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Abstract

In this paper, we establish new L1-type estimates for the classical
Riesz potentials of order 1/2 < α < 1. One can alternatively view this
as a sharpening of a result of Stein and Weiss on the mapping properties
of Riesz potentials on the real Hardy space H1(RN ) or a new family of
L1-Sobolev inequalities for the Riesz fractional gradient.

1 Introduction and Main Results
Let N ≥ 2 and define the Riesz potential of order 0 < α < N by its action on a
measurable function u by convolution, i.e.

Iαu(x) ≡ (Iα ∗ u)(x) :=
1

γ(α)

ˆ
RN

u(y)

|x− y|N−α
dy,

whenever it is well-defined. Here, γ(α) is a normalization constant [14, p. 117]
that ensures the Riesz potentials satisfy the semigroup property

Iα+βu = IαIβu, for α, β > 0, α+ β < N,

for u in a suitable class of functions.
The study of the mapping properties of Iα on Lp(RN ) was initiated by

Sobolev, who proved the following fundamental theorem about integrals of the
potential type in 1938 [11, p. 50].

Theorem 1.1 (Sobolev) Let 0 < α < N and 1 < p < N/α. There exists a
constant C = C(p, α,N) > 0 such that

‖Iαu‖LNp/(N−αp)(RN ) ≤ C‖u‖Lp(RN ) (1.1)

for all u ∈ Lp(RN ).
∗armin.schikorra@unibas.ch, A.S. supported by SNF
†dspector@math.nctu.edu.tw, D.S. supported by MOST 103-2115-M-009-016-MY2

1



In particular, we see that Sobolev’s result concerns Lp estimates for Riesz
potentials when 1 < p < N

α , and strictly excludes the case p = 1. Indeed, it is
well-known that no such inequality as (1.1) can hold in this regime. One may
consider, for example, u = χB(0,1). Then for |x| large we have that

Iαu(x) =
1

γ(α)

ˆ
B(0,1)

1

|x− y|N−α
dy

≥ c

|x|N−α
,

which shows that the decay at infinity is insufficient for Iαu to belong to
L

N
N−α (RN ).
It is natural then to ask if there is a substitute for the inequality (1.1).

One such substitute was given by Stein and Weiss [15, p. 31], where they
demonstrated that if one replaces Lp(RN ) with the real Hardy space

Hp(RN ) := {u ∈ Lp(RN ) : Ru ∈ Lp(RN ;RN )}

(where Ru := DI1u is the vector-valued Riesz transform), one can extend the
validity of Theorem 1.1 to the regime p = 1. For p ∈ (1,∞), Hp(RN ) = Lp(RN ),
but for p = 1 the Hardy space H1(RN ) is strictly smaller than L1(RN ). Their
result implies the following theorem of interest to our considerations.

Theorem 1.2 (Stein-Weiss) Let 0 < α < N and 1 ≤ p < N
α . There exists a

constant C = C(p, α,N) > 0 such that

‖Iαu‖LNp/(N−αp)(RN ) ≤ C
(
‖u‖Lp(RN ) + ‖Ru‖Lp(RN ;RN )

)
for all u ∈ Hp(RN ).

Actually, the approach to Sobolev inequalities due to Gagliardo [5, p. 120]
and Nirenberg [8, p. 128] gives another replacement to Theorem 1.1 for 1 ≤
α < N . Indeed, written in the language of potentials, one sees that the results
[5, 8] assert the existence of a constant C > 0 such that

‖I1u‖LN/(N−1)(RN ) ≤ C‖Ru‖L1(RN ;RN ),

for all u ∈ C∞c (RN ) such that Ru ∈ L1(RN ;RN ). Therefore, if 1 ≤ α < N , the
preceding inequality and Theorem 1.1 applied to Iαu = Iα−1I1u allows us to
deduce that

‖Iαu‖LN/(N−α)(RN ) ≤ C‖I1u‖LN/(N−1)(RN )

≤ C‖Ru‖L1(RN ;RN ),

for all u ∈ C∞c (RN ) such that Ru ∈ L1(RN ;RN ).
Thus, although it is not possible to obtain the L1 estimate

