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Introduction

This thesis is devoted to the topic which I investigated more in my years of PhD: the theory
of Sobolev and BV Spaces in Metric Measure Spaces. The first attempts to define spaces
of weakly differentiable functions in R™, what we now call Sobolev Spaces, go back to the
beginning of the twentieth century. The theory then reached a mature stage at the end of the
’50. We now know that several equivalent definitions can be given, but we refer only to three
of them.

(1)

The H definition, namely the definition by relazation: HP(R") is defined as the closure
of C2°(R™) under the norm ||ullf,, = [lullj + [|[Vullp. Another equivalent definition of
H'P (which will be more useful in our point of view) is simply the domain of finiteness
of the relaxation of the functional

P : o (TN
Fy(u) {fRn |VuPdz  if u € CP(R™)

400 otherwise

in the LP topology. There exists also a local representation for the relaxation of this
functional. Indeed, for every u € H'P we can define the relaxed gradient Vu as the weak
limit of Vu,, where u,, — w in L” and sup,, ||[Vuy,||, < 400, and this limit is unique.

The W definition, namely the definition via an integration by parts formula: WP (R™)
is the set of functions u € LP such that there exists a function g € LP(R",R"), called
weak gradient of u, such that

/n div(p)udr = — /n<g0,g> dz Ve e C(R™R"Y). (1)

The BL definition, namely the definition on curves: BLYP(R") is the set of function
u such that u(-,z2,...,2,) : R — R has an absolutely continuous representative for
L e (w9,...,2,), and C%‘l € LP(R™), and a similar property holds for every other
direction xo9, ..., x,.

These three definitions turn out to be equivalent, but the last definition, due to Beppo Levi
[60], wasn’t taken in great consideration, because it is not frame indifferent and it doesn’t seem
very useful either. A major improvement of (3), overcoming the lack of frame indifference,

il
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is due to Fuglede: we look at the behaviour of the function v not only along the lines ¢ +—
(t,x2,...,xy,) but along all rectifiable curves. In fact in [37] he proved that a function w is in
H'P if and only if the function w o v is absolutely continuous for “almost every” curve v and
’£u o] < g|y/| for some g € LP: we can summarize this condition by saying that

1
lu(y1) — u(vo)| < / ()| dt for “almost every” curve ~.
0

The minimal function that realizes this property is precisely the modulus of the weak
gradient |Vu|. Of course, it is important to recall the concept of negligibility of sets of curves
used by Fuglede, but we will come back to this later.

In the last years, since the seminal work of Cheeger [25], a large attention has been devoted
to the field of Sobolev Spaces in metric measure spaces (X, d, m), see for example [9], [43], [45],
[51], [75]; the mild assumptions we require on this metric measure structure is that (X,d) is
a separable and complete metric space, and that m is finite on bounded sets.

In [25] a major role is played by functions which have an upper gradient: we recall that a
nonnegative Borel function g : X — [0, 00] is an upper gradient for f if

[f(71) = f(0)] < /gds YV~ rectifiable, (2)
¥

where 7y is said to be rectifiable if v € AC([0, 1]; X'). The set of upper gradients of f is denoted
by UG(f). The basic examples of functions which have an upper gradient are Lipschitz
functions: given a Lipschitz function f we have that lip,(f) € UG(f), where lip,(f) is the
asymptotic Lipschitz constant

lip,(f) = limsup M

Y2 (y,2)

(3)

Cheeger’s definition of Sobolev Space in metric measure spaces is based upon the H defi-
nition, replacing the role of C2° functions with functions which have an LP-integrable upper
gradient. Another similar definition, used for example in [4], uses only Lipschitz functions
with bounded support as “good” functions. Already in [25] these definitions are seen to be
equivalent, but under the assumption that m is doubling (namely that there exists a constant
C > 1 such that m(B(z,2r)) < Cm(B(z,r))), and a (1, p)-Poincaré inequality holds true, that
is, there exist constants 7 > 1, C' > 0 such that

1/p
min][ lu(z) — m|dm < C ][ gl Vg € UG(S).
meR B(zo,r) B(zo,7T)

These two conditions will be often recalled as doubling measure and p-Poincaré assumption.
Up to now, we have already two different definitions of Sobolev Spaces in general metric
spaces:

(la) HP(X,d,m) is the domain of finiteness of the functional

n—oo

F2(f) :inf{liminf/ lgn|Pdm : f, — fin L, g, GUG(fn)};
X
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(1b) HyP(X,d, m) is the domain of finiteness of the functional
FP(f) = inf {lirginf/ lip,(fu)|Pdm : f, = fin LP, f, € LipO(X,d)}.
n—oo X

Unfortunately there is not uniqueness of the weak limit of lip,(f,) as f, — f in LP and
so a good definition for the (modulus of the) gradient is to consider, among all possible weak
limits, the one with minimal LP-norm. This will be called the minimal relaxed gradient.

As for the generalization of BL space, we have to introduce some concept of negligibility
of set of curves. The original Fuglede approach on R™ has been generalized in metric measure
spaces by Koskela, MacManus in [57] and subsequently by Shanmugalingam in [75|, and it
relies on the p-modulus Mod,, . We recall that, given a set I' of curves, we have

Mod,, w(I") = inf{/ fPdm : f: X — [0, 00] Borel, /fds > 1 forall v € F} )
X v

A property is said to hold for Mod,, y-almost every curve if the set of curves on which it fails
is Mod, m-negligible. Another relevant notion of negligibility of curves is obtained via the
so-called g-plans (introduced in [10] for ¢ = 2 and then in [9] for a generic ¢ € (1, +00)), that
are probability measures on AC([0,1]; X), concentrated on ACY, such that (e;)ym < C(m)m
for some C(m) > 0. Then a Borel set I' C C([0, 1]; X) is said p-negligible if 7w(I") = 0 for every
g-plan 7. Now we are ready to state two more definitions of Sobolev Spaces:

(3a) N'P(X,d,m) is the set of function f such that there exists g € LP(X, m) such that

1
[f(n) = f)l < /0 g(ve) 3| dt for Mod,, m-almost every curve ~.

The minimal such g is called the minimal p-upper gradient.

(3b) BL'P(X,d,m) is the set of function f such that there exists g € LP(X, m) such that

1
lf(1) — f(yo)| < / g(ve)|ye| dt for p-almost every curve ~.
0
The minimal such g is called the minimal p-weak upper gradient.

In [9] it is proved that (1a), (1b), (3a), (3b) are equivalent; it is important to underline
that we have not only equivalence of spaces, but also equality for the minimal gradients. From
now on we will refer to any of this equivalent Sobolev Spaces as WP (X, d, m).

In this thesis we will describe and improve the results present in the articles [4]-[6], [34]
about Sobolev and BV spaces written in these years, as well as new unpublished results.

The first Chapter contains some preliminary results needed in the the rest of the thesis;
the other chapters are devoted to specific parts of the theory, usually based on one of the
articles. We give briefly an outline here and then we introduce every specific Chapter with a
little more specifics.

e Chapter 2: in [6], in collaboration with L. Ambrosio and G. Savaré, we look more closely
to the relation between Mod,, m-negligibility and p-negligibility (also at the level of sets
of measures), providing a dual formulation of Mod,, . We obtain also another proof that
N = BLYP_ exploiting the structural properties of the set where the upper gradient
inequality (2) fails.
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e Chapter 3: we generalize the equivalence theorem in [9] to the Orlicz-Sobolev case.

e Chapter 4: in [5], in collaboration with L. Ambrosio, we prove the analogous of the
equivalences stated before in the context of BV spaces.

e Chapter 5: in [4], in collaboration with L. Ambrosio and M. Colombo, we prove that
under the mild assumption that (X,d) is a doubling space, the space W1P(X,d, m) is
reflexive, extending the result in [25]|, where the author proves it under doubling and
Poincaré assumptions.

e Chapter 6: in [34], in collaboration with G. Speight, we answer positively to the question
“does |V f|w,p depends on p?”, showing for every o > 0 the existence of a measure p on
R, absolutely continuous with respect to .£!, such that for any Lipschitz function f we
have |V f|,,, =0 for p <1+ «a while |V f|,, = |f/| forp>1+a.

e Chapter 7: we extend the W definition of Sobolev Space to a very general metric setting,
with an integration by parts formula made up with Weaver’s derivations. This latter
chapter contains also an (abstract) characterization of the weak gradient in Hilbert
spaces endowed with a general measure, extending a previous result in [22].

Negligibility of set of curves

The notion of p-modulus Mod,,(I') for a family I" of curves has been introduced by Beurling
and Ahlfors in [1] and then it has been deeply studied by Fuglede in [37], as we recalled, also
in connection with the theory of Sobolev Spaces in R™. It is obvious that the definition of
p-Modulus (4) (as the notion of length) is parametric-free, because the curves are involved in
the definition only through the curvilinear integral fv f. Furthermore, as in [37], one can even
go a step further, realizing that this curvilinear integral can be written as

/X fd,

where Jv is a positive finite measure in X, the image under v of the measure |y|.ZL 1,
namely
P = [ Rlae vBesx) )
7~ 1(B)
(here 'L I stands for the Lebesgue measure on I). It follows that one can define in a similar
way the notion of p-modulus for families of measures in X.

In more recent times, Koskela-Mac Manus [57] and then Shanmugalingham [75] used the
p-modulus to define the notion of p-weak upper gradient for a function f, while, even more
recently, Ambrosio, Gigli and Savaré introduced another notion of weak upper gradient, based
on suitable classes of probability measures on curves, described more in detail in the final
section of this chapter.

Since the axiomatization in [11] is quite different and sensitive to parameterization, it is
a surprising fact that the two approaches lead essentially to the same Sobolev space theory
(see Remark 5.12 of [11]). We say essentially because, strictly speaking, the axiomatization of
[11] is invariant (unlike Fuglede’s approach) under modification of f in m-negligible sets and
thus provides only Sobolev regularity and not absolute continuity along almost every curve;



Introduction vii

however, choosing properly representatives in the Lebesgue equivalence class, the two Sobolev
spaces can be identified.

With the goal of understanding deeper connections between the Mod, , and the proba-
bilistic approaches, we show in Chapter 2 that the theory of p-modulus has a “dual” point of
view, based on suitable probability measures 7 in the space of curves; the main difference with
respect to [11] is that, as it should be, the curves here are non-parametric, namely 7 should
be rather thought as measures in a quotient space of curves. Actually, this and other techni-
cal aspects (also relative to tightness, since much better compactness properties are available
at the level of measures) are simplified if we consider p-modulus of families of measures in
M4 (X) (the space of all nonnegative and finite Borel measures on X), rather than p-modulus
of families of curves: if we have a family T' of curves, we can consider the family ¥ = J(T")
and derive a representation formula for Mod, m(I'), see Section 2.4. Correspondingly, 7 will
be a measure on the Borel subsets of M (X).

Assuming only that (X, d) is complete and separable and m is finite, we prove in Theo-
rem 2.3.1 that for all Borel sets ¥ C M (X) (and actually in the more general class of Souslin
sets) the following duality formula holds:

1 1

1/p n(x) 1
Mod, (2 = sup = sup , -+ -=1 6
Modpn B =50 ) = i Gl b g 9

Here the supremum in the right hand side runs in the class of Borel probability measures n
in My (X) with barycenter in L9(X, m), so that

there exists g € LY(X, m) s.t. /M(A) dn(p) = / gdm VA e B(X);
A

the constant c4(n) is then defined as the L(X, m) norm of the “barycenter” g. A byproduct
of our proof is the fact that Mod,,  is a Choquet capacity in M (X), see Theorem 2.3.1. In
addition, we can prove in Corollary 2.3.2 existence of maximizers in (6) and obtain out of this
necessary and sufficient optimality conditions, both for 1 and for the minimal f involved in
the definition of p-modulus. See also Remark 2.1.3 for a simple application of these optimality
conditions involving pairs (u, f) on which the constraint is saturated, namely [ fdu = 1.

In the second part of Chapter 2 we show how the basic duality result of the first part can
be read in terms of measures and moduli in spaces of curves. For non-parametric curves this
is accomplished in Section 2.4, mapping curves in X to measures in X with the canonical map
J in (5); in this case, the condition of having a barycenter in L?(X, m) becomes

1
\ /] f(%)%\dtdﬂ(’ﬁ‘SCHfHLP(X,m) VF € Cy(X). )

Section 2.5 is devoted instead to the case of parametric curves, where the relevant map curves-
to-measures is

M~(B):= £'(vY(B)) VBe %B(X).
In this case the condition of having a parametric barycenter in L?(X, m) becomes

’//Olth)dthr(v)’ <Ol flprxamy  VF € Co(X). (8)

The parametric barycenter can of course be affected by reparameterizations; a key result,
stated in Theorem 2.5.5, shows that suitable reparameterizations improve the parametric



viil Introduction

barycenter from L9(X, m) to L>°(X,m). Then, in Section 2.6 we discuss the notion of null set
of curves according to [11] and [9] (where (8) is strengthened by requiring | [ f(v¢) dm(v)| <
Cl|fll 21 (x,m) for all ¢, for some C' independent of ¢) and, under suitable invariance and stability
assumptions on the set of curves, we compare this notion with the one based on p-modulus.
Eventually, in Section 2.7 we use there results to prove that if a Borel function f: X — R
has a continuous representative along a collection I" of the set AC>(]0, 1]; X) of the Lipschitz
parametric curves with Modp, m (M (AC>([0,1]; X) \ T)) = 0, then it is possible to find a
distinguished m-measurable representative f such that m({f # f}) — 0 and f is absolutely
continuous along Mod,, y-a.e.-nonparametric curve. By using these results to provide a more
direct proof of the equivalence of the two above mentioned notions of weak upper gradient,
where different notions of null sets of curves are used to quantify exceptions to (2).

Orlicz-Sobolev spaces in metric measure spaces

In Chapter 3 we generalize the equivalence result in [9] to the Orlicz-Sobolev case. Orlicz spaces
are a natural generalization of Lebesgue spaces LP(X, m), where the role of the function ¢ +— P
is replaced by an even convex function ® : R — [0, 00] such that ®(0) = 0. Then one can

define the norm
ugu@),mz{ [ soam: [ \If(f)ﬁl},
X X

where W is the convex conjugate of ®. The Orlicz space L*(X,m) is simply the set of m-
measurable functions which have finite (®)-norm.

The Sobolev-Orlicz space W®(X,d, m) is, roughly speaking, the set of functions f € L!
such that |V f| € L®. In the Euclidean case this makes sense since there is an a priori gradient
(namely the distributional gradient), while in general metric measure spaces this is no more
possible, and thus one can think of several different definitions, as in the WP case. In the
literature, the dominant approach is the Newtonian space one, based upon the ®-modulus:
this space is called N 1"I’(X ,d, m), and the definition follows precisely the one we introduced
before for the homogeneous case: a function g € L®(X,m) is a ®-upper gradient for f if
the upper gradient inequality (2) holds for Mod ) n-almost every curve 7 (see [2], [78] and
subsequently [65], [68] for the generalization to Banach and quasi-Banach function spaces).

Here we give different definitions, in the spirit of (1a) and (3b): first we define the space
Hy® (X,d, m) as the domain of finiteness of the following functional

F2(f) = inf {lminf lipy(fu)ll@)m © fo — fin L'(X,m), (f2) C Lipg(X,d)} .

The definition of BLM®(X,d, m) is a little more subtle: f € BLY® if there exists a constant
E > 0 such that for every finite Radon measure 7 on AC([0, 1]; X') such that (e;)y7 < Cm for
some C(m) > 1, we have

1
[ 1560 - fem)lam < £-Cm) /O Fell.m dt. 9)

Notice that it is necessary to have the weaker integral form in order to deal with a generic
N-function ® (see also the BV case below for comparison). The main result of this chapter
is that BLY® = Hy*® and moreover F(f) = FE, (f), where F5, (f) is the minimal constant
E such that (9) holds. That is, Lipschitz functions are dense in energy in BLY®.
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The proof that BLY®(X,d, m) includes Hy'®(X,d, m) and that FE, < FP is not too
difficult. Notice that proving equivalence of the two definitions amounts to passing from
a (quantitative) information on the behavior of the function along random curves to the
construction of a Lipschitz approximation. Remarkably, this result does not rely on doubling
and Poincaré assumptions on the metric measure structure. As in [9] (based essentially on
ideas come from [11], dealing with the case of W12 Sobolev spaces), the proof is not really
constructive: it is obtained with optimal transportation tools and using the theory of gradient
flows of convex and lower semicontinuous functionals in Hilbert spaces. Specifically, in our
case we shall use the gradient flow in L?(X,m) of the functional f +— F2(f). We will not enter
in further details of the proof; a summary with the main ideas can be found at the beginning
of the chapter.

A consequence of this equivalence theorem is that f o~ is BV along ®-almost every curve
whenever f € BLY®, but we can’t expect more, as shown by the example in Subsection 3.4.1,
where a characteristic function is proved to belong to Ho'®, where ®(¢) = (¢t + 1)log(t+1) — ¢.

In Section 3.4.2 the easier case when W is doubling is treated, i.e. when there exists C' > 1
such that ¥(2z) < CV¥(z) for all z € R. In this case we have that f o~y is W1 along ®-
almost every curve, and also there exists a well defined gradient |V f|,, ¢; moreover under this
assumption, in Theorem 3.5.6 we prove that

HM(X,d,m) = BLY®(X,d,m) = N*®(X,d, m),

along with the equality between |V f|, & and the minimal ®-upper gradient. Then a strict
relationship between W1® (X, d, m) and the L'-relaxation of the functional

[x @(lip,(f)) dm if f € Lipy(X,d)
400 otherwise

G@(f):{

is made clear, proving a representation formula that involves the ®-weak gradient |V f|, . All
these results in the case in which ¥ is doubling are achieved thanks to a Mazur-type lemma
for weak-* convergence in L®(X, m), contained in Lemma 3.4.3.

Functions of Bounded Variation in metric measure spaces

In this chapter we provide a positive answer to a problem raised in [9]. Recall that, following
the notion of BV function given in [67], a function f € L'(X,m) belongs to BV.(X,d,m)
if there exist Lipschitz functions with bounded support f,, convergent to f in L'(X, m) such
that

limsup/ lip, (fn) dm < oco.
X

n—o0

By localizing this construction one can define

IDF1.(4) = i {imint [ () dm s () € Livgel) fu— £in 21} (10

for any open set A C X. In [67], it is proved (with minor variants in the definition, namely
the convergence is in Lllo . and the asymptotic Lipschitz constant is replaced by the slope) that
this set function is the restriction to open sets of a finite Borel measure, called total variation
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measure and, following basically the same strategy, we will extend this result to our more
general setup.

Then we consider a new definition of BV function in the spirit of the theory of weak,
rather than relaxed, upper gradients [57], [75] that we already recalled. Without entering in
this introduction in too many technical details, we say that f € w— BV (X,d, m) if there exists
a finite Borel measure p with this property: for any probability measure 7 on Lip([0, 1]; X)
the function ¢ — f o~ belongs to BV (0, 1) for m-a.e. curve ; and

1
C(m) | Lip(M)]] oo ()

Here C(7r) is the least constant C' such that (e;)yw < Cm for all ¢ € [0,1], where () := ¥
are the evaluation maps at time ¢. The smallest measure p with this property will be denoted
by [Dfluw-

We will prove that these two definitions are equivalent, and we have also |Df|, = | D f|w;
this result extends also to intermediate spaces, such as the one considered by Cheeger, and to
even weaker definitions, in the spirit of the BL definition in the Orlicz case.

The proof follows the same lines of the equivalence theorem in Chapter 3. We recall that
the functional of which we take the gradient flow, namely f +— |Df|.(X), is also called total
variation flow in image processing [16]. We will not enter into details of the proof here but
we just mention that some properties of BV functions readily extend to the more general
framework considered in this chapter. For instance, the coarea formula

Df], = /0 DX oyt + /

/’Yti|D(f07)|d‘“' < p.

0
|DX{f<t}|*dt
o

can be achieved following wverbatim the proof in [67]. On the other hand, more advanced
facts, as the decomposition alone curves in absolutely continuous and singular part of the
derivative (see |7, Section 3.11]), seem to be open at this level of generality: for instance,
Example 4.5.4 shows that, in contrast to what happens in Euclidean metric measure spaces
(here the supremum is understood in the lattice of measures), the measure

1
sup

x (Tl')HLip(fy)HLoo(ﬂ_)/W‘Da(fo’}’)‘dﬂ',

which is easily seen to be smaller than the absolutely continuous part of | D f|,,, may be strictly
smaller.

Reflexivity and discrete approximation of the gradient

In |25], Cheeger investigated the fine properties of Sobolev functions on metric measure spaces,
with the main aim of providing generalized versions of Rademacher’s theorem and, along with
it, a description of the cotangent bundle. Assuming that the Polish metric measure structure
(X,d,m) is doubling and satisfies a Poincaré¢ inequality (see Definitions 1.9.1 and 5.2.1 for
precise formulations of these structural assumptions) he proved that the Sobolev spaces are
reflexive and that the g-power of the slope is L4(X, m)-lower semicontinuous, namely

Fu f € Lip(X), /]fh—f]qdm—m — liminf/ \th]qdmz/ Vfl7dm. (1)
X h—o0 X X
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Here the slope |V f|, also called local Lipschitz constant, is defined by

IVfl(z) = lir;jyp )

These results come also as a byproduct of a generalized Rademacher’s theorem, which can
be stated as follows: there exist an integer N, depending on the doubling and Poincaré
constants, a Borel partition {X;};e; of X and Lipschitz functions f]’f, 1<j < N(i) <N, with
the property that for all f € Lip(X) it is possible to find Borel coefficients cé-, 1<j<N,
uniquely determined m-a.e. on X, satisfying

N(i)

V(=D @)

J=1

(x)=0 for m-a.e. z € X;. (12)

It turns out that the family of norms on RV

N(i)

I, oyl = [V 3 asfi|@)
7j=1

indexed by x € X; satisfies, thanks to (12),
(c (), ... »4\/@)(@)”1 = |V f|(x) for m-a.e. x € X;.

Therefore, this family of norms provides the norm on the cotangent bundle on X;. Since
N(i) < N, using for instance John’s lemma one can find Hilbertian equivalent norms |- |, with
bi-Lipschitz constant depending only on N. This leads to an equivalent (but not canonical)
Hilbertian norm and then to reflexivity. In this chapter we aim mostly at lower semicontinuity
and reflexivity: we recover the latter (and separability as well) without assuming the validity
of the Poincaré inequality and replacing the doubling assumption on (X, d, m) with a weaker
assumption, namely the geometric doubling of (suppm,d).

In particular we prove that the Sobolev space W14(X,d, m) is reflexive when 1 < ¢ < oo,
(suppm, d) is separable and doubling, and m is finite on bounded sets. Instead of looking for
an equivalent Hilbertian norm (whose existence is presently known only if the metric measure
structure is doubling and the Poincaré inequality holds), we rather look for a discrete scheme,
involving functionals F5(f) of the form

To() =5 3 s~ faslm(4?).

) S
7 A]_NAZ_

Here Afb-s is a well chosen decomposition of supp m on scale 8, fs5; = f 46 f and the sum involves

cells A? close to A? , in a suitable sense. This strategy is very close to the construction of
approximate g-energies on fractal sets and more general spaces, see for instance [52], [76].
It is fairly easy to show that any I'-limit point Fy of F5 as § — 0 satisfies

Fo(f) < c(ep, q)/ lip,(f)9dm for all Lipschitz f with bounded support, (13)
b's
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where cp is the doubling constant of (X,d) (our proof gives ¢(cp,q) < 69¢%). More delicate
is the proof of lower bounds of Fj, which uses a suitable discrete version of the weak upper
gradient property and leads to the inequality

/ VL dm < Fo(f)  VfeWH(X,d,m). (14)
Combining (13), (14) and the equivalence of weak gradients gives
15 19 < 5000 < clepaa) [ VHGdm S €WK 4

The discrete functionals Fs(f)+ Y, | f5:/9m(A?) describe L norms in suitable discrete spaces,
hence they satisfy the Clarkson inequalities; these inequalities (which reduce to the parallel-
ogram identity in the case ¢ = 2) are retained by the I-limit point Fy + || - ||2. This leads
to an equivalent uniformly convex norm in W14(X,d,m), and therefore to reflexivity. As a
byproduct one obtains density of bounded Lipschitz functions in W4(X,d, m) and separa-
bility. In this connection, notice that the results of [11], [9] provide, even without a doubling
assumption, a weaker property (but still sufficient for some applications), the so-called density
in energy; on the other hand, under the assumptions of [25] one has even more, namely density
of Lipschitz functions in the Lusin sense.
Notice however that JFy, like the auxiliary Hilbertian norms of [25], is not canonical: it might
depend on the decomposition A? and we don’t expect the whole family F5 to I'-converge as
d — 07. We also provide an example showing that reflexivity may fail if the metric doubling
assumption is dropped.

In the final part of the chapter we prove also (11), following in large part the scheme of
[25] (although we get the result in a more direct way, without an intermediate result in length
spaces). In particular we need the Poincaré inequality to establish the bound

IV < CIVflug for any Lipschitz function f with bounded support,

which, among other things, prevents |V f|, 4 from being trivial.

The p-weak gradient depends on p

Another important issue in the theory is whether the weak gradient depends on p or not
(at least for Lipschitz functions). For example it was known [25] that under p-Poincaré and
doubling assumptions on the measure, the weak gradient equals |Vu| for a Lipschitz function
u and so, it doesn’t depend on the exponent, at least for ¢ > p. Another recent result by
Gigli and Han [40] in this direction is that in every RCD(K,00) spaces an even stronger
property holds true: if f € WIP has a weak gradient |V f|,, € LI(X,m) then f € W1 and
IV flw,g = |V flwp (the result holds even if f € BV and |Df| = |V f|y1m).

In Chapter 6, based on the results of [34], given « we find a result in the opposite direction:
we construct a weighted Lebesgue measure on R for which the family of non constant curves
has p-modulus zero for p < 1+ a but the weight is a Muckenhoupt A, weight for p > 1+ «.
In particular, the p-weak gradient is trivial for small p but non trivial for large p. We also
give a full description of the p-weak gradient for any locally finite Borel measure on R.

This is the main theorem:
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Theorem 1 Letn € N and o > 0. Then there exists a Borel function w: R™ — RY such that
the measure pu := wL"™ is doubling and:

e For p <1+ a we have Mod,, ,(I'c) = 0 where T is the family of non constant abso-
lutely continuous curves in R™. This implies that the p-weak gradient on (R™,|- |, u) is
identically zero for every function.

e For p > 1+ « the function w is a Muckenhoupt Ap-weight. This implies that a weak
p-Poincaré inequality holds; it follows that the p-weak gradient on (R™,|-|, u) agrees with
the slope for Lipschitz functions.

The simple structure of curves in R gives rise to a simple description of the p-weak gradient
with respect to each measure. In Theorem 6.4.2 we show that, for any locally finite Borel
measure on R and p > 1, the corresponding p-weak gradient of a Lipschitz function f: R — R
is, at almost every point x, either equal to zero or equal to |f’(x)|. Roughly speaking, the
points where the p-weak gradient is non zero are those points which have a neighborhood that,
when considered as a set containing a single curve, has positive p-modulus.

A definition via derivation and integration by parts

In Chapter 7 we want to give a definition of Sobolev spaces via integration by parts formula,
in the spirit of (2) in euclidean spaces; the role of the vector field will be played by derivations.

The derivations were introduced in the seminal papers by Weaver [80], and then in more
recent times widely used in the Lipschitz theory of metric spaces, for example in connection
with Rademacher theory for metric spaces, but also as a generalization of sections of the
tangent space [14], [15], [39], [73], [74]. Here we see that the derivations are also powerful
tools in the Sobolev theory, as already point out in [39]. A derivation, in our definition, is
simply a linear map b : Lipy(X,d) — L°(X,m) such that the Liebniz rule holds and it has the
locality property |b(f)| < g - lip,(f) for some g € LY(X,m). Now we simply say that f € LP
is a function in WP if there is a Lip,(X)-linear map L ¢ such that integration by part holds:

/Lf(b)dm:—/ f-divbdm Vb € Der®,
X X

where Der?? is the subset of derivation for which |b|,divb € LI(X, m).

We will see that it is well defined a proper “differential" df : Der?? — L' and so it
is possible to provide also a notion of modulus of the gradient |V f| in such a way that
|df (b)| < |V f|-|b]; in Section 7.2 we see that this notion coincides with all the other (equivalent)
notion of modulus of the gradient given in [9] (namely (1a), (1b), (3a) and (3b)), and in
particular there is also identification of the Sobolev spaces.

The easy part is the inclusion of the Sobolev Space obtained via relaxation of the asymp-
totic Lipschitz constant into the one defined by derivations. The other inclusion uses the fact
that g-plans, namely measures on the space of curves with some integrability assumptions,
induces derivations thanks to the basic observation that, even in metric spaces, we can always
take the derivative of Lipschitz functions along absolutely continuous curves; this observation
has already been used in [15], [73], [74] to find correlation between the differential structure of
(X,d) and the structure of measures on the set of curves (a peculiar role is played by Alberti
representation).
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In Section 7.3.1 we extend this equivalence to the BV space, using the results in [5].

In the last section, we eventually apply this new definition in order to find an abstract
characterization of the weak gradient for C' functions, when X is a Banach space. This
characterization has already been obtained in [22| for R™, while in Theorem 6.4.2 we re-obtain
it in the one dimensional case. However here we employ a different strategy and the proof
will follow the line of [3], where a similar bundle (the differentiability bundle) is constructed
in order to find the directions of “almost everywhere” differentiability of Lipschitz functions
given an arbitrary measure m in R"™.

It is important to remark that the differentiability bundle is always contained in the Sobolev
bundle ), that we construct; this link is not at all trivial and we believe that this connection
has to be inspected deeply.
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Other works

Here we give a short summary of the other research made during the PhD studies. We briefly
report the results obtained and we refer to the original papers for a complete treatment of the
problems and the relevant and related literature.

Equality between Monge and Kantorovich multi marginal problems with
Coulomb cost

In [30], in collaboration with M. Colombo, we generalize a previous result of Pratelli [71] to
the multimarginal case. Given a probability measure p on a Polish metric space (X,d), and
integer n > 2 and a lower semicontinuous cost function ¢ : X™ — [0, 00], we introduce the
following infimum problems:

(K) := inf{/nc(xl,...,xn) dr:me (X)), (e;)ym = p Vi e {1,...,n}};

(M) = inf { /Rd c(z, T(x), ..., TV (z)) du(z) : Tip = p, T = Id}.

It is obvious that (K) < (M) since given an admissible 7" in (M) we have that 7 =
(Id, T,T®, ... ,T(”*l))ﬁ,u is admissible in (K') and has the same cost. We prove the following;:

Theorem 2 Let pu be a non atomic probability measure and let ¢ : X" — [0,00] be a
l.s.c. cost that is continuous in its finiteness domain and cyclical, namely c(x1,xo, ..., xy) =
c(xn,x1,...xp—1). Then (M) = (K).

In particular this is true when X = R? and ¢ is the Coulomb cost

1

c(x1,m2,. .., Tp) = Z _.

— |z — ]
J
This was our model cost, whose multimarginal optimal transport problem is studied in a
mathematical model for the strong interaction limit in the density functional theory; the
mathematical quest in this setting is to prove that the minimum in (K) is attained by a
cyclical map admissible in (M). The equality (M) = (K) can be seen as a first validation of
this conjecture.
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Multimarginal optimal transport maps for 1-dimensional repulsive costs

In [29], in collaboration with M. Colombo and L. De Pascale, we deal with a particular multi
marginal optimal transportation problem. Referring to the previous subsection, we prove that
in the case X = R with the cost ¢ with the peculiar structure

c(ar, . an) =Y foi— ), (15)

1<j

where f is an even nonnegative l.s.c. function, that restricted to (0, 00) is convex and decreas-
ing, we have that the minimum in (M) is reached, and moreover we find also explicitly its
form:

Theorem 3 Let ¢ be the cost (15). Let p be a non-atomic probability measure on R such that
(K) <oo. Let —co=dy < dj < ...<dn = ~o0 be such that

p([di,di_:,_l]):l/N Vi:(),...,N—l. (16)

Let T : R — R be the unique (up to p-null sets) function increasing on each interval [d;, d;i+1],
1=0,...,N —1, and such that

Tﬁ(l[di,di_;,_ﬂp) = 1[di+17di+2]p Vi = 0, ce ,N - 2, and Tﬂ(l[del,dN]p) = 1[do,d1]p' (17)

Then T is an admissible map for (M) and

(K) = /R o(z, T(x), TP (z),..., TNV (z)) dp. (18)

Moreover the only symmetric optimal transport plan is the symmetrization of the plan
induced by the map T.

We recall that a symmetric transport plan is a transport plan 7 such that (o)ym = 7 for
every permutation of the coordinates o.
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Lower semicontinuity for non-coercive polyconvex integrals in the limit case

In [32], in collaboration with G. De Philippis and M. Focardi, we deal with the problem of
lower semicontinuity for integrals ' : W™~ 1(R"; R™) of the form

F(u):/Qf(x,u(x),Ml(Vu))da:,

where [ := min{m, n} and M!(A) denotes the vector whose components are all the minors
of order un to [ of the matrix A € R™*".

In this paper, we investigate the lower semicontinuity properties of energies with densities
f satisfying

(Hp) f = f(z,u,&) : @ x R® x R7 — [0, 00) is in C%(Q x R® x R?) and f(z,u,-) is convex for
all (z,u) € Q@ x R”

along sequences
(Seq) (uy); C Wl’K(Q,Rm) satisfying

wj —u in WHL (19)

Our main results are:
Theorem 4 Let 2 < m < n, let f satisfy (Hp), and suppose in addition that
f(,-,&) s locally Lipschitz continuous for all £ € RY. (20)
Then, for every sequence (u;); C WhH™(Q,R™) satisfying (Seq) we have
F(u) < limjinf F(uj).
Theorem 5 Let 2 < m =n, and let f enjoy (Hp).
Then, for every sequence (u;); C WE™(Q,R™) satisfying (Seq) we have

F(u) < limjian(uj). (21)

Theorem 6 Let2<m=n+1, let f:R7 — [0,00) be convex, and
Flu) = /Q P (Vu(x))) de .

Then, for every sequence (u;); C WH™(Q, R satisfying (Seq) we have

F(u) < liminf F'(u;).
j
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CHAPTER 1

Preliminary notions

In this section we introduce some notation and recall a few basic facts about capacities and
Choquet theorem, absolutely continuous functions and Lipschitz functions, gradient flows of
convex functionals, Orlicz spaces and optimal transportation, see also [8], [79], [72| as general
references.

Furthermore we will recall Hopf-Lax formula and Hamilton-Jacobi equation in metric
spaces, a tool that will be useful in Chapter 3.

1.1 Topological spaces and Choquet theorem

In a topological Hausdorff space (E, ), we denote by & (FE) the collection of all subsets of F,
by .7 (E) (resp. # (E)) the collection of all closed (resp. compact) sets of E, by Z(FE) the
o-algebra of Borel sets of E. We denote by Cy(E) the space of bounded continuous functions
on (E,7), by M4 (E), the set of o-additive measures p : Z(E) — [0,00), by P(E) the subclass
of probability measures. For a set F' C E and p € M, (F) we shall respectively denote by
xr : E — {0,1} the characteristic function of F' and by plL F the measure xppu, if F is
p-measurable. For a Borel map L : E — F we shall denote by Ly : My (E) — M, (F) the
induced push-forward operator between Borel measures, namely

Lyp(B) == p(L™Y(B))  VueM4(E), Be B(F).

We shall denote by N = {0,1,...} the natural numbers, by .Z¢ the Lebesgue measure on the
d-dimensional Euclidean space R

1.1.1 Polish spaces

Recall that (E,7) is said to be Polish if there exists a distance p in E which induces the
topology 7 such that (E,p) is complete and separable. Notice that the inclusion of M4 (E)
in (Cy(E))* may be strict, because we are not making compactness or local compactness
assumptions on (F, 7). Nevertheless, if (E,7) is Polish we can always endow M, (F) with
a Polish topology w-Cy(F) whose convergent sequences are precisely the weakly convergent

1
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ones, i.e. sequences convergent in the duality with Cy(E). Obviously this Polish topology is
unique. A possible choice, which can be easily adapted from the corresponding Kantorovich-
Rubinstein distance on P(E) (see e.g. |20, §8.3] or |8, Section 7.1]) is to consider the duality
with bounded and Lipschitz functions

pmdmvrzsmﬂjﬂ;hw—iéjdﬂ:fGLmAE%Sgﬂﬂsl,

1f(@) = f(y)] < p(z,y) V%yeE}

1.1.2 Souslin, Lusin and analytic sets, Choquet theorem

Denote by N°° the collection of all infinite sequences of natural numbers and by N§° the
collection of all finite sequences (ng,...,n;), with ¢ > 0 and n; natural numbers. Let o/ C
Z(F) containing the empty set (typical examples are, in topological spaces (F, 7), the classes
F(E), #(F), B(F)). We call table of sets in &/ a map C associating to each finite sequence
(no,---,ni) € Ng® aset Cipy . ny) € .

Definition 1.1.1 (&/-analytic sets) S C E is said to be <7 -analytic if there exists a table

C of sets in o such that
A= U ﬂ C(”Oy---vni)'
(n)EN i=0

Recall that, in a topological space (E,T), A(E)-analytic sets are universally measurable
[20, Theorem 1.10.5]: this means that they are o-measurable for any o € M (E).

Definition 1.1.2 (Souslin and Lusin sets) Let (E,7) be an Hausdorff topological space.
S € P(E) is said to be a Souslin (resp. Lusin) set if it is the image of a Polish space under
a continuous (resp. continuous and injective) map.

Even though the Souslin and Lusin properties for subsets of a topological space are in-
trinsic, i.e. they depend only on the induced topology, we will often use the diction “S Suslin
subset of E” and similar to emphasize the ambient space; the Borel property, instead, is not
intrinsic, since S € #(S) if we endow S with the induced topology. Besides the obvious
stability with respect to trasformations through continuous (resp. continuous and injective)
maps, the class of Souslin (resp. Lusin) sets enjoys nice properties, detailed below.

Proposition 1.1.3 The following properties hold:
(i) In a Hausdorff topological space (E,T), Souslin sets are % (E)-analytic;

(i1) if (E,T) is a Souslin space (in particular if it is a Polish or a Lusin space), the notions of
Souslin and F (E)-analytic sets concide and in this case Lusin sets are Borel and Borel
sets are Souslin,

(iii) if B, F are Souslin spaces and f : E — F is a Borel injective map, then f~! is Borel;

() if E, F are Souslin spaces and f : E — F is a Borel map, then f maps Souslin sets to
Souslin sets.
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Proof. 'We quote |20] for all these statements: (i) is proved in Theorem 6.6.8; in connection
with (ii), the equivalence between Souslin and .7 (E)-analytic sets is proved in Theorem 6.7.2,
the fact that Borel sets are Souslin in Corollary 6.6.7 and the fact that Lusin sets are Borel
in Theorem 6.8.6; finally, (iii) and (iv) are proved in Theorem 6.7.3. O

Since in Polish spaces (E, T) we have at the same time tightness of finite Borel measures
and coincidence of Souslin and .% (E)-analytic sets, the measurability of %(FE)-analytic sets
yields in particular that

o(B) =sup{o(K) : K€ ¥ (F), KCB} forall BC E Souslin, c € My (E). (1.1.1)

We will need a property analogous to (1.1.1) for capacities [33], whose definition is recalled
below.

Definition 1.1.4 (Capacity) A set function J: P(E) — [0,00] is said to be a capacity if:

e J is nondecreasing and, whenever (A,) C P(E) is nondecreasing, the following holds
n=0
o if (K,) C J#(F) is nonincreasing, the following holds:
lim 3(Ky) =3 (ﬂ Kn> .
n=0
A set B C E is said to be J-capacitable if 3(B) = sup J(K).

Kex (E)

Theorem 1.1.5 (Choquet) ([33, Thm 28.1I1]) Every J¢ (E)-analytic set is capacitable.

1.2 Absolutely continuous curves

If (X, d) is a metric space and I C R is an interval, we denote by C(I; X)) the class of continuous
maps (often called parametric curves) from I to X. We will use the notation ~; for the value
of the map at time ¢t and e; : C(I; X) — X for the evaluation map at time ¢; occasionally, in
order to avoid double subscripts, we will also use the notation y(¢). The subclass AC(I; X) is
defined by the property

t
d(vsm)ﬁ/ g(r)dr s,tel, s<t

for some (nonnegative) g € L'(I). The least, up to .#!-negligible sets, function g with property
is the so-called metric derivative (or metric speed)

. . d(Yesns )
= lim ——————~
”Yt’ hg% ‘h‘ )
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see [13] for its existence. The classes ACP(I; X ), 1 < p < oo are defined analogously, requiring
that || € LP(I). The p-energy of a curve is then defined as

Ep(v) = {f[ |e|Pdt  if v € ACP(I; X), (1.2.1)

~+00 otherwise,

and &€1(v) = £(7), the length of v, when p = 1. Notice that AC' = AC and that AC>(I; X)
coincides with the class of d-Lipschitz functions.

If (X,d) is complete the interval I can be taken closed with no loss of generality, be-
cause absolutely continuous functions extend continuously to the closure of the interval. In
addition, if (X,d) is complete and separable then C(I; X) is a Polish space, and ACP(I; X),
1 < p < oo are Borel subsets of C(I; X) (see for instance [11]). We will use the short notation
M, (ACP(I; X)) to denote finite Borel measures in C(I; X) concentrated on ACP(I; X). The
integration of a Borel function g along a curve v € AC(I; X) is well defined by the formula

/7 o= /I g il

1.2.1 Reparameterization

We collect in the next proposition a few properties which are well-known in a smooth setting,
but still valid in general metric spaces. We introduce the notation

AC®([0,1]; X) := {a e AC®([0,1];X) : |6 = £(0) >0 L -ae. on (0, 1)} (1.2.2)

for the subset of AC(]0,1]; X) consisting of all nonconstant curves with constant speed. It
is easy to check that AC2°(]0,1]; X) is a Borel subset of C([0,1];X), since it can also be
characterized by

7€ ACK([0,1;X) <= 0<Lip(y) <£(7), (1.2.3)

and the maps v — Lip(v) and v — £(y) are lower semicontinuous.

Proposition 1.2.1 (Constant speed reparameterization) For any v € AC([0,1]; X)
with £(y) > 0, setting

1 [t
s(t) = M/o || dr, (1.2.4)

there exists a unique n € AC([0,1]; X) such that v = nos. Furthermore, n =~y os ! where

s! is any right inverse of s. We shall denote by

k:{vy€AC([0,1]; X) : £(y) > 0} — ACX([0,1]; X) Yy =vyo0s ! (1.2.5)

the corresponding map.

Proof. We prove existence only, the proof of uniqueness being analogous. Les us now define a
right inverse, denoted by s™!, of s (i.e. sos™! is equal to the identity): we define in the obvious
way s~ ! at points y € [0, 1] such that s~!(y) is a singleton; since, by construction, v is constant
in all (maximal) intervals [c,d] where s is constant, at points y such that {y} = s([c,d]) we
define s~!(y) by choosing any element of [c, d], so that yos™!os = v (even though it could be
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that s~! o's is not the identity). Therefore, if we define n = yos™!

and that 7 is independent of the chosen right inverse.
In order to prove that n € AC°([0, 1]; X) we define ¢} := £(y) + 1/k and we approximate
uniformly in [0, 1] the map s by the maps si(t) := £, fot(k:_l + |4|) dr, whose inverses s; !

, we obtain that v =nos

[0, 1] — T are Lipschitz. By Helly’s theorem and passing to the limit as k — oo in sy os; ! (y) =
1, we can assume that a subsequence s];(;) pointwise converges to a right inverse sl as p — 00;

the curves nP :=~vo sl;(;) are absolutely continuous, pointwise converge to 1 := v os~! and
Y (S ()]
P(t)| = —— D < g for Llae. int e (0,1).
k() (ki) (1))

It follows that 7 is absolutely continuous and that || < £(y) Z*-a.e. in (0,1). If the strict
inequality occurs in a set of positive Lebesgue measure, the inequality £(n) < () provides a
contradiction. O

1.2.2 Equivalence relation in AC([0, 1]; X)

We can identify curves v € AC([0, 1], X), ¥ € AC([0,1]; X) if there exists ¢ : [0,1] — [0, 1]
increasing with ¢ € AC([0,1];[0,1]), ¢! € AC([0, 1];[0, 1]) such that v = 7 o ¢. In this case
we write v ~ 4. Thanks to the following lemma, the absolute continuity of ¢! is equivalent
to ¢ >0 ZLlae. in (0,1).

Lemma 1.2.2 (Absolute continuity criterion) Let I, I be compact intervals in R and let
o : I — I be an absolutely continuous homeomorphism with o >0 ZLae inI. Then
@Y I — I is absolutely continuous.

