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Abstract

In this paper we establish new L1-type estimates for the classical Riesz
potentials of order α ∈ (0, N):

‖Iαu‖LN/(N−α)(RN ) ≤ C‖Ru‖L1(RN ;RN ).

This sharpens the result of Stein and Weiss on the mapping properties of
Riesz potentials on the real Hardy spaceH1(RN ) and provides a new fam-
ily of L1-Sobolev inequalities for the Riesz fractional gradient.

1 Introduction and Main Results

Let N ≥ 2 and define the Riesz potential Iα of order α ∈ (0, N) by its action on
a measurable function u via the convolution

Iαu(x) ≡ (Iα ∗ u)(x) :=
1

γ(α)

ˆ
RN

u(y)

|x− y|N−α
dy,

whenever it is well-defined. Here, γ(α) = πN/22αΓ(α2 )/Γ(N−α2 ) is a normal-
ization constant [24, p. 117] that ensures that the Riesz potentials satisfy the
semigroup property

Iα+βu = IαIβu, for α, β > 0, such that α+ β < N,

for u in a suitable class of functions.
The study of the mapping properties of Iα on Lp(RN ) was initiated by

Sobolev, who proved the following fundamental theorem about integrals of the
potential type in 1938 [21, p. 50].
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Theorem 1.1 (Sobolev). Let 0 < α < N and 1 < p < N/α. Then there exists a
constant C = C(p, α,N) > 0 such that

‖Iαu‖LNp/(N−αp)(RN ) ≤ C‖u‖Lp(RN ) (1.1)

for all u ∈ Lp(RN ).

In particular we see that Sobolev’s result concerns Lp estimates for Riesz
potentials when 1 < p < N

α and strictly excludes the case p = 1. Indeed, it is
well-known that no such inequality as (1.1) can hold in this regime - one may
consider, for example (cf. [24, p. 119]), an approximation of the identity (for
explicit construction one can see Section 3 of this paper). Then the right-hand-
side of the inequality in Theorem 1.1 stays bounded while pointwise

Iαρε(x)→ Iα(x) =
1

γ(α)

1

|x|N−α
,

which does not belong to the Lebesgue space L
N

N−α (RN ), and Fatou’s lemma
gives the desired contradiction.

It is then natural to ask if there is a substitute for the inequality (1.1). One
possibility was given by Stein and Weiss [25, p. 31], where they demonstrated
that if one replaces Lp(RN ) with the real Hardy space

Hp(RN ) :=
{
u ∈ Lp(RN ) : Ru ∈ Lp(RN ;RN )

}
(where Ru := DI1u is the vector-valued Riesz transform), one can extend the
validity of Theorem 1.1 to the regime p = 1. For p ∈ (1,∞),Hp(RN ) = Lp(RN ),
but for p = 1 the Hardy space H1(RN ) is strictly contained in L1(RN ). Their
result implies the following theorem.

Theorem 1.2 (Stein-Weiss). Let 0 < α < N and 1 ≤ p < N/α. Then there exists a
constant C = C(p, α,N) > 0 such that

‖Iαu‖LNp/(N−αp)(RN ) ≤ C
(
‖u‖Lp(RN ) + ‖Ru‖Lp(RN ;RN )

)
for all u ∈ Hp(RN ).

Actually the approach to Sobolev inequalities due to Gagliardo [10, p. 120]
and Nirenberg [17, p. 128] gives another replacement to Theorem 1.1 for 1 ≤
α < N . Indeed, written in the language of potentials, one sees that the results
[10, 17] assert the existence of a constant C > 0 such that

‖I1u‖LN/(N−1)(RN ) ≤ C‖Ru‖L1(RN ;RN ),

for all u ∈ C∞c (RN ) such that Ru ∈ L1(RN ;RN ). Therefore, if 1 ≤ α < N , the
preceding inequality and Theorem 1.1 applied to Iαu = Iα−1I1u allows us to
deduce that

