftm as a absolutely continuous curve in
the probability space with respect to WΨ. Then, thanks to superposition principle 1.7.2, we
lift this curve of measures to a measure on the space of curves, and then we can use the BL
definition to estimate the dissipation with FΦ

BL.

49
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The proof can be extended also to the degenerate case Φ(t) = t, provided that a suitable
version of the Hamilton-Jacobi inequality for the Hopf-Lax formula is found: this is done in
Chapter 4, that is a smaller and improved version of [5].

3.1 Variational definition and relaxed energy FΦ
v

In this section a notion of Orlicz-Sobolev space by a relaxation procedure is presented. First
we define

FΦ(f) =

{
‖lipa(f, ·)‖(Φ),m if f ∈ Lip0(X, d)

+∞ otherwise,

where the dual Orlicz norm ‖ · ‖(Φ),m is recalled in Definition 1.5.1. Then we consider FΦ
v , the

lower semicontinuous relaxation of FΦ
v with respect to the L1 topology:

FΦ
v (f) = inf

{
lim inf
n→∞

FΦ(fn) : fn → f in L1(X,m)
}
.

We will call this function the Φ-relaxed energy functional. We recall that D(F) is defined as
the domain of finiteness of a functional F.

Definition 3.1.1 (Variational H-definition) The space H1,Φ
v (X, d,m) is defined as

D(FΦ
v ). In particular a function f ∈ L1(X,m) belongs to the space H1,Φ

v (X, d,m) if and
only if there are Lipschitz functions with bounded support fn such that fn → f in L1(X,m)
and

sup
n∈N
‖lipa(fn, ·)‖(Φ),m <∞.

Here the subscript v stands for variational. It is easy to see that H1,Φ is a vector space:
it follows from the fact that FΦ

v is convex and positively 1-homogeneous. Convexity of FΦ
v

follows by the more precise inequality for the asymptotic Lipschitz constant

lipa(λf + µg) ≤ |λ|lipa(f) + |µ|lipa(g) (3.1.1)

which simply follows by homogeneity and convexity of f 7→ lipa(f, x). Moreover these proper-
ties yield that the map N : f 7→ ‖f‖1 +FΦ

v (f) is actually a norm. Using the semicontinuity of
FΦ
v with respect to the L1 convergence we find also that H1,Φ is complete with respect to the

norm N . We will call this norm the H1,Φ norm, and denoted by ‖f‖H1,Φ := N(f). Unlike the
case Φ(t) = tp/p, at this level of generality we can’t expect to find a modulus of the gradient
(see Section 3.4.1); however we will see that if the convex conjugate of Φ is doubling we have
its existence (Theorem 3.4.8).

Remark 3.1.2 It is obvious that FΦ
v (f) ≤ FΦ(f), in particular if f ∈ Lip0(X, d) then we

have that f ∈ H1,Φ
v and FΦ

v (f) ≤ ‖lipa(f)‖(Φ),m.

However the same thing is not obvious when f is a Lipschitz function and f ∈ L1, so we
prove it in the next proposition:

Proposition 3.1.3 Let f ∈ L1(X,m) be a bounded Lipschitz function. Then we have that
FΦ
v (f) ≤ ‖lipa(f)‖(Φ),m. In particular, if m is finite then the constant functions have null

energy, and this implies that FΦ
v (C + f) = FΦ

v (f) for every f ∈ L1, C > 0.
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Proof. Fix a point x ∈ X, and let χr be a sequence of 1-Lipschitz function such that
χBr(x) ≤ χr ≤ χBr+2(x). Then let us consider the sequence (χnf) ⊂ Lip0(X, d); it is obvious
that χnf → f in L1 so we know that

FΦ
v (f) ≤ lim inf

n→∞
‖χnf‖(Φ).

We can assume ‖lipa(f)‖(Φ) <∞; now we have lipa(χnf) ≤ χnlipa(f) + fχBn+2\Bn and so

‖χnf‖(Φ) ≤ ‖lipa(f)‖(Φ) + ‖fχBn+2\Bn‖(Φ);

now, using that fχBn+2\Bn → 0 pointwise and f ∈ L∞ ∩ L1 ⊂ MΦ, we get by dominated
convergence (Lemma 1.5.3) that the last term in the right hand side is going to zero and so
we get the thesis.

Whenever m is finite we have that the constant functions are bounded integrable Lipschitz
functions and so their energy can be estimated with the (Φ)-norm of their asymptotic Lipschitz
constant, that is 0. In particular, by convexity and homogeneity, we have

FΦ
v (f)− FΦ

v (C) ≤ FΦ
v (C + f) ≤ FΦ

v (f) + FΦ
v (C),

and so, since FΦ
v (C) = 0 we have proved also the last assertion. �

3.1.1 Gradient flow of FΦ
v

In this subsection we assume that m(X) < ∞. In the proof of equivalence a relevant
role is retained by the gradient flow of the convex and lower semicontinuous functional
FΦ
v : L2(X,m) → [0,∞]; we can consider this functional, thanks to the fact that FΦ

v is
defined on L1, but since m is finite, we have L2 ⊂ L1. With a slight abuse of notation we will
keep the notation FΦ

v for this restricted functional. The convexity has been already proved,
while the lower semicontinuity in L2 simply follows by the lower semicontinuity in L1 and the
fact that m is finite. In addition, the domain of FΦ

v ,

D(FΦ
v ) = H1,Φ

v (X, d,m) ∩ L2(X,m)

is dense in L2(X,m), because it contains Lip0(X, d). Thanks to these facts we can apply the
standard theory of gradient flows [23] of convex lower semicontinuous functionals in Hilbert
spaces, recalled in Section 1.4 to obtain, starting from any f0 ∈ L2(X,m), a curve ft such
that:

(a) t 7→ ft is locally Lipschitz from (0,∞) to L2(X,m) and ft → f0 strongly in L2 as t ↓ 0;

(b) t 7→ FΦ
v (ft) is locally absolutely continuous in (0,∞);

(c) d
dtft = ∆Φft for a.e. t ∈ (0,∞).

Here ∆Φf denotes the opposite of the element of minimal norm of the subdifferential
∂−FΦ

v (f), when this set is not empty. Namely, ξ = −∆Φf satisfies

FΦ
v (h) ≥ FΦ

v (f) +

ˆ
X
ξ(h− f) dm ∀h ∈ L2(X,m) (3.1.2)
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and is the vector with smallest L2(X,m) norm among those with this property. We will denote
by D(∆Φ) the set of functions for which the subdifferential is not empty.

We can think of the gradient flow also as a semigroup St that maps f0 in ft. When m(X)
is finite, a property that will be used is that St(af0 + C) = a · St/a(f0) + C for all C ∈ R,
a ∈ (0,∞); this is true because FΦ

v is positively 1-homogeneus and invariant by addition of
a constant (Proposition 3.1.3) and so we get that ∂−FΦ

v is positively 0-homogeneus and also
invariant by addition.

Proposition 3.1.4 (Integration by parts) For all f ∈ D(∆Φ) and g ∈ D(Ch1) it holds

−
ˆ
X
g∆Φf dm ≤ FΦ

v (g), (3.1.3)

with equality if g = f .

Proof. Since −∆Φf ∈ ∂−F1(f) it holds

FΦ
v (f)−

ˆ
X
g∆Φf dm ≤ FΦ

v (f + g), ∀g ∈ L2(X,m).

Now we can use (3.1.1) to estimate FΦ
v (f + g) with FΦ

v (f) + FΦ
v (g), and so we get the first

statement. For the second statement we need the converse inequality when f = g; but this is
easy, because it is sufficient to put h = 0 in (3.1.2).

�

Proposition 3.1.5 (Some properties of the gradient flow of FΦ
v ) Let f0 ∈ L2(X,m)

and let (ft) be the gradient flow of FΦ
v starting from f0. Then:

(Mass preservation)
´
ft dm =

´
f0 dm for any t ≥ 0.

(Maximum principle) If f0 ≤ C (resp. f0 ≥ c) m-a.e. in X, then ft ≤ C (resp ft ≥ c) m-a.e.
in X for any t ≥ 0.
(Energy dissipation) Suppose 0 < c ≤ f0 ≤ C <∞ m-a.e. in X and let Θ ∈ C2([c, C]). Then
t 7→
´

Θ(ft) dm is locally absolutely continuous in (0,∞) and it holds

− d

dt

ˆ
Θ(ft) dm ≤ FΦ

v (Θ′(ft)) for a.e. t ∈ (0,∞),

with equality if Θ(t) = t2.

Proof. (Mass preservation) Just notice that from (3.1.3) we get

d

dt

ˆ
±1ft dm =

ˆ
±1 ·∆Φft dm ≤ FΦ

v (±1) = 0 for a.e. t > 0,

where 1 is the function identically equal to 1, which has Φ-relaxed energy equal to 0 by
Proposition 3.1.3.
(Maximum principle) Fix f ∈ L2(X,m), τ > 0 and, according to the so-called implicit Euler
scheme, let f τ be the unique minimizer of

g 7→ FΦ
v (g) +

1

2τ

ˆ
X
|g − f |2 dm.
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Assume that f ≤ C. We claim that in this case f τ ≤ C as well. Indeed, if this is not the
case we can consider the competitor g := min{f τ , C} in the above minimization problem. By
Lemma 3.3.2 we get F(g) ≤ F(f τ ) and the L2 distance of f and g is strictly smaller than the
one of f and f τ as soon as m({f τ > C}) > 0, which is a contradiction. Starting from f0,
iterating this procedure, and using the fact that the implicit Euler scheme converges as τ ↓ 0
(see [23], [8] for details) to the gradient flow we get the conclusion.
(Energy dissipation) Since t 7→ ft ∈ L2(X,m) is locally absolutely continuous and, by the
maximum principle, ft take their values in [c, C] m-a.e., from the fact that Θ is Lipschitz in
[c, C] we get the claimed absolute continuity statement. Now, we know from the Lagrange
mean value theorem that exists a function ξht : X → [c, C] such that:

Θ(ft+h)− Φ(ft) = Θ′(ft)(ft+h − ft) +
1

2
Θ′′(ξht )(ft+h − ft)2.

Dividing by h and integrating in space, we get that, for times where the L2 derivative of ft
exists (i.e., for almost every t):

d

dt

ˆ
X

Θ(ft) dm =

ˆ
X

Θ′(ft)∆Φft dm.

We can now use Lemma 3.1.4 with g = Θ′(ft) in the right hand side to get the last statement.
�

3.2 Beppo Levi definition and Φ-weak energy

Recall that the evaluation maps et : C([0, 1], X) → X are defined by et(γ) := γt. We also
introduce the restriction maps restrst : C([0, 1], X)→ C([0, 1], X), 0 ≤ t ≤ s ≤ 1, given by

restrst (γ)r := γ(1−r)t+rs, (3.2.1)

so that restrst “stretches” the restriction of the curve to [s, t] to the whole of [0, 1].
Our definition of Φ-weak upper gradient is inspired by [5], [9], [11], allowing for exceptional

curves in (1.3.5), but with a different notion of exceptional set, compared to [57], [75]. What
follows is a generalization, for a general N -function, of the theory of test plans we already
encountered in Definition 2.6.1; notice that however here we require C(π) ≥ 1, since this
condition will be needed in the proof and we don’t have a good homogeneity of the Φ norm
with respect to the change of measure. We recall that Ψ is the convex conjugate of Φ.

Definition 3.2.1 (Test plans and negligible sets of curves) We say that a measure π ∈
M+(C([0, 1], X)) is a Ψ-test plan if π is concentrated on AC([0, 1], X),

´ 1
0 ‖|γ̇t|‖Ψ,πdt < ∞

and there exists a constant C(π) ≥ 1 such that

(et)]π ≤ C(π)m ∀t ∈ [0, 1]. (3.2.2)

A set A ⊂ C([0, 1], X) is said to be Φ-negligible if it is contained in a π-negligible set for any
Ψ-test plan π. A property which holds for every γ ∈ C([0, 1], X), except possibly a Φ-negligible
set, is said to hold for Φ-almost every curve.
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Observe that, by definition, C([0, 1], X) \AC([0, 1], X) is Φ-negligible, so the notion starts to
be meaningful when we look at subsets of AC([0, 1], X). Notice also that in our definition
we let π be a finite measure, not only a probability measure, as in the homogeneous case
(Φ(t) = tq).

Remark 3.2.2 An easy consequence of condition (3.2.2) is that if two m-measurable functions
f, g : X → R coincide up to a m-negligible set and T is an at most countable subset of [0, 1],
then the functions f ◦ γ and g ◦ γ coincide in T for Φ-almost every curve γ.

Moreover, choosing an arbitrary Ψ-test plan π and applying Fubini’s Theorem to the
product measure L 1 × π in (0, 1)× C([0, 1];X) we also obtain that f ◦ γ = g ◦ γ L 1-a.e. in
(0, 1) for π-a.e. curve γ; since π is arbitrary, the same property holds for Φ-a.e. γ.

Remark 3.2.3 Differently from the same notion for the case Φ(t) = tp, it is not obvious how
the constant C(π) behave through the localization πA = 1

π(A)π|A. But in our definition we
are not forced to have π a probability measure, so when we want to localize to a Borel set
A ⊂ C([0, 1];X) we simply take πA = π|A.

Coupled with the definition of Φ-negligible set of curves, there is the definition of
BL1,Φ(X, d,m). In order to find a proper definition, let’s try to do some calculation when g
is an upper gradient for f , that is, |f(γ1) − f(γ0)| ≤

´
γ g ds for every γ ∈ AC([0, 1];X). In

particular we can integrate this inequality with respect to a Ψ-plan π:
ˆ
|f(γ1)− f(γ0)|dπ ≤

¨ 1

0
g(γt)|γ̇t|dtdπ. (3.2.3)

If we want to let ‖g‖(Φ),m appear, we can use Hölder’s inequality time by time, with respect
to the measure π, and then use Lemma 1.5.5 and C(π) ≥ 1:

ˆ 1

0

ˆ
g(γt)|γ̇t| dπ dt ≤

ˆ 1

0
‖g(γt)‖(Φ),π · ‖|γ̇t|‖Ψ,π dt

=

ˆ 1

0
‖g‖(Φ),(et)]π · ‖|γ̇t|‖Ψ,π dt (3.2.4)

≤ C(π)‖g‖(Φ),m

ˆ 1

0
‖|γ̇t|‖Ψ,π dt.

Now we are ready to state the definition of Beppo Levi space:

Definition 3.2.4 (Beppo-Levi space) The Beppo Levi space BL1,Φ(X, d,m) is defined as
the set of functions f ∈ L1(X,m) for which there exists a constant E ≥ 0 such that for every
Ψ-plan π we have

ˆ
|f(γ1)− f(γ0)| dπ ≤ E · C(π)

ˆ 1

0
‖|γ̇t|‖Ψ,π dt. (3.2.5)

The least constant E such that the above inequality holds is called FΦ
BL(f), the Φ-weak energy

of f .

Remark 3.2.5 It is very easy to see that also FΦ
BL is l.s.c. with respect to L1-convergence;

this is true thanks to the fact that the left hand side of (3.2.5) is continuous with respect to
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convergence in L1 for every π, since we have (et)]π ≤ C(π)m for t = 0, 1. Moreover, the left
hand side is continuous with respect to m-a.e. convergence: fn → f m-a.e. implies that for a
fixed t > 0, fn(γt)→ f(γt) for Φ-a.e. curve; in particular this is true for t = 0 and t = 1 and
we conclude that FΦ

BL is l.s.c. with respect to m-a.e. convergence.

Note that this definition is very mild, compared to the other ones present in the literature
(even the one in [5]), but we will see that, thanks to the equivalence theorem, f ∈ BL1,Φ

implies that f ◦ γ is also BV along Φ-almost every curve, and moreover if Ψ is doubling then
f ◦ γ ∈W 1,1((0, 1),L 1) for Φ-almost every γ.

We conclude this definition with a remark about rescaling of plans:

Remark 3.2.6 For every 0 ≤ s1 < s2 ≤ 1 let rests2s1 be the restriction map in the interval
[s1, s2], namely

rests2s1γ(t) = γ(s1(1− t) + ts2).

It is straightforward that for every Ψ-plan and every 0 ≤ s1 < s2 ≤ 1 we have that (rests2s1)]π
is still a Ψ-plan. In particular whenever π is a Ψ-plan and f ∈ BL1,Φ(X, d,m), applying
(3.2.5) with (rests2s1)]π we obtain
ˆ
|f(γs1)− f(γs2)| dπ ≤ FΦ

BL(f) · C(π)

ˆ s2

s1

‖|γ̇t|‖Ψ,π dt ∀0 ≤ s1 < s2 ≤ 1. (3.2.6)

3.3 Proof of equivalence

Here we want to show that for every function f ∈ L1 we have that FΦ
v (f) = FΦ

BL(f).

Theorem 3.3.1 Let (X, d,m) be a complete and separable metric measure space, with m non-
negative Borel measure finite on bounded sets. Then the spaces

H1,Φ
v (X, d,m), BL1,Φ(X, d,m)

and the corresponding Φ-energies FΦ
v and FΦ

BL coincide.

First we state two lemmas that enable us to look only at f ∈ L∞ with bounded support.

Lemma 3.3.2 (Continuity on truncations) Let h : R→ R be a 1-Lipschitz function such
that h(0) = 0. Then for every f ∈ L1 we have that

• FΦ
v (h(f)) ≤ FΦ

v (f);

• FΦ
BL(h(f)) ≤ FΦ

BL(f);

in particular, letting fN = (f ∧ N) ∨ (−N) we have that FΦ
v (fN ) → FΦ

v (f) and the same is
true for FΦ

BL.

Proof. The first assertion follows by the inequality at the level of asymptotic Lipschitz
constant lipa(h ◦ f) ≤ lipa(f) and the fact that fn

L1

→ f implies h(fn)
L1

→ h(f). As for the
Φ-weak energy, suffices to notice that |h(f(γ1))− h(f(γ0))| ≤ |f(γ1)− f(γ0)|.
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We prove continuity only for FΦ
v , the proof for FΦ

BL being exactly the same. It is clear that

hN (t) =


N if t ≥ N
t if |t| < N

−N if t ≤ −N

satisfies the assumption of this lemma and so we have FΦ
v (fN ) = FΦ

v (hN (f)) ≤ FΦ
v (f). Since

f ∈ L1 we have also hN (f)
L1

→ f and so, using the lower semicontinuity of FΦ
v we obtain

FΦ
v (f) ≥ lim sup

N→∞
FΦ
v (fN ) ≥ lim inf

N→∞
FΦ
v (fN ) ≥ FΦ

v (f).

It follows that FΦ
v (fN ) ↑ FΦ

v (f). �

Lemma 3.3.3 (Reduction to bounded support) For every x ∈ X, let χr be a family of
1-Lipschitz function such that χBr(x) ≤ χr ≤ χBr+2(x); then we have FΦ

v (χrf) → FΦ
v (f) for

every f ∈ L1 ∩ L∞. The same is true for FΦ
BL.

Moreover if f has support in Br, then in the definition of FΦ
v we can take fn to be Lipschitz

function with support contained in Br+2: in formulae

FΦ
v (f) = inf

{
lim inf
n→∞

FΦ(fn) : fn → f in L1(X,m), supp(fn) ⊂ Br+2

}
. (3.3.1)

Here supp(f) is the smallest closed set S such that f = 0 m-almost everywhere in Sc.

Proof. First let us note that χrf → f in L1 so that by the lower semicontinuity of FΦ
v (and

the same for FΦ
BL)

lim inf
r→∞

FΦ
v (χrf) ≥ FΦ

v (f).

It remains to show the other inequality; in particular we can assume FΦ
v (f) <∞. Let (fn) ⊂

Lip0(X, d) be an optimal sequence given in the definition of FΦ
v (f); note that, letting C =

‖f‖∞, we can assume |fn| ≤ C otherwise we can take fCn as approximating functions and we
have lipa(f

C
n ) ≤ lipa(fn). Now consider (χrfn) ⊂ Lip0(X, d) as an approximating sequence

for χrf : we have lipa(χrfn) ≤ χrlipa(fn) + fnχBr+2\Br and so

lim inf
n→∞

‖lipa(χrfn)‖(Φ),m ≤ lim inf
n→∞

‖lipa(fn)‖(Φ),m + lim sup ‖fnχBr+2\Br‖(Φ),m

Up to subsequences we have fn → f pointwise and since we have fnχBr+2 ≤ ‖f‖∞χBr+2 ∈MΦ,
using Lemma 1.5.3, we have also fnχBr+2 → fχBr+2 strongly in LΦ. Taking limits:

FΦ
v (χrf) ≤ lim inf

n→∞
‖lipa(χrfn)‖(Φ) ≤ FΦ

v (f) + ‖fχBr+2\Br‖(Φ); (3.3.2)

again, using fχBr+2\Br → 0 pointwise and f ∈ L1 ∩ L∞ ⊂ MΦ we get that the last term is
going to 0 and so

lim sup
n→∞

FΦ
v (χrf) ≤ FΦ

v (f).

As for FΦ
BL we begin with the obvious inequality

|χr(x)f(x)− χr(y)f(y)| ≤ |f(x)− f(y)|+ |χr(x)− χr(y)|min{f(x), f(y)} ∀x, y ∈ X;
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Then we know that if x, y ∈ Br then χr(x)− χr(y) = 0 so we can exploit this fact and get

|χr(x)f(x)− χr(y)f(y)| ≤ |f(x)− f(y)|+ |χr(x)− χr(y)|
(
|f(x)|χBcr(x) + |f(y)|χBcr(y)

)
.

Using the fact that χr is 1-Lipschitz, putting γ0 = y and γ1 = x and f r(x) = f(x)χBcr(x) we
get ∣∣∣∣ˆ

∂γ
χrf

∣∣∣∣ ≤ ∣∣∣∣ˆ
∂γ
f

∣∣∣∣+ `(γ)|f r(γ1)|+ `(γ)|f r(γ0)| ∀γ ∈ AC([0, 1];X);

Integrating over a Ψ-plan π, and using that f ∈ BL1,Φ, we get:
ˆ
|(χrf)(γ1)− (χrf)(γ0)|dπ ≤ C(π) · FΦ

BL(f)

ˆ 1

0
‖γ̇t‖Ψ,π + C1 + C0, (3.3.3)

where Ct =
´
|f r(γt)|`(γ) dπ. Now using Hölder inequality and subadditivity of the norm:

Ct =

ˆ
|f r(γt)|`(γ) dπ ≤ ‖f r(γt)‖(Φ),π · ‖`(γ)‖Ψ,π

= ‖f r‖(Φ),(et)]π ·
∥∥∥∥ˆ 1

0
|γ̇s|ds

∥∥∥∥
Ψ,π

≤ C(π) · ‖f r‖(Φ),m

ˆ 1

0
‖|γ̇s|‖Ψ,π ds.

Using this estimate in (3.3.3) we get that

FΦ
BL(χrf) ≤ FΦ

BL(f) + 2‖f r‖(Φ),m;

letting r →∞ and noticing, as before, that ‖f r‖(Φ),m → 0, we get the desired inequality.
For the last assertion suffices to notice that in (3.3.2) we have that the last term in the

right hand side is equal to 0 and also χrf = f and so FΦ
v (χrf) = FΦ

v (f) = lim inf ‖χrfn‖(Φ)

and χrfn are Lipschitz functions with support contained in Br+2. �

Now we prove the easy inequality FΦ
v (f) ≥ FΦ

BL(f); notice that in Section 3.2 we proved
that FΦ

BL is lower semicontinuous with respect to the L1 convergence, and that FΦ
BL(f) ≤

‖g‖(Φ),m for every g upper gradient of f (see (3.2.4)). Since for every f ∈ Lip0(X, d) we have
that lipa(f) is an upper gradient for f , we have that FΦ

BL ≤ FΦ; passing to the L1-lower
semicontinuous relaxations:

FΦ
BL(f) ≤ FΦ

v (f) ∀f ∈ L1(X,m).

Now we are ready to prove the converse inequality, namely from a function f ∈
BL1,Φ(X, d,m) we want to build a sequence of approximating Lipschitz functions in such
a way that

lim sup
n→∞

‖lipa(fn)‖(Φ),m ≤ FΦ
BL(f). (3.3.4)

As in [9] for the case Φ(t) = tq with 1 < q < ∞ and [5] for the BV case q = 1, our main
tool in the construction is the gradient flow in L2(X,m) of the functional FΦ

v , starting from f .
We initially assume that (X, d) is a complete and separable space and that m is a finite Borel
measure, so that the L2-gradient flow of FΦ

v can be used. Furthermore, in order to apply the
results of Section 1.6, we will assume also that Ψ is a strictly convex function with continuous
derivative. The finiteness assumption on m and the hypothesis on Ψ will be eventually removed
in the proof of the equivalence result.

We start with the following proposition, which relates energy dissipation to a sharp com-
bination of Φ-weak energy and metric dissipation in WΨ.
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Proposition 3.3.4 Let µt = ftm be a curve in AC([0, 1], (M+(X),WΨ)). Assume that for
some 0 < c < C < ∞ it holds c ≤ ft ≤ C m-a.e. in X for any t ∈ [0, 1], and that
f0 ∈ BL1,Φ(X, d,m). Then for all Θ ∈ C2([c, C]) convex it holds

ˆ
Θ(f0) dm−

ˆ
Θ(fs) dm ≤ Lip(Θ′) ·max{C, 1} · FΦ

BL(f)

ˆ s

0
|µ̇t| dt ∀s > 0.

Proof. Let π ∈ M+(C([0, 1], X)) be a plan associated to the curve (µt) as in Proposition
1.7.2. The assumption ft ≤ C m-a.e. and the fact that ‖γ̇t‖Ψ,π = |µ̇t| ∈ L1(0, 1) guarantee
that π is an Ψ-test plan, such that 1 ≤ C(π) ≤ max{C, 1}.

Now, using f0 ∈ BL1,Φ and (3.2.6) with s0 = 0 and s1 = s, we get that:
ˆ

Θ(f0)−
ˆ

Θ(fs) dm ≤
ˆ

Θ′(f0)(f0 − fs) dm =

ˆ
Θ′(f0) ◦ e0 −Θ′(f0) ◦ es dπ

≤
ˆ
|Θ′(f0(γs))−Θ′(f0(γ0))| dπ(γ)

≤ Lip(Θ′)

ˆ
|f0(γs)− f0(γ0)|dπ(γ)

≤ Lip(Θ′) · C(π) · FΦ
BL(f0)

ˆ s

0
‖|γ̇t|‖Ψ,π dt

= Lip(Θ′) ·max{C, 1} · FΦ
BL(f0)

ˆ s

0
|µ̇t|dt.

�

The key argument to achieve the identification is the following lemma which gives a sharp
bound on the WΨ-speed of the L2-gradient flow of FΦ

v . A similar lemma, in the Wp case, has
been introduced in [58] and then used in [11], [41] to study the heat flow on metric measure
spaces; also, the W∞ case, most similar to this general one, has been studied in [5].

Lemma 3.3.5 (Kuwada’s lemma for FΦ
v ) Let f0 ∈ L2(X,m) and let (ft) be the gradient

flow of FΦ
v starting from f0. Assume that for some 0 < c < C <∞ it holds c ≤ f0 ≤ C m-a.e.

in X. Then the curve t 7→ µt := ftm ∈ M+(X) is absolutely continuous w.r.t. WΨ and it
holds

|µ̇t| ≤
1

AΦ(c)
for a.e. t ∈ (0,∞),

where AΦ is the character of Φ, defined in (1.5.6).

Proof. We start from the duality formula (1.7.3)

W
(s)
Ψ (µ, ν) = sup

ϕ∈Lip0(X,d)

ˆ
X
Qsϕdν −

ˆ
X
ϕdµ. (3.3.5)

where Qtϕ is defined in (1.6.1) and (1.6.2). Fix ϕ ∈ Lip0(X, d) and recall (Theorem 1.6.5) that
the map t 7→ Qtϕ is Lipschitz with values in C(X), in particular also as a L2(X,m)-valued
map.

Fix also 0 ≤ t < r, set ` = (r − t) and recall that since (ft) is a gradient flow of FΦ
v

in L2(X,m), the map [0, `] 3 τ 7→ ft+τ is absolutely continuous with values in L2(X,m).
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Therefore, since both factors are uniformly bounded, the map [0, `] 3 τ 7→ Q sτ
`
ϕft+τ is

absolutely continuous with values in L2(X,m). In addition, the equality

Q s(τ+h)
`

ϕft+τ+h −Q sτ
`
ϕft+τ

h
= ft+τ

Q s(τ+h)
`

−Q sτ
`
ϕ

h
+Q s(τ+h)

`

ϕ
ft+τ+h − ft+τ

h
,

together with the uniform continuity of (x, τ) 7→ Q sτ
`
ϕ(x) shows that the derivative of τ 7→

Q sτ
`
ϕft+τ can be computed via the Leibniz rule.
We have:
ˆ
X
Qsϕdµr −

ˆ
X
ϕdµt =

ˆ
Qsϕft+` dm−

ˆ
X
ϕft dm =

ˆ
X

ˆ 1

0

d

dτ

(
Qsτϕft+`τ

)
dτ dm

≤
ˆ
X

ˆ `

0

(
−sΦ

(
lipa(Qsτϕ)

)
ft+`τ + `Qsτϕ∆Φft+`τ dτ

)
dm,

(3.3.6)

having used Theorem 1.6.5.
Observe that by inequality (3.1.3) and Proposition 3.1.3 we have

ˆ
X
Qsτϕ∆Φft+`τ dm ≤ FΦ

v (Qsτϕ) ≤ ‖lipa(Qsτϕ)‖(Φ),m. (3.3.7)

Plugging this inequality in (3.3.6), and taking s = `
AΦ(c) we obtain

ˆ
X
Qsϕdµr −

ˆ
X
ϕdµt ≤ −

ˆ 1

0

ˆ
X
sΦ
(
lipa(Qsτϕ )

)
ft+`τ dmdτ

+

ˆ 1

0
sAΦ(c)‖lipa(Qsτϕ)‖(Φ),m dτ

Now using the definition of AΦ(c) we know that

AΦ(c)‖g‖(Φ),m ≤ 1 + c

ˆ
X

Φ(g) dm. (3.3.8)

Using this inequality with g = lipa(Qsτϕ) in the end we get that
ˆ
X
Qsϕdµr −

ˆ
X
ϕdµt ≤

ˆ 1

0
s−
ˆ
X
sΦ
(
lipa(Qsτϕ)

)
(ft+`τ − c) dmdτ ≤ s

This latter bound obviously doesn’t depend on ϕ, so from (3.3.5) and (1.7.1) we deduce

WΨ(µt, µr) ≤
(r − t)
AΦ(c)

.

In particular, we showed that the curve µt is 1
AΦ(c) -Lipschitz. �

We can now prove our main theorem:

Proof. [of Theorem 3.3.1] Recalling the results at the beginning of this Section, in order to
conclude the proof we are only left to show that a bounded function of belonging to BL1,Φ,
has finite Φ-relaxed energy, and that the two energies coincide; then Lemma 3.3.2 will give
the equivalence for all functions.
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We first assume that m(X) <∞. First note that for every a, b ∈ R we have FΦ
v (a+ bf) =

|b|FΦ
v (f) thanks to 1-homogeneity and Proposition 3.1.3, and the same is true for FΦ

BL. Now
take a function f ∈ BL1,Φ such that |f | ≤ M and consider the scaled functions f ε = 1 + εf

M ;
we have that 1 − ε < f ε < 1 + ε. So, for any 0 < ε < 1 we can put f0 = f ε and consider
the gradient flow ft in L2(X,m) with respect to FΦ

v , starting from f0. Let Θ(x) = x2 and use
the energy dissipation estimate in Proposition 3.1.5; finally use Lemma 3.3.5 combined with
Proposition 3.3.4 with f0 = f ε to obtain:

2

ˆ s

0
FΦ
v (ft) dt =

ˆ
X

(f0)2 dm−
ˆ
X

(fs)
2 dm

≤ 2s · FΦ
BL(f0) · 1 + ε

AΦ(1− ε)
.