Proof. Let 1 = ¢~!; it is a continuous function of bounded variation whose distributional
derivative we shall denote by p. Since p([a,b]) = 1(b) —1(a) for all 0 < a < b < 1, we need to
show that p < Z1. Tt is a general property of continuous BV functions (see for instance [7,
Proposition 3.92]) that u(x»~(B)) = 0 for all Borel and .#!-negligible sets B C R. Choosing
B = ¢(E), where E is a Z'-negligible set where the singular part p® of u is concentrated,
the area formula gives

/ J(s)ds = 21 (E) =0,
B

so that the positivity of ¢’ gives .Z!(B) = 0. It follows that p* = 0. O

Definition 1.2.3 (The map J) For any v € AC([0,1]; X) we denote by Jy € My (X) the
push forward under v of the measure |y|.Z11[0,1], namely the measure that represents the
integration along the curve ~y:

1
/ gdJy :/ g(v) || dt for all g : X — [0, 00] Borel. (1.2.6)
X 0

In particular we have that Jv = Jn whenever v ~ n, and that Jy = Jkr.
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Although this will not play a role in the sequel, for completeness we provide an intrinsic
description of the measure Jv. We denote by s#! the 1-dimensional Hausdorff measure of a
subset B of X, namely 51 (B) = limg o 5 (B), where

H5H(B) := inf {Z diam(B;) : B C | JB;, diam(B;) < 5}
=0 i=0
(with the convention diam(()) = 0).

Proposition 1.2.4 (Area formula) If v € AC([0,1]; X), then for all g : X — [0, 00] Borel
the area formula holds:

1
/ ()lAel dt = / 9(2)N(v,2) A (@), (12.7)
0 X

where N (v,z) := card(y~!(x)) is the multiplicity function of . Equivalently,

Jy = N(r, )" (1.2.8)
Proof. For an elementary proof of (1.2.7), see for instance [13, Theorem 3.4.6]. O

1.2.3 Non-parametric curves

We can now introduce the class of non-parametric curves; notice that we are conventionally
excluding from this class the constant curves. We first introduce the notation

ACy([0,1]; X) == {y € AC([0,1]; X) : |[¥] >0 L -a.e. on (0,1)}.

It is not difficult to show that ACg([0,1]; X) is a Borel subset of C([0,1]; X). In addition,
Lemma 1.2.2 shows that for any v € ACy([0, 1]; X) the curve ky € AC(]0, 1]; X) is equivalent
to 7.

Definition 1.2.5 (The class € (X) of non-parametric curves) The class €(X) is de-
fined as
F(X) = AC([0,1]; X)/~, (1.29)

endowed with the quotient topology T4 and the canonical projection 7 (x).

We shall denote the typical element of ¢’(X) either by v or by [y], to mark a distinction
with the notation used for parametric curves. We will use the notation Vs and 7y, - the initial
and final point of the curve v € ¢'(X), respectively.

Definition 1.2.6 (Canonical maps) We denote:

(a) by i:=mgok: {y e AC([0,1];X) : £(y) > 0} — €(X) the projection provided by
Proposition 1.2.1, which coincides with the canonical projection Ty (x) on the quotient
when restricted to ACy([0,1]; X);

(b) byj:=kom,' : €(X) — ACX([0,1]; X) the canonical representation of a non-parametric
curve by a parametrization in [0, 1] with constant velocity.
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(c) by J:€(X) — M (X)\ {0} the quotient of the map J in (1.2.6), defined by

J[y] = Jr. (1.2.10)

We notice that ACy/~ # AC/~; in particular in the latter there are equivalence classes
without representatives in AC2°([0, 1]; X), for example when we consider the equivalence class
of a curve that stops for positive time on a single point.

Remark 1.2.7 Thanks to (1.2.6) we have that f,y g is well defined for v € € (X); in particular,
we have that fvg = fngjy.

Lemma 1.2.8 (Measurable structure of ¢ (X)) If (X,d) is complete and separable, the
space (€ (X), T¢) is a Lusin Hausdorff space and the restriction of the map i to AC2°([0,1]; X)
is a Borel isomorphism. In particular, a collection of curves I' C € (X) is Borel if and only if
j(I') is Borel in C([0,1]; X). Analogously, I' C € (X) is Souslin if and only if j(I') is Souslin
in C([0,1]; X).

Proof.  Let us first show that (¢ (X),7y) is Hausdorff. We argue by contradiction and
we suppose that there exist curves i(o;) € €(X) with o; € AC°([0,1]; X), i = 1, 2, and a
sequence of parametrizations s?' € AC([0,1];[0, 1]) with (s?)’ > 0 Z!-a.e. in (0,1), such that

lim sup d(o4(s}(t)), o2(s3(1))) = 0.

=00 te0,1]
Denoting by r(t) := st o (s3)~! and r3(¢) := s% o (s7) 7!, we get

lim sup d(or(t),0a(F3(£)) =0,  lim sup d(o1 (7 (1)), 02(t)) = O.
N0 ¢e(0,1] N0 4e(0,1]

The lower semicontinuity of the length with respect to uniform convergence yields ¢ := ¢(o1) =
{(03) and therefore for every 0 <t < t” <1

v ¢

Climinf (ry (") — r3(t')) = lim |(o20ry)|dt > / loh|dt = e(t" —t').
n—00 n—co [ t/

Choosing first ¢ = ¢ and t” = 1 and then ¢ = 0 and ¢’ = ¢ we conclude that lim,, 75 () = ¢

for every ¢ € [0,1] and therefore o1 = o5.

Notice that AC2°([0,1]; X) is a Lusin space, since AC°([0,1]; X) is a Borel subset of
C([0,1]; X). The restriction of i to ACZ°([0, 1]; X) is thus a continuous and injective map from
the Lusin space AC2°([0,1]; X) to the Hausdorff space (¢'(X), 7¢) (notice that the topology
T¢ is a priori weaker than the one induced by the restriction of i to AC°([0, 1]; X)). It follows
by definition that € (X) is Lusin. Now, Proposition 1.1.3(iii) yields that the restriction of i is
a Borel isomorphism. O

Lemma 1.2.9 (Borel regularity of J and J) The map J : AC([0,1]; X) — M. (X) is
Borel, where AC([0, 1]; X) is endowed with the C([0,1]; X) topology. In particular, if (X,d) is
complete and separable, the map J : €(X) — M, (X) \ {0} is Borel and J(I') is Souslin in
My (X) whenever I' is Souslin in €(X).



8 Chapter 1. Preliminary notions

Proof. Tt is easy to check, using the formula Jy = y4(|5|-£1L[0, 1]), that
n—1

Jy = lim 2 d("V(i+1)/ns Vin)Oy,),  Weakly in My (X)

for all v € AC([0,1]; X) (the simple details are left to the reader). Since the approximating
maps are continuous, we conclude that J is Borel. The Borel regularity of J follows by
Lemma 1.2.8 and the identity J=J oj. Since J is Borel, we can apply Proposition 1.1.3(iv)
to obtain that J maps Souslin sets to Souslin sets. U

1.3 Slopes, asymptotic Lipschitz constant and upper gradients

Let (X,d) be a metric space; given f : X — R and E C X, we denote by Lip(f, E) the
Lipschitz constant of the function f on F, namely

Lip(f,E):= sup —F—7—

The Lipschitz constant of f will be denoted by Lip(f) := Lip(f, X). Given f : X — R, we
define asymptotic Lipschitz constant by

lip,(f,z) = lim Lip(f, Br (%)),

and slope (also called local Lipschitz constant) by

7 [f(y) = f(2)]
\Y = lim —————~—.
V5(e) = i YL
We will often drop the x dependence, denoting lip,(f) for the asymptotic Lipschitz constant,
and |V f] for the slope. For f, g : X — R Lipschitz it clearly holds
lip,(af + Bg) < |allip,f + [Bllip,g  Va,B €R, (1.3.1a)

lipg(fg9) < [fllipag + |gllip, f, (1.3.1b)

and the same is true also for the slope. We recall the basic relation between the asymptotic
Lipschitz constant and the slope in the next proposition.

Proposition 1.3.1 Let f : X — R be a Lipschitz function. Then
Lip(f) = lip,(f, z) = [V f[*(2), (1.3.2)

where |V f|* is the upper semicontinuous envelope of the slope of f. In length spaces the second
mequality is an equality.
Proof. The first inequality in (1.3.2) is trivial, while the second one follows by the fact that

lip,(f,-) is upper semicontinuous and larger than |V f|. Since |V f| is an upper gradient of f,
we have the inequality

2(v)
\ﬂw—funsA IV F]() dt

for any curve « with constant speed joining y to z. If (X, d) is a length space we can minimize
w.r.t. v to get

Lip(f, B(w,r)) < sup |[Vf|< sup [Vf]".
B(z,3r) B(x,3r)

As r ] 0 the inequality Lip,(f,z) < |V f|*(z) follows. O
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We will need also this refined Liebniz formula:

Lemma 1.3.2 Let A C X be an open set, and let f,g,¢ € Lip),.(A) such that 0 < ¢ < 1;
then denoting w = ¢ f + (1 — p)g we have

lip,(w) < ¢ -lip,(f) + (1 — ) - lip,(g) + lipa (@) |f — 9] (1.3.3)

Proof. First let us not that for every =,y € X we have

w(r) —w(y) = e(@)[f(x) — f(Y)] + (1 — ¢(x))[g(z) — g(v)]
+ (@) — )] - (f(y) — 9(v));

taking the modulus on the lest hand side and dividing for d(x,y) we obtain

!w(z)(;;;(y)l < () If(z)(;;)(y)l + (1= () Ig(z)(;yg)(y) "
+W'|f(y)—g(y)l- B
Now taking the supremum in z,y € B,(z) on the left hand side we obtain
Lip(w, B;) < ¢ Lip(f, Br) + (1 — ¢) Lip(g, B;) + Lip(¢, B;) Sup If —gl;
letting r — 0 we get (1.3.3), O

Given a real valued function f on X, we denote by UG(f) the set of upper gradients of f
(see also [25], [49]), namely the class of Borel functions g : X — [0, oo] such that

/(%f‘ :/79 vy € X)), (1.3.5)

where fa,y [ = f(vfin) — f(7ini). With a slight abuse of notation we will write g € UG(f)
with f € L'(X,m), but it should be noticed that a priori the concept of upper gradient is
not invariant in the equivalence class of an L! function, even though Borel representatives
are chosen. It is easy to see that lip,(f) and |V f| belong to UG(f) whenever f is a locally
Lipschitz function.

We shall also need the following calculus lemma.

Lemma 1.3.3 Let f:(0,1) > R, g € [1,00], g € L9(0,1) nonnegative be satisfying

If(s)— f(t)| < / g(r)dr for L?-a.e. (s,t) € (0,1)%

Then f € W14(0,1) and |f'| < g a.e. in (0,1).

Proof. Let N C (0,1)2 be the .#?-negligible subset where the above inequality fails. Choosing
s € (0,1), whose existence is ensured by Fubini’s theorem, such that (s,t) ¢ N for a.e.
t € (0,1), we obtain that f € L®(0,1). Since the set Ny = {(t,h) € (0,1)% : (t,t +h) €
N N (0,1)2} is Z?-negligible as well, we can apply Fubini’s theorem to obtain that for a.e.
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h it holds (¢,h) ¢ (0,1)2\ N; for a.e. t € (0,1). Let h; | 0 with this property and use the

identities
1 oy 1
/0 f(t)go(t hf)L o(t) dat /0 f(t—i—h})b f(t)gp(t) dt

with ¢ € C1(0,1) and h = h; sufficiently small to get

1 1
/f(t)so’(t)dt‘g/ g(t)|e(t)] dt.
0 0

It follows that the distributional derivative of f is a signed measure 7 with finite total variation
which satisfies

1 1 1 1
/ f90’dt=/ pdn, (/ sodn‘ S/ gleldt  for every ¢ € C;(0,1).
0 0 0 0

Therefore 7 is absolutely continuous with respect to the Lebesgue measure with || < g2
This gives the W'1(0, 1) regularity and, at the same time, the inequality |f’| < g a.e. in (0,1).
The case ¢ > 1 immediately follows by applying this inequality when g € L%(0, 1). O

1.4 Gradient flows of convex and lower semicontinuous func-
tionals
Let H be an Hilbert space, .# : H — R U {400} convex and lower semicontinuous and

D(F) = {% < oo} its finiteness domain. Recall that a gradient flow z : (0,00) — H of .Z is
a locally absolutely continuous map with values in D(.%) satisfying

d
T €0 F(xy) for a.e. t € (0,00).

Here 0~ % (x) C H* is the subdifferential of %, defined at any = € D(F) by

0 F(x):={peH": Fy) >F(xr)+({py—x) Vyc H}.

We shall use the fact that for all xyp € D(.#) there exists a unique gradient flow x; of
Z starting from xg, i.e. ©; — g as t | 0, and that ¢t — % (x;) is nonincreasing and locally
absolutely continuous in (0, c0). In addition, this unique solution exhibits a regularizing effect,
namely —%@ is for a.e. t € (0,00) the element of minimal norm in 0~ % (xy).

1.5 N-functions and Orlicz spaces

We refer to [72] for the general theory; here we will give only a brief overview of the results
we will need. A function ® : R — [0, 00) is called an N-function (nice Young function) if

(a) @ is even and convex;
(b) ®(z) =0iff x = 0;

(c) i%@ =0 and xli_g)lo@ = +00.
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Every N-function has a left (right) derivative ¢ = ®' (¢4 = ®',) that is strictly increasing
and lower (upper) semicontinuous, 0 < ¢(t) < 400 for 0 < ¢ < oo, and we have ¢(0) = 0 and
limy_, 4o ¢ = +00; we denote by 0~ ® = [, p| the subdifferential of ®.

Let 1) be the left inverse of ¢, namely () = inf{t > 0 : ¢(t) > s}. Then ¥, ® given by

||

||
B(x) = /0 () dt, W)= [ w(s)ds

0
are called complementary N-functions and they satisfy Young inequality
O(x) +V(y) > xy Va,y € R, (1.5.1)
with equality iff z € 0~ ®(y) or, equivalently, y € 9~ ¥(x); in particular
O(x) + ¥(p(x)) = zp(x) Vz > 0. (1.5.2)

Another important property of W is that it is the least function satisfying (1.5.1), and so it is
also the convex conjugate of ®:

U(y) = @ (y) = igﬁ{xy — ®(x)}.

Basic examples of complementary N-functions are ®,(z) = 2P /p and ¥, (y) = y?/q, whose
relative Orlicz space, defined below, is LP.

1.5.1 Orlicz spaces

Definition 1.5.1 Let us define the vector space

L2(X,m) = {f m-measurable such that /

O(cf)dm < oo for some ¢ > 0},
b'e

along with his two norms: the Luzemburg norm and the dual norm

”f|’<1>,m:inf{t>0 : /X<I>(f(:))dm<1},

@y =suo{ [ fadm : g€ £*(Xm). allum < 1}.

Then we define the Orlicz space L® as L2/~ where f ~ g if |f — gllom = 0 or, equivalently,
if f = g m-almost everywhere. When there is no ambiguity for the measure we will drop the
dependence on m of the space and of the norms.

Definition 1.5.2 Let us define the vector space

M®(X, m) = {f measurable such that /

O(cf)dm < oo for every ¢ > O};
b'e

it is readily seen that M® = M® /~ is a closed subspace of L.
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Classical results in Orlicz spaces are that the two norms satisfy the triangle inequality, and
that they are comparable, namely

Iflle < I/l <20fle Ve LP(X,m).

Furthermore, as it is clear by the definition, a sharp Hoélder inequality holds true: whenever
feL®X,m)and g € LY(X,m) we have fg € L'(X, m), more precisely

/X fgdm < |flo-llglw  and /X fgdm < ||l - llgllv-

Lemma 1.5.3 (Dominated convergence in L?) Let (f,) C L® such that f, — f m-a.e.
and |fn — f| < g for some g € M®; then f, — f strongly in L.

Proof. Let us fix m € N; then we can consider hy,, = ®(m|f — f,|) and h = ®(mg). By the
assumption we know that h,, < h, h € L' and h,, — 0 as n — oco. By the standard dominated
convergence theorem, this guarantees that [ h, — 0, in particular there is an integer ng such
that for all n > ng we have

/X@(m|f—fn\)dm:/xhndm<1,

so that ||f — fulle < m™! for n > ng. Since m was arbitrary we can conclude. O

A simple application of dominated convergence and classical approximation results give
that Lipy(X,d) N M? is dense in M?®, that thus is also separable; for any function f € M®
we get also that the norm is absolutely continuous, meaning that

i 1/ xall@)m =0 (1.5.3)

Now we list an important definition for an N-function:

e & is doubling if there exist K such that ®(2z) < K®(z) for all z > 0; in the case m
finite we say that ® is doubling if the inequality for z large enough. We will say that ®
satisfies (D);

e O satisfies the double doubling condition if both & and ¥ are doubling. In this case we
will say that ® (or equivalently ¥) satisfies (DD).

It is easy to see M® = L® if and only if ® is doubling. Another important property is the
characterization of the dual spaces:

Theorem 1.5.4 ([72], Sec. 1.2, Theorem 13) Let m be a finite measure on X, and let ®
be an N-function. Then (M®,||-lam)* = (LY, ||-|(w)m) (and the same is true with the norms
reversed). In particular if both U and ® are doubling then L® is reflexive.

We remark that the double doubling condition is almost necessary to have reflexivity, in
the sense that as soon as m has also a diffuse part then the reflexivity implies that ® and ¥
are doubling (see [72], Sec. 1.2).
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1.5.2 Properties of the (¢)-norm

In Chapter 3, we will use a couple of properties of the dual norm; the first one is dealing with
the continuity of this norm with respect to the reference measure, while the second one is
dealing with the continuity of a character for an N-function ®. Here we are always assuming
that m is a o-finite measure on X.

Lemma 1.5.5 (Representation formula) For every function g we have

9]l(@),m = g{){i(l - /X<I>(k:g) dm)}. (1.5.4)

In particular ||g||(@),, < max{1l, C}||gll(@)m whenever p < Cm.

Proof.  The representation formula is proved in Sec. 1.2 of [72] (see Equation (24)). The
implication is then obvious. O

Definition 1.5.6 (Character of ®) We define the character of ® to be the concave function
Ag : [0, +00) — [0, +00) defined by

1 d(g)d
As(c) = inf{ elx 20 m}.
geL® 9l (),m

This function is continuous in (0,1] and has the property that Ag(1l) = 1 if the measure is
finite.

Proof. The concavity and the continuity simply follows from the fact that Ag is an infimum
of linear positive functions, and Ag(0) = 0. Now we want to prove that Ag(1) = 1. It is clear
that || f|l¢ <1 if and only if [, U(f) <1 so we can write

1+fX(I)(9) > fqu(f)"i'fxq)(g) > fxfg

> Vie LY st. ||flle <1
91l (@) 9l (@) lgll (e

taking the supremum over all f and recalling the definition of ||g||(3) we get precisely

1+ [ ®(g)

> 1. (1.5.5)
9l (@)

Now we need only to show that there exists a function g that realizes equality in (1.5.5). It
is sufficient to take g = kxp, where B is a set with finite positive measure. Then a simple
computation shows that letting m = m(B), we have ||g||(@) = k-m - ¥~ (m™!). In particular
we are looking to some k such that

1+ m®(k)

kmW—1(m=1) ’

If we let U~!(m~1) = 2 then we can rewrite this equation as
U(z) + ®(k) = xk,

and so it is sufficient to take k € 9~ ¥(z), that is always nonempty. O
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1.6 Hopf-Lax formula and Hamilton-Jacobi equation

Aim of this section is to study the properties of the Hopf-Lax formula in a metric space (X, d)
and its relations with the Hamilton-Jacobi equation. Notice that there is no reference measure
m here and that not even completeness is needed for the results of this section. We fix an
N-function ¥ and denote by & its convex conjugate; we will assume also that W is of class
CY(R) and strictly convex. In the sequel we will follow [9], despite we notice that in [59]
and [42] the same results are presented, also in more generality (they don’t assume f to be
Lipschitz), but they still use similar methods. We notice also that we need ® to be C! in
order to achieve Proposition 1.6.4; we don’t know whether if (1.6.10) remains true at least
in the m x Z!'-almost everywhere sense, for every ® convex. We could avoid the strictly
convexity assumption by modifying some propositions along the proofs (in particular it is
not true anymore that D¥(x,t) < D~ (x,s) for t < s), but we prefer to keep the exposition
simpler.
Let f: X — R be a Lipschitz function. For ¢ > 0 define

F(t,z,y) = f(y) + t@(d(xt’y)), (1.6.1)

and the function Q:f : X — R by

Quf(x) := inf F(t.z.y). (1.6.2)

Notice that Q,f(x) < f(x); on the other hand, if L denotes the Lipschitz constant of f,
Young’s inequality ¢(¥(d/t) + ®(L)) > Ld gives

F(ta9) > f(@) ~ Ld(xg) + 00 (2ED) > fa) — ta(r),
so that Q¢f(x) 1 f(z) as ¢t ] 0.

Also, we introduce the functions D+, D™ : X x (0,00) — R as

D™ (z,t) := sup limsupd(z, yn),
n—00 (1.6.3)
D™ (x,t) := inf liminf d(z, yy,),

n—oo
where, in both cases, the sequences (y,) vary among all minimizing sequences for F(t,x,-).
We also set Qof = f and D*(z,0) = 0. Arguing as in [8, Lemma 3.1.2] it is easy to check
that the map X x [0,00) 3 (z,t) — Q:f(x) is continuous. Furthermore, the fact that f is
Lipschitz easily yields
D* D* D*

Thanks to the superlinearity of ¥ in the definition of an N-function, we can found A = A(L)

such that ¥(x) > Lz for all z > A, and so we get

D~ (x,t) < DV (x,t) < tA\(L) (1.6.5)
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Proposition 1.6.1 (Monotonicity of D) For all x € X it holds
DY (z,t) < D™ (z,s) 0<t<s. (1.6.6)

As a consequence, D (z,-) and D™ (x,-) are both nondecreasing, and they coincide with at
most countably many exceptions in [0, 00).

Proof. Fix x € X. For t = 0 there is nothing to prove. Now pick 0 < ¢t < s and for every
e € (0,1) choose xt, and x5 minimizers up to € of F(t,x,-) and F(s, z, -) respectively, namely
such that F(t,z,21.) —e < F(t,z,w) and F(s,z,z5.) —e < F(s,z,w) for every w € X. Let
us assume that d(z,z;.) > (1 —e)D " (2,¢) and d(z,zs.) < D™ (z,s) + . The minimality up
to € of Ty, s, gives

fwee) + t‘I’<d(wtf x)> < flwse) + t\11<d(xs;’ $)> +e
f(xse) + 8‘I’<d(xz€’ x)) < floee) + S‘I/<d(xt§’ x)) +e.

Adding up we deduce

tw(d(xtf,x)) t\li(d(xsf’x)> < S‘y(d(astys,a:)) B qu(d(xtys,x)) ‘e

S S

Now, letting e — 0 we have d(z1¢,2) — DT (x,t) and d(zse,2) = D™ (z,s) and so we can
deduce

t\p(D+(f’t)) = t\p(D_(f’S)) < s\lf(m(x’t)) - 5\11<7D_($’ S)). (1.6.7)

S S

Let us suppose that Dt (z,t) > D~ (xz,s), then dividing by D" (x,s) — D~ (z,t), and
denoting by AVU(w;,ws) = Y(w)=Vw2) 16 difference quotient of ¥, we can write (1.6.7) as

w1 —w2

A\I/<D+(x’t), D~ (z, s)) < A\I/(DJF(:zﬁ,t)’ D (z, s))

t t K] K]
This is in contradiction with the strict convexity of ¥ since AV is strictly increasing separately
in each variable, and % > %

In the end we obtained (1.6.6). Combining this with the inequality D~ < DT we immedi-
ately obtain that both functions are nonincreasing. At a point of right continuity of D~ (z, -)

we get
Dt (x,t) < H;E D™ (z,s) = D™ (x,t).
S
This implies that the two functions coincide out of a countable set. O

Next, we examine the semicontinuity properties of D*. These properties imply that points
(x,t) where the equality Dt (x,t) = D~ (z,t) occurs are continuity points for both DT and
D~.

Proposition 1.6.2 (Semicontinuity of Di) D is upper semicontinuous and D~ is lower
semicontinuous in X X [0,00).
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Proof. We prove lower semicontinuity of D™, the proof of upper semicontinuity of D being
similar. Let (x;,t;) be any sequence converging to (z,t) such that the limit of D~ (x;,¢;) exists
and assume that ¢t > 0 (the case t = 0 is trivial). For every 1, let (y!') be a minimizing sequence
of F(t;, z;,-) for which lim,, d(y, z;) = D™ (i, t;), so that

: n d(y;'s wi
lim f(y}") +tz"11( (yt )> = Qu f(x:).
Using the continuity of @y we get

Q:f(x) = lim lim f(y?)+ti\y<w)

i—00 N—>00 t;

> limsup lim sup f(y}') + t\11<d(y1:7$)) > Qi f(z),

1—00 n—o00

where the first inequality follows from the boundedness of y;* and the estimate

\I,(d(y?,xi)> _\I,<d(y?7w)) < (d(y?,xi) B d(zx?@)) _(p<d(y?7xi) y d(y?vx))

t; t; t t; ti
which in turn can be proved thanks to the inequality ¥(a) — ¥(b) < |a — b|(p(a) V ¢(b)).
Analogously

lim D™ (x;,t;) = lim lim d(y', z;) > limsup limsupd(y}', z).

1—00 1—00 N—>00 =00  n—s00

Therefore by a diagonal argument we can find a minimizing sequence (y?(i)) for F(t,x,-) with

lim sup; d(y?(z), x) < lim; D™ (x;,t;), which gives the result. O

Proposition 1.6.3 (Time derivative of Q.f) The map t — Q.f is Lipschitz from [0, 00)
to the extended metric space of continuous functions C(X), endowed with the distance

1f = gl = sup | f(z) — g(z)|.
rzeX

Moreover, for oll x € X, it satisfies:
d D*(x,t
@ = - (v(Zm0Y), (16

for any t > 0, with at most countably many exceptions; we recall that 1 = V',

Proof. Lett < s and for every ¢ € (0,1) choose 2. and z, . minimizers up to € of F'(¢, z, -) and
F(s,z,-) respectively, namely such that F(t,z,z;.) — e < F(t,z,w) and F(s,z,25.) — ¢ <
F(s,z,w) for every w € X. Let us assume that d(z,z¢.) > D7 (z,t) — ¢ and d(z,25.) <
D~ (z,s) +¢e. We have

Qsf(x) — Quf(x) < F(s,x,xe) — Ft,x,20) + €
_ t\p(d(x’txt’a)) - sq/(id(x’ xt"f)) te,

S

Qsf(x) — Qef(x) > F(s,x,x5.) — F(t,x,25.) — €
- t‘P(W) - s\IJ(M) _

S
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For € small enough, dividing by s — ¢, using the definition of x;. and x5, and using the
inequality W(4) — dop(d) < DAD=T@/s) < g(d) _ dy(d) (note that t — ¢W(d/t) is convex)
and using (1.5.2) we obtain

Qsf(x) — Quf (%) <& <¢<D+(x;t) —5)> + - €

s—1 o
st(xi:?tf(x) > 9 <¢(D<x;s) +5>> - sit’

which gives as ¢ — 0 that ¢ — Q.f(z) is Lipschitz in [§,T] for any 0 < § < T uniformly with
respect to z € X. Also, taking Proposition 1.6.1 into account, we get (1.6.8). Now notice that
from (1.6.5) we get that [$Q.f(z)| < ®(¥(A(Lip(f)))) for any = € X and a.e. t > 0, which,
together with the pointwise convergence of Q. f to f ast | 0, yields that t — Q. f € C(X) is
Lipschitz in [0, o). O

We will bound from above the asymptotic Lipschitz constant of @Q.f at z with
V(DT (z,t)/1).

Proposition 1.6.4 (Bound on the asymptotic Lipschitz constant of Q;f) For
(x,t) € X x (0,00) it holds:

D+(x’t)> (1.6.9)

hpa(Qtfv Q?) < w<f .

In particular lip,(Q:f) < ¥(A(Lip(f))), where A is defined in (1.6.5); if in addition (X,d) is a
geodesic metric space then Lip(Q:f) < Lip(f).

Proof. Fixy, z € X and t € (0,00). For every € > 0 let y. € X be such that F(t,y,y.) —e <
F(t,y,w) for every w € X and |d(y,y:) — D" (y,t)| < e. Since it holds

Qif(z2) —Qufly) < F(t,z,y.) — F(t,y,y:) + ¢
= /) ”‘I’(d(iya)) — f(ye) —t@(M) s

< 7W(O'(z,y) J;d(y,ye)> _ﬂ,(d(y;ye)) ;
gd(z,yw(d(z’y)+€+(y’t)+5) te,

so that letting & — 0, dividing by d(z,y) and inverting the roles of y and z gives

+
Lip(Q+f, B(x,1)) < w(% * S“pyeBéx,w D (y 1) )

Letting r | 0 and using the upper semicontinuity of Dt we get (1.6.9); notice that in this
limit it is crucial the continuity of ¢ (i.e. the fact that ¥ € C1).

Finally, the bound on the Lipschitz constant of @Q.f follows directly from (1.6.5) and
(1.6.9). For the finer estimate in the geodesic case we refer to [42], [59]. O

Theorem 1.6.5 (Subsolution of HJ) For every x € X it holds

€ Quf () + ®(lip, (Quf, 7)) <0 (1.6.10

for every t € (0,00), with at most countably many exceptions.

Proof. The claim is a direct consequence of Propositions 1.6.3 and 1.6.4. U
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Notice that (1.6.10) is a stronger formulation of the HJ subsolution property

%Qtf(:):) + @(|VQ:fl(z)) <0, (1.6.11)

with the asymptotic Lipschitz constant lip,(Q:f,) in place of |[VQ.f].

1.7 The space (M. (X), Wy) and the superposition principle

Let (X,d) be a complete and separable metric space and let M4 (X)) denote the set of positive
and finite Borel measures on X. Given a lower semicontinuous cost ¢ : X x X — [0, 00], we
can consider the classical Kantorovich transport problem on X between measures with same
mass, defining

%e(p,v) := min { / cla,y)dy | mhyy = p, iy = V}7
XxX

where 7! and 72 are respectively the projections on the first and second factors. We shall
denote by I'(1, /) the collection of admissible plans 7 in the Kantorovich minimization problem.
In the case of ¢, = dP, 1 < p < oo, we get the classical Wasserstein distances W), = (%Cp)l/ P,
they can equivalently be written as

Wy (p, v) = min{]|d[[ Lo (y) |y € T(p, 1)}

and so it is somewhat natural to look at the LY case, when ¥ is a Young function:

W (s, v) i= min { [ v ) |y € T, v) }

We can recover in this way also the distance W, setting ¥(z) = 0 if [z| < 1 and ¥(z) = +o00
otherwise. We want to consider also this general LY case as a transport problem, in order to
have a dual formulation that will be used later on. Notice that this Orlicz-Wasserstein distance
was already introduced in [77| and subsequently developed in [55]; they looked for properties
of Wy more related to classical optimal transport, while here we focus on the duality. The
key point is to consider scaled costs: we introduce the “test" distances

W (1, v) = min { /

x S\I’(d(ify))dv |7 € F(M,V)},

called this way because

Wé,s)(u, v)<s <= Wg(p,v)<s for all s > 0. (1.7.1)

These “test" distances are given by transport problems with lower semicontinuous costs
cs(z,y) = s¥(d(x,5)/s), so they have a dual formulation [8, Theorem 6.1.1]*:

W (v) = sup /X € du+ /X fdv,

PELipy (X)

Yin the reference they prove it that functions in C§ (X, d) are sufficient, but if once we fix ¢ € C§(X) then
we can take 1 to be the cp-transform of ¢ for some h (following their notation); but then v is h-Lipschitz and
bounded. Then again we can substitute ¢ with the cg-transform of ¢ for some k, and so also ¢ is Lipschitz
and bounded.
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where ¢¢ denotes the so called c-transform of f, defined as:
&) = inf {e@.y) - €w)}

(namely the largest function g(z) satisfying g(x) + ¥ (y) < cs(z,y) for all (z,y)). By the
definition of Q¢ given in the previous section we get:

) = it s (122 - s} = Q-0 @)

yeX
Now, setting £ = —¢ in the dual formulation, and using this characterization of the c-
transform, we get
Wés)(uw) = sup / stodu—/ o dv. (1.7.2)
@€ELipy(X) J X X

The last step we need is to pass to ¢ € Lipy(X,d), ¢ > 0:
Lemma 1.7.1 Fiz s > 0. For every p,v € M4 (X) with the same mass we have

W (p.v) = sup{/ stodu—/ pdv @ ¢ € Lipy(X,d), ¢ > 0}~ (1.7.3)
X X

Proof. In order to prove the equivalence, given (1.7.2), it is easy to see that, up to translation,
one can choose ¢ > 0; therefore it is enough to show that for every ¢ € Lip,(X) nonnegative
there holds

it { [ Quborldv— [ vedn}> [ Q- [ pan (1.7.4)
o0 X X X X

where Yy, is a Lipschitz cutoff function which is nonnegative, identically equal to 1 in
B(zg,r) and identically equal to 0 outside B(zg,r + 1) for some z¢p € X fixed. Since
xr < ¢ it follows that fX xredu < fxcpd,u, so that by Fatou’s lemma suffices to show
that iminf, , Qs[xrp] = Qsp. Let x € X be fixed and let z;, € X be satisfying

xolagten) + 5w (2T)Y <10, pl(a),

Since d(x,, z) is obviously bounded as r — oo, the same is true for d(z,, z¢), so that x,(z,) =1
for r large enough and Qp(x) < r~' + Qs[x,¢|(z) for r large enough.

O

We will need also the following result, proved in [62]: it shows how to associate to an
absolutely continuous curve p; w.r.t. Wy a plan w € P(C([0, 1], X)) representing the curve
itself (see also [8, Theorem 8.2.1] for the Euclidean case and [61] for the general LP case).
This is not possible for any Young function (for example it fails for ¥(z) = z); we need the
following conditions to hold:

. U(x) r
A TR 79

In particular the superposition principle holds for every N-function.

Proposition 1.7.2 (Superposition principle) Let (X,d) be a complete and separable met-
ric space, ¥ a Young function satisfying (1.7.5), and let iy € AC([0,T]; (P(X),Ww)). Then
there exists m € P(C([0,1], X)), concentrated on AC([0,1], X), such that (e;)ym = s for any
t €10,T) and

||'7t’”L‘I’(7r) = |/Lt| for a.e. t € [O,T] (176)
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1.8 TI'-convergence

Definition 1.8.1 Let (X,d) be a metric space and let Fy, : X — [—o0,+00]. We say that Fj,
I-converge to F : X — [—00, +00] if:

(a) For every sequence (up) C X convergent to uw € X we have

F(u) < liminf Fp(up);
h—o00

(b) For all w € X there exists a sequence (u,) C X such that

F(u) > limsup Fp,(up).

h—o0

Sequences satisfying the second property are called “recovery sequences”; whenever I'-
convergence occurs, they obviously satisfy limy, Fj,(up) = F(u).

The following compactness property of I'-convergence (see for instance [31, Theorem 8.5])
is well-known.

Proposition 1.8.2 If (X,d) is separable, any sequence of functionals Fy, : X — [—o0, +00]
admits a I'-convergent subsequence.

We quickly sketch the proof, for the reader’s convenience. If {U;};ien is a countable basis
of open sets of (X,d), we may extract a subsequence h(k) such that a; := limy infy, Fj,,)
exists in R for all 4 € N. Then, it is easily seen that

F(z) := sup oy reX
U;>x
is the I-limit of Fj, ).

We will also need an elementary stability property of uniformly convex (and quadratic as
well) functionals under T'-convergence. Recall that a positively 1-homogeneous function N on
a vector space V' is uniformly convex with modulus w if there exists a function w : [0,00) —
[0,00) with w > 0 on (0, 00) such that

U+ v

Nw) =N@w)=1 = N( )gl—w(N(u—v))

for all u, v € V.

Lemma 1.8.3 Let V' be a normed space with the induced metric structure and let w : [0, 00) —
[0,00) be continuous, nondecreasing, positive on (0,00). Let Ny, be uniformly convez positively
1-homogeneous functions on V with the same modulus w, I'-convergent to some function N.
Then N is positively 1-homogeneous and uniformly conver with modulus w.

Proof. The verification of 1-homogeneity of N is trivial. Let u, v € V which satisfy N(u) =
N(v) = 1. Let (up) and (vp,) be recovery sequences for u and v respectively, so that both
Np(up) and Ny, (vp,) converge to 1. Hence, uj, = up/Np(up) and vj, = vi, /Ny (v) still converge
to u and v respectively. By assumption

!/ /
Ny, <”’12+”h) +wNp(l, — v})) < 1.
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Thanks to property (a) of I'-convergence, the monotonicity and the continuity of w and the
superadditivity of liminf we get

/ /
N <“"2H}> +w (N(u — v)) < liminf Ny, (W) tw <1i{ﬂianh(u;L - %))
—00

h—o0

h—o0

!/ /
< liminf (Nh (uh ; vh) + w(Np (up, — vZ))) <1

1.9 Doubling metric measure spaces and maximal functions

From now on, B(z,r) will denote the open ball centered in z of radius 7 and B(z,r) will
denote the closed ball:

B, r)={ye X : d(z,y) <r} , B(a,r)={y € X : d(z,y) <r}.
If not specified, with the term ball we mean the open one.
Recall that a metric space (X, d) is doubling if there exists a natural number ¢p such that
every ball of radius r can be covered by at most ¢p balls of halved radius r/2.

Definition 1.9.1 (Doubling m.m. spaces) The metric measure space (X,d, m) is doubling
if there exists ¢p > 0 such that

m(B(z,2r)) < épm(B(z,71)) Vx € suppm, r > 0. (1.9.1)

This condition is easily seen to be equivalent to the existence of two real positive numbers
a, B > 0 which depend only on ¢p such that

[0
m(B(z,m)) < () m(B(y,ra)) whenever Bly,rs) € B(z,r1), 2 < 11, y € suppm.
T2

(1.9.2)
Indeed, B(x,r1) C B(y,2r1), hence m(B(z,r1)) < ém(B(y,r2)), where k is the smallest
integer such that 2r; < 2¥ry. Since k < 24 Ing(r1/r2), we obtain (1.9.2) with o = Ing ép and
B=a3,.

Condition (1.9.2) is stronger than the metric doubling property, in the sense that
(suppm,d) is doubling whenever (X,d, m) is. Indeed, given a ball B(z,r) with z € suppm,
let us choose recursively points z; € B(z,r) Nsuppm with d(x;,z;) > r/2, and assume that
this is possible for i = 1,..., N. Then, the balls B(x;,r/4) are disjoint and

m(B(x;, %)) > é5m(B(x;,2r)) > éptm(B(z, 7)),

so that N < E3D; in particular we can find a maximal finite set {z;} with this property, and
from the maximality it follows that for every ' € B(z,r) N suppm we have d(x;,2’) < r/2
and so

B(z,r) Nsuppm C UB(xi,T‘/Q).
It follows that (suppm,d) is doubling, with doubling constant c¢p < &,. Conversely (but we
shall not need this fact) any complete doubling metric space supports a nontrivial doubling
measure (see [28], [64]).
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Definition 1.9.2 (Local maximal function) Given g € [1,00), € > 0 and a Borel function
f: X — R such that |f|? is m-integrable on bounded sets, we define the e-mazimal function

1/q
Mg f(z) == ( sup ][ \f|qdm> x € suppm.
B(z,r)

0<r<e

The function Mg f(z) is nondecreasing w.r.t. &, moreover Mg f(z) — |[f|(z) at any
Lebesgue point x of | f|?, namely a point x € supp m satisfying

i 1 q — q
i B o, ) = L@ (193

We recall that, in doubling metric measure spaces (see for instance [47]), under the previous
assumptions on f we have that m-a.e. point is a Lebesgue point of |f|? (the proof is based on
the so-called Vitali covering lemma). By applying this property to |f — s|? with s € Q one

even obtains .

s | W) = ) an) =0 (1.9.4)

for every x € suppm that is a Lebesgue point of |f — s|? for every s € Q. In particular it is
clear that (1.9.4) is satisfied for m-a.e. x € suppm; we call such points g-Lebesgue points of
f. We shall need a further enforcement of the ¢g-Lebesgue point property:

Lemma 1.9.3 Let (X,d, m) be a doubling metric measure space and let f : X — R be a Borel
function such that | f|? is m-integrable on bounded sets. Then, at any point x where (1.9.4) is
satisfied, it holds

lim 1
n—00 m(En)

[ 1) = f@tdm(y) =0 (195)
whenever E, C X are Borel sets satisfying B(yn,Trn) C E, C B(x,1y,) with y, € suppm and
rn, — 0, for some T € (0,1] independent of n. In particular fEn fdm— f(z).

Proof. Since m is doubling we can use (1.9.2) to obtain

m(2n> /E f(y) = f(2)|" dm(y) <

1 q
B Je W)~ @)t dn)

1 q
< B /B W) = @ am()

m(B(z,ry)) )
< Bl e o ) = F iy

< 5]{9 ) = J@m()

Since (1.9.4) is true by hypothesis, the last term goes to 0, and we proved (1.9.5). Finally, by
Jensen’s inequality,

fdm— f(z)
Ey,

q
7[ ~ f(@)|7dm — 0.
< EnIf f(@)|?dm — 0



CHAPTER 2

Duality between p-Modulus and probability measures

For the reader’s convenience we collect in the next table and figure the main notation used,
mostly in the second part of the chapter; most of them have been already introduced in the
preliminaries, but we prefer to give also a reference here, with all the relations between them.

Main notation

Borel nonnegative functions f : X — [0, 00] with [, f?dm < oo
Lebesgue space of p-summable m-measurable functions

Length of a parametric curve ~

Space of parametric curves 7 : [0, 1] — X with g-integrable

metric speed

Space of parametric curves with positive speed .Z!-a.e. in (0,1)
Space of parametric curves with positive and constant speed
Embedding of {y € AC([0,1]; X) : £(y) > 0} into AC°([0,1]; X)
Space of non-parametric and nonconstant curves, see Definition 1.2.5
Embedding of {y € AC([0,1}; X) : £(y) > 0} in €(X)

Embedding of (X)) into ACZ°([0, 1]; X)

Space of nonnegative finite Radon measures on X

Embedding of {y € AC([0,1]; X) : £(y) > 0} in My (X),

see Definition 1.2.3

Embedding of € (X) in M4 (X); quotient map of .J, see (1.2.10)
Embedding of C(]0,1]; X) in M4 (X) via push forward of Lebesgue
measure, see (2.5.1)

23
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ACE((0,1); X) 7 F(X)
k/{\ /
{v € AC((0,1; X)} : £(7) > 0} J

| ;
([0, 1]; X) M\% M, (X)

In this Chapter we will prove a duality result for the p-modulus Mod, . It can be stated
as follows: a set of measures ¥ is not Mod,, m-negligible if there exist a probability measure n
concentratedon ¥ and a function f € L?(X,m), called barycenter of 7, such that

//ngudn—/fgdm Vg € Cy(X, d).

Quantitatively we have also Mody, (X) = max || f||; !, where we take the maximum among all
such barycenters. As a byproduct we obtain that Mod,  is a capacity.

Then we specialize this kind of measures on set of curves, and then we compare them with
the so-called g-plans, that are used in [9] to define Sobolev function in abstract metric spaces.
In particular the notion of negligibility is compared and in the last section we show that the
definition of Sobolev function given in [9] (using the g-plans) coincides with the definition
given in [57], [75] (using the p-modulus). This result is not new since in [9] the authors show
the equivalence also with other definitions, but the method is new, relying on a fine analysis
of the structure of the set of curves where the upper gradient property fails.

2.1 (p,m)-modulus Mod,

In this section (X, 7) is a topological space and m is a fixed Borel and nonnegative reference
measure, not necessarily finite or o-finite.
Given a power p € [1,00), we set

L8 (X, m) = {f : X —[0,00] : f Borel, / fPdm < oo}. (2.1.1)
X

We stress that, unlike LP(X, m), this space is not quotiented under any equivalence relation;
however we will keep using the notation

1/p
1l = ( / Iflpdm>

as a seminorm on £% (X, m) and a norm in LP(X, m).
Given ¥ C M we define (with the usual convention inf () = co)

Mody, (X) := inf {/ fPdm : fe L (X, m), / fdpu>1 forall pe E}, (2.1.2)
X X

Mody m ¢(X) = inf {/ fPdm : f e Cp(X), / fdu>1 forall ue Z} . (2.1.3)
X X
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Equivalently, if 0 < Mod,m(X) < oo, we can say that Mod,(3)~! is the least number & €
[0,00) such that the following is true

HED

P
<inf/ fdu) §§/ fPdm  for all f e L8 (X, m), (2.1.4)
X X

and similarly there is also an equivalent definition for Mod, m (%)™ 1.

Notice that the infimum in (2.1.3) is unchanged if we restrict the minimization to nonnegative
functions f € Cp(X). As a consequence, since the finiteness of m provides the inclusion of this
class of functions in £f (X, m), we get Mod m(X) > Mod,m(X) whenever m is finite. Also,
whenever ¥ contains the null measure, we have Mod, m (X) > Mod), n(X) = oco.

