An L'-type estimate for Riesz potentials
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Abstract

In this paper, we establish new L!-type estimates for the classical
Riesz potentials of order 1/2 < & < 1. One can alternatively view this
as a sharpening of a result of Stein and Weiss on the mapping properties
of Riesz potentials on the real Hardy space H'(R™) or a new family of
L*-Sobolev inequalities for the Riesz fractional gradient.

1 Introduction and Main Results

Let N > 2 and define the Riesz potential of order 0 < o < N by its action on a
measurable function u by convolution, i.e.

Tou(z) = (Iy xu)(x) := ’y(la) /RN z _u?(JyJ)V_a dy,

whenever it is well-defined. Here, () is a normalization constant [14, p. 117]
that ensures the Riesz potentials satisfy the semigroup property

Ionipu = I,1Igu, for o,3 >0, a+ B < N,

for w in a suitable class of functions.

The study of the mapping properties of I, on LP(RY) was initiated by
Sobolev, who proved the following fundamental theorem about integrals of the
potential type in 1938 [11, p. 50].

Theorem 1.1 (Sobolev) Let 0 < a < N and 1 < p < N/a. There exists a
constant C = C(p, o, N) > 0 such that

Mol v/ - gy < Cllul oy (1.1)

for all w € LP(RY).
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In particular, we see that Sobolev’s result concerns LP estimates for Riesz
potentials when 1 < p < %, and strictly excludes the case p = 1. Indeed, it is
well-known that no such inequality as (1.1) can hold in this regime. One may
consider, for example, u = xp(o,1)- Then for |z| large we have that

1 1
TIou(x) = —/ — dy
v(a@) Jpo,) lv—ylN =

C
= JaNer

which shows that the decay at infinity is insufficient for I,u to belong to
Lv== (RM).

It is natural then to ask if there is a substitute for the inequality (1.1).
One such substitute was given by Stein and Weiss [15, p. 31], where they
demonstrated that if one replaces LP(RY) with the real Hardy space

HP(RY) := {u € LP(RY) : Ru € LP(RY;RM)}

(where Ru := DI u is the vector-valued Riesz transform), one can extend the
validity of Theorem 1.1 to the regime p = 1. For p € (1,00), HP(RY) = LP(RY),
but for p = 1 the Hardy space H!(R") is strictly smaller than L!(RY). Their
result implies the following theorem of interest to our considerations.

Theorem 1.2 (Stein-Weiss) Let 0 <o < N and 1 < p < X There exists a
constant C' = C(p,a, N) > 0 such that

[ aullpve/v—ap@yy < C (HUHLP(RN) + ||RUHLP(RN;RN))
for all u € HP(RY).

Actually, the approach to Sobolev inequalities due to Gagliardo [5, p. 120]
and Nirenberg [8, p. 128] gives another replacement to Theorem 1.1 for 1 <
a < N. Indeed, written in the language of potentials, one sees that the results
[5, 8] assert the existence of a constant C' > 0 such that

[Lrull py/ov-v @yy < Cl|Rull 1@y iz,

for all u € C°(RY) such that Ru € L'(RY;RY). Therefore, if 1 < a < N, the
preceding inequality and Theorem 1.1 applied to I,u = I,_1l1u allows us to
deduce that

HIQUHLN/(N—Q) RN § CHIlu||LN/(N—1) RN
(RY) (RY)

< C||Rul| 1 (v vy,

for all u € C°(RY) such that Ru € L*(RN;RY).
Thus, although it is not possible to obtain the L' estimate

[Laull pr/ov-er@ny < Cllull L1 @nys
for all 0 < a < N, Stein and Weiss showed that one does have

[ Laull prv/ov-cr@ny < C(llullpr@ny + [[Rull L1 @y izyy)-



However, when 1 < a < N, it is a consequence of Gagliardo and Nirenberg’s
work that one has the stronger L'-type estimate

||Iau||LN/(N—a)(RN) < CHRUHLI(]RN;]RN).

The main result of this paper is the following theorem establishing new L!-
type estimates for the Riesz potentials for 1/2 < a < 1.