‖Iαu‖LN/(N−α)(RN ) ≤ C‖I1u‖LN/(N−1)(RN )

≤ C‖Ru‖L1(RN ;RN ),

for all u ∈ C∞c (RN ) such that Ru ∈ L1(RN ;RN ).
The main result of this paper is the following theorem demonstrating that

this L1-type estimate holds for the Riesz potential of any order α ∈ (0, N).
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Theorem A. Let N ≥ 2 and 0 < α < N . Then there exists a constant C =
C(α,N) > 0 such that

‖Iαu‖LN/(N−α)(RN ) ≤ C‖Ru‖L1(RN ;RN )

for all u ∈ C∞c (RN ) such that Ru ∈ L1(RN ;RN ).

Remark 1.3. Theorem A is false when N = 1, see Counterexample 3.2 in Sec-
tion 3.

Our motivation for such an inequality can be found in the study of cer-
tain fractional partial differential equations introduced in [20], where existence
results are demonstrated for a continuous spectrum of such equations param-
eterized by the Riesz fractional gradient

Dαu := DI1−αu,

for 0 < α < 1. With this notation, an alternative formulation of Theorem A is
the following.

Theorem A′. Let N ≥ 2 and 0 < α < 1. Then there exists a constant C =
C(α,N) > 0 such that

‖u‖LN/(N−α)(RN ) ≤ C‖Dαu‖L1(RN ;RN ) (1.2)

for all u ∈ C∞c (RN ).

Theorem A′ is a natural analogy to the Sobolev inequalities known for the
fractional Laplacian when p > 1 and integer order derivatives for p ≥ 1,
though one might have guessed such a theorem from several additional fac-
tors. Firstly, related results for Besov spaces with the same degree of fractional
differentiability have long been known in the literature (see e.g. [6, Lemma
D.2; 8, Theorem 1.4; 13, Theorem 4; 22, Theorem 2; 32, Theorem 8.3]). A sec-
ond factor suggesting such an inequality is the observation that the asymp-
totics of the constant in Theorem 1.1 are O(1/(p − 1)) as p → 1, which agrees
with the asymptotics of the operator norm of the vector-valued Riesz trans-
form R : Lp(RN ) → Lp(RN ;RN ). Finally, there is the more recent work of the
second author and R. Garg [11, 12] which shows that the logarithmic potential
INu, defined for u ∈ C∞c (RN ) by

INu(x) =
1

|SN−1|

ˆ
RN

log

(
1

|x− y|

)
u(y) dy,

has, for any u with1
´
RN u = 0, the representation

INu(x) =
1

|SN−1|

ˆ
RN

x− y
|x− y|

·Ru(y) dy.

Therefore, when α = N one has the corresponding estimate

‖INu‖L∞(RN ) ≤ C‖Ru‖L1(RN ;RN ).

1For this class of functions, this is equivalent to asking Ru ∈ L1(RN ;RN ).
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Our proof of Theorem A is quite direct, and relies only on the boundedness
of the Riesz transform and of the classical maximal function operator on Lp

for 1 < p < +∞. We do not rely upon any Sobolev type embedding nor
any multiplier theorem that goes beyond the Riesz transform. Here the crucial
observation is that the vector-valued Riesz transform is curl-free, i.e.

∂Rju

∂xi
=
∂Riu

∂xj

for all i, j ∈ {1, . . . , N}. In fact, an interesting point to note is that the same
proof shows that one has

‖IαF‖LN/(N−α)(RN ;RN ) ≤ C‖F‖L1(RN ;RN ) (1.3)

for vector fields F ∈ L1(RN ;RN ) that satisfy either curlF = 0 or divF = 0, the
pair of which is reminiscent of the conditions for inclusion in the real Hardy
space [25].

