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Abstract. In this work we introduce a formulation for a non-local Hessian that combines the ideas of

higher-order and non-local regularization for image restoration, extending the idea of non-local gradients to

higher-order derivatives. By carefully choosing the weights, the model allows to improve on the current state
of the art higher-order method, Total Generalized Variation, with respect to overall quality and particularly

close to jumps in the data. In the spirit of recent work by Brezis et al., our formulation also has analytic

implications: for a suitable choice of weights, it can be shown to converge to classical second-order regularizers,
and in fact allows a novel characterization of higher-order Sobolev and BV spaces.
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1. Introduction

The total variation model of image restoration due to Rudin, Osher and Fatemi [ROF92] is now classical,
the problem of being given a noisy image g ∈ L2(Ω) on an open set Ω ⊆ R2 and selecting a restored image
via minimization of the energy

E(u) :=

ˆ
Ω

(u− g)2 dx+ αTV(u).

Here, α > 0 is a regularization parameter at our disposal and TV(u) := |Du|(Ω) is the total variation of
the measure that represents the distributional derivative of a function u ∈ BV(Ω), the space of functions of
bounded variation. Among the known defects of the model is the staircasing effect, stemming from the use
of the TV term in regularization. It is natural, then, to investigate the replacement of the total variation
with another regularizer, for instance a higher-order term (see [Sch98, LLT03, LT06, HS06, CEP07, PS14]
for the bounded Hessian framework, [CL97, BKP10, SST11] for infimal convolution and generalizations,
and [LBL13] for anisotropic variants) or a non-local one (see, for example, the work of Buades, Coll and
Morel [BCM05], Kinderman, Osher and Jones [KOJ05], and Gilboa and Osher [GO08]). In this work, we
introduce and analyze a regularizer that is both higher-order and non-local, and utilize it in a model for
image restoration. The heuristic interpretation of our model is based on a non-local Hessian, and our use
of this nomenclature is justified through a rigorous localization analysis. Moreover, we give some numerical
experiments to demonstrate that using our non-local Hessian, and by a suitable choice of weights, it is possible
to derive specialized models that compete with current state of the art higher-order methods such as the
Total Generalized Variation [BKP10].

Background on non-local gradients. In the first order setting, our analysis of non-local gradients and
their associated energies find its origins in the 2001 paper of Bourgain, Brezis and Mironescu [BBM01]. In
their paper, they had introduced energies of the form

(1.1) Fnu :=

ˆ
Ω

(ˆ
Ω

|u(x)− u(y)|pq

|x− y|pq
ρn(x− y)dx

) 1
q

dy,

where Ω is a smooth bounded domain in RN and 1 ≤ p < ∞, and in the special case q = 1. Here, the
functions ρn are radial mollifiers that are assumed to satisfy the following three properties for all n ∈ N:

ρn(x) ≥ 0,(1.2) ˆ
RN

ρn(x)dx = 1,(1.3)

lim
n→∞

ˆ
|x|>γ

ρn(x)dx = 0, ∀γ > 0.(1.4)

1

ar
X

iv
:1

41
0.

88
25

v1
  [

m
at

h.
N

A
] 

 3
1 

O
ct

 2
01

4



2 JAN LELLMANN, KONSTANTINOS PAPAFITSOROS, CAROLA SCHÖNLIEB AND DANIEL SPECTOR

The work [BBM01] connects the finiteness of the limit as n → ∞ of the functional (1.1) with the inclusion
of a function u ∈ Lp(Ω) in the Sobolev space W 1,p(Ω) if p > 1 or BV(Ω) if p = 1. As in the beginning
of the introduction, the space BV(Ω) refers to the space of functions of bounded variation, and it is no
coincidence that the two papers [BBM01, ROF92] utilize this energy space. Indeed, Gilboa and Osher
[GO08] in 2008 independently introduced an energy similar to (1.1), terming it a non-local total variation,
while the connection of the two and introduction of the parameter q is due to Leoni and Spector [LS11]. In
particular, they show in [LS14] that for p = 1 and q = 2 the functionals (1.1) Γ-converge to a constant times
the total variation. This result extends previous work by Ponce [Pon04b] in the case q = 1 (see also the work
of Aubert and Kornprobst [AK09] for an application of these results to image processing).

Gilboa and Osher [GO08] in fact introduced two forms of non-local total variations, and for our purposes
here it will be useful to consider the second. This alternative involves introducing a non-local gradient
operator, defined by

(1.5) Gnu(x) := N

ˆ
Ω

u(x)− u(y)

|x− y|
x− y
|x− y|

ρn(x− y)dy, x ∈ Ω,

for u ∈ C1
c (Ω). Then, one defines the non-local total variation as the L1 norm of (1.5). The localization

analysis of the non-local gradient (1.5) has been performed by Mengesha and Spector in [MS14], where a
more general (and technical) distributional definition is utilized. Their first observation is that the definition
of the non-local gradient via the Lebesgue integral (1.5) extends to spaces of weakly differentiable functions.
In this regime they discuss the localization of (1.5). They prove that the non-local gradient converges to
its local analogue Du in a topology that corresponds to the regularity of the underlying function u. As a
result, they obtain yet another characterization of the spaces W 1,p(Ω) and BV(Ω). Of notable interest for
image processing purposes is their result on the Γ-convergence of the corresponding non-local total variation
energies defined via non-local gradients of the form (1.5) to the local total variation.

Background on higher-order regularization. As the total variation and many more contributions in
the image processing community have proven, a non-smooth regularization procedure indeed results in a
nonlinear smoothing of the image, smoothing more in homogeneous areas of the image domain and preserving
characteristic structures such as edges. In particular, the total variation regularizer is tuned towards the
preservation of edges and performs very well if the reconstructed image is piecewise constant. The drawback
of such a regularization procedure becomes apparent as soon as images or signals (in 1D) are considered
which do not only consist of flat regions and jumps, but also possess slanted regions, i.e., piecewise affine
parts. The artifact introduced by total variation regularization in this case is called staircasing [Rin00].

In [CL97] Chambolle and Lions propose a higher-order method by means of an infimal convolution of two
convex regularizers. Here, a noisy image is decomposed into three parts g = u1 + u2 + n by solving

(1.6) min
(u1,u2)

1

2

ˆ
Ω

(u1 + u2 − g)2dx+ αTV(u1) + β TV2(u2),

where TV2(u2) := D2u2 is the distributional Hessian of u2. Then, u1 and u2 are the piecewise constant
and piecewise affine parts of g respectively and n the noise (or texture). For recent modifications of this
approach in the discrete setting see also [SS08, SST11]. Other approaches to combine first and second
regularization originate, for instance, from Chan, Marquina, and Mulet [CMM01] who consider total variation
minimisation together with weighted versions of the Laplacian, the Euler-elastica functional [MM98, CKS02]
which combines total variation regularization with curvature penalisation, and many more [LT06, LTC13,
PS14, PSS13]. Recently Bredies et al. have proposed another interesting higher-order total variation model
called Total Generalized Variation (TGV) [BKP10]. The TGV regularizer of order k is of the form

(1.7) TGVk
α(u) = sup

{ˆ
Ω

udivkξ dx : ξ ∈ Ckc (Ω,Symk(RN )), ‖divlξ‖∞ ≤ αl, l = 0, . . . , k − 1

}
,

where Symk(RN ) denotes the space of symmetric tensors of order k with arguments in RN , and α = {αl}k−1
l=0

are fixed positive parameters. Its formulation for the solution of general inverse problems was given in [BV11].
The idea of pure bounded Hessian regularization is considered by Lysaker et al. [LLT03], Scherzer et

al. [Sch98, HS06], Lefkimmiatis et al. [LBU12] and Bergounioux and Piffet [BP10]. In these works the
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considered model has the general form

min
u

1

2

ˆ
Ω

(u− g)2 dx+ α|D2u|(Ω).

In [CEP07], Chan et al. use the squared L2 norm of the Laplacian as a regularizer also in combination with
the H−1 norm in the data fitting term. Further, in [PS08] minimizers of functionals which are regularized
by the total variation of the (l − 1)-th derivative, i.e.,

|D∇l−1u|(Ω),

are studied. Properties of such regularizers in terms of diffusion filters are further studied in [DWB09].
Therein, the authors consider the Euler-Lagrange equations corresponding to minimizers of functionals of
the general type

J (u) =

ˆ
Ω

(u− g)2dx+ α

ˆ
Ω

f

∑
|k|=p

|Dku|2
 dx,

for different non-quadratic functions f . There are also works on higher-order PDE methods for image
regularization, e.g. [CS01, LLT03, BG04, BEG08, BHS09].

Confirmed by all of these works on higher-order total variation regularization the introduction of higher-
order derivatives can have a positive effect on artifacts like the staircasing effect inherent to total variation
regularization. In [DMFLM09], for instance, the authors analyse the positive effect of the Chan, Marquina,
and Mulet model on the staircasing artifact.

Higher-order non-local regularization. From this perspective, the development of a non-local higher-
order method promises to be interesting. One approach to a non-local higher-order method would be to
approximate the gradients using non-local gradients as developed in [MS14]. For example, one can define a
form of non-local Hessian as

(1.8) Gn(∇u)(x) = N

ˆ
Ω

∇u(x)−∇u(y)

|x− y|
⊗ x− y
|x− y|

ρn(x− y)dy,

and obtain some straightforward characterization of W 2,p(RN ) and BV2(RN ), the latter being the space
of W 1,1(RN ) functions whose second order distributional derivative is a bounded Radon measure. Here ⊗
denotes the standard tensor multiplication of vectors. However, we find it advantageous to introduce and
utilize a non-local Hessian that is derivative free, thus only requiring a function u to belong to an Lp space
(instead of W 1,p). In analogy with the theory of distributional derivatives, we first need a notion of non-
local Hessian which can be applied to smooth functions. This definition, via a Lebesgue integral, is as follows.

Definition 1.1. Suppose u ∈ C2
c (RN ). Then we define the non-local Hessian as the Lebesgue integral

(1.9) Hnu(x) :=
N(N + 2)

2

ˆ
RN

u(x+ h)− 2u(x) + u(x− h)

|h|2

(
h⊗ h− |h|2

N+2IN

)
|h|2

ρn(h)dh, x ∈ RN ,

where here IN is the N ×N identity matrix and ρn is a sequence satisfying (1.2)–(1.4).

We can then define the distributional non-local Hessian via its action on test functions.

Definition 1.2. Suppose u ∈ Lp(RN ). Then we define the distributional non-local Hessian componentwise
as

< Hijn u, ϕ >:=

ˆ
RN

uHij
n ϕ dx,(1.10)

for ϕ ∈ C∞c (RN ).

A natural question is then whether these two notions agree. The following theorem shows that this is the
case, provided the Lebesgue integral exists.
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Theorem 1.3 (Non-local Integration by Parts). Suppose that u ∈ Lp(RN ) for some 1 ≤ p < +∞ and
|u(x+h)−2u(x)+u(x−h)|

|h|2 ρn(h) ∈ L1(RN × RN ). Then Hnu ∈ L1(RN ,RN×N ) and for any ϕ ∈ C2
c (RN ) and

i, j = 1 . . . N ,

< Hijn u, ϕ >=

ˆ
RN

Hij
n u(x)ϕ(x) dx,(1.11)

and therefore Hnu = Hnu almost everywhere as functions.