Theorem A Let N > 2 and 1/2 < o < N. There exists a constant C =
C(a,N) > 0 such that

”IauHLN/(N*M(JRN) < C”RUHLl(RN;]RN)
for all u € C*(RY) such that Ru € L*(RY;RY).

Remark 1.3 Theorem A is false when N = 1, which can be seen by taking
Ru to approximate a Dirac mass (and in this setting Ru = Hu, the Hilbert
transform). Then I u =~ ¢
left hand side diverges.

‘zlgla , and therefore one sees that the integral on the

Our motivation for such an inequality can be found in the study of cer-
tain fractional partial differential equations introduced in [10], where existence
results are demonstrated for a continuous spectrum of such equations parame-
terized by the fractional gradient

D% := DI _,u,

when 0 < a < 1. With this notation, an alternative formulation of Theorem A
is the following.

Theorem A’ Let N > 2 and 1/2 < o < 1. There exists a constant C =
C(a,N) > 0 such that

HUHLN/(N—Q)(RN) < CHDau||L1(RN;RN) (1.2)
for all u € C2°(RY).

Although in general the weak-type mapping properties of I, in the Lorentz
space LN/(N=a).20(RN) are sufficient to guarantee existence of solutions to the
fractional partial differential equations of interest, the sharp inequality in the
integer order Sobolev setting and the regime p > 1 suggested the validity of
Theorem A’. In fact, one might have guessed such a theorem from several
additional factors. For instance, the asymptotics of the constant in Theorem 1.1
are O(1/(p — 1)) as p — 1, which agrees with the asymptotics of the operator
norm of the vector-valued Riesz transform R : LP(RY) — LP(RY;RY). More
recently, we have the result of the second author and R. Garg [3, 4] which shows
the logarithmic potential Iyu defined for u € C°(RY) by

1 1
I == | log— u@y)d
NU((E) ‘SN_ll RN og ‘.T — y| U(y) Y,

has for any « with sufficient decay at infinity and [ u = 0 the representation

1 xr —

Inu(z) =



Therefore, when o = N one has the corresponding estimate
[Inullpe@myy < CllRullpy @y gyy-

In fact, we suspect that such a result holds for 0 < a < N, for which we
have following conjecture.

Conjecture 1.4 Let N > 2 and suppose 0 < a < N. There exists a constant
C =C(a,N) >0 such that

||IauHLN/<N*a>(]RN) < C||Rul| L1 gy mvy
for all u € C*(RY) such that Ru € L*(RY;RY).

The proofs of Theorems A and A’ are a simple consequence of a duality
argument and following highly non-trivial result due to Bousquet, Mironescu,
and Russ [2] concerning the existence of solutions to divergence equations in the
Triebel-Lizorkin spaces.

Theorem 1.5 Suppose —1/2 < s < & —1 and (1+ s)p = N. There ezists a
constant C' > 0 such that for any f € F;’p(B(O,l)) with fB(O y S =0, there

is a function Y € L*°(B(0,1);RN) N F;*l’p(B(O, 1); RY) with tr(Y) = 0 that
satisfies

—divY = f in D'(B(0,1)),

and
1Yz B0,1)) + 1Y 410 (50,1)) < CUF iz (00,1

Here, F, #P(RN) denotes the homogeneous Triebel-Lizorkin space, and E 2P (B(0,1))
its restriction to the set B(0,1). For the theory on Triebel-Lizorkin spaces we
refer to [12, 9] and [6, Chapter 6]. We will not need to use Theorem 1.5 in
this generality, as we will see in Section 2 below we only require the case ¢ = 2,
where FQS P(RY) can be identified with the homogeneous fractional Sobolev space
LsP(RN), [6, Remark 6.5.2, Definition 6.2.5]. This fact, combined with an ap-
propriate scaling argument, establishes our result. We will shortly provide fur-
ther details on these spaces, though let us first make several remarks concerning
Theorem 1.5.