Definition 2.1.1 (Mod, n-negligible sets) A set ¥ C M, (X) is said to be Modpm-
negligible if Mod, m(X) = 0.

A property P on M4 (X) is said to be hold Mody, n-a.e. if the set
{peM4(X): P(p) fails}

is Mod,, m-negligible. With this terminology, we can also write

Modp m(X) = inf {/ fPdm : / fdu>1 for Modym-a.e. € E} . (2.1.5)
X X

We list now some classical properties that will be useful in the sequel, most of them are
well known and simple to prove, but we provide complete proofs for the reader’s convenience.

Proposition 2.1.2 The set functions A C M, (X) — Modym(4), A C M4(X) —
Modp m.c(A) satisfy the following properties:

(i) both are monotone and their 1/p-th power is subadditive;

(i) if g € Lh(X,m) then [,gdu < oo for Modym-almost every u; conversely, if
Modp m(A) = 0 then there exists g € L8 (X, m) such that [ gdp = oo for every p € A.

(1) if (fn) C L5 (X, m) converges in LP(X,m) seminorm to f € L8 (X, m), there exists a
subsequence (fn(r)) such that
/ Tk du—>/ fdu Modp m-a.e. in My (X); (2.1.6)
X X
(w) if p> 1, for every ¥ C M4 (X) with Mod, n(X) < oo there exists [ € L1 (X, m), unique
up to m-negligible sets, such that [y fdp >1 Modym-a.e. on'S and || f|[p = Modym(X);
(v) ifp > 1 and A, are nondecreasing subsets of M4 (X) then Modp m(Apn) T Mody m(UnAp);

(vi) if K, are nonincreasing compact subsets of My(X) then Modpm(Kyn) |
Mody, m,c(MnEK7).

(vii) Let A C My (X), F : A — (0,00) be a Borel map, and B = {F(p)p : p € A}. If
Mody w(A) = 0 then Mod, w(B) =0 as well.
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Proof. (i) Monotonicity is trivial. For the subadditivity, if we take [ v fdu>1on A and
[x9du >1on B, then [, (f+g)du > 1 on AU B, hence Mod,m(AUB)Y? < ||f + gl|, <
I fllp + llgllp- Minimizing over f and g we get the subadditivity.

(i) Let us consider the set where the property fails:

Eg:{NGMJr(X) : /ngﬂzoo}-

Then it is clear that Mod,, m(2,) < ||g]|h but X4 = Xy, for every A > 0 and so we get that X,
is Mod,, m-negligible. Conversely, if Mod, m(A) = 0 for every n € N we can find g, € £8 (X, m)
with [y gndp > 1 for every p € A and [y gn < 27", Thus g := 3, gy satisfies the required
properties.

(iii) Let f,x) be a subsequence such that | f — f,xllp < 27F 5o that if we set

g@) =Y 1f (@) = fage ()]
k=1

we have that g € £5 (X, m) and ||g||, < 1; in particular we have, for (ii) above, that [y gdu
is finite for Mod,, m-almost every p. For those p we get

> [ 18 fuol < o0
k=1

and thus we get (2.1.6).

(iv) Since we can use (2.1.5) to compute Mod, m(X), we obtain from (ii) and (iii) that the
class of admissible functions f is a convex and closed subset of the Lebesgue space LP. Hence,
uniqueness follows by the strict convexity of the LP norm.

(v) By the monotonicity, it is clear that Mody, m(Ay) is an increasing sequence and that
Mody w(UpAy,) > limModym(A,) =: C. If C = oo there is nothing to prove, otherwise,
we need to show that Mod, m(UpA,) < C; let (f,) C L8 (X, m) be a sequence of functions
such that [y fndu > 1 on A, and [|f,[[5 < Modpm(An) + L. In particular we get that
limsup, || fn|lb = C' < oo and so, possibly extracting a subsequence, we can assume that f;,
weakly converge to some f € L% (X, m). By Mazur lemma we can find convex combinations

oo
fn = Z )\k,nfk
k=n
such that fn converge strongly to f in LP(X,m); furthermore we have that [ x Jedp > 1 on

A, if k> n and so
[ hean=3"N [ frdnz1 ona,
X i X

By (iii) in this proposition we obtain a subsequence n(k) and a Mod, n-negligible set ¥ C
M, (X) such that [ fn(k) dp — [y fdp outside X in particular [ fdu > 1 on UpA, \ .
Then, by the very definition of Mod, w-negligible set, for every ¢ > 0 we can find g. € £% (X, m)
such that [|g-|[p < e and [ gedp > 1 on X, so that we have [, (f +g-)du > 1 on U, A, and

Mody,m(UnAn) P < [lge + fllp < lg=llp + |1 £llp < €2 + limin || f,,]|, < /7 4+ CVP.
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Letting e — 0 and taking the p-th power the inequality Mod, n(A) < sup,, Mod, m(Ay,) follows.

(vi) As before, by the monotonicity we get Mody m o(K) < Modpm.(Ky) and so calling
C' the limit of Modpm (K,) as n goes to infinity, we only have to prove Mody, m (K) > C.
First, we deal with the case Mody, m (K) > 0: using the equivalent definition, let ¢, € Cy(X)
be such that ||p.||, =1 and

1
inf du > e
JQK/X% M= Modyme(K)7P ©

By the compactness of K and of K,,, it is clear that the infimum above is a minimum and
that min dp — min du, so that
i f x Pe Qb I f x Pe A,

1 1
= lim > lim min/ pedp > —e.
X

C1/p n—00 MOdp,m,c(Kn)l/p T n—oo uckK, - MOdp’m,c(K)l/p

The case Modpm(K) = 0 is the same, taking ¢ € Cyp(X) such that |pa]l, = 1 and
Jx ermdp > M on K and then letting M — oo.

(vii) Since Mody, m(A) = 0, by (ii) we find g € £% (X, m) such that [, gdu = oo for every

p € A: this yields [ gd(F(u),u) = oo for every p € A, showing that Mod, (B) = 0. O

Remark 2.1.3 In connection with Proposition 2.1.2(iv), in general the constraint [ xfdu=>1
is not saturated by the optimal f, namely the strict inequality can occur for a subset > with
positive (p, m)-modulus. For instance, if X = [0,1] and m is the Lebesgue measure, then

Mod,,m ({-£* L]0, %],,le_[%, 1,.2'[0,1]}) =2 and f=2,
but [ v fdm = 2. However, we will prove using the duality formula Mod,n = C’ﬁ,m that
one can always find a subset ¥’ C ¥ (in the example above ¥\ ¥/ = {£!L[0,1]}) with
the same (p, m)-modulus satisfying fX fdu =1 for all p € ¥, see the comment made after
Corollary 2.3.2.

On the other hand, if the measures in ¥ are non-atomic, using just the definition of p-
modulus, one can find instead a family ¥’ of smaller measures with the same modulus as X
on which the constraint is saturated: suffices to find, for any pu € X, a smaller measure p/’
(a subcurve, in the case of measures associated to curves) satisfying [, fdy’ = 1. In the
previous example the two constructions lead to the same result, but the two procedures are
conceptually quite different.

Another important property is the tightness of Mod, m in M4 (X): it will play a crucial
role in the proof of Theorem 2.3.1 to prove the inner regularity of Mod,, , for arbitrary Souslin
sets.

Lemma 2.1.4 (Tightness of Mod, ) If (X, 1) is Polish and m € M (X), for every e >0
there exists E. C M4 (X) compact such that Mod, m(ES) < €.

Proof. Since (X, 7) is Polish, by Ulam theorem we can find an nondecreasing family of sets
K, € 2 (X) such that

m(K,) — 0.
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We claim the existence of 6, | 0 such that, defining
B = {n € My(X) + p(X) <k and u(KS) < b, ¥n > £},

then Ej is compact and Mod, m(E;) — 0 as k goes to infinity. First of all it is easy to see
that the family {F}} is compact by Prokhorov theorem, because it is clearly tight.

To evaluate Mod, m(E}) we have to build some functions. Let m,, = m(K};), assume with
no loss of generality that m, > 0 for all n, set a, = (y/mn + \/W)_l/p and note that this
latter sequence is nondecreasing and diverging to 4+o00; let us now define the functions

0 if x € Ky,
() =1 ay ifx € Kyy1 \ Ky and n > k,

+o0o otherwise.

Now we claim that if we put §,, = a;,! in the definition of the E}’s we will have Mod,, m(E{) —
0: in fact, if u € Ef then we have either u(X) > k or u(Ky;) > 6, for some n > k. In either
case the integral of the function fi + % with respect to u is greater or equal to 1:

1 1
— | du > —du > 1:
/X<f’“+k> “—/Xk w2l

o if u(KS) > 0y for some n > k we have that

1
/(fk+> dp > fkd,uz/ an dp > Onan = 1.
X k K¢ K

c
n

o if u(X) > k then

So we have that Modym(Ef) < || fi+ £ < (I full, + [1/k]l,)7. But

G = My — Mp41
fPdm= / aP dm = = /Mg,
/X g ,; Kni1\Kn nzz:k \/m + /Mp+1
and so we have Mod, n(E}) < ((mk)l/@p) + (m(X))l/p/k)p 0. 0

2.2 Plans with barycenter in L9(X, m) and (p, m)-capacity

In this section (X, 7) is Polish and m € My (X) is a fixed reference measure. We will endow
M (X) with the Polish structure making the maps p +— [ fdu, f € Cy(X), continuous, as
described in Section 1.1.

Definition 2.2.1 (Plans with barycenter in LY(X,m)) Let ¢ € (1,00, p = ¢'. We say
that a Borel probability measure m on M4 (X) is a plan with barycenter in LY(X, m) if there
ezists ¢ € [0,00) such that

JJ Fanano <l s € L2 (X m). (2:2.1)

If n is a plan with barycenter in L9(X, m), we call cy(n) the minimal ¢ in (2.2.1).
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Notice that c¢4(n) = 0 iff  is the Dirac mass at the null measure in M4 (X). We also
used implicitly in (2.2.1) (and in the sequel it will be used without further mention) the fact
that pu — fX fdp is Borel whenever f € Lﬁ_ (X,m). The proof can be achieved by a standard
monotone class argument.

An equivalent definition of the class plans with barycenter in L9(X, m), which explains also
the terminology we adopted, is based on the requirement that the barycenter Borel measure

pi= [ ndn(u (2.22)
is absolutely continuous w.r.t. m and with a density p in L9(X, m). Moreover,

cq(n) = [lpllq- (2.2.3)

Indeed, choosing f = ya in (2.2.1) gives pu(A) < (m(A))Y?, hence the Radon-Nikodym
theorem provides the representation p = pm for some p € L*(X, m). Then, (2.2.1) once more
gives

/X pfdm<c|fl,  VfeLP(X,m)

and the duality of Lebesgue spaces gives p € L9(X, m) and ||p|l; < ¢. Conversely, if p has a
density in L9(X,m), we obtain by Holder’s inequality that (2.2.1) holds with ¢ = ||p||,-

Obviously, (2.2.1) still holds with ¢ = ¢4(n) for all f € Cy(X), not necessarily nonnegative,
when 7 is a plan with barycenter in L4(X,m). Actually the next proposition shows that we
need only to check the inequality (2.2.1) for f € Cy(X) nonnegative.

Proposition 2.2.2 Let i be a probability measure on My (X) such that

// fdpdn(p) <clfll, for all f € Cp(X) nonnegative (2.2.4)
X

for some ¢ > 0. Then (2.2.4) holds, with the same constant c, also for every f € LY (X, m).

Proof. 1Tt suffices to remark that (2.2.4) gives

[ fauserl,  vrecx),
with g defined in (2.2.2). Again the duality of Lebesgue spaces provides p € L9(X,m) with
lplly < e satisfying [y fodm = [ fdp for all f € Cy(X), hence p = pm. O

There is a simple duality inequality, involving the minimization in (2.1.2) and a maximiza-
tion among all n’s with barycenter in L9(X,m). To see it, let’s take f € L (X, m) such that
[fdp >1on X C M4(X). Then, if ¥ is universally measurable we may take any plan n
with barycenter in L9(X, m) to obtain

n(x) < / /X £ dpdn() < co(mlIf 1. (2.2.5)

In particular we have

Modpm(X) =0 = n(X)=0 for all n with barycenter in LY(X,m). (2.2.6)
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In addition, taking in (2.2.5) the infimum over all the f € L% (X, m) such that [ fdu > 1
on Y and, at the same time, the supremum with respect to all plans n with barycenter in
L9(X,m) and ¢4(n) > 0, we find

n(X) 1/
sup < Modyn(X)"?. 2.2.7
c(m)>0 Cq(7) pm(>) 2:27)

The inequality (2.2.7) motivates the next definition.

Definition 2.2.3 ((p,m)-content) If > C M (X) is a universally measurable set we define

n(%)
Cpm(X) := sup .
m cq(m)>0 Cq(1)

(2.2.8)

By convention, we set Cpn(X) =00 if 0 € X.

A first important implication of (2.2.7) is that for any family F of plans i with barycenter
in L9(X, m)
C:=sup{cy(n) : n€TF}<oo = T is tight. (2.2.9)
Indeed, n(ES) < ecq(n) < Ce, where the E. € M (X) are the compact sets provided by
Lemma 2.1.4. This allows to prove existence of optimal n’s in (2.2.8).

Lemma 2.2.4 Let ¥ C My (X) be a universally measurable set such that Cpm(X) > 0 and
supy, (X) < oo. Then there exists an optimal plan n with barycenter in L9(X,m) in (2.2.8),
and any optimal plan is concentrated on X. In particular

nE _ 1
cq(n) Cq(n)‘

Proof.  First we claim that the supremum in (2.2.7) can be restricted to the plans with
barycenter in L4(X,m) concentrated on X. Indeed, given any admissible  with n(X) > 0,
defining " = (n(X))"'xgn we obtain another plan with barycenter in L?(X,m) satisfying
7'(X) =1 and

[ [ranane = [ [ rawango < s [ panani < 58,

for all f € L% (X, m). In particular the definition of cq(n’ ) gives

Cp,m(z) =

cq(n
n(x)’

and proves our claim. The same argument proves that ' = 1 whenever i is a mazimizer.
Now we know that

cq(n') <

1
Cpm(X) = sup ,
o n(T)=1 cq(n)
where the supremum is made over plans with barycenter in L¢(X, m). We take a maximizing
sequence (1;,); for this sequence we have that ¢,(n;) < C, so that (n;,) is tight by (2.2.9).
Assume with no loss of generality that n;, weakly converges to some 7, that is clearly a
probability measure in My (X). To see that 1 is a plan with barycenter in L4(X, m) and that
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cq(n) is optimal, we notice that the continuity and boundedness of p — [ + J/ dp in bounded
sets of M4 (X) for f € Cy(X) gives

[ [ rananto = tin [ [ rapano < Jim cmlf1,

so that

// £ dpeda(u ( clfl e G)

The thesis follows from Proposition 2.2.2. O

2.3 Equivalence between C,, and Mod,

In the previous two sections, under the standing assumptions (X, 7) Hausdorff topological
space (Polish in the case of Cp ), 1 € M4 (X) and p € [1,00), we introduced a p-Modulus
Mod,, n and a p-content C), , proving the direct inequalities (see (2.2.7))

Ch i < Modym < Mody m,e on Souslin subsets of My (X).

Under the same assumptions on (X, 7) and m € M, (X), our goal in this section is the
following result:

Theorem 2.3.1 Let (X, ) be a Polish topological space and p > 1. Then Mod,  is a Choquet
capacity in M4 (X), every Souslin set ¥ C M (X) is capacitable and satisfies Mod,, n ()P =
Cpm(X). If moreover ¥ is also compact we have Modp n(3) = Modp m (X).

Proof. We split the proof in two steps:

e first, prove that Modp7m7c(2)1/ P < Cpm(X) if ¥ is compact, so that in particulat
Mod;(n}z = Cpm on compact sets;

e then, prove that Mod, » and C),  are inner regular, and deduce that Mod}/ﬁ = Cpm on
Souslin sets.

The two steps together yield Mod, w = Mody, m . on compact sets, hence we can use Proposi-
tion 2.1.2(v,vi) to obtain that Mod, , is a Choquet capacity in M (X).

Step 1. Assume that ¥ C M, (X) is compact. In particular supy, u(X) is finite and so we
have that the linear map ® : Cyp(X) — C(X) = Cy(X) given by

Fro @yl i= [

is a bounded linear operator.

If ¥ contains the null measure there is nothing to prove, because Mod, m (X) = oo by defi-
nition and C)p (X)) = oo by convention. If not, by compactness, we obtain that infy, (X) > 0,
so that taking f = 1 in (2.1.3) we obtain Mod,m(X) < oo. We can also assume that
Mody, m,¢(X) > 0, otherwise there is nothing to prove.
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Our first step is the construction of a plan m with barycenter in L%(X,m) concen-
trated on ¥. By the equivalent definition analogous to (2.1.3) for Modpm ., the constant
£ = Mod, m.(X) "1/ satisfies

W) <€l VS e Ol (2.3.1)
Denoting by v = v(u) the generic element of C(X), we will now consider two functions on
C(2):
Fi(v) =inf{||fll, : feCyX), ®f>von X}
Fr(v) =min{o(u) : peX}.

The following properties are immediate to check, using the linearity of f + ®; for the first
one and (2.3.1) for the third one:

e [ is convex;
e F} is continuous and concave;
o [ <E&-F.

With these properties, standard Banach theory gives us a continuous linear functional L €
(C(X))* such that
Fy(v) < L(v) <& Fi(v) Yv € C(X). (2.3.2)

For the reader’s convenience we detail the argument: first we apply the geometric form of
the Hahn-Banach theorem in the space C(X) x R to the convex sets A = {Fy(v) > t} and
B = {F1(v) < t/&}, where the former is also open, to obtain a continuous linear functional G
in C(¥) x R such that

G(v,t) < G(w,s) whenever Fy(v) > t, Fi(w) < s/¢.
Representing G(v,t) as H(v) + pt for some H € (C(X))* and 5 € R, the inequality reads
H(v) + ft < H(w) + Bs whenever Fy(v) > t, Fi(w) < s/¢.

Since F} and Fy are real-valued, 8 > 0; we immediately get Fy» < (v — H)/f < {Fy, with
v :=sup H(v) + F5(v). On the other hand, F;(0) = F»(0) = 0 implies v = 0, so that we can
take L = —H/B in (2.3.2).

In particular from (2.3.2) we get that if v > 0 then L(v) > F5(v) > 0 and so, since ¥ is
compact, we can apply Riesz theorem to obtain a nonnegative measure 1 in X representing L:

L(v) = / v(p)dn  Yv e C(X).
by
Furthermore this measure can’t be null since (here 1 is the function identically equal to 1).
n(¥) = L(1) = F(1) =1,

and so n(X) > 1. Now we claim that 7 is a plan with barycenter in L9(X, m); first we prove
that n(X) < 1, so that n will be a probability measure. In fact, we know Fs(v)n(X) < L(v)
because v > Fy(v) on 3, and then

Fy(v)n(X) < EF1(v).
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In particular, inserting in this inequality v = ®, with ¢ € Cy(X), we obtain

. ¢
inf @, < — ol

n(X)
and so Mody, m¢(X) > (n(X)/&)P = n(X)’PModp m (X), which implies n(X) < 1. Now we have
that

L([ra)am-r@p<cr@p<eis, veox) @3
X X

and so, by Proposition 2.2.2, this inequality is true for every f € L% (X, m), showing that n
is a plan with barycenter in L(X, m); as a byproduct we gain also that ¢,(n) < ¢ that gives
us, that Cpm(3) > Mod,, m.(2)'/?, thus obtaining that

Cpm(E) = Mody m ()P = Mody,m o(2) /7.

Step 2. Now we will prove that Mod,, » and C), iy are both inner regular, namely their value on
Souslin sets is the supremum of their value on compact subsets. Inner regularity and equality
on compact sets yield Cpn(B) = Mod,, (B)*/P on every Souslin subset B of M, (X).

Mod, m is inner regular. Proposition 2.1.2(v,vi) and the fact that Mod, m . = Mod, n if
the set is compact, give us that Mod,, is a capacity. For any set L C M, (X) we have
Modp (L) = sup, Mod, w(L N E.), where E. are the compact sets given by Lemma 2.1.4.
Therefore, suffices to show inner regularity for a Souslin set B contained in E. for some e¢.
Since E. is compact, B is a Souslin-compact set and from Choquet Theorem 1.1.5 it follows
that for every 6 > 0 there is a compact set K C B such that Mody, n(K) > Mody, n(B) — 6.

Cpm is inner regular. Since Souslin sets are universally measurable and M (X)) is Polish,
we can apply (1.1.1) to any Souslin set B with o = 1 to get

K K B
sup Cpm(K) = sup sup n(K) _ sup sup (k) _ sup n(B)

KCB KCBey(m)>0 Ca(M)  co(my=0 KB €q(M) ¢, (m)>0 (M)

= Cpm(B).

O

The duality formula and the existence of maximizers and minimizers provide the following
result.

Corollary 2.3.2 (Necessary and sufficient optimality conditions) Letp > 1, let ¥ C
M4 (X) be a Souslin set such that Mod, m(X) > 0 and supy, u(X) is finite. Then:

(a) there exists f € Lﬁ(X, m), unique up to m-negligible sets, such that fod,u > 1 for
Modp m-a.e. u € 3 and such that || f||5 = Modp m(2);

(b) there exists a plan m with barycenter in LY(X, m) concentrated on ¥ such that
Modym ()P = 1/cq(n);

(c) for the function f in (a) and any n in (b) there holds

_

= m.
£

/ fdu=1 form-a.e p and / pdn(pw) (2.3.4)
X X
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Finally, if f € L% (X, m) is optimal in (2.1.2), then any plan m with barycenter in LI(X,m)
concentrated on S such that co(n) = || fIl;* is optimal in (2.2.8). Conversely, if m is optimal
in (2.2.8), f € LA (X, m) and [y fdpu =1 for p-a.e. n then f is optimal in (2.1.2).

Proof.  The existence of f follows by Proposition 2.1.2(iv). The existence of a maximizer
1 in the duality formula, concentrated on ¥ and satisfying Cpn(X) = 1/¢q(n) follows by
Lemma 2.2.4. Since (2.2.6) gives fod,u > 1 for n-a.e. p € % we can still derive the
inequality (2.2.5) and obtain from Theorem 2.3.1 that all inequalities are equalities. Hence,
Jx fdp =1 for n-ae. p € My(X). Finally, setting p := [ pdn(p), from (2.2.3) we get
= gm with |g[lq = c4(n). This, in combination with

/X fgdm = / /X f dpdn () = co(mIfllp = lgllgl 1l

gives g = f*~ /|| fIp.
Finally, the last statements follow directly from (2.2.5) and Theorem 2.3.1. O

In particular, choosing ) as in (b) and defining

¥ = {N€M+(X)3 /deuzl},

since (X) = n(X’) we obtain a subfamily with the same p-modulus on which the constraint
is saturated.

2.4 Modulus of families of non-parametric curves

In this section we assume that (X,d) is a complete and separable metric space and that
mec M+ (X)

In order to apply the results of the previous sections (with the topology 7 induced by d)
to families of non-parametric curves we consider the canonical map J : €(X) — M4 (X)\ {0}
of Definition 1.2.5(d). In the sequel, for the sake of simplicity, we will not distinguish between
J and J, writing Jv or J[y] = Jv (this is not a big abuse of notation, since J is a quotient
map). a

Now we discuss the notion of (p,m)-modulus, for p € [1,00). The (p,m)-modulus for
families I' C € (X) of non-parametric curves is given by

Mod,, () := inf {/ g’dm : g e L (X, m), /g >1 forallye F} . (2.4.1)
« e

¥

We adopted the same notation Mod,, n because the identity fv g=/ x 9 dJy immediately gives

Modp,m () = Modp.m(J(I)). (2.4.2)

In a similar vein, setting ¢ = p/, in the space ¢ (X) we can define plans with barycenter
in L9(X, m) as Borel probability measures 7 in € (X) satisfying

/ Jydm(y) = gm for some g € LY(X, m).
¢X)
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Notice that the integral in the left hand side makes sense because the Borel regularity of J
easily gives that v — Jvy(A) is Borel in € (X) for all A € Z(X). We define, exactly as in
(2.2.3), ¢4(7) to be the LI(X, m) norm of the barycenter g. Then, the same argument leading
to (2.2.5) gives

< Mod, o(T)Y?  for all w € P(¥(X)) with barycenter in LI(X,m)  (2.4.3)

for every universally measurable set " in ¢'(X).

Remark 2.4.1 (Democratic plans) In more explicit terms, Borel probability measures m
in ¥ (X) with barycenter in L9(X, m) satisfy

1
/ (e))s(|¥e|m) dt = gm  for some g € LY (X, m) (2.4.4)
0

when we view them as measures on nonconstant curves v € AC([0, 1]; X'). For instance, in the
particular case when 7 is concentrated on family of geodesics parameterized with constant
speed and with length uniformly bounded from below, the case ¢ = oo corresponds to the
class of democratic plans considered in [63].

Defining Cp, n(I') as the supremum in the right hand side of (2.4.3), we can now use
Theorem 2.3.1 to show that even in this case there is no duality gap.

Theorem 2.4.2 For every p > 1 and every Souslin set I' C €(X) with Mod, n(I') > 0
there ezists a ® € P(€(X)) with barycenter in L(X,m), concentrated on T' and satisfying
cq(m) = Mody,m(T) /7.

Proof. From Theorem 2.3.1 we deduce the existence of n € iP(M+(X )) with barycenter in
L(X,m) concentrated on the Souslin set J(I') and satisfying

= Mod, i (J(T'))Y? = Mod,, ,(T')/?.
o) p(J(I)) pan(L)

By a measurable selection theorem [20, Theorem 6.9.1] we can find a m-measurable map
f+J() — €(X) such that f(u) € TN JY(u) for all u € J(T'). The measure w := fyn is
concentrated on I' and the equality between the barycenters

[g(x) Jydm(y) = /udn(u)

gives ¢q(m) = cq4(n). O

2.5 Modulus of families of parametric curves

In this section we still assume that (X,d) is a complete and separable metric space and
that m € M4 (X). We consider a notion of p-modulus for parametric curves, enforcing the
condition (2.4.4) (at least when Lipschitz curves are considered), and we compare with the
non-parametric counterpart. To this aim, we introduce the continuous map

M:C([0,1; X) = P(X),  M(v):=w(£"'L0,1]). (2.5.1)
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Indeed, replacing Jvy = (|| L[0,1]) with M we can consider a “parametric” modulus of a
family of curves ¥ C C([0, 1]; X) just by evaluating Mod,, (M (X)). By Proposition 2.1.2(vii),
if 3 C AC°([0,1]; X) then

Modpm(M(X)) =0 <= Modpn(J(X))=0. (2.5.2)

On the other hand, things are more subtle when the speed is not constant.

Definition 2.5.1 (¢g-energy and parametric barycenter) Let p € P(C([0,1]; X)) and
q € [1,00). We say that p has finite q-energy if p is concentrated on ACI([0,1]; X) and

[ [ bratapt) <o (253)

We say that p has parametric barycenter h € L1(X,m) if

1
|| rondtast = [ ram vre . (2.5.4)
0 X

The finiteness condition (2.5.3) and the concentration on ACI(]0,1]; X) can be also be
written, recalling the definition (1.2.1) of &, as follows:

/Sq(v) dp(v) < oco.

Notice also that the definition (2.5.1) of M gives that (2.5.4) is equivalent to require the
existence of a constant C > 0 such that

//deMVdp(’Y)SC</Xfpdm)1/p Vf € Cy(X), f>0. (2.5.5)

In this case the best constant C' in (2.5.5) corresponds to ||k fa(x m) for b as in (2.5.4).

Remark 2.5.2 It is not difficult to check that a Borel probability measure p concentrated
on a set I' € AC*([0,1]; X') with p-essentially bounded Lipschitz constants and parametric
barycenter in L?(X, m) has also (nonparametric) barycenter in L9(X, m). Conversely, if = €
P(€¢(X)) with barycenter in L9(X, m) and mr-essentially bounded length £(), then jym has
parametric barycenter in LI(X, m).

Now, arguing as in the proof of Theorem 2.4.2 (which provided existence of plans 7 in
% (X)) we can use a measurable selection theorem to deduce from our basic duality Theo-
rem 2.3.1 the following result.

Theorem 2.5.3 For every p > 1 and every Souslin set ¥ C C([0,1]; X), Mod, m(M (X)) >
0 is equivalent to the existence of p € fP(C([O, 1];X)) concentrated on ¥ with parametric
barycenter in L4(X, m).

Our next goal is to use reparameterizations to improve the parametric barycenter from
LY(X,m) to L>®(X,m). To this aim, we begin by proving the Borel regularity of some
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parametrization maps. Let h : X — (0,00) be a Borel map with supyh < oo and for
every o € C([0,1]; X) let us set

/ h(oy) te(s) := G(la) /OS h(o,)dr:[0,1] — [0, 1]. (2.5.6)

Since t, is Lipschitz and t, > 0 .Z!-a.e. in (0,1), its inverse s, : [0,1] — [0, 1] is absolutely
continuous and we can define

H : AC([0,1]; X) — AC([0,1]; X), Ho(t) = o(ss(t)). (2.5.7)
Notice that H(AC ([0, 1]; X)) € ACy([0,1]; X).

Lemma 2.5.4 If h: X — R is a bounded Borel function, the map G in (2.5.6) is Borel. If
we assume, in addition, that h > 0 in X, then also t, in (2.5.6) is Borel and the map H in
(2.5.7) is Borel and injective.

Proof. Let us prove first that the map

Ji—>fg(t):/0 h(oy) dr

is Borel from C([0,1]; X) to C([0,1]) for any bounded Borel function A : X — R. This
follows by a monotone class argument (see for instance [20, Theorem 2.12.9(iii)|), since class
of functions h for which the statement is true is a vector space containing bounded continuous
functions and stable under equibounded pointwise limits. By the continuity of the integral
operator, the map G is Borel as well.

Now we turn to H, assuming that A > 0. By Proposition 1.1.3(iii) it will be sufficient to
show that the inverse of H, namely the map o — o ot,, is Borel. Since the map (o,t) — oot
is continuous from C([0, 1]; X') x C([0, 1]) to C([0,1]; X), the Borel regularity of the inverse of
H follows by the Borel regularity of o +— t,. O

Theorem 2.5.5 Let ¢ € (1,00) and p =¢'. If p € ?(C([O, 1];X)) has finite q-energy and
parametric barycenter h € L>(X, m), then ™ = igzp has barycenter in LI(X, m) and

< ([ eaant) "Iy 255

Conversely, if ™ € ?(‘K(X)) has barycenter in L1(X,m) and m-essentially bounded length
((7), concentrated on a Souslin set I' C ¢(X), there exists p € P(C([0,1]; X)) with finite
q-energy and parametric barycenter in L (X, m) concentrated in a Souslin set contained in

L]

More generally, let o € ?(C([O, 1];X)) be concentrated on a Souslin set T' C
AC™([0,1]; X), with parametric barycenter in L1(X, m) and with o-essentially bounded Lip-
schitz constants. Then there exists p € T(C([O, 1];X)) with finite q-energy and parametric
barycenter in L (X, m) concentrated on a Souslin set contained in [T'].

Proof. Notice that for every nonnegative Borel f there holds

IEEE I oo tdarantn < ([ eado) " ([| #enaranm)”
< ([eatn) ([ rrnam)™ < ([ esdn) WL gl i
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so that (2.5.8) holds.

Let us now prove the last statement from o to p, since the “converse” statement from
to p simply follows by applying the last statement to o := jymw and recalling Remark 2.5.2.
Let g € L9(X, m) be the parametric barycenter of o and let us set h :=1/(¢ V g), with ¢ > 0
fixed. Up to a modification of g in a m-negligible set, it is not restrictive to assume that h
is Borel and with values in (0, 1/¢], so that the corresponding maps G and H defined as in
(2.5.6) and (2.5.7) are Borel.

We set p := 271 G(-)o, where z € (0,1/¢] is the normalization constant [ G(v)do (7).
Let us consider the inverse s, : [0,1] — [0,1] of the map t, in (2.5.6), which is absolutely
continuous for every ¢ and the corresponding transformation Ho in (2.5.7). We denote by
L the o-essential supremum of the Lipschitz constants of the curves in I". Notice that for
o-a.e. o

LG(o)
h(Ho(t))

and for every nonnegative Borel function f there holds

1 1 1 , B 1 1
| remyar= [ soeonar= [ e s = g [ o)) s

so that choosing f = h™7 yields

|(Ho)'|(t) < Ls, (t) = ZLlae. in (0,1), (2.5.9)

o I .
&,(Ho) <Lqu(a)/0 hoU(Ho(t)dt < = [ h'79(o(s)) ds. (2.5.10)

Now we set p := Hyp and notice that, by construction, p is concentrated on the Souslin set
H(T') C [I']. Integrating the g-energy with respect to p we obtain

/ £,(0) dp(6) = / &,(Ho) dplo) < / Glo / 90 (s)) ds d(o)
g— h'= qum<L<eq 1/ gdm+/ qum>,
zed b'e zed X X
thus obtaining that p has finite g-energy. Similarly
1
//f w@U=//dem&@@
_ /G / F(o(s)h(a(s)) ds do () </ fghdm.

Since gh < 1, this shows that p has parametric barycenter in L>(X,m). ]

Corollary 2.5.6 A Souslin set I' C € (X) is Mod, m-negligible if and only if p,([jI']) =0 for
every p € P(C([0,1]; X)) concentrated on ACI([0,1]; X) and with parametric barycenter in
L>*(X,m).

Proof. Let us first suppose that I' is Mod,, n-negligible and let us denote by h € L*(X, m)
the parametric barycenter of p and let us prove that p,([jT']) = 0. Since p is concentrated
on AC?([0,1]; X)) we can assume with no loss of generality (possibly restricting p to the class
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of curves o with €,(0) < n and normalizing) that p has finite g-energy. We observe that if
o€ AC([0,1]; X) and f: X — [0,00] is Borel, there holds

/f o) dt < /fp 1/p(8q(0))1/q. (2.5.11)

If f satisfies
/f >1 Vyerl
gl

we obtain that [ f > 1 for all o € [jI']. We can now integrate w.r.t. p and use (2.5.11) to get

//fp ) dt dp(o /8 )dp(o /q

=( /X raam) ([ eq<o>dp<o>) < I ol1AlLe / £4(0)dp(o)) " (2512

By minimizing with respect to f we obtain that p,([jT]) = 0.

Conversely, suppose that Mod,, (I") > 0; possibly passing to a smaller set, by the countable
subadditivity of Mod,n we can assume that ¢ is bounded on I': then by Theorem 2.4.2
there exists w € P(%(X)) with barycenter in L?(X,m) concentrated on I' and therefore
the boundedness of ¢ allows to apply the final statement of Theorem 2.5.5 to obtain p €
P(C([0,1]; X)) with finite g-energy, parametric barycenter in L>°(X, m) and concentrated on
a Souslin subset of [jI']. O

In the next corollary, in order to avoid further measurability issues, we state our result
with the inner measure

px(E) :=sup{u(B) : B Borel, B C E}.
This formulation is sufficient for our purposes.

Corollary 2.5.7 Let I' C AC™([0,1]; X) be a Souslin set such that p,([I']) = 0 for every
plan p € P(C(]0,1]; X)) concentrated on ACI([0,1]; X) and with parametric barycenter in
L>*(X,m). Then M(T') is Mod, m-negligible.

Proof.  Suppose by contradiction that Mod, (M (I')) > 0; possibly passing to a smaller
set, by the countable subadditivity of Mod, » we can assume that Lip is bounded on I'. By
Theorem 2.5.3 there exists 7w € P(C([0,1]; X)) with parametric barycenter in L9(X, m) con-
centrated on I'. The boundedness of Lip on I" allows to appy the second part of Theorem 2.5.5
to obtain p € (P(C([O7 1];X)) with parametric barycenter in L*° (X, m), finite g-energy and
concentrated on a Souslin subset of [I']. O

2.6 Test plans and their null sets

In this section we will assume that (X, d) is a complete and separable metric space and m €
M4 (X). The following notions have already been used in [11] (¢ = 2) and [9] (in connection
with the Sobolev spaces with gradient in LP(X, m), with ¢ = p'; see also [5] in connection
with the BV theory), with a slight difference: in [9], [11] the authors use only g-test plans
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that satisfy the additional condition [ €;dp < co. Here we drop this assumption, requiring
only that p is concentrated on AC([0,1]; X) = {€,; < oco}. However it is obvious that the
negligible sets described by the two approaches are the same, since every ¢-plan p without the
integrability condition can be approximated by ¢-plans o satisfying even (2.6.1) below.

Definition 2.6.1 (¢-test plans and negligible sets) Let p € P(C([0,1]; X)) and ¢ €
[1,00]. We say that p is a q-test plan if

(i) p is concentrated on AC?([0,1]; X);
(ii) there exists a constant C' = C(p) > 0 satisfying (e¢)yp < Cm for all t € [0, 1].

We say that a universally measurable set T' C C([0,1]; X) is g-negligible if p(T') = 0 for all
q-test plans p.

Notice that, by definition, C(]0, 1]; X)\ AC?([0, 1]; X) is g-negligible. The lack of invariance
of these concepts, even under bi-Lipschitz reparameterizations (dependent on the curve) is due
to condition (ii), which is imposed at any given time and with no averaging (and no dependence
on speed as well). Since condition (ii) is more restrictive compared for instance to the notion
of democratic test plan of [63]| (see Remark 2.4.1), this means that sets of curves have higher
chances of being negligible w.r.t. this notion, as the next elementary example shows.

We now want to relate null sets according to Definition 2.6.1 to null sets in the sense of
p-modulus. Notice first that in the definition of g-negligible set we might consider only plans
p satisfying the stronger condition

esssup{Eq(0)} < 0o (2.6.1)

because any g-test plan can be monotonically be approximated by g-test plans satisfying this
condition. Arguing as in the proof of (2.5.12) we easily see that

I' € ¢(X) Mod, m-negligible = i~1(T) g-negligible. (2.6.2)

The following simple example shows that the implication can’t be reversed, namely sets whose
images under i~! are g-negligible need not be Mod,, m-null.

Example 2.6.2 Let X = R2, d the Euclidean distance, m = £%. The family of parametric
segments
Y ={y": zcl0,1]} € AC([0,1];R?)

with v§ = (x,t) is g-negligible for any q, but i(X) has p-modulus equal to 1.

In the previous example the implication fails because the trajectories y* fall, at any given
time t, into a m-negligible set, and actually the same would be true if this concentration
property holds at some fixed time. It is tempting to imagine that the implication is restored
if we add to the initial family of curves all their reparameterizations (an operation that leaves
the p-modulus invariant). However, since any reparameterization fixes the endpoints, even
this fails. However, in the following, we will see that the implication

I' g-negligible == Mod,, w(i(I')) =0
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could be restored if we add some structural assumptions on I' (in particular a “stability”
condition); the collections of curves we are mainly interested in are those connected with the
theory of Sobolev spaces in [11], [9], and we will find a new proof of the fact that if we define
weak upper gradients according to the two notions, the Sobolev spaces are eventually the
same.

We now fix some additional notation: for I = [a,b] C [0, 1] we define the “stretching” map
sy AC([0,1]; X) — AC([0,1]; X), mapping 7 to v o s;, where sy : [0,1] — [a, b] is the affine
map with s7(0) = a and s7(1) = b. Notice that this map acts also in all the other spaces ACY,
ACy, ACZ° of parametric curves we are considering. Recall also the definition of k given in
Proposition 1.2.1

Definition 2.6.3 (Stable and invariant sets of curves)

(i) We say that I' C {v € AC([0,1]; X) : 4(v) > 0} is invariant under constant speed
reparameterization if ky € I' for all v € T';

(i) We say that T C AC([0,1]; X) is ~-invariant if [y] C T for all v € T';

(iii) We say that T' C AC([0,1]; X) is stable if for every v € T" there exists € € (0,1/2) such
that s;y € I' whenever I = [a,b] C [0,1] and |a| + |1 —b| < e.

The following theorem provides key connections between g¢-negligibility and Mod,, m-
negligibility, both in the nonparametric sense (statement (i)) and in the parametric case
(statement (ii)), for stable sets of curves.

Theorem 2.6.4 Let I' C AC([0,1]; X) be a Souslin and stable set of curves.

(i) If, in addition, £(y) > 0 for all v € I' and I is both ~-invariant and invariant under
constant speed reparameterization, then I' is g-negligible if and only if J(I') is Mody m-
negligible in My (X) (equivalently, i(I") is Mod), m-negligible in € (X)).

(it) If T is g-negligible and [[ NAC™([0,1]; X)] C T, then M (I'NAC™([0,1]; X)) is Mody,m-
negligible in M4 (X). If T is also ~-invariant then the converse holds, too.

Proof. (i) The proof of the nontrivial implication, from positivity of Mod, n(J(I")) to I'
being not g-negligible is completely analogous to the proof of (ii), given below, by applying
Corollary 2.5.6 to i(I") in place of Corollary 2.5.7 to ' AC>(]0, 1]; X) and the same rescaling
technique. Since we will only need (ii) in the sequel, we only give a detailed proof of (ii).

(i) Let us prove that the positivity of Modym (M (I' N AC*([0,1]; X))) implies that I is
not g-negligible. Since I'MAC>(]0, 1]; X) is stable, we can assume the existence of € € (0,1/2)
such that s;y € T whenever I = [a,b] C [0,1] and |a| + |1 — b| < e.

By applying Corollary 2.5.7 to I' N AC*([0,1]; X) we obtain the existence of p €
P(ACY([0,1]; X)) concentrated on a Souslin subset of [I' 1 AC*([0,1]; X)], and then on T,

with L°° parametric barycenter, i.e. such that
1
/ (er)gpdt < Cm for some C > 0. (2.6.3)
0

Let’s define a family of reparametrization maps FJ : ACI([0,1]; X) — AC([0,1]; X):

t”) te[0,1,  VyeACY[0,1]:X), V7 e 0,el. (2.6.4)

FIA0) = (1
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Let us consider now the measure

po=1 [ W)par
€ Jo

We claim that p, is a ¢-plan: it is clear that p, is a probability measure on AC?([0,1]; X),
and so we have to check only the marginals at every time:

(et)ep. = = /0 (e ((FT)ap) dr = - /0 “(er epdr

3 15 1+e

t+e
1 e 1 1 !
DL /1+ (es)gpds < +€/ (es)gpds < C +€m for all ¢ € [0, 1].
€ t € 0 €

1+4¢

Now we reach the absurd if we show that p. is concentrated on I'; in order to do so it is

sufficient to notice that F7 = sy with I = IT = [{1—, %] and 7 € [0, ¢].

Now if we assume also that [I'] C I" then we know that given a curve € I then o sfl =:
n € TNAC™>(]0,1]; X), where s; is the parametrization defined in Proposition 1.2.1. We recall
that by definition we have (1 + £(7))s'(t) = 1 + ||; in particular, by the change of variable
formula

1 1
/ (L + [ye)g(ye) dt = (1 + E(’y))/ g(ns) ds Vg Borel function. (2.6.5)
0 0

We suppose that M (FﬂACOO([O, 1; X )) is Mod) m-negligible; this gives us a p-integrable Borel
function f such that

/1 fly)dt = o0 Vy € N AC™([0,1]; X). (2.6.6)
0

Now given any ¢-plan 7t we have that

//01(|’?t| + 1) f(m) dtdm < <//01(7.t N 1)thd7r> 1/a (//Olf(%)ljdtdﬂ) 1/p
: <</ £a07) d")l/q+ 1) <O(7T)'/Xf”dm>1/p <o (26.7)

Now, using (2.6.6), (2.6.7) and (2.6.5) we get precisely that = (I") = 0.

0

Remark 2.6.5 We note that the proof shows that if I' is ~-invariant and M (F N
AC™(]o, 1];X)) is Modp m-negligible in M (X) then I' is g-negligible, also if the stability
assumption is dropped.

2.7 Weak upper gradients

As in the previous sections, (X,d) will be a complete and separable metric space and m €

M (X).
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Recall that a Borel function g : X — [0, o] is an upper gradient of f: X — R if
) = F00)1 < [ 6 (2.71)
¥

holds for all v € €(X). Here, the curvilinear integral f7 g is given by [, g(v¢)|4¢| dt, where

v :J — X is any parameterization of the curve v (i.e., ¥ = i, and one can canonically take
v = jv). It follows from Proposition 1.2.4 that the upper gradient property can be equivalently
written in the form

|f(lfm) B f(lznl)| < /X ngl.

Now we introduce two different notions of Sobolev function and a corresponding notion of
p-weak gradient; the first one was first given in |75] while the second one [11] in for p = 2 and
in 9] for general exponent. When discussing the corresponding notions of (minimal) weak
gradient we will follow the terminology of [9].

Definition 2.7.1 (N!? and p-upper gradient) Let f be a m-measurable and p-integrable
function on X. We say that f belongs to the space N'P(X,d, m) if there exists g € Uj_(X, m)
such that (2.7.1) is satisfied for Mody wm-a.e. curve 7.