We will see in Section 3, Lemmas 3.1 and 3.2 that the Lebesgue integral even makes sense for u ∈W 2,p(RN )
or BV2(RN ), and therefore the distributional definition Hnu coincides with the Lebesgue integral for these
functions.

In the following, we undertake the rigorous analysis of the non-local Hessian, proving localization results
in various topologies and characterizations of higher-order spaces of weakly differentiable functions. Our first
result is the following theorem concerning the localization in the smooth case.

Theorem 1.4. Suppose that u ∈ C2
c (RN ). Then for any 1 ≤ p ≤ +∞,

Hnu→ ∇2u, in Lp(RN ,RN×N ) as n→∞.

When less smoothness is assumed on u, we have analogous convergence theorems, where the topology of
convergence depends on the smoothness of u. When u ∈W 2,p(RN ), we have the following.

Theorem 1.5. Let 1 ≤ p <∞. Then for every u ∈W 2,p(RN ) we have that

Hnu→ ∇2u in Lp(RN ,RN×N ) as n→∞.

In the setting of BV2(RN ) (see Section 2 for a definition), we have the following theorem on the localization
of the non-local Hessian.

Theorem 1.6. Let u ∈ BV2(RN ). Then

µn → D2u, weakly∗,

i.e., for every φ ∈ C0(RN ,RN×N )

(1.12) lim
n→∞

ˆ
RN

Hnu(x) · φ(x)dx =

ˆ
RN

φ(x) · dD2u.

We have seen that the non-local Hessian is well-defined as a Lebesgue integral and localizes for spaces of
weakly differentiable functions. In fact, it is sufficient to assume that u ∈ Lp(RN ) is a function such that
the distributions Hnu are in Lp(RN ,RN×N ) with a uniform bound of their Lp norms, in order to deduce
that u ∈ W 2,p(RN ) if 1 < p < +∞ or u ∈ BV2(RN ) if p = 1. Precisely, we have the following theorems
characterizing the second order Sobolev and BV spaces.

Theorem 1.7. Let u ∈ Lp(RN ) for some 1 < p <∞. Then

(1.13) u ∈W 2,p(RN ) ⇐⇒ lim inf
n→∞

ˆ
RN
|Hnu(x)|pdx <∞.

Let now u ∈ L1(RN ). Then

(1.14) u ∈ BV2(RN ) ⇐⇒ lim inf
n→∞

ˆ
RN
|Hnu(x)|dx <∞.

While it is a natural extension of the first-order model and very well suited for a rigorous analysis, the
definition of the non-local Hessian in (1.9) has some drawbacks in practice. In order to utilize the full potential
of non-local models in image processing practice, it is natural to allow arbitrary, fixed (non-localizing) weights
σx(h). The difficulty of accommodating this in our current model comes from the fact that (1.9) has a built-
in symmetry that associates triples of points rather than pairs which makes dealing with bounded domains
more difficult and reduces the freedom in choosing the weights. Therefore we also propose an alternative
formulation of the non-local Hessian that is closely related to (1.9) but allows more freedom and is more
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amenable to numerical implementation. It is based on the observation that ultimately all finite-differences
discretizations of the second-order derivatives stem from the requirement that they should be compatible
with the Taylor expansion for smooth functions. More precisely, we can directly define the implicit non-local
gradient Gu(x) ∈ RN and Hessian Hu(x) ∈ Sym(RN×N ) that best explain u around x in terms of a quadratic
model :

(1.15) (G′u(x), H ′u(x)) = argmin
Gu∈RN ,Hu∈Sym(RN×N )

1

2

ˆ
Ω−{x}

(
u(x+ z)− u(x)−G>u z −

1

2
z>Huz

)2

σx(z)dz,

where Ω \ {x} = {y−x : y ∈ Ω}. While more complicated at first, this definition is equivalent to the explicit
model (1.9) under a certain choice of the weights, see Theorem 4.2. As the objectives of the minimization
problems (1.15) are quadratic, their solutions can be characterized by linear optimality conditions. Thus
functionals based on the implicit non-local derivatives can be easily included in usual convex solvers by
adding these conditions. Moreover, the weights σx(z) between any pair of points x and y = x + z can
be chosen arbitrarily, without any restrictions on symmetry. These advantages come at the cost of being
considerably harder to treat analytically, and we leave a rigorous definition and analysis of (1.15) for future
work.

Of practical relevance is the question of how to choose the weights σx for a particular purpose. We
show an example where the weights are used to construct a regularizer that both favours piecewise affine
functions but also allows for jumps in the data. It is motivated by the recent discussion of “Amoeba”
filters in [LDM07, WBV11, Wel12] which combine standard filters such as median filters with non-parametric
structuring elements that are based on the data – that is in long thin objects they would extend along the
structure and thus prevent smoothing perpendicular to the structure. In Amoeba filtering, the shape of a
structuring element at a point is defined as a unit circle with respect to the geodesic distance on a manifold
defined by the image itself. Motivated by their results we propose to extend their method to variational image
processing by using the geodesic distance to set the weights σx. This allows to get a very close approximation
to true piecewise affine regularization, in many cases improving on the results obtained using TGV.

Recently there has been another approach at defining a higher-order extension of non-local regularization
for TGV-based energies [RBP14]. The authors start with the cascading formulation of TGV,

TGV2(u) = inf
w:Ω→RN

α1

ˆ
Ω

|Du− w|+ α0

ˆ
Ω

|Dw|,

which reduces the higher-order differential operators that appear in the definition of TGV to an infimal
convolution of two terms involving only first-order derivatives. These can then be replaced by classical
first-order non-local derivatives, and one obtains an energy of the form

inf
w:Ω→RN

ˆ
Ω

ˆ
Ω

α1(x, y)|u(x)− u(y)− w(x)>(x− y)|dydx+

2∑
i=1

ˆ
Ω

ˆ
Ω

α0(x, y)|wi(x)− wi(y)|dydx.

Comparing this to (1.15), we see that the left integral is similar to our implicit model for first-order derivatives
with w taking the role of Gu, but with the square in (1.15) replaced by a L1-type norm and added to the
energy as a penalty term rather than strictly enforcing optimality.

Finally, let us mention an important localization result from the perspective of variational image process-
ing, the following theorem asserting the Γ-convergence [DM93, Bra02] of the non-local Hessian energies to
the energy of the Hessian.

Theorem 1.8. Assume that ρn satisfy (1.2), (1.3) and (1.4). Then

Γ−
L1(RN )

- lim
n→∞

ˆ
RN
|Hnu| dx = |D2u|(RN ),

where the Γ-limit is taken with respect to the strong convergence un → u in L1(RN ).

The relevance of this theorem in the context of variational problems comes from the fact that Γ-convergence
of the objective functions of a sequence of minimization problems implies convergence of the minimizers in
a suitable topology [Bra02, Ch. 1.5]. Therefore Theorem 1.8 guarantees that under a suitable choice of
weights, the solutions of a class of non-local Hessian-based problems converges to the solution of the local
Hessian-regularized problem, and thus our notion of “non-local Hessian” is justified.
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Organization of the paper. The paper is organized as follows: In Section 2 we recall some preliminary
notions and we fix our notation. Section 3 deals with the analysis of the non-local Hessian functional
(1.9). After a justification of the introduction of its distributional form, we proceed in Section 3.1 with the
localization of (1.9) to the classical Hessian for smooth functions u. The localization of (1.9) to its classical
analogue for W 2,p(RN ) and BV2(RN ) functions is shown in Sections 3.2 and 3.3 respectively. In Section 3.4
we provide the non-local characterizations of the spaces W 2,p(RN ) and BV2(RN ) in the spirit of [BBM01].
The Γ-convergence result, Theorem 1.8, is proved in Section 3.5.

The introduction of the implicit formulation of non-local Hessian (1.15), along with its connection to the
explicit one, is presented in Section 4.1. In Section 4.2 we describe how we choose the weights σx in (1.15) in
order to achieve jump preservation in the restored images. Finally, in Section 4.3 we present our numerical
results, comparing our method with TGV.

2. Preliminaries and Notation

For the reader’s convenience we recall here some important notions that we are going to use in the following
sections and we also fix some notation.

As far as our notation is concerned, whenever a function space has two arguments, the first always denotes
the function’s domain while the second denotes its range. Whenever the range is omitted, it is assumed that
the functions are real valued.

We use dx, dy, dz for various integrations with respect Lebesgue measure on RN , while in Section 3 we

will ave occasion to use the more succinct notation LN2

to denote integration with respect to the Lebesgue
measure in the product space RN × RN .

The reader should not confuse the different forms of the letter “H”. We denote by H the one-dimensional
Hausdorff measure (HN for the N-dimensional), while H denotes the non-local Hessian when this is a function.
As we have already seen, H denotes the distributional form of the non-local Hessian.

It is also very convenient to introduce the following notation:

d 2u(x, y) := u(y)− 2u(x) + u(x+ (x− y)),

which can be interpreted a discrete second order differential operator in x at the direction x− y.
We denote by | · | the Euclidean norm (vectors) and Frobenius norm (matrices).
As usual, we denote by BV(Ω) the space of functions of bounded variation defined on an open Ω ⊆ RN . This

space consists of all real valued functions u ∈ L1(Ω) whose distributional derivative Du can be represented
by a finite Radon measure. The total variation TV(u) of a function u ∈ BV(Ω), is defined to be the total
variation of the measure Du, i.e., TV(u) := |Du|(Ω). The definition is similar for vector valued functions.
We refer the reader to [AFP00] for a full account of the theory of BV functions.

We denote by BV2(Ω) the space of functions of bounded Hessian. These are all the functions that belong
to the Sobolev space W 1,1(Ω) such that ∇u is an RN -valued BV function, i.e., ∇u ∈ BV(Ω,RN ) and we
set D2u := D(∇u). We refer the reader to [Dem85, BP10, PS14] for more information about this space.
Let us however state a theorem that will be useful for our purposes. It is the analogue result to the strict
approximation by smooth functions for the classical BV case, see [AFP00].

Theorem 2.1 (BV2 strict approximation by smooth functions, [Dem85]). Let Ω ⊆ RN open and u ∈ BV2(Ω).
Then there exists a sequence (un)n∈N ∈ W 2,1(Ω) ∩ C∞(Ω) that converges to u strictly in BV2(Ω), that is to
say

un → u, in L1(Ω) and |D2un|(Ω)→ |D2u|(Ω), as n→∞.

We recall also the two basic notions of convergence regarding finite Radon measures. We note that
M(Ω,R`) denotes the space of R`-valued finite Radon measures in Ω. If (µn)n∈N and µ are real valued finite
Radon measures defined on an open Ω ⊆ RN we say that the sequence µn converges weakly∗ to µ if for all
φ ∈ C0(Ω) we have

´
Ω
φdµn →

´
Ω
φdµ as n goes to infinity. Here φ ∈ C0(Ω) means that φ is continuous

on Ω and that for every ε > 0 there exists a compact set K ⊂ Ω such that supx∈Ω\K |φ(x)| ≤ ε. Note that

from the Riesz representation theorem the dual space (C0(Ω,R`), ‖ · ‖∞)∗ can be identified with M(Ω,R`).
We say that the convergence is strict if in addition to that we also have that |µn|(Ω)→ |µ|(Ω), i.e., the total
variations of µn converge to the total variation of µ. The definition is similar for vector and matrix valued
measures with all the operations regarded component-wise.
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We now remind the reader about some basic facts concerning Γ-convergence. Let (X, d) be a metric space
and F, Fn : X → R ∪ {+∞} for all n ∈ N. We say that the sequence of functionals Fn Γ-converges to F at
x ∈ X in the topology of X and we write Γ−X - limn→∞ Fn(x) = F (x) if the following two conditions hold

(1) For every sequence (xn)n∈N converging to x in (X, d) we have

F (x) ≤ lim inf
n→∞

Fn(xn).