Now, knowing that FΦ
v (ft) is nonincreasing in t we can say

sFΦ
v (fs) ≤

ˆ s

0
FΦ
v (ft) dt ≤ s · FΦ

BL(f0)
1 + ε

AΦ(1− ε)

and thus, first dividing by s, then letting s → 0, taking the lower semicontinuity of FΦ
v into

account we get

FΦ
v (f ε) ≤ FΦ

BL(f ε)
1 + ε

AΦ(1− ε)
.

Eventually we use that FΦ
v (f ε) = ε

MFΦ
v (f) and the same is true for FΦ

BL, and then we divide
by ε/M and let ε→ 0; now by Definition 1.5.6 we have that AΦ(1− ε)→ 1 and so

FΦ
v (f) ≤ FΦ

BL(f),

which let us conclude.
Now let us consider a measure m that is finite on bounded sets: using again Lemma 3.3.2

we need only to consider f ∈ L1 ∩L∞. Let us fix a point x ∈ X and consider χr as in Lemma
3.3.3. Then we consider the space Xr = (B̄r+4, d,mr), where mr = χBr+3m, and the function
fχr. It is obvious that we always have F

Φ,Xr
BL ≤ F

Φ,X
BL since a Ψ-plan in Xr is also a Ψ-plan in

X.
The crucial point is that FΦ,Xr

v (fχr) = F
Φ,X
v (fχr); again it is obvious that FΦ,Xr

v ≤ F
Φ,X
v ,

since for every sequence of function in Lip0(X, d)(X) we can recover a sequence of functions
in Lip0(X, d)(Xr) by restriction, and this latter sequence has less energy. But then, thanks to
the last assertion in Lemma 3.3.3 we know that we can restrict the admissible sequence in the
definition of FΦ,Xr

v (fχr) to be supported in Br+2 and so, extending them to 0 outside Br+2,
they are admissible also in the definition of FΦ,X

v (fχr), with the same energy.
Now we can prove that

FΦ
v (f) = lim

r→∞
FΦ
v (fχr) = lim

r→∞
FΦ,Xr
v (χrf)

= lim
r→∞

F
Φ,Xr
BL (χrf) ≤ lim

r→∞
FΦ
BL(χrf) = FΦ

BL(f).

In order to remove the smoothness assumption on Ψ, we use Lemma 3.3.6 below, and so we
can consider complementary couples (Φε,Ψε) sufficiently near to (Φ,Ψ), given by that lemma.



3.3. Proof of equivalence 61

Using (3.3.10), we have (1−ε)FΦ ≤ FΦε ≤ FΦ. In particular, taking the lower semicontinuous
relaxation, we obtain

(1− ε)FΦ
v ≤ FΦε

v ≤ FΦ
v ;

letting ε → 0 we find that FΦε
v (f) → FΦ

v (f), for all f ∈ L1(X,m). Using again (3.3.10) it is
clear that Ψε-plans are also Ψ-plans and vice versa, and more precisely

(1− ε)FΦ
BL ≤ FΦε

BL ≤ FΦ
BL;

as before we get FΦε
BL → FΦ

BL pointwise. It is now obvious that the equivalence for Φε-Sobolev
spaces extends to an equivalence for the Φ-Sobolev spaces. �

Lemma 3.3.6 Let us consider an N -function Ψ. Then, for every ε > 0 there exists a com-
plementary couple of N -function (Φε,Ψε), where Ψε is of class C1 and strictly convex, such
that

Ψ(x) ≤ Ψε(x) ≤ Ψ
( x

1− ε
)

∀x ≥ 0; (3.3.9)

in particular, for every measure space (E,µ) we have LΨ(µ) = LΨε(µ) and LΦ(µ) = LΦε(µ);
more precisely for every f ∈ LΨ(E,µ), g ∈ LΦ(E,µ) we have

‖f‖Ψ,µ ≤ ‖f‖Ψε,µ ≤
1

1− ε
‖f‖Ψ,µ (1− ε)‖g‖(Φ),µ ≤ ‖g‖(Φε),µ ≤ ‖g‖(Φ),µ (3.3.10)

Proof. We consider ψ : [0,∞) → [0,∞), the right derivative of Ψ. This is an increasing
function, left continuous; the fact that Ψ is an N -function gives us that ψ(0) = 0 and that ψ
is unbounded. In particular it is easy to see that it can be represented as

ψ(x) = c0(x) +
∞∑
i=0

ciρxi(x), (3.3.11)

where c0 is a continuous function, ci are positive real numbers whose sum is locally finite1,
and ρy(x) = H(x− y), with H the Heaviside function

H(x) =

{
1 if x ≥ 0

0 otherwise.

Now we can represent also the right derivative of the function Ψ( x
1−ε):

ψ1(x) :=
d

dx

+

Ψ
( x

1− ε

)
=

1

1− ε
ψ
( x

1− ε

)
=

1

1− ε
c0

( x

1− ε

)
+

∞∑
i=0

ci
1− ε

ρxi

( x

1− ε

)
.

Now let us consider, for every i ≥ 1, i ∈ N, the Lipschitz function ρi:

ρi(x) =


0 if x < xi(1− ε)
x−xi(1−ε)

εxi
if xi(1− ε) ≤ x ≤ xi

1 if x > xi;

1for every M > 0 we have that
∑
xi<M

ci <∞
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it is obvious that ρi are continuous functions such that

ρxi(x) ≤ ρi(x) ≤ ρxi
( x

1− ε

)
∀x ∈ [0,∞). (3.3.12)

In order to achieve the strict convexity, we have to add also a strictly increasing function. It
is sufficient to consider the function

A(x) =

∞∑
i=0

ε2−iψ(2−i)ρ(x− 2−i),

where ρ is any continuous Heviside function, for example ρ(x) = (x/(1 + x))+. Then it is
obvious that ρ(x) ≤ H(x) and so

0 ≤ A(x) ≤
∑

2−i≤x

ε2−iψ(2−i) ≤ εψ(x). (3.3.13)

Summing all, we consider ψε(x) = A(x) + c0(x) +
∑∞

i=0 ciρi(x); this is a strictly increasing
and continuous function, and using (3.3.12), (3.3.13) and 1 + ε ≤ (1− ε)−1, we get

ψ(x) ≤ ψε(x) ≤ ψ1(x) ∀x ≥ 0.

In particular, integrating this inequality, we deduce we can take Ψε(x) =
´ x

0 ψε(t) dt.
The inequalities for ‖ · ‖Ψε,µ are clear thanks to (3.3.9), while the ones for ‖ · ‖(Φε),µ follow

by duality, and the coincidence of the Orlicz spaces is then clear.

�

3.4 Consequences of the equivalence theorem

The first consequence we state about the equivalence theorem is that from the definition of
BL1,Φ we deduce stronger informations (see similar properties in the definition of BV functions
in [5]), in particular we have that every f ∈ BL1,Φ is BV along almost every curve.

If we don’t add any other assumption on Φ, we can’t expect to find anything better, in
particular we can’t expect W 1,1 regularity along Φ-almost every curve, and we can’t expect
any kind of modulus of gradient. This is shown in the Subsection 3.4.1 below.

Theorem 3.4.1 (Strong Beppo Levi property) A function f ∈ L1(X,m) belongs to the
Φ-Beppo Levi space BL1,Φ(X, d,m) if and only if:

• for Φ-a.e. curve γ we have f ◦ γ ∈ BV (0, 1) and 0 and 1 are approximate continuity
points for f ◦ γ; in particular

|f(γ1)− f(γ0)| ≤ |D(f ◦ γ)|(0, 1) for Φ-a.e. curve γ;

• there exists a constant E > 0 for any Ψ-plan π the following inequality holds
ˆ
|D(f ◦ γ)|(0, 1) dπ ≤ E · C(π)

ˆ 1

0
‖|γ̇t|‖Ψ,π dt. (3.4.1)
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The least constant E for which (3.4.1) holds is exactly FΦ
BL(f).

Proof. Let us suppose we have a function f that satisfies the two assumption of the theorem,
with a constant E = E(f); combining the two inequalities one gets easily that f ∈ BL1,Φ and
that E(f) is a good constant for (3.2.5) so that E(f) ≥ FΦ

BL(f).
Now let us suppose that f ∈ BL1,Φ; thanks to the equivalence theorem we have a se-

quence of bounded Lipschitz functions (fn) such that fn → f in L1(X,m) and such that
lim ‖lipa(f)‖(Φ),m = FΦ

BL(f). We can assume this sequence is “fast converging”, that is, we
have

∑
n ‖f − fn‖1 <∞. Now, calling En(γ) = ‖f ◦ γ − fn ◦ γ‖1 and E =

∑
nEn:ˆ

E(γ) dπ =

¨ 1

0

∞∑
n=1

|f(γt)− fn(γt)|dtdπ ≤ C(π)
∞∑
n=1

ˆ
X
|f − fn| dm <∞;

and so we have that E <∞ for π-almost every curve γ. For those curves we have En(γ)→ 0
and so f ◦ γ → fn ◦ γ in L1(0, 1); by the lower semicontinuity of the total variation we have
lim infn |D(fn ◦ γ)|(0, 1) ≥ |D(f ◦ γ)|(0, 1). Now, using Beppo Levi, and exploiting the upper
gradient property of the asymptotic Lipschitz constant we getˆ

|D(f ◦ γ)|(0, 1) dπ ≤ lim inf
n→∞

ˆ
|D(fn ◦ γ)|(0, 1) dπ

≤ lim inf
n→∞

¨ 1

0
lipa(fn, γt)|γ̇t| dt dπ

≤ lim inf
n→∞

‖lipa(fn)‖(Φ),m · C(π)

ˆ 1

0
‖γ̇t‖Ψ,π dt

= FΦ
BL(f) · C(π)

ˆ 1

0
‖γ̇t‖Ψ,π dt,

in particular E(f) ≤ FΦ
BL(f). We are left to show the approximate continuity property: with

a very similar calculation as before we can estimate |fn(γs)− fn(γ0)| with the upper gradient
property and use that fn(γt)→ f(γt) for r = s, 0 for Φ-almost every curve γ, to conclude that

ˆ
|f(γs)− f(γ0)|dπ = lim

n→∞

ˆ
|fn(γs)− fn(γ0)| dπ

≤ FΦ
v (f) · C(π)

ˆ s

0
‖γ̇t‖Ψ,π dt;

integrating this inequality in the s variable from 0 to s0, and then dividing by s0 we getˆ
1

s0

ˆ s0

0
|f(γs)− f(γ0)| ds dπ ≤ FΦ

v (f) · C(π)

ˆ s0

0
‖γ̇s‖Ψ,π ds→ 0 as s0 → 0;

in particular, letting Ht(g) = −́t
0 |g(s) − g(0)| ds, we get that lim inft→0Ht(f ◦ γ) = 0 for

π-almost every curve γ, but suffices to imply that 0 is a point of approximate continuity since
we know also that f ◦ γ ∈ BV ; in this case in fact we know that Ht has always limit as t→ 0,
and this limit is equal to |g(0)− g̃(0)|.

The same reasoning applies also to conclude that for any t ∈ [0, 1], we have that f(γt)
coincides with the precise representative for Φ-almost every curve γ, that is

f(γt) = lim
ε→0
−
ˆ t+ε

t−ε
f(γs) ds for Φ-almost every curve γ.

In particular also t = 1 is a point of approximate continuity for Φ-a.e. curve γ. �
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3.4.1 Example of Φ-Sobolev function that is not absolutely continuous
along almost every curve

Let us consider R with the euclidean norm | · |e and define recursively{
a1 = 0

an = an−1 + ln(n)
n2 if n > 1.

Denote also a = limn→∞ an <∞; define An = [an−1, an) and

m = L 1|[a,a+1] +
∞∑
n=2

1

ln(n)
L 1|An ;

the singularity of this measure we are interested in is at the point x = a, where the density is
decreasing from the left; notice also that m(R) = π2/6. Let us consider

Φ(t) = (t+ 1) ln(t+ 1)− t and Ψ(t) = et − t− 1,

which are easily seen to be a pair of complementary N -functions. We will see that for functions
in BL1,Φ(R, | · |e,m) we can’t go beyond BV regularity along curves, proved in Theorem 3.4.1.

Proposition 3.4.2 Let a, m defined as before. Let us consider f(x) = χ[a,∞). then

(i) f ∈ H1,Φ(R, | · |e,m);

(ii) there is a set of curves Γ and a Ψ-plan π such that π(Γ) > 0 and f ◦ γ /∈W 1,1(0, 1) for
all γ ∈ Γ.

Proof. In order to prove (i) we will explicitly find a sequence (fn) approximating f : let

fn(x) =


0 if x < an
x−an

an+1−an if x ∈ An+1

1 if x ≥ an+1;

then (fn) is a sequence of Lipschitz function2 such that lipa(fn) = |f ′n| = n2

ln(n)χAn ; furthermore
fn → f in L1(R,m) and we can compute ‖|f ′n|‖(Φ) since it is the norm of a characteristic
function (see [72], Example 9, Section 1.2):

‖|f ′n|‖(Φ) =
n2

ln(n)
‖χAn‖(Φ) =

n2

ln(n)
m(An)Ψ−1

( 1

m(An)

)
.

Now for t > 2 we have Ψ(t) ≥ 1
2e
t and so, for n big enough, we can estimate Ψ−1(1/m(An)) ≤

ln(2)− ln(m(An)) = ln(2) + 2 ln(n), getting

FΦ
v (f) ≤ lim inf

n→∞
‖|f ′n|‖(Φ) ≤ lim inf

n→∞

n2

ln(n)
· ln(2) + 2 ln(n)

n2
= 2,

2The bounded support hypothesis can be easily dropped when m has bounded support; in fact it is sufficient
to consider a 1-Lipschitz function with bounded support g such that g = 1 on a neighborhood of the support of m
and then for every Lipschitz function ρ we have that gρ has bounded support, ‖lipa(gρ)‖(Φ),m = ‖lipa(ρ)‖(Φ),m
and ‖f − ρ‖1 = ‖f − gρ‖1 for every f ∈ L1(X,m).
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so that f ∈ H1,Φ(R, | · |e,m).
In order to achieve (ii) we have to consider curves that meets a in their interior: let T (t)

be the map that maps monotonically L 1|[0,π2/6] = m1 to m, in particular defining b1 = 0 and
bn = bn−1 + 1

n2 for n > 1, and Bn defined similarly to how we defined An before, we have
that T maps Bn to An linearly, and here T ′ = ln(n). Let F : [0, 1]→ C([0, 1];R) be the map
defined by F (t)(s) = T (s+ t); now let us consider π = F](2L 1|[0,1/2]). We have to verify this
is a Ψ-plan.

• (et)]π = T](2L 1|[t,t+1/2]) ≤ T](2m1) = 2m, and so we can take C(π) = 2;

• ‖|γ′(t)|‖Ψ,π = ‖T ′(t+ ·)‖Ψ,2L 1|[0,1/2]
≤ ‖T ′‖Ψ,2m1 , and we have that T ′ ∈ LΨ(2m1) since

2

ˆ
Ψ
(T ′

2

)
dm1 ≤ 2

ˆ
e
T ′
2 dm1 = 2

∞∑
n=2

n1/2

n2
<∞.

In particular π is a Ψ-plan but for t < π2/6 − 1 we have that F (t)(s) = a for s ∈ (0, 1) and
so f ◦ F (t) is a step function, and f ◦ F (t) /∈ W 1,1. So we can take π as the Ψ-plan for (ii)
and Γ = {F (t) : 0 ≤ t < π2/6 − 1} as the bad set; it is obvious that π(Γ) = π2/6 − 1 > 0
and for the reasoning above we have f ◦ γ /∈W 1,1(0, 1) for every γ ∈ Γ.

�

3.4.2 Ψ doubling: existence of the gradient

In this section we assume Ψ to be doubling. By the results recalled in Section 1.5 in this case
we have that LΨ(X,m) = MΦ(X,m) and so it is separable and we have also (LΨ)∗ = LΦ; in
particular we can consider the weak-∗ topology σ(LΦ, LΨ), and we know that in every ball
this topology is metrizable and moreover closed balls are compact sets. In particular we will
use several times this result:

Lemma 3.4.3 Let (fn) ⊂ LΦ(X,m) be a sequence such that

lim inf
n→∞

‖fn‖(Φ),m <∞;

then there exists a subsequence (not relabeled for convenience) and a function f ∈ LΦ(X,m)
such that ˆ

X
fng dm→

ˆ
X
fg dm for all g ∈ LΨ(X,m);

we have also ‖f‖(Φ),m ≤ lim infn→∞ ‖fn‖(Φ),m.
Moreover if we have (fn) ⊂ L∞(X,m) ∩ L1(X,m) and f ≥ 0, there exist convex combina-

tions f̂n of (fn) and a sequence (hn) ⊂ LΦ(X,m) such that

f̂n ≤ hn ∀n ∈ N and hn → f strongly in LΦ(X,m).

This can be seen as a sort of weak-∗ Mazur lemma.



66 Chapter 3. Orlicz-Sobolev Spaces

Proof. We know that LΨ is separable and that (LΨ)∗ = LΦ. In particular the weak-∗ topology
on balls of LΦ is metrizable and compact. Given the hypothesis, this gives us a subsequence
of fn converging weakly-∗ to some f ∈ LΦ(X,m), and we have lower semicontinuity for the
norm.

For the second part, let us consider a bounded set B. Since m(B) <∞ we have that

LΦ(B,m) ⊂ L1(B,m) and L∞(B,m) ⊂ LΨ(X,m);

in particular the weak-∗ convergence in LΦ(B,m) implies that fn ⇀ f weakly in L1(B), and
thanks to Mazur lemma there exist convex combinations f̃n of fn that converge strongly to f
in L1(B). By a diagonal argument we can assume that this is true for every bounded set B.
Moreover we have supn∈N ‖f̃n‖(Φ),m ≤ supn∈N ‖fn‖(Φ),m.
Since f̃n ∈ L∞(X,m)∩L1(X,m) we have also f̃n ∈MΦ(X,m). Let us call kn = sup{f̃n, f}−f .
It is clear that 0 ≤ kn ≤ f̃n and so kn ∈ MΦ(X,m), but we have also that ‖kn‖1,B ≤
‖f̃n − f‖1,B → 0 for every bounded set and in particular we have

ˆ
X
kng dm→ 0 for all g ∈ L∞(X,m) with bounded support

using the fact that kn are bounded in (Φ)-norm and that Lip0(X, d)
‖·‖Ψ

= MΨ = LΨ (since
Ψ is doubling), we can conclude that kn ⇀ 0 in MΦ(X,m) (we recall that (MΦ)∗ = LΨ).
Applying again Mazur lemma (this time in MΦ) we can find convex combination k̂n of kn
such that k̂n → 0 strongly in MΦ and so also strongly in LΦ. Now taking convex combination
of the inequalities kn ≥ f̂n − f we get convex combination f̂n of fn such that k̂n ≥ f̂n − f .
Consider hn = k̂n + f and we get the thesis. �

Now we are ready to define the weak gradient: in order to simplify the arguments we
present only the gradients in the Beppo-Levi context.

Definition 3.4.4 (Φ-weak upper gradients) A Borel function g : X → [0,∞] is a Φ-weak
upper gradient of f : X → R if∣∣∣∣ˆ

∂γ
f

∣∣∣∣ ≤ ˆ
γ
g <∞ for Φ-a.e. γ. (3.4.2)

Definition 3.4.5 (Sobolev functions along Φ-a.e. curve) A function f : X → R is
Sobolev along Φ-a.e. curve if for Φ-a.e. curve γ the function f ◦ γ coincides a.e. in [0, 1]
and in {0, 1} with an absolutely continuous map fγ : [0, 1]→ R.

By Remark 3.2.2 applied to T := {0, 1}, (3.4.2) does not depend on the particular repre-
sentative of f in the class of m-measurable functions coinciding with f up to a m-negligible
set. The same Remark also shows that the property of being Sobolev along Φ-q.e. curve γ
is independent of the representative in the class of m-measurable functions coinciding with f
m-a.e. in X.

In the next proposition, based on Lemma 1.3.3, we prove that the existence of a Φ-weak
upper gradient g implies Sobolev regularity along Φ-a.e. curve.

Proposition 3.4.6 Let f : X → R be m-measurable, and let g be a Φ-weak upper gradient of
f . Then f is Sobolev along Φ-a.e. curve.
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Proof. Notice that if π is a Ψ-test plan, so is (restrst )]π. Hence if g is a Φ-weak upper
gradient of f such that

´
γ g <∞ for Φ-a.e. γ, then for every t < s in [0, 1] it holds

|f(γs)− f(γt)| ≤
ˆ s

t
g(γr)|γ̇r|dr for Φ-a.e. γ.

Let π be a Ψ-test plan: by Fubini’s theorem applied to the product measure L 2 × π in
(0, 1)2 × C([0, 1];X), it follows that for π-a.e. γ the function f satisfies

|f(γs)− f(γt)| ≤
∣∣∣ˆ s

t
g(γr)|γ̇r| dr

∣∣∣ for L 2-a.e. (t, s) ∈ (0, 1)2.

An analogous argument shows that for π-a.e. γ{
|f(γs)− f(γ0)| ≤

´ s
0 g(γr)|γ̇r|dr

|f(γ1)− f(γs)| ≤
´ 1
s g(γr)|γ̇r| dr

for L 1-a.e. s ∈ (0, 1). (3.4.3)

Since g ◦ γ|γ̇| ∈ L1(0, 1) for π-a.e. γ, by Lemma 1.3.3 it follows that f ◦ γ ∈ W 1,1(0, 1) for
π-a.e. γ, and ∣∣∣∣ d

dt
(f ◦ γ)

∣∣∣∣ ≤ g ◦ γ|γ̇| a.e. in (0, 1), for π-a.e. γ. (3.4.4)

Since π is arbitrary, we conclude that f ◦ γ ∈W 1,1(0, 1) for Φ-a.e. γ, and therefore it admits
an absolutely continuous representative fγ ; moreover, by (3.4.3), it is immediate to check that
f(γt) = fγ(t) for t ∈ {0, 1} and Φ-a.e. γ. �

The last statement of the proof above and (3.4.4) yield the following

gi, i = 1, 2, Φ-weak upper gradients of f =⇒ min{g1, g2} Φ-weak upper gradient of f .
(3.4.5)

Using this stability property we can recover a distinguished minimal object.

Definition 3.4.7 (Minimal Φ-weak upper gradient) Let f : X → R be a m-measurable
function having at least a Φ-weak upper gradient g0 : X → [0,∞]. The minimal Φ-weak upper
gradient |∇f |w,Φ of f is the Φ-weak upper gradient characterized, up to m-negligible sets, by
the property

|∇f |w,Φ ≤ g m-a.e. in X, for every Φ-weak upper gradient g of f . (3.4.6)

We will refer to it also as the Φ-weak gradient of f .

Uniqueness of the minimal weak upper gradient is obvious. For existence, let θ : X →
(0,∞) be a m-integrable function (the existence of such θ is granted since m is σ-finite),
then we can prove |∇f |w,Φ := infn gn, where gn are Φ-weak upper gradients which provide a
minimizing sequence in

inf

{ˆ
X
θtan−1g dm : g ≤ g0 is a Φ-weak upper gradient of f

}
.

We immediately see, thanks to (3.4.5), that we can assume with no loss of generality that
gn+1 ≤ gn. Hence, applying (3.4.2) to gn and by monotone convergence, the function |∇f |w,Φ is
a Φ-weak upper gradient of f and

´
X θtan−1g dm is minimal at g = |∇f |w,Φ. This minimality,

in conjunction with (3.4.5), gives (3.4.6). Now we are ready to state the main result of this
section.
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Theorem 3.4.8 Let f ∈ L1(X,m); then the following are equivalent

(i) f ∈ H1,Φ
v (X, d,m);

(ii) there exists a function g ∈ LΦ(X,m) that is a Φ-weak upper gradient for f . We have
also ‖|∇f |w,Φ‖(Φ),m = FΦ

v (f).

(iii) There exist g ∈ LΦ(X,m) and a sequence (fn) ⊂ Lip0(X, d) such that

fn → f strongly in L1(X,m), lipa(fn)
∗
⇀ g weakly-∗ in LΦ(X,m). (3.4.7)

(iv) There exist g, gn ∈ LΦ(X,m) and a sequence (fn) ⊂ Lip0(X, d) such that gn ≥ lipa(fn)
and

fn → f strongly in L1(X,m), gn → g strongly in LΦ(X,m). (3.4.8)

Moreover, every g in (iii) (or (iv)) is also a Φ-weak upper gradient for f and, conversely,
|∇f |w,Φ satisfies (iii) and (iv).

We observe that (i) doesn’t always imply (ii), (iii) or (iv) if we don’t require that Ψ is
doubling. In fact (iii) or (iv) imply (ii) and in turn, (ii) implies that f is Sobolev along Φ-
almost every curve (Proposition 3.4.6), but this is not true always, as we proved in Subsection
3.4.1.

Proof. (ii) ⇒ (i): Suppose f has a Φ-weak upper gradient g; then integrating (3.4.2) with
respect to a Ψ-plan π we obtain (3.2.3), that as usual reduces to (3.2.5) with E = ‖g‖(Φ),m.
This shows that f ∈ BL1,Φ and minimizing in g we get

FΦ
v (f) = FΦ

BL(f) ≤ ‖|∇f |w,Φ‖(Φ). (3.4.9)

(i) ⇒ (iii) Let us suppose now that f ∈ H1,Φ
v , so that there exists a sequence of Lipschitz

functions (fn) such that limn ‖lipa(fn)‖(Φ) = FΦ
v (f). Using Lemma 3.4.3, up to subsequences

we get the existence of a function g ∈ LΦ such that lipa(fn)
∗
⇀ g. By lower semicontinuity of

the norm with respect to weak convergence we have that

‖g‖(Φ) ≤ lim
n→∞

‖lipa(fn)‖(Φ) = FΦ
v (f). (3.4.10)

(iii) ⇒ (ii) We can use (3.2.3) with fn and lipa(fn) and pass to the limit as n → ∞ to
get3: ˆ

|f(γ1)− f(γ0)|dπ ≤
¨ 1

0
g(γt)|γ̇t|dtdπ <∞ for every Ψ-plan π.

Now we use the fact that π|A is still a Ψ-plan so that we can localize the inequality to get

|f(γ1)− f(γ0)| ≤
ˆ
γ
g <∞ for Φ-q.e. curve γ,

3It is sufficient to check this inequality when π is supported on curves contained in a bounded set. Therefore,
up to restricting to a smaller set, we can assume that X is bounded and so m(X) < ∞. In this case we note
that fn

∗
⇀ f in LΦ(X,m) iff fn ⇀ f in L1(X,m) and ‖fn‖(Φ),m is equibounded (this is because L∞ ∩ LΨ is

strongly dense in LΨ). In particular we have that if µ ≤ Cm then weak-∗ convergence in LΦ(X,m) implies
weak-∗ convergence in LΦ(X,µ); we use this observation with m and (et)]π
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and so, by definition, we have that g is a Φ-weak upper gradient for f and thus we have

‖|∇f |w,Φ‖(Φ) ≤ ‖g‖(Φ). (3.4.11)

Using the equivalence theorem along with (3.4.9), (3.4.10), (3.4.11) we conclude
‖|∇f |w,Φ‖(Φ),m = FΦ

v (f) and that the function g with minimal norm that satisfies (ii) co-
incides with |∇f |w,Φ. Eventually, it is easy to see that (iv) implies (i), while if m is finite,
using Lemma 3.4.3 we conclude that (iii) (with g = |∇f |w,Φ) implies (iv) with the same g.

�

We have now defined a distinguished object as a gradient. Now we can show the strong
locality property and chain rule for this gradient. We follow Proposition 4.8 in [11], but with
the Φ-weak gradient definition:

Proposition 3.4.9 (Locality and chain rule) If f ∈ L1(X,m) has a Φ-weak upper gradi-
ent, the following properties hold:

(a) for any Lipschitz function h on an interval J containing the image of f we have that
h(f) has a Φ-weak upper gradient and |∇h(f)|w,Φ = |h′(f)||∇f |w,Φ.

(b) for any L 1-negligible Borel set N ⊂ R it holds |∇f |w,Φ = 0 m-a.e. on f−1(N);

(c) |∇f |w,Φ = |∇g|w,Φ m-a.e. on {f = g} for every g ∈ L1(X,m) that has a Φ-weak upper
gradient.

Proof. Let us first prove |∇h(f)|w,Φ ≤ |h′(f)||∇f |w,Φ for h ∈ C1. Recall by Proposition
3.4.6 we know that f ◦ γ ∈W 1,1(0, 1), for Φ-a.e. curve γ; for those γ we have that h(f ◦ γ) ∈
W 1,1(0, 1) and in particular its weak derivative is h′(f ◦ γ) · (f ◦ γ)′. Now multiplying (3.4.4)
with g = |∇f |w,Φ by |h′(f(γt))| and integrating we get

|h(f(γ1))− h(f(γ0))| ≤
ˆ 1

0
|h(f(γ))′|(t) dt ≤

ˆ
γ
|h′(f)||∇f |w,Φ ds for Φ-a.e. γ;

so by definition we have that |h′(f)||∇f |w,Φ is a Φ-weak upper gradient for h(f), and in
particular by the point wise minimality property of the weak gradient we get

|∇h(f)|w,Φ ≤ |h′(f)||∇f |w,Φ. (3.4.12)

(b) First assume that N is compact. Then there exists open sets An ⊂ R such that An ↓ N
and L 1(A1) <∞. Also, let kn : R→ [0, 1] be continuous function satisfying χN ≤ kn ≤ χAn ,
and define {

hn(0) = 0

h′n(x) = 1− kn(x)

The sequence (hn) uniformly converges to the identity map, and each hn is 1-Lipschitz and
C1. Therefore hn(f) converge to f in L1. Taking into account that h′n = 0 on N and (3.4.12)
we deduce

‖|∇f |w,Φ‖(Φ) = FΦ
v (f) ≤ lim inf

n→∞
FΦ
v (hn(f)) ≤ lim inf

n→∞
‖|h′n(f)| |∇f |w,Φ‖(Φ)

= lim inf
n→∞

‖χXN |h
′
n(f)| |∇f |w,Φ‖(Φ) ≤ ‖χXN |∇f |w,Φ‖(Φ),
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where we put XN = X \ f−1(N). It remains to deal with the case when N is not compact. In
this case we can consider the finite measure µ := f]m; then there exists an increasing sequence
(Kn) of compact subsets of N such that µ(Kn) ↑ µ(N). By the result for the compact set we
know that |∇f |w,Φ = 0 m-a.e. on ∪nf−1(Kn) = H, and by definition of push forward we get
m(f−1(N) \H)) = 0.