Functions in NP have the important Beppo-Levi property of being absolutely continuous
along Mod,, n-a.e. curve v (more precisely, this means fojy € AC([0,1]; X)), see [75, Proposi-
tion 3.1]. Because of the implication (2.6.2), functions in N'P(X,d, m) belongs to the Sobolev
space defined below (see [11], [9]) where (2.7.1) is required for g-a.e. curve 7.

Definition 2.7.2 (W!? and p-weak upper gradient) Let f be a m-measurable and p-
integrable function on X. We say that f belongs to the space W'P(X, d,m) if there eists
g € L8 (X, m) such that

1
£60) = FO0)l < [ o)l de
0
is satisfied for q-a.e. curve v € ACI([0,1]; X).

We remark that there is an important difference between the two definitions, namely the
first one is a priori not invariant if we change the function f on a m-negligible set, while
the second one has this kind of invariace, because for any g-test plan p, any m-negligible
Borel set N and any ¢ € [0,1] the set {y : =~ € N} is p-negligible. Associated to these
two notions are the minimal p-upper gradient and the minimal p-weak upper gradient, both
uniquely determined up to m-negligible sets (for a more detailed discussion, see [9], [75]).

As an application of Theorem 2.6.4, we show that these two notions are essentially equiv-
alent modulo the choice of a representative in the equivalence class: more precisely, for
any f € WHP(X,d, m) there exists a m-measurable representative f of f which belongs to
N1P(X,d,m). This result is not new, because in [11] and [9] the equivalence has already been
shown. On the other hand, the proof of the equivalence in [11] and [9] is by no means elemen-
tary, it passes through the use of tools from the theory of gradient flows and optimal transport
theory and it provides the equivalence with another relevant notion of “relaxed” gradient based
on the approximation through Lipschitz functions. We provide a totally different proof, using
the results proved in this paper about negligibility of sets of curves.
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In the following theorem we provide, first, existence of a “good representative” of f. No-
tice that the standard theory of Sobolev spaces provides existence of this representative via
approximation with Lipschitz functions.

Theorem 2.7.3 (Good representative) Let f: X — R be a Borel function and let us set
I'={y€AC>®([0,1}; X) : fo~ has a continuous representative f : [0,1] — R}.

If Modp,m (M (AC™([0,1]; X) \T)) = 0 there exists a m-measurable representative f:X >R
of f satisfying
Modym(M({y €T : fory# f,})) =0. (2.7.2)

In particular
(i) for q-a.e. curve ~ there holds f o~ = Iv;
(ii) for Mod,,wm-a.e. curve v there holds f o jy = fiy-

Proof. Let us set T' := AC™([0,1]; X) \ T, so that our assumption reads Mod,, (M (T)) = 0.
Notice first that the (ii) makes sense because fj, exists for Modyn-a.e. curve 7 thanks to

(2.5.2) and Mod,, (M (T'NAC([0,1]; X))) = 0 (also, constant curves are all contained in T").
Also (i) makes sense thanks to 2.6.5 and the fact that the property of having a continuous
representative is ~-invariant.

Step 1. (Construction of a good set I'y of curves). Since we have Mody, (M (I')) = 0, there
exists h € L% (X, m) such that fol hoo = oo for every o € . Starting from I' and h, we can

define the set I'y = {77 el : fol hon < oo} of “good” curves, satisfying the following three
conditions:

(a) fomn has a continuous representative for all n € T'y;
(b) folhon < oo for all n € T'y;
(c) M(AC>([0,1}; X)\Ty) is Mod, m-negligible.

Indeed, properties (a) and (b) follow easily by definition, while (c) follows by the inclusion
M(AC™([0, 1]: X) \ T,) € M(AC®([0, 1]; X)\ T) U {p: / By = oo).
b'e

Step 2. (Construction of f ). For every point € X we consider the set of pairs good curves-
times that pass through x at time t¢:

O, = {(77775) € I‘g X [Oa 1] : U(t) = "E}a

and, thanks to property (a) of I'y, we can partition this set according to the value of the
continuous representative f, at t:

O, =|J6O;, with O ={(nt) e, : f(t) =r}.

reR
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Now, the key point is that for every z € X there exists at most one r such ©, is not empty.

Indeed, suppose that r; # ro and that there exist (n1,t1) € O, (n2,t2) € ©2, so that
1 = fn (t1) # fn,(t2) = 1r2; since 11, n2 € I'y, property (b) of I'y gives
1 1
/ honldt+/ homnydt < oco. (2.7.3)
0 0

Suppose to fix the ideas that £; > 0 and t9 < 1 (otherwise we reverse time for one curve,
or both, in the following argument). Now we create a new curve 73 € AC™>([0,1]; X) by
concatenation:
m(2st1) if s €10,1/2],
n3(s) = .
n(l—2(1—s)(1—t2)) ifsell/2,1].

This curve is clearly absolutely continuous and it follows first 7; for half of the time and then
it follows 79; it is clear that, since f o 73 coincides #!-a.e. in (0,1) with the function

ofs) = for (2st1) if s €0,1/2],
| fp(T =201 = s)(1 —t2)) ifs€[1/2,1]

which has a jump discontinuity at s =1 /2, f ons has no continuous representative. It follows
that n3 belongs to I' and therefore fol h on3 = oo. But, since

1 1 1 1 1
— h dt + — h dt > h dt
ot Jo M +2(1—t2)/0 o —/0 o
we get a contradiction with (2.7.3).
Now we define

f(x) — {fn(t) if (n,t) E ©, for some n € I'y, t € [0,1]
f(z)  otherwise.

By construction, f(n(t)) = f,(t) for all t € [0,1] and 7 € Ty, so that property (c) of I'y shows
(2.7.2) which implies also that that

Mody,m(M({y € TAACE(0,1:X) : fory # f,))) =0.

Recalling (2.5.2) and the fact that j is a Borel isomorphism, we can rewrite this last equation
as

Modym(J({y € €(X) : foiy# fiy})) =0,

and so we proved (ii).Using 2.6.5 and the fact that {7y : f = f,} is clearly a ~-invariant set
gives (i).

Step 3. (The set F:= {f # f} is m-negligible.) Let 4% be the curve identically equal z, that
is ¢ = x for all t € [0,1]. Tt is clear that 4* belongs to I" for every € X: in particular
fre(t) = f(x) for every t € [0,1]. The basic observation is that if we consider the set T
of constant curves v* satisfying f o 7% % fye, then f(z) # f (x) for every such curve, hence
I.={y* : x € F}. In particular we have that M(T.) = {6, : = € F}. Now, from (2.7.2),
we know that Mod,,m(M(T.)) = 0; this provides the existence of g € £% (X, m) such that
g(z) = oo for every z € F, and so we get that F' is contained in a m-negligible set. U
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The following simple example shows that, in Theorem 2.7.3, the “nonparametric” assumption
that J(AC([0,1]; X) \ I') is Mod,, m-negligible is not sufficient to conclude that f = f m-a.e.
in X.

Example 2.7.4 Let X = [0,1], d the Euclidean distance, m = £ + 6172, P € [1,00). The
function f identically equal to 0 on X \ {1/2} and equal to 1 at x = 1/2 has a continuous
(actually, identically equal to 0) representative fiy for Mody m-a.e. curve v, but any function

f such that fojl = fjy for Mod,m-a.e. 7 should be equal to 0 also at z = 1/2, so that
m({f# f}) =1

Now, we are going to apply Theorem 2.7.3 to the problem of equivalence of Sobolev spaces.
We begin with a few preliminary results and definitions.
Let f: X - R, g: X — [0,00] be Borel functions. We consider the sets

(g) = {7 € AC(0.1): X) : /ﬂ <o}, (2.7.4)

and

B(f,g) := {7 €I(g): foye Wh(0,1), |%(f o) < |¥lgory L ae. in (0, 1)}. (2.7.5)

We will need the following simple measure theoretic lemma, which says that integration in
one variable maps Borel functions to Borel functions. Its proof is an elementary consequence
of a monotone class argument (see for instance |20, Theorem 2.12.9(iii)]) and of the fact that
the statement is true for F' bounded and continuous.

Lemma 2.7.5 Let (Y,dy) be a metric space and let F' : [0,1] x Y — [0,00] be Borel. Then
the function Jp : Y — [0, 00] defined by y — fol F(t,y)dt is a Borel function.

Lemma 2.7.6 Let f : X — R, g : X — [0,00] be Borel functions. Then 3(g) \ B(f,q) is a
Borel set, stable and ~-invariant.

Proof.  Stability is simple to check: if, by contradiction, it were v € J(g) \ B(f,g) and
Slan,bn)Y € B(f,9) with an, | 0 and b, T 1, we would get foy € Whl(a,,b,) and |%f o
vl < [Algoy € LY0,1) ZL'-ae. in (an,b,). Taking limits, we would obtain v € B(f,g), a
contradiction.

For the proof of ~-invariance we note that, first of all, that Lemma 2.7.5 with F(¢,) :=
9(7)|¥¢| guarantees that J(g) is a ~-invariant Borel set, provided we define F' using a Borel
representative of |¥|; this can be achieved, for instance, using the lim inf of the metric difference
quotients. Analogously, the set

1
L= {y e A1)+ [ Il < o)

is Borel. Now, v € B(f, g) if and only if v € J(g) N L and

1 1
l/wwmwﬂs/wwmmmw for all o € W (2.7.6)
0 0
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with W = {¢ € AC([0,1];]0,1]) : ¢(0) = (1) = 0}. Now, if both s and s~! are absolutely
continuous from [0, 1] to [0, 1], setting 1 := 7 o's, we can use the change of variables formula
to obtain that (pos)/fon € L'(0,1) for all ¢ € W and that

1
/0 (0 05)' () (1) dr

Since W os = W we eventually obtain ¢’fon € L(0,1) for all o € W (so that fon is locally
integrable in (0, 1)) and

1
/ () f () dr
0

It is easy to check that these two conditions, in combination with fn g < oo, imply that n € L,

1
< [ lposmlgnlivldr  forall g e W.
0

1
< /O o) lg(n) i) dr  for all g € W,

therefore f on belongs to B(f, g) and ~-invariance is proved.

In order to prove that B(f,g) is Borel we follow a similar path: we already know that
both J(g) and L are Borel, and then in the class J(g) N L the condition (2.7.6), now with W
replaced by a countable dense subset of CL(0,1) for the C! norm, provides a characterization
of B(f,g). Since for ¢ € CL(0,1) fixed the maps

1
ne m/ dr, w/o () lg ()| dr

are easily seen to be Borel in AC([0,1]; X') (as a consequence of Lemma 2.7.5, splitting in
positive and negative part the first integral and using once more a Borel representative of |7
in the second integral) we obtain that B(f, g) is Borel. O

Theorem 2.7.7 (Equivalence theorem) Any f € NYP(X,d, m) belongs to W{l’p(X,d,m).
Conversely, for any f € WHP(X, d,~m) there exists a m-measurable representative f that belongs
to Nl’p(X d,m). More precisely, [ satisfies:

(i) fo~ e AC([0,1]; X) for g-a.e. curve v € AC*®([0,1]; X);
(i1) f oyy € AC([0,1]; X) for Mody wm-a.e. curve 7.

Proof. We already discussed the easy implication from NP to WP, so let us focus on the
converse one.In the sequel we fix f € W1P(X,d, m) and a p-weak upper gradient g. By Fu-
bini’s theorem, it is easily seen that the space W'P(X,d, m) is invariant under modifications
in m-negligible sets; as a consequence, since the Borel o-algebra is countably generated, we
can assume with no loss of generality that f is Borel. Another simple application of Fubini’s
theorem (see |9, Remark 4.10]) shows that for g-a.e. curve « there exists an absolutely con-
tinuous function fy : [0,1] — R such that f, = f Z%ae. in (0,1) and |[&f| < |[Y]gory
Ll-ae. in (0,1). Since the LY integrability of g yields that the complement of J(g) is ¢-
negligible, we can use Lemma 2.7.6 and Theorem 2.6.4(ii) to infer that ¥ = J(g) \ B(f,9)
satisfies Modpm (M (2 N AC>([0,1]; X))) = 0.

By Theorem 2.7.3 we obtain a m-measurable representative f of f such that f oy = f, for
g-a.e. curve v and f ojy = fjy for Mod, w-a.e. 7. Hence, the fundamental theorem of calculus
for absolutely continuous functions gives B

1 .
70 p) = F0) = 1) = 5,001 < [ oGl fat = | g

¥

for Mody, m-a.e. 7. O]
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CHAPTER 3

Orlicz-Sobolev Spaces

Let (X, d) be a complete and separable metric space and let m be a nonnegative Borel measure
in X that is finite on bounded sets. In this chapter we introduce and compare two notions
of Orlicz-Sobolev space on X, the first obtained by relaxation of the asymptotic Lipschitz
constant, the second obtained by a suitable weak upper gradient property. Eventually we
will show that the two notions of Sobolev functions coincide; the equivalence is valid for any
N-function ®. In a subsequent section we illustrate how this result generalize [9]|, showing
that in the case ¥ (the convex conjugate of ®) is doubling, we can define also a notion of
modulus of gradient that coincides with other notions of gradient, generalization of the ones
introduced in [25], [57], [75], described in the appendix. The proof follows closely [9], but,
choosing properly the energy used for the constriction of the gradient flow, we are able to
achieve the proof looking at dissipation of a functional independent of the function ®, namely
the squared norm of the function.

We briefly summarize the proof: in Section 1.6 we studied the properties of the Hopf-Lax

semigroup

Qufte) = int 1(y) + v (12L),

for which we proved the differential inequality

d
EQtf(x) + (I)(lipa(Qtf, l‘)) <0,

that will play an important role in our analysis. In Section 3.1 and Section 3.2 we present and
compare the two definitions of ®-Sobolev spaces we already mentioned in the Introduction,
while in Section 3.1.1 we gather a few facts on the gradient flow of 2 that are used in
Section 3.3 to prove our main result.

Basically, the proof is achieved controlling the dissipation of the function f ~ || f||3 along
the gradient flow of F® in two different ways: on one side we use properties of the gradient
flow that involves F*. On the other side we consider fim as a absolutely continuous curve in
the probability space with respect to Wig. Then, thanks to superposition principle 1.7.2, we
lift this curve of measures to a measure on the space of curves, and then we can use the BL
definition to estimate the dissipation with 3"% I

49
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The proof can be extended also to the degenerate case ®(t) = t, provided that a suitable
version of the Hamilton-Jacobi inequality for the Hopf-Lax formula is found: this is done in
Chapter 4, that is a smaller and improved version of [5].

3.1 Variational definition and relaxed energy F?*

In this section a notion of Orlicz-Sobolev space by a relaxation procedure is presented. First
we define

li - if f € Lipy(X,d
Fo(f) = {n ol l@m S € Ling(X,d)
400 otherwise,
where the dual Orlicz norm || - [|(¢),m is recalled in Definition 1.5.1. Then we consider F2 the

lower semicontinuous relaxation of F® with respect to the L' topology:
F(f) = inf{limiancp(fn) . fo— fin Ll(X,m)}_
n—oQ

We will call this function the ®-relaxed energy functional. We recall that D(F) is defined as
the domain of finiteness of a functional J.

Definition 3.1.1 (Variational H-definition) The space Hy®(X,d,m) is defined as
D(F®). In particular a function f € L'(X,m) belongs to the space Hy®(X,d,m) if and
only if there are Lipschitz functions with bounded support f, such that f, — f in L'(X,m)
and

sup tha(fm ')H(@),m < 0.
neN

Here the subscript v stands for variational. It is easy to see that H® is a vector space:
it follows from the fact that F® is convex and positively 1-homogeneous. Convexity of F&
follows by the more precise inequality for the asymptotic Lipschitz constant

lip,(Af + pg) < [Allip,(f) + [1llip,(9) (3.1.1)

which simply follows by homogeneity and convexity of f + lip,(f,x). Moreover these proper-
ties yield that the map N : f ~ || f|l1 + F2(f) is actually a norm. Using the semicontinuity of
F2 with respect to the L' convergence we find also that H® is complete with respect to the
norm N. We will call this norm the H%® norm, and denoted by || f|| g1.e := N(f). Unlike the
case ®(t) = tP/p, at this level of generality we can’t expect to find a modulus of the gradient
(see Section 3.4.1); however we will see that if the convex conjugate of ® is doubling we have
its existence (Theorem 3.4.8).

Remark 3.1.2 [t is obvious that FE(f) < Fs(f), in particular if f € Lipy(X,d) then we
have that f € Hy'® and F2(f) < |lipa(£)l@)m-

However the same thing is not obvious when f is a Lipschitz function and f € L', so we
prove it in the next proposition:

Proposition 3.1.3 Let f € LY(X,m) be a bounded Lipschitz function. Then we have that
F2(f) < Ilip, (f)|l(@)m- In particular, if m is finite then the constant functions have null
energy, and this implies that FE(C + f) = F2(f) for every f € L', C > 0.
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Proof. Fix a point € X, and let x, be a sequence of 1-Lipschitz function such that
XB.(z) < Xr < XB, o(z)- Then let us consider the sequence (xnf) C Lipy(X,d); it is obvious
that x,f — f in L' so we know that

Fy(f) < liminf [[xnf ).
We can assume ||lip,(f)||(@) < 00; now we have lip, (Xnf) < Xalip,(f) + fXB,..\B, and so

Ixnfll(@) < Mg (F)ll@) + 1 FXBso\By (@)

now, using that fxp,,,\p, — 0 pointwise and f € L> N L' ¢ M?®, we get by dominated
convergence (Lemma 1.5.3) that the last term in the right hand side is going to zero and so
we get the thesis.

Whenever m is finite we have that the constant functions are bounded integrable Lipschitz
functions and so their energy can be estimated with the (®)-norm of their asymptotic Lipschitz
constant, that is 0. In particular, by convexity and homogeneity, we have

FL(f) = F(C) SFPCH f) S Fo(f) +F2(O),

and so, since F(C) = 0 we have proved also the last assertion. O

3.1.1 Gradient flow of F2

In this subsection we assume that m(X) < oo. In the proof of equivalence a relevant
role is retained by the gradient flow of the convex and lower semicontinuous functional
F® . L*(X,m) — [0,00]; we can consider this functional, thanks to the fact that F2 is
defined on L', but since m is finite, we have L? C L'. With a slight abuse of notation we will
keep the notation 3"3) for this restricted functional. The convexity has been already proved,
while the lower semicontinuity in L? simply follows by the lower semicontinuity in L! and the
fact that m is finite. In addition, the domain of F2,

D(F®) = HM®(X,d,m) N L*(X,m)

is dense in L?(X, m), because it contains Lipy(X,d). Thanks to these facts we can apply the
standard theory of gradient flows [23| of convex lower semicontinuous functionals in Hilbert
spaces, recalled in Section 1.4 to obtain, starting from any fo € L*(X,m), a curve f; such
that:

(a) t > f; is locally Lipschitz from (0,00) to L?(X, m) and f; — fo strongly in L? as t | 0;
(b) t+— FL(f;) is locally absolutely continuous in (0, oc);
(c) %ft = Ag f; for a.e. t € (0,00).

Here Agf denotes the opposite of the element of minimal norm of the subdifferential
O0~F2(f), when this set is not empty. Namely, £ = —Ag f satisfies

F(h) > F2(f) +/ €(h—f)dm  Vhe LX(X,m) (3.1.2)
X
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and is the vector with smallest L?(X, m) norm among those with this property. We will denote
by D(Ag) the set of functions for which the subdifferential is not empty.

We can think of the gradient flow also as a semigroup S; that maps fy in f;. When m(X)
is finite, a property that will be used is that Si(afo + C) = a - S;/,(fo) + C for all C € R,
a € (0,00); this is true because 3’“5’ is positively 1-homogeneus and invariant by addition of
a constant (Proposition 3.1.3) and so we get that 9~ F® is positively 0-homogeneus and also
invariant by addition.

Proposition 3.1.4 (Integration by parts) For all f € D(Ag) and g € D(Chy) it holds

—/ gl fdm < F7(g), (3.1.3)
X

with equality if g = f.
Proof. Since —Agf € 0~ F1(f) it holds

Fo(f) - /XgAq»fdm <TF2(f+g), VgeL*(X,m).

Now we can use (3.1.1) to estimate F2(f + g) with F2(f) + F2(g), and so we get the first
statement. For the second statement we need the converse inequality when f = g; but this is
easy, because it is sufficient to put h =0 in (3.1.2).

0

Proposition 3.1.5 (Some properties of the gradient flow of F2) Let fo € L?*(X,m)
and let (f;) be the gradient flow of FE starting from fo. Then:

(Mass preservation) [ fydm = [ fodm for any t > 0.

(Mazimum principle) If fo < C (resp. fo > ¢) m-a.e. in X, then fy < C (resp fi > ¢) m-a.e.
i X for anyt > 0.

(Energy dissipation) Suppose 0 < ¢ < fo < C < oo m-a.e. in X and let © € C?*([c,C]). Then
t— [ O(f)dm is locally absolutely continuous in (0,00) and it holds

_(i/@(ft)dm <F2O/(f))  forae. t € (0,00),

with equality if O(t) = 2.
Proof. (Mass preservation) Just notice that from (3.1.3) we get

d
dt/:l:lftdm: /:I:l'Aq)ftdm < 9’?(:&1) =0 fora.e. t>0,
where 1 is the function identically equal to 1, which has ®-relaxed energy equal to 0 by
Proposition 3.1.3.

(Maximum principle) Fix f € L?(X,m), 7 > 0 and, according to the so-called implicit Euler
scheme, let f7 be the unique minimizer of

1
g = T+ /g—fIQdm-
TJX
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Assume that f < C. We claim that in this case f7 < C' as well. Indeed, if this is not the
case we can consider the competitor g := min{f™, C'} in the above minimization problem. By
Lemma 3.3.2 we get F(g) < F(f7) and the L? distance of f and g is strictly smaller than the
one of f and f7 as soon as m({f” > C}) > 0, which is a contradiction. Starting from fo,
iterating this procedure, and using the fact that the implicit Euler scheme converges as 7 | 0
(see [23], [8] for details) to the gradient flow we get the conclusion.

(Energy dissipation) Since t ~— f; € L?(X,m) is locally absolutely continuous and, by the
maximum principle, f; take their values in [¢, C] m-a.e., from the fact that © is Lipschitz in
[e, C] we get the claimed absolute continuity statement. Now, we know from the Lagrange
mean value theorem that exists a function ¢} : X — [¢, C] such that:

Ofian) ~ B(f) = () feen — 1)+ 50" (€N feen — 1)

Dividing by h and integrating in space, we get that, for times where the L? derivative of f;
exists (i.e., for almost every t):

d
dt/X@(ft)dm:/X@'(ft)A@ftdm.

We can now use Lemma 3.1.4 with g = ©’(f;) in the right hand side to get the last statement.
0

3.2 Beppo Levi definition and $-weak energy

Recall that the evaluation maps e; : C([0,1],X) — X are defined by e;(y) := . We also
introduce the restriction maps restr; : C([0,1], X) — C([0,1],X), 0 <t < s <1, given by

reStrf (’7)7“ = Y(A—r)ttrss (321)

so that restr;

stretches” the restriction of the curve to [s, t] to the whole of [0, 1].

Our definition of ®-weak upper gradient is inspired by [5], [9], [11], allowing for exceptional
curves in (1.3.5), but with a different notion of exceptional set, compared to [57], [75]. What
follows is a generalization, for a general N-function, of the theory of test plans we already
encountered in Definition 2.6.1; notice that however here we require C(7) > 1, since this
condition will be needed in the proof and we don’t have a good homogeneity of the ® norm

with respect to the change of measure. We recall that W is the convex conjugate of ®.

Definition 3.2.1 (Test plans and negligible sets of curves) We say that a measure w €
Mo (C([0,1], X)) is a W-test plan if 7 is concentrated on AC(]0,1], fo 3¢l|lw mdt < o0
and there exists a constant C(mw) > 1 such that

(er)pm < C(m)m vt € [0,1]. (3.2.2)
A set A C C([0,1], X) is said to be ®-negligible if it is contained in a w-negligible set for any

U-test plan 7. A property which holds for every v € C([0,1], X), except possibly a ®-negligible
set, is said to hold for ®-almost every curve.
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Observe that, by definition, C(]0, 1], X) \ AC([0, 1], X) is ®-negligible, so the notion starts to
be meaningful when we look at subsets of AC(]0,1],X). Notice also that in our definition
we let 7 be a finite measure, not only a probability measure, as in the homogeneous case

(®(t) = t9).

Remark 3.2.2 An easy consequence of condition (3.2.2) is that if two m-measurable functions
f, g : X = R coincide up to a m-negligible set and 7 is an at most countable subset of [0, 1],
then the functions f o and g o« coincide in T for ®-almost every curve ~.

Moreover, choosing an arbitrary W-test plan 7 and applying Fubini’s Theorem to the
product measure .21 x 7 in (0,1) x C([0, 1]; X) we also obtain that foy = go~vy Z!-ae. in
(0,1) for m-a.e. curve ~; since 7 is arbitrary, the same property holds for ®-a.e. .

Remark 3.2.3 Differently from the same notion for the case ®(t) = t?, it is not obvious how
the constant C(7) behave through the localization 74 = ﬁA)ﬂ'[ A. But in our definition we
are not forced to have m a probability measure, so when we want to localize to a Borel set
A C C([0,1]; X) we simply take w4 = 7|4.

Coupled with the definition of ®-negligible set of curves, there is the definition of
BLY®(X,d,m). In order to find a proper definition, let’s try to do some calculation when g
is an upper gradient for f, that is, |f(71) — f(70)| < fwgds for every v € AC([0,1]; X). In
particular we can integrate this inequality with respect to a W-plan «:

1560 - )l am < //0 o) el dt dr. (3.23)

If we want to let ||g|(@)m appear, we can use Holder’s inequality time by time, with respect
to the measure 7r, and then use Lemma 1.5.5 and C(7) > 1:

1 1
/0 / g el de dt < / l9v) @y - el dt

1
- / 190l enyer - el e (3.2.4)

gl / e

Now we are ready to state the definition of Beppo Levi space:

dt.

Definition 3.2.4 (Beppo-Levi space) The Beppo Levi space BLY®(X,d, m) is defined as
the set of functions f € L*(X,m) for which there exists a constant E > 0 such that for every
W-plan 7 we have

/\f 1) — f(0)|dm < B - C(x / el (3.25)

The least constant E such that the above inequality holds is called S’EL(f), the ®-weak energy
of f.

Remark 3.2.5 It is very easy to see that also EEL is .s.c. with respect to L'-convergence;
this is true thanks to the fact that the left hand side of (3.2.5) is continuous with respect to
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convergence in L! for every mr, since we have (e;)yw < C(m)m for ¢t = 0, 1. Moreover, the left
hand side is continuous with respect to m-a.e. convergence: f, — f m-a.e. implies that for a
fixed t > 0, fn(v) = f(m) for ®-a.e. curve; in particular this is true for ¢t = 0 and ¢t = 1 and
we conclude that 3"% 7, is Ls.c. with respect to m-a.e. convergence.

Note that this definition is very mild, compared to the other ones present in the literature
(even the one in [5]), but we will see that, thanks to the equivalence theorem, f € BLY“®
implies that f o~y is also BV along ®-almost every curve, and moreover if ¥ is doubling then
foyeWhi((0,1), £1) for ®-almost every 7.

We conclude this definition with a remark about rescaling of plans:

Remark 3.2.6 For every 0 < s1 < s < 1 let restg? be the restriction map in the interval
51, 52], namely
resti2y(t) = y(s1(1 —t) + ts2).

It is straightforward that for every W-plan and every 0 < s1 < sy < 1 we have that (rest3?)sm
is still a W-plan. In particular whenever 7 is a W-plan and f € BL“®(X,d,m), applying
(3.2.5) with (rest?)sm we obtain

1

[1760) = fom)ldm <580 -Cm) [ hidludt W0 <s<sm<i (326

51

3.3 Proof of equivalence

Here we want to show that for every function f € L we have that F(f) = %, (f).

Theorem 3.3.1 Let (X,d, m) be a complete and separable metric measure space, with m non-
negative Borel measure finite on bounded sets. Then the spaces

Hy®(X,d,m),  BL“®(X,d,m)
and the corresponding ®-energies F* and ?%L coincide.

First we state two lemmas that enable us to look only at f € L*° with bounded support.

Lemma 3.3.2 (Continuity on truncations) Let h: R — R be a 1-Lipschitz function such
that h(0) = 0. Then for every f € L' we have that

o TY(h(f)) < TT(F);
o TpL(h(f) < TEL():

in particular, letting fN = (f AN)V (—=N) we have that FE(fN) — F2(f) and the same is
true for 3'% -
Proof.  The first assertion follows by the inequality at the level of asymptotic Lipschitz

constant lip,(h o f) < lip,(f) and the fact that f, L, f implies h(f) L, h(f). As for the
®-weak energy, suffices to notice that |h(f(v1)) — h(f(70))| < |f(71) — f(0)]-
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We prove continuity only for F2, the proof for f}g 1, being exactly the same. It is clear that

N ift>N
hn(t) =<t if [t < N
-N ift<—-N

satisfies the assumption of this lemma and so we have F2 (V) = F2(hn(f)) < FE(f). Since
1
f € L' we have also hy(f) L, f and so, using the lower semicontinuity of I we obtain

97 (f) 2 limsup I (V) = liminf 57 (FY) = 57(/).

N—oo

It follows that T2 (fN) 1 FE(f). O

Lemma 3.3.3 (Reduction to bounded support) For every x € X, let x, be a family of
1-Lipschitz function such that xp,(2) < Xr < XB then we have T2 (x,f) — FE(f) for
every f € LY N L. The same is true for E%L.

Moreover if f has support in By, then in the definition of F we can take f, to be Lipschitz
function with support contained in Byya: in formulae

r+2(x)"

FE(f) :inf{lggicngq)(fn) L fo— fin LN (X, m),  supp(fa) C Br+2}. (3.3.1)

Here supp(f) is the smallest closed set S such that f = 0 m-almost everywhere in S°.

Proof. First let us note that x,f — f in L' so that by the lower semicontinuity of F* (and

the same for F%5,)
liminf 52, ) > F2(7).

It remains to show the other inequality; in particular we can assume F&(f) < oo. Let (f,) C
Lipy(X,d) be an optimal sequence given in the definition of F2(f); note that, letting C' =
| f]loo, We can assume |f,| < C otherwise we can take f¢ as approximating functions and we
have lip,(f$) < lip,(fn). Now consider (x,f,) C Lipy(X,d) as an approximating sequence

for X, f: we have 1ipg (Xr fir) < XrliDg(fi) + faX 5,15, and so
tim inf [[Tipg (xr-fn )l (@),m < i inf [[lipg (fu)ll@)m + limsup {| fux 5, ,2\8, | @)m

Up to subsequences we have f, — f pointwise and since we have f,xB,., < ||fllcoXB,r2 € M e
using Lemma 1.5.3, we have also f,xB,., = fXB,,, strongly in L®. Taking limits:

Fy (¢ f) < liminf [[lip, (xr fo) | @) < T (F) + /X5, 108, | @); (3.32)

again, using fXp,,,\B, — 0 pointwise and [ € L'N L™ c M?® we get that the last term is
going to 0 and so

limsup F¢ (xf) < Fo (f).

n—oo

As for 3"% 1, we begin with the obvious inequality

Ixr (@) f(z) = xr () fF )| < |f(2) = fFW)] + Ixr(2) = xr ()| min{ f(z), f(y)}  Vz,yeX;
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Then we know that if x,y € B, then x,(x) — x»(y) = 0 so we can exploit this fact and get

X (@) f(2) = xr () F ()] < 1 f(@) = FW)] + e (@) = X @) (| (@) [xBe () + 1 () x5 ()
Using the fact that x; is 1-Lipschitz, putting 7o = y and 71 = = and f"(z) = f(x)xBe(x) we

get
/ xrf
Oy

Integrating over a W-plan 7, and using that f € BLY® we get:

<|[ 1|+ wenlrani+ ool v e oo,
oy

1
/kmnmn—quWngamw%ﬂﬂAn%mm+a+a% (3.3.3)

where Cy = [ |f"(7)]¢(y) dw. Now using Holder inequality and subadditivity of the norm:

Ci = / [f7 () [e(y) dme < {17 (ve) | @) - 16CV) [0 e

1
VW%MS
0

Using this estimate in (3.3.3) we get that

Ter (6 f) < TBL(F) + 20"l @) s

letting  — oo and noticing, as before, that || f"||(@)m — 0, we get the desired inequality.

For the last assertion suffices to notice that in (3.3.2) we have that the last term in the
right hand side is equal to 0 and also x,f = f and so Ty (x,f) = Fe (f) = liminf || x; full(s)
and y, fn are Lipschitz functions with support contained in B;ys. ]

1
= [1F" @) (er)gm - < C(m) - ‘frH@’),m/O I17s ][l w = ds.

(VK 4

Now we prove the easy inequality F2(f) > F5, (f); notice that in Section 3.2 we proved
that F%, is lower semicontinuous with respect to the L' convergence, and that F5, (f) <
ll9]l(@),m for every g upper gradient of f (see (3.2.4)). Since for every f € Lipy(X,d) we have
that lip,(f) is an upper gradient for f, we have that F5, < Fg; passing to the L'-lower
semicontinuous relaxations:

Fpo(f) <Fo(f)  VfeL'(X,m).

Now we are ready to prove the converse inequality, namely from a function f €
BLY®(X,d,m) we want to build a sequence of approximating Lipschitz functions in such
a way that

tim sup [[lip (fn)ll @) m < T51(F). (3.3.4)

As in [9] for the case ®(t) = t? with 1 < ¢ < oo and [5] for the BV case ¢ = 1, our main
tool in the construction is the gradient flow in L?(X, m) of the functional F&, starting from f.
We initially assume that (X, d) is a complete and separable space and that m is a finite Borel
measure, so that the L?-gradient flow of 5‘”3’ can be used. Furthermore, in order to apply the
results of Section 1.6, we will assume also that W is a strictly convex function with continuous
derivative. The finiteness assumption on m and the hypothesis on ¥ will be eventually removed
in the proof of the equivalence result.

We start with the following proposition, which relates energy dissipation to a sharp com-
bination of ®-weak energy and metric dissipation in Wy.
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Proposition 3.3.4 Let uy = fim be a curve in AC(]0,1], (M4 (X), Wy)). Assume that for
some 0 < ¢ < C < o0 it holds ¢ < f; < C m-a.e. in X for any t € [0,1], and that
fo € BLY®(X,d,m). Then for all © € C?([c,C]) convex it holds

/ O(fo) dm — / O(f.) dm < Lip(€/) - max{C, 1} - 5%, (/) /0 ldt Vs> 0.

Proof. Let w € M4+(C(]0,1],X)) be a plan associated to the curve (y;) as in Proposition
1.7.2. The assumption f; < C m-a.e. and the fact that ||v¢||w~ = |fit] € L'(0,1) guarantee
that 7r is an W-test plan, such that 1 < C(7) < max{C, 1}.

Now, using fo € BLY® and (3.2.6) with sp = 0 and s; = s, we get that:

/ o(fo) - / O(f,) dm < / ' (fo) (fo — f,) dm = / O'(fo) o co — ©'(fo) o cs dr
< / 10 (fo()) — ©'(fo(10))] A ()
< Lip(e) / folrs) = folo) | dme(y)
< Lip(©') - O(xr) - T, (fo) /0 el
— Lip(&') - max{C. 1} -5, (1) [ il
0

0

The key argument to achieve the identification is the following lemma which gives a sharp
bound on the Wg-speed of the L?-gradient flow of 3'“3) . A similar lemma, in the W), case, has
been introduced in [58] and then used in [11], [41] to study the heat flow on metric measure
spaces; also, the W, case, most similar to this general one, has been studied in [5].

Lemma 3.3.5 (Kuwada’s lemma for %) Let fo € L*(X,m) and let (f;) be the gradient
flow of FL starting from fo. Assume that for some 0 < ¢ < C < 0o it holds ¢ < fo < C m-a.e.

in X. Then the curve t — py := fim € My (X) is absolutely continuous w.r.t. Wy and it
holds

1
| < —— .e.
il < gy Jor we te(0,00)

where Ag is the character of ®, defined in (1.5.6).

Proof. 'We start from the duality formula (1.7.3)

Wi (u,v) = sup /Qscpdu—/ @ dy. (3.3.5)
p€Lipy(X,d) J/ X X

where Q¢ is defined in (1.6.1) and (1.6.2). Fix ¢ € Lipy(X,d) and recall (Theorem 1.6.5) that
the map ¢ — Q¢ is Lipschitz with values in C'(X), in particular also as a L?(X, m)-valued
map.

Fix also 0 < t < r, set £ = (r —t) and recall that since (f;) is a gradient flow of F&
in L2(X,m), the map [0,¢] > 7 — f;, is absolutely continuous with values in L?(X,m).
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Therefore, since both factors are uniformly bounded, the map [0,¢] > 7 +— Q%ga ftar 18
absolutely continuous with values in L?(X,m). In addition, the equality

Qsrsm Plrarth = Qez Pt Qscim — Qszp

= f ¢ Jeerin = frir
h t+7 h

h )

tQurim e
together with the uniform continuity of (x,7) — Qszp(x) shows that the derivative of 7 —

Q%gprT can be computed via the Leibniz rule.
We have:

/XQsSDer—/XSDthZ/stft%dm—/x@ftdm:/x/ol(fT(ersOftJrer)dem

< /X /0 é(—scb (104 (Qer9)) Frstr + (Qurip D fsgr dr ) i,

(3.3.6)
having used Theorem 1.6.5.
Observe that by inequality (3.1.3) and Proposition 3.1.3 we have
/X QST@Aq)ft-‘rET dm < g:g)(QsTSO) < ||hpa(QSTSO)H(CI>),m' (337)
Plugging this inequality in (3.3.6), and taking s = ﬁ(c) we obtain
1
/ Qspdpr — / pdu < —/ / s®(1ip (Qsrp)) frrer dmdr
X X 0 Jx
1
+ [ 5A0()lipa(Qure) e
Now using the definition of Ag(c) we know that
Ae@gllayn <1+ [ Blg)dm (3.3.8)

Using this inequality with g = lip,(Qsr¢) in the end we get that

1
/X Quodur - /X odpuy < /0 o— /X 50 (Iipa(Qsr ) (fratr — ¢) dmdr <

This latter bound obviously doesn’t depend on ¢, so from (3.3.5) and (1.7.1) we deduce

(r—1t)
Ag(c)”
1

In particular, we showed that the curve p; is W—Lipschitz. [l

W\I/ (Nta /'LT) S

We can now prove our main theorem:

Proof. [of Theorem 3.3.1] Recalling the results at the beginning of this Section, in order to
conclude the proof we are only left to show that a bounded function of belonging to BL®,
has finite ®-relaxed energy, and that the two energies coincide; then Lemma 3.3.2 will give
the equivalence for all functions.
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We first assume that m(X) < co. First note that for every a,b € R we have F¥(a + bf) =
b|F2(f) thanks to 1-homogeneity and Proposition 3.1.3, and the same is true for F%;. Now
take a function f € BLY® such that |f| < M and consider the scaled functions f& = 1 + %;
we have that 1 — e < f¢ < 1+4+¢€. So, for any 0 < ¢ < 1 we can put fy = f¢ and consider
the gradient flow f; in L?(X,m) with respect to FL, starting from fy. Let ©(z) = 22 and use
the energy dissipation estimate in Proposition 3.1.5; finally use Lemma 3.3.5 combined with
Proposition 3.3.4 with fo = f¢ to obtain:

2 [Cstsyar= [ (ram [ (2 dm

< 2s-FB(fo) - A(:(;—_gg)-

Now, knowing that F2(f;) is nonincreasing in ¢ we can say

sFL(fs) < /0 Fo(fr)dt < S'ﬁL(fo)A;(IF_EE)

and thus, first dividing by s, then letting s — 0, taking the lower semicontinuity of 2 into
account we get
1+e¢
Ff) < TpL(f)—i——.
v(f ) = BL(f )Aq>(1—5)
Eventually we use that g (f¢) = 55 (f) and the same is true for F5,, and then we divide
by /M and let € — 0; now by Definition 1.5.6 we have that Ag(1 —¢) — 1 and so

FE(f) <FELN),

which let us conclude.
Now let us consider a measure m that is finite on bounded sets: using again Lemma 3.3.2
we need only to consider f € L' N L. Let us fix a point 2 € X and consider y, as in Lemma

3.3.3. Then we consider the space X, = (B,44,d,m;), where m, = xp,_,m, and the function
fxr. It is obvious that we always have ffgf(r < ffg’LX since a W-plan in X, is also a ¥-plan in
X.

The crucial point is that Sff’XT(er) = S’?’X(fxr); again it is obvious that FoXr < g2 X
since for every sequence of function in Lipy(X,d)(X) we can recover a sequence of functions
in Lipy(X,d)(X,) by restriction, and this latter sequence has less energy. But then, thanks to
the last assertion in Lemma 3.3.3 we know that we can restrict the admissible sequence in the
definition of F& ’X7'( fxr) to be supported in B,;2 and so, extending them to 0 outside B,2,
they are admissible also in the definition of Fe ’X( fxr), with the same energy.

Now we can prove that
?g)(f) = lgn EF?(fXT) = ILm EFE%XT(XTf)
= lim 55 (0 f) < lim TE; (6 f) = TEL().

In order to remove the smoothness assumption on ¥, we use Lemma 3.3.6 below, and so we
can consider complementary couples (®., ¥, ) sufficiently near to (®, V), given by that lemma.



3.3. Proof of equivalence 61

Using (3.3.10), we have (1 —¢)Fp < Fp_ < Fp. In particular, taking the lower semicontinuous
relaxation, we obtain

(1-e)Fy < F7° < T
letting ¢ — 0 we find that F2=(f) — FL(f), for all f € L'(X,m). Using again (3.3.10) it is
clear that W.-plans are also W-plans and vice versa, and more precisely

i) D d |
(1—¢e)Fpr < Fp7, < Fpp;
as before we get ?EEL — &"% ;, pointwise. It is now obvious that the equivalence for ®.-Sobolev

spaces extends to an equivalence for the ®-Sobolev spaces. (|

Lemma 3.3.6 Let us consider an N-function V. Then, for every € > 0 there exists a com-
plementary couple of N-function (®.,¥.), where U, is of class C' and strictly convex, such
that

() < V(o) < U(5 - ) Ve (3.3.9)

in particular, for every measure space (E,p) we have LY (u) = LY=(u) and L®(p) = L% (u);
more precisely for every f € LY (E, ), g € L*(E, 1) we have
1
I le e < Mfllve < =21 lwse (A =€)llgll@)n < lgll(@o)p < llgll@)e  (3:3.10)

Proof.  We consider 1 : [0,00) — [0,00), the right derivative of . This is an increasing
function, left continuous; the fact that ¥ is an N-function gives us that ¢(0) = 0 and that
is unbounded. In particular it is easy to see that it can be represented as

() = co(@) + 3 cipa, (@), (3.3.11)

=0

where cp is a continuous function, ¢; are positive real numbers whose sum is locally finite®,
and py(x) = H(x —y), with H the Heaviside function

H($)2{1 if >0

0 otherwise.

Now we can represent also the right derivative of the function W(%):

N
Y1 () = % ‘P(lfe) = 115¢(1i5>

1 T SRS x
_ (A
o 1—ECO<1—5>+Z;1—5'%"(1—5)'

7=

Now let us consider, for every ¢ > 1, ¢ € N, the Lipschitz function p;:

0 if x < z;(1—¢)
pi(x) = %il—g) ifr;(l—¢)<z<uz
1 if x>

Lfor every M > 0 we have that in<M ci < 00
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it is obvious that p; are continuous functions such that

Pz () < pi(z) < pa, (IL_(L) Va € [0, 00). (3.3.12)

In order to achieve the strict convexity, we have to add also a strictly increasing function. It
is sufficient to consider the function

Alw) =) 272 )p(x —27),
=0

where p is any continuous Heviside function, for example p(x) = (z/(1 + x))4+. Then it is
obvious that p(z) < H(z) and so

0<A(x) < > 2 (277 < ep(a). (3.3.13)
2

_iSIE

Summing all, we consider ¢.(z) = A(x) + co(z) + Y oy cipi(x); this is a strictly increasing
and continuous function, and using (3.3.12), (3.3.13) and 1 +¢ < (1 — &)}, we get

Y(x) < Ye(x) < Y1(x) Yo > 0.

In particular, integrating this inequality, we deduce we can take ¥ (z) = fox e (t) dt.
The inequalities for | - ||y, , are clear thanks to (3.3.9), while the ones for [| - (3., follow
by duality, and the coincidence of the Orlicz spaces is then clear.

3.4 Consequences of the equivalence theorem

The first consequence we state about the equivalence theorem is that from the definition of
BLY® we deduce stronger informations (see similar properties in the definition of BV functions
in [5]), in particular we have that every f € BLY® is BV along almost every curve.