At the heart of the construction in Theorem 1.5 is a sort of one dimensional
integration in each direction in Fourier space, to which one must make appropri-
ate modification by subdividing the Littlewood-Paley representation into finer
pieces and then localizing again via the Fejér kernel. The first step is somewhat
reminiscent of the real space proof of the Sobolev inequality for p = 1 due to
Gagliardo and Nirenberg, though the subsequent steps rely on harmonic analysis
results that are quite deep. The construction is originally due to Bourgain and
Brezis [1], who had proven the result where f is in the Lebesgue space LY. The
extension to the scale of spaces in [2] which include the homogeneous fractional
Sobolev spaces is crucial to our result, and conversely, our result is informative
toward the discussion in [2] over the values of s,p for which the latter result
holds. There, the authors require the conditions

-1/2 < s,

N



which in one dimension shows one can only apply their arguments if there exists

1 1
s € ( 5 2].
The fact that this interval is empty is related to the failure of Theorem A when
N = 1 mentioned in Remark 1.3. Any improvement on this interval would imply
by our argument the existence of an L'-type inequality for the Riesz potentials
in one dimension, an absurdity. Thus, there is no possibility to improve their
result in one dimension by lowering the values of s or p, while if one wants to
improve their result in N > 2, one should use techniques not applicable in the
one dimensional case.

2 Proofs of the Main Results

As Theorems A and A’ concern the Riesz potentials, let us first recall their
relationship with the fractional Laplacian and homogeneous fractional Sobolev
spaces. We have that the fractional laplacian of order s > —N is defined by

(-a)i7 = (Crle)F©)

Here, we use the convention
€)= [ p@)eme da
]RN

for the Fourier transform, the notation (-)V to denote its inverse. With this
definition, one has the equivalence (—A)*/2f = I_f, cf. [14, p. 117].
We now connect the Triebel-Lizorkin spaces F;*F utilized in Theorem 1.5 and

the homogeneous Sobolev spaces as follows. We have that F?(RN) = L5?(RY)
[6, Remark 6.5.2, Definition 6.2.5], where we recall that

LoP(RY) := {f € D'(RY) : (~A)*%f € LP(RV)}.
By definition, the (semi-)norm is given by
/1

which is a norm for —1 < s < 0, while for 0 < s < 1 becomes a norm modulo
constants. The restriction space is defined in [13, p. 59, Definition 1.95] as

Lsp(RN) *— H(*A)SmeLP(RN)a

L*P(B(0,1)) := {f € D'(B(0,1)) : 3g € L*P(RY) s.t. g = f on B(0,1)}.
This produces a norm for —1 < s < 0 on the restriction given by

/]

ierp,1)) = D)l fen@ry 19 € LSP(RN), g = f on B(0,1)}.
Finally, F5'?(B(0,1)) = L*P(B(0,1)), since it is similarly defined as a restriction
space.

We now state and prove a consequence of Theorem 1.5 adapted to our pur-
poses.



Corollary 2.1 Suppose 1/2 < a <1, ap= N and f € C(RY). Define
Faw)i= ((-8)'5 7)) = £ (-2)'F f(n2) d.
B(0,1)

 Then there exists a constant C' > 0 independent of f and Y, € L>(B(0,n); RM)N
LeP(B(0,n); RY) with tr(Y,) = 0 which satisfies

—divY,(z) = Fn(%) in D'(B(0,n))

and
Jim (1Yo [z (B0.n) < ClFlpavre@s)-

Proof of Corollary 2.1. Let f € C>(RY) and observe that from the
definition of F,,, one has F), : B(0,1) — R and fB(o 1 F,(z) dx = 0. Moreover,

the following calculation shows that F,(z) € L='t*?(B(0,1)). By the triangle
inequality we estimate

l-a l-a
1Pl ooy < 1=A)F F00)l 5 1vom 01y + ]é o T )

(2.1)

L=1+er(B(0,1))

Now, ((—A)1=9)/2f) (nz) itself is an admissible extension from B(0,1) to RY
for the computation of the norm of the first function on the right hand side, so
that

1

H(*A)l%f(nx)”L‘—Hw(B(o,n) <n7ite (/RN |f (nz)[ d:n) '