(a) If h is Lipschitz we know by Rademacher theorem that h′ exists L 1-a.e. in R, so we
can do the same proof for C1, paying attention to the fact that h′(f)|∇f |w,Φ, and the other
expressions where h′ is present, are well defined thanks to (b). In order to prove the equality
we can suppose h is 1-Lipschitz, and so we have that (1−h′(f))|∇f |w,Φ and (1+h′(f))|∇f |w,Φ
are Φ-weak upper gradient of f −h(f) and f +h(f) respectively. Now using the subadditivity
of the weak gradient:

2|∇f |w,Φ ≤ |∇(f − h(f))|w,Φ + |∇(f + h(f))|w,Φ
≤
(
(1− h′(f)) + (1 + h′(f))

)
|∇f |w,Φ = 2|∇f |w,Φ,

and it follows that all the inequalities are equalities m-a.e. in X. In particular we get

(1 + h′(f))|∇f |w,Φ = |∇f + h(f)|w,Φ ≤ |∇f |w,Φ + |∇h(f)|w,Φ m-a.e.

and so |∇h(f)| ≥ h′(f)|∇f |; since this is true also for −h we obtain the conclusion.
(c) Thanks to (b) applied to N = {0} at the function f−g we have that |∇(f−g)|w,Φ = 0

m-a.e. on {f = g}; then the equality follows again by subadditivity and 1-homogeneity

|∇f |w,Φ − |∇(f − g)|w,Φ ≤ |∇g|w,Φ ≤ |∇f |w,Φ + |∇(f − g)|w,Φ.

�

3.4.3 The relaxation of the integral functional

In this section we will consider a very classical problem of the calculus of variation, generalized
in this metric setting: the relaxation of integral funcionals where the integrand is depending
only on the gradient. In general one aims at looking at a general functional

I(u,Ω) =

ˆ
Ω
f(x, u,∇u) dx Ω ⊂ Rn, u ∈ C∞c (Rn),

and then asks whether the relaxation I of this functional in some topology admits a rep-
resentation formula in its domain. For example if one take f(x, u, p) = p2 then the domain
D(I ) = W 1,2(Rn) and we have I (u,Ω) =

´
Ω |∇u|

2 dx.
We want to generalize this last example to the metric setting, but with a general growth.

We will consider only the integration on all X, to simplify the proof. Let us consider the
functional GΦ:

GΦ(f) :=

{´
X Φ(lipa(f)) dm if f ∈ Lip0(X, d)

+∞ otherwise.

Then let G Φ be the semicontinuous relaxation of GΦ(f) with respect to the L1 convergence:

G Φ(f) = inf

{
lim inf
n→∞

ˆ
X

Φ(lipa(fn)) dm : fn ∈ Lip0(X, d), fn → f in L1(X,m)

}
. (3.4.13)
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We want to find an explicit representation formula for G Φ and the obvious claim is that
G Φ(f) =

´
X Φ(|∇f |w,Φ) dm, whenever this makes sense. This is obvious in the Lp case, since in

this case GΦ = F pΦ and so we conclude using Theorem 3.4.8, in particular FΦ
v (f) = ‖|∇f |w,p‖p.

In the general Orlicz case, there is not a clear relation between GΦ and FΦ, apart from some
inequalities, but we still can find that the relaxed quantities are represented by the same
gradient. Of course, since we are talking of gradients, we have to require Ψ doubling; this will
be the sufficient hypothesis to conclude.

Theorem 3.4.10 (Representation of G Φ) Let Φ be an N -function such that Ψ is doubling,
and let (X, d,m) be a separable complete space, where bounded sets have finite measure. Then
we have

G Φ(f) =

{´
X Φ(|∇f |w,Φ) dm if f ∈ BL1,Φ(X, d,m)

+∞ otherwise.

Proof. The proof is based on the duality formula

NΦ(g) :=

ˆ
X

Φ(g)dm = sup

{ˆ
X
fg dm−

ˆ
X

Ψ(f) dm : f ∈ LΨ(X,m)

}
; (3.4.14)

one inequality is trivial by Young inequality, for the other one it is sufficient to take

fn(x) =

{
ϕ(g(x)) if |x| ≤ n and |g(x)| ≤ n
0 otherwise.

Since the right hand side of (3.4.14) is a supremum of continuous functionals for the weak-∗
convergence in LΦ, we have that NΦ is l.s.c. with respect to this topology. Now let us consider
a sequence (fn) ⊆ Lip0(X, d) that realizes the infimum in (3.4.13). Thanks to Lemma 3.4.3,
up to subsequences we have that fn → f in L1 and lipa(fn)

∗
⇀ g for some g ∈ LΦ(X,m).

Taking the lower semicontinuity of NΦ into account and using that g ≥ |∇f |w,Φ (since g is a
Φ-weak upper gradient, thanks to Theorem 3.4.8), we get

G Φ(f) = lim inf
n

NΦ(lipa(fn)) ≥ NΦ(g) ≥ NΦ(|∇f |w,Φ).

This readily implies that

D(G ) ⊆
{
f ∈ BL1,Φ(X, d,m) :

ˆ
X

Φ(|∇f |w,Φ) dm <∞
}
. (3.4.15)

Now it remains to prove the other inequality: let us consider first functions f ∈ BL1,Φ

such that
NΦ(C|∇f |w,Φ) <∞ for some C > 1. (3.4.16)

Let us take a sequence (fn) ⊂ Lip0(X, d) and (gn) ⊂ LΦ(X,m) that satisfy (iv) in Theo-
rem 3.4.8 with g = |∇f |w,Φ; then, using the convexity of Φ and taking ε = ‖gn−|∇f |w,Φ‖Φ,m,
we have ˆ

X
Φ(gn) dm =

ˆ
X

Φ

(
(1− ε) ·

|∇f |w,Φ
1− ε

+ ε ·
gn − |∇f |w,Φ

ε

)
dm

≤ (1− ε)
ˆ
X

Φ
( |∇f |w,Φ

1− ε
)

dm + ε

ˆ
X

Φ

(
gn − |∇f |w,Φ

ε

)
dm

≤ ε+ (1− ε)
ˆ
X

Φ

(
|∇f |w,Φ

1− ε

)
dm
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taking n→∞ we have that ε→ 0 and so, thanks to (3.4.16) and dominated convergence we
have

G Φ(f) ≤ lim inf
n

ˆ
X

Φ(lipa(fn)) dm ≤ lim inf
n

ˆ
X

Φ(gn) dm ≤ NΦ(|∇f |w,Φ);

Now, in order to remove the technical assumption (3.4.16) it is sufficient to notice (see (3.4.15))
that whenever f ∈ D(G Φ) we have that the function ρf satisfies (3.4.16) for every 0 < ρ < 1,
and so, since ρf → f in L1 when ρ→ 1, by the L1-lower semcontinuity of G Φ and monotone
convergence we get

G Φ(f) ≤ lim
ρ→1−

G Φ(ρf) ≤ lim
ρ→1−

NΦ(ρ|∇f |w,Φ) = NΦ(|∇f |w,Φ),

where we used also the obvious property that |∇(ρf)|w,Φ = ρ|∇f |w,Φ. �

3.5 Other possible definitions

For completeness, we compare the spaces H1,Φ
v and BL1,Φ with other spaces, namely H1,Φ

c and
N1,Φ, that are generalizations of those arising respectively in [25] and [75]. We recall briefly
their definition:

Definition 3.5.1 (H1,Φ
c and Cheeger Φ-relaxed energy) For every f ∈ L1(X,m) let us

define

FΦ
c (f) := inf

{
lim inf
n→∞

‖gn‖(Φ),m : fn → f in L1(X,m), gn ∈ UG(fn)
}
. (3.5.1)

We recall that UG(f) is the set of upper gradients for the function f . Then we define
H1,Φ
c (X, d,m) = D(FΦ

c ).

In order to define the Newtonian space N1,Φ, generalization of the one presented in [75],
we have to introduce the notion of Φ-modulus, following Section 2.1:

Mod(Φ),m(Γ) := inf

{
‖f‖(Φ),m : f ∈ LΦ

+(X,m),

ˆ
γ
f ≥ 1 for all γ ∈ Γ

}
. (3.5.2)

Analogously, we say that a property holds for Mod(Φ),m-a.e. curve γ if the set of curves for
which the property fails has null Φ-modulus.

Definition 3.5.2 (N1,Φ and Φ-upper gradient) A function g ∈ LΦ(X,m) is a Φ-upper
gradient for a Borel integrable function f if it holds

|f(γini)− f(γfin)| ≤
ˆ
γ
g <∞ for Mod(Φ),m-a.e. curve γ. (3.5.3)

Then the Newtonian space N1,Φ is defined as the set of Borel integrable functions f that have
a Φ-upper gradient. We can define FΦ

N (f) = ‖g‖(Φ),m, where g is the Φ-upper gradient of
minimal norm.

Remark 3.5.3 The existence of a minimal Φ-upper gradient is easy to prove thanks to the
fact that if g is a Φ-upper gradient then f ◦ γ is absolutely continuous and (f ◦ γ)′ ≤ g(γ)|γ̇|
for Mod(Φ),m-a.e. γ (see [75, Proposition 3.1]). As we did for the Φ-weak upper gradients, this
leads to the fact that if g1, g2 are Φ-upper gradients for f then also min{g1, g2} is a Φ-upper
gradient, and so we can find a pointwise minimal object with a property similar to (3.4.6).
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The definition of Newtonian space is a little more subtle than the other ones since it
is not invariant under modification in a negligible set. However we will see that there will
be equivalence with all the other spaces also in this case, up to the choice of a suitable
representative. We shall need a stability lemma for Φ-upper gradients. In the proof we will
repeatedly use Proposition 2.1.2; notice that we can prove it for Mod(Φ),m following verbatim
the proof with Mod(Φ),m instead of Modp,m, with the exception of (v), where the reflexivity
of Lp is used. However it is easy to see that (v) remains true whenever Mod(Φ),m(An) = 0,
thanks to the subadditivity (i).

Lemma 3.5.4 Let fn → f in L1(X,m) and gn → g in LΦ(X,m), where gn is a Φ-upper
gradient for fn. Then there exists a representative of f that has g as a Φ-upper gradient; in
particular if g ∈ LΦ then f ∈ N1,p and FΦ

N (f) ≤ ‖g‖(Φ),m.

Proof. Here we follow [46, Lemma 7.8]. Let us denote by Γ0 the set of curves where the
following holds (we will often identify γ ∈ C (X) with iγ ∈ AC∞c ([0, 1];X), when needed):

fn ◦ γ ∈ AC([0, 1]) and |(fn ◦ γ)′|(t) ≤ gn(γt)|γ̇t| ∀n ∈ N.

By hypothesis we have that C (X) \ Γ0 is Mod(Φ),m-negligible. We will need also the set Γg
of curves for which

´
γ g < ∞; by Proposition 2.1.2(ii) this happens for Mod(Φ),m-a.e. curve.

Let us notice that, up to subsequences, we can assume that fn → f almost everywhere. In
particular, letting N be the m-null set where limn→∞ fn does not exist, we can consider the
representative

f(x) =

{
limn→∞ fn(x) ∀x /∈ N
0 otherwise.

It is clear that the set of curves ΓN = {γ : L 1(γ−1(N)) > 0} is Mod(Φ),m-negligible in fact,
considering ρ =∞ · χN we have ‖ρ‖(Φ) = 0 and

´
γ ρ =∞ whenever γ ∈ ΓN . In particular we

have L 1(γ−1(N)) = 0 for Mod(Φ),m-a.e. curve and so we have

fn ◦ γ → f ◦ γ L 1-a.e. in [0, 1] for Mod(Φ),m-a.e. curve γ.

Denote Γ1 the set of curves where this happens.
Thanks to Proposition 2.1.2(iii) applied to |gn − g| we have that if gn → g strongly in

LΦ(X,m) then there exists a subsequence such thatˆ
γ
|gn − g| → 0 for Mod(Φ),m-almost every curve γ; (3.5.4)

denote Γ2 the set of curves where this happens.
Now, thanks to (3.5.4) we have that if γ ∈ Γ2 then the functions hn(t) = gn(γt)|γ̇t| are

equi-integrable; whenever we have also γ ∈ Γ0, then by hypothesis hn bounds from above the
derivative of the absolutely continuous function fn ◦ γ, and so we deduce that the sequence
(fn◦γ) is equicontinuous and so if they are converging L 1-a.e. to some function, they are also
converging uniformly, and in particular everywhere; this implies that γ−1(N) = ∅ for every
γ ∈ Γ0 ∩ Γ1 ∩ Γ2. In particular for Mod(Φ),m-almost every curve γ it happens that

|f(γ1)− f(γ0)| = lim
n→∞

|fn(γ1)− fn(γ0)| ≤ lim
n→∞

ˆ
γ
gn =

ˆ
γ
g. (3.5.5)

�



74 Chapter 3. Orlicz-Sobolev Spaces

3.5.1 Comparison of FΦ
c with FΦ

BL,F
Φ
v

It is clear that ‖g‖(Φ),m ≥ FΦ
BL(f) whenever g ∈ UG(f), recalling that (3.2.3) holds for every

g upper gradient of f , and then using the estimate (3.2.4). By relaxation we get FΦ
c ≥ FΦ

BL;
moreover we have that lipa(f) is an upper gradient for f ∈ Lip0(X, d) and so it is clear that
FΦ
v ≥ FΦ

c and so by the equivalence Theorem 3.3.1 we obtain

H1,Φ
v (X, d,m) = H1,Φ

c (X, d,m) and FΦ
v (f) = FΦ

c (f) ∀f ∈ L1(X,m). (3.5.6)

3.5.2 Comparison of N1,Φ with FΦ
BL,F

Φ
v

As for N1,Φ, we have that Mod(Φ),m(Γ) = 0 ⇒ π(i−1(Γ)) = 0 for every Ψ-plan π. In fact,
taking a Mod(Φ),m-null set Γ we have that for every ε > 0 there exists a Borel function ρ such
that ‖ρ‖(Φ) ≤ ε and

´
γ ρ ≥ 1 for every γ ∈ Γ; now, letting Γ0 = i−1(Γ), we have (with the

usual estimate (3.2.4)):

π(Γ0) ≤
¨
γ
ρ dπ ≤ ε · C(π) ·

ˆ ˆ 1

0
‖|γ̇t‖Ψ,π dt.

Letting ε→ 0 we obtain that π(Γ0) = 0 for every π-plan and thus Γ0 is Φ-negligible. So
we have that if f ∈ N1,Φ and g is a Φ-upper gradient then f ∈ BL1,Φ and g is a Φ-weak upper
gradient. In particular we have

FΦ
N ≥ FΦ

BL and N1,Φ ⊂ BL1,Φ
1 , (3.5.7)

where BL1,Φ
1 is the set of f ∈ BL1,Φ such that f ◦ γ ∈W 1,1(0, 1) for Φ-almost every γ.

As we noted in Section 3.4.1, in general we have BL1,Φ
1 ( BL1,Φ, while they coincide if Ψ

is doubling (Theorem 3.4.8). In particular in general we have N1,Φ ( BL1,Φ, but, thanks to
the following proposition, they coincide when Ψ is doubling.

Proposition 3.5.5 Let us assume Ψ doubling. Then we have H1,Φ
v ⊆ N1,Φ and also FΦ

v ≥
FΦ
N , meaning that for every f ∈ H1,Φ

v there exists a Borel representative f̃ ∈ N1,Φ, such that
FΦ
v (f) ≥ FΦ

N (f̃)

Proof. By Theorem 3.4.8(iv) there are sequences (fn) ⊂ Lip0(X, d), (gn) ⊂ LΦ(X,m) such
that fn → f in L1, gn ≥ lipa(fn) and gn → g strongly in LΦ(X,m). Moreover FΦ

v (f) =
‖g‖(Φ),m.

Now we can apply Lemma 3.5.4 to the functions f̂n with upper gradients gn, obtaining
that f has a representative in N1,Φ with g as Φ-upper gradient. In particular we obtain that
FΦ
N (f) ≤ ‖g‖(Φ),m = FΦ

v (f). �

In the next theorem we collect the results of this section.

Theorem 3.5.6 Let (X, d,m) be a Polish space endowed with a measure finite on bounded
sets. Then we have:

H1,Φ
v (X, d,m) = H1,Φ

c (X, d,m) = BL1,Φ(X, d,m) ⊇ N1,Φ(X, d,m);

FΦ
v (f) = FΦ

c (f) = FΦ
BL(f) ≤ FΦ

N (f) ∀f Borel function.

Moreover if Ψ is doubling we have all equalities and also equalities at the level of weak gradients:
|∇f |N,Φ = |∇f |w,Φ.
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Proof. We already observed in (3.5.6) the equivalence with H1,Φ
c . Then we proved in (3.5.7)

the inclusion for N1,Φ. For the case in which Ψ is doubling, the other inclusion and the other
inequality are proved using Proposition 3.5.5 and of course Theorem 3.3.1.
In order to prove the equality of the weak gradients, it is sufficient to note that in the con-
struction provided in Proposition 3.5.5 we prove indeed that every g in Theorem 3.4.8(iv) is
also a Φ-weak gradient; but in that theorem we prove that (iv) is satisfied by |∇f |w,Φ, and so
we obtain that the minimal Φ-weak upper gradient is a Φ-weak gradient. Moreover we proved
also that every Φ-weak gradient is also a Φ-weak upper gradient and so we conclude. �
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CHAPTER 4

The spaces BV and H1,1

In this chapter we consider more closely the degenerate case Φ(t) = t, corresponding to the
definition of the BV space. In this case almost all the proof in the equivalence Theorem 3.3.1
still works but a key point, namely Section 1.6, where the analysis of the Hopf-Lax semigroup
is done, doesn’t work anymore for Φ(t) = t; in Section 4.2 we will fill this gap providing a
little weaker result on length spaces, but still sufficient for the equivalence theorem.

The proof of the equivalence of various different definitions will follow the paper [5]. Here
we introduce two more spaces, in the spirit of H1,Φ

v and BL1,Φ, whose equivalence with the
previous ones permits to obtain global approximation by Lipschitz functions with bounded
support, and also putting the asymptotic Lipschitz constant in place of the slope. The BV
case is very particular since, despite the fact that Ψ is not doubling (it is not even finite on
the whole real line), we can give a localized version of the variational energy, that is the total
variation measure |Df |; the definition in the relaxed sense (4.4.3) and its basic properties
has been given in [67] under some structural assumption, and then extended to locally finite
metric measure spaces in [5].

4.1 BV functions and total variation on Euclidean spaces

We refer to Chapter 3 of [7] for a complete review of this topic, with all the proofs; here we
will only overview the main properties needed in this paper.

Given an open set A ⊆ Rd, f ∈ L1(A) is said to be of bounded variation in A if one of the
following three equivalent properties hold:

(a) the distributional derivative Df is a Rd-valued measure with finite total variation in A.

(b) The following quantity, called total variation of f in A, is finite:

TVf (A) := sup

{ˆ
A
fdivϕdx : ϕ ∈ C1

c (A;Rd), |ϕ| ≤ 1

}
.

77
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(c) There exists a sequence (fn) ⊂ C∞(A) converging fo f in L1
loc(A), with equibounded

energies: supn
´
A |∇fn|dx <∞.

The equivalence between (a), (b) and (c) leads to relations between the corresponding
quantities involved: in particular we have

|Df |(A) = TVf (A) ≤ lim inf
n→∞

ˆ
A
|∇fn| dx.

By means of standard mollifiers and partitions of unity we can get also the following stronger
result: there exists a sequence of functions fn ∈ C∞(A) convergent to f in L1(A) and such
that |Dfn|(A) → |Df |(A). In our metric context we simply replace C∞(A) by the space of
locally Lipschitz functions on A.

Moreover the second definition gives us easily the crucial property that the total variation
|Df | of the distributional derivative in open sets is lower semicontinuous with respect to L1

loc

convergence:

lim inf
n→∞

|Dfn|(A) ≥ |Df |(A) ∀A ⊆ Rd open set, fn → f in L1
loc(A). (4.1.1)

4.2 Hopf-Lax formula and Hamilton-Jacobi equation

Here, as we did in Section 1.6, we want to study some elementary properties of the Hopf-Lax
formula in a metric setting, in the degenerate case Φ(t) = |t| (suitable for the study of the
∞-Wasserstein distances, and the corresponding Kuwada lemma), not covered in the previous
discussion because we exploited the properties of N -functions. We are dealing with a very
simple convex lower semicontinuous Lagrangian, the Lagrange dual of Φ(t) = t:

L(s) =

{
0 if s ≤ 1;

∞ if s > 1.
(4.2.1)

We will use also, for a finer analysis, correspondingly, the ascending slope |∇+f | and the
descending slope |∇−f |:

|∇±f |(x) := lim
y→x

(f(y)− f(x))±

d(y, x)
. (4.2.2)

Let f : X → R be a Lipschitz function. We set Q0f(x) = f(x) and, for t > 0,

Qtf(x) := inf
y∈X

{
f(y) + tL

(d(x, y)

t

)}
. (4.2.3)

Due to the particular form of our Lagrangian, we get

Qtf(x) := inf
d(x,y)≤t

f(y). (4.2.4)

Obviously, these transformations act almost as a semigroup: in fact, the triangle inequality
gives

QsQtf(x) = inf
d(y,x)≤s

{
inf

d(y,z)≤t
f(z)

}
≥ inf

d(x,z)≤s+t
f(z) = Qs+tf(x).

Moreover, if (X, d) is a length space, we have equality and thus Qt is a semigroup. In fact,
under this assumption, for every z such that d(x, z) < s+ t there exists a constant speed curve
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γ : [0, 1] → X whose length is less than s + t and such that γ0 = x and γ1 = z; in particular
there will be a time η := s/(s + t) such that y := γη satisfies d(x, y) < s and d(y, z) < t. It
follows that QsQtf(x) ≤ inf

d(x,z)<s+t
f(z). In order to conclude, one has to observe that, if f is

continuous, then
inf

d(x,z)≤r
f(z) = inf

d(x,z)<r
f(z) ∀r > 0,

and this is true because in a length space the closure of the open ball is the closed ball.
Also, it is easy to check that the length space property ensures that the Lipschitz constant

does not increase:
Lip(Qtf) ≤ Lip(f). (4.2.5)

Now we look at the time derivative, to get information on the Hamilton-Jacobi equation
satisfied by Qtf(x):

Theorem 4.2.1 (Time derivative of Qtf) Let x ∈ X. The map t 7→ Qtf(x) is nonin-
creasing in [0,∞) and satisfies:

d

dt
Qtf(x) + |∇Qtf(x)| ≤ 0 for a.e. t > 0. (4.2.6)

Moreover, if (X, d) is a length space, the map t 7→ Qtf is Lipschitz from [0,∞) to C(X), with
Lipschitz constant Lip(f).

Proof. The basic inequality, that we will use in the first part of the proof is:

Qsf(y) ≤ Qs′f(y′) whenever s ≥ s′ + d(y, y′). (4.2.7)

It holds because the inequality implies B(y′, s′) ⊆ B(y, s) and thus it is clear by the very
definition of Qtf . Now we take xi and yi converging to x such that:

lim
i→∞

Qtf(xi)−Qtf(x)

d(xi, x)
= −|∇−Qtf |(x), lim

i→∞

Qtf(x)−Qtf(yi)

d(x, yi)
= −|∇+Qtf |(x).

Now we consider the inequalities, given by (4.2.7), involving x, xi, yi:

Qt+d(xi,x)f(x) ≤ Qtf(xi), Qtf(yi) ≤ Qt−d(x,yi)f(x)

and let us define, for brevity, si = d(xi, x) and ri = d(x, yi). Then we have

lim inf
h→0+

Qt+hf(x)−Qtf(x)

h
≤ lim inf

i→∞

Qt+sif(x)−Qtf(x)

si

≤ lim
i→∞

Qtf(xi)−Qtf(x)

si
= −|∇−Qtf |(x)

and, similarly,

lim inf
h→0−

Qt+hf(x)−Qtf(x)

h
≤ lim inf

i→∞

Qtf(x)−Qt−rif(x)

ri

≤ lim
i→∞

Qtf(x)−Qtf(yi)

ri
= −|∇+Qtf |(x).
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Using that |∇f | = max{|∇+f |, |∇−f |}, the combination of these inequalities gives

lim inf
h→0

Qt+hf(x)−Qtf(x)

h
≤ −|∇Qtf |(x) ∀x ∈ X, ∀t > 0.

Since Qtf(x) is obviously non increasing w.r.t. t, we get that is differentiable almost
everywhere and so we get the thesis.

If we suppose that (X, d) is also a length space, using the semigroup property and (4.2.5)
we get that

Qsf(x)−Qtf(x) = Qsf(x)−Qt−s(Qsf)(x) ≤ (t− s) Lip(Qsf) ≤ (t− s) Lip(f) ∀s ∈ [0, t],

and so the thesis. �

Note that, in case (X, d) is not a length space, it might happen that balls are not connected
and, as a consequence, that t 7→ Qtϕ(x) is discontinuous; as an example we can take X the
curve in Figure 4.1, with the distance induced as subset of R2.

Figure 4.1: Example of a compact metric space (X, d) that is not a length space, having a time
discontinuous Hopf-Lax semigroup Qt

It is clear that some balls, such as the shaded one centered in x, are disconnected; fur-
thermore if we take a Lipschitz function f equal to 0 in the upper part of the curve and equal
to 1 in the lower one, doing an interpolation between two values only in the rightmost and
leftmost parts, it is easy to see that Qtf(p) is discontinuous both in time and space.

Remark 4.2.2 Unlike the N -function case, here we don’t reach the Hamilton-Jacobi inequal-
ity for the asymptotic Lipschitz constant, but only for the slope. It is still an open problem
whether if (4.2.6) holds with the asymptotic Lipschitz constant. However, thanks to Propo-
sition 4.4.1 we can still prove that in (4.4.3) we can approximate with lipa(fh) in place of
|∇fh|.
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4.3 The ∞-Wasserstein distance

We already recalled the Ψ-Wasserstein for any Ψ convex lower semicontinuous, even with
values in R ∪ {+∞}. Thus here we just recall the ∞-Wasserstein distance, that is, the Ψ-
Wasserstein distance when Ψ = L, where L is defined in (4.2.1). We have

W∞(µ, ν) := min
{
‖d‖L∞(γ) |γ ∈ Γ(µ, ν)

}
.

It is known (see for instance [24]) that W∞ is the monotone limit of Wp as p goes to infinity,
at least when we are dealing with probability measures; we want to consider also this limit
case as a transport problem, in order to have a dual formulation that will be used later on; as
it has been already pointed out we need "test distances", that are really transport distances:

W (s)
∞ (µ, ν) = min

{ˆ
X×X

sL
(d(x, y)

s

)
dγ | γ ∈ Γ(µ, ν)

}
,

and for them a duality formula holds:

W (s)
∞ (µ, ν) = sup

ϕ∈Lip0(X,d)

ˆ
X
Qsϕdµ−

ˆ
X
ϕdν. (4.3.1)

In this case, being the cost degenerate, we have that W (s)
∞ ≤ 0 if and only if W∞ ≤ s.

4.4 Four notions of BV function

Let (X, d) be a complete and separable metric space and let m be a nonnegative Borel measure
in X. In this section we introduce four notions of BV function and, correspondingly, four
notions of total variation. Only three of them will be measures, the other one giving only the
value of the total variation of the entire space and difficult to localize. We recall that the aim
of this chapter is to show that these notions are equivalent.

4.4.1 BV functions in the variational sense

In the same spirit of Definition 3.1.1 we say that a function f ∈ L1(X,m) is said BV in the vari-
ational sense if there exists a sequence (fn) ⊂ Lip0(X, d) converging to f in L1(X,m) and with
equibounded energies: supn ‖lipa(fn)‖1 < ∞. We shall denote this space by BVv(X, d,m).
We define also the total variation of the entire space

|Df |v(X) = inf

{
lim inf
h→∞

ˆ
X

lipa(fh) dm : (fh) ⊂ Lip0(X, d), fh → f in L1(X,m)

}
. (4.4.1)

Note that if we consider Φ(t) = t then we have FΦ
v (f) = |Df |v(X). This notion can’t be

localized as in (4.4.3), if we want to be consistent with the Euclidean case; in fact for a general
open set A ⊆ Rd it is necessary to have locally Lipschitz functions approximating the function
f (take as an example f(θ, r) = θ, in the case X = B(0, 1) ⊆ R2 with the Lebesgue measure,
and as an open set A = B(0, 1) \ ({0} × [0, 1])).

Proposition 4.4.1 Let m be a measure that is finite on bounded sets. Then for every f ∈
Lip0(X, d) we have

|Df |v(X) ≤
ˆ
X
|∇f | dm.
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Proof. We notice that, thanks to the general theory of Sobolev spaces in metric measure
spaces (see for example [4] or Chapter 3), since |∇f | is an upper gradient for f ∈ Lip0(X, d),
and f, |∇f | ∈ L2(X,m), there is a sequence (fh) ⊆ Lip0(X, d) such that fh → f in L2 and
lipa(fh) → g in L2 with g ≤ |∇f |; thanks to Lemma 3.3.3 we can take fh to have uniform
bounded support, since f has bounded support. In particular, recalling that m is finite on
bounded sets, we have that fh → f in L1 and lipa(fh) → g in L1 and so this gives that
|Df |v(X) ≤

´
X g dm ≤

´
X |∇f |dm and so we obtain the thesis. �

Moreover, thanks to the lower semicontinuity of the total variation, we obtain from Propo-
sition 4.4.1 an equivalent formulation:

|Df |v(X) = inf

{
lim inf
h→∞

ˆ
X
|∇fh|dm : fh ∈ Lip0(X, d), fh → f in L1(X,m)

}
. (4.4.2)

4.4.2 BV functions in the relaxed sense

We can define a slightly bigger space, requiring that the approximating functions are only
locally Lipschitz. We shall denote this space by BV∗(X, d,m).
We already noticed that this definition coincides with the classical one in Euclidean spaces.
Associated to this definition is the relaxed total variation |Df |∗, defined on open sets A ⊆ X
as:

|Df |∗(A) := inf

{
lim inf
h→∞

ˆ
A

lipa(fh) dm : (fh) ⊂ Liploc(A), fh → f in L1(A)

}
. (4.4.3)

Here “locally Lipschitz in an open set A” means that for all x ∈ A there exists r > 0 such that
Br(x) ⊆ A and the restriction of f to Br(x) is Lipschitz.

This definition can be seen as the localized version of the variational one; it is clear that
|Df |v(X) ≥ |Df |∗(X), but the converse inequality is not at all obvious.

This definition is slightly stronger than the ones considered in [67] and [5] since in their
definition the authors use the slope instead of the asymptotic Lipschitz constant. They prove
that in their context the set function A 7→ |Df |s(A) is the restriction to open sets of a finite
Borel measure (the subscript s stands for slope). We follow their proof in order to prove the
same for |Df |∗: we investigate more closely the properties of this set function in the following
lemma. We will write A b B whenever A, B are open sets and d(A,X \B) > 0 (in particular,
A b B implies A ⊆ B). We say that A1 and A2 are well separated if dist(A1, A2) > 0.

Lemma 4.4.2 Let A(X) be the class of open subsets of X, u ∈ L1(X,m) and let |Du|∗ :
A(X) → [0,∞] be defined as in (4.4.3), with the convention |Du|∗(∅) = 0. Then, |Du|∗
satisfies the following properties:

(i) |Du|∗(A1) ≤ |Du|∗(A2) whenever A1 ⊆ A2;

(ii) |Du|∗(A1 ∪A2) ≤ |Du|∗(A1) + |Du|∗(A2), with equality if A1 and A2 are well separated;

(iii) If An are open and An ⊆ An+1 it holds

lim
n→∞

|Du|∗(An) = |Du|∗
(⋃
n

An

)
. (4.4.4)
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In particular the formula

|Du|∗(B) := inf {|Du|∗(A) : A ⊆ X open, B ⊆ A}

provides a σ-subadditive extension of |Du|∗ whose additive sets, in the sense of Carathéodory,
contain B(X). If follows that |Du|∗ : B(X)→ [0,∞] is a σ-additive Borel measure.