If we don’t add any other assumption on ®, we can’t expect to find anything better, in
particular we can’t expect Wh! regularity along ®-almost every curve, and we can’t expect
any kind of modulus of gradient. This is shown in the Subsection 3.4.1 below.

Theorem 3.4.1 (Strong Beppo Levi property) A function f € L'(X,m) belongs to the
®-Beppo Levi space BLY®(X,d, m) if and only if:

o for ®-a.e. curve v we have fo~y € BV(0,1) and 0 and 1 are approximate continuity
points for f o~y; in particular

[f(v1) = FOo) < ID(Fo)l(0,1)  for ®-a.e. curvey;

o there exists a constant > 0 for any V-plan 7 the following inequality holds

1
/ ID(f 07)/(0,1)dm < E - C(x) /0 el e . (3.4.1)



3.4. Consequences of the equivalence theorem 63

The least constant E for which (3.4.1) holds is exactly F5; (f).

Proof. Let us suppose we have a function f that satisfies the two assumption of the theorem,
with a constant E = E(f); combining the two inequalities one gets easily that f € BL"® and
that E(f) is a good constant for (3.2.5) so that E(f) > F5, (f).

Now let us suppose that f € BLY®: thanks to the equivalence theorem we have a se-
quence of bounded Lipschitz functions (f,) such that f, — f in L'(X,m) and such that
lim [[lip, (f) [l (®),m = FE,(f). We can assume this sequence is “fast converging”, that is, we
have Y [|f — fulli < 0o. Now, calling E,(y) = ||[foy— fnovy|iand E=)", Ey,:

[Eean= [ Zme ~ )l dtdm < O Z/|f il dm < oo

and so we have that E' < oo for w-almost every curve 7. For those curves we have E,(y) — 0
and so foy — f, o~ in L'(0,1); by the lower semicontinuity of the total variation we have
liminf, |D(f, o7)|(0,1) > |D(f o+)|(0,1). Now, using Beppo Levi, and exploiting the upper
gradient property of the asymptotic Lipschitz constant we get

[ 100 0)10.1) am < it [ 1D 02)[0.1)dm

1
< limint // lipy (f, 0)|Fe| dt dre
0

n—oo

< hmmehpa(fn (@ / Vel e

=F5.(f) / [| Vel

in particular E(f) < %, (f). We are left to show the approximate continuity property: with
a very similar calculation as before we can estimate | f,,(7s) — fn(70)| with the upper gradient
property and use that f,, () — f(y) for r = s,0 for ®-almost every curve v, to conclude that

dt,

/ £(2) = (30| dm = lim / Fu(rs) = Fulro)| dre

<52 Cm) [ il
integrating this inequality in the s variable from 0 to s, and then dividing by so we get
/ / f(v)|dsdm < 3:~<I>(f) C(m) /OSO 1Vsllw nds — 0 as so — 0;
in particular, letting H(g JCO lg(s) — g(0)| ds, we get that liminf, .o H;(f o) = 0 for

m-almost every curve -, but suffices to 1mp1y that 0 is a point of approximate continuity since
we know also that f o~ € BV in this case in fact we know that H; has always limit as ¢t — 0,
and this limit is equal to |g(0) — g(0)].

The same reasoning applies also to conclude that for any ¢ € [0, 1], we have that f(v;)
coincides with the precise representative for ®-almost every curve «, that is

t+e
fln) = hn% fvs)ds for ®-almost every curve 7.

t—e

In particular also t = 1 is a point of approximate continuity for ®-a.e. curve ~. O
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3.4.1 Example of ®-Sobolev function that is not absolutely continuous
along almost every curve

Let us consider R with the euclidean norm | - |, and define recursively

a] = 0
an:an_l—i-h;(g) if n > 1.
Denote also a = lim,,_o0 ap, < 00; define A,, = [an—_1, ay,) and

m=9 $1|A

the singularity of this measure we are interested in is at the point x = a, where the density is
decreasing from the left; notice also that m(R) = 72/6. Let us consider

O(t)=(t+1)In(t+1)—t and  Y(t)=e" —t—1,

which are easily seen to be a pair of complementary N-functions. We will see that for functions
in BLY®(R, |- e, m) we can’t go beyond BV regularity along curves, proved in Theorem 3.4.1.

Proposition 3.4.2 Let a, m defined as before. Let us consider f(x) = X[q,00)- then

(’L) f € H1’¢(Ra| ’ |€>m);

(ii) there is a set of curves I' and a W-plan 7 such that w(I') > 0 and f o~y ¢ W(0,1) for
allveT.

Proof. In order to prove (i) we will explicitly find a sequence (f,,) approximating f: let

0 if z < ay
fn(fE) = ani:cinan if x € An+1
1 if x> anptr;
then (f,,) is a sequence of Lipschitz function? such that lip,(f,) = |f.| = X A, ; furthermore

fn — f in L'(R,m) and we can compute |||/} |lls) since it is the norm of a characteristic
function (see [72|, Example 9, Section 1.2):

2

e m”( el = frmeanr™ (o)

Now for ¢ > 2 we have U(t) > 3e' and so, for n big enough, we can estimate ¥=1(1/m(4,)) <
In(2) — In(m(4,)) = In(2) + 2In(n), getting

2
o o .. n* In(2)+2In(n)
T (f) < liminf 1]l w) < liminf 7o n2 =

2The bounded support hypothesis can be easily dropped when m has bounded support; in fact it is sufficient
to consider a 1-Lipschitz function with bounded support g such that g = 1 on a neighborhood of the support of m
and then for every Lipschitz function p we have that gp has bounded support, ||lip, (90)|(@),m = [[lipg ()|l (@),m
and ||f — pll1 = || — gpll1 for every f € L' (X,m).
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so that f € HY®(R,| - |e,m).

In order to achieve (ii) we have to consider curves that meets a in their interior: let T'(¢)
be the map that maps monotonically .Z 1|[077T2 /6] = M1 to m, in particular defining b1 = 0 and
b, = bp—1 + n—lg for n > 1, and B,, defined similarly to how we defined A,, before, we have
that T maps B, to A, linearly, and here 7" = In(n). Let F : [0,1] — C([0,1];R) be the map
defined by F(t)(s) = T(s+t); now let us consider m = F;(2.2"|g1/2)). We have to verify this
is a U-plan.

o (e pym = Tﬁ(2$1|[t,t+1/2}) < Ty(2my) = 2m, and so we can take C(m) = 2;
o [V Olwx=IT"(t+ ')”‘1’723”[0,1/2] < ||IT"||w.2m, , and we have that 7" € LY (2m;) since

1/2

T’ r 7
2 qf(?>dm1§2 e dm1:2nZan<oo.

In particular 7 is a W-plan but for t < 72/6 — 1 we have that F(t)(s) = a for s € (0,1) and
so f o F(t) is a step function, and f o F(t) ¢ W', So we can take 7 as the W-plan for (ii)
and ' = {F(t) : 0 <t<7?/6— 1} as the bad set; it is obvious that w(I') = 72/6 — 1 > 0
and for the reasoning above we have f o~y ¢ W11(0,1) for every v € I'.

3.4.2 V¥ doubling: existence of the gradient

In this section we assume ¥ to be doubling. By the results recalled in Section 1.5 in this case
we have that LY (X, m) = M® (X, m) and so it is separable and we have also (LY)* = L®; in
particular we can consider the weak-* topology o(L®, LY), and we know that in every ball
this topology is metrizable and moreover closed balls are compact sets. In particular we will
use several times this result:

Lemma 3.4.3 Let (f,) C L*(X,m) be a sequence such that
liminf || fo | @)m < 00;

then there exists a subsequence (not relabeled for convenience) and a function f € L®(X, m)
such that

/ fngdm—>/ fgdm for all g € LY (X, m);
b'e b'e
we have also Hf”(q))’m < liminf, e anH((p)m.
Moreover if we have (f;) C L*(X, m) N LY (X, m) and f >0, there exist convex combina-
tions fn of (fn) and a sequence (h,) C L*(X, m) such that
fo<h, VneN and hy — f strongly in L®(X,m).

This can be seen as a sort of weak-x Mazur lemma.
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Proof. We know that LY is separable and that (LY)* = L®. In particular the weak-* topology
on balls of L? is metrizable and compact. Given the hypothesis, this gives us a subsequence
of f, converging weakly-* to some f € L®(X,m), and we have lower semicontinuity for the
norm.

For the second part, let us consider a bounded set B. Since m(B) < oo we have that

L*(B,m) c L'(B,m) and L®(B,m) C LY(X,m);

in particular the weak-* convergence in L®(B, m) implies that f,, — f weakly in L'(B), and
thanks to Mazur lemma there exist convex combinations fn of f, that converge strongly to f
in L'(B). By a diagonal arg~ument we can assume that this is true for every bounded set B.
Moreover we have sup,,ey || full(@),m < SuPpen || fall(@

Since f, € L(X,m)NL (X, m) we have also f, € M‘I’(X m). Let us call k, = sup{fn, f} — /-
It is clear that 0 < k, < f, and so k, € M®(X,m), but we have also that |k,[1.5 <
| fn — fll1.5 — 0 for every bounded set and in particular we have

/ kngdm — 0 for all g € L°°(X, m) with bounded support
X

using the fact that k, are bounded in (®)-norm and that Lipy(X, d)|| le g = pv (since
U is doubling), we can conclude that k, — 0 in M®(X,m) (we recall that (M®)* L‘I’)
Applying again Mazur lemma (this time in M®) we can find convex combination ky of ky
such that k, — 0 strongly in M ® and so also strongly in L®. Now taking convex combination
of the inequalities k, > fn — f we get convex combination f, of f, such that k, > f, — f.
Consider hy, = ky, + f and we get the thesis. O

Now we are ready to define the weak gradient: in order to simplify the arguments we
present only the gradients in the Beppo-Levi context.

Definition 3.4.4 (®-weak upper gradients) A Borel function g : X — [0, 00] is a ®-weak
upper gradient of f : X — R if

f‘ < [ g<oo for ®-a.e. . (3.4.2)

Definition 3.4.5 (Sobolev functions along ®-a.e. curve) A function f : X — R is
Sobolev along ®-a.e. curve if for ®-a.e. curve v the function f o~ coincides a.e. in [0,1]
and in {0, 1} with an absolutely continuous map f : [0,1] — R.

By Remark 3.2.2 applied to T := {0,1}, (3.4.2) does not depend on the particular repre-
sentative of f in the class of m-measurable functions coinciding with f up to a m-negligible
set. The same Remark also shows that the property of being Sobolev along ®-q.e. curve
is independent of the representative in the class of m-measurable functions coinciding with f
m-a.e. in X.

In the next proposition, based on Lemma 1.3.3, we prove that the existence of a ®-weak
upper gradient g implies Sobolev regularity along ®-a.e. curve.

Proposition 3.4.6 Let f : X — R be m-measurable, and let g be a ®-weak upper gradient of
f- Then f is Sobolev along ®-a.e. curve.
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Proof.  Notice that if 7w is a U-test plan, so is (restr;)sw. Hence if g is a ®-weak upper
gradient of f such that fvg < oo for ®-a.e. 7, then for every ¢t < s in [0, 1] it holds

o) — Fw)l < / Cg)Fnldr for B-ae. .

Let 7 be a WU-test plan: by Fubini’s theorem applied to the product measure .#? x 7 in
(0,1)2 x C([0,1]; X), it follows that for m-a.e. y the function f satisfies

£60) = F00l <] [ gtnlinldr|  for Lhae (ts) € (0,17
t
An analogous argument shows that for m-a.e. v

{ ‘f(’)/s) - f(70)| < f[)s 9(77")’;)/7“’ dr
1F(71) = FOus)] < [ g) Al dr

Since g o v|%| € L'(0,1) for m-a.e. v, by Lemma 1.3.3 it follows that f oy € WH1(0,1) for
m-a.e. v, and

for Zl-ae. s € (0,1). (3.4.3)

d
a(fo’Y)

Since 7r is arbitrary, we conclude that f oy € W11(0,1) for ®-a.e. v, and therefore it admits
an absolutely continuous representative f,; moreover, by (3.4.3), it is immediate to check that
f(ve) = fy(t) for t € {0,1} and ®-a.e. 7. O

The last statement of the proof above and (3.4.4) yield the following

<go~vlyl ae. in (0,1), for m-a.e. 7. (3.4.4)

gi, 1 = 1,2, ®-weak upper gradients of f = min{gi, g2} P-weak upper gradient of f.
(3.4.5)
Using this stability property we can recover a distinguished minimal object.

Definition 3.4.7 (Minimal ®-weak upper gradient) Let f : X — R be a m-measurable
function having at least a ®-weak upper gradient go : X — [0,00]. The minimal ®-weak upper
gradient |V fly.o of f is the ®-weak upper gradient characterized, up to m-negligible sets, by
the property

IV lwe <g m-a.e. in X, for every ®-weak upper gradient g of f. (3.4.6)
We will refer to it also as the ®-weak gradient of f.

Uniqueness of the minimal weak upper gradient is obvious. For existence, let § : X —
(0,00) be a m-integrable function (the existence of such 6 is granted since m is o-finite),
then we can prove |V f|, ¢ = inf, g, where g, are ®-weak upper gradients which provide a
minimizing sequence in

inf {/ ftan tgdm: g < go is a P-weak upper gradient of f} .
b'e

We immediately see, thanks to (3.4.5), that we can assume with no loss of generality that
gn+1 < gn. Hence, applying (3.4.2) to g,, and by monotone convergence, the function |V f|,, ¢ is
a ®-weak upper gradient of f and [ X ftan—'g dm is minimal at g = |V f|,¢. This minimality,
in conjunction with (3.4.5), gives (3.4.6). Now we are ready to state the main result of this
section.
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Theorem 3.4.8 Let f € L'(X,m); then the following are equivalent
(i) f € Hy"(X,d,m);
(ii) there exists a function g € L®(X,m) that is a ®-weak upper gradient for f. We have
also |||V fluw,a |l @)m = I3 (f)-

(i4i) There evist g € L®(X,m) and a sequence (f,) C Lipo(X,d) such that

fn — f strongly in L'(X,m), lip, (fn) = g weakly-+ in L*(X,m). (3.4.7)

i) There exist g, g, € L®(X,m) and a sequence (f,) C Lipy(X,d) such that g, > lip,(fn
0 a
and
fn — f strongly in L'(X,m), gn — g strongly in L®(X,m). (3.4.8)

Moreover, every g in (iii) (or (iv)) is also a ®-weak upper gradient for f and, conversely,
|V flw,ao satisfies (i) and (iv).

We observe that (i) doesn’t always imply (ii), (iii) or (iv) if we don’t require that ¥ is
doubling. In fact (iii) or (iv) imply (ii) and in turn, (ii) implies that f is Sobolev along ®-
almost every curve (Proposition 3.4.6), but this is not true always, as we proved in Subsection
3.4.1.

Proof.  (ii) = (i): Suppose f has a ®-weak upper gradient g; then integrating (3.4.2) with
respect to a W-plan 7 we obtain (3.2.3), that as usual reduces to (3.2.5) with £ = ||g||(@)m-
This shows that f € BL"® and minimizing in g we get

Fe(f) =FBL(f) < IV Sflwal @) (3.4.9)

(i) = (iil) Let us suppose now that f € H%’(b, so that there exists a sequence of Lipschitz
functions (f,) such that limy, [[lip,(f,)ll(@) = T3 (f). Using Lemma 3.4.3, up to subsequences

we get the existence of a function g € L® such that lip,(f,) X g. By lower semicontinuity of
the norm with respect to weak convergence we have that

lglla) < tim [lipg(fa)ll@) = 520, (3.4.10)

(iii) = (ii) We can use (3.2.3) with f,, and lip,(f,) and pass to the limit as n — oo to
get3:

1
/yf(%) ~ f(ho)|dm < //0 g(v)lFel dtdm < 00 for every U-plan .

Now we use the fact that 7|4 is still a ¥-plan so that we can localize the inequality to get

| f(71) = f(0)| < /g < 00 for ®-q.e. curve 7,
g

31t is sufficient to check this inequality when 7 is supported on curves contained in a bounded set. Therefore,
up to restricting to a smaller set, we can assume that X is bounded and so m(X) < co. In this case we note
that f, — f in L®(X,m) iff fn, — f in L'(X,m) and || fa|/(®),m is equibounded (this is because L= N LY is
strongly dense in LY). In particular we have that if 4 < Cm then weak-* convergence in L (X, m) implies
weak-* convergence in L® (X, p1); we use this observation with m and (e;)ym



3.4. Consequences of the equivalence theorem 69

and so, by definition, we have that g is a ®-weak upper gradient for f and thus we have

1V flw.ell @) < [lgll@)- (3.4.11)

Using the equivalence theorem along with (3.4.9), (3.4.10), (3.4.11) we conclude
IV flwall(@)m = Fo(f) and that the function g with minimal norm that satisfies (i) co-
incides with |V f|,.o. Eventually, it is easy to see that (iv) implies (i), while if m is finite,
using Lemma 3.4.3 we conclude that (iii) (with g = |V f|, 4) implies (iv) with the same g.

([l

We have now defined a distinguished object as a gradient. Now we can show the strong
locality property and chain rule for this gradient. We follow Proposition 4.8 in [11], but with
the ®-weak gradient definition:

Proposition 3.4.9 (Locality and chain rule) If f € L'(X,m) has a ®-weak upper gradi-
ent, the following properties hold:

(a) for any Lipschitz function h on an interval J containing the image of f we have that

h(f) has a ®-weak upper gradient and |Vh(f)|wo = [N ()|V flwo-

(b) for any ZL1-negligible Borel set N C R it holds |V f|y.e0 = 0 m-a.e. on f~1(N);

(¢) |V flwae = |Vglwe m-a.e. on {f = g} for every g € L'(X,m) that has a ®-weak upper
gradient.

Proof.  Let us first prove |VA(f)|lwae < |F'(f)||Vf|we for h € C1. Recall by Proposition
3.4.6 we know that foy € WH1(0,1), for ®-a.e. curve ~; for those v we have that h(f o) €
WH1(0,1) and in particular its weak derivative is h'(f o7) - (f o)’. Now multiplying (3.4.4)
with g = [V f|w,a by |/ (f(7))] and integrating we get

1
(F()) — h(F ()] < /0 R(F()))(6) df < / WOV lwads  for -ae. 7:
Y

so by definition we have that |h/(f)||V f|w,e is a ®-weak upper gradient for h(f), and in
particular by the point wise minimality property of the weak gradient we get

IVA()lwe < W (HIV flwe- (3.4.12)

(b) First assume that N is compact. Then there exists open sets A,, C R such that A,, | N
and Z1(A;) < co. Also, let k, : R — [0, 1] be continuous function satisfying xn < kn < x4,,,

and define
{hn(O) =0
hy(2) =1 — kn(2)

The sequence (hy,) uniformly converges to the identity map, and each h,, is 1-Lipschitz and
C1. Therefore h,(f) converge to f in L. Taking into account that h/, = 0 on N and (3.4.12)
we deduce

119wy = F2) < mminf T2 (o (£) < Tomin 7, (£)] 1V £l o o)
= liminf |y 7, ()] V£

well@) < [xxy |V well@)
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where we put Xy = X \ f~}(V). It remains to deal with the case when N is not compact. In
this case we can consider the finite measure p := fym; then there exists an increasing sequence
(K,,) of compact subsets of N such that u(K,) 1 u(N). By the result for the compact set we
know that |V f|,.e = 0 m-a.e. on U, f 1(K,) = H, and by definition of push forward we get
m(f 1 (N)\ H)) = 0.

(a) If h is Lipschitz we know by Rademacher theorem that b’ exists #!-a.e. in R, so we
can do the same proof for C1, paying attention to the fact that h'(f)|V f|w o, and the other
expressions where h' is present, are well defined thanks to (b). In order to prove the equality
we can suppose h is 1-Lipschitz, and so we have that (1—2/(f))|V f|w.e and (14+2'(f))|V f|w,a
are ®-weak upper gradient of f —h(f) and f+ h(f) respectively. Now using the subadditivity
of the weak gradient:

2V flwe < IV(f = h(f)lwe + [V + h(F))|we
< (A=K + @+ NV lwe =2V flwe,

and it follows that all the inequalities are equalities m-a.e. in X. In particular we get

A+ K (INIVflwe = IVF+h(f)

and so [Vh(f)| > h'(f)|V f]; since this is true also for —h we obtain the conclusion.
(c) Thanks to (b) applied to N = {0} at the function f — g we have that |V(f—g)|w,e =0
m-a.e. on {f = g}; then the equality follows again by subadditivity and 1-homogeneity

wd < |Vflwe +|[VA(f)lwe  mae.

VS

wd — |V(f = 9)|we <|Vglwae < |Vf

wa + V([ = 9)lwe

3.4.3 The relaxation of the integral functional

In this section we will consider a very classical problem of the calculus of variation, generalized
in this metric setting: the relaxation of integral funcionals where the integrand is depending
only on the gradient. In general one aims at looking at a general functional

I(u,Q) = / f(z,u, Vu)dz QC R ueCFRY),
Q

and then asks whether the relaxation .# of this functional in some topology admits a rep-
resentation formula in its domain. For example if one take f(z,u,p) = p* then the domain
D() = WH2(R") and we have . (u, Q) = [, |Vul*dz.

We want to generalize this last example to the metric setting, but with a general growth.
We will consider only the integration on all X, to simplify the proof. Let us consider the
functional Gg:

Jx @(lip,(f)) dm if f € Lipy(X,d)
400 otherwise.

Go(f) == {

Then let ® be the semicontinuous relaxation of G (f) with respect to the L' convergence:

G%(f) :inf{lirninf ®(lip,(fn))dm : f, € Lipy(X,d), fn — fin Ll(X,m)}. (3.4.13)

n—oo X
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We want to find an explicit representation formula for 4% and the obvious claim is that

= [x ®(|Vf|w,a) dm, whenever this makes sense. This is obvious in the L? case, since in

thls case Gg = F} and so we conclude using Theorem 3.4.8, in particular F2 (f) = |||V flwpllp-

In the general Orlicz case, there is not a clear relation between G¢ and Fg, apart from some

inequalities, but we still can find that the relaxed quantities are represented by the same

gradient. Of course, since we are talking of gradients, we have to require ¥ doubling; this will
be the sufficient hypothesis to conclude.

Theorem 3.4.10 (Representation of ¥®) Let ® be an N-function such that ¥ is doubling,
and let (X,d, m) be a separable complete space, where bounded sets have finite measure. Then
we have

gd’(f) {fX |Vf|w<1> fo € BLL(I)(Xadam)

+o00 otherwise.

Proof. 'The proof is based on the duality formula

Na(g) ::/ P(g)dm = sup{/ fgdm—/ U(f)dm : fe L\I’(X,m)}; (3.4.14)
X X X
one inequality is trivial by Young inequality, for the other one it is sufficient to take

Folz) = {90(9(35)) if |z| <n and |g(z)] <n

0 otherwise.

Since the right hand side of (3.4.14) is a supremum of continuous functionals for the weak-x
convergence in L®, we have that Ng is L.s.c. with respect to this topology. Now let us consider
a sequence (f) C Lipy(X,d) that realizes the infimum in (3.4.13). Thanks to Lemma 3.4.3,
up to subsequences we have that f, — f in L' and lip,(f,) — g for some g € L®(X,m).
Taking the lower semicontinuity of N into account and using that g > |V f|,.¢ (since g is a
®-weak upper gradient, thanks to Theorem 3.4.8), we get

9®(f) = liminf No (lip,(fn)) = Na(g) > Na(

)-
This readily implies that
D(¥) C {f € BLY®(X,d,m) : / BV flwo)dm < oo}. (3.4.15)
X
Now it remains to prove the other inequality: let us consider first functions f € BLYM®

such that
No(C|V flya) < 00 for some C > 1. (3.4.16)

Let us take a sequence (f,) C Lipy(X,d) and (g,) € L®(X,m) that satisfy (iv) in Theo-
rem 3.4.8 with g = |V f|,,a; then, using the convexity of ® and taking € = ||gn, — |V f|w.0/|®m,

we have
/(I)(gn)dm:/ ¢((1—€)~ |Vfw,<1>+€.gn—|Vf|w’¢’> dm
X X 1—¢ e

S(l—e)/}(@(wb)d —1—5/X<I><gn_€vf|w’q>> dm

coviea [o(T0 ) an
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taking n — oo we have that € — 0 and so, thanks to (3.4.16) and dominated convergence we
have

gq)(f) < liminf/ O (lip, (fn))dm < liminf/ P (gp) dm < No(|V flw.a);
n X n

X
Now, in order to remove the technical assumption (3.4.16) it is sufficient to notice (see (3.4.15))
that whenever f € D(4?®) we have that the function pf satisfies (3.4.16) for every 0 < p < 1,
and so, since pf — f in L' when p — 1, by the L'-lower semcontinuity of ¥® and monotone
convergence we get

g*(f) < pliI{l_ G (pf) < plg{l_ No(p|V flwe) = No(|V flw,a),

where we used also the obvious property that [V(pf)|w.e = p|V fluw.a. O

3.5 Other possible definitions

For completeness, we compare the spaces HY® and BLY® with other spaces, namely HY® and
N1® that are generalizations of those arising respectively in [25] and [75]. We recall briefly
their definition:

Definition 3.5.1 (H01,<1> and Cheeger ®-relaxed energy) For every f € L'(X,m) let us
define

FE(f) o= inf {lminf gl @ym : fo = fin LI(X,m), gu€UG(f)}.  (35.1)

We recall that UG(f) is the set of upper gradients for the function f. Then we define
He®(X,d,m) = D(F?).

In order to define the Newtonian space N»® generalization of the one presented in [75],
we have to introduce the notion of ®-modulus, following Section 2.1:

Mod(g) (T := inf{||f||(q,),m  fe Ly (X,m), /f >1 forallye€ r}. (3.5.2)
vy

Analogously, we say that a property holds for Mod ) m-a.e. curve v if the set of curves for
which the property fails has null ®-modulus.

Definition 3.5.2 (Nl"I> and P-upper gradient) A function g € L‘I)(X, m) is a P-upper
gradient for a Borel integrable function f if it holds

| f(Vini) — f(vgin)| < /g < oo for Mod () m-a.e. curve . (3.5.3)
v

Then the Newtonian space NY® is defined as the set of Borel integrable functions f that have

a ®-upper gradient. We can define FS(f) = l9ll(@),m, where g is the ®-upper gradient of
minimal norm.

Remark 3.5.3 The existence of a minimal ®-upper gradient is easy to prove thanks to the
fact that if g is a ®-upper gradient then f o~y is absolutely continuous and (f o) < g(v)||
for Mod (g m-a.e. v (see [75, Proposition 3.1]). As we did for the ®-weak upper gradients, this
leads to the fact that if g1, g2 are ®-upper gradients for f then also min{gi, g2} is a ®-upper
gradient, and so we can find a pointwise minimal object with a property similar to (3.4.6).
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The definition of Newtonian space is a little more subtle than the other ones since it
is not invariant under modification in a negligible set. However we will see that there will
be equivalence with all the other spaces also in this case, up to the choice of a suitable
representative. We shall need a stability lemma for ®-upper gradients. In the proof we will
repeatedly use Proposition 2.1.2; notice that we can prove it for Modg)  following verbatim
the proof with Mod ) instead of Mody m, with the exception of (v), where the reflexivity
of L is used. However it is easy to see that (v) remains true whenever Mod () m(An) = 0,
thanks to the subadditivity (i).

Lemma 3.5.4 Let f, — f in L'(X,m) and g, — ¢ in L*(X,m), where g, is a ®-upper
gradient for f,. Then there exists a representative of f that has g as a ®-upper gradient; in
particular if g € L*® then f € NYP and F5(f) < 9l (®),m-

Proof.  Here we follow [46, Lemma 7.8]. Let us denote by I'g the set of curves where the
following holds (we will often identify v € €' (X) with iy € ACZ°([0, 1]; X'), when needed):

faoy € AC([0,1]) and  [(fao)(t) < gn(w)|%|  Yn€EN.

By hypothesis we have that ¢'(X) \ T'g is Mod ) n-negligible. We will need also the set I'y
of curves for which fwg < 00; by Proposition 2.1.2(ii) this happens for Modg) n-a.e. curve.
Let us notice that, up to subsequences, we can assume that f, — f almost everywhere. In
particular, letting N be the m-null set where lim,,_, f, does not exist, we can consider the
representative

0 otherwise.

fla) = {limn_mO fn(x) Ve ¢ N

It is clear that the set of curves Ty = {y : LY (y~1(N)) > 0} is Modg)m-negligible in fact,
considering p = oo - xy we have [|p||() = 0 and fv p = oo whenever v € I'y. In particular we

have £1(y~1(N)) = 0 for Mod(¢) m-a.e. curve and so we have
noy— fo ZL'ace. in [0,1] for Mod(g) m-a.e. curve 7.
v Y (®),m v

Denote I'; the set of curves where this happens.
Thanks to Proposition 2.1.2(iii) applied to |g, — g| we have that if g, — ¢ strongly in
L?(X,m) then there exists a subsequence such that

/ lgn —g] = 0 for Mod (g) m-almost every curve ; (3.5.4)
.

denote I'y the set of curves where this happens.

Now, thanks to (3.5.4) we have that if v € I's then the functions h,(t) = gn(7:)|3| are
equi-integrable; whenever we have also v € 'y, then by hypothesis h,, bounds from above the
derivative of the absolutely continuous function f, oy, and so we deduce that the sequence
(fno7y) is equicontinuous and so if they are converging .#!-a.e. to some function, they are also
converging uniformly, and in particular everywhere; this implies that v~ *(N) = () for every
v €TloNT1NTe. In particular for Mod ) n-almost every curve v it happens that

£60) = o) = Jim [fan) = ful0)| < i [ 9= [ 4 (35.5)
Y v

O
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3.5.1 Comparison of F* with 5%, F2

It is clear that ||g]|(e)m > F5,(f) whenever g € UG(f), recalling that (3.2.3) holds for every
g upper gradient of f, and then using the estimate (3.2.4). By relaxation we get F® > F%_
moreover we have that lip,(f) is an upper gradient for f € Lipy(X,d) and so it is clear that
F2 > F® and so by the equivalence Theorem 3.3.1 we obtain

HM(X,d,m) = HY®(X,d;m)  and  F2(f) =TF2(f) VfeL'(X,m). (3.5.6)

v

3.5.2 Comparison of N® with 5%, F¢

As for N'® we have that Modg)u(I') = 0 = w(i"}(I')) = 0 for every ¥-plan 7. In fact,
taking a Mod (g n-null set I" we have that for every € > 0 there exists a Borel function p such
that |pll(@) < € and fvp > 1 for every v € I'; now, letting Tg = i~!(T), we have (with the
usual estimate (3.2.4)):

(To) s//wpdwss-cw//ol e

Letting ¢ — 0 we obtain that 7(I'g) = 0 for every m-plan and thus I'g is ®-negligible. So
we have that if f € NM® and g is a ®-upper gradient then f € BLY® and ¢ is a ®-weak upper
gradient. In particular we have

5% >7%,  and NY® c BL}?, (3.5.7)

where BL}’(D is the set of f € BLY® such that f oy € W!(0,1) for ®-almost every 7.

As we noted in Section 3.4.1, in general we have BL%"I> C BLY®, while they coincide if ¥
is doubling (Theorem 3.4.8). In particular in general we have N* C BLY® but, thanks to
the following proposition, they coincide when W is doubling.

Proposition 3.5.5 Let us assume ¥ doubling. Then we have H&’(b - NNLCD and also 3"3) >
fr"j{\’,, meaning that for every f € HY® there exists a Borel representative f € NV ®, such that

T () = TH()
Proof. By Theorem 3.4.8(iv) there are sequences (f,) C Lipy(X,d), (g,) € L®(X,m) such
that f, — f in L', g, > lip,(f.) and g, — g strongly in L®(X,m). Moreover T2 (f) =

Hg H(<I>),m- .
Now we can apply Lemma 3.5.4 to the functions f, with upper gradients g,, obtaining
that f has a representative in N1® with g as ®-upper gradient. In particular we obtain that

TN < llgll@)m =7 (f)- O

In the next theorem we collect the results of this section.

Theorem 3.5.6 Let (X,d,m) be a Polish space endowed with a measure finite on bounded
sets. Then we have:

Hi’é(Xadvm) = Hg’¢(X?dam) = BLI’@(Xadam) 2 Nl’CI)(Xad:m);
?g)(f) :ffzb(f) :gng(f) S?}{\)[(f) V[ Borel function.

Moreover if U is doubling we have all equalities and also equalities at the level of weak gradients:
IVfine =[Vflwe-
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Proof. We already observed in (3.5.6) the equivalence with H'®. Then we proved in (3.5.7)
the inclusion for N'®. For the case in which ¥ is doubling, the other inclusion and the other
inequality are proved using Proposition 3.5.5 and of course Theorem 3.3.1.

In order to prove the equality of the weak gradients, it is sufficient to note that in the con-
struction provided in Proposition 3.5.5 we prove indeed that every g in Theorem 3.4.8(iv) is
also a ®-weak gradient; but in that theorem we prove that (iv) is satisfied by |V f|,0, and so
we obtain that the minimal ®-weak upper gradient is a ®-weak gradient. Moreover we proved
also that every ®-weak gradient is also a ®-weak upper gradient and so we conclude. ]
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CHAPTER 4

The spaces BV and H'!

In this chapter we consider more closely the degenerate case ®(t) = ¢, corresponding to the
definition of the BV space. In this case almost all the proof in the equivalence Theorem 3.3.1
still works but a key point, namely Section 1.6, where the analysis of the Hopf-Lax semigroup
is done, doesn’t work anymore for ®(¢) = t; in Section 4.2 we will fill this gap providing a
little weaker result on length spaces, but still sufficient for the equivalence theorem.

The proof of the equivalence of various different definitions will follow the paper [5|. Here
we introduce two more spaces, in the spirit of H&’q) and BLY®, whose equivalence with the
previous ones permits to obtain global approximation by Lipschitz functions with bounded
support, and also putting the asymptotic Lipschitz constant in place of the slope. The BV
case is very particular since, despite the fact that ¥ is not doubling (it is not even finite on
the whole real line), we can give a localized version of the variational energy, that is the total
variation measure |D f|; the definition in the relaxed sense (4.4.3) and its basic properties
has been given in [67] under some structural assumption, and then extended to locally finite
metric measure spaces in [5].

4.1 BV functions and total variation on Euclidean spaces

We refer to Chapter 3 of |7] for a complete review of this topic, with all the proofs; here we
will only overview the main properties needed in this paper.

Given an open set A C R f € L'(A) is said to be of bounded variation in A if one of the
following three equivalent properties hold:

(a) the distributional derivative Df is a R%valued measure with finite total variation in A.

(b) The following quantity, called total variation of f in A, is finite:
TV§(A) :=sup {/ fdivpdz : ¢ € CHA;RY), |p| < 1} :
A

7
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(c) There exists a sequence (f,) C C®°(A) converging fo f in L. (A), with equibounded

loc
energies: sup,, [, |V fn|dz < oc.

The equivalence between (a), (b) and (c) leads to relations between the corresponding
quantities involved: in particular we have

IDf|(A) = TV;(A) < lin_1>inf/ IV £l da.
n—oo A

By means of standard mollifiers and partitions of unity we can get also the following stronger
result: there exists a sequence of functions f, € C*°(A) convergent to f in L'(A) and such
that |Df,|(A) — |Df|(A). In our metric context we simply replace C*°(A) by the space of
locally Lipschitz functions on A.

Moreover the second definition gives us easily the crucial property that the total variation
|Df| of the distributional derivative in open sets is lower semicontinuous with respect to LllOC
convergence:

lirginf |Dfn|(A) > |Df|(A) VA C R open set, f, — fin Li_(A). (4.1.1)

4.2 Hopf-Lax formula and Hamilton-Jacobi equation

Here, as we did in Section 1.6, we want to study some elementary properties of the Hopf-Lax
formula in a metric setting, in the degenerate case ®(t) = |¢| (suitable for the study of the
oo-Wasserstein distances, and the corresponding Kuwada lemma), not covered in the previous
discussion because we exploited the properties of N-functions. We are dealing with a very
simple convex lower semicontinuous Lagrangian, the Lagrange dual of ®(t) = ¢:

0 if s <1:
L(s) = -7 4.2.1
() {oo if s > 1. ( )

We will use also, for a finer analysis, correspondingly, the ascending slope |VT f| and the
descending slope |V~ f:

+
+ — Tim (f(y) — f(=)) ‘ 4.9.9
V¥ () 2= T 2 (422)
Let f: X — R be a Lipschitz function. We set Qo f(z) = f(z) and, for ¢t > 0,
o d(z,y)
@if(w) = inf {f(y) + tL( ; )} (4.2.3)
Due to the particular form of our Lagrangian, we get
:= inf . 4.2.4
Qf(x) d(;g)gtf(y) (4.2.4)

Obviously, these transformations act almost as a semigroup: in fact, the triangle inequality
gives

QQuf(r) = inf { il f)}> b ()= Qua ()

d(y,z)<s Ld(y,2) d(z,2)<s+t

Moreover, if (X,d) is a length space, we have equality and thus @ is a semigroup. In fact,
under this assumption, for every z such that d(z, z) < s+t there exists a constant speed curve
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v :[0,1] — X whose length is less than s + ¢ and such that vy = x and 73 = z; in particular

there will be a time 7 := s/(s + t) such that y := ~, satisfies d(x,y) < s and d(y,2) < t. It

follows that QsQ¢f(x) < ) iI)lf f(2). In order to conclude, one has to observe that, if f is
+t

x,2)<Ss
continuous, then

inf f(z)= inf f(2) Vr >0,

d(z,z)<r d(z,z)<r

and this is true because in a length space the closure of the open ball is the closed ball.
Also, it is easy to check that the length space property ensures that the Lipschitz constant
does not increase:

Lip(Q:f) < Lip(f). (4.2.5)
Now we look at the time derivative, to get information on the Hamilton-Jacobi equation

satisfied by Q. f(x):

Theorem 4.2.1 (Time derivative of Q;f) Let x € X. The map t — Q:f(x) is nonin-
creasing in [0,00) and satisfies:

d

&Qtf(a:) +|VQ:if(x)] <0 for a.e. t>0. (4.2.6)
Moreover, if (X,d) is a length space, the map t — Q.f is Lipschitz from [0, 00) to C(X), with
Lipschitz constant Lip(f).
Proof. The basic inequality, that we will use in the first part of the proof is:

Qsf(y) < Qs f(y)  whenever s > s'+d(y,y'). (4.2.7)

It holds because the inequality implies B(y’,s’) C B(y,s) and thus it is clear by the very
definition of Q;f. Now we take x; and y; converging to x such that:

oy @ef (@) — Qif(2) o QS (@) = Qeflyi) _

Now we consider the inequalities, given by (4.2.7), involving z, z;, y;:

Qt+d($i,$)f(x) < Qtf(xl)’ Qtf(yl) < Qt—d(w,yi)f(x)

and let us define, for brevity, s; = d(x;,z) and r; = d(z,y;). Then we have

Qunf(x) — Qi f(x) Qt—l—sif(x) — Qi f(x)

lim inf < liminf
h—s0+ h 1—00 Si
< im ST - v usie)
and, similarly,
i i Qinf(x) — Qi f () < limint Qif(x) — Qr—r, f(7)
h—0— h i—00 Ty

1—00 T
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Using that |V f| = max{|VT f|,|V~ f|}, the combination of these inequalities gives

lim inf Qiinf(w) — Quf(x)

h—0 h

< |VQ.fl(x) VYzeX, Vt>0.

Since Qqf(z) is obviously non increasing w.r.t. ¢, we get that is differentiable almost
everywhere and so we get the thesis.

If we suppose that (X,d) is also a length space, using the semigroup property and (4.2.5)
we get that

Qsf(z) = Quf(z) = Qsf(w) — Qr—s(Qsf)(z) < (t — ) Lip(Qsf) < (t —s) Lip(f) Vs €[0,1],
and so the thesis. ]

Note that, in case (X, d) is not a length space, it might happen that balls are not connected
and, as a consequence, that ¢ — Qp(x) is discontinuous; as an example we can take X the
curve in Figure 4.1, with the distance induced as subset of R2.

Figure 4.1: Example of a compact metric space (X,d) that is not a length space, having a time
discontinuous Hopf-Lax semigroup Q¢

It is clear that some balls, such as the shaded one centered in z, are disconnected; fur-
thermore if we take a Lipschitz function f equal to 0 in the upper part of the curve and equal
to 1 in the lower one, doing an interpolation between two values only in the rightmost and
leftmost parts, it is easy to see that Q;f(p) is discontinuous both in time and space.

Remark 4.2.2 Unlike the N-function case, here we don’t reach the Hamilton-Jacobi inequal-
ity for the asymptotic Lipschitz constant, but only for the slope. It is still an open problem
whether if (4.2.6) holds with the asymptotic Lipschitz constant. However, thanks to Propo-
sition 4.4.1 we can still prove that in (4.4.3) we can approximate with lip,(fr) in place of

IV ful.
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4.3 The co-Wasserstein distance

We already recalled the W-Wasserstein for any ¥ convex lower semicontinuous, even with
values in R U {+o00}. Thus here we just recall the co-Wasserstein distance, that is, the W-
Wasserstein distance when ¥ = L, where L is defined in (4.2.1). We have

Woo(p, v) := min {|[d| () [v € T(p,v)} -

It is known (see for instance [24]) that W is the monotone limit of W), as p goes to infinity,
at least when we are dealing with probability measures; we want to consider also this limit
case as a transport problem, in order to have a dual formulation that will be used later on; as
it has been already pointed out we need "test distances", that are really transport distances:

W (p,v) = min{/X XSL(d('Z’ v)
X

and for them a duality formula holds:

)dvl'yef(uw)},

W (p,v) = sup / Qsepdp — / dv. (4.3.1)
peLipg(X,d) J X X

In this case, being the cost degenerate, we have that Wég) < 0if and only if W, < s.

4.4 Four notions of BV function

Let (X, d) be a complete and separable metric space and let m be a nonnegative Borel measure
in X. In this section we introduce four notions of BV function and, correspondingly, four
notions of total variation. Only three of them will be measures, the other one giving only the
value of the total variation of the entire space and difficult to localize. We recall that the aim
of this chapter is to show that these notions are equivalent.

4.4.1 BV functions in the variational sense

In the same spirit of Definition 3.1.1 we say that a function f € L'(X,m) is said BV in the vari-
ational sense if there exists a sequence (f,,) C Lipy(X,d) converging to f in L'(X, m) and with
equibounded energies: sup,, ||lip,(fn)|1 < co. We shall denote this space by BV, (X,d, m).
We define also the total variation of the entire space

|Df|,(X) = inf {lihniioréf/xlipa(fh)dm: (fn) C Lipy(X,d), fr — f in Ll(X,m)} . (4.4.0)
Note that if we consider ®(¢) = t then we have F2(f) = |Df|,(X). This notion can’t be
localized as in (4.4.3), if we want to be consistent with the Euclidean case; in fact for a general
open set A C R? it is necessary to have locally Lipschitz functions approximating the function
f (take as an example f(6,7) = 6, in the case X = B(0,1) C R? with the Lebesgue measure,
and as an open set A = B(0,1)\ ({0} x [0,1])).

Proposition 4.4.1 Let m be a measure that is finite on bounded sets. Then for every f €
Lipy(X,d) we have

[Df|o(X) < /X IV f| dm.
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Proof.  We notice that, thanks to the general theory of Sobolev spaces in metric measure
spaces (see for example [4] or Chapter 3), since |V f| is an upper gradient for f € Lipy(X,d),
and f,|Vf| € L?(X,m), there is a sequence (f;,) C Lipy(X,d) such that f;, — f in L? and
lip,(fn) — g in L? with g < |V f|; thanks to Lemma 3.3.3 we can take f}, to have uniform
bounded support, since f has bounded support. In particular, recalling that m is finite on
bounded sets, we have that f, — f in L' and lip,(f4) — ¢ in L' and so this gives that
IDf]o(X) < [y gdm < [ |V f|dm and so we obtain the thesis. O

Moreover, thanks to the lower semicontinuity of the total variation, we obtain from Propo-
sition 4.4.1 an equivalent formulation:

|IDf|,(X) = inf {lihminf/ |V fnldm: fp € Lipg(X,d), fn — f in Ll(X,m)} . (442
—00 X

4.4.2 BV functions in the relaxed sense

We can define a slightly bigger space, requiring that the approximating functions are only
locally Lipschitz. We shall denote this space by BV, (X,d, m).

We already noticed that this definition coincides with the classical one in Euclidean spaces.
Associated to this definition is the relaxed total variation |D f|., defined on open sets A C X
as:

|Df|«(A) := inf {li}{ninf/ lip, (fr)dm: (fx) C Lippo(A), fn — fin Ll(A)} . (4.4.3)
—00 A

Here “locally Lipschitz in an open set A” means that for all x € A there exists r > 0 such that
B,(x) C A and the restriction of f to B,(x) is Lipschitz.

This definition can be seen as the localized version of the variational one; it is clear that
|IDf|,(X) > |Df|«(X), but the converse inequality is not at all obvious.