(2) There exists a sequence (xn)n∈N converging to x in (X, d) such that

F (x) ≥ lim sup
n→∞

Fn(xn).

It can be proved that Γ−X - limn→∞ Fn(x) = F (x) if the Γ-lower and Γ-upper limits of Fn at x, denoted by

Γ−X - lim infn→∞ Fn(x) and Γ−X - lim supn→∞ Fn(x) respectively, are equal to F (x) where

Γ−X - lim inf
n→∞

Fn(x) = min{lim inf
n→∞

Fn(xn) : xn → x in (X, d)},

Γ−X - lim sup
n→∞

Fn(x) = min{lim sup
n→∞

Fn(xn) : xn → x in (X, d)}.

Finally, if F : X → R ∪ {+∞} we denote by sc−XF the lower semicontinuous envelope of F , i.e., the greatest
lower semicontinuous function majorized by F . We refer the reader to [DM93, Bra02] for further details
regarding Γ-convergence and lower semicontinuous envelopes.

3. Analysis of the non-local Hessian

The precise form we have chosen for the non-local Hessian can be derived from the model case of non-
local gradients - the fractional gradient - which has been developed in [SS14]. Here we prove several results
analogous to the first order case, as in [MS14], for the generalizations involving generic radial weights that
satisfy (1.2)–(1.4). Of primary importance is to first establish that the distributional non-local Hessian
defined by equation (1.10) is, in fact, a distribution. Here we observe that if u ∈ L1(RN ), then

| < Hnu, ϕ > | ≤ C‖u‖L1(RN )‖∇2ϕ‖L∞(RN ),

so that Hnu is a distribution. Also observe that if u ∈ Lp(RN ) for some 1 < p <∞, then from the estimate
(3.4) below together with the fact that ϕ is of compact support we have

| < Hnu, ϕ > | ≤ C‖u‖Lp(RN )‖∇2ϕ‖Lq(RN ,RN×N ) ≤ C‖u‖Lp(RN )‖∇2ϕ‖L∞(RN ),

where 1/p + 1/q = 1 and thus Hnu is indeed again a distribution. One observes that the definition is in
analogy to the theory of Sobolev spaces, where weak derivatives are defined in terms of the integration by
parts formula. Because the Hessian is composed of two derivatives, we observe that there is no change in
sign in the definition, preserving some symmetry that will be useful for us in the sequel.

The second important item to address is the agreement of the distributional non-local Hessian with the
non-local Hessian. The necessary and sufficient condition is the existence of the latter, which is the assertion
of Theorem 1.3. We now substantiate this assertion.

Proof of Theorem 1.3. Let 1 ≤ p < +∞ and suppose u ∈ Lp(RN ) and that Hnu is well-defined as a
Lebesgue integral. Let ϕ ∈ C2

c (RN ), and fix i, j ∈ {1, . . . , N}. Then it is a consequence of Fubini’s theorem
and Lebesgue’s dominated convergence theorem thatˆ

RN
Hij
n u(x)ϕ(x)dx

=
N(N + 2)

2
lim
ε→0

ˆ
RN

ˆ
RN\B(x,ε)

d 2u(x, y)

|x− y|2

(
(xi − yi)⊗ (xj − yj)− |x−y|

2

N+2 IN

)
|x− y|2

ρ(x− y)ϕ(x)dydx

=
N(N + 2)

2
lim
ε→0

ˆ
dNε

d 2u(x, y)

|x− y|2

(
(xi − yi)⊗ (xj − yj)− |x−y|

2

N+2 IN

)
|x− y|2

ρ(x− y)ϕ(x)d(LN )2(x, y),
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where dNε := RN × RN \ {|x− y| < ε}. Similarly we haveˆ
RN

u(x)Hij
n ϕ(x)dx

=
N(N + 2)

2
lim
ε→0

ˆ
RN

ˆ
RN\B(x,ε)

u(x)
d 2ϕ(x, y)

|x− y|2
(xi − yi)(xj − yj)− δij |x−y|

2

N+2

|x− y|2
ρ(x− y)dydx

=
N(N + 2)

2
lim
ε→0

ˆ
dNε

u(x)
d 2ϕ(x, y)

|x− y|2
(xi − yi)(xj − yj)− δij |x−y|

2

N+2

|x− y|2
ρ(x− y)d(LN )2(x, y),

where, for notational convenience, we used the standard convention

δij =

{
1 if i = j,

0 if i 6= j.

Thus, it suffices to show that for every i, j and ε > 0 we have

ˆ
dNε

d 2u(x, y)

|x− y|2
(xi − yi)(xj − yj)− δij |x−y|

2

N+2

|x− y|2
ρ(x− y)ϕ(x)d(LN )2(x, y) =(3.1)

ˆ
dNε

u(x)
d 2ϕ(x, y)

|x− y|2
(xi − yi)(xj − yj)− δij |x−y|

2

N+2

|x− y|2
ρ(x− y)d(LN )2(x, y).

In order to show (3.1), it suffices to prove

ˆ
dNε

u(y)ϕ(x)

|x− y|2
(xi − yi)(xj − yj)− δij |x−y|

2

N+2

|x− y|2
ρ(x− y)d(LN )2(x, y) =(3.2)

ˆ
dNε

u(x)ϕ(y)

|x− y|2
(xi − yi)(xj − yj)− δij |x−y|

2

N+2

|x− y|2
ρ(x− y)d(LN )2(x, y),

and ˆ
dNε

u(x+ (x− y))ϕ(x)

|x− y|2
(xi − yi)(xj − yj)− δij |x−y|

2

N+2

|x− y|2
ρ(x− y)d(LN )2(x, y) =(3.3)

ˆ
dNε

u(x)ϕ(x+ (x− y))

|x− y|2
(xi − yi)(xj − yj)− δij |x−y|

2

N+2

|x− y|2
ρ(x− y)d(LN )2(x, y).

Equation (3.2) can be easily showed by alternating x and y and using the symmetry of the domain. Finally
equation (3.3) can be proved by employing the substitution u = 2x−y, v = 3x−2y, noting that x−y = v−u
and that the determinant of the Jacobian of this substitution is −1.

Having established that the notion of distributional non-local Hessian and non-local Hessian agree when-
ever the latter exists, it is a natural question to ask when this is the case. It is a simple calculation to verify
that the Lebesgue integral (1.9) exists whenever u ∈ C2

c (RN ). The following several theorems, whose proofs
we also defer until after the analysis in the smooth case, show that this is also the case for functions in the
spaces W 2,p(RN ) and BV2(RN ).

Lemma 3.1. Suppose that u ∈ W 2,p(RN ), where 1 ≤ p < ∞. Then Hnu is well-defined as a Lebesgue
integral, Hnu ∈ Lp(RN ,RN×N ), and

(3.4)

ˆ
RN
|Hnu(x)|pdx ≤M‖∇2u‖p

Lp(RN )
,

where the constant M depends only on N and p.

Lemma 3.2. Suppose that u ∈ BV2(RN ). Then Hnu ∈ L1(RN ,RN×N ) with

(3.5)

ˆ
RN
|Hnu(x)|dx ≤M |D2u|(RN ),

where the constant M depends only on N .
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We finally point out that all our initial analysis is done in RN . Defining (1.9) in a general Ω ⊆ RN is
problematic as the term x+ (x− y) does not necessarily belong to Ω whenever x, y ∈ Ω.

3.1. Localization – Smooth case. We are now ready to prove the localization of Hnu to ∇2u for smooth
functions.

Proof of Theorem 1.4.
Case 1 ≤ p < +∞

Let us assume that we have shown the case p = +∞. Then we must show that the uniform convergence
Hnv → ∇2v for v ∈ C2

c (RN ), implies convergence in Lp(RN ,RN×N ) for any 1 ≤ p < +∞. We claim
that this will follow from the following uniform estimate on the tails of the nonlocal Hessian. Suppose
supp v ⊂ B(0, R), where supp v denotes the support of v. Then for any 1 ≤ p < +∞ and ε > 0 there exists
a L = L(ε, p) > 1 such that

sup
n

ˆ
B(0,LR)c

|Hnv(x)|p dx ≤ ε.(3.6)

If this were the case, we would estimate the Lp-convergence as followsˆ
RN
|Hnv(x)−∇2v(x)|p dx =

ˆ
B(0,LR)

|Hnv(x)−∇2v(x)|p dx+

ˆ
B(0,LR)c

|Hnv(x)|p dx,

from which equation (3.6) implies

lim sup
n→∞

ˆ
RN
|Hnv(x)−∇2v(x)|p dx ≤ lim sup

n→∞

ˆ
B(0,LR)

|Hnv(x)−∇2v(x)|p dx+ ε.

The conclusion then follows, since the first term vanishes from the uniform convergence assumed, after which
ε > 0 is arbitrary. We will therefore show the estimate (3.6). We have, by Jensen’s inequality with respect
to the measure ρn, which has

´
RN ρn(x)dx = 1, thatˆ

B(0,LR)c
|Hnv(x)|p dx ≤

ˆ
B(0,LR)c

ˆ
RN

|v(y)− 2v(x) + v(x+ x− y)|p

|x− y|2p
ρn(x− y)dydx

=

ˆ
B(0,LR)c

ˆ
y∈B(0,R)

|v(y)|p

|x− y|2p
ρn(x− y)dydx

+

ˆ
B(0,LR)c

ˆ
x+x−y∈B(0,R)

|v(x+ x− y)|p

|x− y|2p
ρn(x− y)dydx.

Letting z = x+ x− y (which means that x− y = z − x), we obtainˆ
B(0,LR)c

ˆ
x+x−y∈B(0,R)

|v(x+ x− y)|p

|x− y|2p
ρn(x− y)dydx =

ˆ
B(0,LR)c

ˆ
z∈B(0,R)

|v(z)|p

|z − x|2p
ρn(z − x)dzdx,

and therefore by symmetry of ρn we haveˆ
B(0,LR)c

|Hnv(x)|p dx ≤ 2

ˆ
B(0,LR)c

ˆ
y∈B(0,R)

|v(y)|p

|x− y|2p
ρn(x− y)dydx

≤ 2

(L− 1)2p

ˆ
B(0,LR)c

ˆ
y∈B(0,R)

|v(y)|pρn(x− y)dydx

≤ 2

(L− 1)2p
‖ρn‖L1(RN )‖v‖pLp(RN )

.

Again using
´
RN ρn(x)dx = 1, the claim, and therefore the case 1 ≤ p < +∞, then follows by choosing L

sufficiently large.
Case p = +∞

It therefore remains to show that the convergence in L∞(RN ,RN×N ) is true. Precisely, we will show that∣∣Hnu−∇2u
∣∣→ 0, uniformly,

for which it suffices to prove the convergence component wise, i.e.,
∣∣∣(Hnu−∇2u

)
(i0,j0)

∣∣∣→ 0 by considering

two cases i0 6= j0 and i0 = j0.