Proof. The verifications of monotonicity and the additivity on well separated sets are stan-
dard. Since we will use (iii) in the proof of the first statement of (ii), we prove (iii) first,
denoting A := ∪nAn. It is sufficient to prove that sup |Du|∗(An) ≥ |Du|∗(A) because the
converse inequality is trivial by monotonicity, so we can assume that supn |Du|∗(An) <∞.

First, we reduce ourselves to the case when An satisfy the additional condition

dist(An, X \An+1) > 0 ∀n ∈ N. (4.4.5)

In order to realize that the restriction to this case is possible, suffices to consider the sets

A′n :=

{
x ∈ X : dist(x,X \An) ≥ 1

n

}
which satisfy (4.4.5), are contained in An and whose union is still equal to A.

In particular, if we call {
C1 = A2

Ck = Ak \Ak−2 if k ≥ 2,

it is clear that the families {C3k+1}, {C3k+2}, {C3k+3} are well separated, hence∑
j |Du|∗(C3j+i) < ∞ for all i ∈ {1, 2, 3}. It follows that for any ε > 0 we can find an

integer k̄ such that
∞∑
n=k̄

|Du|∗(Cn) ≤ ε. (4.4.6)

Now, to prove (4.4.4) we build a sequence (um) ⊆ Liploc(A) such that um → u in L1(A,m)
and

|Du|∗(Ak̄) + 2ε ≥ lim inf
m→∞

ˆ
A

lipa(um) dm.

In order to do so, we fix m and set Dh = Ch+k̄, Bh = Ah+k̄ if h ≥ 1, D0 = B0 = Ak̄. Then
we choose ψk,h ∈ Liploc(Dh) in such a way that

ˆ
Dh

lipa(ψk,h) dm ≤ |Du|∗(Dh) +
1

m2k
. (4.4.7)

We are going to use Lemma 4.4.3 below with M = Bh, N = Dh+1, so we denote by ch and
Hh b Bh ∩Dh+1 the constants and the domains given by the lemma. It is then easy to find
sufficiently large integers k(h) ≥ h satisfying

ch

ˆ
Hh

|ψk(h),h − u|dm ≤
ε

2 · 2h
and ch

ˆ
Hh

|ψk(h+1),h+1 − u|dm ≤
ε

2 · 2h
. (4.4.8)

This is possible because Hh is contained in Bh ∩Dh+1 which, in turn, is contained in Dh. In
addition, possibly increasing k(h), we can also have:ˆ

Dh

|ψk(h),h − u|dm ≤
1

m2h
. (4.4.9)
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Now we define by induction on h functions um,h ∈ Liploc(Bh) for h ≥ 0 : we set um,0 =
ψk(0),0 and, given um,h, we build um,h+1 in such a way that:{

um,h+1 ≡ um,h on Bh−1

um,h+1 ≡ ψk(h+1),h+1 on Bh+1 \Bh,
(4.4.10)

‖um,h − u‖L1(Bh) ≤
1

m

(
1− 1

2h

)
, (4.4.11)

ˆ
Bh+1

lipa(um,h+1) dm ≤
ˆ
Bh

lipa(um,h) dm +

ˆ
Dh+1

lipa(ψk(h+1),h+1) dm +
ε

2h
. (4.4.12)

Once we have this we are done because we can construct um(x) = um,h(x) if x ∈ Bh−1, then
it is clear that um is well defined thanks to the first equation in (4.4.10) and locally Lipschitz
in A. In addition ‖um − u‖L1(A) ≤ 1/m thanks to (4.4.11) and the monotone convergence
theorem and, iterating (4.4.12) and using (4.4.7) and k(h) ≥ h, we get

ˆ
A

lipa(um) dm = lim
h→∞

ˆ
Bh

lipa(um,h+1) dm ≤ lim
h→∞

ˆ
Bh+1

lipa(um,h+1) dm

≤
∞∑
i=0

|Du|∗(Di) +
2

m
+ ε ≤ |Du|∗(Ak̄) + 2ε+

2

m
.

In order to prove the induction step in the construction of um,h we use Lemma 4.4.3 with
M = Bh, N = Dh+1, u = um,h and v = ψk(h+1),h+1. So, applying (4.4.13) of the lemma we
find a function w = um,h+1 such that

ˆ
Bh+1

lipa(um,h+1) dm ≤
ˆ
Dh+1

lipa(ψk(h+1),h+1) dm +

ˆ
Bh

lipa(um,h) dm

+ ch

ˆ
Hh

|ψk(h+1),h+1 − um,h| dm,{
um,h+1 ≡ um,h on Bh \Dh+1 ⊇ Bh−1

um,h+1 ≡ ψk(h+1),h+1 on Dh+1 \Bh ⊇ Bh+1 \Bh.

By the induction assumption, um,h ≡ ψk(h),h on Bh \Bh−1 which contains Hh, and so we can
use (4.4.8) to get (4.4.12). Then (4.4.14) of Lemma 4.4.3 with σ = u tells us exactly that

ˆ
Bh+1

|um,h+1 − u| dm ≤
ˆ
Dh+1

|ψk(h+1),h+1 − u|dm +

ˆ
Bh

|um,h − u| dm

and so by (4.4.8) and the induction assumption we get also (4.4.11):
ˆ
Bh+1

|um,h+1 − u|dm ≤
1

m2h+1
+

1

m

(
1− 1

2h

)
=

1

m

(
1− 1

2h+1

)
.

Now we prove (ii). Having already proved (iii), suffices to show that

|Du|∗(A′1 ∪A′2) ≤ |Du|∗(A1) + |Du|∗(A2) whenever A′1 b A1, A′2 b A2.

This inequality can be obtained by applying Lemma 4.4.3 to join optimal sequences for A1

and A2, with M = (A′1 ∪A′2) ∩A1 and N = (A′1 ∪A′2) ∩A2. �
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Lemma 4.4.3 (Joint lemma) Let M, N be open sets such that d(N \M,M \N) > 0. There
exist an open set H b M ∩ N and a constant c depending only on M and N such that for
every u ∈ Liploc(M), v ∈ Liploc(N) we can find w ∈ Liploc(M ∪N) such that

ˆ
M∪N

lipaw dm ≤
ˆ
M

lipaudm +

ˆ
N

lipav dm + c(M,N)

ˆ
H
|u− v| dm; (4.4.13)

w ≡ u on neighborhood of M \N, w ≡ v on neighborhood of N \M.

Furthermore, for every σ ∈ L1(M ∪N) we have
ˆ
M∪N

|w − σ|dm ≤
ˆ
M
|u− σ|dm +

ˆ
N
|v − σ|dm. (4.4.14)

Proof. The assumption on M and N guarantees the existence of a Lipschitz function ϕ :
X → [0, 1] such that

ϕ(x) =

{
1 on a neighborhood of M \N
0 on a neighborhood of N \M,

so that H := {0 < ϕ < 1} ∩ (M ∪ N) will be an open set contained in M ∩ N and well
separated from both M \N and N \M . Setting η := d(N \M,M \N), it is clear that we can
have Lip(ϕ) ≤ 3/η; for example we can take

ϕ(x) :=
3

η
min

{(
d(x,N \M)− η

3

)+
,
η

3

}
.

Now we consider the function w = ϕu+ (1− ϕ)v and, using the convexity inequality for the
asymptotic Lipschitz constant lipaw ≤ ϕlipau+ (1−ϕ)lipav+ lipaϕ · |u− v| (see Lemma 1.3.2
for the simple proof regarding also the slope) and the fact that ϕ ≤ χM and 1 − ϕ ≤ χN on
M ∪N , splitting the integration on the interior of {ϕ = 1}, the interior of {ϕ = 0} and H we
end up with:

ˆ
M∪N

lipaw dm ≤
ˆ
M

lipaudm +

ˆ
N

lipav dm +
3

η

ˆ
H
|u− v| dm.

To prove (4.4.14) we simply note that |w − σ| ≤ ϕ|u− σ|+ (1− ϕ)|v − σ| on M ∪N . �

4.4.3 Weak-BV functions

Before introducing the third definition we introduce some additional notation and terminology.

Definition 4.4.4 A measure π ∈ P(C([0, 1];X)) is said to be an ∞-test plan if the following
two properties are satisfied:

(a) π is concentrated on AC∞([0, 1];X) and Lip(γ) belongs to L∞(C([0, 1];X),π);

(b) there exists C = C(π) ≥ 0 such that (et)]π ≤ Cm for each t ∈ [0, 1].

A Borel subset Γ of C([0, 1];X) is said to be 1-negligible if π(Γ) = 0 for every ∞-plan π. A
property of continuous curves is said to be true 1-almost everywhere if the set for which it is
false is contained in a 1-negligible set.
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This definition is the degenerate case Ψ = L of Definition 3.2.1 (again, this is an homoge-
neous case and so we can let π be a probability measure and C(π) can be also less than 1).
We recall now the definition of weak-BV, suggested in [9] and adopted in [5]. This follows
the strong Beppo Levi definition: given a function f in L1(X,m), we say that f is a weak-BV
function, and write f ∈ w −BV (X, d,m), if the following two conditions are fulfilled:

(i) for 1-almost every curve we have that f ◦γ ∈ BV (0, 1); we require also a mild regularity
at the boundary, namely

|f(γ1)− f(γ0)| ≤ |D(f ◦ γ)|(0, 1) for 1-a.e. γ, (4.4.15)

where |D(f ◦γ)| ∈M+((0, 1)) is the total variation measure of the map f ◦γ : [0, 1]→ R;

(ii) there exists µ ∈M+(X) such that
ˆ
γ]|D(f ◦ γ)|(B) dπ(γ) ≤ C(π) · ‖Lip(γ)‖L∞(π)µ(B) ∀B ∈ B(X). (4.4.16)

Associated to this notion, there is also the concept of weak total variation |Df |w, defined
as the least measure µ satisfying (4.4.16) for every ∞-test plan π. Equivalently, |Df |w is the
least upper bound, in the complete and separable lattice M+(X), of the family of measures

1

C(π)‖Lip(γ)‖L∞(π)

ˆ
γ]|D(f ◦ γ)| dπ(γ) (4.4.17)

as π runs in the class of ∞-test plans.
If we fix t ∈ (0, 1) and we consider the rescaling map Rt from C([0, 1], X) to C([0, 1], X)

mapping γs to γts, we see that the push-forward πt = (Rt)]π is still a ∞-test plan, with
C(πt) ≤ C(π). In addition

‖Lip(γ)‖L∞(πt) ≤ t‖Lip(γ)‖L∞(π).

By (4.4.15) we get

|f(γt)− f(γ0)| ≤ |D(f ◦ γ)|(0, t) for π-a.e. γ, (4.4.18)

while (4.4.16) with A = X gives
ˆ
|D(f ◦ γ)|(0, t) dπ(γ) =

ˆ
|D(f ◦ γ)|(0, 1) dπt(γ)

≤ tC(π)‖Lip(γ)‖L∞(π)|Df |w(X).

(4.4.19)

Now we prove that the class BV∗ is contained in the class w−BV and that |Df |w ≤ |Df |∗
on open sets. The proof of this fact is not difficult, and follow the same lines of the proofs in
Theorem 3.4.1.First of all, we state without proof the following elementary lemma:

Lemma 4.4.5 Assume that g is an upper gradient of f , that γ : [0, 1] → X is Lipschitz and
that

´
γ g < ∞. Then f ◦ γ ∈ W 1,1(0, 1) and |(f ◦ γ)′(t)| ≤ g(γt)|γ̇t| for a.e. t ∈ (0, 1). In

particular

|D(f ◦ γ)|(B) ≤ Lip(γ)

ˆ
B
g(γt) dt for any Borel set B ⊆ (0, 1).
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Given an open set A ⊆ X, we take a sequence (fn) ⊂ Liploc(A) such that fn → f in
L1(A,m) and

´
A lipa(fn)dm → |Df |∗(A) (whose existence is granted by the definition of

relaxed total variation), and use the lemma and the fact that lipa(fn) is an upper gradient for
fn to estimate the weak total variation of fn as follows:

ˆ
γ]|D(fn ◦ γ)|(A) dπ(γ) =

ˆ
|D(fn ◦ γ)|(γ−1(A)) dπ(γ)

≤
ˆ

Lip(γ)

ˆ 1

0
gn(γt)χA(γt) dtdπ(γ)

≤ ‖Lip(γ)‖L∞(π)

ˆ 1

0

ˆ
A
gn d(et)]π dt

≤ ‖Lip(γ)‖L∞(π)C(π)

ˆ
A
gn dm.

(4.4.20)

We now introduce a lemma that permits us, up to a subsequence, to localize the L1

convergence, so that we can estimate the left hand side of the weak upper gradient inequality.

Lemma 4.4.6 Let B ⊆ X be a Borel set and let (fn) be a sequence converging to f in
L1(B,m). Then, a subsequence of (fn) converges to f in L1(γ−1(B),L 1) along 1-almost
every curve.

Proof. We can assume without loss of generality that B = X. Possibly extracting a
subsequence, we can suppose that∑

n

‖fn − f‖L1(X,m) <∞.

We now fix a ∞-test plan π and we show that ‖fn ◦ γ − f ◦ γ‖L1(0,1) → 0 for π-almost every
curve γ. Our choice of the subsequence ensures that the function g :=

∑
n |fn − f | belongs to

L1(0, 1). Now, the inequality
ˆ
‖g ◦ γ‖L1(0,1) dπ(γ) =

¨ 1

0
(g ◦ γ)(t) dtdπ ≤ C(π)

ˆ 1

0

ˆ
X
g dm <∞

guarantees that g ◦ γ belongs to L1(0, 1) for π-a.e. curve γ and thus we can say that fn ◦ γ →
f ◦ γ in L1(0, 1) for π-a.e. γ. By the arbitrariness of π, we conclude. �

We can now complete the proof of |Df |w ≤ |Df |∗ on open sets, starting from (4.4.20).
Let A ⊆ X be an open set, let (fn) ⊂ Liploc(A) be a sequence convergent to f in L1(A)

such that
lim
n→∞

ˆ
A

lipa(fn) dm = |Df |∗(A).

Thanks to Lemma 4.4.6 we can find a subsequence n(s) such that fn(s)◦γ → f◦γ in L1(γ−1(A))
along 1-almost every curve γ. By (4.1.1) in the open set γ−1(A) we get

γ]|D(f ◦ γ)|(A) ≤ lim inf
s→∞

γ]|D(fn(s) ◦ γ)|(A) for π-a.e. curve γ.

Passing to the limit as s → ∞ in the inequality (4.4.20) with n = n(s), Fatou’s lemma gives
µπ(A) ≤ |Df |∗(A) for all ∞-test plan π, where µπ is the finite Borel measure in (4.4.17). If
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π1, . . . , πk is a finite collection of ∞-test plans, the formula
k∨
i=1

µπi(A) = sup

{
k∑
i=1

µπi(Ai) : A1 ⊆ A, . . . , Ak ⊆ A open, pairwise disjoint

}
and the additivity of |Df |∗ yield |Df |∗(A) ≥ ∨k1µπi(A) for any open set A. Since this collection
is arbitrary, the inequality |Df |w(A) ≤ |Df |∗(A) is proved.

We’re not done yet, because we have to prove also the boundary regularity (4.4.15) that
is part of our axiomatization of w − BV functions. The inequality would clearly follow if we
show that f ◦ γi, i = 0, 1, is the approximate limit of f ◦ γ as t→ i, namely

lim
t↓0

1

t

ˆ t

0
|f(γs)− f(γ0)|ds = 0, lim

t↓0

1

t

ˆ 1

1−t
|f(γs)− f(γ1)| ds = 0.

This is indeed the context of the next lemma, that we state and prove for t = 0 only:

Lemma 4.4.7 (Boundary regularity) We are given a sequence (fn) ⊂ Liploc(X) where fn → f
in L1(X,m) and supn

´
X lipa(fn)dm < ∞. Then t = 0 is a Lebesgue point for the map

f ◦ γ : [0, 1]→ R for 1-almost every curve γ.

Proof. Let us fix an ∞-plan π, set C1 := supn
´
X gndm, C2 := C(π) and consider the

quantities

Ht(γ) =
1

t

ˆ t

0
|f(γs)− f(γ0)|ds.

By definition, we know that 0 is a Lebesgue point for f ◦ γ if Ht(γ)→ 0 as t→ 0. Applying
Fatou’s lemma we get: ˆ

lim inf
t→0

Ht(γ)dπ ≤ lim inf
t→0

ˆ
Ht(γ) dπ. (4.4.21)

We can estimateˆ
Ht(γ) dπ ≤

ˆ
Hn
t (γ) dπ +

1

t

¨ t

0

(
|fn(γs)− f(γs)|+ |fn(γ0)− f(γ0)|

)
ds dπ,

where Hn
t (γ) = 1

t

´ t
0 |fn(γs)− fn(γ0)|ds. We now treat separately the two terms on the right:

first let’s note thatˆ
Hn
t (γ)dπ =

1

t

¨ t

0
|fn(γs)− fn(γ0)|dsdπ ≤ 1

t

¨ t

0

ˆ s

0
lipa(fn, γr)dr dsdπ

≤ 1

t

¨ t

0

ˆ t

0
lipa(fn, γr)dr ds dπ =

¨ t

0
lipa(fn, γr)dr dπ

≤ C2

ˆ t

0

ˆ
X

lipa(fn, x) dm(x) dmdt ≤ tC1C2.

For the second term:
1

t

¨ t

0

(
|fn(γs)− f(γs)|+ |fn(γ0)− f(γ0)|

)
ds dπ

=
1

t

¨ t

0
|fn(γs)− f(γs)|dsdπ +

ˆ
|fn(γ0)− f(γ0)| dπ

≤ 1

t

ˆ t

0

ˆ
X
|fn − f | · C2 dmds+

ˆ
X
|fn − f | · C2 dm

≤ 2C2 · ‖fn − f‖L1(X,m).
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summing up we get that, choosing n so large that ‖fn − f‖L1 ≤ t,
ˆ
Ht(γ)dπ ≤ tC2(C1 + 2).

Now by (4.4.21) we conclude that
´

(lim inft→0Ht) dπ = 0 and so, thanks to the arbitrariness
of π, we can say that 0 is a Lebesgue point for 1-almost every curve (here we use also that
f ◦ γ is a BV function for 1-a.e. curve, and in this case we know that Ht has a limit). �

4.4.4 BVBL functions

Also here we give a weaker version of the w−BV definition; we follow the (weak) Beppo Levi
definition: we say that a function f ∈ L1(X,m) is a BVBL function if there exists a constant
E = E(f) such that for every ∞-plan we have:

ˆ
f(γ1)− f(γ0) dπ ≤ C(π) · E(f)‖Lip(γ)‖L∞(π). (4.4.22)

We call |Df |BL(X) the least constant E such that (4.4.22) holds true for every∞-plan π.
In the same spirit we can define |Df |BL(A) for open sets A:

|Df |BL(A) = sup

{ ´
f(γ1)− f(γ0)

C(π) · ‖Lip(γ)‖L∞(π)

}
, (4.4.23)

where the supremum is taken among all∞-plans concentrated on AC([0, 1];C) for some closed
set C b A. It is clear that a w −BV function belongs to BVBL and |Df |w(A) ≥ |Df |BL(A)
for every open set A.

4.5 Proof of equivalence

In Section 4.4 we discussed the “easy” inclusions BV∗ ⊆ w−BV ⊆ BVBL, and the correspond-
ing inequalities (localized on open subsets of X)

|Df |BL ≤ |Df |w ≤ |Df |∗.

Furthermore we proved also that BVv ⊆ BV∗ and the corresponding total variation inequalities
(on the whole space):

|Df |BL(X) ≤ |Df |w(X) ≤ |Df |∗(X) ≤ |Df |v(X).

In this section we prove the main result of this chapter namely the equivalence of the four
definitions. So, we have to start from a function f ∈ BVBL(X, d,m), and build a sequence of
approximating Lipschitz functions with bounded support in such a way that

lim sup
n→∞

ˆ
X

lipa(fn) dm ≤ |Df |BL(X). (4.5.1)

As in [11] for the case q = 2 and [9] for the case 1 < q <∞, our main tool in the construction
will the gradient flow in L2(X,m) of the functional F1

v(f) = |Df |v(X), starting from f0. We
initially assume that (X, d) is a complete and separable length space (this assumption is used
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to be able to apply the results of Section 4.2 and in Lemma 4.5.2, to apply (4.3.1)) and that
m is a finite Borel measure, so that the L2-gradient flow of F1

v can be used. The finiteness and
length space assumptions will be eventually removed in the proof of the equivalence result.

We state for completeness the proposition and the lemma we need for the proof; both are
proved in the general Orlicz case in Section 3.3. The only things that really change is that
in the Kuwada lemma we have to use the Hamilton-Jacobi inequality (4.2.6) (proved for the
slope) in (3.3.6), and then use that |Df |v(X) ≤

´
X |∇f | for f ∈ Lip0(X, d) (see Proposition

4.4.1) in (3.3.7).

Proposition 4.5.1 Let µt = ftm be a curve in AC∞([0, 1], (M+(X),W∞)). Assume that
for some 0 < c < C < ∞ it holds c ≤ ft ≤ C m-a.e. in X for any t ∈ [0, 1], and that
f0 ∈ w −BV (X, d,m). Then for all Φ ∈ C2([c, C]) convex it holds

ˆ
Φ(f0) dm−

ˆ
Φ(fs) dm ≤ sLip(Φ′)|Df0|w(X) · C · Lip(µt) ∀s > 0.

Lemma 4.5.2 (Kuwada’s lemma for F1
v) Let f0 ∈ L2(X,m) and let (ft) be the gradient

flow of F1
v starting from f0. Assume that for some 0 < c < C <∞ it holds c ≤ f0 ≤ C m-a.e.

in X. Then the curve t 7→ µt := ftm ∈ M+(X) is absolutely continuous w.r.t. W∞ and its
W∞ metric derivative satisfies

|µ̇t| ≤
1

c
for a.e. t ∈ (0,∞).

We can now prove our main theorem:

Theorem 4.5.3 Let (X, d) be a separable metric space, and let m be a nonnegative Borel
measure on X, finite on bounded sets. Then we have

BVv(X, d,m) = BV∗(X, d,m) = w −BV (X, d,m) = BVBL(X, d,m),

and moreover for every function f ∈ BV∗(X, d,m) we have |Df |∗ = |Df |w = |Df |BL as
measures and |Df |∗(X) = |Df |v(X).

Proof. Recalling the results of Section 4.4, to conclude the proof we are only left to show
that a function in BVBL is also a function of variational total variation and the two definitions
of total variations coincides; at the end we will see also the coincidence of the measures
|Df |∗, |Df |w and |Df |BL. We first prove that |Df |v(X) ≤ |Df |BL(X) and then that the set
functions |Df |∗ and |Df |BL agree on all open sets. This yields the coincidence of the three
aforementioned measures on the Borel σ-algebra.

We split the proof of the inequality |Df |v(X) ≤ |Df |BL(X) in three parts: we prove it first
for bounded functions and finite measures in length spaces, then we remove the boundedness
assumption on f and the length space assumption, and eventually the finiteness assumption
on m. Notice that we will follow the same lines of the equivalence proof in Section 3.3.
Let us consider a bounded function f0 ∈ BVBL possibly adding a constant (that doesn’t
change any of the total variations; the unique non trivial being |Df |v, that doesn’t change
thanks to Proposition 3.1.3) we can suppose also that C ≥ f0 ≥ c > 0. Let us consider
as before the gradient flow ft in L2(X,m), with respect to F1

v, starting from f0. Now, let
Φ(x) = x2, so that Φ′′ ≡ 2, and let’s substitute f0 with f0 + H; our computation is left
unchanged, because we know that St(f0 + H) = ft + H and so we can say, using the energy
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estimate in Proposition 3.1.5 and the Lipschitz estimate for the curve t 7→ (ft + H)m given
by Lemma 4.5.2, combined with Proposition 4.5.1:

2

ˆ s

0
|Dft|v(X) dt = 2

ˆ s

0
|D(ft +H)|v(X) dt

=

ˆ
X

(f0 +H)2 dm−
ˆ
X

(fs +H)2 dm

≤ 2s · |Df0|BL(X) · C +H

c+H
.

Now, letting H →∞, we get that
ˆ s

0
|Dft|v(X) dt ≤ s · |Df0|BL(X).

But, knowing that |Dft|v(X) = F1
v(ft) is nonincreasing in t we can say

s · |Dfs|v(X) ≤
ˆ s

0
|Dft|v(X) dt ≤ s · |Df0|BL(X)

and thus |Dfs|v(X) ≤ |Df0|BL(X). Now we have that |Df |v is lower semicontinuous and so,
letting s ↓ 0, we obtain that f0 ∈ BVv(X, d,m) and that |Df0|v(X) ≤ |Df0|BL(X).

Now, taking any function g ∈ BVBL(X, d,m), defining gN = (g ∧ N) ∨ (−N), we have
gN → g in L1 as N goes to infinity; thanks to Lemma 3.3.2 we get

|Dg|w(X) = lim sup |DgN |w(X) = lim sup |DgN |∗(X) = |Dg|∗(X).

Now, still assuming m to be finite, we see how the length space assumption on X can
be easily removed. Indeed, it is not difficult to find an isometric embedding of (X, d) into a
complete, separable and length metric space (Y, dY ): for instance one can use the canonical
Kuratowski isometric embedding j of (X, d) into `∞ and then take as Y the closed convex hull
of j(X). For notational simplicity, just assume that X ⊆ Y and that dY restricted to X ×X
coincides with d. Since X is a closed subset of Y , we may also view m as a finite Borel measure
in Y supported in X. Then, if f ∈ BVBL(X, d,m), we have also f ∈ BVBL(Y, dY ,m) and
|Df |BL,Y (Y ) ≤ |Df |BL(X) , because any ∞-test plan π in Y is, by the condition (et)]π ≤
m, supported on Lipschitz curves with values in X. Then, applying the equivalence result
in (Y, dY ,m), we find a sequence of Lipschitz functions wit bounded support gn : Y → R
convergent to f in L1(Y,m) satisfying

lim sup
n→∞

ˆ
Y

lipa(gn) dm ≤ |Df |BL,Y (Y ) ≤ |Df |BL(X).

Now, if fn = gn|X , from the inequality lipa(fn) ≤ lipa(gn) on X we obtain
lim supn

´
X lipa(fn) dm ≤ |Df |BL(X). On the other hand, it is immediate to check that

fn are Lipschitz in X, with bounded support.
In order to prove the theorem also for measures m that are finite on bounded sets we

proceed as in Section 3.3, namely, we know by Lemma 3.3.2 that we need only to check
the equivalence on bounded and integrable functions; then via Lemma 3.3.3 we reduce to
bounded function with bounded support. Now again Lemma 3.3.3 let us conclude that for
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every closed bounded set C (in which we consider the finite measure mC(B) = m(C ∩ B)),
we have |Df |v,X(X) = |Df |v,C(C) whenever supp(f) ⊂ Br ⊂ Br+4 ⊂ C. We can apply the
equivalence on C and note that |Df |BL,X(X) ≥ |Df |BL,C(C) since ∞-test plan in C can be
viewed also as ∞-test plans in X, to get

|Df |v(X) = |Df |v,C(C) = |Df |BL,C(C) ≤ |Df |BL(X),

and so our proof is complete.
Now it is easy to conclude that we have also |Df |∗(X) = |Df |w(X) = |Df |BL. Moreover

for every couple of open sets B b A, by definition of |Df |BL(A), we have

|Df |BL(A) ≥ |Df |BL,B̄(B̄) = |Df |∗,B̄(B̄) ≥ |Df |∗,B̄(B) = |Df |∗(B);

using this inequality with B = Aδ = {x : d(x,Ac) > δ} and letting δ → 0 we know that
Aδ ↑ A and so, using (iii) of Lemma 4.4.2, we obtain |Df |BL(A) ≥ |Df |∗(A).

In particular |Df |BL, |Df |∗ and |Df |BL agree on open sets, hence the two measures |Df |∗
and |Df |w coincide and as a byproduct we obtain also that |Df |BL can be extended to a
measure. �

The following example shows that in general the sup representation does not extend to
the absolutely continuous parts.

Example 4.5.4 Let X = R2, let B be the closed unit ball in R2, d the Euclidean distance and
m(C) = L 2(C) + H 1(C ∩ ∂B), for C ⊆ X Borel. If f is the characteristic function of B, the
inequality m ≥ L 2 gives the inequality between measures |Df | ≤ |Df |w. We claim that the
two measures coincide. To see this, suffices to show that |Df |w(R2) ≤ 2π and this inequality
follows easily by considering the sequence of functions (each one constant in a neighbourhood
of ∂B) fn(x) = ϕn(|x|) with

ϕn(t) :=


1 if t ≤ 1 + 1

n ;
1− n

(
t− 1− 1

n

)
if 1 + 1

n < t ≤ 1 + 2
n ;

0 if t > 1 + 2
n .

Since |Df |(C) = H 1(C ∩ ∂B), it follows that |Df |w is absolutely continuous w.r.t. m; on the
other hand, since f is a characteristic function the same is true for the maps f ◦ γ, so that
|Da(f ◦ γ)| = 0 whenever f ◦ γ has bounded variation.

We conclude this section with the following corollary to Theorem 4.5.3, dealing with the
degenerate case L1 = BV ; similar results could be stated also at the level of the Sobolev
spaces W 1,q(X, d,m) and the corresponding test plans of [9].

Corollary 4.5.5 BVv(X, d,m) coincides with L1(X,m) if and only if (X, d,m) has a ∞-test
plan concentrated on nonconstant rectifiable curves. In addition, (X, d) contains one noncon-
stant rectifiable curve if and only there exists a finite Borel measure m in (X, d) satisfying
BVv(X, d,m) 6= L1(X,m).

Proof. In the first statement, the “only if” part is trivial, since absence of∞-test plans implies
that all L1 functions are BVw, and therefore BVv. In order to prove the converse, we notice
that for a given countable dense set D ⊂ X, a curve γ is constant iff t 7→ d(γ, x) is constant
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for all x ∈ D. Hence, we can find x ∈ D and a∞-test plan π such that d(γ, x) is nonconstant
in a set with π-positive measure. The composition

f(y) := w(d(y, x)),

where w : [0,∞) → [0, 1] is a continuous and nowhere differentiable function, provides a
function in L1 \BVw = L1 \BVv.

For the second statement, absence of nonconstant rectifiable curves forces the absence of
nontrivial ∞-test plans whatever m is and, for the reasons explained above, the coincidence
L1 = BVv. On the other hand, existence of a nonconstant rectifiable curve in (X, d) implies
existence of a nonconstant injective curve γ : [0, 1]→ X with constant speed. If u ∈ L1(0, 1) \
BV (0, 1), then it is easily seen that u ◦ γ−1 (arbitrarily defined on X \ γ([0, 1])) belongs to
L1 \BVw provided we choose m := γ]L

1, where L 1 is the restriction of Lebesgue measure to
[0, 1]. �

We end this section giving a useful characterization of the total variation as weak limit of
asymptotic Lipschitz constants.

Proposition 4.5.6 Let f ∈ BV (X, d,m). Then there exists a sequence (fn) ⊂ Lip0(X, d)
such that fn → f in L1(X,m) and lipa(fn)m ⇀ |Df |∗ in duality with Cb(X). In particular
for every function g ∈ Cb(X) we have

lim
n→∞

ˆ
X
g(x)lipa(fn, x) dm =

ˆ
X
g(x) d|Df |∗

Proof. Let (fn) ⊂ Lip0(X, d) any optimal sequence in (4.4.1), i.e. such that

|Df |∗(X) = lim
n→∞

ˆ
X

lipa(fn) dm. (4.5.2)

We have clearly that fn → f also in L1(A,m) and fn ∈ Liploc(A, d) and so by definition (4.4.3)
we have also

|Df |∗(A) ≤ lim inf
n→∞

ˆ
A

lipa(fn) dm; (4.5.3)

now standard measure theory gives us the thesis, in fact if we have µ(A) ≤ lim infn µn(A) for
every open set A and µ(X) = limn µn(X) then µn ⇀ µ. For the sake of completeness we show
also this fact. It is clear that we have also µ(C) ≥ lim supn µn(C) for every closed set C.