The remainder of the paper is organized as follows. In Section 2 we give
proofs of the main results. In Section 3 we discuss several more intricate ques-
tions in greater detail, including connections of our result with more technical
results from the literature, an open question in regard to a sharp result in the
scale of Lorentz spaces, and the details of the counterexample mentioned in
Remark 1.3.

2 Proofs of the Main Results

We now prove Theorem A. In the course of the proof, we will use C to des-
ignate a constant that may depend upon α and N , though the constant may
change from line to line.

Proof of Theorem A. Let u ∈ C∞c (RN ) be such that Ru ∈ L1(RN ;RN ). We claim
it suffices to show that, for j ∈ {1, . . . , N}, one has the existence of a uniform
constant C = C(α,N) > 0 such that∣∣∣ˆ

RN
RjuIαϕ

∣∣∣ ≤ C‖Ru‖L1(RN ;RN )‖ϕ‖LNα (RN )
(2.1)

for every ϕ ∈ C∞c (RN ).
Indeed, utilizing the identity v =

∑N
i=1−R2

i v, the boundedness of Ri :
LN/(N−α)(RN )→ LN/(N−α)(RN ), and duality we have

‖Iαu‖LN/(N−α)(RN ) ≤ C
N∑
i=1

‖RiIαu‖LN/(N−α)(RN )

= C

N∑
i=1

sup
‖ψi‖LN/α≤1

ˆ
RN

RiIαu ψi.

Now, Fubini’s theorem implies that
ˆ
RN

RiIαu ψi =

ˆ
RN

Riu Iαψi.
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Therefore we can estimate

‖Iαu‖LN/(N−α)(RN ) ≤ C
N∑
i=1

sup
‖ψi‖LN/α≤1

‖Ru‖L1(RN ;RN )‖ψi‖LNα (RN )

= C

N∑
i=1

sup
‖ψi‖LN/α≤1

‖Ru‖L1(RN ;RN )‖ψi‖LNα (RN )

≤ C‖Ru‖L1(RN ;RN ),

which is the thesis.
We therefore proceed to prove inequality (2.1). We follow the strategy of

[28]. Without loss of generality, we take j = 1 and write x = (x′, xN ). We
now introduce a family of mollifiers: we take ρ ∈ C∞c (RN ) such that supp ρ ⊂
B(0, 1), and ˆ

RN
ρ = 1.

Then we define ρε(x) = ρ(x/ε)/εN and ϕε(x) = (ϕ ∗ ρε)(x) so that
ˆ
RN−1

R1u(x′, xN ) Iαϕ(x′, xN ) dx′ =

ˆ
RN−1

R1u(x′, xN ) [Iαϕ(x′, xN )− Iαϕε(x′, xN )] dx′

+

ˆ
RN−1

R1u(x′, xN ) Iαϕε(x
′, xN ) dx′

=: I(ε) + II(ε).

For the first term we begin with the bound

I(ε) ≤ ‖R1u(·, xN )‖L1(RN−1)‖Iαϕ(·, xN )− Iαϕε(·, xN )‖L∞(RN−1).

Now, the fundamental theorem of calculus implies that

Iαϕε(x)− Iαϕδ(x) =

ˆ ε

δ

∂

∂r
ρr ∗ Iαϕ(x) dr

=

ˆ ε

δ

ˆ
RN

σr(x− y) Iαϕ(y) dydr,

where

σr(z) :=
∂ρr
∂r

(z) =
1

rN

[
−∇ρ

(z
r

)
· z
r2
− N

r
ρ
(z
r

)]
.

Thus sending δ → 0, Lebesgue’s dominated convergence theorem implies

Iαϕε(x)− Iαϕ(x) =

ˆ ε

0

ˆ
RN

σr(x− y) Iαϕ(y) dydr.

As before, Fubini’s theorem yields the identity

Iαϕε(x)− Iαϕ(x) =

ˆ ε

0

ˆ
RN

Iασr(x− y)ϕ(y) dydr.