‖Iαu‖LN/(N−α)(RN ) ≤ C‖u‖L1(RN ),

for all 0 < α < N , Stein and Weiss showed that one does have

‖Iαu‖LN/(N−α)(RN ) ≤ C(‖u‖L1(RN ) + ‖Ru‖L1(RN ;RN )).
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However, when 1 ≤ α < N , it is a consequence of Gagliardo and Nirenberg’s
work that one has the stronger L1-type estimate

‖Iαu‖LN/(N−α)(RN ) ≤ C‖Ru‖L1(RN ;RN ).

The main result of this paper is the following theorem establishing new L1-
type estimates for the Riesz potentials for 1/2 < α < 1.

Theorem A Let N ≥ 2 and 1/2 < α < N . There exists a constant C =
C(α,N) > 0 such that

‖Iαu‖LN/(N−α)(RN ) ≤ C‖Ru‖L1(RN ;RN )

for all u ∈ C∞c (RN ) such that Ru ∈ L1(RN ;RN ).

Remark 1.3 Theorem A is false when N = 1, which can be seen by taking
Ru to approximate a Dirac mass (and in this setting Ru = Hu, the Hilbert
transform). Then Iαu ≈ c x

|x|2−α , and therefore one sees that the integral on the
left hand side diverges.

Our motivation for such an inequality can be found in the study of cer-
tain fractional partial differential equations introduced in [10], where existence
results are demonstrated for a continuous spectrum of such equations parame-
terized by the fractional gradient

Dαu := DI1−αu,

when 0 < α < 1. With this notation, an alternative formulation of Theorem A
is the following.

Theorem A′ Let N ≥ 2 and 1/2 < α < 1. There exists a constant C =
C(α,N) > 0 such that

‖u‖LN/(N−α)(RN ) ≤ C‖Dαu‖L1(RN ;RN ) (1.2)

for all u ∈ C∞c (RN ).

Although in general the weak-type mapping properties of Iα in the Lorentz
space LN/(N−α),∞(RN ) are sufficient to guarantee existence of solutions to the
fractional partial differential equations of interest, the sharp inequality in the
integer order Sobolev setting and the regime p > 1 suggested the validity of
Theorem A′. In fact, one might have guessed such a theorem from several
additional factors. For instance, the asymptotics of the constant in Theorem 1.1
are O(1/(p − 1)) as p → 1, which agrees with the asymptotics of the operator
norm of the vector-valued Riesz transform R : Lp(RN ) → Lp(RN ;RN ). More
recently, we have the result of the second author and R. Garg [3, 4] which shows
the logarithmic potential INu defined for u ∈ C∞c (RN ) by

INu(x) =
1

|SN−1|

ˆ
RN

log
1

|x− y|
u(y) dy,

has for any u with sufficient decay at infinity and
´
u = 0 the representation

INu(x) =
1

|SN−1|

ˆ
RN

x− y
|x− y|

·Ru(y) dy.
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Therefore, when α = N one has the corresponding estimate

‖INu‖L∞(RN ) ≤ C‖Ru‖L1(RN ;RN ).

In fact, we suspect that such a result holds for 0 < α < N , for which we
have following conjecture.

Conjecture 1.4 Let N ≥ 2 and suppose 0 < α < N . There exists a constant
C = C(α,N) > 0 such that

‖Iαu‖LN/(N−α)(RN ) ≤ C‖Ru‖L1(RN ;RN )

for all u ∈ C∞c (RN ) such that Ru ∈ L1(RN ;RN ).

The proofs of Theorems A and A′ are a simple consequence of a duality
argument and following highly non-trivial result due to Bousquet, Mironescu,
and Russ [2] concerning the existence of solutions to divergence equations in the
Triebel-Lizorkin spaces.