For every nonnegative µ-integrable function g we haveˆ
X
g(x) dµ(x) =

ˆ ∞
0

µ{g ≥ t}dx =

ˆ ∞
0

µ{g > t} dx;

this formula is easy to prove when g is simple and then it follows by approximation. In
particular it holds when g is continuous and bounded. In this case, using that {g > t} is an
open set, we can employ Fatou lemma to obtainˆ

X
g dµ =

ˆ ∞
0

µ{g > t} dx ≤ lim inf
n

ˆ ∞
0

µn{g > t} dx = lim inf
n

ˆ
X
g dµn;

on the other side we also haveˆ
X
g dµ =

ˆ ∞
0

µ{g ≥ t} dx ≥ lim sup
n

ˆ ∞
0

µn{g ≥ t} dx = lim sup
n

ˆ
X
g dµn.

and so we have limn

´
X g dµn =

´
X g dµ. Since g was an arbitrary nonnegative continuous

bounded function, we get the thesis. �
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4.6 Possible definitions for W 1,1(X, d,m)

In this section we discuss potential definitions of the space W 1,1. Here the picture is far
from being complete, since at least three definitions are available and we are presently not
able to prove their equivalence, unlike for BV . For simplicity, here we assume that (X, d,m)
is a compact metric space and that m is a probability measure. Recall that BVv(X, d,m)
denotes the BV space defined by relaxation of the asymptotic Lipschitz constant of Lipschitz
functions, while w−BV (X, d,m) is the BV space defined with the BV property along curves.

It is immediate to look at the subset of w − BV (X, d,m) consisting of functions f ∈
L1(X, d,m) such that |Df |w � m. However this is not satisfactory since Example 4.5.4 gives
an example of a characteristic function with non trivial gradient that belongs to this subset.
For this reason we will add the condition of being absolutely continuous along 1-almost every
curve.

Definition 4.6.1 (W 1,1
BL space) A function f ∈ w − BV (X, d,m) is said to belong to

W 1,1
BL(X, d,m) if the following conditions are satisfied:

(i) f ◦ γ belongs to W 1,1(0, 1) for 1-almost every curve γ;

(ii) |Df |BL � m.

But we can also provide a definition in the spirit of the weak upper gradient definition:

Definition 4.6.2 (1-weak upper gradient) A function g ∈ L1(X,m) is said a 1-weak up-
per gradient for f ∈ L1(X,m) if

|f(γ1)− f(γ0)| ≤
ˆ
γ
g <∞ for 1-a.e. γ. (4.6.1)

On the other hand, also the construction leading to BVv(X, d,m) (or to the relaxed Orlicz-
Sobolev spaces) can be adapted to provide a different definition of W 1,1:

Definition 4.6.3 (1-relaxed slope) Let f ∈ L1(X,m). We say that a nonnegative function
g ∈ L1(X,m) is a 1-relaxed slope of f if there exist Lipschitz functions with bounded support
fn converging to f in L1(X,m) such that lipa(fn) ⇀ h weakly in L1(X,m), with g ≥ h m-a.e.
in X.

Then, we may define w − W 1,1(X, d,m) and H1,1(X, d,m) as the space of functions in
L1(X, d,m) having a 1-weak upper gradient and a 1-relaxed slope, respectively. It is not
difficult to show, using Mazur’s lemma, that an equivalent definition of 1-relaxed slope g
involves sequences fn such that lipa(fn) ≤ hn, with hn → h strongly in L1(X,m) and h ≤ g.
Then, this gives that |Df |w ≤ hm for all f ∈ H1,1(X, d,m), so that

H1,1(X, d,m) ⊆ w −W 1,1(X, d,m).

Finally, also a fourth intermediate definition of W 1,1(X, d,m) could be considered, in the
spirit of [57], [75], very similar to w −W 1,1.
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Definition 4.6.4 (1-upper gradient) A Borel nonnegative function g ∈ L1(X, d,m) is said
to be a 1-upper gradient of f ∈ L1(X, d,m) if there exists a function f̂ that coincides m-almost
everywhere with f such that

|f̂(γ1)− f̂(γ0)| ≤
ˆ
γ
g ds for Mod1-a.e. γ.

Recall that

Mod1(Γ) := inf

{ˆ
X
ρdm : ρ ≥ 0,

ˆ
γ
ρ ≥ 1 ∀γ ∈ Γ

}
.

Since Mod1-negligible set of curves parametrized on [0, 1] are easily seen to be 1-negligible
(it suffices to integrate with respect to any ∞-test plan π the inequality

´ 1
0 ρ(γt)|γ̇t| ≥ 1)

we see that the space W 1,1
S (X, d,m) of functions having 1-upper gradient is contained in w −

W 1,1(X, d,m), while the arguments of [75] provide the inclusionH1,1(X, d,m) ⊆W 1,1
S (X, d,m);

moreover it is clear that w −W 1,1 ⊆W 1,1
BL Summing up, we have

H1,1(X, d,m) ⊆W 1,1
S (X, d,m) ⊆ w −W 1,1(X, d,m) ⊆W 1,1

BL(X, d,m)

and we don’t know wether equalities hold. We only know that in the last inclusion there can
be discrepancy on the gradient itself; in [12], [44] is shown an example where f ∈ w − BV
but we have |Df |BL < |∇f |wm. It is worthwhile to remark (see [12] for example) that if
the measure is doubling and satisfies a (1, 1)-Poincaré inequality then there is coincidence of
spaces (in particular H1,1 = W 1,1

BL), but there is still discrepancy of the gradients, despite there
exists a constant C > 1 such that

|Df |BL ≤ |∇f |wm ≤ C|Df |BL.

However we have also equality of the gradients for example if the space is RCD(K,∞) (see
[40, Remark 3.5])

A fifth space could be added to the list, considering general integrable functions fn and re-
placing the asymptotic Lipschitz constants lipa(fn) with upper gradients gn in Definition 4.6.3.
However, since 1-upper gradients are characterized as strong L1 limits of upper gradients, this
space is easily seen to coincide with W 1,1

S (X, d,m).

4.6.1 Comparison between H1,1 and H1,Φ

It is rather easy to see that for every N -function Φ, H1,Φ
v (X, d,m) ⊆ H1,1(X, d,m). In fact,

given f ∈ H1,Φ
v , by definition there exists a sequence (fn) ⊂ Lip0(X, d), converging to f in

L1(X,m) and with supn ‖lipa(fn)‖(Φ),m = C <∞. But then we have that

sup
n

ˆ
X

Φ
( lipa(fn)

2C

)
dm ≤ 1,

and so {lipa(fn)/2C}, is a family of equi-integrable functions. Thus, thanks to Dunford-
Pettis theorem, there is a subsequence lipa(fnk) weakly converging (in L1(X,m)) to some
g ∈ L1(X,m), that hence will be a 1-relaxed gradient for f .

It is interesting in particular to see that if f ∈ H1,Φ
v we have that f ◦γ is BV for Φ-almost

every curve, but since H1,Φ
v ⊆ H1,1 ⊆ w−W 1,1 we have that f ◦ γ is W 1,1 for 1-almost every

curve.
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CHAPTER 5

Reflexivity and discrete approximation of the gradient

In this chapter we focus on the Sobolev Spaces theory in the homogeneous case Φ(t) = tq/q.
This case was already studied in [9], where they find the equivalence of the definitions, as we
did in Chapter 3; however they use slightly different definitions (which are equivalent to ours),
in particular they relax the functional FΦ with respect to the Lq topology. One can prove the
following, using the uniform convexity of the norm:

Proposition 5.0.1 Whenever m is finite on bounded sets, if f ∈ Lq(X,m) has a q-weak upper
gradient then there exist Lipschitz functions fn with bounded support satisfying

lim
n→∞

ˆ
X
|fn − f |q dm +

ˆ
X

∣∣lipa(fn)− |∇f |q
∣∣q dm = 0. (5.0.1)

We will denote by W 1,q(X, d,m) the Banach space of functions f ∈ Lq(X,m) having a
q-weak upper gradient, endowed with the norm

‖f‖q
W 1,q = ‖f‖qLq + ‖|∇f |∗,q‖qLq .

By a general property of normed spaces, in order to prove completeness, it suffices to show that
any absolutely convergent series in W 1,q(X, d,m) is convergent; if fn satisfy

∑
n ‖fn‖

q
W 1,q <

∞, the completeness of Lq(X,m) yields that f :=
∑

n fn and g :=
∑

n |∇fn|∗,q converge
in Lq(X,m), and the finite subadditivity of the relaxed gradient together with the lower
semicontinuity of Cq give f ∈W 1,q(X, d,m) and

´
X |∇f |

q
∗,q dm ≤ ‖g‖qLq ≤ (

∑
i ‖|∇fi|∗,q‖Lq)q.

A similar argument gives that

(ˆ
X
|∇(f −

N∑
i=1

fi)|q∗,q dm

)1/q

≤
∞∑

i=N+1

‖|∇fi|∗,q‖Lq ,

hence
∑

n fn converges in W 1,q(X, d,m).

97
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5.1 Reflexivity of W 1,q(X, d,m), 1 < q <∞

In this section we prove that the Sobolev spaces W 1,q(X, d,m) are reflexive when 1 < q <∞,
(X, d) is doubling (hence also separable), and m is finite on bounded sets. Our strategy
is to build, by a finite difference scheme, a family of functionals which provides a discrete
approximation of the relaxed energy, called in this framework, the Cheeger energy. The
definition of the approximate functionals relies on the existence of nice partitions of doubling
metric spaces.

Lemma 5.1.1 For every δ > 0 there exist `δ ∈ N∪ {∞} and pairs set-point (Aδi , z
δ
i ), 0 ≤ i <

`δ, where Aδi ⊂ X are Borel sets and zδi ∈ X, satisfying:

(i) the sets Aδi , 0 ≤ i < `δ, are a partition of X and d(zδi , z
δ
j ) > δ whenever i 6= j;

(ii) Aδi are comparable to balls centered at zδi , namely

B

(
zδi ,

δ

3

)
⊂ Aδi ⊂ B

(
zδi ,

5

4
δ

)
.

Proof. Let us fix once for all a countable dense set {xk}k∈N. Then, starting from zδ0 = x0,
we proceed in this way:

• for i ≥ 1, set recursively
Bi = X \

⋃
j<i

B(zδj , δ);

• if Bi = ∅ for some i ≥ 1, then the procedure stops. Otherwise, take zδi = xki where

ki = min{k ∈ N : xk ∈ Bi}.

We claim that for every ε > 0 we have that

∞⋃
i=0

B(zδi , δ + ε) = X.

To show this it is sufficient to note that for every x ∈ X we have a point xj such that
d(xj , x) < ε; then either xj = zδi for some i or xj ∈ B(zδi , δ) for some i. In both cases we get

∀x ∈ X ∃i ∈ N such that d(zδi , x) < δ + ε. (5.1.1)

Now we define the sets Aδi similarly to a Voronoi diagram constructed from the starting point
zδi : for i ∈ N we set

Bδ
i =

{
x ∈ X : d(x, zδi ) ≤ d(x, zδj ) + ε ∀j

}
.

It is clear that Bδ
i are Borel sets whose union is the whole of X; we turn them into a Borel

partition by setting
Aδ0 = Bδ

0, Aδj := Bδ
j \
⋃
i<j

Bδ
i , j > 0.
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We can also give an equivalent definition: x ∈ Aδk iff

k = min Ix where Ix =
{
i ∈ N : d(x, zδi ) ≤ d(x, zδj ) + ε ∀j ∈ N

}
.

In other words, we are minimizing the quantity d(x, zδi ) and among those indeces i who are
minimizing up to ε we take the least one ix. By this quasi minimality and (5.1.1) we obtain
d(x, zδix) ≤ infi∈N d(x, zδi ) + ε < δ + 2ε. Furthermore if d(x, zδi ) < δ/2 − ε/2 then Ix = {i}.
Indeed, suppose there is another j ∈ Ix with j 6= i, then d(zδj , x) ≤ d(zδi , x) + ε ≤ δ/2 + ε/2
and so

δ < d(zδi , z
δ
j ) ≤ d(zδi , x) + d(zδj , x) ≤ δ.

We just showed that

B

(
zδi ,

δ

2
− ε

2

)
⊂ Aδi ⊂ B(zδi , δ + 2ε).

The dual definition gives us that Aδi are a partition of X, and (ii) is satisfied choosing ε = δ/8.
�

Note that this construction is quite simpler if X is locally compact, which is always the
case if (X, d) is doubling and complete. In this case we can choose ε = 0.

We remark that partitions with additional properties have also been studied in the litera-
ture. For example, in [27] dyadic partitions of a doubling metric measure space are constructed.

Definition 5.1.2 (Dyadic partition) A dyadic partition is made by a sequence (`h) ⊂ N ∪
{∞} and by collections of disjoint sets (called cubes) ∆h = {Ahi }1≤i<`(h) such that for every
h ∈ N the following properties hold:

• m
(
X \

⋃
iA

h
i

)
= 0;

• for every i ∈ {1, . . . , `h+1} there exists a unique j ∈ {1, . . . , `h} such that Ah+1
i ⊂ Ahj ;

• for every i ∈ {1, . . . `h} there exists zhi ∈ X such that B(zhi , a0δ
h) ⊂ Ahi ⊂ B(zhi , a1δ

h)
for some positive constants δ, a0, a1 independent of i and h.

In [27] existence of dyadic decompositions is proved, with δ, a1 and a0 depending on the
constant c̃D in (1.9.1). Although some more properties of the partition might give additional
information on the functionals that we are going to construct, for the sake of simplicity we
just work with the partition given by Lemma 5.1.1.

In order to define our discrete gradients we give more terminology. We say that Aδi is a
neighbor of Aδj , and we denote by Aδi ∼ Aδj , if their distance is less than δ. In particular
Aδi ∼ Aδj implies that d(zδi , z

δ
j ) < 4δ: indeed, if z̃δi ∈ Aδi and z̃δj ∈ Aδj satisfy d(z̃δi , z̃

δ
j ) < δ′ we

have
d(zδi , z

δ
j ) ≤ d(zδi , z̃

δ
i ) + d(z̃δi , z̃

δ
j ) + d(z̃δj , z

δ
j ) ≤

10

4
δ + δ′

and letting δ′ ↓ δ we get

d(zδi , z
δ
j ) ≤

14

4
δ < 4δ.

This leads us to the first important property of doubling spaces:

In a cD-doubling metric space (X, d), every Aδi has at most c3
D neighbors. (5.1.2)
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Indeed, we can cover B(zδi , 4δ) with c
3
D balls with radius δ/2 but each of them, by the condition

d(zδi , z
δ
j ) > δ, can contain only one of the zδj ’s.

Now we fix δ ∈ (0, 1) and we consider a partition Aδi of suppm on scale δ. For every
u ∈ Lq(X,m) we define the average uδ,i of u in each cell of the partition by −́Aδi udm. We
denote by PCδ(X), which depends on the chosen decomposition as well, the set of functions
u ∈ Lq(X,m) constant on each cell of the partition at scale δ, namely

u(x) = uδ,i for m-a.e. x ∈ Aδi .

We define a linear projection functional Pδ : Lq(X,m) → PCδ(X) by Pδu(x) = uδ,i for every
x ∈ Aδi .

The proof of the following lemma is elementary.

Lemma 5.1.3 Pδ are contractions in Lq(X,m) and Pδu → u in Lq(X,m) as δ ↓ 0 for all
u ∈ Lq(X,m).

Indeed, the contractivity of Pδ is a simple consequence of Jensen’s inequality and it suffices
to check the convergence of Pδ as δ ↓ 0 on a dense subset of Lq(X,m). Since m is finite on
bounded sets, suffices to consider bounded continuous functions with bounded support. Since
bounded closed sets are compact, by the doubling property, it follows that any such function u
is uniformly continuous, so that Pδu→ u pointwise as δ ↓ 0. Then, we can use the dominated
convergence theorem to conclude.

We now define an approximate gradient as follows: it is constant on the cell Aδi for every
δ, i ∈ N and it takes the value

|Dδu|q(x) :=
1

δq

∑
Aδj∼Aδi

|uδ,i − uδ,j |q ∀x ∈ Aδi .

We can accordingly define the functional Fδ,q : Lq(X,m)→ [0,∞] by

Fδ,q(u) :=

ˆ
X
|Dδu|q(x) dm(x). (5.1.3)

Now, using the weak gradients, we define a functional Ch : Lq(X,m)→ [0,∞] that we call
Cheeger energy, formally similar to G Φ. Namely, we set

Chq(u) :=

{´
X |∇u|

q
w,q dm if u has a q-weak upper gradient

+∞ otherwise.

At this level of generality, we cannot expect that the functionals Fδ,q Γ-converge as δ ↓ 0.
However, since Lq(X,m) is a complete and separable metric space, from the compactness
property of Γ-convergence stated in Proposition 1.8.2 we obtain that the functionals Fδ,q have
Γ-limit points as δ ↓ 0.

Theorem 5.1.4 Let (X, d,m) be a metric measure space with (suppm, d) complete and dou-
bling, m finite on bounded sets. Let Fq be a Γ-limit point of Fδ,q as δ ↓ 0, namely

Fq := Γ− lim
k→∞

Fδk,q,

for some infinitesimal sequence (δk), where the Γ-limit is computed with respect to the Lq(X,m)
distance. Then:
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(a) Fq is equivalent to the Cheeger energy Chq, namely there exists η = η(q, cD) such that

1

η
Chq(u) ≤ Fq(u) ≤ ηChq(u) ∀u ∈ Lq(X,m). (5.1.4)

(b) The norm on W 1,q(X, d,m) defined by(
‖u‖qq + Fq(u)

)1/q ∀u ∈W 1,q(X, d,m) (5.1.5)

is uniformly convex. Moreover, the seminorm F
1/2
2 is Hilbertian, namely

F2(u+ v) + F2(u− v) = 2
(
F2(u) + F2(v)

)
∀u, v ∈W 1,2(X, d,m). (5.1.6)

Corollary 5.1.5 (Reflexivity of W 1,q(X, d,m)) Let (X, d,m) be a metric measure space
with (suppm, d) doubling and m finite on bounded sets. The Sobolev space W 1,q(X, d,m)
of functions u ∈ Lq(X,m) with a q-relaxed slope, endowed with the usual norm(

‖u‖qq + Chq(u)
)1/q ∀u ∈W 1,q(X, d,m), (5.1.7)

is reflexive.

Proof. Since the Banach norms (5.1.5) and (5.1.7) on W 1,q(X, d,m) are equivalent thanks
to (5.1.4) and reflexivity is invariant, we can work with the first norm. The Banach space
W 1,q(X, d,m) endowed with the first norm is reflexive by uniform convexity and Milman-Pettis
theorem. �

We can also prove, by standard functional-analytic arguments, that reflexivity implies
separability.

Proposition 5.1.6 (Separability of W 1,q(X, d,m)) If W 1,q(X, d,m) is reflexive and m is
finite on bounded sets, then it is separable and bounded Lipschitz functions with bounded support
are dense.

Proof. The density of Lipschitz functions with bounded support follows via Mazur lemma
from the density of this convex set in the weak topology, ensured by Proposition 5.0.1 and
reflexivity. In order to prove separability, it suffices to consider for any M a countable and
Lq(X,m)-dense subset DM of

LM :=

{
f ∈ Lip(X) ∩ Lq(X,m) :

ˆ
X
|∇f |qw,q dm ≤M

}
,

stable under convex combinations with rational coefficients. The weak closure ofDM obviously
contains LM , by reflexivity (because if fn ∈ DM converge to f ∈ LM in Lq(X,m), then fn → f
weakly inW 1,q(X, d,m)); being this closure convex, it coincides with the strong closure of DM .
This way we obtain that the closure in the strong topology of ∪MDM contains all Lipschitz
functions with bounded support. �

The strategy of the proof of statement (a) in Theorem 5.1.4 consists in proving the estimate
from above of Fq with relaxed gradients and the estimate from below with weak gradients.
Then, the equivalence between weak and relaxed gradients provides the result. In the estimate
from below it will be useful the discrete version of the q-weak upper gradient property:
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Definition 5.1.7 (q-weak upper gradient up to scale ε) Let f : X → R. We say that a
Borel function g : X → [0,∞) is a q-weak upper gradient of f up to scale ε ≥ 0 if for q-a.e.
curve γ ∈ ACp([0, 1];X) such that

ε <

ˆ 1

0
|γ̇t| dt

it holds ∣∣∣∣ˆ
∂γ
f

∣∣∣∣ ≤ ˆ
γ
g <∞. (5.1.8)

Next we consider the stability of these discretized q-weak upper gradients (analogous to
the stability result given in [75, Lemma 4.11]).

Theorem 5.1.8 (Stability w.r.t. m-a.e. convergence) Assume that fn are m-
measurable, εn ≥ 0 and that gn ∈ Lq(X,m) are q-weak upper gradients of fn up to
scale εn. Assume furthermore that fn(x)→ f(x) ∈ R for m-a.e. x ∈ X, εn → ε and that (gn)
weakly converges to g in Lq(X,m). Then g is a q-weak upper gradient of f up to scale ε.

Proof. Fix a p-test plan π. We have to show that (5.1.8) holds for π-a.e. γ with
´ 1

0 |γ̇t| dt > ε.
Possibly restricting π to a smaller set of curves, we can assume with no loss of generality thatˆ 1

0
|γ̇t| dt > ε′ for π-a.e. γ

for some ε′ > ε. We consider in the sequel integers h sufficiently large, such that εh ≤ ε′.
By Mazur’s lemma we can find convex combinations

hn :=

Nh+1∑
i=Nh+1

αigi with αi ≥ 0,
Nh+1∑
i=Nh+1

αi = 1, Nh →∞

converging strongly to g in Lq(X,m). Denoting by f̃n the corresponding convex combinations
of fn, hn are q-weak upper gradients of f̃n and still f̃n → f m-a.e. in X.

Since for every nonnegative Borel function ϕ : X → [0,∞] it holds (with C = C(π))ˆ (ˆ
γ
ϕ
)

dπ =

ˆ ( ˆ 1

0
ϕ(γt)|γ̇t|dt

)
dπ ≤

ˆ ( ˆ 1

0
ϕq(γt) dt

)1/q(ˆ 1

0
|γ̇t|p dt

)1/p
dπ

≤
(ˆ 1

0

ˆ
ϕq d(et)]π dt

)1/q(¨ 1

0
|γ̇t|p dtdπ

)1/p

≤
(
C

ˆ
ϕq dm

)1/q(¨ 1

0
|γ̇t|p dtdπ

)1/p
, (5.1.9)

we obtain ˆ ˆ
γ
|hn − g|dπ ≤ C1/q

(¨ 1

0
|γ̇t|p dt dπ

)1/p‖hn − g‖q → 0.

Hence we can find a subsequence n(k) such that

lim
k→∞

ˆ
γ
|hn(k) − g| → 0 for π-a.e. γ.

Since f̃n converge m-a.e. to f and the marginals of π are absolutely continuous w.r.t. m we
have also that for π-a.e. γ it holds f̃n(γ0)→ f(γ0) and f̃n(γ1)→ f(γ1).

If we fix a curve γ satisfying these convergence properties, we can pass to the limit as
k →∞ in the inequalities |

´
∂γ f̃n(k)| ≤

´
γ hn(k) to get |

´
∂γ f | ≤

´
γ g. �
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In the following lemma we prove that for every u ∈ Lq(X,m) we have that 4|Dδu| is a
q-weak upper gradient for Pδu up to scale δ/2.

Lemma 5.1.9 Let γ ∈ ACp([0, 1];X). Then we have that

|Pδu(γb)− Pδu(γa)| ≤ 4

ˆ b

a
|Dδu|(γt)|γ̇t|dt for all a < b s.t.

ˆ b

a
|γ̇t|dt > δ/2. (5.1.10)

In particular 4|Dδu| is a q-weak upper gradient of Pδu up to scale δ/2.

Proof. It is enough to prove the inequality under the more restrictive assumption that

δ

2
≤
ˆ b

a
|γ̇t|dt ≤ δ, (5.1.11)

because then we can slice every interval (a, b) that is longer than δ/2 into subintervals that sat-
isfy (5.1.11), and we get (5.1.8) by adding the inequalities for subintervals and using triangular
inequality.

Now we prove (5.1.8) for every a, b ∈ [0, 1] such that (5.1.11) holds. Take any time t ∈ [a, b];
by assumption, it is clear that d(γt, γa) ≤ δ and d(γt, γb) ≤ δ, so that the cells relative to γa
and γb are both neighbors of the one relative to γt. By definition then we have:

|Dδu|q(γt) ≥
1

δq
(|Pδu(γb)− Pδu(γt)|q + |Pδu(γt)− Pδu(γa)|q) ≥

1

2q−1δq
|Pδu(γb)− Pδu(γa)|q.

Taking the q-th root and integrating in t we get
ˆ b

a
|Dδu|(γt)|γ̇t|dt ≥

|Pδu(γb)− Pδu(γa)|
21−1/qδ

ˆ b

a
|γ̇t| dt ≥

1

2
|Pδu(γb)− Pδu(γa)|,

which proves (5.1.10). �

We can now prove Theorem 5.1.4.
Proof of the first inequality in (5.1.4). We prove that there exists a constant η1 = η1(cD) such
that

Fq(u) ≤ η1

ˆ
X
|∇f |q∗,q dm ∀u ∈ Lq(X,m). (5.1.12)

Let u : X → R be a Lipschitz function with bounded support. We prove that

|Dδu|q(x) ≤ 6qc3
D(Lip(u,B(x, 6δ)))q. (5.1.13)

Indeed, let us consider i, j ∈ [1, `δ)∩N such that Aδi and A
δ
j are neighbors. For every x ∈ Aδi ,

y ∈ Aδj we have that d(x, y) ≤ diam(Aδi ) + diam(Aδi ) + d(Aδi , A
δ
j) ≤ (10/4 + 10/4 + 1)δ = 6δ

and that y ∈ B(zδi , 19δ/4) ⊂ B(zδi , 5δ). Hence

|uδ,i − uδ,j |
δ

≤ 1

δm(Aδi )m(Aδj)

ˆ
Aδi×Aδj

|u(x)− u(y)|dm(x) dm(y) ≤ 6 Lip(u,B(zδi , 5δ)).

Thanks to the fact that the number of neighbors of Ahi does not exceed c3
D (see (5.1.2)) we

obtain
|Dδu|q(x) ≤ 6qc3

D(Lip(u,B(x, 6δ)))q ∀x ∈ suppm,
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which proves (5.1.13).
Integrating on X we obtain that

Fδ,q(u) ≤ 6qc3
D

ˆ
X

(Lip(u,B(x, 6δ)))q dm(x).

Choosing δ = δk, letting k → ∞ and applying the dominated convergence theorem on the
right-hand side as well as the definition of asymptotic Lipschitz constant (3) we get

Fq(u) ≤ lim inf
k→∞

Fδk,q(u) ≤ 6qc3
D

ˆ
X

lipqa(u, x) dm(x).

By approximation, Proposition 5.0.1 yields (5.1.12) with η1 = 6qc3
D.

Proof of the second inequality in (5.1.4). We consider a sequence (uk) which converges to u in
Lq(X,m) with lim infk Fδk,q(uk) finite. We prove that u has a q-weak upper gradient and that

1

4q

ˆ
X
|∇u|qw,q dm ≤ lim inf

k
Fδk,q(uk). (5.1.14)

Then, (5.1.4) will follow easily from (5.1.12), (5.1.14), Definition 1.8.1b and the coincidence
of weak and relaxed gradients.

Without loss of generality we assume that the right-hand side is finite and, up to a subse-
quence not relabeled, we assume that the lim inf is a limit. Hence, the sequence fk := |Dδkuk|
is bounded in Lq(X,m) and, by weak compactness, there exist g ∈ Lq(X,m) and a subsequence
k(h) such that fk(h) ⇀ g weakly in Lq(X,m). By the lower semicontinuity of the q-norm with
respect to the weak convergence, we have that

ˆ
X
gq dm ≤ lim inf

h→∞

ˆ
X
f qk(h) dm = lim

k→∞
Fδk,q(uk). (5.1.15)

We can now apply Theorem 5.1.8 to the functions ūh = Pδk(h)
(uk(h)), which converge to u in

Lq(X,m) thanks to Lemma 5.1.3, and to the functions gh = 4fk(h) which are q-weak upper
gradients of ūh up to scale δk(h)/2, thanks to Lemma 5.1.9. We obtain that 4g is a weak upper
gradient of u, hence g ≥ |∇u|w,q/4 m-a.e. in X. Therefore (5.1.15) gives

1

4q

ˆ
X
|∇u|qw,q dm ≤

ˆ
X
gq dm ≤ lim

k→∞
Fδk,q(uk).

Proof of statement (b). Let Nq,δ : Lq(X,m)→ [0,∞] be the positively 1-homogeneous function

Nq,δ(u) =
(
‖Pδu‖qq + Fδ(u)

)1/q ∀u ∈ Lq(X,m).

For q ≥ 2 we prove that Nq,δ satisfies the first Clarkson inequality [53]

N
q
q,δ

(
u+ v

2

)
+ N

q
q,δ

(
u− v

2

)
≤ 1

2

(
N
q
q,δ(u) + N

q
q,δ(v)

)
∀u, v ∈ Lq(X,m). (5.1.16)

Indeed, let Xδ ⊂ N ∪ (N× N) be the (possibly infinite) set

Xδ =
(
[1, `δ) ∩ N

)
∪
{

(i, j) ∈
(
[1, `δ) ∩ N

)2
: Aδi ∼ Aδj

}
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and let mδ be the counting measure on Xδ. We consider the function Φq,δ : Lq(X,m) →
Lq(Xδ,mδ) defined byΦq,δ[u](i) = (m(Aδi ))

1/quδ,i ∀i ∈ [1, `δ) ∩ N

Φq,δ[u]((i, j)) = (m(Aδi ))
1/q uδ,i − uδ,j

δ
∀(i, j) ∈

(
[1, `δ) ∩ N

)2 s.t. Aδi ∼ Aδj .

It can be easily seen that Φq,δ is linear and that

‖Φq,δ(u)‖Lq(Xδ,mδ) = Nq,δ(u) ∀u ∈ Lq(X,m). (5.1.17)

Writing the first Clarkson inequality in the space Lq(Xh,mh) and using the linearity of
Φq,δ we immediately obtain (5.1.16). Let ω : (0, 1)→ (0,∞) be the increasing and continuous
modulus of continuity ω(r) = 1 − (1 − rq/2q)1/q. >From (5.1.16) it follows that for all
u, v ∈ Lq(X,m) with Nq,δ(u) = Nq,δ(v) = 1 it holds

Nq,δ

(
u+ v

2

)
≤ 1− ω(Nq,δ (u− v)).

Hence Nq,δ are uniformly convex with the same modulus of continuity ω. Thanks to
Lemma 1.8.3 we conclude that also the Γ-limit of these norms, namely (5.1.5), is uniformly
convex with the same modulus of continuity.