Next, we claim that one has the pointwise inequality

|Iασr(z)| ≤
C

(r + |z|)N−α+1
. (2.2)
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We distinguish two cases: |z| ≤ 2r and |z| > 2r. When |z| ≤ 2r, one has

|Iασr(z)| =
C

rN

∣∣∣∣∣
ˆ
B(0,r)

∇ρ
(
z
r

)
· zr2 + N

r ρ
(
z
r

)
|z − y|N−α

dy

∣∣∣∣∣
≤ C

rN+1

ˆ
B(0,r)

1

|z − y|N−α
dy

≤ C

rN−α+1
.

Then |z| ≤ 2r implies 1/rN−α+1 ≤ 3N−α+1

(|z|+r)N−α+1 , which allows us to deduce the
inequality (2.2) in this regime. Next, when |z| > 2r, we have

Iασr(z) =
C

rN

ˆ
B(0,r)

div
(
ρ
(
y
r

)
y
r

)
|z − y|N−α

dy

=
1

rN

ˆ
B(0,r)

−
ρ
(
y
r

)
y
r

|z − y|N−α+1
· y − z
|y − z|

dy,

which upon the change of variables w = y/r yields the bound

|Iασr(z)| ≤
ˆ
B(0,1)

C

|z − rw|N−α+1
dw

=
1

|z|N−α+1

ˆ
B(0,1)

C

| z|z| −
r
|z|w|N−α+1

dw.

Finally, the assumption that we are in the regime |z| > 2r implies both that the
last integral is bounded and in a similar manner to before that 1/|z|N−α+1 ≤

C
(|z|+r)N−α+1 , thus proving (2.2).

Therefore, we can estimate

‖Iαϕ(·, xN )−Iαϕε(·, xN )‖L∞(RN−1) ≤ C sup
x′∈RN−1

ˆ ε

0

ˆ
RN

|ϕ(y)|
(r + |x− y|)N−α+1

dy dr.

By the Hölder inequality on RN−1, we deduce that

‖Iαϕ(·, xN )− Iαϕε(·, xN )‖L∞(RN−1)

≤ C sup
x′∈RN−1

ˆ ε

0

ˆ
R

(ˆ
RN−1

|ϕ(y′, yN )|Nα dy′
) α
N

(ˆ
RN−1

1

(r +
√
|xN − yN |2 + |x′ − y′|2)N+ N

N−α
dy′
)1− α

N

dyN dr.

If we set
Φ(yN ) =

(ˆ
RN−1

|ϕ(y′, yN )|Nα dy′
) α
N

,

and can establish the estimate

sup
x′∈RN−1

(ˆ
RN−1

1

(r +
√
|xN − yN |2 + |x′ − y′|2)N+ N

N−α
dy′
)1− α

N

≤ C

(r + |xN − yN |)2−
α
N
,
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then we would have the bound

‖Iαϕ(·, xN )− Iαϕε(·, xN )‖L∞(RN−1)

≤ C
ˆ ε

0

ˆ
R

Φ(yN )

(r + |xN − yN |)1−
α
N
dyN dr.

However, let us observe that

r + |xN − yN |+ |x′ − y′| ≤ C
(
r +

√
|xN − yN |2 + |x′ − y′|2

)
,

and soˆ
RN−1

1

(r +
√
|xN − yN |2 + |x′ − y′|2)N+ N

N−α
dy′

≤
ˆ
RN−1

C

(r + |xN − yN |+ |x′ − y′|)N+ N
N−α

dy′

=
C

(r + |xN − yN |)N+ N
N−α

ˆ
RN−1

1

(1 + |x′−y′|
r+|xN−yN | )

N+ N
N−α

dy′.