10 JAN LELLMANN, KONSTANTINOS PAPAFITSOROS, CAROLA SCHÖNLIEB AND DANIEL SPECTOR

Subcase i0 6= j0 :
Let us first observe that Proposition 4.1 in the Appendix and the assumption that

´
RN ρn(x)dx = 1 for all

n ∈ N can be used to deduce thatˆ
RN

z2
i0
z2
j0

|z|4
ρn(z)dz =

ˆ ∞
0

ρn(t)tN−1 dt

ˆ
SN−1

ν2
i0ν

2
j0dH

N−1(x)(3.7)

=
1

N(N + 2)
·
{

1, i0 6= j0,
3, i0 = j0.

Therefore, in the case that i0 6= j0, we have∣∣∣∣(Hnu−∇2u
)

(i0,j0)

∣∣∣∣
=
N(N + 2)

2

∣∣∣∣ˆ
RN

d 2u(x, y)

|x− y|2
(xi0 − yi0)(xj0 − yj0)

|x− y|2
ρn(x− y)dy − 2

∂u

∂xi0∂xj0
(x)

ˆ
RN

z2
i0
z2
j0

|z|4
ρn(z)dz

∣∣∣∣∣ .
However, again utilizing the radial symmetry of ρn, we have that the following integrals vanish:

i0 = j0 :

ˆ
RN

ziz
3
j0

|z|4
ρn(z)dz = 0, for i 6= j0,

i0 = j0 :

ˆ
RN

zizjz
2
j0

|z|4
ρn(z)dz = 0, for i 6= j0, j 6= j0, i 6= j,

i0 6= j0 :

ˆ
RN

zizjzi0zj0
|z|4

ρn(z)dz = 0, for i 6= i0, j 6= j0,

which implies that

N∑
i,j=1

∂u

∂xi∂xj
(x)

ˆ
RN

zizi0zjzj0
|z|4

ρn(z)dz = 2
∂u

∂xi0∂xj0
(x)

ˆ
RN

z2
i0
z2
j0

|z|4
ρn(z)dz.

Thus, introducing these factors of zero, and writing in a more compact way, we have that∣∣∣∣(Hnu−∇2u
)

(i0,j0)

∣∣∣∣
=
N(N + 2)

2

∣∣∣∣ˆ
RN

d 2u(x, y)− (x− y)T∇2u(x)(x− y)

|x− y|2
(xi0 − yi0)(xj0 − yj0)

|x− y|2
ρn(x− y)dy

∣∣∣∣ .
We want to show that the right hand side tends to zero as n→∞, and therefore we define now the following
quantity for δ > 0:

(3.8) Qδu(x) =

∣∣∣∣∣
ˆ
B(x,δ)

d 2u(x, y)− (x− y)T∇2u(x)(x− y)

|x− y|2
(xi0 − yi0)(xj0 − yj0)

|x− y|2
ρn(x− y)dy

∣∣∣∣∣ .
We then claim that we can make Qδu(x) as small as we want, independently of x and n, by choosing
sufficiently small δ > 0. If this is the case, then the case i0 6= j0 would be completed, since we would then
have that∣∣∣(Hnu−∇2u

)
(i0,j0)

∣∣∣ ≤ Qδ(x) +
N(N + 2)

2

ˆ
|z|≥δ

|u(x+ z)− 2u(x) + u(x− z)|
|z|2

ρn(z)dz

+
N(N + 2)

2

∣∣∇2u(x)
∣∣ˆ
|z|≥δ

ρn(z)dz

≤ N(N + 2)

2
ε+

N(N + 2)

2

(
4‖u‖∞
δ2

+ ‖∇2u‖∞
)ˆ
|z|≥δ

ρn(z)dz

< N(N + 2)ε,

for n large enough, and the result follows from sending ε→ 0.
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We therefore proceed to make estimates for (3.8). Since we have assumed u ∈ C2
c (RN ), we have that given

ε > 0, there is a δ > 0 such that for every i, j = 1, . . . , N we have∣∣∣∣ ∂u

∂xi∂xj
(x)− ∂u

∂xi∂xj
(y)

∣∣∣∣ < ε, whenever |x− y| < δ.

Using (3.11) we can estimate

Qδu(x) =

∣∣∣∣∣
ˆ
B(x,δ)

d 2u(x, y)− (x− y)T∇2u(x)(x− y)

|x− y|2
(xi0 − yi0)(xj0 − yj0)

|x− y|2
ρn(x− y)dy

∣∣∣∣∣(3.9)

=

∣∣∣∣∣∣
ˆ
B(x,δ)

(x− y)T
(´ 1

0

´ 1

0
∇2u(x+ (s+ t− 1)(y − x))−∇2u(x)dsdt

)
(x− y)

|x− y|2
(3.10)

× ((xi0 − yi0)(xj0 − yj0)

|x− y|2
ρn(x− y)dy

∣∣∣∣
≤ N

ˆ
B(x,δ)

|x− y|ε|x− y|
|x− y|2

|xi0 − yi0 ||xj0 − yj0 |
|x− y|2

ρn(x− y)dy

≤ εN.
Here, we have used the mean value theorem for scalar and vector valued functions to write

(3.11) d 2u(x, y) = (x− y)T
(ˆ 1

0

ˆ 1

0

∇2u(x+ (t+ s− 1)(y − x))dsdt

)
(x− y),

and the fact that
´
RN ρn(x)dx = 1 for all n ∈ N. This completes the proof in the case i0 6= j0.

Subcase i0 = j0 :
Let us record several observations before we proceed with this case. In fact, the same argument shows

that for a single i ∈ {1, . . . , N}

Ini (x) :=

∣∣∣∣ˆ
RN

d 2u(x, y)− (x− y)T∇2u(x)(x− y)

|x− y|2
(xi − yi)2

|x− y|2
ρn(x− y)dy

∣∣∣∣→ 0(3.12)

uniformly in x as n→∞, and therefore by summing in i we deduce that∣∣∣∣ˆ
RN

d 2u(x, y)− (x− y)T∇2u(x)(x− y)

|x− y|2
ρn(x− y)dy

∣∣∣∣→ 0.(3.13)

Moreover, we observe that the same formula from Proposition 4.1 and cancellation of odd powers implies
ˆ
RN

(x− y)T∇2u(x)(x− y)(xi0 − yi0)2

|x− y|4
ρn(x− y)dy =

N∑
j=1

∂2u

∂x2
j

(x)

ˆ
RN

z2
j z

2
i0

|z|4
ρn(z)dz

=
1

N(N + 2)
∆u+

2

3

∂2u

∂x2
i0

(x)

ˆ
RN

z4
i0

|z|4
ρn(z)dz

=
2

N(N + 2)

(
1

2
∆u+

∂2u

∂x2
i0

(x)

)
,

while we also have thatˆ
RN

(x− y)T∇2u(x)(x− y)

|x− y|2
ρn(x− y)dy =

N∑
j=1

∂2u

∂x2
j

(x)

ˆ
RN

z2
j

|z|2
ρn(z)dz

=
1

N
∆u(x).

Thus, we can estimate∣∣∣∣(Hnu−∇2u
)

(i0,i0)

∣∣∣∣ ≤ Ini0(x) +

∣∣∣∣N2
ˆ
RN

d 2u(x, y)

|x− y|2
ρn(x− y)dy −

ˆ
RN

∆u(x)

2
ρn(x− y)dy

∣∣∣∣
= Ini0(x) +

∣∣∣∣N2
ˆ
RN

d 2u(x, y)− (x− y)T∇2u(x)(x− y)

|x− y|2
ρn(x− y)dy

∣∣∣∣ ,
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and the proof is completed by invoking the convergences established in equations (3.12) and (3.13).

3.2. Localization – W 2,p(RN ) case. The objective of this section is to show that if u ∈ W 2,p(RN ), 1 ≤
p < ∞ then the non-local Hessian Hnu converges to ∇2u in Lp. The first step is show that indeed in that
case Hnu is indeed an Lp function. This follows from Lemma 3.1 which we prove next.

Proof of Lemma 3.1. Let us begin by making estimates for a function v ∈ C∞(RN ) ∩W 2,p(RN ). From
the definition of the non-local Hessian, and utilizing Jensen’s inequality, equation (3.11) as well as Fubini’s
theorem we have the following successive estimates (the constant is always denoted with M(N, p)):ˆ

RN
|Hnv(x)|pRN×Ndx(3.14)

=

(
N(N + 2)

2

)p ˆ
RN

∣∣∣∣∣∣
ˆ
RN

d 2v(x, y)

|x− y|2

(
(x− y)⊗ (x− y)− |x−y|

2

N+2 IN

)
|x− y|2

ρn(x− y)dy

∣∣∣∣∣∣
p

dx

≤M(N, p)

ˆ
RN

(ˆ
RN

|d 2v(x, y)|
|x− y|2

ρn(x− y)dy

)p
dx

≤M(N, p)

ˆ
RN

(ˆ
RN

|d 2v(x, y)|p

|x− y|2p
ρn(x− y)dy

)ˆ
RN

ρ(x− y)dy︸ ︷︷ ︸
=1


p/p′

dx(3.15)

≤M(N, p)

ˆ
RN

(ˆ
RN

|
´ 1

0
∇v(x+ t(y − x))−∇v(x+ (t− 1)(y − x))dt|p|x− y|p

|x− y|2p
ρn(x− y)dy

)
dx

≤M(N, p)

ˆ
RN

(ˆ
RN

´ 1

0
|∇v(x+ t(y − x))−∇v(x+ (t− 1)(y − x))|pdt

|x− y|p
ρn(x− y)dy

)
dx

≤M(N, p)

ˆ
RN

(ˆ
RN

(ˆ 1

0

ˆ 1

0

∣∣∇2v(x+ (t+ s− 1)(y − x))
∣∣p dsdt) ρn(x− y)dy

)
dx

= M(N, p)

ˆ 1

0

ˆ 1

0

ˆ
RN

(ˆ
RN

(∣∣∇2v(x+ (t+ s− 1)(y − x))
∣∣p) ρn(x− y)dy

)
dxdsdt

= M(N, p)

ˆ 1

0

ˆ 1

0

ˆ
RN

(ˆ
RN

(∣∣∇2v(x+ (t+ s− 1)ξ)
∣∣p) ρn(ξ)dξ

)
dxdsdt,

= M(N, p)

ˆ 1

0

ˆ 1

0

ˆ
RN

(
ρn(ξ)

ˆ
RN

(∣∣∇2v(x+ (t+ s− 1)ξ)
∣∣p) dx) dξdsdt,

= M(N, p)

ˆ 1

0

ˆ 1

0

ˆ
RN

ρn(ξ)‖∇2v‖p
Lp(RN )

dξdsdt

= M(N, p)‖∇2v‖p
Lp(RN )

.

Consider now a sequence (vk)k∈N in C∞(RN ) ∩W 2,p(RN ) approximating u in W 2,p(RN ). We already have
from above that

(3.16)

ˆ
RN

(ˆ
RN

|d 2vk(x, y)|p

|x− y|2p
ρn(x− y)dy

)
dx ≤M‖∇2vk‖Lp(RN ), ∀k ∈ N,

or

(3.17)

ˆ
RN

(ˆ
RN

|vk(x+ h)− 2vk(x) + vk(x− h)|p

|h|2p
ρn(h)dh

)
dx ≤M‖∇2vk‖Lp(RN ), ∀k ∈ N.