If q < 2 the proof can be repeated substituting the first Clarkson inequality (5.1.16) with
the second one[

Nq,δ

(
u+ v

2

)]p
+

[
Nq,δ

(
u− v

2

)]p
≤
[

1

2

(
Nq,δ(u))q +

1

2

(
Nq,δ(v)

)q]1/(q−1)

where u, v ∈ Lq(X,m) and p = q/(q − 1), see [53]. In this case the modulus ω is 1 − (1 −
(r/2)p)1/p.

Finally, let us consider the case q = 2. From the Clarkson inequality we get

F2

(
u+ v

2

)
+ F2

(
u− v

2

)
≤ 2
(
F2(u) + F2(v)

)
. (5.1.18)

If we apply the same inequality to u = (u′ + v′)/2 and v = (u′ − v′)/2 we obtain a converse
inequality and, since u′ and v′ are arbitrary, the equality.

We conclude this section providing a counterexample to reflexivity. We denote by `1 the
Banach space of summable sequences (xn)n≥0 and by `∞ the dual space of bounded sequences,
with duality 〈·, ·〉 and norm ‖v‖∞. We shall use the factorization `1 = Yi + Rei, where ei,
0 ≤ i < ∞, are the elements of the canonical basis of `1. Accordingly, for fixed i we write
x = x′i + xiei and, for f : `1 → R and y ∈ Yi, we set

fy(t) := f(y + tei) t ∈ R.

Proposition 5.1.10 There exist a compact subset X of `1 and m ∈ P(X) such that, if d
is the distance induced by the inclusion in `1, the space W 1,q(X, d,m) is not reflexive for all
q ∈ (1,∞).
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Proof. For i ≥ 0, we denote by mi the normalized Lebesgue measure in Xi := [0, 2−i] and
define X to be the product of the intervals Xi and m to be the product measure. Since X is a
compact subset of `1, we shall also view m as a probability measure in `1 concentrated on X.

Setting fv(x) := 〈v, x〉, we shall prove that the map v 7→ fv provides a linear isometry
between `∞, endowed with the norm

|v|∞ :=

(ˆ
X
|〈v, x〉|q dm(x) + ‖v‖q∞

)1/q

(5.1.19)

and W 1,q(X, d,m). Since the norm (5.1.19) is equivalent to the `∞ norm, it follows that
W 1,q(X, d,m) contains a non-reflexive closed subspace and therefore it is itself non-reflexive.

Since the Lipschitz constant of fv is ‖v‖∞, it is clear that ‖|∇fv|w,q‖Lq ≤ ‖v‖∞. To prove
equality, suffices to show that

´
X |∇f

v|qw,q dm ≥ ‖v‖q∞. Therefore we fix an integer i ≥ 0 and
we prove that

´
X |∇f

v|qw,q dm ≥ |vi|q.
Fix a sequence (fn) of Lipschitz functions with bounded support with fn and lipa(f

n)
strongly convergent in Lq(X,m) to fv and |∇fv|w,q respectively. Possibly refining the se-
quence, we can assume that ∑

n

‖fn − fv‖qq <∞. (5.1.20)

If we show that
lim inf
n→∞

ˆ
X

lipqa(f
n, x) dm(x) ≥ |vi|q (5.1.21)

we are done. Denoting m = m̃i ⊗mi the factorization of m (with m̃i ∈ P(Yi)), we can use the
obvious pointwise inequalities

lipa(g, y + tei) ≥ lipa(gy, t) ≥ |∇gy|(t)

and Fatou’s lemma, to reduce the proof of (5.1.21) to the one-dimensional statement

lim inf
n→∞

ˆ
Xi

|∇fny |q(t) dmi(t) ≥ |vi|q for m̃i-a.e. y ∈ Yi. (5.1.22)

Since (5.1.20) yields
ˆ
Yi

∑
n

‖fny − fvy ‖
q
Lq(Xi,mi)

dm̃i(y) =
∑
n

‖fn − fv‖qLq(X,m) <∞,

we have that fny → fvy in Lq(Xi,mi) = Lq(Xi, 2
iL 1) for m̃i-a.e. y ∈ Yi. We have also

|∇fvy |(t) = |vi| for any t ∈ Xi, therefore (5.1.22) is a consequence of the well-known lower
semicontinuity in Lq(Xi,L 1) of g 7→

´
Xi
|g′(t)|q dL 1(t) for Lipschitz functions defined on

the real line (notice also that in this context we can replace the slope with the modulus of
derivative, wherever it exists). �

5.2 Lower semicontinuity of the slope of Lipschitz functions

Let us recall, first, the formulation of the Poincaré inequality in metric measure spaces.
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Definition 5.2.1 The metric measure space (X, d,m) supports a weak (1, q)-Poincaré inequal-
ity if there exist constants τ, Λ > 0 such that for every u ∈ W 1,q(X, d,m) and for every
x ∈ suppm, r > 0 the following holds:

−
ˆ
B(x,r)

∣∣∣∣u−−ˆ
B(x,r)

u

∣∣∣∣ dm ≤ τ r
(
−
ˆ
B(x,Λr)

|∇u|qw,q dm

)1/q

. (5.2.1)

Many different and equivalent formulations of (5.2.1) are possible: for instance we may
replace in the right hand side |∇u|qw,q with |∇u|q, requiring the validity of the inequality for
Lipschitz functions only. The equivalence of the two formulations has been first proved in
[50], but one can also use the equivalence of weak and relaxed gradients to establish it. Other
formulations involve the median, or replace the left hand side by

inf
m∈R
−
ˆ
B(x,r)

∣∣u−m∣∣dm .
The following lemma contains the fundamental estimate to prove our result.

Lemma 5.2.2 Let (X, d,m) be a doubling metric measure space which supports a weak (1, q)-
Poincaré inequality with constants τ, Λ. Let u ∈ W 1,q(X, d,m) and let g = |∇u|qw,q. There
exists a constant C > 0 depending only on the doubling constant c̃D and τ such that

|u(x)− u(y)| ≤ Cd(x, y)(
(
M2Λd(x,y)
q g(x)

)1/q
+
(
M2Λd(x,y)
q g(y)

)1/q
), (5.2.2)

for every Lebesgue points x, y ∈ X of (a representative of) u.

Proof. The main estimate in the proof is the following. Denoting by uz,r the mean value of
u on B(z, r), for every s > 0, x, y ∈ X such that B(x, s) ⊂ B(y, 2s) we have that

|ux,s − uy,2s| ≤ C0(c̃D, τ)s
(
M2Λs
q g(y)

)1/q
. (5.2.3)

Since m is doubling and the space supports (1, q)-Poincaré inequality, from (1.9.2) we have
that

|ux,s − uy,2s| ≤ −
ˆ
B(x,s)

|u− uy,2s| dm ≤ β2α−
ˆ
B(y,2s)

|u− uy,2s| dm

≤ 21+αβτs

(
−
ˆ
B(y,2Λs)

gq dm

)1/q

and we obtain (5.2.3) with C0 = 21+αβτ .
For every r > 0 let sn = 2−nr for every n ≥ 1. If x is a Lebesgue point for u then

ux,sn → u(x) as n→∞. Hence, applying (5.2.3) to x = y and sn = 2−nr, summing on n ≥ 1
and remarking that M2Λsn

q g ≤MΛr
q g, we get

|ux,r − u(x)| ≤
∞∑
n=0

|ux,sn − ux,2sn | ≤
∞∑
n=0

C0sn
(
MΛr
q g(x)

)1/q
= C0r

(
MΛr
q g(x)

)1/q
. (5.2.4)
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For every r > 0, x, y Lebesgue points of u such that B(x, r) ⊂ B(y, 2r), we can use the
triangle inequality, (5.2.3) and (5.2.4) to get

|u(x)− u(y)| ≤ |u(x)− ux,r|+ |ux,r − uy,2r|+ |uy,2r − u(y)|

≤ C0r
(
MΛr
q g(x)

)1/q
+ C0r

(
M2Λr
q g(y)

)1/q
+ C0r

(
MΛr
q g(y)

)1/q
.

Taking r = d(x, y) (which obviously implies B(x, r) ⊂ B(y, 2r)) and since M ε
q f(x) is nonde-

creasing in ε we obtain (5.2.2) with C = 2C0. �

Proposition 5.2.3 Let (X, d,m) be a doubling metric measure space, supporting a weak (1, q)-
Poincaré inequality with constants τ, Λ and with suppm = X There exists a constant C > 0
depending only on the doubling constant c̃D and τ such that

|∇u| ≤ C |∇u|w,q m-a.e. in X (5.2.5)

for any Lipschitz function u with bounded support.

Proof. We set g = |∇u|qw,q; we note that g is bounded and with bounded support, thus M ε
q g

converges to g in Lq(X,m) as ε→ 0. Let us fix λ > 0 and a point x where (1.9.4) is satisfied
by Mλ

q g. Let yn → x be such that

|∇u|(x) = lim
n→∞

|u(yn)− u(x)|
d(yn, x)

(5.2.6)

and set rn = d(x, yn), Bn = B(yn, λrn) ⊂ B(x, 2rn). Since (5.2.2) of Lemma 5.2.2 holds for
m-a.e. y ∈ Bn, from the monotonicity of M ε

q g we get

|u(x)− u(yn)| ≤ −
ˆ
Bn

|u(x)− u(y)|dm(y) + λrn Lip(u,Bn)

≤ Crn
((
M4Λrn
q g(x)

)1/q
+−
ˆ
Bn

(
M4Λrn
q g(y)

)1/q
dm(y)

)
+ λrnL,

where L is the Lipschitz constant of u. For n large enough Bn ⊂ B(x, 1) and 4Λrn ≤ λ. Using
monotonicity once more we get

|u(x)− u(yn)| ≤ Crn
(
Mλ
q g(x) +−

ˆ
Bn

(
Mλ
q g
)1/q

dm

)
+ λrnL (5.2.7)

for n large enough. Since B(yn, rn) = Bn ⊂ B(x, 2rn) and since x is a 1-Lebesgue point for
Mλ
q g, we apply (1.9.5) of Lemma 1.9.3 to the sets Bn to get

lim
n→∞

−
ˆ
Bn

Mλ
q g dm = Mλ

q g(x). (5.2.8)

We now divide both sides in (5.2.7) by rn = d(x, yn) and let n→∞. From (5.2.8) and (5.2.6)
we get

|∇u|(x) ≤ 2C
(
Mλ
q g(x)

)1/q
+ λL.

Since this inequality holds for m-a.e. x, we can choose an infinitesimal sequence (λk) ⊂ (0, 1)
and use the m-a.e. convergence of Mλk

q g to g to obtain (5.2.5). �
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Theorem 5.2.4 Let (X, d,m) be a metric measure space with m doubling, which supports a
weak (1, q)-Poincaré inequality and satisfies suppm = X. Then, for any open set A ⊂ X it
holds

un, u ∈ Liploc(A), un → u in L1
loc(A) =⇒ lim inf

n→∞

ˆ
A
|∇un|q dm ≥

ˆ
A
|∇u|q dm. (5.2.9)

In particular, it holds |∇u| = |∇u|w,q m-a.e. in X for all u ∈ Liploc(X) ∩ Lq.

Proof. By a simple truncation argument we can assume that all functions un are uniformly
bounded, since |∇(M ∧ v ∨ −M)| ≤ |∇v| and |∇(M ∧ v ∨ −M)| ↑ |∇v| as M →∞. Possibly
extracting a subsequence we can also assume that the lim inf in the right-hand side of (5.2.9)
is a limit and, without loss of generality, we can also assume that it is finite. Fix a bounded
open set B with dist(B,X \ A) > 0 and let ψ : X → [0, 1] be a cut-off Lipschitz function
identically equal to 1 on a neighborhood of B, with support bounded and contained in A. It
is clear that the functions vn := unψ and v := uψ are globally Lipschitz, vn → v in Lq(X,m)
and (vn) is bounded in W 1,q(X, d,m).

From the reflexivity of this space proved in Corollary 5.1.5 we have that, possibly extracting
a subsequence, (vn) weakly converges in the Sobolev space to a function w. Using Mazur’s
lemma, we construct another sequence (v̂n) that is converging strongly to w in W 1,q(X, d,m)
and v̂n is a finite convex combination of vn, vn+1, . . .. In particular we get v̂n → w in Lq(X,m)
and this gives w = v. Moreover,

ˆ
B
|∇v̂n|q dm ≤ sup

k≥n

ˆ
B
|∇vk|q dm.

Eventually, from Proposition 5.2.3 applied to the functions v − v̂n we get:(ˆ
B
|∇v|q dm

)1/q

≤ lim inf
n→∞

{(ˆ
B
|∇v̂n|q dm

)1/q

+

(ˆ
B
|∇(v − v̂n)|q dm

)1/q
}

≤ lim sup
n→∞

{(ˆ
B
|∇vn|q dm

)1/q
}

+ C lim sup
n→∞

‖v − v̂n‖W 1,q

= lim sup
n→∞

(ˆ
B
|∇vn|q dm

)1/q

.

Since vn ≡ un and v ≡ u on B we get
ˆ
B
|∇u|q dm ≤ lim sup

n→∞

ˆ
B
|∇un|q dm ≤ lim

n→∞

ˆ
A
|∇un|q dm

and letting B ↑ A gives the result. �

Remark 5.2.5 An important consequence of Theorem 5.2.4 is that the weak gradient |∇f |q′
does not depend on q′ for q′ ≥ q. In fact this is obvious when f is Lipschitz since Jensen
inequality gives that (1, q)-Poincaré implies (1, q′)-Poincaré, and so |∇f |q = |∇f | = |∇f |q′.
Then we can use Proposition 5.1.6, i.e. the density of Lipschitz functions in W 1,q and W 1,q′ ,
in order to conclude (see for example Corollary A9 in [17]).
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5.3 Discrete gradients for general metric spaces

Here we provide another type of approximation via discrete gradients which doesn’t even
require the space (X, d) to be doubling; moreover it can be adapted to give a discrete approx-
imation also in the case of Orlicz-Sobolev spaces (at least in the case Ψ doubling).

We slightly change the definition of discrete gradient: instead of taking the sum of the
finite differences, that is forbidden due to the fact that the number of terms can not in general
be uniformly bounded from above, we simply take the supremum among the finite differences.
Let us fix a decomposition Aδi of suppm as in Lemma 5.1.1. Let u ∈ Lq(X,m) and denote by
uδ,i the mean of u in Aδi as before. We consider the discrete gradient

|Dδu|∞(x) =
1

δ
sup
Aδj∼Aδi

{|uδ,i − uδ,j |} ∀x ∈ Aδi .

Then we consider the functional F∞δ : Lq(X,m)→ [0,∞] given by

F∞δ (u) :=

ˆ
X
|Dδ(u)|q∞(x) dm(x).

With these definitions, the following theorem holds.

Theorem 5.3.1 Let (X, d,m) be a Polish metric measure space with m finite on bounded sets.
Let F∞q be a Γ-limit point of F∞q,δ as δ ↓ 0, namely

F∞q := Γ− lim
k→∞

F∞q,δk ,

where δk → 0 and the Γ-limit is computed with respect to the Lq(X,m)-distance. Then the
functional F∞q is equivalent to Cheeger’s energy, namely there exists a constant η∞ = η∞(q)
such that

1

η∞
Chq(u) ≤ F∞q (u) ≤ η∞Chq(u) ∀u ∈ Lq(X,m). (5.3.1)

The proof follows closely the one of Theorem 5.1.4. An admissible choice for η∞ is 6q.

5.4 Optimality of the Poincaré assumption for the lower semi-
continuity of slope.

This is still an open problem. As shown to us by P. Koskela, the doubling assumption, while
sufficient to provide reflexivity of the Sobolev spaces W 1,q(X, d,m), is not sufficient to ensure
the lower semicontinuity (11) of slope. Indeed, one can consider for instance the Von Koch
snowflake X ⊂ R2 endowed with the Euclidean distance. Since X is a self-similar fractal
satisfying Hutchinson’s open set condition (see for instance [36]), it follows that X is Ahlfors
regular of dimension α = ln 4/ ln 3 ∈ (1, 2), namely 0 < H α(X) <∞, where H α denotes α-
dimensional Hausdorff measure in R2. Using self-similarity it is easy to check that (X, d,H α)
is doubling. However, since absolutely continuous curves with values in X are constant, the
q-weak upper gradient of any Lipschitz function f vanishes. Then, the equivalence of weak and
relaxed gradients gives |∇f |∗,q = 0 H α-a.e. on X. By Proposition 5.0.1 we obtain Lipschitz
functions fn convergent to f in Lq(X,H α) and satisfying

lim
n→∞

ˆ
X

lipqa(fn, x) dH α(x) = 0.
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Since lipa(fn, ·) ≥ |∇fn|, if |∇f | is not trivial we obtain a counterexample to (11).
One can easily show that any linear map, say f(x1, x2) = x1, has a nontrivial slope on

X at least H α-a.e. in X. Indeed, |∇f |(x) = 0 for some x ∈ X implies that the geometric
tangent space to X at x, namely all limit points as X 3 y → x of normalized secant vectors
(y − x)/|y − x|, is contained in the vertical line {x1 = 0}. However, a geometric rectifiability
criterion (see for instance [7, Theorem 2.61]) shows that this set of points x is contained in
a countable union of Lipschitz curves, and it is therefore σ-finite with respect to H 1 and
H α-negligible.

This proves that doubling is not enough. On the other hand, quantitative assumptions
weaker than the Poincaré inequality might still be sufficient to provide the result.
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CHAPTER 6

The p-Weak Gradient depends on p

In this section we answer an interesting question in the context of Sobolev Spaces in metric
measure spaces: whether the weak gradient |∇u|w,p depends on the choice of p. The answer is
positive, and actually the example is not very difficult, and arises already in R with a measure
of the form wL 1, for some weight w. The weight we provide easily adapt to the Rn case.

A partial positive answer is given by an example due to Koskela, reported in [9]: a function
f is constructed such that f ∈ W 1,2 and |∇f |2 = 0, whereas f /∈ W 1,p for p > 2. However it
was still an open question whether if f ∈ W 1,p ∩W 1,p′ can have the gradient depending on
the exponent.

We recall also that if some assumption are satisfied in the measurable metric structure,
then we can gain independence: in fact we already observed in Remark 5.2.5 that if (X, d,m)
is doubling and supports a (1, p) Poincaré inequality then the weak gradient is independent of
the exponent for p′ ≥ p. Another results of independence is given in [40], where the authors
prove an even stronger statement in the case of RCD(K,∞) spaces: whenever f ∈W 1,p and
|∇f |p ∈ Lq then f ∈W 1,q and |∇f |q = |∇f |p.

We recall here the definition of weak gradient, in the spirit of N1,p(X, d,m). See (2.4.1) for
the definition of Modp,m for families of curves; in the sequel we will consider only rectifiable
curves γ : [ini, fin]→ X with constant metric speed.

Definition 6.0.1 Let (X, d,m) be a metric measure space and p ≥ 1. A Borel function
g : X → [0,∞] is a p-upper gradient of f : X → R if

|f(γfin)− f(γini)| ≤
ˆ
γ
g ds for Modp,m-a.e. curve γ.

If p > 1 then the minimal p-upper gradient |∇f |m,p of f : X → R is the p-upper gradient
characterized, up to m-negligible sets, by the property

|∇f |m,p ≤ g m-a.e. in X for every p-upper gradient g of f.

For the remainder of the paper we fix α > 0 and denote β = 1/α. We now describe how
the facts about weak gradients in Theorem 1 follow from the assertions about the measure.

113
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Let µ be the measure from Theorem 1 and consider the metric measure space (Rn, | · |, µ) so
that p ≤ 1 + α implies Modp,µ(Γc) = 0, where Γc is the set of non constant rectifiable curves.
In this case the function identically equal to zero is a p-upper gradient for every function;
hence |∇f |m,p = 0 for any function f : Rn → R.

Now we recall the notion of a Muckenhoupt Ap-weight on Rn; we only consider the case
p > 1 though a similar definition may be given for p = 1 [48]. If (X, d,m) is a metric measure
space, with f : X → R and A ⊆ X Borel measurable such that m(A) > 0, then we denote
fA = −́

A f dm = (1/m(A))
´
A f dm whenever the quotient is well defined. If no measure is

specified, integrals over subsets of Rn are with respect to Lebesgue measure L n; we also use
the notation L n(A) = |A|.

Definition 6.0.2 Let p > 1. A function w : Rn → R+ is a Muckenhoupt Ap-weight if for
some constant C > 0 and all balls B ⊂ Rn,(

−
ˆ
B
w

)(
−
ˆ
B
w1/(1−p)

)p−1

≤ C. (6.0.1)

Muckenhoupt Ap-weights were first introduced in [69] as precisely those weights for which
the Hardy maximal function of the associated measure is bounded in Lp. The Ap condition
has numerous applications, for example to weighted Sobolev spaces [26] and regularity of the
solutions of degenerate elliptic equations [35].

We recall that, by Hölder’s inequality, the condition of a weak p-Poincaré inequality be-
comes weaker as p increases. If a metric measure space equipped with a doubling measure
admits a weak p-Poincaré inequality then it admits a differentiable structure [25]; in fact, a
Lip-lip inequality suffices in place of a Poincaré inequality [54]. Roughly, a Lip-lip inequal-
ity states that at almost every point the variation of a Lipschitz function on small scales is
independent of the precise choice of scale.

We use the fact that if w is a Muckenhoupt Ap-weight on Rn then the measure µ = wLn

is p-admissible [48]; this means that µ is doubling and satisfies a weak p-Poincaré inequality.
For n = 1 the converse holds: if µ is p-admissible then w must be an Ap-weight [19]. However,
inequality (6.0.1) seemed easier to check than verifying Poincaré inequality directly.

If a doubling metric measure space admits a weak p-Poincaré inequality then, for Lipschitz
functions, the p-upper gradient |∇f |m,p agrees, up to negligible sets, with the slope [25], [54].
Hence, for p > 1 + α, if µ is the measure in Theorem 1, then the p-weak slope |∇f |m,p of
Lipschitz functions f : Rn → R on (Rn, | · |, µ) is non trivial.

We also note that, since µ is absolutely continuous with respect to Lebesgue measure, the
metric measure space (Rn, | · |, µ) satisfies a Lip-lip inequality. Further, in any metric measure
space (X, d,m), lower semicontinuity of the map, defined on Lipschitz functions,

f 7→
ˆ
X
|∇f |p dm

in Lp implies the p-weak gradient agrees with the slope for Lipschitz functions [4]. Hence we
observe that a Lip-lip inequality is not sufficient for lower semicontinuity of the integral of the
p-th power of the slope; this answers a question raised in [4].

We now give an idea of the construction of the weight w in Theorem 1. Firstly we suppose
n = 1; one starts with the weight w1 ≡ 1, then repeatedly defines wk = min{wk−1, gk} where
gk is a scaled and translated copy of |x|α centred on some rational qk. We do this for a dense,
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non repeating, sequence of rationals (qk)
∞
k=1 and define w = infk wk. The function 1/ws is

locally integrable for s < β but nowhere locally integrable for s ≥ β; this discrepancy allows us
to prove the first property in Theorem 1. Further, provided the copies of |x|α are scaled to be
sufficiently thin, each stage in the construction increases the left hand side of inequality (6.0.1)
only a small amount; this allows us to prove the second property in Theorem 1. To prove
Theorem 1 for general n we define ŵ(x1, . . . , xn) = min{w(x1), . . . , w(xn)} on Rn. Then ŵ
has the same integrability properties as w (but now with respect to Ln), which gives the first
property, and the lattice property of Ap-weights [56] allows us to extend the second property
from w to ŵ.

6.1 Construction of the weight

Fix a sequence εk > 0 such that
∏∞
k=1(1 + εk) < ∞ and enumerate the rational numbers by

a sequence (qk)
∞
k=1 with qk 6= ql for k 6= l. We inductively define a sequence of continuous

weights wk : R → R+; among other properties the weights satisfy wk ≤ wk−1 and wk(x) > 0
if x /∈ {ql : l = 1, . . . , k}. Denoting by w the limit of the weights wk we will verify Theorem 1
for the weight ŵ on Rn given by ŵ(x1, . . . , xn) = min{w(x1), . . . , w(xn)}.

Let w1 : R → R+ be the function which is constant and equal to 1. Fix k ∈ N for which
the weight wk−1 has been defined; we show how to define wk. Since wk−1 is continuous and
wk−1(qk) > 0 (using the properties described in the introduction) we can choose Rk > 0 so
that

wk−1(qk)/2 ≤ wk−1(x) ≤ 2wk−1(qk)

for |x− qk| ≤ 4Rk.
Fix rk > 0 such that:

rk ≤ wk−1(qk)
βεk,

8rk ≤ εk(Rk − rk)

and
2rk(p− α+ 1)/(p− 1) ≤ εk(Rk − rk).

We let
gk(x) = 2wk−1(qk)|(x− qk)/rk|α

for x ∈ R and define wk : R→ R+ by

wk(x) = min{wk−1(x), gk(x)}.

The function wk is continuous, wk ≤ wk−1 and wk > 0 if x /∈ {ql : l = 1, . . . , k}.
Denote Ik = (qk − rk, qk + rk) and note that wk = wk−1 outside Ik. We also define

Jk = (qk −Rk, qk +Rk), J+
k = [qk + rk, qk +Rk) and J−k = (qk −Rk, qk − rk).

Let w : R→ R+ be given by w = infk wk. We define a Borel weight ŵ : Rn → R+ by:

ŵ(x1, . . . , xn) = min{w(x1), . . . , w(xn)}

and let µ = ŵLn.
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6.2 The p-modulus on curves is trivial for small p

In this section we show that p < 1 + α implies Modp,µ(Γc) = 0, where Γc is the family of
non constant absolutely continuous curves in Rn. This fact arises from simple integrability
properties of 1/w on R which follow from corresponding properties of 1/|x|α. Recall that
β = 1/α.

Lemma 6.2.1 Let r = eα(α+1). The weight w : R → R+ has the following integrability prop-
erties:

(1) The function 1/ws is locally Lebesgue integrable if s < β.

(2) The function 1/(wβ| log(w/r)|1+α) is locally Lebesgue integrable.

(3) The function 1/ws is nowhere locally Lebesgue integrable if s ≥ β.

(4) The function 1/(wβ| log(w/r)|) is nowhere locally Lebesgue integrable.

Proof. Suppose first s < β and N ∈ N. Clearly, for each integer k > 1, wk = wk−1 outside
Ik implies ˆ N

−N

1

wsk
≤
ˆ N

−N

1

wsk−1

+

ˆ qk+rk

qk−rk

1

wsk
.

We show the second term is relatively small. Indeed, since

wk(x) ≥ 1

2
wk−1(qk)|(x− qk)/rk|α

for x ∈ (qk − rk, qk + rk) and αs < 1, we have,
ˆ qk+rk

qk−rk

1

wsk
≤

2srαsk
wk−1(qk)s

ˆ qk+rk

qk−rk

1

|x− qk|αs

≤ Crk/wk−1(qk)
s

≤ Crk/wk−1(qk)
β

≤ Cεk.

Since w1 was constant (so trivially locally integrable) and εk were chosen small we deduce that
the sequence

´ N
−N 1/wsk is bounded uniformly in k. By the Monotone Convergence Theorem

we obtain that 1/ws is integrable on the interval [−N,N ].
For the second assertion a similar estimate is required: first of all the function Φ : t 7→

t(− log(tα/r))1+α is increasing in (0, 1), and thus we can make the estimate
ˆ qk+rk

qk−rk

1

Φ(wβk )
≤
ˆ qk+rk

qk−rk

1

Φ(Ck|x−qkrk
|)

=
2rk
Ck

F (Ck)

where Ck = (wk−1(qk)/2)β and F is the primitive of 1/Φ such that F (0) = 0. Substituting
rk ≤ CCkεk and using the definition of Φ we obtain

ˆ qk+rk

qk−rk

1

wβk | log(wk/r)|1+α
≤ 2rk
Ck

F (1) ≤ Cεk.
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We now obtain the required integrability as before.
Now suppose s ≥ β and I is a non empty interval. Then we can find k ∈ N for which

qk ∈ I. It follows, ˆ
I

1/ws ≥ C(k)

ˆ
I

1/|x− qk|αs

and the right hand side is equal to ∞ since αs ≥ 1. In the same way we have that
wβk log(wk/r) ∼ C(k)|x − qk| log |x − qk| in a neighborhood of qk and so the final statement
follows. �

Notice the previous lemma implies that w is nonzero outside a set of Lebesgue measure
zero. We recall some elementary facts about the modulus which are valid on any metric
measure space [46].

Lemma 6.2.2 Let (X, d,m) be a metric measure space. The modulus Modp,m satisfies

Modp,m(Γa) ≤ Modp,m(Γb)

if Γa and Γb are two curve families such that each curve in Γa has a subcurve in Γb. Further,
Modp,m(Γ) = 0 if and only if there is a p-integrable Borel function g : X → [0,∞] such that´
γ g ds =∞ for each γ ∈ Γ.

Now we can deduce the required properties of the p-modulus on (Rn, | · |, µ).

Proposition 6.2.3 Let Γc be the family of non constant absolutely continuous curves on Rn
and p ≤ 1 + α. Then Modp,µ(Γc) = 0.

Proof. For each k ∈ N let Γk be the family of non constant absolutely continuous curves with
image contained in [−k, k]n. Using Lemma 6.2.2 it suffices to show that Modp,µ(Γk) = 0 for
each k.

First suppose p < 1 + α; fix k ∈ N and recall β = 1/α. Let g : Rn → R+ be equal to 1/ŵβ

inside [−k, k]n and identically 0 outside [−k, k]n. Suppose γ = (γ1, . . . , γn) ∈ Γk and fix i such
that the image of γi contains some non trivial interval I ⊂ R. Then,ˆ

γ
g ds ≥

ˆ
γ

1/w(xi)
β ds

≥
ˆ
γi

1/w(t)β ds

≥
ˆ
I

1/w(t)β dt

=∞

using Lemma 6.2.1. However,ˆ
Rn
gp dµ =

ˆ
[−k,k]n

ŵ1−βp

≤
ˆ

[−k,k]n

n∑
i=1

w(xi)
1−βp

≤ n(2k)n−1

ˆ k

−k
w(t)1−βp dt
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which, by Lemma 6.2.1, is finite if βp− 1 < β or, equivalently, p < 1 + α. Hence, by Lemma
6.2.2, Modp,µ(Γk) = 0 and the proposition follows.

In the case p = 1 + α we choose g = 1/(ŵβ| log(ŵ/r)|); the argument is then identical
using the analogous statements about integrability from Lemma 6.2.1. �

6.3 The Muckenhoupt Ap condition for large p

We suppose throughout this section that p > 1 + α. We first show that w is a Muckenhoupt
Ap-weight on R and then deduce ŵ is an Ap-weight on Rn using the lattice property of Ap-
weights [56]. To verify w is a Muckenhoupt Ap-weight the idea will be that constructing wk
from wk−1 can increase the left side of inequality (6.0.1) only very slightly. We use a different
argument depending on whether the ball in (6.0.1) is relatively small or relatively large.

It will be important during the proof that |x|α is a Muckenhoupt Ap-weight on R; this fact
is well known (for example see Remark 4 [19]; this is also valid in Rn provided p > 1 + nα)
but we prefer to provide here a self-contained proof.

Lemma 6.3.1 The function g(x) = |x|α on R is an Ap-weight.

Proof. Let I = [a, b] be an interval. Denote I+ = I ∩ [0,+∞) and I− = I ∩ (−∞, 0]. Without
loss of generality we can assume that |I+| ≥ |I−|; in this case we have that I− ⊆ −I+ and so,
using that g is an even function, we have(

−
ˆ
I
g

)(
−
ˆ
I
g1/(1−p)

)p−1

≤ 2p
(
−
ˆ
I+

g

)(
−
ˆ
I+

g1/(1−p)
)p−1

.