Integrating in spherical coordinates with center at x′, we find
ˆ
RN−1

1

(1 + |x′−y′|
r+|xN−yN | )

N+ N
N−α

dy′

= C

ˆ ∞
0

tN−2

(1 + t
r+|xN−yN | )

N+ N
N−α

dt

= C(r + |xN − yN |)N−1
ˆ ∞
0

(t′)N−2

(1 + t′)N+ N
N−α

dt′,

from which the result follows.
Finally, considering the integrand on dyadic annuli we have
ˆ ε

0

ˆ
R

Φ(yN )

(r + |xN − yN |)2−
α
N
dyN dr

=

ˆ ε

0

∑
n∈Z

ˆ
2nr<|xN−yN |<2n+1r

Φ(yN )

(r + |xN − yN |)2−
α
N
dyNdr

≤
ˆ ε

0

∑
n

2n+1r

(1 + 2n)2−
α
N

1

r2−
α
N

 
B(xN ,2n+1r)

Φ(yN ) dyNdr

≤
∑
n

2n+1

(1 + 2n)2−
α
N

(ˆ ε

0

1

r1−
α
N
dr

)
MΦ(xN ),

whereMΦ : R → R is the Hardy–Littlewood maximal function of Φ : R → R.
We have thus

I(ε) ≤ C‖R1u(·, xN )‖L1(RN−1)ε
α
NMΦ(xN ). (2.3)

Now for II(ε) we apply the fundamental theorem of calculus to write

II(ε) = −
ˆ
RN−1

ˆ ∞
xN

∂

∂xN
R1u(x′, t) Iαϕε(x

′, xN ) dtdx′.
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We use the fact that the vector-valued Riesz transform is curl-free, i.e.

∂Rju

∂xi
=
∂Riu

∂xj

for all i, j ∈ {1, . . . , N} and Fubini’s theorem to deduce that

−
ˆ
RN−1

ˆ ∞
xN

∂

∂xN
R1u(x′, t) Iαϕε(x

′, xN )dtdx′

= −
ˆ
RN−1

ˆ ∞
xN

∂

∂x1
RNu(x′, t) Iαϕε(x

′, xN )dtdx′

=

ˆ ∞
xN

−
ˆ
RN−1

∂

∂x1
RNu(x′, t) Iαϕε(x

′, xN )dx′dt.

The important point now is that N 6= 1, allowing us to integrate by parts and
obtain

ˆ ∞
xN

−
ˆ
RN−1

∂

∂x1
RNu(x′, t) Iαϕε(x

′, xN )dx′dt

=

ˆ ∞
xN

ˆ
RN−1

RNu(x′, t)
∂

∂x1
Iαϕε(x

′, xN )dx′dt.

Thus,

II(ε) ≤ ‖RNu‖L1(RN ) sup
x′∈RN−1

∣∣∣∣∂Iαϕε∂x1
(x′, xN )

∣∣∣∣ .
In a similar manner to the first case, we see that

∂Iαϕε(x
′, xN )

∂x1
=

ˆ
RN

∂ρε(y)

∂x1
Iαϕ(x− y) dy

=

ˆ
RN

Iα
∂ρε
∂x1

(y)ϕ(x− y) dy,

where we again have the pointwise estimate∣∣∣∣Iα ∂ρε∂x1
(y)

∣∣∣∣ ≤ C

(ε+ |y|)N−α+1
.

Therefore, Hölder’s inequality in RN−1 with an analogous estimate to the pre-
ceding yields the bound

sup
x′∈RN−1

∣∣∣∣∂Iαϕε∂x1
(x′, xN )

∣∣∣∣ ≤ C ˆ
R

Φ(xN − yN )

(ε+ |yN |)2−
α
N
dyN .

Finally, the dyadic splitting can again be employed to enable one to conclude

sup
x′∈RN−1

∣∣∣∂Iαϕε
∂x1

(x′, xN )
∣∣∣ ≤ CMΦ(xN )

ε1−
α
N

,

so that

II(ε) ≤ C‖RNu‖L1(RN )
MΦ(xN )

ε1−
α
N

. (2.4)
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Choosing ε = ‖RNu‖L1(RN )/‖R1u(·, xN )‖L1(RN−1), equations (2.3) and (2.4)
imply that
ˆ
RN−1

R1u(x′, xN ) Iαϕ(x′, xN )dx′ ≤ C‖R1u(·, xN )‖1−
α
N

L1(RN−1)
‖RNu‖

α
N

L1(RN )
MΦ(xN ).