Theorem 1.5 Suppose −1/2 < s ≤ N
2 − 1 and (1 + s)p = N . There exists a

constant C > 0 such that for any f ∈ Ḟ s,pq (B(0, 1)) with
´
B(0,1)

f = 0, there
is a function Y ∈ L∞(B(0, 1);RN ) ∩ Ḟ s+1,p

q (B(0, 1);RN ) with tr(Y) = 0 that
satisfies

−divY = f in D′(B(0, 1)),

and
‖Y‖L∞(B(0,1)) + ‖Y‖Ḟ s+1,p

q (B(0,1)) ≤ C‖f‖Ḟ s,pq (B(0,1)).

Here, Ḟ s,pq (RN ) denotes the homogeneous Triebel-Lizorkin space, and Ḟ s,pq (B(0, 1))
its restriction to the set B(0, 1). For the theory on Triebel-Lizorkin spaces we
refer to [12, 9] and [6, Chapter 6]. We will not need to use Theorem 1.5 in
this generality, as we will see in Section 2 below we only require the case q = 2,
where Ḟ s,p2 (RN ) can be identified with the homogeneous fractional Sobolev space
L̇s,p(RN ), [6, Remark 6.5.2, Definition 6.2.5]. This fact, combined with an ap-
propriate scaling argument, establishes our result. We will shortly provide fur-
ther details on these spaces, though let us first make several remarks concerning
Theorem 1.5.

At the heart of the construction in Theorem 1.5 is a sort of one dimensional
integration in each direction in Fourier space, to which one must make appropri-
ate modification by subdividing the Littlewood-Paley representation into finer
pieces and then localizing again via the Fejér kernel. The first step is somewhat
reminiscent of the real space proof of the Sobolev inequality for p = 1 due to
Gagliardo and Nirenberg, though the subsequent steps rely on harmonic analysis
results that are quite deep. The construction is originally due to Bourgain and
Brezis [1], who had proven the result where f is in the Lebesgue space LN . The
extension to the scale of spaces in [2] which include the homogeneous fractional
Sobolev spaces is crucial to our result, and conversely, our result is informative
toward the discussion in [2] over the values of s, p for which the latter result
holds. There, the authors require the conditions

−1/2 < s,

s ≤ N

2
− 1 (p ≥ 2),
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which in one dimension shows one can only apply their arguments if there exists

s ∈ (−1

2
,−1

2
].

The fact that this interval is empty is related to the failure of Theorem A when
N = 1 mentioned in Remark 1.3. Any improvement on this interval would imply
by our argument the existence of an L1-type inequality for the Riesz potentials
in one dimension, an absurdity. Thus, there is no possibility to improve their
result in one dimension by lowering the values of s or p, while if one wants to
improve their result in N ≥ 2, one should use techniques not applicable in the
one dimensional case.

2 Proofs of the Main Results
As Theorems A and A′ concern the Riesz potentials, let us first recall their
relationship with the fractional Laplacian and homogeneous fractional Sobolev
spaces. We have that the fractional laplacian of order s > −N is defined by

(−∆)
s
2 f :=

(
(2π|ξ|)sf̂(ξ)

)∨
.

Here, we use the convention

f̂(ξ) :=

ˆ
RN

f(x)e−2πix·ξ dx

for the Fourier transform, the notation (·)∨ to denote its inverse. With this
definition, one has the equivalence (−∆)s/2f ≡ I−sf , cf. [14, p. 117].

We now connect the Triebel-Lizorkin spaces Ḟ s,pq utilized in Theorem 1.5 and
the homogeneous Sobolev spaces as follows. We have that Ḟ s,p2 (RN ) = L̇s,p(RN )
[6, Remark 6.5.2, Definition 6.2.5], where we recall that

L̇s,p(RN ) := {f ∈ D′(RN ) : (−∆)s/2f ∈ Lp(RN )}.

By definition, the (semi-)norm is given by

‖f‖L̇s,p(RN ) := ‖(−∆)s/2f‖Lp(RN ),

which is a norm for −1 < s ≤ 0, while for 0 < s < 1 becomes a norm modulo
constants. The restriction space is defined in [13, p. 59, Definition 1.95] as

L̇s,p(B(0, 1)) := {f ∈ D′(B(0, 1)) : ∃g ∈ L̇s,p(RN ) s.t. g = f on B(0, 1)}.