This definition is slightly stronger than the ones considered in [67] and [5] since in their
definition the authors use the slope instead of the asymptotic Lipschitz constant. They prove
that in their context the set function A — |Df|s(A) is the restriction to open sets of a finite
Borel measure (the subscript s stands for slope). We follow their proof in order to prove the
same for | D f|,: we investigate more closely the properties of this set function in the following
lemma. We will write A € B whenever A, B are open sets and d(A, X \ B) > 0 (in particular,
A € B implies A C B). We say that A; and As are well separated if dist(A4;, Az) > 0.

Lemma 4.4.2 Let A(X) be the class of open subsets of X, u € LY(X,m) and let |Dul, :
A(X) — [0,00] be defined as in (4.4.3), with the convention |Dul.(D) = 0. Then, |Dulx
satisfies the following properties:

(i) |Du|«(A1) < |Duls(A2) whenever A; C Ag;
(7i) |Dul.(A1 U A2) < |Dul.(A1) + |Dul.(A2), with equality if A1 and A are well separated;

(iii) If A, are open and A, C Ayny1 it holds

Tim |Dul.(4,) = [Dul, (U An). (4.4.4)

n
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In particular the formula
|Du|«(B) := inf {|Dul|.(A) : AC X open, B C A}

provides a o-subadditive extension of |Du|. whose additive sets, in the sense of Carathéodory,
contain B(X). If follows that |Duls : B(X) — [0,00] is a o-additive Borel measure.

Proof. The verifications of monotonicity and the additivity on well separated sets are stan-

dard. Since we will use (iii) in the proof of the first statement of (ii), we prove (iii) first,

denoting A := U,A,. It is sufficient to prove that sup |Du|«(Ay) > |Dul.(A) because the

converse inequality is trivial by monotonicity, so we can assume that sup,, |Dul.(4;) < oo.
First, we reduce ourselves to the case when A, satisfy the additional condition

dist(4,, X \ Apy1) >0 VneN. (4.4.5)

In order to realize that the restriction to this case is possible, suffices to consider the sets

1
Al {xGX : dist(x,X\An)Zn}

n =
which satisfy (4.4.5), are contained in A,, and whose union is still equal to A.
In particular, if we call

C1 = A
Cr=Ap\ Ao ifk>2,
it is clear that the families {Csgi1}, {Cski2}, {Csk+s} are well separated, hence

> i1 Dul«(Csj4i) < oo for all i € {1,2,3}. It follows that for any ¢ > 0 we can find an
integer k such that

i |Dul,(Cp) < e. (4.4.6)
n=k

Now, to prove (4.4.4) we build a sequence (u,,) C Lip,.(4) such that u, — u in L'(A,m)
and
|Du|«(Af) + 2e > lim inf/ lip,, (ts,) dm.
m—00 A
In order to do so, we fix m and set Dy = C), , B, = Ay, it h > 1, Dy = By = Aj. Then
we choose ., € Lip,.(Dp) in such a way that

1

— (4.4.7)

| tpna)dm < Dul. (D) +
Dh

We are going to use Lemma 4.4.3 below with M = By, N = Dy, so we denote by ¢, and
Hjy €@ B, N D41 the constants and the domains given by the lemma. It is then easy to find
sufficiently large integers k(h) > h satisfying

€
and ch / [Vk(h1),h41 — uf dm < 5 o (4.4.8)
, :

£
Ch/ [Vge(ny,n — uldm <
I, (h) 2_2h

This is possible because H}, is contained in By, N Dy, 1 which, in turn, is contained in Dj,. In
addition, possibly increasing k(h), we can also have:

1
/D [Vkn),pn — uldm < ok (4.4.9)
h
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Now we define by induction on h functions w, , € Lip),.(Bp) for b > 0 : we set up o =
Yr(0),0 and, given up, p, we build up, p41 in such a way that:

Um,h+1 = Um,h on Bj_1 (4.4.10)
Umh+1 = Vk(ht1) b1 O0 Bhyr \ By,
1 1
[ tm,n — “HLl(Bh) < m 1- oh | (4.4.11)

. . . g
/ lip, (tm py1) dm < / lip, (tm, ) dm + / llpa(@bk(h+1)7h+1) dm + oh (4.4.12)
Bh1 By Dpyq

Once we have this we are done because we can construct w,,(z) = uy, p(x) if € By, then
it is clear that u,, is well defined thanks to the first equation in (4.4.10) and locally Lipschitz
in A. In addition ||um — ul|p14) < 1/m thanks to (4.4.11) and the monotone convergence
theorem and, iterating (4.4.12) and using (4.4.7) and k(h) > h, we get

/lipa(um) dm = lim lip, (U, h+1) dm < lim lip, (U, h41) dm
A

h—o00 Bh h—o00 Bh+1
<§:|D1(D-)+3+ < |Dulu(Ay) + 26 + =
_'Uu*,mf—:_u*k 6m.
1=

In order to prove the induction step in the construction of u,, , we use Lemma 4.4.3 with
M = Bp, N = Dpy1, u = Upp and v = Yppq1),n41- S0, applying (4.4.13) of the lemma we
find a function w = uy, 41 such that

/ lip, (Um,py1) dm S/ 1ipa(¢k(h+1),h+1)dm+/ lip, (Um,n) dm
Bpy1 Dpia Bn

+cp / [Vk(ht1),h+1 — Um,h| dm,
Hy

U 1 = Uy on By \ Dpy1 2 By
U1 = Vk(ht1)h+1 O Dpy1 \ B 2 Bpgr \ Bh.

By the induction assumption, uy, j, = wk(h),h on By, \Eh_l which contains H}, and so we can
use (4.4.8) to get (4.4.12). Then (4.4.14) of Lemma 4.4.3 with o = u tells us exactly that

/ U 1 — ufdm < / [Uk(hs1)pe1 — ufdm + / U, — u| dm
Bpy1

Dpyq By,

and so by (4.4.8) and the induction assumption we get also (4.4.11):

dm < 1 1 1 Iy 1 1 1
Bh+1\um,h+1—u| m_m+a Ton ) T o \" T oht )¢

Now we prove (ii). Having already proved (iii), suffices to show that
| Dul.(A] U AY) < |Dul.«(A1) + | Dul«(A) whenever A} € A1, A}, € As.

This inequality can be obtained by applying Lemma 4.4.3 to join optimal sequences for Ay
and Ay, with M = (A} UAY) N Ay and N = (A] U AL) N As. O



4.4. Four notions of BV function 85

Lemma 4.4.3 (Joint lemma) Let M, N be open sets such that d(N\ M, M\ N) > 0. There
exist an open set H € M NN and a constant ¢ depending only on M and N such that for
every u € Lipy,.(M), v € Lipyy.(IV) we can find w € Lip,,.(M U N) such that

/ lipawdmg/ lipaudm—l—/ lipavdm+c(M,N)/ |u — v|dm; (4.4.13)
MUN M N H

w = u on neighborhood of M \ N, w = v on neighborhood of N\ M.
Furthermore, for every o € L*(M U N) we have

/ ]w—a|dm§/ \u—a|dm—|—/ v — o| dm. (4.4.14)
MUN M N

Proof. The assumption on M and N guarantees the existence of a Lipschitz function ¢ :
X — [0,1] such that

() 1 on a neighborhood of M \ N
€Tr) =
4 0 on a neighborhood of N\ M,

so that H := {0 < ¢ < 1} N (M U N) will be an open set contained in M N N and well
separated from both M \ N and N\ M. Setting n := d(N \ M, M \ N), it is clear that we can
have Lip(¢) < 3/n; for example we can take

o(x) = zmin{<d(x,N\M) - ?37)+,g}

Now we consider the function w = gpu + (1 — ¢)v and, using the convexity inequality for the
asymptotic Lipschitz constant lip,w < ¢lip,u+ (1 — ¢)lip,v +lip,¢ - |u — v| (see Lemma 1.3.2
for the simple proof regarding also the slope) and the fact that ¢ < xps and 1 — ¢ < xn on
M U N, splitting the integration on the interior of {¢ = 1}, the interior of {¢ = 0} and H we
end up with:

/ lipawdmg/ lipaudm+/ 1ipavdm+3/ |lu — v| dm.
MUN M N nJu

To prove (4.4.14) we simply note that jw — o] < plu —o| + (1 — ¢)|v —o| on M UN. O

4.4.3 Weak-BV functions

Before introducing the third definition we introduce some additional notation and terminology.

Definition 4.4.4 A measure w € P(C([0,1]; X)) is said to be an co-test plan if the following
two properties are satisfied:

(a) 7 is concentrated on AC*([0,1]; X) and Lip(vy) belongs to L>(C(]0,1]; X),);
(b) there exists C' = C(mw) > 0 such that (e;)yw < Cm for each t € [0,1].

A Borel subset T' of C(]0,1]; X) is said to be 1-negligible if w(I') = 0 for every co-plan w. A
property of continuous curves is said to be true 1-almost everywhere if the set for which it is
false is contained in a 1-negligible set.
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This definition is the degenerate case ¥ = L of Definition 3.2.1 (again, this is an homoge-
neous case and so we can let 7 be a probability measure and C(7) can be also less than 1).
We recall now the definition of weak-BV, suggested in [9] and adopted in [5]. This follows
the strong Beppo Levi definition: given a function f in L'(X, m), we say that f is a weak-BV
function, and write f € w — BV (X,d, m), if the following two conditions are fulfilled:

(i) for 1-almost every curve we have that fo~y € BV(0,1); we require also a mild regularity
at the boundary, namely

[f(v1) = F(o)l < [D(Fo)[(0,1)  for 1-ae. v, (4.4.15)
where |D(fo~)| € M4((0,1)) is the total variation measure of the map fo~y:[0,1] —» R;

(ii) there exists u € My (X) such that
[0 e |(Bydn(2) < Cm) - [Lip)emiB) VB € B (4.416)

Associated to this notion, there is also the concept of weak total variation |D f|,,, defined
as the least measure p satisfying (4.4.16) for every oo-test plan 7. Equivalently, |Df|,, is the
least upper bound, in the complete and separable lattice M (X), of the family of measures

1
C(m) | Lip(9)|| oo ()
as 7r runs in the class of co-test plans.
If we fix t € (0,1) and we consider the rescaling map R; from C([0,1], X) to C([0,1],X)

mapping s to 75, we see that the push-forward m; = (R;)ym is still a co-test plan, with
C(m:) < C(w). In addition

/WID(f o y)|dm(v) (4.4.17)

Lip (N £oo () < HILAP(Y) | 20 () -
By (4.4.15) we get

[f(ve) = F)l S |D(f e )[(0,8)  for m-ace. v, (4.4.18)
while (4.4.16) with A = X gives

/ ID(f 07)[(0,2) dre() = / ID(f 07)[(0, 1) drey(+)
< () [Lip(1) | ey | D F o (X).

Now we prove that the class BV, is contained in the class w — BV and that |Df|, < |Df|.
on open sets. The proof of this fact is not difficult, and follow the same lines of the proofs in
Theorem 3.4.1.First of all, we state without proof the following elementary lemma:

(4.4.19)

Lemma 4.4.5 Assume that g is an upper gradient of f, that v : [0,1] — X is Lipschitz and
that [ g < oo. Then oy € WI(0,1) and |(f o 7)Y (D] < g(v)lial for ae. t € (0,1). In
particular

|ID(f oy)|(B) < Lip(’y)/ g(v)dt for any Borel set B C (0,1).
B
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Given an open set A C X, we take a sequence (f,) C Lip;,.(A) such that f, — f in
L'(A,m) and [, lip,(fn)dm — |Df].(A) (whose existence is granted by the definition of
relaxed total variation), and use the lemma and the fact that lip,(f,) is an upper gradient for
fn to estimate the weak total variation of f,, as follows:

/ 41 D(fu 0 7)|(A) dr(y) = / D(fu 01)|(v(A)) dre ()
1

< [ Lip(v) [ gn(v)xa(n)dtdm(y)
/ /0 (4.4.20)

1

< 1 Lip ()| ey / / gn d(eg)gmdt
0 A

< Lip()| o) C(0) /A g dm.

We now introduce a lemma that permits us, up to a subsequence, to localize the L'
convergence, so that we can estimate the left hand side of the weak upper gradient inequality.

Lemma 4.4.6 Let B C X be a Borel set and let (f,) be a sequence converging to f in
LY(B,m). Then, a subsequence of (fy) converges to f in L'(y~1(B),£') along 1-almost
every curve.

Proof. We can assume without loss of generality that B = X. Possibly extracting a
subsequence, we can suppose that

Z [ fr = Fllor(xm) < 0o

We now fix a co-test plan 7 and we show that || f, oy — f oy[[1(,1) — 0 for m-almost every
curve . Our choice of the subsequence ensures that the function g := " |f, — f| belongs to
L1(0,1). Now, the inequality

[19o7ananer = [[ o arar < [ [ gam< o

guarantees that g o~y belongs to L'(0, 1) for m-a.e. curve v and thus we can say that f, oy —
fo~in LY(0,1) for w-a.e. 7. By the arbitrariness of 7, we conclude. O

We can now complete the proof of |Df|,, < |Df|. on open sets, starting from (4.4.20).
Let A C X be an open set, let (f,) C Lip;,.(A) be a sequence convergent to f in L'(A)
such that

lim lip,(fn) dm = [D f[..(A).
A

n—o0

Thanks to Lemma 4.4.6 we can find a subsequence n(s) such that f,,;yoy — foyin L'(y~1(4))
along 1-almost every curve v. By (4.1.1) in the open set y~!(A) we get

W D(f ov)|(A) < lin_l}inf Y| D(fr(s) © 7)I(A) for mw-a.e. curve ~.

Passing to the limit as s — oo in the inequality (4.4.20) with n = n(s), Fatou’s lemma gives
pn(A) < |Df|«(A) for all co-test plan 7, where . is the finite Borel measure in (4.4.17). If
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T, ..., T is a finite collection of co-test plans, the formula

k
\/ tr, (A) = sup {Z pr (Ai): A1 C A, ..., A C A open, pairwise disjoint}

and the additivity of | D f|, yield | D f]«(A) > V¥ .. (A) for any open set A. Since this collection
is arbitrary, the inequality |Dfl|,(A) < |Df|«(A) is proved.

We’re not done yet, because we have to prove also the boundary regularity (4.4.15) that
is part of our axiomatization of w — BV functions. The inequality would clearly follow if we
show that fo~;, ¢ =0, 1, is the approximate limit of f o~ as ¢t — ¢, namely

1

1
! s/ - lim — s) — = 0.
éfélt/ 700 = folds =0, Him | 17(3) = fn)]ds =0

This is indeed the context of the next lemma, that we state and prove for ¢ = 0 only:

Lemma 4.4.7 (Boundary regularity) We are given a sequence (f,) C Lip,yo(X) where f, — f
in LY(X,m) and sup,, S5 lipg(fn)dm < co. Then t = 0 is a Lebesgue point for the map
fov:]0,1] = R for 1-almost every curve ~.

Proof.  Let us fix an oo-plan m, set C; := sup, fX gndm, Cy := C(m) and consider the
quantities

/!f ¥s) — f(70)|ds.

By definition, we know that 0 is a Lebesgue point for f o~ if Hy(y) — 0 as t — 0. Applying
Fatou’s lemma we get:

/limiant( )dm < hmlnf/Ht (4.4.21)
t—0

We can estimate
[man < [apeyan+ 1 [ (1500 - 1601+t - Sl )dsdn

where H'(y) = 1 fo | frn(vs) — fn(70)|ds. We now treat separately the two terms on the right:
first let’s note that

/th( // |fn(vs) — fu(y0)ldsdm < // / lip,, (fn,vr)dr dsdm
<t [ [ iwathnarasam = [[ oy i an

t
< 02/ / lip, (fn, ) dm(z) dm dt < tC1Cy.
0 JX

For the second term:

t [ (1500 = 1601+ 150 - 00 s
=+ [ 1) = setasdm + [ a0 ~ St

s//!fn—fr-CzdmdS+/‘f"_f"@dm
t 0 JX X
<20y || fn — f‘|L1(X7m)'
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summing up we get that, choosing n so large that || f, — f|lz1 < ¢,

/ Hi(y)dm < 4Co(Ch +2).

Now by (4.4.21) we conclude that [ (liminf; o H;) dm = 0 and so, thanks to the arbitrariness
of 7, we can say that 0 is a Lebesgue point for 1-almost every curve (here we use also that
f o~ isa BV function for 1-a.e. curve, and in this case we know that H; has a limit). O

4.4.4 BVpg; functions

Also here we give a weaker version of the w — BV definition; we follow the (weak) Beppo Levi
definition: we say that a function f € L!'(X,m) is a BV function if there exists a constant
E = E(f) such that for every oo-plan we have:

/ F(m) = F(0) dme < C() - E(F)|ILip(7) || oo - (4.4.22)

We call | D f|pr(X) the least constant E such that (4.4.22) holds true for every oo-plan r.
In the same spirit we can define |D f|pr(A) for open sets A:

J f(n) = f() }
(7) - [[Lip(W) oo () J

D fl1(A) = sup { . (4.4.23)

where the supremum is taken among all co-plans concentrated on AC([0, 1]; C) for some closed
set C' € A. Tt is clear that a w — BV function belongs to BVpy, and |Df|,(A) > |Df|pr(A)
for every open set A.

4.5 Proof of equivalence

In Section 4.4 we discussed the “easy” inclusions BV, C w— BV C BVpgy, and the correspond-
ing inequalities (localized on open subsets of X)

IDf|sr < [Dffw < |Dfls.

Furthermore we proved also that BV,, C BV, and the corresponding total variation inequalities
(on the whole space):

[Df|BL(X) < |Dflw(X) < [Df«(X) < |Df]o(X).

In this section we prove the main result of this chapter namely the equivalence of the four
definitions. So, we have to start from a function f € BVpr(X,d, m), and build a sequence of
approximating Lipschitz functions with bounded support in such a way that

lim sup /X lip, (fu) dm < |Df|51(X). (45.1)

n—oo

As in [11] for the case ¢ = 2 and [9] for the case 1 < ¢ < oo, our main tool in the construction
will the gradient flow in L?(X,m) of the functional F1(f) = |Df|,(X), starting from fo. We
initially assume that (X, d) is a complete and separable length space (this assumption is used
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to be able to apply the results of Section 4.2 and in Lemma 4.5.2, to apply (4.3.1)) and that
m is a finite Borel measure, so that the L2-gradient flow of F! can be used. The finiteness and
length space assumptions will be eventually removed in the proof of the equivalence result.

We state for completeness the proposition and the lemma we need for the proof; both are
proved in the general Orlicz case in Section 3.3. The only things that really change is that
in the Kuwada lemma we have to use the Hamilton-Jacobi inequality (4.2.6) (proved for the
slope) in (3.3.6), and then use that |Df|,(X) < [y |Vf| for f € Lipy(X,d) (see Proposition
4.4.1) in (3.3.7).

Proposition 4.5.1 Let py = fim be a curve in AC>([0,1],( M4+ (X),Ws)). Assume that
for some 0 < ¢ < C < oo it holds ¢ < f; < C m-a.e. in X for any t € [0,1], and that
fo €w— BV(X,d,m). Then for all ® € C?([¢c,C]) convex it holds

/ B(fy) dm / B(f.) dm < sLip(@)| D folw(X) - C - Lip(u) Vs > 0.

Lemma 4.5.2 (Kuwada’s lemma for J}) Let fo € L*(X,m) and let (f;) be the gradient
flow of F} starting from fo. Assume that for some 0 < ¢ < C < oo it holds ¢ < fo < C m-a.e.
in X. Then the curve t — py = fim € M4 (X) is absolutely continuous w.r.t. Wso and its
W metric derivative satisfies

1

| ot | SE for a.e. t € (0,00).

We can now prove our main theorem:

Theorem 4.5.3 Let (X,d) be a separable metric space, and let m be a nonnegative Borel
measure on X, finite on bounded sets. Then we have

BV,(X,d,m) = BVi(X,d,m) = w — BV(X,d,m) = BVg.(X,d,m),

and moreover for every function f € BV,(X,d,m) we have |Df|. = |Df|w = |Df|pL as
measures and |Df|.(X) = |Df|,(X).

Proof. Recalling the results of Section 4.4, to conclude the proof we are only left to show
that a function in BVpgy, is also a function of variational total variation and the two definitions
of total variations coincides; at the end we will see also the coincidence of the measures
|Dfls, |Df|w and |Df|pr. We first prove that |Df|,(X) < |Df|pr(X) and then that the set
functions |Df|, and |Df|pr agree on all open sets. This yields the coincidence of the three
aforementioned measures on the Borel o-algebra.

We split the proof of the inequality |D f|,(X) < |Df|pr(X) in three parts: we prove it first
for bounded functions and finite measures in length spaces, then we remove the boundedness
assumption on f and the length space assumption, and eventually the finiteness assumption
on m. Notice that we will follow the same lines of the equivalence proof in Section 3.3.

Let us consider a bounded function fy € BVpr possibly adding a constant (that doesn’t
change any of the total variations; the unique non trivial being |Df|,, that doesn’t change
thanks to Proposition 3.1.3) we can suppose also that C' > fy > ¢ > 0. Let us consider
as before the gradient flow f; in L?(X,m), with respect to F), starting from fy. Now, let
®(x) = 22, so that ®’ = 2, and let’s substitute fy with fo + H; our computation is left
unchanged, because we know that Sy(fo + H) = f; + H and so we can say, using the energy
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estimate in Proposition 3.1.5 and the Lipschitz estimate for the curve t — (f; + H)m given
by Lemma 4.5.2, combined with Proposition 4.5.1:

zﬁumwXMqu\mﬁ+mMXMt

— [ ot i dm— [ (5.4 B dm
X X

C+H
S 2s - ‘Df0|BL(X)‘ C+H .

Now, letting H — oo, we get that
| DAL dt < 5+ DSl (X),
But, knowing that | D f],(X) = FL(f;) is nonincreasing in ¢ we can say
S IDELCO < [ IDAL0 A < s 1Dl (X)

and thus |Dfq|,(X) < |Dfo|pr(X). Now we have that |Df|, is lower semicontinuous and so,
letting s | 0, we obtain that fy € BV, (X,d, m) and that |D fy|,(X) < |Dfo|pr(X).

Now, taking any function ¢ € BVpr(X,d,m), defining ¢ = (¢ A N) V (—=N), we have
g — g in L' as N goes to infinity; thanks to Lemma 3.3.2 we get

|Dgly(X) = limsup ]DgN|w(X) = lim sup |DgN|*(X) = |Dgl«(X).

Now, still assuming m to be finite, we see how the length space assumption on X can
be easily removed. Indeed, it is not difficult to find an isometric embedding of (X, d) into a
complete, separable and length metric space (Y,dy): for instance one can use the canonical
Kuratowski isometric embedding j of (X, d) into /o, and then take as Y the closed convex hull
of j(X). For notational simplicity, just assume that X C Y and that dy restricted to X x X
coincides with d. Since X is a closed subset of Y, we may also view m as a finite Borel measure
in Y supported in X. Then, if f € BVpr(X,d,m), we have also f € BVpp(Y,dy,m) and
|IDf|Br,y(Y) < |Df|pr(X) , because any oo-test plan 7 in Y is, by the condition (e;)ymw <
m, supported on Lipschitz curves with values in X. Then, applying the equivalence result
in (Y,dy,m), we find a sequence of Lipschitz functions wit bounded support g, : ¥ — R
convergent to f in L'(Y, m) satisfying

n—oo

limsup/ hpa(gn) dm S |Df|BL’y(Y) S |Df|BL(X)
Y

Now, if f, = g¢gn|lx, from the inequality lip,(fn) < lip,(gn) on X we obtain
limsup,, [ lip,(fn)dm < |[Df|pr(X). On the other hand, it is immediate to check that
frn are Lipschitz in X, with bounded support.

In order to prove the theorem also for measures m that are finite on bounded sets we
proceed as in Section 3.3, namely, we know by Lemma 3.3.2 that we need only to check
the equivalence on bounded and integrable functions; then via Lemma 3.3.3 we reduce to

bounded function with bounded support. Now again Lemma 3.3.3 let us conclude that for



92 Chapter 4. The spaces BV and H"!

every closed bounded set C' (in which we consider the finite measure mg(B) = m(C N B)),
we have |Df|, x(X) = |Dflyc(C) whenever supp(f) C B, C By44 C C. We can apply the
equivalence on C' and note that |Df|pr x(X) > |Df|pr,c(C) since oo-test plan in C' can be
viewed also as co-test plans in X, to get

[Df1o(X) = [Dflo.c(C) = |Df|pLc(C) < [DfpL(X),

and so our proof is complete.
Now it is easy to conclude that we have also |Df|«(X) = |Df|w(X) = |Df|pr. Moreover
for every couple of open sets B € A, by definition of |Df|pr(A), we have

|Df|BL(A) = |Df|pp5(B) = |Dfl. p(B) > |Dfl. p(B) = |Df|.(B);

using this inequality with B = As = {z : d(z,A°) > 0} and letting § — 0 we know that
As T A and so, using (iii) of Lemma 4.4.2, we obtain |Df|pr(A) > |Df|.(A).

In particular |Df|pr, |Df|« and | D f|pr, agree on open sets, hence the two measures | D f|,
and |Df|, coincide and as a byproduct we obtain also that |Df|p; can be extended to a
measure. O

The following example shows that in general the sup representation does not extend to
the absolutely continuous parts.

Example 4.5.4 Let X = R?, let B be the closed unit ball in R?, d the Euclidean distance and
m(C) = L%(C) +#(CNIB), for C C X Borel. If f is the characteristic function of B, the
inequality m > #? gives the inequality between measures |Df| < |Df|,. We claim that the
two measures coincide. To see this, suffices to show that |Df|,(R?) < 27 and this inequality
follows easily by considering the sequence of functions (each one constant in a neighbourhood

of OB) fn(z) = pn(|x|) with

1 ift <1+ 1
en(t):=q1l-n(t—-1-1) if1+1<t<1+2
0 ift >14 2.

Since |Df|(C) = #1(CNOB), it follows that | D f|,, is absolutely continuous w.r.t. m; on the
other hand, since f is a characteristic function the same is true for the maps f o+, so that
|D%(f o~)| = 0 whenever f o+ has bounded variation.

We conclude this section with the following corollary to Theorem 4.5.3, dealing with the
degenerate case L' = BV similar results could be stated also at the level of the Sobolev
spaces W14(X, d, m) and the corresponding test plans of [9].

Corollary 4.5.5 BV,(X,d,m) coincides with L'(X,m) if and only if (X,d,m) has a co-test
plan concentrated on nonconstant rectifiable curves. In addition, (X,d) contains one noncon-

stant rectifiable curve if and only there exists a finite Borel measure m in (X,d) satisfying
BV,(X,d,m) # L'(X,m).

Proof. 1In the first statement, the “only if” part is trivial, since absence of co-test plans implies
that all L' functions are BV,,, and therefore BV,. In order to prove the converse, we notice
that for a given countable dense set D C X, a curve +y is constant iff ¢ — d(~, z) is constant
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for all x € D. Hence, we can find x € D and a oo-test plan 7 such that d(v, z) is nonconstant
in a set with mw-positive measure. The composition

f(y) := w(d(y, v)),
where w : [0,00) — [0,1] is a continuous and nowhere differentiable function, provides a
function in L'\ BV,, = L'\ BV,,.

For the second statement, absence of nonconstant rectifiable curves forces the absence of
nontrivial co-test plans whatever m is and, for the reasons explained above, the coincidence
L' = BV,. On the other hand, existence of a nonconstant rectifiable curve in (X,d) implies
existence of a nonconstant injective curve v : [0,1] — X with constant speed. If u € L1(0,1)\
BV (0,1), then it is easily seen that u o y~! (arbitrarily defined on X \ ([0, 1])) belongs to

L'\ BV, provided we choose m := 1L 1 where £ is the restriction of Lebesgue measure to
[0, 1]. O

We end this section giving a useful characterization of the total variation as weak limit of
asymptotic Lipschitz constants.

Proposition 4.5.6 Let f € BV (X,d,m). Then there ezists a sequence (fn) C Lipy(X,d)
such that f, — f in LY(X,m) and lip,(fn)m — |Dfl|. in duality with Cy(X). In particular
for every function g € Cyp(X) we have

lim | g@)lipg(fuz) dm = /X g(x)dDf].

n—oo X

Proof. Let (f,) C Lipg(X,d) any optimal sequence in (4.4.1), i.e. such that
IDf|.(X) = Tim / lip, (f,) dm. (4.5.2)
n—oo X

We have clearly that f,, — f also in L'(A, m) and f,, € Lipy,.(4,d) and so by definition (4.4.3)
we have also

|IDf]«(A) < liminf/ lip, (frn) dm; (4.5.3)

now standard measure theory gives us the thesis, in fact if we have p(A) < liminf,, p,(A) for
every open set A and p(X) = lim,, u,,(X) then p,, — p. For the sake of completeness we show
also this fact. It is clear that we have also u(C) > limsup,, 1, (C) for every closed set C'.

For every nonnegative p-integrable function g we have

/Xg(x)dﬂ(iU)—/Ooou{gzt}dx—/ooou{g>t}dx;

this formula is easy to prove when g is simple and then it follows by approximation. In
particular it holds when g is continuous and bounded. In this case, using that {g > ¢} is an
open set, we can employ Fatou lemma to obtain

/ gdp = / u{g > thdxr < liminf/ pnf{g > thde = liminf/ gdpy;
X 0 n 0 n X
on the other side we also have
[o¢] o0
/ gdp = / pl{g > thdx > limsup/ pnig >t} dz = limSUP/ g dpin.
X 0 n 0 n X

and so we have lim, [y gdu, = [y gdp. Since g was an arbitrary nonnegative continuous
bounded function, we get the thesis. ]
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4.6 Possible definitions for W1(X, d, m)

In this section we discuss potential definitions of the space W11, Here the picture is far
from being complete, since at least three definitions are available and we are presently not
able to prove their equivalence, unlike for BV. For simplicity, here we assume that (X,d, m)
is a compact metric space and that m is a probability measure. Recall that BV, (X,d, m)
denotes the BV space defined by relaxation of the asymptotic Lipschitz constant of Lipschitz
functions, while w — BV (X, d, m) is the BV space defined with the BV property along curves.

It is immediate to look at the subset of w — BV (X,d, m) consisting of functions f €
L'(X,d,m) such that |Df|, < m. However this is not satisfactory since Example 4.5.4 gives
an example of a characteristic function with non trivial gradient that belongs to this subset.
For this reason we will add the condition of being absolutely continuous along 1-almost every
curve.

Definition 4.6.1 (Wéi space) A function f € w — BV(X,d,m) is said to belong to
Wé’i(X, d, m) if the following conditions are satisfied:

(i) fory belongs to WH(0,1) for 1-almost every curve ~;
(it) |Df|pr < m.

But we can also provide a definition in the spirit of the weak upper gradient definition:

Definition 4.6.2 (1-weak upper gradient) A function g € L'(X,m) is said a 1-weak up-
per gradient for f € LY(X,m) if

Mwn—ﬂwﬂéfg<w for 1-a.e. 7. (4.6.1)

5

On the other hand, also the construction leading to BV, (X,d, m) (or to the relaxed Orlicz-
Sobolev spaces) can be adapted to provide a different definition of W11

Definition 4.6.3 (1-relaxed slope) Let f € L'(X,m). We say that a nonnegative function
g € LY(X,m) is a 1-relazed slope of f if there exist Lipschitz functions with bounded support
fn converging to f in L'(X,m) such that lip,(f,) — h weakly in L'(X,m), with g > h m-a.e.
m X.

Then, we may define w — Wh(X,d,m) and H*!(X,d, m) as the space of functions in
L'(X,d,m) having a 1-weak upper gradient and a l-relaxed slope, respectively. It is not
difficult to show, using Mazur’s lemma, that an equivalent definition of 1-relaxed slope g
involves sequences f,, such that lip,(f,) < hn, with h, — h strongly in L*(X,m) and h < g.
Then, this gives that |Df], < hm for all f € H"(X,d, m), so that

H"(X,d,m) Cw—-WH(X,d, m).

Finally, also a fourth intermediate definition of W1!(X,d, m) could be considered, in the
spirit of [57], [75], very similar to w — WL,
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Definition 4.6.4 (1-upper gradient) A Borel nonnegative function g € L'(X,d, m) is said
to be a 1-upper gradient of f € L*(X,d, m) if there exists a function f that coincides m-almost
everywhere with f such that

~

1f(71) = f(0)] < /gds for Mod; -a.e. ~.
¥
Recall that
Modl(F)::inf{/pdm:pZO, /leV’yeF},
X vy

Since Mod;-negligible set of curves parametrized on [0, 1] are easily seen to be 1-negligible
(it suffices to integrate with respect to any oo-test plan 7 the inequality fol p(v)|e] > 1)
we see that the space Wsl’l(X ,d, m) of functions having 1-upper gradient is contained in w —
WhL(X,d, m), while the arguments of |75 provide the inclusion H''(X,d, m) C Wg' (X, d, m);
moreover it is clear that w — Wht C W}),i Summing up, we have

HYY (X, d,m) € W' (X,d,m) Cw—WHH(X,d,m) C Wy, (X,d,m)

and we don’t know wether equalities hold. We only know that in the last inclusion there can
be discrepancy on the gradient itself; in [12|, [44] is shown an example where f € w — BV
but we have |Df|pr < |Vf|wm. It is worthwhile to remark (see [12] for example) that if
the measure is doubling and satisfies a (1, 1)-Poincaré inequality then there is coincidence of
spaces (in particular H>! = Wé’i), but there is still discrepancy of the gradients, despite there
exists a constant C' > 1 such that

IDf|Br < |V flum < C|Df|BL.

However we have also equality of the gradients for example if the space is RCD(K, c0) (see
[40, Remark 3.5])

A fifth space could be added to the list, considering general integrable functions f,, and re-
placing the asymptotic Lipschitz constants lip, (f,,) with upper gradients g,, in Definition 4.6.3.
However, since 1-upper gradients are characterized as strong L' limits of upper gradients, this

. . . . 1,1
space is easily seen to coincide with W¢™ (X, d, m).

4.6.1 Comparison between H! and H'?

It is rather easy to see that for every N-function ®, H%’q)(X, d,m) C H"'(X,d, m). In fact,
given f € H®, by definition there exists a sequence (fn) C Lipy(X,d), converging to f in
L'(X,m) and with sup,, |[lip,(fn)|/(#)m = C < cc. But then we have that

sgp/){@(hpggn)) dm <1,

and so {lip,(fn)/2C}, is a family of equi-integrable functions. Thus, thanks to Dunford-
Pettis theorem, there is a subsequence lip,(fn,) weakly converging (in L'(X, m)) to some
g € LY(X,m), that hence will be a 1-relaxed gradient for f.

It is interesting in particular to see that if f € HY® we have that fo~vis BV for ®-almost
every curve, but since HY® € HY Cw— W we have that foris Whl for 1-almost every
curve.
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CHAPTER D

Reflexivity and discrete approximation of the gradient

In this chapter we focus on the Sobolev Spaces theory in the homogeneous case ®(t) = t9/q.
This case was already studied in 9], where they find the equivalence of the definitions, as we
did in Chapter 3; however they use slightly different definitions (which are equivalent to ours),
in particular they relax the functional Fg with respect to the L? topology. One can prove the
following, using the uniform convexity of the norm:

Proposition 5.0.1 Whenever m is finite on bounded sets, if f € LY(X,m) has a qg-weak upper
gradient then there exist Lipschitz functions f, with bounded support satisfying

lim /X|fn—f|qc1m+/x\1ipa(fn)—|Vf!q|qdm=0. (5.0.1)

n—oo

We will denote by W9(X,d, m) the Banach space of functions f € L9(X,m) having a
g-weak upper gradient, endowed with the norm

1A e = WS NZe + NIV Flegl Za-

By a general property of normed spaces, in order to prove completeness, it suffices to show that
any absolutely convergent series in W14(X,d, m) is convergent; if f, satisfy Y, I fullfre <
00, the completeness of LI(X, m) yields that f := > f, and g := ) |V fnlsq converge
in L9(X,m), and the finite subadditivity of the relaxed gradient together with the lower
semicontinuity of Cq give f € WH(X,d,m) and [ [V f|Lgdm < |lg[|%, < (3, IV filsgllza)?.
A similar argument gives that

N 1/q o0
(/ VG- ) z,qdm) < S Vel
X i=1 i=N+1

hence Y f,, converges in Wh9(X,d, m).

97
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5.1 Reflexivity of W14(X d,m), 1 < ¢ < oo

In this section we prove that the Sobolev spaces W14(X,d, m) are reflexive when 1 < ¢ < 0o,
(X,d) is doubling (hence also separable), and m is finite on bounded sets. Our strategy
is to build, by a finite difference scheme, a family of functionals which provides a discrete
approximation of the relaxed energy, called in this framework, the Cheeger energy. The
definition of the approximate functionals relies on the existence of nice partitions of doubling
metric spaces.

Lemma 5.1.1 For every § > 0 there exist {5 € NU{oco} and pairs set-point (A?, z

17 z) 0 < i <
ls, where Af C X are Borel sets and z? € X, satisfying:

(i) the sets A2, 0 < i < L5, are a partition of X and d(29,2%) > & whenever i # j;

Z’j

(i1) A? are comparable to balls centered at zf, namely

d 5
5 2 9 6 2
B(zi,?)) C Aj CB<21,45).
8

Proof. Let us fix once for all a countable dense set {zj}ren. Then, starting from z§ = zo,
we proceed in this way:

e for ¢ > 1, set recursively
B;=X\|JB(,5
i<t

e if B; = () for some i > 1, then the procedure stops. Otherwise, take zf = x, where

ki =min{k € N : z; € B;}.

We claim that for every € > 0 we have that
U B(z{,6 +¢) = X.

To show this it is sufficient to note that for every x € X we have a point x; such that
d(zj,7) < &; then either z; = 20 for some i or z; € B(z?,) for some 7. In both cases we get

Vo e X 3ieN  suchthat d(20,2) <d +e. (5.1.1)

Now we define the sets Af similarly to a Voronoi diagram constructed from the starting point
z?: for i € N we set

Bf:{xeX : d(xz)<d(acz)+6 Vj}

It is clear that Bf are Borel sets whose union is the whole of X; we turn them into a Borel
partition by setting
Ay=Bj,  AS=B\|JB), j>o0.
1<J
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We can also give an equivalent definition: x € Ai iff
k = min I, where I, = {iEN :d(z, 29) §d(x,z?)+€ VjEN}.

In other words, we are minimizing the quantity d(z, zf ) and among those indeces ¢ who are
minimizing up to € we take the least one i,. By this quasi minimality and (5.1.1) we obtain
d(z,2) ) < infiend(z,20) + £ < 6 4 2e. Furthermore if d(z,2?) < 6/2 — £/2 then I, = {i}.
Indeed, suppose there is another j € I, with j # 4, then d(z?,x) <d(2,x)+e<6/24¢/2
and so

§ < d(2f,29) <d(2f,2) +d(2),2) < 6.

We just showed that
4]
B (6 i ;) C A% C B(:. 64 2).
The dual definition gives us that A? are a partition of X, and (ii) is satisfied choosing & = §/8.
U

Note that this construction is quite simpler if X is locally compact, which is always the
case if (X,d) is doubling and complete. In this case we can choose € = 0.

We remark that partitions with additional properties have also been studied in the litera-
ture. For example, in [27] dyadic partitions of a doubling metric measure space are constructed.

Definition 5.1.2 (Dyadic partition) A dyadic partition is made by a sequence (¢p) C NU
{oo} and by collections of disjoint sets (called cubes) A" = {A?}1§i<l(h) such that for every
h € N the following properties hold:

e m(X\ ;AN =0;
o for everyi € {1,...,lpi1} there exists a unique j € {1,...,4y} such that A?H - A?;

o for everyi € {1,...4} there exists 2! € X such that B(z!, agé") C Al € B(2I a16")
for some positive constants §, ag, a1 independent of i and h.

In [27] existence of dyadic decompositions is proved, with d, a; and ay depending on the
constant ¢p in (1.9.1). Although some more properties of the partition might give additional
information on the functionals that we are going to construct, for the sake of simplicity we
just work with the partition given by Lemma 5.1.1.

In order to define our discrete gradients we give more terminology. We say that A? is a
neighbor of A?, and we denote by A? ~ A?, if their distance is less than 0. In particular
A? ~ A% implies that d(z{,2]) < 40: indeed, if 2} € A? and 2 € A} satisfy d(2],20) < &' we

have 10
d(20,29) <d(20,20) +d(2,29) +d(22,20) < S0+

177) 1771 177 f—
and letting &' | § we get
14
d(zl‘-s,z?) < Zé < 46.

This leads us to the first important property of doubling spaces:

In a c¢p-doubling metric space (X, d), every A2 has at most ¢, neighbors. (5.1.2)
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Indeed, we can cover B(z?,4d) with ¢ balls with radius 6/2 but each of them, by the condition
d(z?, z?) > §, can contain only one of the z}s’s.
Now we fix § € (0,1) and we consider a partition A? of suppm on scale §. For every

u € L9(X, m) we define the average us; of u in each cell of the partition by fA‘F udm. We

denote by PCs(X), which depends on the chosen decomposition as well, the set of functions
u € LY(X, m) constant on each cell of the partition at scale 4, namely

u(x) = us,; for m-a.e. ¢ € A;-S.

We define a linear projection functional P5 : L9(X, m) — PCs(X) by Psu(x) = us; for every
S A?.
The proof of the following lemma is elementary.

Lemma 5.1.3 Ps are contractions in LY(X, m) and Psu — w in LY(X,m) as 6 | O for all
ue LI(X,m).

Indeed, the contractivity of Py is a simple consequence of Jensen’s inequality and it suffices
to check the convergence of Ps as § | 0 on a dense subset of LI(X, m). Since m is finite on
bounded sets, suffices to consider bounded continuous functions with bounded support. Since
bounded closed sets are compact, by the doubling property, it follows that any such function u
is uniformly continuous, so that Psu — u pointwise as ¢ | 0. Then, we can use the dominated
convergence theorem to conclude.

We now define an approximate gradient as follows: it is constant on the cell A? for every
4, i € N and it takes the value

1
[Dsul!(w) i= = Y lusi —usyl? Vo€ A
AS~ AS
J g

We can accordingly define the functional Fs, : L9(X, m) — [0, c0] by

Fsg(u) = /X 1 Dgu|?(z) dm(z). (5.1.3)

Now, using the weak gradients, we define a functional Ch : L9(X, m) — [0, oo] that we call
Cheeger energy, formally similar to 4®. Namely, we set

Chy (1) = fX |Vuld qdm if u has a g-weak upper gradient

g\u) = .

400 otherwise.

At this level of generality, we cannot expect that the functionals JFs, I'-converge as ¢ | 0.
However, since L9(X,m) is a complete and separable metric space, from the compactness
property of I'-convergence stated in Proposition 1.8.2 we obtain that the functionals Fs, have
I-limit points as § | 0.

Theorem 5.1.4 Let (X,d, m) be a metric measure space with (suppm,d) complete and dou-
bling, m finite on bounded sets. Let Fy be a I'-limit point of Fs, as § | 0, namely

Fq =T~ lim F5, g4,

k—o00

for some infinitesimal sequence (dy), where the T'-limit is computed with respect to the L1(X, m)
distance. Then:
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(a) Fy is equivalent to the Cheeger energy Chg, namely there exists n = n(q,cp) such that

;Chq(u) < Fy(u) < nChy(u) Vu € LI(X, m). (5.1.4)

(b) The norm on WH4(X, d, m) defined by

(ull?+ Fo@) " Yue WH(X,d,m) (5.1.5)

/2

‘ ‘ ) 1/2 . . .
is uniformly convex. Moreover, the seminorm F5'" is Hilbertian, namely

Fo(u+0) + Fo(u—v) =2(Fo(u) + Fo(v))  Vu, ve WH(X,d,m). (5.1.6)

Corollary 5.1.5 (Reflexivity of W' 4(X,d,m)) Let (X,d,m) be a metric measure space
with (suppm,d) doubling and m finite on bounded sets. The Sobolev space W14(X,d, m)
of functions v € L1(X, m) with a q-relazed slope, endowed with the usual norm

(Jlull? + Chy(w) " Yu e WH(X,d,m), (5.1.7)

is reflexive.

Proof.  Since the Banach norms (5.1.5) and (5.1.7) on W19(X,d, m) are equivalent thanks
to (5.1.4) and reflexivity is invariant, we can work with the first norm. The Banach space
Wh4(X,d, m) endowed with the first norm is reflexive by uniform convexity and Milman-Pettis
theorem. O

We can also prove, by standard functional-analytic arguments, that reflexivity implies
separability.

Proposition 5.1.6 (Separability of W9(X,d,m)) If W19(X,d,m) is reflevive and m is
finite on bounded sets, then it is separable and bounded Lipschitz functions with bounded support
are dense.