We now integrate this estimate with respect to xN on R to obtain by the classical
Hölder inequality

ˆ
RN

R1u Iαϕ ≤ C‖RNu‖
α
N

L1(RN )

(ˆ
R
‖R1u(·, xN )‖L1(RN−1) dxN

)1− α
N

×
(ˆ

R

(
MΦ(xN )

)N
α dxN

) α
N

.

By the classical maximal function theorem
ˆ
R

(
MΦ(xN )

)N
α dxN ≤ C

ˆ
R

Φ(xN )
N
α dxN = C

ˆ
RN
|ϕ(x)|Nα dx,

which completes the proof of the claim and hence the theorem.

Remark 2.1. Maximal function bounds on the integrals on slices of the type
(2.3) and (2.4) were introduced by Chanillo and Van Schaftingen [9].

Proof of Theorem A′. Theorem A′ can be proven in a similar manner, beginning
with an estimate for u in the space LN/(N−α)(RN ).

3 Connections, Improvements, Counterexamples

3.1 Connections to several results in the literature

We have here given a proof of Theorem A (and one can similarly prove The-
orem A′) using elementary arguments, though there are other possible proofs
that could be employed. We mention several here for both historical propriety,
and to satisfy the curious reader. In Section 1, we have seen that such a re-
sult can be deduced directly from classical and well-known results in the case
α ≥ 1. However, a second method that works for all values of α ∈ (0, N) can
be used if one is willing to accept the embeddings of W 1,1(RN ) and BV (RN )
into Besov spaces explored in [6, Lemma D.2; 8, Theorem 1.4; 13, Theorem 4;
22, Theorem 2; 32, Theorem 8.3]). One then obtains the result by a combina-
tion of these embeddings with the embeddings of Besov spaces into Triebel-
Lizorkin spaces, for example if N ≥ 2 and α ∈ (0, 1) and denoting

1

p
= 1− α

N
,

one has that 1 < p ≤ 2, and so

‖v‖Ḟ 1−α
p,2 (RN ) ≤ C‖v‖Ḃ1−α

p,p (RN ) ≤ C‖Dv‖L1(RN ;RN ),

which from a characterization of the space Ḟ 1−α
p,2 and taking v = I1u implies

‖Iαu‖Lp(RN ) ≤ C‖Ru‖L1(RN ;RN ),
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which is the inequality in Theorem A while the inequality in Theorem A′ fol-
lows in a similar manner taking v = I1−αu.

Finally, as in the original proof of the authors, one can argue by duality.
This method was pioneered by Bourgain and Brezis in the works [2, 3, 5], who
were interested in constructing bounded solutions to the divergence equation

−divY = f

in the critical regime f ∈ LN . The dual result to this is a stronger form of
the inequality of Gagliardo and Nirenberg mentioned in the introduction. A
simpler proof of this result was given by the third author in [28,31,32], which is
the basic idea behind the slicing argument we have utilized. We also mention
that when α > 1/2 one has a stronger inequality in the spirit of the work of
Bourgain and Brezis via the analogous estimates by Bousquet, Mironescu, and
Russ [7] in the scale of Triebel-Lizorkin spaces.