Since vk converges to u in Lp(RN ) we have that there exists a subsequence vk` converging to u almost
everywhere. From an application of Fatou’s lemma we get that for every x ∈ RNˆ

RN

|u(x+ h)− 2u(x) + u(x− h)|p

|h|2p
ρn(h)dh︸ ︷︷ ︸

F (x)

≤M lim inf
`→∞

ˆ
RN

|vk`(x+ h)− 2vk`(x) + vk`(x− h)|p

|h|2p
ρn(h)dh︸ ︷︷ ︸

Fk` (x)

.
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Applying one more time Fatou’s Lemma to Fk` , F we get thatˆ
RN

ˆ
RN

|u(x+ h)− 2u(x) + u(x− h)|p

|h|2p
ρn(h)dhdx

≤M lim inf
`→∞

ˆ
RN

ˆ
RN

|vk`(x+ h)− 2vk`(x) + vk`(x− h)|p

|h|2p
ρn(h)dhdx

≤M lim inf
`→∞

‖∇2vk`‖Lp(RN )

= M‖∇2u‖Lp(RN ).

This argument, along with Jensen’s inequality, allows us to conclude that the conditions of Theorem 1.3 are
satisfied, in particular that Hnu is well-defined as a Lebesgue integral, so that the estimate (3.15) holds for
W 2,p functions as well, thus completing the proof.

We now have the necessary tools to prove the localization for W 2,p functions.

Proof of Theorem 1.5. The result holds for functions v ∈ C2
c (RN ) since from Theorem 1.4 we have that

Hnv → ∇2v in Lp(RN ,RN×N ). We use now the fact that that C∞c (RN ) and hence C2
c (RN ) is dense in

W 2,p(RN ), see for example [Bre83]. Let ε > 0, then from density we have that there exists a function
v ∈ C2

c (RN ) such that

‖∇2u−∇2v‖Lp(RN ) ≤ ε.
Thus using also Lemma 3.1 we have

‖Hnu−∇2u‖Lp(RN ) ≤ ‖Hnu−Hnv‖Lp(RN ) + ‖Hnv −∇2v‖Lp(RN ) + ‖∇2v −∇2u‖Lp(RN )

≤ Cε+ ‖Hnv −∇2v‖Lp(RN ) + ε.

Taking limits as n→∞ we get

lim sup
n→∞

‖Hnu−∇2u‖Lp(RN ) ≤ (C + 1)ε,

and thus we conclude that

lim
n→∞

‖Hnu−∇2u‖Lp(RN ) = 0.

3.3. Localization – BV2(RN ) case. Analogously with the first order case in [MS14], we can define a second
order non-local divergence that corresponds to Hn, and we can also derive a second order non-local integration
by parts formula which is an essential tool for the proofs of this section. The second order non-local divergence
is defined for a function φ = (φij)

N
i,j=1 as

(3.18)

D2
nφ(x) =

N(N + 2)

2

ˆ
RN

φ(y)− 2φ(x) + φ(x+ (x− y))

|x− y|2
·

(
(x− y)⊗ (x− y)− |x−y|

2

N+2 IN

)
|x− y|2

ρn(x− y)dy.

where A · B =
∑N
i,j=1AijBij for two N × N matrices A and B. Notice that (3.18) is well-defined for

φ ∈ C2
c (RN ,RN×N ).

Theorem 3.3 (Second order non-local integration by parts formula). Suppose that u ∈ L1(RN ),
|d 2u(x,y)|
|x−y|2 ρn(x− y) ∈ L1(RN × RN ) and let φ ∈ C2

c (RN ,RN×N ). Then

(3.19)

ˆ
RN

Hnu(x) · φ(x)dx =

ˆ
RN

u(x)D2
nφ(x)dx.

In fact, this theorem can be deduced as a consequence of Theorem 1.3 through a component by component
application and collection of terms. The following lemma shows the convergence of the second order non-local
divergence to the continuous analogue div2φ, where φ ∈ C2

c (RN ,RN×N ) and

div2φ :=

N∑
i,j=1

∂φij
∂xi∂xj

.
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Lemma 3.4. Let φ ∈ C2
c (RN ,RN×N ). Then for every 1 ≤ p ≤ ∞ we have

(3.20) lim
n→∞

‖D2
nφ− div2φ‖Lp(RN ) = 0.

Proof. The proof follows immediately from Theorem 1.4 and 1.5. �

Next we prove Lemma 3.2 that shows that the non-local Hessian (1.9) is well defined for u ∈ BV2(RN ).
It is the analogue of Lemma 3.1 for functions in BV2(RN ) this time.

Proof of Lemma 3.2. Let (uk)k∈N be a sequence of functions in C∞(RN ) that converges strictly in
BV2(RN ). By the same calculations as in the proof of Lemma 3.1 we have for every k ∈ N

ˆ
RN
|Hnuk(x)|dx ≤M(N, 1)‖∇2uk‖L1(RN ).

Using Fatou’s Lemma in a similar way as in Lemma 3.1, we can establish that Hnu is well-defined as a
Lebesgue integral, along with the estimate

ˆ
RN
|Hnu(x)|dx ≤ M(N, 1) lim inf

k→∞
|D2uk|(RN )

= M(N, 1)|D2u|(RN ).

However, employing the strict convergence of D2uk to D2u, the result is demonstrated.
We can now proceed in proving the localization result for BV2 functions. We define µn to be the RN×N -

valued finite Radon measures µn := HnuLN .

Proof of Theorem 1.6. Since C∞c (RN ,RN×N ) is dense in C0(RN ,RN×N ) it suffices to prove (1.12) for
every ψ ∈ C∞c (RN ,RN×N ). Indeed, suppose we have done this, let ε > 0 and let φ ∈ C0(RN ,RN×N ) and
ψ ∈ C∞c (RN ,RN×N ) such that ‖φ− ψ‖∞ < ε. Then, using also the estimate (3.5), we have∣∣∣∣ˆ

RN
Hnu(x) · φ(x)dx−

ˆ
RN

φ(x) dD2u

∣∣∣∣ ≤ ∣∣∣∣ˆ
RN

Hnu(x) · (φ(x)− ψ(x))dx

∣∣∣∣
+

∣∣∣∣ˆ
RN

Hnu(x) · ψ(x)dx−
ˆ
RN

ψ(x) dD2u

∣∣∣∣
+

∣∣∣∣ˆ
RN

(φ(x)− ψ(x)) dD2u

∣∣∣∣
≤ ε

ˆ
RN
|Hnu(x)|dx+

∣∣∣∣ˆ
RN

Hn(x) · ψ(x)dx−
ˆ
RN

ψ(x) dD2u

∣∣∣∣
+ ε|D2u|(RN )

≤Mε|D2u|(RN ) +

∣∣∣∣ˆ
RN

Hn(x) · ψ(x)dx−
ˆ
RN

ψ(x) dD2u

∣∣∣∣
+ ε|D2u|(RN ).

Taking the limit n→∞ from both sides of the above inequality we get

lim sup
n→∞

∣∣∣∣ˆ
RN

Hnu(x) · φ(x)dx−
ˆ
RN

φ(x) dD2u

∣∣∣∣ ≤ M̃ε

and since ε is arbitrary we have (1.12). We thus proceed to prove (1.12) for C∞c functions. From the estimate
(3.5) we have that (|µn|)n∈N is bounded, thus there exists a subsequence (µnk)k∈N and a RN×N -valued Radon
measure µ such that µnk converges to µ weakly∗. This means that for every ψ ∈ C∞c (RN ,RN×N ) we have

lim
k→∞

ˆ
RN

Hnku(x) · ψ(x)dx =

ˆ
RN

ψ(x) · dµ.
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On the other hand from the integration by parts formula (3.19) and Lemma 3.4 we get

lim
k→∞

ˆ
RN

Hnku(x) · ψ(x)dx = lim
k→∞

ˆ
RN

u(x)D2
nk
ψ(x)dx

=

ˆ
RN

u(x)div2ψ(x)dx

=

ˆ
RN

ψ(x) · dD2u.

This means that µ = D2u. Observe now that since we actually deduce that every subsequence of (µn)n∈N
has a further subsequence that converges to D2u weakly∗, then that the initial sequence (µn)n∈N converges
to D2u weakly star.

Let us note here that in the case N = 1, we can also prove strict convergence of the measures µn to D2u,
that is, in addition to (1.12) we also have

|µn|(R)→ |D2u|(R).

Theorem 3.5. Let N = 1. Then the sequence (µn)n∈N converges to D2u strictly as measures, i.e.,

(3.21) µn → D2u, weakly∗,

and

(3.22) |µn|(R)→ |D2u|(R).

Proof. The weak∗ convergence was proven in Theorem 1.6. Since in the space of finite Radon measures, the
total variation norm is lower semicontinuous with respect to the weak∗ convergence, we also have

(3.23) |D2u|(R) ≤ lim inf
n→∞

|µn|(R).

Thus it suffices to show that

(3.24) lim sup
n→∞

|µn|(R) ≤ |D2u|(R).

Note that in dimension one the non-local Hessian formula is

(3.25) Hnu(x) =

ˆ
R

u(y)− 2u(x) + u(x+ (x− y))

|x− y|2
ρn(x− y)dy.

Following the proof of Lemma 3.1, we can easily verify that for v ∈ C∞(R) ∩ BV2(R) we haveˆ
R
|Hnv(x)|dx ≤ ‖∇2v‖L1(R),

i.e., the constant M that appears in the estimate (3.4) is equal to 1. Using Fatou’s Lemma and the BV2

strict approximation of u by smooth functions we get that

|µn|(R) =

ˆ
R
|Hnu(x)|dx ≤ |D2u|(R),

from where (3.24) straightforwardly follows. �

3.4. Characterization of higher-order Sobolev and BV spaces. Characterization of Sobolev and BV
spaces in terms of non-local, derivative-free energies has been done so far only in the first order case, see
[BBM01, Pon04b, Men12, MS14]. Here we characterize the spaces W 2,p(RN ) and BV2(RN ) using our defi-
nition of non-local Hessian.

Proof of Theorem 1.7. Firstly, we prove (1.13). Suppose that u ∈W 2,p(RN ). Then, Lemma 3.1 gives

lim inf
n→∞

ˆ
RN
|Hnu(x)|pdx ≤M‖∇2u‖p

Lp(RN )
<∞.

Suppose now conversely that

lim inf
n→∞

ˆ
RN
|Hnu(x)|pdx <∞.
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This means that up to a subsequence, Hnu is bounded in Lp(RN ,RN×N ), thus there exists a subsequence
(Hnku)k∈N and v ∈ Lp(RN ,RN×N ) such that Hnku ⇀ v weakly in Lp(RN ,RN×N ). Thus, using the definition
of Lp weak convergence together with the definition of Hnu, we have for every ψ ∈ C∞c (RN ),ˆ

RN
vij(x) · ψ(x)dx = lim

k→∞

ˆ
RN

Hijnku(x) · ψ(x)

= lim
k→∞

ˆ
RN

u(x)Hij
n ψ(x)

=

ˆ
RN

u(x)
∂2ψ(x)

∂xi∂xj
dx,

something that shows that v = ∇2u is the second order weak derivative of u. Now since u ∈ Lp(RN ) and the
second order distributional derivative is a function, mollification of u and the Gagliardo-Nirenberg inequality
(see [Nir59, p. 128, Equation 2.5])

(3.26) ‖∇u‖Lp(RN ,RN ) ≤ C‖∇2u‖
1
2

Lp(RN ,RN×N )
‖u‖

1
2

Lp(RN )
,

implies that the first distributional derivative and it belongs to Lp(RN ,RN ) and thus u ∈W 2,p(RN ).
We now proceed in proving (1.14). Again supposing that u ∈ BV2(RN ) we have that Lemma 3.2 gives us

lim inf
n→∞

ˆ
RN
|Hnu(x)|dx ≤ C|D2u|(RN ).