Proof. The density of Lipschitz functions with bounded support follows via Mazur lemma
from the density of this convex set in the weak topology, ensured by Proposition 5.0.1 and
reflexivity. In order to prove separability, it suffices to consider for any M a countable and
L%(X,m)-dense subset D, of

Ly = {f € Lip(X)N LY (X, m) : /}{\nyqumg M},

stable under convex combinations with rational coefficients. The weak closure of D s obviously
contains L)y, by reflexivity (because if f,, € Dy converge to f € Ly in LY(X, m), then f, — f
weakly in Wh4(X,d, m)); being this closure convex, it coincides with the strong closure of D ;.
This way we obtain that the closure in the strong topology of Up;Dps contains all Lipschitz
functions with bounded support. ]

The strategy of the proof of statement (a) in Theorem 5.1.4 consists in proving the estimate
from above of F, with relaxed gradients and the estimate from below with weak gradients.
Then, the equivalence between weak and relaxed gradients provides the result. In the estimate
from below it will be useful the discrete version of the g-weak upper gradient property:
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Definition 5.1.7 (¢-weak upper gradient up to scale ¢) Let f: X — R. We say that a
Borel function g : X — [0,00) is a q-weak upper gradient of f up to scale € > 0 if for g-a.e.
curve v € ACP([0,1]; X') such that
1
c< / 14 dt
0

/mf

Next we consider the stability of these discretized g-weak upper gradients (analogous to
the stability result given in |75, Lemma 4.11]).

it holds

< /g < o0. (5.1.8)

Theorem 5.1.8 (Stability w.r.t. m-a.e. convergence) Assume that f, are m-
measurable, £, > 0 and that g, € L%U(X,m) are q-weak upper gradients of f, up to
scale €. Assume furthermore that fp(x) — f(z) € R for m-a.e. x € X, e, — € and that (gn)
weakly converges to g in LY(X,m). Then g is a q-weak upper gradient of f up to scale €.

Proof. Fix a p-test plan 7w. We have to show that (5.1.8) holds for 7w-a.e. v with fol |9 dt > e.
Possibly restricting 7 to a smaller set of curves, we can assume with no loss of generality that

1
/ |y¢| dt > €&’ for m-a.e. v
0

for some &’ > . We consider in the sequel integers h sufficiently large, such that e, < ¢’
By Mazur’s lemma we can find convex combinations

Npy1 Npy1
h, = Z ;g; with o; > 0, E oy = 1, Nh — 0
iZNh-i-l iZNh+1

converging strongly to ¢ in LY(X, m). Denoting by fq the corresponding convex combinations
of fn, hy are g-weak upper gradients of f, and still f, — f m-a.e. in X.
Since for every nonnegative Borel function ¢ : X — [0, 00] it holds (with C = C(r))

/(/7@> dﬂ:/(/ol @(%”Mdt) dﬂg/(/ol ‘Pq(’yt)dt)l/q</01 |%|Pdt>1/pd7r
< (/01/90'1 d(et)uﬂ'dt)l/q(//ol \"yt\pdtdar>l/p
= (0/9011 dm>1/q<//01 mpdtd”)l/p’ (5.1.9)

1
// By — gl dme < cl/q(// 5ulP e dr) [ — glly — 0.
v 0

Hence we can find a subsequence n(k) such that

we obtain

lim / [Py — gl — 0 for m-a.e. 7.
k—o0 y

Since fn converge m-a.e. to f and the marginals of 7 are absolutely continuous w.r.t. m we
have also that for m-a.e. v it holds f,.(70) — f(70) and fn(y1) = f(n)-
If we fix a curve v satisfying these convergence properties, we can pass to the limit as

k — oo in the inequalities |fa,y fn(k)| < f,y Pk to get |fa»yf‘ < fvg. O
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In the following lemma we prove that for every v € LY(X,m) we have that 4|Dsul is a
g-weak upper gradient for Psu up to scale §/2.

Lemma 5.1.9 Let v € ACP([0,1]; X'). Then we have that

b b
Psuln) — Paulra)| < 4/ Doul(v) [l dt  for alla < b st / Geldt > 6/2. (5.1.10)

In particular 4|Dsu| is a g-weak upper gradient of Psu up to scale §/2.

Proof. It is enough to prove the inequality under the more restrictive assumption that

5 b
0 < / 5l dt < 5, (5.1.11)

because then we can slice every interval (a, b) that is longer than ¢/2 into subintervals that sat-
isfy (5.1.11), and we get (5.1.8) by adding the inequalities for subintervals and using triangular
inequality.

Now we prove (5.1.8) for every a, b € [0, 1] such that (5.1.11) holds. Take any time ¢ € [a, b];
by assumption, it is clear that d(:,v,) < 0 and d(v¢,75) < d, so that the cells relative to v,
and -, are both neighbors of the one relative to ;. By definition then we have:

1 1
[Dsult() > 5 (1Psulr) = Psulw)l? + [Psulrn) — Psu(ra)l) > s |Psuln) - Poulra) "

Taking the ¢g-th root and integrating in ¢ we get

b b
. Psu — Psu(vg . 1
[ sl ae > PR 28000l s> ipsun) - sutl,

which proves (5.1.10). O

We can now prove Theorem 5.1.4.
Proof of the first inequality in (5.1.4). We prove that there exists a constant 171 = n;1(cp) such
that

Fylu) <m /X V£, dm Yu € LI(X, m). (5.1.12)
Let v : X — R be a Lipschitz function with bounded support. We prove that
|Dsul?(z) < 69ch (Lip(u, B(x, 66)))4. (5.1.13)

Indeed, let us consider i, j € [1,£5) NN such that A? and A? are neighbors. For every z € A,
y € Ag- we have that d(z,y) < diam(A?) + diam(A?) + d(A?, Ag) < (10/4+10/4 +1)0 = 60
and that y € B(29,196/4) C B(2?,55). Hence

ug,i — us 1

5 ~ om(Af)m(A

) /Aaw lu(z) = u(y)| dm(z) dm(y) < 6 Lip(u, B({,56)).

Thanks to the fact that the number of neighbors of A does not exceed c3, (see (5.1.2)) we
obtain
| Dsul(x) < 6%¢h (Lip(u, B(x,60)))?  Va € suppm,
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which proves (5.1.13).
Integrating on X we obtain that

Fso(u) < 673 /X (Lip(u, B(z, 65))) dm(z).

Choosing 6 = 6, letting k — oo and applying the dominated convergence theorem on the
right-hand side as well as the definition of asymptotic Lipschitz constant (3) we get

Fy(u) < lign inf I, 4(u) < 6qc3D/ lipd (u, z) dm(z).
—00 X

By approximation, Proposition 5.0.1 yields (5.1.12) with n; = 69¢3,.
Proof of the second inequality in (5.1.4). We consider a sequence (uy) which converges to u in
L9(X,m) with liminf, Fs, ,(ux) finite. We prove that u has a g-weak upper gradient and that

1
1 /X |VulZ, ,dm < limkinf Fsp.q(ur). (5.1.14)

Then, (5.1.4) will follow easily from (5.1.12), (5.1.14), Definition 1.8.1b and the coincidence
of weak and relaxed gradients.

Without loss of generality we assume that the right-hand side is finite and, up to a subse-
quence not relabeled, we assume that the liminf is a limit. Hence, the sequence fj, := |Ds, us]
is bounded in L4(X, m) and, by weak compactness, there exist g € L7(X, m) and a subsequence
k(h) such that fy) — g weakly in L¢(X, m). By the lower semicontinuity of the g-norm with
respect to the weak convergence, we have that

/ng dm < hhrgggf/x flg(h) dm = klggo Tsp.q (k). (5.1.15)
We can now apply Theorem 5.1.8 to the functions u, = Ps, (ug(ny), which converge to u in
L(X, m) thanks to Lemma 5.1.3, and to the functions g, = 4fy ;) which are g-weak upper

gradients of 4y, up to scale 5k(h)/2, thanks to Lemma 5.1.9. We obtain that 4g is a weak upper
gradient of u, hence g > |Vuly,q/4 m-a.e. in X. Therefore (5.1.15) gives

b [ Il dn < [ gram < oo (o).
Proof of statement (b). Let Ny s : LI(X, m) — [0, oo] be the positively 1-homogeneous function

Nys(u) = (I[Psulld + Fs(w) ! Vue LI(X,m).

For ¢ > 2 we prove that N, 5 satisfies the first Clarkson inequality [53]

+ - 1
NI, <u2”> + N (“ . ”) S (NL5) +NE5()  Vu, v e L(X,m). (5.1.16)

Indeed, let X5 C NU (N x N) be the (possibly infinite) set

X5 = (11,65) "N) U{(i.j) € (11,45) NN A2 ~ A3}



5.1. Reflexivity of WH4(X,d,m), 1 < ¢ < o0 105

and let ms be the counting measure on X;5. We consider the function ®,5 : L4(X,m) —
L( X5, mg) defined by
Oy s5[ul(i) = (m(A2)) s, Vi€ [1,05) NN
.. Us,i — Ug,5 .. 2
Pys[ul((4, 7)) = (m(Ag))l/qTJ V(i,5) € ([1,65) NN)” st. A? ~ A2

It can be easily seen that ®, s is linear and that
1@g.5(w)llLax5ms) = Nos(uw) — Vu € LI(X, m). (5.1.17)

Writing the first Clarkson inequality in the space LY(X}p, my) and using the linearity of
®, s we immediately obtain (5.1.16). Let w : (0,1) — (0, 00) be the increasing and continuous
modulus of continuity w(r) = 1 — (1 — r9/29)1/9.  ~From (5.1.16) it follows that for all
u, v € LY(X,m) with Ny 5(u) = Ny 5(v) =1 it holds

Nos <“;”> <1 wNyg(u—)).

Hence N,s are uniformly convex with the same modulus of continuity w. Thanks to
Lemma 1.8.3 we conclude that also the I'-limit of these norms, namely (5.1.5), is uniformly
convex with the same modulus of continuity.

If ¢ < 2 the proof can be repeated substituting the first Clarkson inequality (5.1.16) with
the second one

[Nq,é <u-2'_v>]p+ [Nq,g <u;v>]p < B(Nq’g(u))q i %(Nq,ﬁ(’l)))q 1/(g—1)

where u,v € LY(X,m) and p = ¢/(¢ — 1), see [53]. In this case the modulus w is 1 — (1 —
(r/2p) V.

Finally, let us consider the case ¢ = 2. From the Clarkson inequality we get

Ty <“;”> 5 (“;”) < 2(Fo(u) + Fa(v)). (5.1.18)

If we apply the same inequality to u = (u/ + v')/2 and v = (v — v")/2 we obtain a converse
inequality and, since v/ and v’ are arbitrary, the equality.

We conclude this section providing a counterexample to reflexivity. We denote by ¢; the
Banach space of summable sequences (z,,)n>0 and by £ the dual space of bounded sequences,
with duality (-,-) and norm |[[v||o. We shall use the factorization ¢; = Y; + Re;, where ¢,
0 <14 < oo, are the elements of the canonical basis of £1. Accordingly, for fixed i we write
r =, + xie; and, for f: 41 — R and y € Y;, we set

fy(t) = fy + te;) teR.

Proposition 5.1.10 There exist a compact subset X of {1 and m € P(X) such that, if d
is the distance induced by the inclusion in {1, the space WH4(X,d, m) is not reflevive for all
q € (1,00).
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Proof. For i > 0, we denote by m; the normalized Lebesgue measure in X; := [0,27¢] and
define X to be the product of the intervals X; and m to be the product measure. Since X is a
compact subset of £1, we shall also view m as a probability measure in ¢; concentrated on X.

Setting fY(z) := (v, z), we shall prove that the map v — fv provides a linear isometry
between /,, endowed with the norm

h%w=<AKw@W®M@+MN&YM (5.1.19)

and Wh4(X,d, m). Since the norm (5.1.19) is equivalent to the £, norm, it follows that
W14(X,d, m) contains a non-reflexive closed subspace and therefore it is itself non-reflexive.

Since the Lipschitz constant of [V is ||v]|co, it is clear that |||V f¥|w.qllLe < [|v]|co- To prove
equality, suffices to show that [y [V Y[, qdm > [Jv[|&. Therefore we fix an integer i > 0 and
we prove that [y [V Y]} qdm > |u;]9.

Fix a sequence (f™) of Lipschitz functions with bounded support with f" and lip,(f™)
strongly convergent in L?(X,m) to f¥ and |V f’|,  respectively. Possibly refining the se-
quence, we can assume that

SO = £l < oo (5.1.20)

If we show that
liminf/ lipd (f", z) dm(x) > |v;|? (5.1.21)
X

n—oo

we are done. Denoting m = m; ® m; the factorization of m (with m; € P(Y;)), we can use the
obvious pointwise inequalities

lipa(gv ) + tez) 2 lipa(gyv t) Z |v9y|(t)

and Fatou’s lemma, to reduce the proof of (5.1.21) to the one-dimensional statement
lim inf / V2908 dmi() > [oilt for fu-ne. y € Vi (5.1.22)
Since (5.1.20) yields

/ZW”FMMWMZ = 1" = Ve <

we have that f' — f in Li(X;,m;) = LI(X;,20.¢") for my-a.e. y € Y;. We have also
IVfiI(t) = |vi] for any ¢t € X;, therefore (5.1.22) is a consequence of the well-known lower
semicontinuity in LI(X;, £) of g — [ x,19®)1dZ L(t) for Lipschitz functions defined on
the real line (notice also that in this context we can replace the slope with the modulus of
derivative, wherever it exists). O

5.2 Lower semicontinuity of the slope of Lipschitz functions

Let us recall, first, the formulation of the Poincaré inequality in metric measure spaces.
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Definition 5.2.1 The metric measure space (X,d, m) supports a weak (1, q)-Poincaré inequal-
ity if there exist constants T, A > 0 such that for every u € W14(X,d,m) and for every
x € suppm, r > 0 the following holds:

1/q
][ u —][ uldm <77 <][ |Vul, , dm> . (5.2.1)
B(z,r) B(z,r) B(x,Ar)

Many different and equivalent formulations of (5.2.1) are possible: for instance we may
replace in the right hand side |Vul, ; with [Vul9, requiring the validity of the inequality for
Lipschitz functions only. The equivalence of the two formulations has been first proved in
[50], but one can also use the equivalence of weak and relaxed gradients to establish it. Other
formulations involve the median, or replace the left hand side by

inf ][ |u —m|dm.
meR B(z,r)

The following lemma contains the fundamental estimate to prove our result.

Lemma 5.2.2 Let (X,d,m) be a doubling metric measure space which supports a weak (1,q)-
Poincaré inequality with constants T, . Let u € WH4(X,d,m) and let g = |Vult,q. There
exists a constant C' > 0 depending only on the doubling constant c¢p and T such that

lu(@) — u(y)| < Cd(z,y) (MA@ g(2)) 4 4 (MA@ g(y) V), (5.2.2)

for every Lebesgue points x, y € X of (a representative of ) u.
Proof. The main estimate in the proof is the following. Denoting by u., the mean value of
won B(z,r), for every s > 0, x, y € X such that B(z,s) C B(y,2s) we have that
- 1
|u:p,s - uy,28| < CO(CDaT)S(MqQASg(y)) /q' (523)

Since m is doubling and the space supports (1, ¢)-Poincaré inequality, from (1.9.2) we have
that

[Uz,s — Uy 2s] §][ |u — uy 25| dm < 520‘][ |u — uy 25| dm
B(z,s) B(y,2s)

1/q
< 2ltepgrg ][ g9dm
B(y,2As)

and we obtain (5.2.3) with Cp = 21737,

For every r > 0 let s, = 27"r for every n > 1. If = is a Lebesgue point for w then
Uz s, — u(z) as n — oo. Hence, applying (5.2.3) to z = y and s, = 27"r, summing on n > 1
and remarking that M(?As" g < Mqu, we get

[Ug,r — u(z)] < Z Uz 5, — U, 25, | < Z Cosn (Mé\rg(:r))l/q = Cor(Mé\rg(:U))l/q. (5.2.4)
n=0 n=0



108 Chapter 5. Reflexivity and discrete approximation of the gradient

For every r > 0, x, y Lebesgue points of u such that B(z,r) C B(y,2r), we can use the
triangle inequality, (5.2.3) and (5.2.4) to get

lu(z) —u(y)| < |u(x) — Uz | + [y — wy 2| + |y 20 — u(y)]
< Cor (M g(2)) /" 4 Cor (M2 g(y)) "/ + Cor (M2 g(y)) *.

Taking r = d(z,y) (which obviously implies B(z,r) C B(y,2r)) and since M f(z) is nonde-
creasing in € we obtain (5.2.2) with C' = 2Cj. O

Proposition 5.2.3 Let (X,d, m) be a doubling metric measure space, supporting a weak (1,q)-
Poincaré inequality with constants 7, A and with suppm = X There exists a constant C > 0
depending only on the doubling constant ¢p and T such that

|Vu| < C|Vu|y,y m-ae in X (5.2.5)

for any Lipschitz function u with bounded support.

Proof. We set g = |Vul{, ;; we note that g is bounded and with bounded support, thus Mg
converges to g in L9(X,m) as ¢ — 0. Let us fix A > 0 and a point x where (1.9.4) is satisfied
by M(;‘g. Let y, — = be such that

V(@) = lim W (5.2.6)

and set r, = d(z,yn), Bn = B(yn, Ary) C B(x,2r,). Since (5.2.2) of Lemma 5.2.2 holds for
m-a.e. y € By, from the monotonicity of M;g we get

() — ulyn)] < ][ fu(z) — u(y)| dm(y) + Arn Lip(u, By)

n

< O ((MqA‘M"Q(x))I/q +][ (M g(y)) dm(y)> + AL,

n

where L is the Lipschitz constant of u. For n large enough B,, C B(x,1) and 4Ar,, < A. Using
monotonicity once more we get

lu(z) — u(yn)| < Cry, <M(;\g(ac) +][ (Mé\g) L4 dm) + Arp L (5.2.7)

n

for n large enough. Since B(yn,rn) = B, C B(x,2ry,) and since z is a 1-Lebesgue point for
Mq)‘g, we apply (1.9.5) of Lemma 1.9.3 to the sets B, to get

lim M(;\g dm = Mq)‘g(x). (5.2.8)

n—oo B
n

We now divide both sides in (5.2.7) by r, = d(x, y,) and let n — co. From (5.2.8) and (5.2.6)
we get

Vul(z) < 2C(M}g(x))"/? + AL.
Since this inequality holds for m-a.e. x, we can choose an infinitesimal sequence (A;) C (0,1)
and use the m-a.e. convergence of Mq)‘kg to g to obtain (5.2.5). U
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Theorem 5.2.4 Let (X,d,m) be a metric measure space with m doubling, which supports a
weak (1, q)-Poincaré inequality and satisfies suppm = X. Then, for any open set A C X it
holds

n—o0

Un, 4 € Lipoe(A), un — u in L (A) = liminf/ |Vun|qdm2/ |[Vu|?dm. (5.2.9)
A A

In particular, it holds |Vu| = |Vu|y,q m-a.e. in X for all v € Lip,,.(X) N LY.

Proof. By a simple truncation argument we can assume that all functions u,, are uniformly
bounded, since |V(M AvV —M)| < |[Vov| and |[V(M AvV —M)| 1 |Vv| as M — oo. Possibly
extracting a subsequence we can also assume that the liminf in the right-hand side of (5.2.9)
is a limit and, without loss of generality, we can also assume that it is finite. Fix a bounded
open set B with dist(B,X \ A) > 0 and let ¢ : X — [0,1] be a cut-off Lipschitz function
identically equal to 1 on a neighborhood of B, with support bounded and contained in A. It
is clear that the functions v, := u, and v := w) are globally Lipschitz, v, — v in L9(X, m)
and (vy,) is bounded in Wh4(X,d, m).

From the reflexivity of this space proved in Corollary 5.1.5 we have that, possibly extracting
a subsequence, (v,) weakly converges in the Sobolev space to a function w. Using Mazur’s
lemma, we construct another sequence (?,,) that is converging strongly to w in W4(X, d, m)
and 9y, is a finite convex combination of v, vy 41, . ... In particular we get 0, — w in L9(X, m)
and this gives w = v. Moreover,

/]Vﬁnlqdmgsup/ | V]! dm.
B k>nJB

Eventually, from Proposition 5.2.3 applied to the functions v — 0, we get:

1/q 1/q 1/q
(/ |Vv|qdm> < lim inf </ \V@n\qdm> + (/ V(v — @n)|qdm>
1/q
< lim sup </ ]an]qdm) + Climsup ||v — Oyl
n—00 B n—00

1/q
= lim sup (/ |an|qdm> .
n—00 B

Since v, = u, and v = u on B we get

/|Vu\qdm§hmsup/ |Vug|?dm < lim / |Vu,|?dm

— 00

and letting B 1 A gives the result. O

Remark 5.2.5 An important consequence of Theorem 5.2.4 is that the weak gradient |V f|y
does not depend on ¢ for ¢ > q. In fact this is obvious when f is Lipschitz since Jensen
inequality gives that (1,q)-Poincaré implies (1,q")-Poincaré, and so |V fl, = [Vf] = |V flg.
Then we can use Proposition 5.1.6, i.e. the density of Lipschitz functions in WY and WhHY'
in order to conclude (see for example Corollary A9 in [17]).
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5.3 Discrete gradients for general metric spaces

Here we provide another type of approximation via discrete gradients which doesn’t even
require the space (X, d) to be doubling; moreover it can be adapted to give a discrete approx-
imation also in the case of Orlicz-Sobolev spaces (at least in the case U doubling).

We slightly change the definition of discrete gradient: instead of taking the sum of the
finite differences, that is forbidden due to the fact that the number of terms can not in general
be uniformly bounded from above, we simply take the supremum among the finite differences.
Let us fix a decomposition A‘f of suppm as in Lemma 5.1.1. Let u € L4(X, m) and denote by
us,; the mean of u in A? as before. We consider the discrete gradient

1
Douloe(@) = 5 sup {lusi —usyl} Vo e AL
A?NA‘;

7

Then we consider the functional J§° : L9(X, m) — [0, oo] given by

T3 () = [ [Ds(a)te(a) dm(a).
With these definitions, the following theorem holds.

Theorem 5.3.1 Let (X,d,m) be a Polish metric measure space with m finite on bounded sets.
Let F° be a I'-limit point of Fos as 6 10, namely

H’Zo =1

A Tol,

where 6 — 0 and the T-limit is computed with respect to the LY(X,m)-distance. Then the
Junctional F° is equivalent to Cheeger’s energy, namely there exists a constant 1. = Moo (q)
such that

LChq(u) < F° (1) < n0ooChy(u) Vu € LY(X, m). (5.3.1)
USS

The proof follows closely the one of Theorem 5.1.4. An admissible choice for 7 is 69.

5.4 Optimality of the Poincaré assumption for the lower semi-
continuity of slope.

This is still an open problem. As shown to us by P. Koskela, the doubling assumption, while
sufficient to provide reflexivity of the Sobolev spaces W4(X, d, m), is not sufficient to ensure
the lower semicontinuity (11) of slope. Indeed, one can consider for instance the Von Koch
snowflake X C R? endowed with the Euclidean distance. Since X is a self-similar fractal
satisfying Hutchinson’s open set condition (see for instance [36]), it follows that X is Ahlfors
regular of dimension & =1In4/In3 € (1,2), namely 0 < J7%(X) < oo, where 7% denotes a-
dimensional Hausdorff measure in R?. Using self-similarity it is easy to check that (X, d, s#?)
is doubling. However, since absolutely continuous curves with values in X are constant, the
g-weak upper gradient of any Lipschitz function f vanishes. Then, the equivalence of weak and
relaxed gradients gives |V f|, 4 = 0 S “a.e. on X. By Proposition 5.0.1 we obtain Lipschitz
functions f,, convergent to f in L1(X,#“) and satisfying

lim lip? (frn, z) d*(z) = 0.
X

n—oQ
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Since lip, (fn, ) > |V ful, if [V f] is not trivial we obtain a counterexample to (11).

One can easily show that any linear map, say f(z1,x2) = x1, has a nontrivial slope on
X at least #“-a.e. in X. Indeed, |V f|(z) = 0 for some x € X implies that the geometric
tangent space to X at x, namely all limit points as X 3 y — = of normalized secant vectors
(y —x)/|y — x|, is contained in the vertical line {z; = 0}. However, a geometric rectifiability
criterion (see for instance |7, Theorem 2.61|) shows that this set of points = is contained in
a countable union of Lipschitz curves, and it is therefore o-finite with respect to J#!' and
FC“-negligible.

This proves that doubling is not enough. On the other hand, quantitative assumptions
weaker than the Poincaré inequality might still be sufficient to provide the result.
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CHAPTER O

The p-Weak Gradient depends on p

In this section we answer an interesting question in the context of Sobolev Spaces in metric
measure spaces: whether the weak gradient |Vu/,, , depends on the choice of p. The answer is
positive, and actually the example is not very difficult, and arises already in R with a measure
of the form w.#?, for some weight w. The weight we provide easily adapt to the R” case.

A partial positive answer is given by an example due to Koskela, reported in [9]: a function
f is constructed such that f € W2 and |V f| = 0, whereas f ¢ WP for p > 2. However it
was still an open question whether if f € WP N W' can have the gradient depending on
the exponent.

We recall also that if some assumption are satisfied in the measurable metric structure,
then we can gain independence: in fact we already observed in Remark 5.2.5 that if (X,d, m)
is doubling and supports a (1, p) Poincaré inequality then the weak gradient is independent of
the exponent for p’ > p. Another results of independence is given in [40], where the authors
prove an even stronger statement in the case of RCD(K, co) spaces: whenever f € WP and
|V fl, € L9 then f € Wl and |Vf|, = |Vf],.

We recall here the definition of weak gradient, in the spirit of N'P(X,d, m). See (2.4.1) for
the definition of Mody,  for families of curves; in the sequel we will consider only rectifiable
curves 7 : [ini, fin] — X with constant metric speed.

Definition 6.0.1 Let (X,d,m) be a metric measure space and p > 1. A Borel function
g: X — [0,00] is a p-upper gradient of f: X — R if

|f(Vpin) — f(yini)] < /gds for Mod,, w-a.e. curve 7.
8!

If p > 1 then the minimal p-upper gradient |V f|m, of f: X — R is the p-upper gradient
characterized, up to m-negligible sets, by the property

IV flmp < g m-a.e. in X for every p-upper gradient g of f.

For the remainder of the paper we fix @ > 0 and denote 8 = 1/a. We now describe how
the facts about weak gradients in Theorem 1 follow from the assertions about the measure.

113
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Let 1 be the measure from Theorem 1 and consider the metric measure space (R™, |- |, 1) so
that p < 1+ « implies Mod,, ,(I'c) = 0, where I'.. is the set of non constant rectifiable curves.
In this case the function identically equal to zero is a p-upper gradient for every function;
hence |V f|mp = 0 for any function f: R" — R.

Now we recall the notion of a Muckenhoupt A,-weight on R™; we only consider the case
p > 1 though a similar definition may be given for p = 1 [48]. If (X, d, m) is a metric measure
space, with f: X — R and A C X Borel measurable such that m(A) > 0, then we denote
fa =, fdm = (1/m(A)) [, fdm whenever the quotient is well defined. If no measure is
specified, integrals over subsets of R™ are with respect to Lebesgue measure Z"; we also use
the notation .£"(A) = |A|.

Definition 6.0.2 Let p > 1. A function w: R" — Rt is a Muckenhoupt A,-weight if for
some constant C' > 0 and all balls B C R"™,

(]é w> (ﬁ wl/(lp)>pl <C. (6.0.1)

Muckenhoupt Ap,-weights were first introduced in [69] as precisely those weights for which
the Hardy maximal function of the associated measure is bounded in L”. The A, condition
has numerous applications, for example to weighted Sobolev spaces |26] and regularity of the
solutions of degenerate elliptic equations [35].

We recall that, by Hélder’s inequality, the condition of a weak p-Poincaré inequality be-
comes weaker as p increases. If a metric measure space equipped with a doubling measure
admits a weak p-Poincaré inequality then it admits a differentiable structure [25]; in fact, a
Lip-lip inequality suffices in place of a Poincaré inequality [54]. Roughly, a Lip-lip inequal-
ity states that at almost every point the variation of a Lipschitz function on small scales is
independent of the precise choice of scale.

We use the fact that if w is a Muckenhoupt Aj,-weight on R™ then the measure p = w{"
is p-admissible [48]; this means that p is doubling and satisfies a weak p-Poincaré inequality.
For n = 1 the converse holds: if 41 is p-admissible then w must be an A,-weight [19]. However,
inequality (6.0.1) seemed easier to check than verifying Poincaré inequality directly.

If a doubling metric measure space admits a weak p-Poincaré inequality then, for Lipschitz
functions, the p-upper gradient |V f|mp agrees, up to negligible sets, with the slope [25], [54].
Hence, for p > 1 + «, if p is the measure in Theorem 1, then the p-weak slope |V f|np of
Lipschitz functions f: R”™ — R on (R"™,| - |, ) is non trivial.

We also note that, since p is absolutely continuous with respect to Lebesgue measure, the
metric measure space (R™, ||, u) satisfies a Lip-lip inequality. Further, in any metric measure
space (X, d,m), lower semicontinuity of the map, defined on Lipschitz functions,

fH/XIVf”dm

in LP implies the p-weak gradient agrees with the slope for Lipschitz functions [4]. Hence we
observe that a Lip-lip inequality is not sufficient for lower semicontinuity of the integral of the
p-th power of the slope; this answers a question raised in [4].

We now give an idea of the construction of the weight w in Theorem 1. Firstly we suppose
n = 1; one starts with the weight w; = 1, then repeatedly defines wy = min{wy_1, g} where
gk 1s a scaled and translated copy of || centred on some rational g;. We do this for a dense,
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non repeating, sequence of rationals (g;)7°, and define w = infy, wy. The function 1/w?® is
locally integrable for s < 8 but nowhere locally integrable for s > 3; this discrepancy allows us
to prove the first property in Theorem 1. Further, provided the copies of |z|* are scaled to be
sufficiently thin, each stage in the construction increases the left hand side of inequality (6.0.1)
only a small amount; this allows us to prove the second property in Theorem 1. To prove
Theorem 1 for general n we define w(z1,...,x,) = min{w(xy),...,w(x,)} on R”. Then w
has the same integrability properties as w (but now with respect to £™), which gives the first
property, and the lattice property of A,-weights [56] allows us to extend the second property
from w to w.

6.1 Construction of the weight

Fix a sequence g5 > 0 such that []72,(1 + ;) < oo and enumerate the rational numbers by
a sequence (qr)p>, with g, # ¢ for k # 1. We inductively define a sequence of continuous
weights wy: R — RT; among other properties the weights satisfy wy < wy_1 and wy(z) > 0
ifx¢{q:1=1,...,k}. Denoting by w the limit of the weights wy we will verify Theorem 1
for the weight @ on R™ given by @w(z1,...,2,) = min{w(x1),...,w(x,)}.

Let wy: R — R be the function which is constant and equal to 1. Fix k € N for which
the weight wg_1 has been defined; we show how to define wy. Since wg_1 is continuous and
wk—1(qx) > 0 (using the properties described in the introduction) we can choose Ry > 0 so
that

wr—1(qr)/2 < wp—1(x) < 2wp_1(qr)

for [x — qr| < 4Ry.
Fix r; > 0 such that:

T < wkq(%)ﬁ

€k,
8rp < €k(Rk — Tk)

and
2ri(p —a+1)/(p— 1) < ep(Ry — 7).

We let
gr(w) = 2wp—1(qw)(x — qr)/ri|®

for x € R and define w: R — R™ by
wi(x) = min{wy_1 (), gr()}.

The function wy, is continuous, wy < w1 and wg > 0if z ¢ {q: 1 =1,... k}.

Denote Iy = (qx — rk,qr + rx) and note that wy = wy_1 outside Iy. We also define
Je = (qk — Re, qi + Ri), Ji7 = [ax + 7k, gk + Ri) and J. = (g — Ry, qr. — ).

Let w: R — R be given by w = infy wy. We define a Borel weight w: R™ — R by:

w(ry, ..., 2,) = min{w(xy),...,w(z,)}

and let u = wl™.
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6.2 The p-modulus on curves is trivial for small p

In this section we show that p < 14 « implies Mod,, ,(I'c) = 0, where I'; is the family of
non constant absolutely continuous curves in R™. This fact arises from simple integrability
properties of 1/w on R which follow from corresponding properties of 1/|z|*. Recall that

g =1/

Lemma 6.2.1 Let r = e®@tD  The weight w: R — R has the following integrability prop-
erties:

(1) The function 1/w?* is locally Lebesgue integrable if s < 3.
(2) The function 1/(w?|log(w/r)|'T®) is locally Lebesque integrable.
(8) The function 1/w® is nowhere locally Lebesgue integrable if s > 3.

(4) The function 1/(w®|log(w/r)|) is nowhere locally Lebesgue integrable.

Proof.  Suppose first s < f and N € N. Clearly, for each integer k > 1, wp = wg_1 outside

I, implies
N 9 N RN |
= = ra -
—-N Wk -N Wk1 Jg—r, Wk

We show the second term is relatively small. Indeed, since

—

wi(2) 2 Swr-1(ar)l(@ — )/

for x € (qx — Tk, qx + rr) and as < 1, we have,

%+TE ] 92808 qr+TK 1
/ < k/ -
3 S
a-rn Wi We-1(qk)* Jgp—r, |z — qr|*®

< Cri/wr—1(qr)’

< Cryfwi_1(qr)?
< CEk.

Since w; was constant (so trivially locally integrable) and &) were chosen small we deduce that
the sequence fiVN 1/w} is bounded uniformly in k. By the Monotone Convergence Theorem
we obtain that 1/w?® is integrable on the interval [—N, N].

For the second assertion a similar estimate is required: first of all the function ® : ¢ —
t(—log(t* /7))t is increasing in (0, 1), and thus we can make the estimate

Qk+Tk 1 Qe +7k 1 2
/ 7S / g T gF(Ck)
Tk—Tk (I)(wk) =Tk ‘I’(CIJTD k

where Cy = (wr_1(qx)/2)? and F is the primitive of 1/® such that F(0) = 0. Substituting
ri < CCrer and using the definition of ® we obtain

qk+Tk 1 2
[ < ZERQ) < Ca.
a—TK Wy, | log(wy, /r) |1 Cr
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We now obtain the required integrability as before.
Now suppose s > [ and [ is a non empty interval. Then we can find k¥ € N for which
qr € I. It follows,

[t =) [ 11— ae

and the right hand side is equal to co since as > 1. In the same way we have that
wf log(wg /1) ~ C(k)|x — qi|log |x — gx| in a neighborhood of g and so the final statement
follows. .

Notice the previous lemma implies that w is nonzero outside a set of Lebesgue measure
zero. We recall some elementary facts about the modulus which are valid on any metric
measure space [46].

Lemma 6.2.2 Let (X,d, m) be a metric measure space. The modulus Mod,, n, satisfies
Mody w(I's) < Mod, m(I'y)

if I'y and Ty are two curve families such that each curve in I'y has a subcurve in I'y. Further,
Modp wm(I') = 0 if and only if there is a p-integrable Borel function g: X — [0,00] such that
fﬂ/gds = oo for each v €T,

Now we can deduce the required properties of the p-modulus on (R™, |- |, ).

Proposition 6.2.3 Let I';. be the family of non constant absolutely continuous curves on R™
and p <1+ «. Then Mod,, ,(I'c) = 0.

Proof. For each k € N let I'y, be the family of non constant absolutely continuous curves with
image contained in [—k, k]”. Using Lemma 6.2.2 it suffices to show that Mod, ,(I'y) = 0 for
each k.

First suppose p < 1+ a; fix k € N and recall 8 = 1/a. Let g: R® — R* be equal to 1/@"”
inside [k, k|" and identically 0 outside [—k, k|™. Suppose v = (71, ...,7n) € 'y and fix i such
that the image of v; contains some non trivial interval I C R. Then,

/ngSZ/Vl/w(:z:i)ﬁds
>/ 1/w(t)? ds

i

> / 1/w(t)? dt

1
= o0

using Lemma 6.2.1. However,

/ gpd,u:/ e
n [_k7k]n

n

< w(z) PP
< /{kk]z (1)

1

k
< n(2k)"1 w(t)! PP dt
—k
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which, by Lemma 6.2.1, is finite if Sp — 1 < § or, equivalently, p < 1 + a. Hence, by Lemma
6.2.2, Mod,, ,(I';) = 0 and the proposition follows.

In the case p = 1 + a we choose g = 1/(@”|log(w/r)|); the argument is then identical
using the analogous statements about integrability from Lemma 6.2.1. [l

6.3 The Muckenhoupt A, condition for large p

We suppose throughout this section that p > 1+ a. We first show that w is a Muckenhoupt
Ap-weight on R and then deduce w is an A,-weight on R™ using the lattice property of A,-
weights [56]. To verify w is a Muckenhoupt Ap,-weight the idea will be that constructing wy,
from wy_1 can increase the left side of inequality (6.0.1) only very slightly. We use a different
argument depending on whether the ball in (6.0.1) is relatively small or relatively large.

It will be important during the proof that |z|* is a Muckenhoupt A,-weight on R; this fact
is well known (for example see Remark 4 [19]; this is also valid in R™ provided p > 1 + na)
but we prefer to provide here a self-contained proof.

Lemma 6.3.1 The function g(x) = |z|* on R is an A,-weight.

Proof. Let I = [a,b] be an interval. Denote It = I'N[0,+o00) and I~ = I'N(—o0,0]. Without
loss of generality we can assume that [IT| > |I~[; in this case we have that I~ C —I" and so,
using that g is an even function, we have

(o) (L) < () ()

Hence it is sufficient to prove (6.0.1) only for intervals I = [a,b] such that 0 < a < b.
We distinguish two cases:

e 2a > b. In this case, given the monotonicity of g we can estimate each of the factors
in the left hand side of (6.0.1) with the values of the integrand at the endpoint: in
particular we can estimate it from above by g(b)/g(a) < 2.

e 2a < b. In this case we have that 1/(b —a) < 2/b and so

b b
1 2%
][xo‘dxg /xadxg :
a b—a Jy a+1

b b a/(1—
][ L0/ 0-D) gy < L / L0/ (0-D) 4y < M,
a b—a Jo T a/(l-p)+1

These two inequalities together give us precisely (6.0.1), with C' depending only on «
and p.

O

The following Lemma will be used to estimate (6.0.1) for relatively small intervals; the
idea will be that early stages in the construction play no role on small scales.
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Lemma 6.3.2 Suppose ¢ € R, R >0 and f: (¢— R,q+ R) — R" is Borel with L/2 < f < 2L
for some L > 0.

Let 0 <r < R and g(x) = 2L|(z — q)/r|* for x € R.

Define h: (g — R,q+ R) — R* by

h(z) = min{f(z), g(x)}-

Then for any interval I C (¢ — R,q + R) we have,

(]{ h> <]€ hl/(l—p))p_l <c (6.3.1)

where the constant C' > 0 depends only on o and p.

Proof. Fix an interval I = (a,b) C (¢ — R,q + R); we consider several cases depending on
the length and position of I.
Suppose |b — a| > r/8%. We have the simple estimate

ﬁhgﬁngL (6.3.2)

For the second term in (6.3.1) we use the bounds on f and the fact that h = f outside
(q—1,q+ 1) to see

+r
/hl/(l—p) < /q g/=p) L opt/a-p)p.
I q—r

Using the fact p > 14+ « and r < 8°|I| we can continue,

q+r r
/ g/ — (2L /o) l/(1-D) / [0/ (1)
q 0

—r

< CLY/(=p),
< orpM-pg|.

—1
<][ hl/(1p>>p <cn
I

and, by combining this with (6.3.2), we obtain (6.3.1).
Now suppose [b—a| < /8% and I C [q— (r/47),q+ (r/4)]. Then h = g on I and (6.3.1)
follows from Lemma 6.3.1.

Thus we obtain

Finally suppose |b—a| < r/8% and I is not strictly contained in the interval [q— (r/4%), ¢+
(r/47)]. This implies that |z — q| > /4% — /87 for all = € I; it follows that the values of
g, and hence the values of h, on I are comparable to L. In this case the validity of (6.3.1) is
again clear. (Il

The next lemma will be used to estimate (6.0.1) for relatively large intervals; the idea is
that wy and w1 agree except on a relatively small interval.

Lemma 6.3.3 The following estimates hold:
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/ W SEk/ Wg—1,
I Jt

k

[l <o [ il
I, Ji

The same estimate hold also if we put J,_ instead of J,:'.

Proof. We only prove them for J,j , the other ones being similar. Let L = wy_1(qx). For the
first estimate we note,

/ wy < 2|y |wi—1(qr) = 4ri L
I,

and
/ WE—-1 Z L/2(Rk — T‘k)
T

so the estimate holds since Ry was chosen sufficiently large relative to r;. The argument for
the second estimate is similar: we have, since p > 1 + «,

s () a2
Ik —Tk rk

p—1—-a’
/J w4 > @L)YOP (B — )
k

and again, since Ry are sufficiently large relative to ry, we get the conclusion. O

We now put together Lemma 6.3.2 and Lemma 6.3.3 to obtain the required control on
inequality (6.0.1) for the weights wy, used to construct w.

Lemma 6.3.4 There exists a constant C' > 0, depending only on p and «, such that for all
intervals T,

(For) (for ) <ma{ e (o) (futt) e}

Proof. We clearly can assume I NIy # @ since wy, = wy_1 outside Ij. First suppose |I| > |Jg|
so that (without loss of generality) J,j C I. Using Lemma 6.3.3 we can estimate,

1
][wk = — / Wi —l—/ Wi
1

< — 5k/ Wg—1 +/ Wg—1
1] e I\,
1

< = <5k/wk—1 +/wk—1>
1] I I

=1+ Ek)]{ Wh—_1-
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One obtains the estimate

p—1 p—1
<]{ w,i/“‘p)> < (14 £5)7! (]{ w}l@/(;—@)

in exactly the same way. Hence we obtain the desired inequality for this interval I.
Next we suppose |I| < |Ji| so that I C (g — 4Rk, qr +4Ry). Then, from the construction
of wy,, we have
wi—1(qr)/2 < wi—1(7) < 2wp—1(qr)
whenever |z — gi| < 4Rg. By applying Lemma 6.3.2 with ¢ = g, R = 4Ry, [ = wg_1,
L = wg_1(qr), » = rr and g = g we obtain

() ) =

with constant C' depending only on p and «. This proves the claimed inequality. O

By iterating Lemma 6.3.4 we can easily show that w is an Ap-weight on R; combining this
with the lattice property of A,-weights will then show that @ is an Ap-weight on R".

Proposition 6.3.5 Ifp > 1+ a then @ is an Ap-weight on R™.

Proof. By repeated application of Lemma 6.3.4 and the fact £, can be chosen small we

d(ldUC(i
(' (' p_l
I I

is bounded uniformly in k£ and I. Using the monotone convergence theorem we deduce that

() (o)

is bounded uniformly in /. This shows that w is an A,-weight on R.
We now observe that
x=(x1,...,2,) = ni(x) == w(z;)

is an Ap-weight on R" for each 1 < i < n. Indeed; we may use cubes instead of Euclidean
balls in the left hand side of (6.0.1) and then the left hand side of (6.0.1), corresponding to the
weight 7;, reduces to the corresponding expression for the weight w on R. Such an expression
is obviously bounded since w is an Ap,-weight on R.

By [56, Proposition 4.3] the minimum of a finite collection of A,-weights is again an A,-
weight; hence @ = min{n1,...,n,} is an A,-weight. O

Taken together, Proposition 6.2.3 and Proposition 6.3.5 prove Theorem 1.

6.4 Characterization of the weak gradient on R

Let u be a locally finite Borel measure on R. We give a characterization of the p-weak gradient
for Lipschitz functions defined on (R, |- |, ). The idea is that integrability properties of the
absolutely continuous part of y give information about which intervals (considered as curves)
have non trivial p-modulus; these intervals then determine the p-weak gradient. A similar
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characterization has been found in 18|, for measures p whose absolutely continuous part with
respect to Lebesgue measure is bounded by below by a constant, and a weaker result is stated
in [21], Theorem 2.6.4, where the author characterize the measures for which the p-weak
gradient is |f’| for every f € C'°° (which is equivalent to the closability of the Sobolev norm
he considers).

It is worth noticing that, at least when p = 2, a very similar question has been investigated
by some authors in the calculus of variations, posed as a semicontinuity problem; in 38|, [66]
they found exactly the same answer that we find.

Throughout this section we fix p > 1 and let ¢ be the corresponding Hdélder conjugate
so that p~! 4+ ¢~! = 1. Given a compact interval I C R we define the corresponding curve
vr: I — R by v7(t) = t. Denote the Lebesgue decomposition of p by p = pe + ps. Let
Lo = fo LY with f,: R — R a Borel function and fix a Lebesgue null set N C R on which s
is concentrated.

Lemma 6.4.1 For any interval [a,b] C R we have MOdp,u({’Y[a,b]}) > 0 if and only if f;/(lfp)
is Lebesgue integrable on [a,b].

Proof. This lemma is an easy corollary of Theorem 5.1 in [6]; however we want to give here
a self-contained and more elementary proof since I' consists of only one curve. If a = b the
statement is trivial so we assume a < b.