3.2 Lorentz space improvements

As in the case of embeddings for Sobolev spaces, Theorems A and A′ are
sharp in the scale of Lp spaces, though can be improved when one considers
the finer scale of Lorentz spaces. For instance, in Theorem 1.1 one can replace
the LNp/(N−αp)(RN ) norm on the left hand side with that of the Lorentz space
LNp/(N−αp),p(RN ) (see [18, p. 139]). While Lp,p(RN ) = Lp(RN ), a smaller sec-
ond parameter in the Lorentz spaces is more than microscopic improvement.
One can easily see this fact by comparing Trudinger’s result [27] that Du ∈
LN (RN ) implies u is exponentially integrable (and not in general bounded)
with Stein’s result [23] that Du ∈ LN,1(RN ) implies that u is continuous.

In fact, we can show an estimate in the Lorentz space LN/(N−α),q(RN ) for
any q > 1 as follows. Let q′ = N/ε for some ε > 0. Then we utilize inequality
(2.1) to find a C = C(ε,N) > 0 such that∣∣∣ˆ

RN
Rju Iεϕ

∣∣∣ ≤ C‖Ru‖L1(RN ;RN )‖ϕ‖LNε (RN )
,

which combined with the boundedness of Iα−ε : Lq(RN ) → LN/(N−α),q(RN )
[18, p. 139] implies

‖Iαu‖LN/(N−α),q(RN ) ≤ ‖Iεu‖Lq(RN )

≤ C‖Ru‖L1(RN ;RN ),

which gives the desired result.
When α > 1, then Iαu = Iα−1I1u, and ‖I1u‖LN/(N−1),1 ≤ C‖Du‖L1 [1, 26],

which combined with the previously cited convolution estimates of O’Neill
[18, p. 139] shows that one can obtain q = 1 in this regime. Thus, the critical
case here is the endpoint q = 1 and α ∈ (0, 1), for which none of the preced-
ing techniques can obviously applied to obtain the estimate. This leads to the
following open question concerning a sharper L1-type estimate.

Open Question 3.1. Let N ≥ 2 and suppose 0 < α < 1. Does there exists a
constant C = C(α,N) > 0 such that

‖Iαu‖LN/(N−α),1(RN ) ≤ C‖Ru‖L1(RN ;RN )

for all u ∈ C∞c (RN ) such that Ru ∈ L1(RN ;RN )?
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3.3 Counterexamples

We now provide the counterexample mentioned in Remark 1.3, substantiating
our claim that Theorem A is false when N = 1. Note the similarity to the
standard counterexample for the failure of Sobolev’s result in L1 discussed in
the introduction.

Counterexample 3.2. Suppose one had such an inequality as given in The-
orem A. Then by density one obtains the inequality for all functions in the
real Hardy space H1(R). Now, in this setting Ru = Hu is the Hilbert trans-
form, which by our assumption, the identity H2 = −I , and boundedness on
L1/(1−α)(R) would imply

‖Iαv‖L1/(1−α)(R) ≤ C‖HIαv‖L1/(1−α)(R) ≤ C‖v‖L1(R),

for all v ∈ H1(R). Now taking vε(x) = ρ((x − 1)/ε)/ε − ρ((x + 1)/ε)/ε with ρ
as above (vε is the difference of two translated approximations of the identity),
one has vε ∈ H1(R) (as before, for a smooth, compactly supported function a
necessary and sufficient condition for this inclusion is that

´
vε = 0), the right-

hand-side stays bounded, and

Iαvε(x)→ 1

γ(α)

(
1

|x− 1|1−α
− 1

|x+ 1|1−α

)
,

which fails to be locally L1/(1−α) near −1 and +1, and so an application of
Fatou’s lemma gives one the desired contradiction.

The paper [19] contains an example of a one-dimensional failure of an em-
bedding of certain Besov spaces into BV (R). The preceding counterexample
combined with the known embeddings for Besov spaces previously discussed
gives another such example.
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[17] L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa (3) 13 (1959),
115–162.

[18] R. O’Neil, Convolution operators and L(p, q) spaces, Duke Math. J. 30 (1963), 129–142.

[19] B. J. Schmitt and M. Winkler, On embeddings between BV and Ẇ s,p, Preprint no. 6, Lehrstuhl I
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