1
< E”f”LN/a(RN)'

Let us observe that

(—=A) =" f(z) = —div RI,f.
so that if supp f C B(0, R1), then changing variables £ = nz and applying the
divergence theorem we can estimate

()% fn) de| = o | [ (-0)'F fla) do
B(0,1) n B(0,n)
*i / / dy -n dHN " (2)
N | Jonon JB0 Rl) ‘l’ - |NJrl ¢
< W’

whenever n > R;. Therefore, we can estimate the second term of (2.1) by

1400 (B0,

Foa) ) ds
B(0,1)

Foa)E ) ds
B(0,1)

L=1+ep(B(0,1))
Cl
= nN+l-a HlllL—“""“(B’(OJ))'



It only remains to check that this last norm is finite. However, if we make an
extension by a usual cutoff-function g € C°(B(0,2)) with go = 1 in B(0,1),
by Theorem 1.1 we have

111—agllpn/e@yy < gl @y < C,

from which the estimate follows. We thus conclude that

1 c’
IEll i -1tam(B0.1)) < o [ fllare@yy + Joy el I

whenever n > R;. Therefore, as F), satisfies the hypothesis of Theorem 1.5
(with s = =1 4+ «), we may find a function Y,, such that tr(Y,) = 0, (on
0B(0,1))

—divY,(z) = F,(z) in D'(B(0,1))

and

‘?n”LN(B(O,l)) + ||Yn||La,p(B(o,1)) = C”Fn”L—Ha,p(B(o,l))'
We then define Y, (x) := nYn(%), observing that tr(Y,) = 0 (on 0B(0,n)),
while

—divYa(z) = —divYa(D)
n

Moreover, we have

1Yl 2o (B0.0)) = 7l Yl Lo (B(0,1)
< OnlFallj-1tam(B0,1))

C
=C(Ifllxre@ny + nNﬁ),

from which the desired estimate follows by taking the limit as n — co. m

We now proceed to prove Theorem A, while the proof of Theorem A’ is
similar.

Proof of Theorem A. Let N > 2. From the discussion in the intro-
duction, it suffices to consider the case 1/2 < o < 1. By duality, we have
that

Haou|pn/v—ay =  sup / (Iou)f
1Nl Ny <1JRN

<2 /R aw)f,

for some f € C°(RY) with ||f||~» < 1. Then the identity f = I _o(—=A)"= f,
Fubini’s theorem, and changing variables gives the estimate

11—

Ll oy < 2/ Lo (—A)=° .

RN



The main point now is that we would like to use Corollary 2.1 to introduce
—divY,, and integrate by parts. To this end, we recall that in the proof of
Corollary 2.1 we observed that if supp f C B(0, R;) then

[ cayTe
B(0,n)

for n sufficiently large. Meanwhile, Jensen’s inequality and Theorem 1.1 imply

)

C
S e

—x

that for any 1 < r < N, denoting r* = J\],V_Tr, we can estimate
X
. , " ' C
lim Ludz| < lim |[[u|" dx < — = llullpr @y
n— o0 B(0,n) n— oo B(0,n) n /T
Therefore,

lim Iiu(z) dz/ (=A)™= f(2)dz=0,
n—=oc JB(0,n) B(0,n)

and so if we define

we see that

ol pv/v—a) <2 lim Liu(z) Fp(z/n) de.

n— 00 B(0,n)

Now, applying Corollary 2.1, we can find Y,, € L*°(B(0,n)) with tr(Y,) =0
such that

—divY,(z) = F,(2) in D'(B(0,n))
n
and
nh_)rrgo 1Y 0l Lo (B0n)) < CllfllLnva

Since Iju € L*?(B(0,n)) and tr(Y,) = 0, we have

/ Lu(zx) F(x/n) de = / V6u(z)- - Yy(x) de,
B(0,n) B(0,n)

and so

ol pv/iv-a) <2 lim Ru-Y, dx

<2 lim_ [|Rull £ (3(0,n) | YnllLoe (B0.m))
< CO||Rul| pr@my I fll Lvvre @y,

which implies the thesis. m
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