This produces a norm for −1 < s < 0 on the restriction given by

‖f‖L̇s,p(B(0,1)) := inf{‖g‖L̇s,p(RN ) : g ∈ L̇s,p(RN ), g = f on B(0, 1)}.

Finally, Ḟ s,p2 (B(0, 1)) = L̇s,p(B(0, 1)), since it is similarly defined as a restriction
space.

We now state and prove a consequence of Theorem 1.5 adapted to our pur-
poses.
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Corollary 2.1 Suppose 1/2 < α < 1, αp = N and f ∈ C∞c (RN ). Define

Fn(x) :=
(

(−∆)
1−α
2 f

)
(nx)−

 
B(0,1)

(−∆)
1−α
2 f(nz) dz.

Then there exists a constant C > 0 independent of f and Yn ∈ L∞(B(0, n);RN )∩
L̇α,p(B(0, n);RN ) with tr(Yn) = 0 which satisfies

−divYn(x) = Fn(
x

n
) in D′(B(0, n))

and
lim
n→∞

‖Yn‖L∞(B(0,n)) ≤ C‖f‖LN/α(RN ).

Proof of Corollary 2.1. Let f ∈ C∞c (RN ) and observe that from the
definition of Fn, one has Fn : B(0, 1)→ R and

ffl
B(0,1)

Fn(x) dx = 0. Moreover,
the following calculation shows that Fn(x) ∈ L̇−1+α,p(B(0, 1)). By the triangle
inequality we estimate

‖Fn‖L̇−1+α,p(B(0,1)) ≤ ‖(−∆)
1−α
2 f(nx)‖L̇−1+s,p(B(0,1)) +

∥∥∥∥∥
 
B(0,1)

(−∆)
1−α
2 f(nz) dz

∥∥∥∥∥
L̇−1+α,p(B(0,1))

.

(2.1)

Now,
(
(−∆)(1−α)/2f

)
(nx) itself is an admissible extension from B(0, 1) to RN

for the computation of the norm of the first function on the right hand side, so
that

‖(−∆)
1−α
2 f(nx)‖L̇−1+α,p(B(0,1)) ≤ n

−1+α
(ˆ

RN
|f(nx)|p dx

) 1
p

≤ 1

n
‖f‖LN/α(RN ).

Let us observe that

(−∆)
1−α
2 f(x) = −div RIαf.

so that if supp f ⊂ B(0, R1), then changing variables x = nz and applying the
divergence theorem we can estimate∣∣∣∣∣
 
B(0,1)

(−∆)
1−α
2 f(nz) dz

∣∣∣∣∣ =
1

nN

∣∣∣∣∣
ˆ
B(0,n)

(−∆)
1−α
2 f(x) dx

∣∣∣∣∣
=

c

nN

∣∣∣∣∣
ˆ
∂B(0,n)

ˆ
B(0,R1)

f(y)
x− y

|x− y|N+1−α dy · n dHN−1(x)

∣∣∣∣∣
≤ C ′

nN+1−α ,

whenever n > R1. Therefore, we can estimate the second term of (2.1) by∥∥∥∥∥
 
B(0,1)

(−∆)
1−α
2 f(nz) dz

∥∥∥∥∥
L̇−1+α,p(B(0,1))

=

∣∣∣∣∣
 
B(0,1)

(−∆)
1−α
2 f(nz) dz

∣∣∣∣∣ ‖1‖L̇−1+α,p(B(0,1))

≤ C ′

nN+1−α ‖1‖L̇−1+α,p(B(0,1)).