We write an equivalent definition for Mod,, ,,, using the homogeneity of the problem (see

[6]):

. gl e
Mod,,,({Vjay})'/? = inf {b W 1 (6.4.1)
[ g(x)dax
where the infimum is taken over all Borel functions g which are p-integrable with respect to
o (this set is non empty since p is locally finite).
Let g: R — R be any Borel function. From Hoélder’s inequality we have

/abg(x) dr < </ab g7 (x) fu(z) dx) b (/ab fala)/=P) dx) 1/‘1. (6.4.2)

Now, if fi/(l_p) is £1 integrable on [a, b], by using inequality (6.4.2) in (6.4.1) we get that

N9l L
Mod,, . ({~ P > inf =
pa (00 {ff gleyda [ LTI

If otherwise f;/(l_p) is not integrable then, letting f. = max{ f,,c}, we use

(z) 0 ifzxe NURN [a,b])
xTr) =
g 1/0-p) () otherwise

as a test function in (6.4.1) and using j, < f-£' we get

-1/q

b
MOdp,u({’Y[a,b]})l/p < (/ fsl/(lfp)(x) d:p)

Letting € — 0 we obtain, by monotone convergence, that Mody, ,({¥[a,5}) = 0. O



6.4. Characterization of the weak gradient on R 123

Theorem 6.4.2 Let

N, = {a; € R such that f;/(lfp) is integrable on a neighbourhood of m} : (6.4.3)

Let f: R — R be Lipschitz and define, for u almost every x,

|f'(z)] ifzeN,\N

_ (6.4.4)
0 otherwise.

|df [p,u(x) = {

Then ‘Vf|p,p,<m) = ‘df

pu(x) for p-almost every x.

Proof. We first note that equation (6.4.4) makes sense because f’ exists £!-almost everywhere,
by Rademacher theorem, and so it exists also p,-almost everywhere; hence f’ exists p-almost
everywhere in the complement of N. We note that, thanks to Lemma 6.4.1, we have the
following equivalent definition for Np,:

N, = U {# € R such that Mody, ,, ({Vjz—c,2+¢)}) > 0} - (6.4.5)
e>0

Denote by B the set of points where f is not differentiable. Set
Gy = {g: R — [0,00) bounded Borel function : g(x) > |f'(x)| for L'-a.e. € N,}.

We will prove that Gy is exactly the set of bounded p-upper gradients for f. This implies the
theorem: indeed, |df|,, € Gy and for any g € Gy we have that g(x) > |df|,, .(x) for ;1 almost
every z € R.

Step 1. g a bounded p-upper gradient = g € G/.
Let D, be the set of Lebesgue points of g with respect to the Lebesgue measure. Since g is a
bounded Borel function, we know that £'(D5) = 0. Now take a point € N, N D, \ (BUN).
Thus there exists € such that Mod,, ({’y[x_&xﬁ]}) > 0; but then Mod,, ({’)/[x_&x_'_(g]}) >0
for every 0 < d < e. This, together with the definition of the p-upper gradient, gives us that

z+6

[z +06)— flz—0)| < / 19 Slp(s)ds,

r—

and so, passing to the limit when § — 0, we get that |f'(z)| < g(x), and so the thesis.

Step 2. g € Gy = g is a p-upper gradient.
To prove this implication we first show that

I'={y : v has end points a < b, (a,b) "N, # 0}

is Mod,, ,-null. Let B, = Nj. First let {zn}nen C B be a set of points dense in B,. From the
definition of N}, we know that for every n there exists a non negative function f,, € LP(R, u)
such that f, is not locally Lebesgue integrable at x,,, that is:

/anrE fn(s)ds =0 Ve > 0. (6.4.6)

n—¢&
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Now we take f = ) anf, where the a, are positive real numbers small enough so that f
belongs to LP(R, u). For every curve v € I' with end points a < b we have that z,, € (a,b)
for some n (since {zy }neny were dense in B,) and so we have that [z, —e,z, +¢]| C (a,b) for
e > 0 small enough. In particular, using (6.4.6),

Af > /abf(s)ds > an /ab Fu(s)ds > an /H Fuls)ds = oo

n—¢
and so Mod,, ,(I') = 0.
Suppose g € Gy and v ¢ I" has end points a < b. Then (a,b) C N, and hence,
b b
@ -1 < [ If@lde< [ gdr< [ g
a a v

Thus the set of curves where the upper gradient property fails is a p negligible set; therefore
g is a p-upper gradient of f.

0

Remark 6.4.3 It seems that one can generalize the observations in section 5 about weak
gradients on R to analogous statements about R™; the statement here should be that the weak
gradient at a point is the restriction to a subspace (depending on the point and the measure) of
the ordinary derivative. This generalization involves the equivalent definition of weak gradient
from [25] as an integrand whose integral represents the Cheeger energy. The Cheeger energy is a
functional obtained by relazing the integral of the slope using convergence of Lipschitz functions;
the paper [22] provides integral representations of many such functionals. Unfortunately, when
n > 1, apart from peculiar cases, it is not possible to give a concrete description of the subspaces
but a rather abstract one. In Section 7.4 we generalize this abstract characterization to Banach
spaces.
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A definition via derivations and integration by parts

7.1 Sobolev spaces via derivations

Here (X, d, m) will be any complete separable metric measure space, where m is a nonnegative
Borel measure, finite on bounded sets; in particular we don’t assume structural assuptions,
namely doubling measure nor a Poincaré inequality are required to hold. In the sequel we will
denote by Lipy(X,d) the set of Lipschitz functions with bounded support, and with L°(X, m)
the set of measurable function on X, without integrability assumption.

In this Chapter we will use the notations for the Sobolev spaces as we did for the intro-
duction: in particular H%P will denote the Sobolev space made up by relaxation, BL"P will
denote the Sobolev space made up by looking at curves and WP will be the new one, made
up with an integration by parts formula (with derivations).

7.1.1 Derivations

We state precisely what we mean here by derivations:

Definition 7.1.1 A derivation b is a linear map b : Lipg(X,d) — L°(X,m) such that the
following properties hold:

(i) (Leibniz rule) for every f,g € Lipg(X,d), we have b(fg) = b(f)g+ fb(g);
(i) (Weak locality) There exists some function g € L°(X, m) such that
|b(f)|(z) < g(x) - lip, f(x) for m-a.e. z, Vf € Lipy(X,d).
The smallest function g with this property is denoted by |b|.

From now on, we will refer to the set of derivation as Der(X,d,m) and when we write
b € LP we mean |b| € LP. Since the definition of derivation is local on open sets we can
extend b to locally Lipschitz functions. In order to get to (1), we need also the definition
of divergence, and this is done simply imposing the integration by parts formula: whenever

125
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b e L] . we define div b as the operator that maps Lipy(X,d) 3 f — — [, b(f) dm (whenever
this makes sense). We will say divb € LP when this operator has an integral representation
via an LP function: divb = h € LP if

—/ b(f)dm:/ h-fdm Vf € Lipg(X,d).

X X

It is obvious that if divb € LP, then is unique. Now we set
Der?(X,d,m) = {b € Der(X,d,m) : be LP(X,m)}

Der?P?(X,d, m) = {b € Der(X,d,m) : b€ LP(X,m),divb € L" (X, m)}

We will often drop the dependence on (X, d, m) when it is clear. We notice that Der, Der? and
DerPtP2 are real vector spaces, the last two being also Banach spaces endowed respectively
with the norm ||b||, = |||b]||, and ||b||p, p. = [|bllp, + ||div b]|p,. For brevity we will denote
Der®® = Dery, (b stands for bounded). The last space we will consider is D(div), that will
be consisting of derivation b such that |b|,divb € L] (X, m); it is clear that Der”? C D(div)
for all p,q € [1, +o0].

In the sequel we will need a simple operation on derivations, namely the multiplication by
a scalar function: let v € L%(X, m), then we can consider the derivation ub that acts simply
as ub(f)(z) = u(z) - b(f)(x): it is obvious that this is indeed a derivation. We now prove a
simple lemma about multiplications:

Lemma 7.1.2 Let b a derivation; then if u € L°(X, m) we have |ub| = |b| - |u|. Moreover, if
u € Lipy(X,d) and b € DerP""P2 we have that ub is a derivation such that

div(ub) = udivb + b(u) and ub € DerP1P3

where p3 = max{p1, p2}; in particular we have that DerP? is a Lip,(X,d)-module.

Proof. Let us prove the first assertion: it is clear that |ub|(z) < |b|(z)-|u(x)| by the definition;
the other inequality is obvious in {u = 0}. In order to prove the converse inequality also in
{u # 0} we can choose b, = ub and

—1 i
o= {y ¢ s

and then we know that |gb,| < |g| - |by|. Noting that b(f) = gb,(f) in {u # 0} for every
f € Lipy(X,d), we get also |b| = |gb,| in the same set and so we get

6] = lgbu| <'g] - [bu| < lg| - [ul-[b] =[b] ~ in {uz# 0},
in particular we get |b,| = |b| - |u| in {u # 0} and thus the thesis.
For the second equality we can use Leibniz rule: let f € Lipy(X,d), and note b(fu) =
ub(f) + fb(u)
—/ ub(f)dm:—/ b(fu)dm+/ fb(u)dm
X X X
—/ fu'divbdm—i—/ fb(u) dm
X X
= / f - (udivb+ b(u))dm
X

and so, thanks to the arbitrariness of f we get div(ub) = udivd + b(u). O
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Lemma 7.1.3 (Strong locality in D(div)) Let b € D(div). Then for every f,g €
Lip(X,d) we have

(i) b(f) = b(g) m-almost everywhere in {f = g};

(11) b(f) < |b| -lipa(flc) m-almost everywhere in C, for every closed set C;

Proof. In order to prove (i), thanks to the linearity, it is sufficient to consider ¢ = 0 and f
with support contained in B = B, (x), where we can take r > 0 as small as we want; then
we can conclude by linearity and weak locality. So we can suppose that both |b| and div b are
integrable in B. Now we can consider ¢.(z) = (x —¢)4+ — (r+¢)_; we have ¢ is a 1-Lipschitz
function such that |p.(z) — x| < ¢ and p(z) = 0 whenever |z| < e. Let f. = ¢.(f); we have
b(f:) is a family of equi-integrable functions and so there is a subsequence converging weakly
in L' to some function ¢g. Moreover f. — f uniformly and in particular

/Xb(fg)dm—/Xb(f)dm:—/X(fa—f)-divbdm—>0; (7.1.1)

since this is true also for xb whenever y € Lipy(X,d), we obtain (x, b(f:)) — (x,b(f)) and so
g = b(f). In particular, putting p = x{y—oysgn(b(f)) and noting that lip,(f:) = 0 in the set
{If| < e} we obtain

[ tethlam= [ p-b(5)=tim [ p-b(s)dam =0,
{f=0} X

e—0 X

For (ii) we proceed as follows: for every closed ball B, (y) we consider the McShane exten-
sion of the function f restricted to C'N B,(y) and we call it gy. In particular we have f = gy

on C N B, (y) and Lip(gy, Br(y)) = Lip(f, B;(y) N C) = Lip(f|c, Br(y)). Applying (i) of this
lemma we find that b(f) = b(g;)) m-a.e. on C'N B,(y); in particular

b(/)I(x) < [b] - Lip(fle, Br(y))  m-a.e. on C'N Br(y).
Since we have B, (y) C Ba,(z) whenever x € B,(y), we obtain
[b()I(x) < |b] - Lip(flc, Bar(x))  m-ae. on C'N Br(y);

now we can drop the dependance on y and then let » — 0 to get the thesis. O

7.1.2 Definition via derivations

In this whole section we treat the Sobolev spaces WP with 1 < p < +o0; the case of the
space BV will be treated separately. We state here the main definition of Sobolev space via
derivations: we want to follow the definition (1) but in place of the scalar product between
the vector field and the weak gradient we assume there is simply a continuous linear map.

Definition 7.1.4 Let f € LP(X,d, m); then f € WYP(X,d, m) if, setting ¢ = p/(p — 1), there
exists a continuous linear map Ly : Der®? — LY(X,m) satisfying

/ Ls(b)dm = —/ fdivbdm for all b € Der?, (7.1.2)
X X

such that L¢(hb) = hLf(b) for every h € Lipy, b € Der®?. When p = 1 we have to assume
also that Ly can be extended to an L™ -linear map in Dery® := L - Dery,.
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Since from the definition it is not obvious, we prove that L ¢(b) is uniquely defined whenever
f € WP and b € Der??:

Remark 7.1.5 (Well posedness of L;) Let us fix b € Der®, f € WP, let Ly and f/f be
two different linear maps given in the definition on WYP. Let h € Lipy(X,d): using Lemma
7.1.2 we have hb € Der?? and so we can use (7.1.2) and the L*>-linearity to get

/Xth(b)dm—/XLf(hb)——/deiv(hb)dm,

and the same is true forj/f, In particular, since the right hand side does not depend on Ly, we
have [ hLy(b) = [ hL¢(b), and thanks to the arbitrariness of h € Lipy(X,d) we conclude

that Ly(b) = L (b) m-a.e. We will call this common value b(f), since it extends b on Lipschitz
functions. The same result is true also for p =1 and b € Der;°.

Now we can give the definition of weak gradient, in some sense dual to the definition of |b|:

Theorem 7.1.6 Let f € WHP(X,d, m); then there exists a function g; € LP(X,d,m) such
that
b(f)| < gf-|b] m-a.e. in X Vb € Der?4. (7.1.3)

Definition 7.1.7 (p-weak gradient) Let f € W'P(X,d, m). The least function g (in the
m-a.e. sense) that realizes (7.1.3) is denoted with |V f|,, the p-weak gradient of f

Proof. [of Theorem 7.1.6] We reduce to prove the existence of a weak gradient in the integral
sense; then thanks to Lip,-linearity we can prove the theorem. In fact if we find a function
g € LP(X,d, m) such that

/b(f)dmg/ glbldm Wb € Der®?, (7.1.4)
X X

then, choosing by, = hb with h € Lip,(X,d), we can localize the inequality thus obtaining
b(f) < g|bl; using this inequality also with the derivation —b we get (7.1.3).

So, we're given a function f € WP and we want to find g € LP satisfying (7.1.4); let us
note that, by definition, there exists a constant C' = || L¢|| such that for every b € Der??

/ b(f) dm < [ L;(B)]l1 < C|lblly (7.1.5)

Let us consider two functionals in the Banach space Y = LI(X,d, m):

s (h) = Cllh|l Lagm) (7.1.6)

Uy (h) = sup {/ b(f)dm:|b|<h,be Derq’q} (7.1.7)
X
where the supremum of the empty set is meant to be —oo. Equation (7.1.5) guarantees that

Uy (h) < Uy(h) Vhey. (7.1.8)
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Moreover ¥y is convex and continuous while we claim that Wy is concave: it is clearly positive
1-homogeneus and it is sufficient to show that

Ui(hi + he) > Ui(h1) + Vi(ha).

We can assume that WUy (h;) > —oo for i = 1,2 because otherwise the inequality is trivial. In
this case for everi ¢ > 0 we can pick two derivations b; € Der? such that

/Xbl(f)dmz‘lfl(hl)—é‘ |b1| Shl

/ng(f) dm > \Ifl(hg) — & |b2‘ < h2

and so we can consider by + by that still belongs to Der?? and clearly |by + ba| < |b1| + |b2| <
(h1 + hg) and so

Ui(hi + hg) > / Ly(by +by)dm > Wy (hy) + ¥y (ho) — 2¢,
X

and we get the desired inequality letting ¢ — 0. By Hahn-Banach theorem we can find a
continuous linear functional L on L4(X,d, m) such that

Wi(h) < L(h) < Ua(h).

Case p > 1. We know that (L?)* = LP and so we can find g € LP such that L(h) =
Jx ghdm. This proves the existence and moreover we have that L(h) < Wy(h) = C/||h||, for
every h € Y and so we have also that ||g|[, < C.

Case p = 1, X compact. In this case (notice that here we have to put Der;® in place
of Der?? in (7.1.7)) if we restrict L : Cp(X) — R we can see it as a positive linear such that
L(h) < C||h|loc and so, thanks to the compactness of X, it can be represented as a finite
measure, i.e. there exists 4 € M4 (X) such that L(h) = [ hdp for every h € Cy(X) and
pu(X) < C. Now let us fix b € Derp® and let

he(z) = {|117| if [b](z) > &

gl otherwise

in such a way that |h:b| < 1 with equality in {|b] > ¢}. Now let us consider for every
h € Cp(X) the derivation h - h. - b; we know that |h - he - b] < |h| and so we can use (7.1.7)
and the L*-linearity to infer that

/hhgb(f)dm</ by Vh e Co(X);
X X

this permits us to localize the inequality to heb(f)m < u. Now we have a family of measures
F = {heb(f)m : Vb € Dery°, Ve > 0} such that v < 1 whenever v € F. Now we can consider
the supremum of the measures in F, defined as

N
ug(A) = sup{z vi(A;) v €9, UAi C A, A; disjoint };

=1
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it is readily seen that this is in fact a measure, and it is the least measure p such that v < p
for every p € F. The existence is clear thanks to the fact that v < u, and in particular we
have that ugs < p; moreover, since for every v € J we have that v << m, also the supremum
inherits this property, in particular we have pg = gm for some g € L!(m). In particular, again
fixing b € Der;°, we have that

heb(f) <g m-a.e. Ve > 0; (7.1.9)

in particular, we can divide (7.1.9) by h. to obtain

{b(f) < g|b| m-a.e. in {|b| > e}
b(f) < ge m-a.e. in {|b] < e}.

Since ¢ is arbitrary we obtain b(f) < g|b| for m-almost every € X, that is the thesis; also in
this case p = 1 we have ||g|l1 < p(X) < ||Lg]|

Case p = 1, X general. In order to remove the compactness assumption, for every
compact non negligible set K C X let us consider the two functionals in the Banach space
Y = L*°(K,d,m):

(7.1.10)

o (h) = Cllh| Lo (5m) (7.1.11)
Uy (h) = sup {/ b(f)dm:|b|<h m-ae on K, be Dergo}. (7.1.12)
K

Now we can argue precisely as before to obtain gx € L'(K, m) such that ||gx|l1 < | L¢|
b(f) < gk|b| m-a.e. on K Vb€ Der. (7.1.13)

Now for every increasing sequence of compact sets K, let us consider g(z) = infg, 5, gk, ().
Denoting Y := |J, Ky, it is easy to note that g € L'(Y,m), since |lgllpiym =
supy, |9/l 21 (k,,m) < supy, |95, |21 (K m) < || Ly, and we have that

b(f) <glb| m-ae. onY Vb € Der?;

so, in order to conlcude, it is sufficient to find a sequence K,, such that m(X \ {,, K,) = 0,
but this can be done thanks to the hypothesis of m finite on bounded sets (so we can find
6 > 0 such that #m is finite and then apply Prokhorov theorem to fm).

7.2 Equivalence with other definitions

In this section we want to prove, when p > 1, that Definition 7.1.4 is equivalent to the other
ones Hy®? and BLYP, given in [9]. As a byproduct we obtain the equivalence also with other
definitions of Sobolev Spaces, for example the one given in [25]; the approach is similar to HP
but the relaxation is made with general LP functions, and the asymptotic Lipschitz constant
is replaced by upper gradients, or the one given in [75], similar to BL'? but with a slightly
stronger notion of negligibility of set of curves.

We will prove that HyP C W» C BLY and that the following inequality is true for the
weak gradients:

IV £lpw < |VFflp < IV flpBL m-a.e. in X
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Then for p > 1, using the equivalence Hy* = BL'” and \VflpBr = |V flpy in [9] will let
us conclude; also the coincidence with other definitions can be found in [9]. For p = 1 the
equivalence is still an open question.

Let us recall briefly the definitions of H,* (in the stronger version given in [4]) and BL'®:

Definition 7.2.1 (Relaxed Sobolev Space) A function f € LP(X,m) belongs to
H%’p(X,d,m) if and only if there exists a sequence (fn,) C Lipg(X,d) and a function
g € LP(X, m) such that

Timn || = £llp+ INipa( ) = gll, = 0.

The function g with minimal LP norm that has this property will be denoted with |V f|p..

In order to define the space BL'P we recall the Definition 2.6.1 of test plans and the
subsequent definition of the BL space:

Definition 7.2.2 (Weak Sobolev Space) A function f € LP(X,m) belongs to
BLYP(X,d,m) if there exists a function g € LP(X,m) that is a p-weak upper gradient
of f, i.e. it is such that

/ f‘ < /g < o0 for p-a.e. . (7.2.1)
oy Y
The minimal p-weak upper gradient (in the pointwise sense) will be denoted by |V f|, BL.

7.2.1  HY C W'

Let f € HyP. Then we have a sequence of Lipschitz functions such that f, RN f and
Lip,(fn) 2 |Vf lpu- Then by the strong locality property of derivation and the definition
of divergence we know that for every b € Der??

’/an.divbdm‘:‘/xb(fn)dm‘S/X‘b,,hpa(fn)dm

and so, taking limits, we have that

/f-divbdm’ﬁ/ b] - |V flpwdm Vb € Der®? (7.2.2)
X X

Now we have to construct the linear functional L : Der®? — L'. So, fix b € Der?? and let
o = |b| - [V f|pom. Notice that pp is a finite measure. Now let R® : Lip,(X,d) — R be the
linear functional defined by

RP(h) = — /X f - div(hb) dm;

notice that, thanks to (7.2.2), |[R®(h)| < C||h]|ee, where C' = up(X) and so it can be extended
to a continuous linear functional on Cy(X); since |RP(h)| < [y |h|dup, we have that R®(h)
can be represented as an integral with respect to a signed measure mgp, whose total variation is
less then up, but since pp is absolutely continuous with respect to m, so it is mp; if we denote
by L¢(b) the density of my relative to m, we have

—/ # - div(hb) dm:/h~Lf(b) dm  Vh € Lipy(X,d) (7.2.3)
X

|Lr(b)] < 16| - |V flpw m-almost everywhere (7.2.4)
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Now we have to check the Lipy-linearity, but this is easy since for every h € Lip, by definition
we have R"(h1) = R®(h - hy), for every bounded Lipschitz function hj; in particular

X X
and so Ly(hb) = hL¢(b).

7.2.2 WP C BL'»

The crucial observation is that every ¢-plan induce a derivation:

Proposition 7.2.3 Let w be a g-plan. For every function f € Lipy(X,d) let us consider
bx(f), the function such that:

_ booyd(fer)
[ o-betryam= | ) /O s @ dan(y)  vgerr.  (129)
Then we have that by € Der?? and moreover
/Xg |bg|dm < /Agds dm(y) Vg e LP, g > 0; (7.2.6)
[ redv@man= [ (700 fo)dnt)  vrer (7.2.7)
X AC

Proof. We first fix f € Lip,(X,d) and notice that the right hand side in (7.2.5) is well defined
thanks to Rademacher theorem. Then the Leibniz rule is easy to check thanks to its validity

in the right hand side of (7.2.5). In order to find a good candidate for |br|, we estimate

% < lip, (f)(y¢)|7:| and so, for every nonnegative g € LP we have

1 o 1
[ o008 w00 < [ gm0t a
0 0

integrating with respect to 7 and using Fubini theorem we get

/g-bﬂ(f)dmé/ g - lip,(f) dpire, (7.2.8)
X

X

where px = fol (e)s(||¥e|m) dt is the barycenter of 7, and it is such that

/ngu.,r—//vgdsdﬂ'. (7.2.9)

In particular we can use Holder’s inequality to estimate the behavior of pir:

/nguw =/AC/019(%)!%!dtdﬂ
< (1t aua) " (] rileauar) "

< C@)Y? - Ngllomy - 1 Eg(Ml o),
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and so, by duality argument, we obtain that p, = hm with A € L4(X,m); using this repre-
sentation in (7.2.8) we obtain

/g-bﬂ<f>dms/ g-lipy(fhdm  Vge L7, g>0.
X X

So we deduce that |bx| < h and in particular by € L? and (7.2.6) is true thanks to (7.2.9).
It remains to prove the last equality: by definition of divergence we have, for f € Lipy(X,d)

1 [¢]
[ #ediveran= [ [0 drant) = [0 - sGopdm, (7210

thanks to the fact that the fundamental theorem of calculus holds for Lipschitz functions. By
definition of g-plan we have also that (e;)ym = fym where f; < C(m) for every t € [0, 1]; since
m is a probability measure we have [ f;dm =1 and so f; € L' N L* and in particular f; € L9
and so div by = (f1 — fo) € L9. This enables us to extend (7.2.10) to f € LP and so we proved
also (7.2.7). O

Lemma 7.2.4 Let f € W'P(X,d,m). Then |V f|, is a p-weak upper gradient for f.

Proof. By Proposition 7.2.3 we know that to every ¢-plan 7 we can associate a derivation
by € Der?!; we use this derivation in the definition of W and, using also Theorem 7.1.6,
we obtain

—/ f-divbydm < / |V flw - |br| dmy;
X
Now, using (7.2.6) and (7.2.7), we obtain precisely

/Ac(f(’m) — f(m))dw < /A / |V flw ds dr. V7 g-plan (7.2.11)

CJy
We can "localize" this inequality using the fact that for every Borel set A C C(]0, 1]; X)
such that w(A) # 0, we have that w4 = ﬁﬂ'm is still a ¢g-plan and so we can infer that

/(f(WO)f(’y1))d7r§//|Vf|wdsd7r. VA C C(]0,1]; X), (7.2.12)
A AJy

and so f(v) — f(m) < f,y |V f|w for m-almost every curve. Applying the same conclusion to
— f we get that the upper gradient property is true for w-almost every curve. Since 7w was an
arbitrary ¢-plan, by definition we have

lf(v0) — f(n)l < / |V flwds for p-almost every curve
y

and so |V f|, is a p-weak upper gradient. O

Theorem 7.2.5 [H=W=BL] Let (X,d, m) be a separable complete metric space, endowed with
a measure m that is finite on bounded sets. Then we have

Hy?(X,d,m) = WHP(X,d,m) = BL'(X,d, m);
moreover we have |V flpo = |V flpw = [V flppL for every f € W'P.

Proof. Tt is sufficient to use Lemma 7.2.4 and the results of Section 7.2.1 to obtain H&’p -
WP C BLYP and |Vf|, > |Vf|w > |Vflpr. Then we use the equivalence theorem in [9]:
given f € BLYP, we have that f € Hy? and IV flo < |V f|pr. This let us conclude. O



134 Chapter 7. A definition via derivations and integration by parts

7.3 BV space via derivations
From now on we will denote [ du = p(X) whenever p € M(X).

Definition 7.3.1 Let f € L'(X,d,m); we say f € BV(X,d,m) if there exists a continuous
linear map Ly : Dery, — M(X) satisfying

/ dL(b) = / fdivbdm Vb€ Der, (7.3.1)
X X

such that Ly(hb) = hL;(b) for every h € Lipy(X,d),b € Dery.

As in the WP case, we prove that Ly(b) is uniquely defined whenever f € BV and
b € Dery:

Remark 7.3.2 (Well posedness of Ly) Let us fit b € Dery, f € BV ; let Ly and Ef be two
different linear maps given in the definition on BV . Let h € Lipy(X,d): using Lemma 7.1.2
we have hb € Dery, and so we can use (7.3.1) and the Lip,-linearity to get

/thLf(b):/Xde(hb):—/deiv(hb)dm,

and the same is true for Ly. In particular Jx hdLs(b) = thdf/f(b), and thanks to the
arbitrariness of h € Lip,(X,d) we conclude that Ly(b) = Ly(b). We will call this common
value D f(b).

Now we can give the definition of total variation:

Theorem 7.3.3 Let f € BV(X,d,m); then there exists a finite measure v € M4 (X) such
that, for every Borel set A C X,

/ ADf(b) < / b*dv Vb € Den, (7.3.2)
A A

where g* denotes the upper semicontinuous envelope of g. The least measure that realizes this
inequality is denoted with |D f|, the weak total variation of f. Moreover

|IDfI(X) =sup{|Df(b)(X)| : |b] <1,b¢€ Dery}. (7.3.3)

Proof. We argue similarly to Theorem 7.1.6: by hypothesis we have that f € BV and so
there exists a Lip,-linear map D f : Der, — M(X) such that Df(b)(X) < C||b|| >, where we
can take C' = sup{|Df(b)(X)| : |b] < 1,b € Der}. Note that if |b| < h where h € Cp(X)
then we have that

/ dDf(b) < C sup h(z) VK C X compact; (7.3.4)
K zeK

in fact, denoting with p, = min{l — nd(z, K)}, we have that p, — yx pointwise and 0 <

pn < 1 so, by dominated convergence theorem,

/ dDf(b) = lim / pndDf(b) < C lim | ppbllec < Clim sup pp(z)h(z) = C sup h(z),
K n—oo Jx n—00 n oreX z€K
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where the last equality holds thanks to the compactness of K. Now, for every compact set
K C X and consider two functionals in the Banach space Y = Cy(K):

Wy (h) = C||h]|so (7.3.5)
Wy (h) = sup {/ dDf(b) : b € Dery, Jh € Cyp(X) such that |b| < h, h|x < h} (7.3.6)
K

where the supremum of the empty set is meant to be —oo. Equation (7.3.4) guarantees that
Uy(h) < Wa(h) Vh eY. (7.3.7)

Moreover, as before, Wy is convex and continuous while Wy is concave; by Hahn-Banach
theorem we can find a continuous linear functional L on Cy(K) such that

Uy (h) < L(h) < Ua(h).

In particular there exists a measure p such that L(h) = [, hdug and, thanks to (7.3.5), we
have pug (K) < C. Moreover, thanks to (7.3.6) we have that if h € Cy(X) is such that [b] < h

for some b € Dery, then
[ aps®) < [ hap
K K

since for every k € Cp(X), we have |kb| < |k|h we obtain also

/K kdDf(b) < /K [kl dpue.

In particular, optimizing in k we obtain also that |Df(b)|, the total variation of Df(b),
restricted to K, is less then or equal to hug. This implies that the following set is nonempty:

Ag ={v e M (K) : |Df(b)||x < hv whenever b € Dery, h € C,(X) s.t. |b| < h}.

Clearly this set is convex, weakly-* closed and a lattice, in particular there exists the minimum,
that we call vx. We can drop the dependence on K since it is easy to see that if A C K1 N Ky
then vg, (A) = vk, (A); suppose on the contrary that vk, (A) > vk, (A). Then we can consider
the measure 7(B) = vk, (B \ A) + vk, (BN A) that would be a strictly better competitor than
pr, in A, .
Now we can extend v to a measure on the whole space
v(B) = sup v(K) VB C X Borel;
KCB

this is easily seen to be a measure, that is also finite since v(K) < pug(K) < C for all K
compact and in particular we get (X ) < C. Thanks to the finiteness of |D f(b)| and v, using
that v|g € Ak, we find that

|Df(b)| < hv whenever b € Dery, h € Cy(X) s.t. |b|] < h,

in particular, integrating in A we get

/Ade(b)g/Ahdu,

and taking the infimum in h we obtain (7.3.2), recalling that if g € L> then
g"(xz) =inf{h(z) : h € Cp(X), h>gm-ae.}.

For the last assertion in the theorem we already proved C' > v(X), while the other inequality
is trivial taking A = X in (7.3.2). O
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Theorem 7.3.4 (Representation formula for |Df|) Let f € BV. Then the classical rep-
resentation formula holds true: for every open set A

|Df|(A) = sup {/Af -div(b)dm : b € Dery, |b] <1, supp(b) € A} . (7.3.8)

Proof. Let us consider two open sets Aj, Ay and a closed set C such that 41 € C € As.
We will consider (C,d, m) as a separable metric measure space, and relate the definitions of
bounded variation in X and C. Let us consider a function f € BV (X,d, m); it is clear that
f € BV(C,d,m) since Dery(C) C Dery(X) (it is sufficient to set bx(f) = bo(f|c)), and
consequently |Df|x > |Df|c by (7.3.2).

Moreover it is true that |Df|x (A1) = |Df|c(A1). This is true because there exists a
Lipschitz function 0 < x < 1 such that x =0 in X \ C and x = 1 on a neighborhood of Ay;
then we have that if b € Der,(X) implies that xb € Der,(C) and so in (7.3.2) we can imagine
that b € Dery(C) whenever A C Aj; but then we get that the measure v defined as

v(B) = [Df[x(B\ A1) +[Dflc(B N Ai)

is a good candidate in (7.3.2) and so, by the minimality of |Df|x we get |Df|c(A1) =
1D f[x (A1)

Now, denoting by p(A) the set function defined in the left hand side of (7.3.8), it is obvious
that u(A2) < |Df|(A2). But it is also obvious that p(As) > |Df|c(C) > |Dflc(A1) =
|IDf|x(A1). Letting A; 1T Ay we get the desired inequality. O

7.3.1 Equivalence of BV spaces

We just sketch the equivalence with the other definitions given in literature: in particular we
refer to [5] (or Chapter 4), where the authors consider the spaces BV, and w — BV and show
their equivalence. As we did for WP we show BV, C BV C w — BV.

Lemma 7.3.5 Let f € BV, (X,d,m). Then we have f € BV(X,d,m) and |Df| < |Df]|. as

measures.

Proof. By hypothesis, we know that there is a sequence (f,) C Lipy(X,d) such that
lip,(fn) = |Df|« in duality with Cy(X); in particular, for every b € Der;, we have

‘/an-divbdmlz'/xb<fn>dm‘g/xrb|-hpa<fn>dm

taking limits and recalling that whenever v, — v and g > 0, we have liminf, f x 9dun <

Jx 9" dp, we have that
‘/ f-divb
X

Now this inequality would guarantee that |D f| < |D f|. once we construct the linear functional
Ly : Der, — M(X) In order to find Ly(b) we proceed exactly as in Section 7.2.1, and so we
omit the construction. O

< / |b]* d|Df|« Vb € Dery,.
X
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Lemma 7.3.6 Let f € BV(X,d,m). Then we have f € w — BV(X,d,m) and |Df|,(X) <
[DfI(X).

Proof.  As for the second inclusion it is sufficient to recall Proposition 7.2.3: we know that
for every oo-plan 7 we can associate a derivation br € Derp; we use this derivation in the
definition of BV and, using also Theorem 7.3.3, we obtain

—/ f-divb,,dmg/ b |*d|Df|.
X X

Now, using (7.2.6) and (7.2.7), we obtain

/Ac(f(’m) — fin))dm < C(w) - |IDFI(X)[Lip(y)[[ ooy VA oo-plan. (7.3.9)

Now we can use Remark 7.2 in [5] to conclude that f € w — BV and |Df|,(X) < |Df|(X)
O

Using this two lemmas in conjunction with the equivalence result in [5] we can conlcude.

Theorem 7.3.7 Let (X,d, m) be a complete and separable metric space, such that m is finite
on bounded sets; then BV (X,d,m) = BV, (X,d,m) = w — BV(X,d,m). Moreover |Df| =
|Df|« = |Dflw for every function f € BV.

Proof.  From Lemma 7.3.5 and 7.3.6 we know that BV, C BV C w — BV and moreover
|IDf| < |Dfl|« and |Df|(X) > |Df|w(X). Thanks to the equivalence theorem in [5] we get
BV = BV, = w — BV and |Df|y = |Df|«, in particular |Df|,(X) = |Df].(X) > |Df|(X),
and so |Df|(X) = |Df]«(X) = |Df|w(X). This equality, along with |Df| < |Df|. let us
conclude that the three definitions of total variation coincide. ]

7.4 Sobolev Bundle

Here we suppose that X is a Banach space with separable dual, in which we can use our new
definition to give a precise value to |V f|, in the case of f € C} _(X) and p > 1. In particular
we will define the Sobolev bundle S}, i.e. a map that at each point z € X assigns a closed
subspace of the tangent space at x, identified with X. We will prove that |V f|, = |df|s,| m-a.e.
A similar result has been already proved in [22| for finite dimensional spaces; the author use
a bidual argument that can be adapted to reflexive Banach spaces. Our approach is different
and more general since we can recover the result also for non-reflexive Banach spaces.

We first state a characterization of derivations in D(div) as vector fields, in the case X is
a Banach space:

Lemma 7.4.1 Let b € D(div). Then there exists and m-measurable map vy : X — X such
that b(f) = df (vp) = 887];, for every f € CY(X,d); moreover we have |b|(x) = |vp(x)| for
m-a.e. v € X.

Proof. We will not enter in too many technical details; since this is a local statement we can
assume that b € Der™!. Then we can apply the results in [70] to bm, that is easily seen to
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be a normal current, in order to find an integral representation of b through derivations along
curves: this is in some sense dual to Proposition 7.2.3; in particular we have

1
/ g-b(f)dm = //O o) - (for)(t)dtdm Vg e L®(X,m)

1
/g]b\ dm — //0 o)l dtdm Vg € L°(X, m) (7.4.1)

Then we know that for v € AC([0, 1]; X), there exists the tangent vector for almost every time
t € [0,1]. This leads to the definition of the vector field vp by duality:

1
/(p,vb> dm = //0 (p, V) dtdm Vp e L(X; X™). (7.4.2)

Combining this with (7.4.1) we obtain |vp| < |b|. For every f € C! it is obvious that df (vp) =
b(f) (using p =g -df in (7.4.2)) and so we have

1b(f)] < |vp] - lip, f- (7.4.3)

If we suppose X finite dimensional then we can obtain that (7.4.3) holds also for m-a.e.
for Lipschitz functions f, by approximating f with convolutions. Let us now assume X is
infinite dimensional; we know that m is supported on a o-compact set S such that there exist
linear projections m, : X — R™ C X such that m,x — z for every © € S. Let us consider
fn(z) = f(mn(x)); using convolutions in m,(X), as in the finite dimensional case we find that
(7.4.3) holds f,. In particular we have

b(fn)(@)] < |vo(2)| - lipg (f, Tnx) < |vb(2)| - Lip(f, B(z,rm(2)))  Vm<n,  (7.4.4)

where we may take r,(z) = 2||z — myz||, that is decreasing in n. Since we have f,, — f
pointwise in S, thanks to the integration by parts formula we have also b(f,) — b(f) in L*
and in particular in (7.4.4) we can let n — oo and then m — oo, to obtain that (7.4.3) is true
m-a.e (using that rp,(z) — 0 for every x € S). This proves that |b| < |vp| and so we have
6] = |vp- O

In the sequel, we will often identify b € D(div) with the vector field vy given by Proposi-
tion 7.4.1, through the equality b = vp. Let us denote by B(X) the set of Borel maps from X
to the set of closed subspaces of X, denoted by Cl(X).

Definition 7.4.2 S, is the p-Sobolev bundle if
(1) For every b € Der®® with b = vy have vp(z) € Sp(x) for m-a.e. x € X

(ii) For every S’ that satisfies (i) we have that Sp(x) C S'(x) for m-a.e. x € X.

In order to prove existency it is sufficient to find a map F' : Cl(X) — [0, 1], stictly increasing
by inclusion, namely if Y7 C Y5 then F(Y1) < F(Y2). Then we minimize the quantity

/ F(S(z)) dm (7.4.5)
X
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among all S € B(X) that satisfy (i); here we point out that this set is nonempty, consid-
ering the constant map S(x) = X. Let us say that a sequence S,, realizes the infimum, and
now let us consider

Sp(z) = (1] Sul).
neN

It is clear that S, still satisfies (i), and of course S, minimizes (7.4.5); now suppose that S,
doesn’t satisfy (ii), and so there exists S” such that S’ satisfy (i) and m{S,(z) € S'(x)} > 0;
define S” = 8" N S,. We still have that S” satisfies (i) and moreover m{S"(z) C Sp(z)} =
m{S,(z) € S’(z)} > 0 and so, thanks to the strict monotonicity, we have that

/ F(S"(z))dm < / F(S,(z)) dm,
H H

against the minimality of S),.
The following lemma shows that there exists a map with these properties, when X* is
separable.

Lemma 7.4.3 Let {e;}ien be a dense set in Bx«(0,1) (with the strong topology). Let F :
Cl(X) — [0,1] be defined in this way:

o0
F(Y)=> 2 'sup{{e;,y) 1y €Y, |lyll < 1}.
i=1
Then F is strictly increasing, namely if we consider two closed subsets Y C Y’ then F(Y) <

F(Y").

Proof. The map F is increasing and its image is clearly contained in [0, 1]. In order to prove
the strict monotonicity we consider two closed subspaces Y C Y’ and a point 3/ € Y'\ Y.
Since Y is closed and convex and {y’} is compact, applying Hahn-Banach theorem we know
that there exists a linear functional [ that separates vy’ and Y, in particular there exists r € R
such that

Wy) <r <) Vyey;

In particular we can take I(y') = r and, since Y is a vector space, we have l|y = 0. We know
that there exists a sequence e;, — [ strongly; it is clear that

sup{(ei,, y) sy €Y llyll <1} = sup{(l,y) :y €V, llyll <1} =0,

since the functions e;, : B(0,1) NY — R are converging uniformly to [. Moreover
e (y) = e (vf) =,
and so we can find kg such that
r2r , ,
sup{{ei,,y) 1y € Villyll <1} < 5 < 5 <Aeiy,y) < sup{{ei,,y) 1y €V [lyl <1},

and so we get F(Y') > F(Y) since all the other terms in the sum that defines F' are increasing.
O
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Definition 7.4.4 Let T = {b; }ien be a countable set of admissible derivations, where b; = v;
with v; a Borel vector field defined everywhere; we define the bundle generated by T

Sr(z) = span{vi(z) }ien-

This definition is well posed in the sense that choosing different Borel representative v; we
have that @;(x) = v;(x) for m-a.e. z and so also Sy(z) = Sy(z) for m-almost every z € H,
and this is sufficient for our pourposes. The next proposition assures that .S, is countably
generated in the sense of 7.4.4.

Proposition 7.4.5 There exists a countable set T such that Sy = S,.

Proof. First we note that for every countable family 7" we have Sy C S, m-almost everywhere,
so it is sufficient to prove the converse inequality for a certain family. Arguing as we did before
to prove existence of S, we try to maximize

/ F(Sy) dm (7.4.6)
H

among all countable admissible families 7". Taking 7}, a maximizing sequence we consider
T = Upen?y that is still a countable family of admissible currents that clearly maximizes
(7.4.6). Now we want to prove that S, C Sy; suppose on the contrary that this isn’t true.
This means that Sy does not satisfy (i) and so there exists b € Der??, with b = vy, such that
vp(x) ¢ Sr(z) in a set of positive measure; but then the set 73 =7 U {b} has a greater value
in (7.4.6) than 7", but this goes against the maximality of 7. O

Now we want to prove that the Sobolev bundle is exactely the set of direction in which
we can’t neglect the behaviour of the function when we relax. We first need some analytical
tools.

Proposition 7.4.6 Let b € Der??, with b = vy. Then for every C' function f we have

b(f)] < |V flw|vsl m-almost everywhere.
Proof. This follows by Theorem 7.1.6 and the equality |b| = |vp| in Lemma 7.4.1. O

Lemma 7.4.7 Let T be a countable family of admissible currents. Let us consider a subset
A C R"™ such that u(A) > 0 and a Borel section v of the bundle Sy, defined on A, and a
treshold € : A — (0,400). Then there exists a derivation b € span{T} such that

p{zr e A : |jvp(x) —v(x)| <e(x)} > 0. (7.4.7)
Proof. Possibly enlarging 1" with all finite Q-linear combinations, we can say that by definition

of Sy, we have that
v(z) € Sr(z) <— 1&{] lvp, (x) —v(z)|| =0, (7.4.8)

where {b;};en = 7', because 7 is still countable. Now, for every x € A we can choose an
index ¢ that realizes ||vp, (x) — v(z)|| < e(x), for example:

i(x) :=inf{i e N : ||op,(z) —v(2)| < e(z)}. (7.4.9)

Now, letting Ay = {z : i(x) = k}, it is clear by (7.4.8), (7.4.9) that |, Ay = A and in

particular we have that there exists a ko such that p(Ag,) > 0 (all the measurability issues are

trivial because the maps vp, and v are Borel). Now it is clear that b = by, satisfies (7.4.7).
O
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Theorem 7.4.8 Let f € W'P(X, ||| x,m)NCY(X). Then |V f|,(z) = |df|s,|(x) for m-almost
every x € X.

Proof.  We begin to show that |df|s | is a weak gradient. In fact it is easy to see that for
every b € Der?? we have

()| = ldf (vo)| < |dfls,| - [vs] = |df]s, |- |b]

In order to show the other inequality we suppose that there exists a set of positive measure A
where |df[s,| > [V flp; in this set we can find a unit vector in v € S, such that |df|s,| = df (v)
(the map v is Borel thanks to the continuity of df). Then for every x € A we define £(z) =
|df |5, | =1V £lp

2ldfs,|
that

> (0, and then we apply Lemma 7.4.7 to obtain an admissible derivation b such

p{zre A : |jup(x) —v(x)| <e(x)} > 0. (7.4.10)
Now, thanks to Proposition 7.4.6 we should have

|df (ve)| o |df (v + (vp — v)]
loall v+ (vo — )]l
|df (v)| = |dfs, | - lvp — v]|
[oll + [lvp — vl
1—
= 1dfls, 1T
> |dfs,|(1 = 2¢) = [V flp,

IVflp =

getting a contradiction. O
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