Hence it is sufficient to prove (6.0.1) only for intervals I = [a, b] such that 0 ≤ a < b.
We distinguish two cases:

• 2a ≥ b. In this case, given the monotonicity of g we can estimate each of the factors
in the left hand side of (6.0.1) with the values of the integrand at the endpoint: in
particular we can estimate it from above by g(b)/g(a) ≤ 2α.

• 2a < b. In this case we have that 1/(b− a) ≤ 2/b and so

−
ˆ b

a
xα dx ≤ 1

b− a

ˆ b

0
xα dx ≤ 2bα

α+ 1
;

−
ˆ b

a
xα/(1−p) dx ≤ 1

b− a

ˆ b

0
xα/(1−p) dx ≤ 2bα/(1−p)

α/(1− p) + 1
.

These two inequalities together give us precisely (6.0.1), with C depending only on α
and p.

�

The following Lemma will be used to estimate (6.0.1) for relatively small intervals; the
idea will be that early stages in the construction play no role on small scales.



6.3. The Muckenhoupt Ap condition for large p 119

Lemma 6.3.2 Suppose q ∈ R, R > 0 and f : (q−R, q+R)→ R+ is Borel with L/2 ≤ f ≤ 2L
for some L > 0.

Let 0 < r < R and g(x) = 2L|(x− q)/r|α for x ∈ R.
Define h : (q −R, q +R)→ R+ by

h(x) = min{f(x), g(x)}.

Then for any interval I ⊂ (q −R, q +R) we have,(
−
ˆ
I
h

)(
−
ˆ
I
h1/(1−p)

)p−1

≤ C (6.3.1)

where the constant C > 0 depends only on α and p.

Proof. Fix an interval I = (a, b) ⊂ (q − R, q + R); we consider several cases depending on
the length and position of I.

Suppose |b− a| > r/8β . We have the simple estimate

−
ˆ
I
h ≤ −
ˆ
I
f ≤ 2L. (6.3.2)

For the second term in (6.3.1) we use the bounds on f and the fact that h = f outside
(q − r, q + r) to see ˆ

I
h1/(1−p) ≤

ˆ q+r

q−r
g1/(1−p) + CL1/(1−p)|I|.

Using the fact p > 1 + α and r < 8β|I| we can continue,

ˆ q+r

q−r
g1/(1−p) = (2L/rα)1/(1−p)

ˆ r

0
|x|α/(1−p)

≤ CL1/(1−p)r

≤ CL1/(1−p)|I|.

Thus we obtain (
−
ˆ
I
h1/(1−p)

)p−1

≤ CL−1

and, by combining this with (6.3.2), we obtain (6.3.1).
Now suppose |b− a| ≤ r/8β and I ⊂ [q− (r/4β), q+ (r/4β)]. Then h = g on I and (6.3.1)

follows from Lemma 6.3.1.
Finally suppose |b−a| ≤ r/8β and I is not strictly contained in the interval [q−(r/4β), q+

(r/4β)]. This implies that |x − q| ≥ r/4β − r/8β for all x ∈ I; it follows that the values of
g, and hence the values of h, on I are comparable to L. In this case the validity of (6.3.1) is
again clear. �

The next lemma will be used to estimate (6.0.1) for relatively large intervals; the idea is
that wk and wk−1 agree except on a relatively small interval.

Lemma 6.3.3 The following estimates hold:
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ˆ
Ik

wk ≤ εk
ˆ
J+
k

wk−1,

ˆ
Ik

w
1/(1−p)
k ≤ εk

ˆ
J+
k

w
1/(1−p)
k−1 .

The same estimate hold also if we put J−k instead of J+
k .

Proof. We only prove them for J+
k , the other ones being similar. Let L = wk−1(qk). For the

first estimate we note, ˆ
Ik

wk ≤ 2|Ik|wk−1(qk) = 4rkL

and ˆ
J+
k

wk−1 ≥ L/2(Rk − rk)

so the estimate holds since Rk was chosen sufficiently large relative to rk. The argument for
the second estimate is similar: we have, since p > 1 + α,

ˆ
Ik

w
1/(1−p)
k ≤

ˆ rk

−rk

(∣∣∣ x
rk

∣∣∣αL)1/(1−p)
= 2rkL

1/(1−p) p− 1

p− 1− α
,

ˆ
J+
k

w
1/(1−p)
k−1 ≥ (2L)1/(1−p)(Rk − rk)

and again, since Rk are sufficiently large relative to rk, we get the conclusion. �

We now put together Lemma 6.3.2 and Lemma 6.3.3 to obtain the required control on
inequality (6.0.1) for the weights wk used to construct w.

Lemma 6.3.4 There exists a constant C > 0, depending only on p and α, such that for all
intervals I,(

−
ˆ
I
wk

)(
−
ˆ
I
w

1/(1−p)
k

)p−1

≤ max

{
(1 + εk)

p

(
−
ˆ
I
wk−1

)(
−
ˆ
I
w

1/(1−p)
k−1

)p−1

, C

}
.

Proof. We clearly can assume I∩Ik 6= ∅ since wk = wk−1 outside Ik. First suppose |I| > |Jk|
so that (without loss of generality) J+

k ⊂ I. Using Lemma 6.3.3 we can estimate,

−
ˆ
I
wk =

1

|I|

(ˆ
Ik

wk +

ˆ
I\Ik

wk

)

≤ 1

|I|

(
εk

ˆ
J+
k

wk−1 +

ˆ
I\Ik

wk−1

)

≤ 1

|I|

(
εk

ˆ
I
wk−1 +

ˆ
I
wk−1

)
= (1 + εk)−

ˆ
I
wk−1.
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One obtains the estimate(
−
ˆ
I
w

1/(1−p)
k

)p−1

≤ (1 + εk)
p−1

(
−
ˆ
I
w

1/(1−p)
k−1

)p−1

in exactly the same way. Hence we obtain the desired inequality for this interval I.
Next we suppose |I| ≤ |Jk| so that I ⊂ (qk − 4Rk, qk + 4Rk). Then, from the construction

of wk, we have
wk−1(qk)/2 ≤ wk−1(x) ≤ 2wk−1(qk)

whenever |x − qk| ≤ 4Rk. By applying Lemma 6.3.2 with q = qk, R = 4Rk, f = wk−1,
L = wk−1(qk), r = rk and g = gk we obtain(

−
ˆ
I
wk

)(
−
ˆ
I
w

1/(1−p)
k

)p−1

≤ C

with constant C depending only on p and α. This proves the claimed inequality. �

By iterating Lemma 6.3.4 we can easily show that w is an Ap-weight on R; combining this
with the lattice property of Ap-weights will then show that ŵ is an Ap-weight on Rn.

Proposition 6.3.5 If p > 1 + α then ŵ is an Ap-weight on Rn.

Proof. By repeated application of Lemma 6.3.4 and the fact εk can be chosen small we
deduce (

−
ˆ
I
wk

)(
−
ˆ
I
w

1/(1−p)
k

)p−1

is bounded uniformly in k and I. Using the monotone convergence theorem we deduce that(
−
ˆ
I
w

)(
−
ˆ
I
w1/(1−p)

)p−1

is bounded uniformly in I. This shows that w is an Ap-weight on R.
We now observe that

x = (x1, . . . , xn) 7→ ηi(x) := w(xi)

is an Ap-weight on Rn for each 1 ≤ i ≤ n. Indeed; we may use cubes instead of Euclidean
balls in the left hand side of (6.0.1) and then the left hand side of (6.0.1), corresponding to the
weight ηi, reduces to the corresponding expression for the weight w on R. Such an expression
is obviously bounded since w is an Ap-weight on R.

By [56, Proposition 4.3] the minimum of a finite collection of Ap-weights is again an Ap-
weight; hence ŵ = min{η1, . . . , ηn} is an Ap-weight. �

Taken together, Proposition 6.2.3 and Proposition 6.3.5 prove Theorem 1.

6.4 Characterization of the weak gradient on R

Let µ be a locally finite Borel measure on R. We give a characterization of the p-weak gradient
for Lipschitz functions defined on (R, | · |, µ). The idea is that integrability properties of the
absolutely continuous part of µ give information about which intervals (considered as curves)
have non trivial p-modulus; these intervals then determine the p-weak gradient. A similar
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characterization has been found in [18], for measures µ whose absolutely continuous part with
respect to Lebesgue measure is bounded by below by a constant, and a weaker result is stated
in [21], Theorem 2.6.4, where the author characterize the measures for which the p-weak
gradient is |f ′| for every f ∈ C∞ (which is equivalent to the closability of the Sobolev norm
he considers).

It is worth noticing that, at least when p = 2, a very similar question has been investigated
by some authors in the calculus of variations, posed as a semicontinuity problem; in [38], [66]
they found exactly the same answer that we find.

Throughout this section we fix p > 1 and let q be the corresponding Hölder conjugate
so that p−1 + q−1 = 1. Given a compact interval I ⊂ R we define the corresponding curve
γI : I → R by γI(t) = t. Denote the Lebesgue decomposition of µ by µ = µa + µs. Let
µa = faL

1 with fa : R → R a Borel function and fix a Lebesgue null set N ⊂ R on which µs
is concentrated.

Lemma 6.4.1 For any interval [a, b] ⊂ R we have Modp,µ
(
{γ[a,b]}

)
> 0 if and only if f1/(1−p)

a

is Lebesgue integrable on [a, b].

Proof. This lemma is an easy corollary of Theorem 5.1 in [6]; however we want to give here
a self-contained and more elementary proof since Γ consists of only one curve. If a = b the
statement is trivial so we assume a < b.

We write an equivalent definition for Modp,µ, using the homogeneity of the problem (see
[6]):

Modp,µ({γ[a,b]})1/p = inf

{
‖g‖Lp(µ)´ b
a g(x) dx

}
, (6.4.1)

where the infimum is taken over all Borel functions g which are p-integrable with respect to
µ (this set is non empty since µ is locally finite).

Let g : R→ R be any Borel function. From Hölder’s inequality we have

ˆ b

a
g(x) dx ≤

(ˆ b

a
gp(x)fa(x) dx

)1/p(ˆ b

a
fa(x)1/(1−p) dx

)1/q

. (6.4.2)

Now, if f1/(1−p)
a is L1 integrable on [a, b], by using inequality (6.4.2) in (6.4.1) we get that

Modp,µ({γ[a,b]})1/p ≥ inf

{
‖g‖Lp(µa)´ b
a g(x) dx

}
≥ 1

‖f1/(1−p)
a ‖1/q

L1(L1)

> 0.

If otherwise f1/(1−p)
a is not integrable then, letting fε = max{fa, ε}, we use

g(x) =

{
0 if x ∈ N ∪ (R \ [a, b])

f
1/(1−p)
ε (x) otherwise

as a test function in (6.4.1) and using µa ≤ fεL1 we get

Modp,µ({γ[a,b]})1/p ≤
(ˆ b

a
f1/(1−p)
ε (x) dx

)−1/q

.

Letting ε→ 0 we obtain, by monotone convergence, that Modp,µ({γ[a,b]}) = 0. �
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Theorem 6.4.2 Let

Np =
{
x ∈ R such that f1/(1−p)

a is integrable on a neighbourhood of x
}
. (6.4.3)

Let f : R→ R be Lipschitz and define, for µ almost every x,

|df |p,µ(x) =

{
|f ′(x)| if x ∈ Np \N
0 otherwise.

(6.4.4)

Then |∇f |p,µ(x) = |df |p,µ(x) for µ-almost every x.

Proof. We first note that equation (6.4.4) makes sense because f ′ exists L1-almost everywhere,
by Rademacher theorem, and so it exists also µa-almost everywhere; hence f ′ exists µ-almost
everywhere in the complement of N . We note that, thanks to Lemma 6.4.1, we have the
following equivalent definition for Np:

Np =
⋃
ε>0

{
x ∈ R such that Modp,µ

(
{γ[x−ε,x+ε]}

)
> 0
}
. (6.4.5)

Denote by B the set of points where f is not differentiable. Set

Gf = {g : R→ [0,∞) bounded Borel function : g(x) ≥ |f ′(x)| for L1-a.e. x ∈ Np}.

We will prove that Gf is exactly the set of bounded p-upper gradients for f . This implies the
theorem: indeed, |df |p,µ ∈ Gf and for any g ∈ Gf we have that g(x) ≥ |df |p,µ(x) for µ almost
every x ∈ R.

Step 1. g a bounded p-upper gradient =⇒ g ∈ Gf .
Let Dp be the set of Lebesgue points of g with respect to the Lebesgue measure. Since g is a
bounded Borel function, we know that L1(Dc

p) = 0. Now take a point x ∈ Np ∩Dp \ (B ∪N).
Thus there exists ε such that Modp,µ

(
{γ[x−ε,x+ε]}

)
> 0; but then Modp,µ

(
{γ[x−δ,x+δ]}

)
> 0

for every 0 < δ ≤ ε. This, together with the definition of the p-upper gradient, gives us that

|f(x+ δ)− f(x− δ)| ≤
ˆ x+δ

x−δ
|∇f |p,µ(s) ds,

and so, passing to the limit when δ → 0, we get that |f ′(x)| ≤ g(x), and so the thesis.

Step 2. g ∈ Gf =⇒ g is a p-upper gradient.
To prove this implication we first show that

Γ = {γ : γ has end points a < b, (a, b) ∩Nc
p 6= ∅}

is Modp,µ-null. Let Bp = Nc
p. First let {xn}n∈N ⊂ Bp be a set of points dense in Bp. From the

definition of Np we know that for every n there exists a non negative function fn ∈ Lp(R, µ)
such that fn is not locally Lebesgue integrable at xn, that is:

ˆ xn+ε

xn−ε
fn(s) ds =∞ ∀ε > 0. (6.4.6)
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Now we take f =
∑

n anfn where the an are positive real numbers small enough so that f
belongs to Lp(R, µ). For every curve γ ∈ Γ with end points a < b we have that xn ∈ (a, b)
for some n (since {xn}n∈N were dense in Bp) and so we have that [xn − ε, xn + ε] ⊂ (a, b) for
ε > 0 small enough. In particular, using (6.4.6),

ˆ
γ
f ≥
ˆ b

a
f(s)ds ≥ an

ˆ b

a
fn(s)ds ≥ an

ˆ xn+ε

xn−ε
fn(s) ds =∞

and so Modp,µ(Γ) = 0.
Suppose g ∈ Gf and γ /∈ Γ has end points a < b. Then (a, b) ⊂ Np and hence,

|f(a)− f(b)| ≤
ˆ b

a
|f ′(x)|dx ≤

ˆ b

a
g(x) dx ≤

ˆ
γ
g.

Thus the set of curves where the upper gradient property fails is a p negligible set; therefore
g is a p-upper gradient of f .

�

Remark 6.4.3 It seems that one can generalize the observations in section 5 about weak
gradients on R to analogous statements about Rn; the statement here should be that the weak
gradient at a point is the restriction to a subspace (depending on the point and the measure) of
the ordinary derivative. This generalization involves the equivalent definition of weak gradient
from [25] as an integrand whose integral represents the Cheeger energy. The Cheeger energy is a
functional obtained by relaxing the integral of the slope using convergence of Lipschitz functions;
the paper [22] provides integral representations of many such functionals. Unfortunately, when
n > 1, apart from peculiar cases, it is not possible to give a concrete description of the subspaces
but a rather abstract one. In Section 7.4 we generalize this abstract characterization to Banach
spaces.



CHAPTER 7

A definition via derivations and integration by parts

7.1 Sobolev spaces via derivations

Here (X, d,m) will be any complete separable metric measure space, where m is a nonnegative
Borel measure, finite on bounded sets; in particular we don’t assume structural assuptions,
namely doubling measure nor a Poincaré inequality are required to hold. In the sequel we will
denote by Lip0(X, d) the set of Lipschitz functions with bounded support, and with L0(X,m)
the set of measurable function on X, without integrability assumption.

In this Chapter we will use the notations for the Sobolev spaces as we did for the intro-
duction: in particular H1,p will denote the Sobolev space made up by relaxation, BL1,p will
denote the Sobolev space made up by looking at curves and W 1,p will be the new one, made
up with an integration by parts formula (with derivations).

7.1.1 Derivations

We state precisely what we mean here by derivations:

Definition 7.1.1 A derivation b is a linear map b : Lip0(X, d) → L0(X,m) such that the
following properties hold:

(i) (Leibniz rule) for every f, g ∈ Lip0(X, d), we have b(fg) = b(f)g + fb(g);

(ii) (Weak locality) There exists some function g ∈ L0(X,m) such that

|b(f)|(x) ≤ g(x) · lipaf(x) for m-a.e. x, ∀f ∈ Lip0(X, d).

The smallest function g with this property is denoted by |b|.

From now on, we will refer to the set of derivation as Der(X, d,m) and when we write
b ∈ Lp we mean |b| ∈ Lp. Since the definition of derivation is local on open sets we can
extend b to locally Lipschitz functions. In order to get to (1), we need also the definition
of divergence, and this is done simply imposing the integration by parts formula: whenever

125



126 Chapter 7. A definition via derivations and integration by parts

b ∈ L1
loc we define div b as the operator that maps Lip0(X, d) 3 f 7→ −

´
X b(f) dm (whenever

this makes sense). We will say div b ∈ Lp when this operator has an integral representation
via an Lp function: div b = h ∈ Lp if

−
ˆ
X
b(f) dm =

ˆ
X
h · f dm ∀f ∈ Lip0(X, d).

It is obvious that if div b ∈ Lp, then is unique. Now we set

Derp(X, d,m) =
{
b ∈ Der(X, d,m) : b ∈ Lp(X,m)

}
Derp1,p2(X, d,m) =

{
b ∈ Der(X, d,m) : b ∈ Lp1(X,m),div b ∈ Lp2(X,m)

}
We will often drop the dependence on (X, d,m) when it is clear. We notice that Der, Derp and
Derp1,p2 are real vector spaces, the last two being also Banach spaces endowed respectively
with the norm ‖b‖p = ‖|b|‖p and ‖b‖p1,p2 = ‖b‖p1 + ‖div b‖p2 . For brevity we will denote
Der∞,∞ = Derb (b stands for bounded). The last space we will consider is D(div), that will
be consisting of derivation b such that |b|,div b ∈ L1

loc(X,m); it is clear that Derp,q ⊂ D(div)
for all p, q ∈ [1,+∞].

In the sequel we will need a simple operation on derivations, namely the multiplication by
a scalar function: let u ∈ L0(X,m), then we can consider the derivation ub that acts simply
as ub(f)(x) = u(x) · b(f)(x): it is obvious that this is indeed a derivation. We now prove a
simple lemma about multiplications:

Lemma 7.1.2 Let b a derivation; then if u ∈ L0(X,m) we have |ub| = |b| · |u|. Moreover, if
u ∈ Lipb(X, d) and b ∈ Derp1,p2 we have that ub is a derivation such that

div(ub) = udiv b+ b(u) and ub ∈ Derp1,p3 ,

where p3 = max{p1, p2}; in particular we have that Derp,p is a Lipb(X, d)-module.

Proof. Let us prove the first assertion: it is clear that |ub|(x) ≤ |b|(x)·|u(x)| by the definition;
the other inequality is obvious in {u = 0}. In order to prove the converse inequality also in
{u 6= 0} we can choose bu = ub and

g(x) =

{
u−1(x) if u(x) 6= 0

0 otherwise,

and then we know that |gbu| ≤ |g| · |bu|. Noting that b(f) = gbu(f) in {u 6= 0} for every
f ∈ Lipb(X, d), we get also |b| = |gbu| in the same set and so we get

|b| = |gbu| ≤ |g| · |bu| ≤ |g| · |u| · |b| = |b| in {u 6= 0},

in particular we get |bu| = |b| · |u| in {u 6= 0} and thus the thesis.
For the second equality we can use Leibniz rule: let f ∈ Lipb(X, d), and note b(fu) =

ub(f) + fb(u)

−
ˆ
X
ub(f) dm = −

ˆ
X
b(fu) dm +

ˆ
X
fb(u) dm

=

ˆ
X
fu · div b dm +

ˆ
X
fb(u) dm

=

ˆ
X
f · (udiv b+ b(u)) dm

and so, thanks to the arbitrariness of f we get div(ub) = udiv b+ b(u). �
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Lemma 7.1.3 (Strong locality in D(div)) Let b ∈ D(div). Then for every f, g ∈
Lip(X, d) we have

(i) b(f) = b(g) m-almost everywhere in {f = g};

(ii) b(f) ≤ |b| · lipa(f |C) m-almost everywhere in C, for every closed set C;

Proof. In order to prove (i), thanks to the linearity, it is sufficient to consider g = 0 and f
with support contained in B = Br(x0), where we can take r > 0 as small as we want; then
we can conclude by linearity and weak locality. So we can suppose that both |b| and div b are
integrable in B. Now we can consider ϕε(x) = (x− ε)+− (x+ ε)−; we have ϕε is a 1-Lipschitz
function such that |ϕε(x) − x| ≤ ε and ϕ(x) = 0 whenever |x| ≤ ε. Let fε = ϕε(f); we have
b(fε) is a family of equi-integrable functions and so there is a subsequence converging weakly
in L1 to some function g. Moreover fε → f uniformly and in particularˆ

X
b(fε) dm−

ˆ
X
b(f) dm = −

ˆ
X

(fε − f) · div b dm→ 0; (7.1.1)

since this is true also for χb whenever χ ∈ Lip0(X, d), we obtain 〈χ, b(fε)〉 → 〈χ, b(f)〉 and so
g = b(f). In particular, putting ρ = χ{f=0}sgn(b(f)) and noting that lipa(fε) = 0 in the set
{|f | < ε} we obtain

ˆ
{f=0}

|b(f)| dm =

ˆ
X
ρ · b(f) = lim

ε→0

ˆ
X
ρ · b(fε) dm = 0.

For (ii) we proceed as follows: for every closed ball B̄r(y) we consider the McShane exten-
sion of the function f restricted to C ∩ B̄r(y) and we call it gry. In particular we have f = gry
on C ∩ Br(y) and Lip(gry, Br(y)) = Lip(f,Br(y) ∩ C) = Lip(f |C , Br(y)). Applying (i) of this
lemma we find that b(f) = b(gry) m-a.e. on C ∩ B̄r(y); in particular

|b(f)|(x) ≤ |b| · Lip(f |C , Br(y)) m-a.e. on C ∩Br(y).

Since we have Br(y) ⊂ B2r(x) whenever x ∈ Br(y), we obtain

|b(f)|(x) ≤ |b| · Lip(f |C , B2r(x)) m-a.e. on C ∩Br(y);

now we can drop the dependance on y and then let r → 0 to get the thesis. �

7.1.2 Definition via derivations

In this whole section we treat the Sobolev spaces W 1,p with 1 ≤ p < +∞; the case of the
space BV will be treated separately. We state here the main definition of Sobolev space via
derivations: we want to follow the definition (1) but in place of the scalar product between
the vector field and the weak gradient we assume there is simply a continuous linear map.

Definition 7.1.4 Let f ∈ Lp(X, d,m); then f ∈W 1,p(X, d,m) if, setting q = p/(p− 1), there
exists a continuous linear map Lf : Derq,q → L1(X,m) satisfying

ˆ
X
Lf (b) dm = −

ˆ
X
f div b dm for all b ∈ Derq,q, (7.1.2)

such that Lf (hb) = hLf (b) for every h ∈ Lipb, b ∈ Derq,q. When p = 1 we have to assume
also that Lf can be extended to an L∞-linear map in Der∞b := L∞ ·Derb.
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Since from the definition it is not obvious, we prove that Lf (b) is uniquely defined whenever
f ∈W 1,p and b ∈ Derq,q:

Remark 7.1.5 (Well posedness of Lf) Let us fix b ∈ Derq,q, f ∈ W 1,p; let Lf and L̃f be
two different linear maps given in the definition on W 1,p. Let h ∈ Lipb(X, d): using Lemma
7.1.2 we have hb ∈ Derq,q and so we can use (7.1.2) and the L∞-linearity to get

ˆ
X
hLf (b) dm =

ˆ
X
Lf (hb) = −

ˆ
X
f div(hb) dm,

and the same is true for L̃f . In particular, since the right hand side does not depend on Lf , we
have

´
X hLf (b) =

´
X hL̃f (b), and thanks to the arbitrariness of h ∈ Lipb(X, d) we conclude

that Lf (b) = L̃f (b) m-a.e. We will call this common value b(f), since it extends b on Lipschitz
functions. The same result is true also for p = 1 and b ∈ Der∞b .

Now we can give the definition of weak gradient, in some sense dual to the definition of |b|:

Theorem 7.1.6 Let f ∈ W 1,p(X, d,m); then there exists a function gf ∈ Lp(X, d,m) such
that

|b(f)| ≤ gf · |b| m-a.e. in X ∀b ∈ Derq,q. (7.1.3)

Definition 7.1.7 (p-weak gradient) Let f ∈ W 1,p(X, d,m). The least function gf (in the
m-a.e. sense) that realizes (7.1.3) is denoted with |∇f |p, the p-weak gradient of f

Proof. [of Theorem 7.1.6] We reduce to prove the existence of a weak gradient in the integral
sense; then thanks to Lipb-linearity we can prove the theorem. In fact if we find a function
g ∈ Lp(X, d,m) such that

ˆ
X
b(f) dm ≤

ˆ
X
g|b| dm ∀b ∈ Derq,q, (7.1.4)

then, choosing bh = hb with h ∈ Lipb(X, d), we can localize the inequality thus obtaining
b(f) ≤ g|b|; using this inequality also with the derivation −b we get (7.1.3).

So, we’re given a function f ∈ W 1,p and we want to find g ∈ Lp satisfying (7.1.4); let us
note that, by definition, there exists a constant C = ‖Lf‖ such that for every b ∈ Derq,q

ˆ
b(f) dm ≤ ‖Lf (b)‖1 ≤ C‖b‖q (7.1.5)

Let us consider two functionals in the Banach space Y = Lq(X, d,m):

Ψ2(h) = C‖h‖Lq(m) (7.1.6)

Ψ1(h) = sup

{ˆ
X
b(f) dm : |b| ≤ h , b ∈ Derq,q

}
(7.1.7)

where the supremum of the empty set is meant to be −∞. Equation (7.1.5) guarantees that

Ψ1(h) ≤ Ψ2(h) ∀h ∈ Y. (7.1.8)
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Moreover Ψ2 is convex and continuous while we claim that Ψ1 is concave: it is clearly positive
1-homogeneus and it is sufficient to show that

Ψ1(h1 + h2) ≥ Ψ1(h1) + Ψ1(h2).

We can assume that Ψ1(hi) > −∞ for i = 1, 2 because otherwise the inequality is trivial. In
this case for everi ε > 0 we can pick two derivations bi ∈ Derq such that

ˆ
X
b1(f) dm ≥ Ψ1(h1)− ε |b1| ≤ h1

ˆ
X
b2(f) dm ≥ Ψ1(h2)− ε |b2| ≤ h2

and so we can consider b1 + b2 that still belongs to Derq,q and clearly |b1 + b2| ≤ |b1|+ |b2| ≤
(h1 + h2) and so

Ψ1(h1 + h2) ≥
ˆ
X
Lf (b1 + b2) dm ≥ Ψ1(h1) + Ψ1(h2)− 2ε,

and we get the desired inequality letting ε → 0. By Hahn-Banach theorem we can find a
continuous linear functional L on Lq(X, d,m) such that

Ψ1(h) ≤ L(h) ≤ Ψ2(h).

Case p > 1. We know that (Lq)∗ = Lp and so we can find g ∈ Lp such that L(h) =´
X ghdm. This proves the existence and moreover we have that L(h) ≤ Ψ2(h) = C‖h‖q for
every h ∈ Y and so we have also that ‖g‖p ≤ C.

Case p = 1, X compact. In this case (notice that here we have to put Der∞b in place
of Derq,q in (7.1.7)) if we restrict L : Cb(X) → R we can see it as a positive linear such that
L(h) ≤ C‖h‖∞ and so, thanks to the compactness of X, it can be represented as a finite
measure, i.e. there exists µ ∈ M+(X) such that L(h) =

´
X hdµ for every h ∈ C0(X) and

µ(X) ≤ C. Now let us fix b ∈ Der∞b and let

hε(x) =

{
1
|b| if |b|(x) ≥ ε
ε−1 otherwise

in such a way that |hεb| ≤ 1 with equality in {|b| ≥ ε}. Now let us consider for every
h ∈ C0(X) the derivation h · hε · b; we know that |h · hε · b| ≤ |h| and so we can use (7.1.7)
and the L∞-linearity to infer that

ˆ
X
hhεb(f) dm ≤

ˆ
X
|h| dµ ∀h ∈ C0(X);

this permits us to localize the inequality to hεb(f)m ≤ µ. Now we have a family of measures
F = {hεb(f)m : ∀b ∈ Der∞b , ∀ε > 0} such that ν ≤ µ whenever ν ∈ F. Now we can consider
the supremum of the measures in F, defined as

µF(A) = sup
{ N∑
i=1

νi(Ai) : νi ∈ F,
⋃
Ai ⊆ A, Ai disjoint

}
;
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it is readily seen that this is in fact a measure, and it is the least measure ρ such that ν ≤ ρ
for every ρ ∈ F. The existence is clear thanks to the fact that ν ≤ µ, and in particular we
have that µF ≤ µ; moreover, since for every ν ∈ F we have that ν << m, also the supremum
inherits this property, in particular we have µF = gm for some g ∈ L1(m). In particular, again
fixing b ∈ Der∞b , we have that

hεb(f) ≤ g m-a.e. ∀ε > 0; (7.1.9)

in particular, we can divide (7.1.9) by hε to obtain{
b(f) ≤ g|b| m-a.e. in {|b| ≥ ε}
b(f) ≤ gε m-a.e. in {|b| < ε}.

(7.1.10)

Since ε is arbitrary we obtain b(f) ≤ g|b| for m-almost every x ∈ X, that is the thesis; also in
this case p = 1 we have ‖g‖1 ≤ µ(X) ≤ ‖Lf‖.

Case p = 1, X general. In order to remove the compactness assumption, for every
compact non negligible set K ⊆ X let us consider the two functionals in the Banach space
YK = L∞(K, d,m):

Ψ2(h) = C‖h‖L∞(K,m) (7.1.11)

Ψ1(h) = sup

{ˆ
K
b(f) dm : |b| ≤ h m-a.e. on K , b ∈ Der∞b

}
. (7.1.12)

Now we can argue precisely as before to obtain gK ∈ L1(K,m) such that ‖gK‖1 ≤ ‖Lf‖

b(f) ≤ gK |b| m-a.e. on K ∀b ∈ Derq. (7.1.13)

Now for every increasing sequence of compact sets Kn, let us consider g(x) = infKn3x gKn(x).
Denoting Y :=

⋃
nKn, it is easy to note that g ∈ L1(Y,m), since ‖g‖L1(Y,m) =

supn ‖g‖L1(Kn,m) ≤ supn ‖gKn‖L1(Kn,m) ≤ ‖Lf‖, and we have that

b(f) ≤ g|b| m-a.e. on Y ∀b ∈ Derq;

so, in order to conlcude, it is sufficient to find a sequence Kn such that m(X \
⋃
nKn) = 0,

but this can be done thanks to the hypothesis of m finite on bounded sets (so we can find
θ > 0 such that θm is finite and then apply Prokhorov theorem to θm).