Suppose now that

lim inf
n→∞

ˆ
RN
|Hnu(x)|dx <∞.

Considering again the measures µn = HnuLN we have that that there exists a subsequence (µnk)k∈N and

a finite Radon measure µ such that µnk
∗
⇀ µ weakly∗. Then for every ψ ∈ C∞c (RN ) we have, similarly as

before, ˆ
RN

ψdµij = lim
k→∞

ˆ
RN

Hijnku(x) · ψ(x)dx

= lim
k→∞

ˆ
RN

u(x)Hij
n ψ(x)dx

=

ˆ
RN

u(x)
∂2ψ(x)

∂xi∂xj
dx.

something that shows that µ = D2u. Again, by first mollifying and then passing the limit, the inequality
(3.26) implies that Du ∈M(RN ,RN ). However, Du ∈M(RN ,RN ) and D2u ∈M(RN ,RN×N ) implies that
Du is an L1(RN ,RN ) function (see [AFP00, Exercise 3.2]), and we therefore conclude that u ∈ BV2(RN ).

3.5. Gamma convergence. For notational convenience we define the functional

(3.27) Fn(u) :=

ˆ
RN
|Hnu| dx.

Proof of Theorem 1.8. The computation of the Gamma limit consists of two inequalities. For the lower
bound, we must show that

|D2u|(RN ) ≤ lim inf
n→∞

Fn(un)

for every sequence un → u in L1(RN ). Without loss of generality we may assume that

C := lim inf
n→∞

Fn(un) < +∞.

which implies that

sup
ϕ

lim inf
n→∞

∣∣∣∣ˆ
RN

Hijn unϕ dx

∣∣∣∣ ≤ C.
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where the supremum is taken over ϕ ∈ C∞c (RN ) such that ‖ϕ‖L∞(RN ) ≤ 1. Now, the definition of the

distributional non-local Hessian and the convergence un → u in L1(RN ) imply that

lim
n→∞

ˆ
RN

Hijn unϕ dx = lim
n→∞

ˆ
RN

unH
ij
n ϕ dx

=

ˆ
RN

u
∂2ϕ

∂xi∂xj
dx.

We thus conclude that

sup
ϕ

lim inf
n→∞

∣∣∣∣ˆ
RN

u
∂2ϕ

∂xi∂xj
dx

∣∣∣∣ ≤ C,
which, arguing as in the previous section, says that u ∈ BV2(RN ), in particular that D2u ∈ M(RN ,RN×N )
and

|D2u|(RN ) ≤ Γ−
L1(RN )

- lim inf
n→∞

Fn(u)

for every u ∈ L1(RN ).
For the upper bound we observe that if u ∈ C2

c (RN ), we have by the uniform convergence of Theorem 1.4
and the fact that u is sufficiently smooth with compact support that

lim
n→∞

Fn(u) = |D2u|(RN ).

Then choosing un = u we conclude

Γ−
L1(RN )

- lim sup
n→∞

Fn(u) ≤ lim
n→∞

Fn(u)

= |D2u|(RN ).

Now, taking the lower semicontinuous envelope with respect to L1(RN ) strong convergence, using Γ−
L1(RN )

- lim sup

is lower semicontinuous on L1(RN ) (c.f. [DM93, Proposition 6.8]), we deduce that

Γ−L1(Ω)- lim sup
n→∞

Fn(u) ≤ sc−L1(Ω)|D
2u|(RN ).

= |D2u|(RN )

for all u ∈ L1(RN ).

4. Extensions and Applications

4.1. An asymmetric extension. In the previous sections we have shown that our non-local definition of
Hn as in (1.9) localizes to the classical distributional Hessian for a specific choice of the weights ρn, and
thus can be rightfully called a non-local Hessian. In numerical applications, however, the strength of such
non-local models lies in the fact that the weights can be chosen to have non-local interactions and model
specific patterns in the data. A classic example is the non-local total variation [?]:

(4.1) JNL−TV (u) =

ˆ
Ω

ˆ
Ω

|u(x)− u(y)|
√
w(x, y)dydx.

A possible choice is to choose w(x, y) large if the patches (neighbourhoods) around x and y are similar with
respect to a patch distance da, such as a weighted `2 norm, and small if they are not. In [?] this is achieved by
setting w(x, y) = 1 if the neighbourhood around y is one of the K ∈ N closest to the neighbourhood around
x in a search window, and w(x, y) = 0 otherwise. In effect, if the image contains a repeating pattern with a
defect that is small enough to not throw off the patch distances too much, it will be repaired as long as most
similar patterns do not show the defect.

Computing suitable weights is much less obvious in the case of H. We can formally extend (1.9) using
arbitrary pairwise weights ρ : Rn × Rn → R,

(4.2) Hρu(x) = C

ˆ
RN

u(x+ z)− 2u(x) + u(x− z)
|z|2

(
zz> − |z|2

N+2IN

)
|z|2

ρx(z)dz,
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and use it to create non-local generalisations of functionals such as TV2, for example to minimise the non-local
L2 − TV2 model

(4.3) f(u) :=

ˆ
RN
|u− g|2dx+ α

ˆ
RN
|Hρ|dx.

However, apart from being formulated on RN instead of Ω, formulation (4.2) has an important drawback
compared to the first-order formulation (4.1): while the weights are defined between two points x and y, the
left part of the integrand uses the values of u not only at x and y, but also at the “mirrored” point x+(x−y).
In fact we can replace the weighting function by the symmetrised version 1

2{ρx(y− x) + ρx(x− y)}, which in
effect relates three points instead of two, and limits the choice of possible weighting functions.

In this section we therefore introduce a more versatile extension of (1.9) that allows for full non-symmetric
weights. We start with the realisation that the finite-differences integrand in (4.2) effectively comes from
canceling the first-order differences in the Taylor expansion of u around x, which couples the values of u at
x, y, and x + (x − y) into one term. Instead, we can avoid this coupling by directly defining the non-local
gradient G′u(x) and Hessian looking for a non-local gradient Gu(x) ∈ RN and Hessian Hu(x) ∈ Sym(RN×N )
that best explain u around x in terms of a quadratic model, i.e., that take the place of the gradient and
Hessian in the Taylor expansion:

(4.4) (G′u(x), H ′u(x)) := argmin
Gu∈RN ,Hu∈Sym(RN×N )

1

2

ˆ
Ω−{x}

(
u(x+ z)− u(x)−G>u z −

1

2
z>Huz

)2

σx(z)dz.

Here the variable x+z takes the place of y in (1.9). We denote definition (4.4) the implicit non-local Hessian
as opposed to the explicit formulation (4.2).

The advantage is that any terms involving σx(z) are now only based on the two values of u at x and
y = x+ z, and (in particular bounded) domains other than RN are naturally dealt with, which is important
for a numerical implementation. We also note that this approach allows to incorporate non-local first-order
terms as a side-effect, and can be naturally extended to third- and higher-order derivatives, which we leave
to further work.

With respect to implementation, the implicit model (4.4) does not add much to the overall difficulty: it is
enough to add the non-local gradient and Hessian G′u(x) ∈ RN and H ′u(x) ∈ RN×N as additional variables
to the problem, and couple them to u by adding the optimality conditions for (4.4) to the problem. Since
(4.4) is a finite-dimensional quadratic minimization problem, the optimality conditions are linear, i.e., of the
form Au,xH

′
u(x) = bu,x. Such linear constraints can be readily added to most solvers capable of solving the

local problem. Alternatively the matrices Au,x can be inverted explicitly in a pre-computation step, however
we did not find this to increase overall performance.

While the implicit and explicit model look different at first glance, from the considerations about the
Taylor expansion we expect them to be closely related, and in fact this is true as shown in the following series
of propositions. The first proposition explicitly computes the constants Cij and is needed for the proofs:

Proposition 4.1. For N > 1 we have the following definition and identity for C:

Ci0j0 :=

ˆ
SN−1

ν2
i0ν

2
j0dH

N−1(x) =
|SN−1|

N(N + 2)
·
{

1, i0 6= j0,
3, i0 = j0.

The matrix C = (Ci0j0)i0,j0=1,...,N is

C = C12(E + 2I),

where E ∈ RN×N is the all-ones matrix.

Proof. See Appendix. �

The following theorem shows that for radially symmetric ρx and σx, if we restrict ourselves to a circle, the
implicit non-local Hessian is (up to a factor) the explicit non-local Hessian as defined earlier.

Theorem 4.2. Let Ω := RN , h > 0, x ∈ RN . Consider the minimization problem

min
Gu,h∈RN ,Hu,h∈Sym(RN×N )

1

2

ˆ
hSN−1

(
u(x+ z)− u(x)−G>u,hz −

1

2
z>Hu,hz

)2

dHN−1(z),(4.5)
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and assume that the integral is finite for every Gu,h ∈ RN and Hu,h ∈ RN×N . Then the non-local Hessian
part of the minimizing pair (G′u,h, H

′
u,h) is given by

(4.6) H ′u,h =
1

2
C−1

12 h
−(N−1)

ˆ
hSN−1

(
u(x+ z)− 2u(x) + u(x− z)

|z|2

)(
zz>

|z|2
− 1

N + 2
I

)
dHN−1(z).

Proof. The optimality conditions for (4.5) in terms of Gu = Gu,h and Hu = Hu,h, leaving the assumption on
the symmetry of Hu aside for the moment as we will enforce them explicitly later, are

0 =

ˆ
hSN−1

−
(
u(x+ z)− u(x)−G>u z −

1

2
z>Huz

)
zdHN−1(z),

0 =

ˆ
hSN−1

−1

2

(
u(x+ z)− u(x)−G>u z −

1

2
z>Huz

)
zzdHN−1(z),

Thus from the first line we get N equations〈ˆ
hSN−1

zizdHN−1(z), Gu

〉
+

〈ˆ
hSN−1

zi

(
1

2
zz>

)
dHN−1(z), Hu

〉
=

ˆ
hSN−1

zi(u(x+ z)− u(x))dHN−1(z), i = 1, . . . , N.

Similarly, from the second line we get N2 equations (of which some may be redundant)〈ˆ
hSN−1

1

2
zizjz

>dHN−1(z), Gu

〉
+

〈ˆ
hSN−1

1

2
zizj

(
1

2
zz>

)
dHN−1(z), Hu

〉
=

ˆ
hSN−1

1

2
zizj(u(x+ z)− u(x))dHN−1(z), i, j = 1, . . . , N.

Note that Gu and Hu are elements of RN and RN×N , and both sides of the inner products are finite-
dimensional vectors respective matrices.

If we collect the entries of Gu and Hu in a vector p = (pG, pH), these two sets of equations can be rewritten
as a linear system with an m×m block matrix,(

A V >

V B

)
p =

(
a
b

)
.