6



It only remains to check that this last norm is finite. However, if we make an
extension by a usual cutoff-function g0 ∈ C∞c (B(0, 2)) with g0 ≡ 1 in B(0, 1),
by Theorem 1.1 we have

||I1−αg||LN/α(RN ) ≤ ||g||LN (RN ) ≤ C,

from which the estimate follows. We thus conclude that

‖Fn‖L̇−1+α,p(B(0,1)) ≤
1

n

(
‖f‖LN/α(RN ) +

C ′

nN−α

)
,

whenever n > R1. Therefore, as Fn satisfies the hypothesis of Theorem 1.5
(with s = −1 + α), we may find a function Ỹn such that tr(Ỹn) = 0, (on
∂B(0, 1))

−div Ỹn(x) = Fn(x) in D′(B(0, 1))

and
‖Ỹn‖L∞(B(0,1)) + ‖Ỹn‖L̇α,p(B(0,1)) ≤ C‖Fn‖L̇−1+α,p(B(0,1)).

We then define Yn(x) := nỸn( xn ), observing that tr(Yn) = 0 (on ∂B(0, n)),
while

−divYn(x) = −div Ỹn(
x

n
)

= Fn(
x

n
)

Moreover, we have

‖Yn‖L∞(B(0,n)) = n‖Ỹn‖L∞(B(0,1))

≤ Cn‖Fn‖L̇−1+α,p(B(0,1))

= C(‖f‖LN/α(RN ) +
C

nN−α
),

from which the desired estimate follows by taking the limit as n→∞.
We now proceed to prove Theorem A, while the proof of Theorem A′ is

similar.
Proof of Theorem A. Let N ≥ 2. From the discussion in the intro-

duction, it suffices to consider the case 1/2 < α < 1. By duality, we have
that

‖Iαu‖LN/(N−α) = sup
‖f‖

LN/α
≤1

ˆ
RN

(Iαu)f

≤ 2

ˆ
RN

(Iαu)f,

for some f ∈ C∞c (RN ) with ‖f‖N
α
≤ 1. Then the identity f = I1−α(−∆)

1−α
2 f ,

Fubini’s theorem, and changing variables gives the estimate

‖Iαu‖LN/(N−α) ≤ 2

ˆ
RN

I1u (−∆)
1−α
2 f.
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The main point now is that we would like to use Corollary 2.1 to introduce
−divYn and integrate by parts. To this end, we recall that in the proof of
Corollary 2.1 we observed that if supp f ⊂ B(0, R1) then∣∣∣∣∣

ˆ
B(0,n)

(−∆)
1−α
2 f(z) dz

∣∣∣∣∣ ≤ C

n1−α
,

for n sufficiently large. Meanwhile, Jensen’s inequality and Theorem 1.1 imply
that for any 1 < r < N , denoting r∗ = Nr

N−r , we can estimate

lim
n→∞

∣∣∣∣∣
 
B(0,n)

I1u dx

∣∣∣∣∣ ≤ lim
n→∞

( 
B(0,n)

|I1u|r
∗
dx

) 1
r∗

≤ C

n1/r∗
‖u‖Lr(RN ).

Therefore,

lim
n→∞

 
B(0,n)

I1u(z) dz

ˆ
B(0,n)

(−∆)
1−α
2 f(z) dz = 0,

and so if we define

Fn(x) := (−∆)
1−α
2 f(nx)−

 
B(0,1)

(−∆)
1−α
2 f(nz) dz,

we see that

‖Iαu‖LN/(N−α) ≤ 2 lim
n→∞

ˆ
B(0,n)

I1u(x) Fn(x/n) dx.

Now, applying Corollary 2.1, we can find Yn ∈ L∞(B(0, n)) with tr(Yn) = 0
such that

−divYn(x) = Fn(
x

n
) in D′(B(0, n))

and
lim
n→∞

‖Yn‖L∞(B(0,n)) ≤ C‖f‖LN/α .

Since I1u ∈ L̇α,p(B(0, n)) and tr(Yn) = 0, we have
ˆ
B(0,n)

I1u(x) Fn(x/n) dx =

ˆ
B(0,n)

∇I1u(x) ·Yn(x) dx,

and so

‖Iαu‖LN/(N−α) ≤ 2 lim
n→∞

ˆ
B(0,n)

Ru ·Yn dx

≤ 2 lim
n→∞

‖Ru‖L1(B(0,n))‖Yn‖L∞(B(0,n))

≤ C‖Ru‖L1(RN )‖f‖LN/α(RN ),

which implies the thesis.
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