�

7.2 Equivalence with other definitions

In this section we want to prove, when p > 1, that Definition 7.1.4 is equivalent to the other
ones H1,p

v and BL1,p, given in [9]. As a byproduct we obtain the equivalence also with other
definitions of Sobolev Spaces, for example the one given in [25]; the approach is similar to H1,p

v

but the relaxation is made with general Lp functions, and the asymptotic Lipschitz constant
is replaced by upper gradients, or the one given in [75], similar to BL1,p but with a slightly
stronger notion of negligibility of set of curves.

We will prove that H1,p
v ⊆ W 1,p ⊆ BL1,p and that the following inequality is true for the

weak gradients:
|∇f |p,v ≤ |∇f |p ≤ |∇f |p,BL m-a.e. in X
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Then for p > 1, using the equivalence H1,p
v = BL1,p and |∇f |p,BL = |∇f |p,v in [9] will let

us conclude; also the coincidence with other definitions can be found in [9]. For p = 1 the
equivalence is still an open question.

Let us recall briefly the definitions of H1,p
v (in the stronger version given in [4]) and BL1,p:

Definition 7.2.1 (Relaxed Sobolev Space) A function f ∈ Lp(X,m) belongs to
H1,p
v (X, d,m) if and only if there exists a sequence (fn) ⊂ Lip0(X, d) and a function

g ∈ Lp(X,m) such that
lim
n→∞

‖fn − f‖p + ‖lipa(fn)− g‖p = 0.

The function g with minimal Lp norm that has this property will be denoted with |∇f |p,v

In order to define the space BL1,p we recall the Definition 2.6.1 of test plans and the
subsequent definition of the BL space:

Definition 7.2.2 (Weak Sobolev Space) A function f ∈ Lp(X,m) belongs to
BL1,p(X, d,m) if there exists a function g ∈ Lp(X,m) that is a p-weak upper gradient
of f , i.e. it is such that ∣∣∣∣ˆ

∂γ
f

∣∣∣∣ ≤ ˆ
γ
g <∞ for p-a.e. γ. (7.2.1)

The minimal p-weak upper gradient (in the pointwise sense) will be denoted by |∇f |p,BL.

7.2.1 H1,p
v ⊆ W 1,p

Let f ∈ H1,p
v . Then we have a sequence of Lipschitz functions such that fn

p→ f and
Lipa(fn)

p→ |∇f |p,v. Then by the strong locality property of derivation and the definition
of divergence we know that for every b ∈ Derq,q∣∣∣∣ˆ

X
fn · div b dm

∣∣∣∣ =

∣∣∣∣ˆ
X
b(fn) dm

∣∣∣∣ ≤ ˆ
X
|b| · lipa(fn) dm,

and so, taking limits, we have that∣∣∣∣ˆ
X
f · div bdm

∣∣∣∣ ≤ ˆ
X
|b| · |∇f |p,v dm ∀b ∈ Derq,q (7.2.2)

Now we have to construct the linear functional Lf : Derq,q → L1. So, fix b ∈ Derq,q and let
µb = |b| · |∇f |p,vm. Notice that µb is a finite measure. Now let Rb : Lipb(X, d) → R be the
linear functional defined by

Rb(h) = −
ˆ
X
f · div(hb) dm;

notice that, thanks to (7.2.2), |Rb(h)| ≤ C‖h‖∞, where C = µb(X) and so it can be extended
to a continuous linear functional on Cb(X); since |Rb(h)| ≤

´
X |h| dµb, we have that Rb(h)

can be represented as an integral with respect to a signed measure mb, whose total variation is
less then µb, but since µb is absolutely continuous with respect to m, so it is mb; if we denote
by Lf (b) the density of mb relative to m, we have

−
ˆ
X
f · div(hb) dm =

ˆ
h · Lf (b) dm ∀h ∈ Lipb(X, d) (7.2.3)

|Lf (b)| ≤ |b| · |∇f |p,v m-almost everywhere (7.2.4)
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Now we have to check the Lipb-linearity, but this is easy since for every h ∈ Lipb by definition
we have Rhb(h1) = Rb(h · h1), for every bounded Lipschitz function h1; in particular

ˆ
X
h1 · Lf (hb) d mm =

ˆ
X
h1 · hLf (b) dm ∀h1 ∈ Lipb(X),

and so Lf (hb) = hLf (b).

7.2.2 W 1,p ⊆ BL1,p

The crucial observation is that every q-plan induce a derivation:

Proposition 7.2.3 Let π be a q-plan. For every function f ∈ Lipb(X, d) let us consider
bπ(f), the function such that:

ˆ
X
g · bπ(f) dm =

ˆ
AC

ˆ 1

0
g(γt)

d(f ◦ γ)

ds
(t) dtdπ(γ) ∀g ∈ Lp. (7.2.5)

Then we have that bπ ∈ Derq,q and moreover
ˆ
X
g · |bπ|dm ≤

¨
γ
g ds dπ(γ) ∀g ∈ Lp, g ≥ 0; (7.2.6)

ˆ
X
f · div(bπ) dm =

ˆ
AC

(f(γ1)− f(γ2)) dπ(γ) ∀f ∈ Lp. (7.2.7)

Proof. We first fix f ∈ Lipb(X, d) and notice that the right hand side in (7.2.5) is well defined
thanks to Rademacher theorem. Then the Leibniz rule is easy to check thanks to its validity
in the right hand side of (7.2.5). In order to find a good candidate for |bπ|, we estimate
d(f◦γ)
ds ≤ lipa(f)(γt)|γ̇t| and so, for every nonnegative g ∈ Lp we have

ˆ 1

0
g(γt)

d(f ◦ γ)

ds
(t) dt ≤

ˆ 1

0
g(γt)lipa(f)(γt)|γ̇t| dt;

integrating with respect to π and using Fubini theorem we get
ˆ
X
g · bπ(f) dm ≤

ˆ
X
g · lipa(f) dµπ, (7.2.8)

where µπ =
´ 1

0 (et)](‖γ̇t|π) dt is the barycenter of π, and it is such that
ˆ
X
g dµπ =

¨
γ
g ds dπ. (7.2.9)

In particular we can use Hölder’s inequality to estimate the behavior of µπ:
ˆ
X
g dµπ =

ˆ
AC

ˆ 1

0
g(γt)|γ̇t| dt dπ

≤
(¨

|g(γt)|p dtdπ

)1/p(¨
|γ̇t|q dtdπ

)1/q

≤ C(π)1/p · ‖g‖Lp(m) · ‖Eq(γ)‖Lq(π),
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and so, by duality argument, we obtain that µπ = hm with h ∈ Lq(X,m); using this repre-
sentation in (7.2.8) we obtainˆ

X
g · bπ(f) dm ≤

ˆ
X
g · lipa(f)hdm ∀ g ∈ Lq, g ≥ 0.

So we deduce that |bπ| ≤ h and in particular bπ ∈ Lq and (7.2.6) is true thanks to (7.2.9).
It remains to prove the last equality: by definition of divergence we have, for f ∈ Lip0(X, d)ˆ

f · div bπ dm =

ˆ
AC

ˆ 1

0

d(f ◦ γ)

ds
(t) dtdπ(γ) =

ˆ
(f(γ1)− f(γ0)) dπ, (7.2.10)

thanks to the fact that the fundamental theorem of calculus holds for Lipschitz functions. By
definition of q-plan we have also that (et)]π = ftm where ft ≤ C(π) for every t ∈ [0, 1]; since
π is a probability measure we have

´
ft dm = 1 and so ft ∈ L1 ∩L∞ and in particular ft ∈ Lq

and so div bπ = (f1−f0) ∈ Lq. This enables us to extend (7.2.10) to f ∈ Lp and so we proved
also (7.2.7). �

Lemma 7.2.4 Let f ∈W 1,p(X, d,m). Then |∇f |w is a p-weak upper gradient for f .

Proof. By Proposition 7.2.3 we know that to every q-plan π we can associate a derivation
bπ ∈ Derq,q; we use this derivation in the definition of W 1,p and, using also Theorem 7.1.6,
we obtain

−
ˆ
X
f · div bπ dm ≤

ˆ
|∇f |w · |bπ| dm;

Now, using (7.2.6) and (7.2.7), we obtain precisely
ˆ
AC

(f(γ0)− f(γ1))dπ ≤
ˆ
AC

ˆ
γ
|∇f |w ds dπ. ∀π q-plan (7.2.11)

We can "localize" this inequality using the fact that for every Borel set A ⊆ C([0, 1];X)
such that π(A) 6= 0, we have that πA = 1

π(A)π|A is still a q-plan and so we can infer that
ˆ
A

(f(γ0)− f(γ1))dπ ≤
ˆ
A

ˆ
γ
|∇f |w ds dπ. ∀A ⊂ C([0, 1];X), (7.2.12)

and so f(γ0) − f(γ1) ≤
´
γ |∇f |w for π-almost every curve. Applying the same conclusion to

−f we get that the upper gradient property is true for π-almost every curve. Since π was an
arbitrary q-plan, by definition we have

|f(γ0)− f(γ1)| ≤
ˆ
γ
|∇f |w ds for p-almost every curve γ

and so |∇f |w is a p-weak upper gradient. �

Theorem 7.2.5 [H=W=BL] Let (X, d,m) be a separable complete metric space, endowed with
a measure m that is finite on bounded sets. Then we have

H1,p
v (X, d,m) = W 1,p(X, d,m) = BL1,p(X, d,m);

moreover we have |∇f |p,v = |∇f |p,w = |∇f |p,BL for every f ∈W 1,p.

Proof. It is sufficient to use Lemma 7.2.4 and the results of Section 7.2.1 to obtain H1,p
v ⊆

W 1,p ⊆ BL1,p and |∇f |v ≥ |∇f |w ≥ |∇f |BL. Then we use the equivalence theorem in [9]:
given f ∈ BL1,p, we have that f ∈ H1,p

v and |∇f |v ≤ |∇f |BL. This let us conclude. �
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7.3 BV space via derivations

From now on we will denote
´
X dµ = µ(X) whenever µ ∈M(X).

Definition 7.3.1 Let f ∈ L1(X, d,m); we say f ∈ BV (X, d,m) if there exists a continuous
linear map Lf : Derb →M(X) satisfying

ˆ
X

dLf (b) = −
ˆ
X
f div b dm ∀ b ∈ Derb, (7.3.1)

such that Lf (hb) = hLf (b) for every h ∈ Lipb(X, d), b ∈ Derb.

As in the W 1,p case, we prove that Lf (b) is uniquely defined whenever f ∈ BV and
b ∈ Derb:

Remark 7.3.2 (Well posedness of Lf) Let us fix b ∈ Derb, f ∈ BV ; let Lf and L̃f be two
different linear maps given in the definition on BV . Let h ∈ Lipb(X, d): using Lemma 7.1.2
we have hb ∈ Derb and so we can use (7.3.1) and the Lipb-linearity to get

ˆ
X
hdLf (b) =

ˆ
X

dLf (hb) = −
ˆ
X
f div(hb) dm,

and the same is true for L̃f . In particular
´
X hdLf (b) =

´
X hdL̃f (b), and thanks to the

arbitrariness of h ∈ Lipb(X, d) we conclude that Lf (b) = L̃f (b). We will call this common
value Df(b).

Now we can give the definition of total variation:

Theorem 7.3.3 Let f ∈ BV (X, d,m); then there exists a finite measure ν ∈ M+(X) such
that, for every Borel set A ⊆ X,

ˆ
A

dDf(b) ≤
ˆ
A
|b|∗ dν ∀b ∈ Derb, (7.3.2)

where g∗ denotes the upper semicontinuous envelope of g. The least measure that realizes this
inequality is denoted with |Df |, the weak total variation of f . Moreover

|Df |(X) = sup{|Df(b)(X)| : |b| ≤ 1, b ∈ Derb}. (7.3.3)

Proof. We argue similarly to Theorem 7.1.6: by hypothesis we have that f ∈ BV and so
there exists a Lipb-linear map Df : Derb →M(X) such that Df(b)(X) ≤ C‖b‖L∞ , where we
can take C = sup{|Df(b)(X)| : |b| ≤ 1, b ∈ Derb}. Note that if |b| ≤ h where h ∈ Cb(X)
then we have that ˆ

K
dDf(b) ≤ C sup

x∈K
h(x) ∀K ⊆ X compact; (7.3.4)

in fact, denoting with ρn = min{1 − nd(x,K)}, we have that ρn → χK pointwise and 0 ≤
ρn ≤ 1 so, by dominated convergence theorem,
ˆ
K

dDf(b) = lim
n→∞

ˆ
X
ρn dDf(b) ≤ C lim

n→∞
‖ρnb‖∞ ≤ C lim

n
sup
x∈X

ρn(x)h(x) = C sup
x∈K

h(x),
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where the last equality holds thanks to the compactness of K. Now, for every compact set
K ⊆ X and consider two functionals in the Banach space Y = Cb(K):

Ψ2(h) = C‖h‖∞ (7.3.5)

Ψ1(h) = sup

{ˆ
K

dDf(b) : b ∈ Derb, ∃ h̃ ∈ Cb(X) such that |b| ≤ h̃, h̃|K ≤ h
}

(7.3.6)

where the supremum of the empty set is meant to be −∞. Equation (7.3.4) guarantees that

Ψ1(h) ≤ Ψ2(h) ∀h ∈ Y. (7.3.7)

Moreover, as before, Ψ2 is convex and continuous while Ψ1 is concave; by Hahn-Banach
theorem we can find a continuous linear functional L on Cb(K) such that

Ψ1(h) ≤ L(h) ≤ Ψ2(h).

In particular there exists a measure µK such that L(h) =
´
K hdµK and, thanks to (7.3.5), we

have µK(K) ≤ C. Moreover, thanks to (7.3.6) we have that if h ∈ Cb(X) is such that |b| ≤ h
for some b ∈ Derb then ˆ

K
dDf(b) ≤

ˆ
K
hdµK ;

since for every k ∈ Cb(X), we have |kb| ≤ |k|h we obtain alsoˆ
K
k dDf(b) ≤

ˆ
K
|k|hdµK .

In particular, optimizing in k we obtain also that |Df(b)|, the total variation of Df(b),
restricted to K, is less then or equal to hµK . This implies that the following set is nonempty:

AK = {ν ∈M+(K) : |Df(b)||K ≤ hν whenever b ∈ Derb, h ∈ Cb(X) s.t. |b| ≤ h} .

Clearly this set is convex, weakly-∗ closed and a lattice, in particular there exists the minimum,
that we call νK . We can drop the dependence on K since it is easy to see that if A ⊂ K1∩K2

then νK1(A) = νK2(A); suppose on the contrary that νK1(A) > νK2(A). Then we can consider
the measure ν̃(B) = νK1(B \A) + νK2(B ∩A) that would be a strictly better competitor than
µK1 in AK1 .

Now we can extend ν to a measure on the whole space

ν(B) = sup
K⊆B

ν(K) ∀B ⊆ X Borel;

this is easily seen to be a measure, that is also finite since ν(K) ≤ µK(K) ≤ C for all K
compact and in particular we get ν(X) ≤ C. Thanks to the finiteness of |Df(b)| and ν, using
that ν|K ∈ AK , we find that

|Df(b)| ≤ hν whenever b ∈ Derb, h ∈ Cb(X) s.t. |b| ≤ h,

in particular, integrating in A we getˆ
A

dDf(b) ≤
ˆ
A
hdν,

and taking the infimum in h we obtain (7.3.2), recalling that if g ∈ L∞ then

g∗(x) = inf{h(x) : h ∈ Cb(X), h ≥ g m-a.e.}.

For the last assertion in the theorem we already proved C ≥ ν(X), while the other inequality
is trivial taking A = X in (7.3.2). �
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Theorem 7.3.4 (Representation formula for |Df |) Let f ∈ BV . Then the classical rep-
resentation formula holds true: for every open set A

|Df |(A) = sup

{ˆ
A
f · div(b) dm : b ∈ Derb, |b| ≤ 1, supp(b) b A

}
. (7.3.8)

Proof. Let us consider two open sets A1, A2 and a closed set C such that A1 b C b A2.
We will consider (C, d,m) as a separable metric measure space, and relate the definitions of
bounded variation in X and C. Let us consider a function f ∈ BV (X, d,m); it is clear that
f ∈ BV (C, d,m) since Derb(C) ⊂ Derb(X) (it is sufficient to set bX(f) = bC(f |C)), and
consequently |Df |X ≥ |Df |C by (7.3.2).

Moreover it is true that |Df |X(A1) = |Df |C(A1). This is true because there exists a
Lipschitz function 0 ≤ χ ≤ 1 such that χ = 0 in X \ C and χ = 1 on a neighborhood of A1;
then we have that if b ∈ Derb(X) implies that χb ∈ Derb(C) and so in (7.3.2) we can imagine
that b ∈ Derb(C) whenever A ⊂ A1; but then we get that the measure ν defined as

ν(B) = |Df |X(B \A1) + |Df |C(B ∩A1)

is a good candidate in (7.3.2) and so, by the minimality of |Df |X we get |Df |C(A1) =
|Df |X(A1).

Now, denoting by µ(A) the set function defined in the left hand side of (7.3.8), it is obvious
that µ(A2) ≤ |Df |(A2). But it is also obvious that µ(A2) ≥ |Df |C(C) ≥ |Df |C(A1) =
|Df |X(A1). Letting A1 ↑ A2 we get the desired inequality. �

7.3.1 Equivalence of BV spaces

We just sketch the equivalence with the other definitions given in literature: in particular we
refer to [5] (or Chapter 4), where the authors consider the spaces BV∗ and w−BV and show
their equivalence. As we did for W 1,p we show BV∗ ⊆ BV ⊆ w −BV .

Lemma 7.3.5 Let f ∈ BV∗(X, d,m). Then we have f ∈ BV (X, d,m) and |Df | ≤ |Df |∗ as
measures.

Proof. By hypothesis, we know that there is a sequence (fn) ⊂ Lip0(X, d) such that
lipa(fn) ⇀ |Df |∗ in duality with Cb(X); in particular, for every b ∈ Derb we have∣∣∣∣ˆ

X
fn · div b dm

∣∣∣∣ =

∣∣∣∣ˆ
X
b(fn) dm

∣∣∣∣ ≤ ˆ
X
|b| · lipa(fn) dm

taking limits and recalling that whenever νn ⇀ ν and g ≥ 0, we have lim infn→∞
´
X g dµn ≤´

X g
∗ dµ, we have that ∣∣∣∣ˆ

X
f · div b

∣∣∣∣ ≤ ˆ
X
|b|∗ d|Df |∗ ∀b ∈ Derb.

Now this inequality would guarantee that |Df | ≤ |Df |∗ once we construct the linear functional
Lf : Derb → M(X) In order to find Lf (b) we proceed exactly as in Section 7.2.1, and so we
omit the construction. �
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Lemma 7.3.6 Let f ∈ BV (X, d,m). Then we have f ∈ w − BV (X, d,m) and |Df |w(X) ≤
|Df |(X).

Proof. As for the second inclusion it is sufficient to recall Proposition 7.2.3: we know that
for every ∞-plan π we can associate a derivation bπ ∈ Derb; we use this derivation in the
definition of BV and, using also Theorem 7.3.3, we obtain

−
ˆ
X
f · div bπ dm ≤

ˆ
X
|bπ|∗ d|Df |.

Now, using (7.2.6) and (7.2.7), we obtain
ˆ
AC

(f(γ0)− f(γ1))dπ ≤ C(π) · |Df |(X)‖Lip(γ)‖L∞(π) ∀π ∞-plan. (7.3.9)

Now we can use Remark 7.2 in [5] to conclude that f ∈ w − BV and |Df |w(X) ≤ |Df |(X)
�

Using this two lemmas in conjunction with the equivalence result in [5] we can conlcude.

Theorem 7.3.7 Let (X, d,m) be a complete and separable metric space, such that m is finite
on bounded sets; then BV (X, d,m) = BV∗(X, d,m) = w − BV (X, d,m). Moreover |Df | =
|Df |∗ = |Df |w for every function f ∈ BV .

Proof. From Lemma 7.3.5 and 7.3.6 we know that BV∗ ⊆ BV ⊆ w − BV and moreover
|Df | ≤ |Df |∗ and |Df |(X) ≥ |Df |w(X). Thanks to the equivalence theorem in [5] we get
BV = BV∗ = w − BV and |Df |w = |Df |∗, in particular |Df |w(X) = |Df |∗(X) ≥ |Df |(X),
and so |Df |(X) = |Df |∗(X) = |Df |w(X). This equality, along with |Df | ≤ |Df |∗ let us
conclude that the three definitions of total variation coincide. �

7.4 Sobolev Bundle

Here we suppose that X is a Banach space with separable dual, in which we can use our new
definition to give a precise value to |∇f |p in the case of f ∈ C1

loc(X) and p > 1. In particular
we will define the Sobolev bundle Sp, i.e. a map that at each point x ∈ X assigns a closed
subspace of the tangent space at x, identified withX. We will prove that |∇f |p = |df |Sp | m-a.e.
A similar result has been already proved in [22] for finite dimensional spaces; the author use
a bidual argument that can be adapted to reflexive Banach spaces. Our approach is different
and more general since we can recover the result also for non-reflexive Banach spaces.

We first state a characterization of derivations in D(div) as vector fields, in the case X is
a Banach space:

Lemma 7.4.1 Let b ∈ D(div). Then there exists and m-measurable map vb : X → X such
that b(f) = df(vb) = ∂f

∂vb
, for every f ∈ C1(X, d); moreover we have |b|(x) = |vb(x)| for

m-a.e. x ∈ X.

Proof. We will not enter in too many technical details; since this is a local statement we can
assume that b ∈ Der1,1. Then we can apply the results in [70] to bm, that is easily seen to
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be a normal current, in order to find an integral representation of b through derivations along
curves: this is in some sense dual to Proposition 7.2.3; in particular we have

ˆ
g · b(f) dm =

¨ 1

0
g(γt) · (f ◦ γ)′(t) dtdπ ∀g ∈ L∞(X,m)

ˆ
g|b| dm =

¨ 1

0
g(γt)|γ̇t| dt dm ∀g ∈ L∞(X,m) (7.4.1)

Then we know that for γ ∈ AC([0, 1];X), there exists the tangent vector for almost every time
t ∈ [0, 1]. This leads to the definition of the vector field vb by duality:

ˆ
〈ρ, vb〉 dm =

¨ 1

0
〈ρ, γ̇t〉dtdπ ∀ρ ∈ L∞(X;X∗). (7.4.2)

Combining this with (7.4.1) we obtain |vb| ≤ |b|. For every f ∈ C1 it is obvious that df(vb) =
b(f) (using ρ = g · df in (7.4.2)) and so we have

|b(f)| ≤ |vb| · lipaf. (7.4.3)

If we suppose X finite dimensional then we can obtain that (7.4.3) holds also for m-a.e.
for Lipschitz functions f , by approximating f with convolutions. Let us now assume X is
infinite dimensional; we know that m is supported on a σ-compact set S such that there exist
linear projections πn : X → Rn ⊂ X such that πnx → x for every x ∈ S. Let us consider
fn(x) = f(πn(x)); using convolutions in πn(X), as in the finite dimensional case we find that
(7.4.3) holds fn. In particular we have

|b(fn)(x)| ≤ |vb(x)| · lipa(f, πnx) ≤ |vb(x)| · Lip(f,B(x, rm(x))) ∀m ≤ n, (7.4.4)

where we may take rn(x) = 2‖x − πnx‖, that is decreasing in n. Since we have fn → f
pointwise in S, thanks to the integration by parts formula we have also b(fn) ⇀ b(f) in L1

and in particular in (7.4.4) we can let n→∞ and then m→∞, to obtain that (7.4.3) is true
m-a.e (using that rm(x) → 0 for every x ∈ S). This proves that |b| ≤ |vb| and so we have
|b| = |vb|. �

In the sequel, we will often identify b ∈ D(div) with the vector field vb given by Proposi-
tion 7.4.1, through the equality b = vb. Let us denote by B(X) the set of Borel maps from X
to the set of closed subspaces of X, denoted by Cl(X).

Definition 7.4.2 Sp is the p-Sobolev bundle if

(i) For every b ∈ Derq,q with b = vb have vb(x) ∈ Sp(x) for m-a.e. x ∈ X

(ii) For every S′ that satisfies (i) we have that Sp(x) ⊆ S′(x) for m-a.e. x ∈ X.

In order to prove existency it is sufficient to find a map F : Cl(X)→ [0, 1], stictly increasing
by inclusion, namely if Y1 ( Y2 then F (Y1) < F (Y2). Then we minimize the quantity

ˆ
X
F (S(x)) dm (7.4.5)
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among all S ∈ B(X) that satisfy (i); here we point out that this set is nonempty, consid-
ering the constant map S(x) = X. Let us say that a sequence Sn realizes the infimum, and
now let us consider

Sp(x) =
⋂
n∈N

Sn(x).

It is clear that Sp still satisfies (i), and of course Sp minimizes (7.4.5); now suppose that Sp
doesn’t satisfy (ii), and so there exists S′ such that S′ satisfy (i) and m{Sp(x) * S′(x)} > 0;
define S′′ = S′ ∩ Sp. We still have that S′′ satisfies (i) and moreover m{S′′(x) ( Sp(x)} =
m{Sp(x) * S′(x)} > 0 and so, thanks to the strict monotonicity, we have that

ˆ
H
F (S′′(x)) dm <

ˆ
H
F (Sp(x)) dm,

against the minimality of Sp.
The following lemma shows that there exists a map with these properties, when X∗ is

separable.

Lemma 7.4.3 Let {ei}i∈N be a dense set in BX∗(0, 1) (with the strong topology). Let F :
Cl(X)→ [0, 1] be defined in this way:

F (Y ) =
∞∑
i=1

2−i sup{〈ei, y〉 : y ∈ Y, ‖y‖ ≤ 1}.

Then F is strictly increasing, namely if we consider two closed subsets Y ( Y ′ then F (Y ) <
F (Y ′).

Proof. The map F is increasing and its image is clearly contained in [0, 1]. In order to prove
the strict monotonicity we consider two closed subspaces Y ( Y ′ and a point y′ ∈ Y ′ \ Y .
Since Y ′ is closed and convex and {y′} is compact, applying Hahn-Banach theorem we know
that there exists a linear functional l that separates y′ and Y , in particular there exists r ∈ R
such that

l(y) < r ≤ l(y′) ∀y ∈ Y ;

In particular we can take l(y′) = r and, since Y is a vector space, we have l|Y = 0. We know
that there exists a sequence eik → l strongly; it is clear that

sup{〈eik , y〉 : y ∈ Y, ‖y‖ ≤ 1} → sup{〈l, y〉 : y ∈ Y, ‖y‖ ≤ 1} = 0,

since the functions eik : B(0, 1) ∩ Y → R are converging uniformly to l. Moreover

eik(y′)→ eik(y′) = r,

and so we can find k0 such that

sup{〈eik0
, y〉 : y ∈ Y, ‖y‖ ≤ 1} ≤ r

3
<

2r

3
≤ 〈eik0

, y′〉 ≤ sup{〈eik0
, y〉 : y ∈ Y ′, ‖y‖ ≤ 1},

and so we get F (Y ′) > F (Y ) since all the other terms in the sum that defines F are increasing.
�
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Definition 7.4.4 Let Υ = {bi}i∈N be a countable set of admissible derivations, where bi = vi
with vi a Borel vector field defined everywhere; we define the bundle generated by Υ

SΥ (x) = span{vi(x)}i∈N.

This definition is well posed in the sense that choosing different Borel representative ṽi we
have that ṽi(x) = vi(x) for m-a.e. x and so also S̃Υ (x) = SΥ (x) for m-almost every x ∈ H,
and this is sufficient for our pourposes. The next proposition assures that Sp is countably
generated in the sense of 7.4.4.

Proposition 7.4.5 There exists a countable set Υ such that SΥ = Sp.

Proof. First we note that for every countable family Υ we have SΥ ⊂ Sp m-almost everywhere,
so it is sufficient to prove the converse inequality for a certain family. Arguing as we did before
to prove existence of Sp we try to maximizeˆ

H
F (SΥ ) dm (7.4.6)

among all countable admissible families Υ . Taking Υn a maximizing sequence we consider
Υ = ∪n∈NΥn that is still a countable family of admissible currents that clearly maximizes
(7.4.6). Now we want to prove that Sp ⊆ SΥ ; suppose on the contrary that this isn’t true.
This means that SΥ does not satisfy (i) and so there exists b ∈ Derq,q, with b = vb, such that
vb(x) /∈ SΥ (x) in a set of positive measure; but then the set Υ1 = Υ ∪ {b} has a greater value
in (7.4.6) than Υ , but this goes against the maximality of Υ . �

Now we want to prove that the Sobolev bundle is exactely the set of direction in which
we can’t neglect the behaviour of the function when we relax. We first need some analytical
tools.

Proposition 7.4.6 Let b ∈ Derq,q, with b = vb. Then for every C1 function f we have

|b(f)| ≤ |∇f |w|vb| m-almost everywhere.

Proof. This follows by Theorem 7.1.6 and the equality |b| = |vb| in Lemma 7.4.1. �

Lemma 7.4.7 Let Υ be a countable family of admissible currents. Let us consider a subset
A ⊂ Rn such that µ(A) > 0 and a Borel section v of the bundle SΥ , defined on A, and a
treshold ε : A→ (0,+∞). Then there exists a derivation b ∈ span{Υ} such that

µ {x ∈ A : ‖vb(x)− v(x)‖ ≤ ε(x)} > 0. (7.4.7)

Proof. Possibly enlarging Υ with all finiteQ-linear combinations, we can say that by definition
of SΥ , we have that

v(x) ∈ SΥ (x) ⇐⇒ inf
i∈N
‖vbi(x)− v(x)‖ = 0, (7.4.8)

where {bi}i∈N = Υ , because Υ is still countable. Now, for every x ∈ A we can choose an
index i that realizes ‖vbi(x)− v(x)‖ ≤ ε(x), for example:

i(x) := inf {i ∈ N : ‖vbi(x)− v(x)‖ ≤ ε(x)} . (7.4.9)

Now, letting Ak = {x : i(x) = k}, it is clear by (7.4.8), (7.4.9) that
⋃
k Ak = A and in

particular we have that there exists a k0 such that µ(Ak0) > 0 (all the measurability issues are
trivial because the maps vbi and v are Borel). Now it is clear that b = bk0 satisfies (7.4.7).

�
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Theorem 7.4.8 Let f ∈W 1,p(X, ‖·‖X ,m)∩C1(X). Then |∇f |p(x) = |df |Sp |(x) for m-almost
every x ∈ X.

Proof. We begin to show that |df |Sp | is a weak gradient. In fact it is easy to see that for
every b ∈ Derq,q we have

|b(f)| = |df(vb)| ≤ |df |Sp | · |vb| = |df |Sp | · |b|.

In order to show the other inequality we suppose that there exists a set of positive measure A
where |df |Sp | > |∇f |p; in this set we can find a unit vector in v ∈ Sp such that |df |Sp | = df(v)
(the map v is Borel thanks to the continuity of df). Then for every x ∈ A we define ε(x) =
|df |Sp |−|∇f |p

2|df |Sp |
> 0, and then we apply Lemma 7.4.7 to obtain an admissible derivation b such

that
µ {x ∈ A : ‖vb(x)− v(x)‖ ≤ ε(x)} > 0. (7.4.10)

Now, thanks to Proposition 7.4.6 we should have

|∇f |p ≥
|df(vb)|
‖vb‖

≥ |df(v + (vb − v)|
‖v + (vb − v)‖

≥
|df(v)| − |dfSp | · ‖vb − v‖

‖v‖+ ‖vb − v‖

= |df |Sp |
1− ε
1 + ε

> |df |Sp |(1− 2ε) = |∇f |p,

getting a contradiction. �
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