The entries in the sub-matrices V are all of the formˆ
hSN−1

zi(zjzk)dHN−1(z), i, j, k ∈ {1, . . . , n}.

No matter what the choice of i, j, k is, there is always at least one index with an odd power, so every single
one of these integrals is zero due to symmetry. This means that the conditions on the gradient and the
Hessian parts of p decouple, i.e., the problem is

ApG = a, BpH = b.(4.7)

We can therefore look at the isolated problem of computing the Hessian part pH , or equivalently Hu, without
interference from the gradient part. The matrix B is of the formˆ

hSN−1

1

2
zizj

1

2
zi0zj0dHN−1(z).

Again due to symmetry, the only way that this integral is non-zero is if there are no odd powers, so either
all indices are the same or there are two pairs:

1

4

ˆ
hSN−1

z4
kdHN−1(z), for some k,

or
1

4

ˆ
hSN−1

z2
kz

2
l dHN−1(z), for some k 6= l.

The vector b in (4.7) isˆ
hSN−1

(u(x+ z)− u(x))
1

2
zizjdHN−1(z) =

1

2

ˆ
hSN−1

(u(x+ z)− 2u(x) + u(x− z))1

2
zizjdHN−1(z).
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Now the optimality conditions on the pH = (pij)i,j=1,...,N part of p are of the form (for all i0, j0)∑
i,j

pij

ˆ
hSN−1

1

2
zizj

1

2
zi0zj0dHN−1(z)

=
1

2

ˆ
hSN−1

(u(x+ z)− 2u(x) + u(x− z))1

2
zi0zj0dHN−1(z), i0, j0 = 1, . . . , N,(4.8)

or alternatively ∑
i,j

pij

ˆ
SN−1

1

2
hνihνj

1

2
hνi0hνj0dHN−1(ν)

=
1

4

ˆ
SN−1

(u(x+ hν)− 2u(x) + u(x− hν))hνi0hνj0dHN−1(ν), i0, j0 = 1, . . . , N.

We can divide everything by the constant 1
4h

4 to get∑
i,j

pij

ˆ
SN−1

νiνjνi0νj0dHN−1(ν)

=

ˆ
SN−1

(
u(x+ hν)− 2u(x) + u(x− hν)

h2

)
νi0νj0dHN−1(ν), i0, j0 = 1, . . . , N.(4.9)

We consider the different cases for i0, j0 separately.

• If i0 6= j0, then on the left-hand side all terms vanish except for (i, j) = (i0, j0) and (i, j) = (j0, i0).
Overall we get the condition

(pi0j0 + pj0i0)

ˆ
SN−1

ν2
i0ν

2
j0dH

N−1(ν) =

ˆ
SN−1

(
u(x+ hν)− 2u(x) + u(x− hν)

h2

)
νi0νj0dHN−1(ν).

Since we require Hu = pij to be symmetric, we get an explicit solution for pi0j0 :

pi0j0 =
1

2
C−1
i0j0

ˆ
SN−1

(
u(x+ hν)− 2u(x) + u(x− hν)

h2

)
νi0νj0dHN−1(ν),

where C is the scalar as in Prop. 4.1:

Ci0j0 :=

ˆ
SN−1

ν2
i0ν

2
j0dH

N−1(ν).

• If i0 = j0, the on the left-hand side all terms vanish except for i = j and we get∑
i

pii

ˆ
SN−1

ν2
i ν

2
i0dH

N−1(ν) =

ˆ
SN−1

(
u(x+ hν)− 2u(x) + u(x− hν)

h2

)
νi0νj0dHN−1(ν).

With the definition for C we can simplify the left-hand side to∑
i

piiCii0 =

ˆ
SN−1

(
u(x+ hν)− 2u(x) + u(x− hν)

h2

)
νi0νi0dHN−1(ν), i0 = 1, . . . , n.

Consequentially, for the diagonal vector p′ = (p11, . . . , pNN ) and y = (rhs)i0 we get from Proposi-
tion 4.1

C12(E + 2I)p′ = y

with E the all-ones matrix in RN×N . We have (E + 2I)−1 = 1
2

(
I − 1

N+2E
)

, thus we can rewrite

C12p
′ =

1

2

(
I − 1

N + 2
E

)
y.

The E term in the right-hand side is (since |ν|2 = 1 on SN−1)

− 1

N + 2

∑
i

ˆ
SN−1

(
u(x+ hν)− 2u(x) + u(x− hν)

h2

)
ν2
i dHN−1(ν)

= − 1

N + 2

ˆ
SN−1

(
u(x+ hν)− 2u(x) + u(x− hν)

h2

)
1dHN−1(ν).
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Putting both cases together, we can now solve the least-squares problem for a fixed radius h in closed form
for pH and therefore the first part of the claimed identity:

(4.10) pH(h) = p =
1

2
C−1

12

ˆ
SN−1

(
u(x+ hν)− 2u(x) + u(x− hν)

h2

)(
νν> − 1

N + 2
I

)
dHN−1(ν)

The last part follows with the substitution z = hν. �

The following theorem shows that the explicit form Hu is the same as separately solving the least-squares
problem on all spheres for all h > 0 and then taking a weighted mean based on ρ.

Proposition 4.3. Assume ρx is radially symmetric, i.e., ρx(z) = ρx(|z|). Then the explicit non-local Hessian
Hu can be written as

Hu =

ˆ ∞
0

H ′u,h

ˆ
hSN−1

ρx(z)dHN−1(z)dh.(4.11)

Proof. This is a direct consequence of Theorem. 4.2:

Hu =
N(N + 2)

2

ˆ
RN

u(x+ z)− 2u(x) + u(x− z)
|z|2

(
zz>

|z|2
− 1

N + 2
IN

)
ρx(z)dz

=
N(N + 2)

2

ˆ ∞
0

ρx(h)

ˆ
hSN−1

u(x+ z)− 2u(x) + u(x− z)
|z|2

(
zz>

|z|2
− 1

N + 2
IN

)
dzdh

Thm. 4.2
=

N(N + 2)

2

ˆ ∞
0

ρx(h)2C12h
N−1Hu,hdh

Prop. 4.1
= N(N + 2)

2πN/2

N(N + 2)Γ(N/2)

ˆ ∞
0

ρx(h)hN−1Hu,hdh

=
2πN/2

Γ(N/2)

ˆ ∞
0

hN−1|hSN−1|−1Hu,h

ˆ
hSN−1

ρx(z)dh

=
2πN/2

Γ(N/2)
|SN−1|−1

ˆ ∞
0

Hu,h

ˆ
hSN−1

ρx(z)dzdh

=

ˆ ∞
0

Hu,h

ˆ
hSN−1

ρx(z)dzdh.

�

Note that while Proposition 4.3 requires radial symmetry of ρ, this symmetry was generally assumed
throughout Section 3. Therefore Section 3 can also be seen as providing localization results for implicit
models of the form (4.11).

4.2. Choosing the weights for jump preservation. A characteristic of non-local models is that they are
extremely flexible due to the many degrees of freedom in choosing the weights. In this work we will focus on
improving on the question of how to reconstruct images that are piecewise quadratic but may have jumps.
The issue here is that one wants to keep the Hessian sparse in order to favor piecewise affine functions, but
doing it in a straightforward way, such as by adding |D2u|(Ω) as a regularizer, enforces too much first-order
regularity [Sch98, LLT03, LT06, HS06].

There have been several attempts of overcoming this issue, most notably approaches based on combined
first- and higher-order functionals (see [PS14] and the references therein), infimal convolution [CL97], and
Total Generalized Variation [BKP10, SST11]. Here we propose another strategy making use of the non-local
formulation (4.4).

We draw our motivation for choosing the weights partly from a recent discussion of non-local “Amoeba”
filters [LDM07, WBV11, Wel12]. Amoeba filters use classical techniques such as iterated median filtering,
but the structuring element is chosen in a highly adaptive local way that can follow the image structures,
instead of being restricted to a small parametrized set of shapes. In the following we propose to extend this
idea to the higher-order energy minimization framework (Figure 1).

Given a noisy image g : Ω → R, we first compute its (equally noisy) gradient image ∇g (in all of this
section we consider only the discretized problem, so we can assume that the gradient exists). We then define
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Figure 1. Adaptive choice of the neighbourhood for the image of a disc with constant slope
and added Gaussian noise. Left: A standard discretization of the second-order derivatives
at the marked point uses all points in a 3 × 3 neighbourhood. Center: With a suitable
choice of the weights σx, the discretization of the (non-local) Hessian at the marked point
only (or mostly) involved points that are likely to belong to the same affine region, here the
inside of the disc. This allows to use a straight-forward second-order regularizer such as the
norm of the Hessian ‖H ′u‖, while preserving jumps. Right: Geodesic distance dM from the
marked point x in the lower right. Points that are separated from x by a strong edge have a
large geodesic distance to x, and are therefore not included in the neighbourhood of x that
is used to define the non-local Hessian at x.

the Riemannian manifold M on the points of Ω with the usual Riemannian metric, weighted by ϕ(∇g) for
some function ϕ : RN → R+. In our experiments we used

ϕ(g) := |g|2 + γ(4.12)

for small γ > 0, but other choices are equally possible. The choice of γ controls how strongly the edge
information is taken into account: for γ = 0 the weights are fully anisotropic, while for large γ the magnitude
of the gradient becomes irrelevant, and the method will reduce to an isotropic regularization.

With these definitions, the geodesic distance dM between two points x, y ∈ Ω now has a powerful interpre-
tation: If dM(x, y) is large, this indicates that x and y are separated by a strong edge and should therefore
not appear in the same regularization term. On the other hand, small dM(x) indicates that x and y are part
of a more homogeneous region, and it is reasonable to assume that they should be part of the same affine
part of the reconstructed image.

For a given point x ∈ Ω, we sort the neighbours y1, y2, . . . in order of ascending distance, i.e., dM(x, y1) ≤
dM(x, y2) ≤ . . .. We choose a neighbourhood size M ∈ N and set the weights to

σx(y) :=

{
1, i ≤M,

0 i > M.
(4.13)

In other words, the non-local Hessian at x is computed using its M closest neighbours with respect to the
geodesic distance through the gradient image.

The geodesic distances σx(y) can be efficiently computed using the Fast Marching Method [Set99, OF03]
by solving the Eikonal equation

|∇c(y)| = ϕ(∇g(y)),(4.14)

c(x) = 0,(4.15)

and setting dM(x, y) = c(x). Although it is necessary to process this step for every point x ∈ Ω, it is in
practice a relatively cheap operation: the Fast Marching Method visits the neighbours of x in the order of
ascending distance dM, which means it can be stopped after M points, with M usually between 5 and 20. If
M is chosen too small, one risks that the linear equation system that defines the non-local Hessian in (4.4)
becomes underdetermined. In our experiments we found M = 12 to be a good compromise, but the choice
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input TV TV2 TGV

Figure 2. Classical local regularization. The input consists of a disc-shaped slope with
additive Gaussian noise, σ = 0.25. Shown is the result of denoising the input with L1-data
term. Total variation (TV, α = 1.1) regularization generates the well-known staircasing
effect. Regularization of the Hessian (TV2, α = 0.8) avoids this problem, at the cost of
over-smoothing jumps. Total Generalized Variation (TGV, α0 = 1.5, α1 = 1.1) performs
best, but still clips the slope at the top.

does not appear to be a very critical one. In the experiments we used the L1-non-local TV2 model

minu:Ω→R
∑
x∈Ω

|u(x)− g(x)|pdx+ α
∑
x∈Ω

ω(x)|H ′u(x)|dx(4.16)

s.t. AH ′u = Bu,(4.17)

where α > 0 is the regularization strength, and p ∈ {1, 2}. The linear constraints implement the optimality
conditions for H ′u.

The local weight ω is set as ω(x) = M/|{y ∈ Ω|By,x 6= 0}|. While the approach does work with uniform
weights ω = 1, we found that in some cases it can erroneously leave single outlier points intact. We believe
that this is caused by a subtle issue: by construction of σ, outlier points are usually close neighbour to
fewer points. Therefore they appear in fewer of the regularization terms |H ′u(x)|, which effectively decreases
regularization strength at outliers. The local weight ω counteracts this imbalance by dividing by the total
number of terms that a particular value u(x) appears in.

4.3. Numerical results. All experiments were performed on an Intel Xeon E5-2630 at 2.3 GHz with 64GB
of RAM, MATLAB R2014a running on Scientific Linux 6.3, GCC 4.4.6, and Mosek 7. Run times were
between several seconds for the geometric examples to several minutes for the full-size images, the majority
of which was spent at the solution stage. The computation of the geodesic distances dM using the Fast
Marching Method only took a few milliseconds in all cases, total preprocessing time including building the
sparse matrix structures A and B took less than 5 seconds for the full-size images.

The solution of the Eikonal equation and computation of the weights as well as system matrix uses a
custom C++ implementation. For solving the minimization problems we used the commercial Mosek solver
with the CVX interface. Compared to the recent first-order approaches this allows to compute solutions
with very high accuracy and therefore to evaluate the model without the risk of accidentally comparing only
approximate solutions.

Figure 2 illustrates the effect of several classical local regularizers including TV, TV2, and TGV. As
expected, TV generates the well-known staircasing effect, while TV2 leads to oversmoothing of the jumps.
TGV with hand-tuned parameters performs reasonably well, however it exhibits a characteristic pattern of
clipping sharp local extrema. This behavior has also been analytically confirmed in [PB13, PS13] for the
one-dimensional case.

Figure 3 shows the effect of our non-local Hessian-based method for the same problem. The piecewise
affine signal is almost perfectly recovered. This is mostly due to the fact that the jumps are relatively large,
which means that after computing the neighborhoods the circular region and the background are not coupled
in terms of regularization. Therefore the regularization weight α can be chosen very large, which results in
virtually affine regions.

To see what happens with smaller jumps, we generated a pattern of opposing slopes (Figure 4). As
expected both TGV as well as the non-local Hessian approach struggle when the jump is small. This shows
the limitations of our approach for choosing the weights – while it adds some structural information to the
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input TGV non-local Hessian
(proposed)

Figure 3. Non-local regularization of the problem in Figure 2. The adaptive choice of the
neighbourhood and weights together with the non-local Hessian preserves the jumps, clip
the top of the slope, and allows to perfectly reconstruct the piecewise affine signal.

input TGV low TGV high non-local Hessian

Figure 4. Denoising results for the “opposing slopes” image. The small jump at the crossing
causes a slight amount of smoothing for both the TGV and non-local approaches. TGV with
low regularization strength (TGV low, α0 = α1 = 0.8) does reasonably well at preserving
the strong jump on the right, but does not reconstruct the constant slope well. If one
increases the regularization strength (TGV high, α0 = α1 = 1.5), the jump is smoothed out.
The non-local Hessian regularization (α = 10−3, note the different scales on the axes) fully
preserves the large jump by design, and results in an overall cleaner reconstruction. The
small amplitude differences at the crossing point cause a slight blur in both approaches.

regularizer, this information is still restricted to a certain neighbourhood of each point, and does not take
into account the full global structure.

Figures 5 and 6 show a quantitative comparison of our non-local method with the results of the TGV
approach and several classical regularizers. The parameters for each method were chosen by a grid search
to yield the best PSNR. For all images we also provide a more realistic “structural similarity index” (SSIM)
[WBSS04]. The non-local approach improves on TGV with respect to PSNR (34.09 vs. 33.28). However, it is
interesting to look at the spatial distribution of the error: the parts where the non-local approach improves
are exactly the local maxima, which are smoothed over by TGV. Surprisingly, this is hardly visible when
looking at the images only (Figure 5), which is in line with the good results obtained with TGV for natural
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input image L2 − TV (ROF, α = 0.24) L2 − TGV(α0 = 0.38, α1 = 0.16)
PSNR = 22.82, SSIM = 0.33 PSNR = 31.83, SSIM = 0.90 PSNR = 33.28, SSIM = 0.93

L2−non-local Hessian L1 − TGV(α0 = 2.95, α1 = 1.0) L1− NL Hessian (γ = 0.005, α = 1.65)
PSNR = 34.09, SSIM = 0.93 PSNR = 35.39, SSIM = 0.97 PSNR = 36.06, SSIM = 0.98

Figure 5. Denoising results for a geometric test image (see Figure 6 for the discussion).

images. However, this property might become a problem when the data is not a natural image, for example
in the case of depth images or digital elevation maps. We refer to [LBL13] for a discussion of a problem that
is more demanding in terms of the correct choice of the regularization.

A current limitation is that our choice of weights can result in a pixelated structure along slanted edges.
This can happen when neighboring points are separated by a strong edge and therefore have no regularization
in common. We conjecture that this effect could be overcome by ensuring that for neighbouring points x, y
the weight σx(y) is always at least some positive constant, however we have not evaluated this direction
further. Whether this is a desired behaviour or not depends on the underlying data – for applications such
as segmentation a pixel-wise decision might actually be preferable.

Finally, Figure 8 shows an application to the “cameraman” image with L2 data term. Small details on
the camera as well as long, thin structures such the camera handle and the highlights on the tripod are
well preserved. In larger, more homogeneous areas the result is what would be expected from second-order
smoothness.

In its basic form, our approach is data-driven, i.e., the weights are computed directly from the noisy data,
while ideally they should be computed from the noise-free ground truth. We can approximate this solution-
driven approach by iterating the whole process, each time recomputing the weights from the previous solution.

5. Conclusion

From the perspective of the analysis, the study of the non-local Hessian is a natural extension of the
study of non-local gradients. While one has the straightforward observation we mention in the introduction
– that one may use non-local gradients to characterize higher-order Sobolev spaces – the results of this paper
alongside those of [MS14] provide a framework for general characterizations of Sobolev spaces of arbitrary
(non-negative integer) order. This notion, that one can write down an integrated Taylor series and use this
as a definition of a non-local differential object, is quite simple and yet leaves much to be explored. Let us
mention several interesting questions to this effect that would add clarity to the picture that has developed
thus far.

One of the foundations of the theory of Sobolev spaces is that of Sobolev inequalities. While for a related
class of functionals, a Poincaré inequality has been established by Augusto Ponce [Pon04a], the lack of
monotonicity of the non-local gradient has proven difficult in adapting his argument to our setting. This
motivates the following open question.
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Figure 6. Slice at row 50 through the results images in Figure 5. The L2−TV model shows
staircasing as expected. L2 − TGV smoothes out sharp local extrema, which is preserved
better by the non-local L2 model. Changing the data term to L1 additionally removes the
slight contrast reduction, even though the original noisy data is clipped to the interval [0, 1].

input image L2 − TV (ROF) L2 − TGV

L2−non-local Hessian L1 − TGV L1− non-local Hessian

Figure 7. Distribution of the L2 error to the ground truth for the experiment in Figure 5.
In the TGV case the errors spread out from the jumps. This is greatly reduced when using
the non-local Hessian, as the cost of introducing a few more local errors.

Open Question: Can one find hypothesis on the approximation of the identity ρn so that there is a
C > 0 such that for all u in a suitable space one has the inequalityˆ

Ω

|u−
 
u|p dx ≤ C

ˆ
Ω

|Gnu|p dx,

for all n sufficiently large?
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input image TGV
α0 = 0.30, α1 = 0.17

L2 −H ′u (1 iteration) L2 −H ′u (5 iterations)
α = 0.2, γ = 0.01 α = 0.2, γ = 0.01

Figure 8. Non-local Hessian-based denoising with L2 data fidelity (p = 2) on a real-world
noisy input image (top left) with σ = 0.1 Gaussian noise. Using a suitable choice of weights
with a non-parametric neighborhood, small details and long, thin structures such as the
camera handle can be preserved while removing noise in uniform structures (bottom left).
By repeating the process several times, the result can be further improved (bottom right).
Compared to TGV (upper right), edges are generally more pronounced, resulting in a slightly
cartoon-like look.

In fact, beyond the multitude of questions one could explore by making a comparison of the results for non-
local gradients and Hessians with known results in the Sobolev spaces, there are already several interesting
questions for non-local gradients and Hessians in the regime p = 1 that have not been satisfactorily understood
from our perspective. For instance, in the first order setting, assuming u ∈ BV(Ω), one has the convergence
of the total variations ˆ

Ω

|Gnu| dx→ |Du|(Ω).

While we have been able to show such a result for Hij
n u, i 6= j, we have not succeeded in demonstrating this

in the case Hii
n u, which if true would settle the following conjecture.

Conjecture: Suppose u ∈ BV2(RN ). Thenˆ
RN
|Hnu| dx→ |D2u|(RN ).

This question is related to a larger issue needing clarification, which is that of the right assumptions for
both the non-local gradient and non-local Hessian when p = 1. In both the paper [MS14] and this paper,
the assumption utilized in the characterizations has been that the object is an L1 function. The more
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natural assumption is that the non-local gradient or non-local Hessian exists as a measure, for which the
same argument gives a characterization of BV(Ω) or BV2(RN ). However, the question of defining an integral
functional of the non-local gradient or non-local Hessian is less clear. More understanding is required here
as to the notion of integral functionals of a measure in the local case and the right framework to place the
non-local objects within.

One can already see that from the analysis standpoint there are many interesting questions to explore in
this area, while from the standpoint of applications we have seen that the relatively simple framework yields
already quite interesting results. Here two interesting directions come into mind: developing strategies for
choosing the weights, and moving on beyond second-order regularization.

While in the numerical section we outlined one potential useful choice for the weights and an application
for the non-local Hessian – jump-preserving second-order regularization –, the approach is still somewhat
local in the sense that we still restrict ourselves to a neighborhoods of each point. It would be interesting to
find an application that allows to truly capitalize on the fact that we can include far-reaching interactions
together with an underlying higher-order model.

It would also be interesting to see whether it is useful in applications to go to even higher orders than 2.
While for natural images the use of such regularity is debatable, for other applications such as reconstructing
digital elevation maps it can make the difference between success and failure [LBL13], and only requires
replacing the quadratic model in the non-local Hessian (4.4) by a cubic- or even higher-order model.

Appendix

Proof of Proposition 4.1 In the case N = 1 we always have i0 = j0 and verify that in fact both the integral
and the right-hand side are equal to 2. For N = 2 the integral becomes either

(5.1)

ˆ 2π

0

cos2 α sin2 αdα =
π

4
or

ˆ 2π

0

cos2 α cos2 αdα =
3π

4
,

which agrees with (4.5). For the general case N > 3, we apply the coarea formula in [AFP00, 2.93] using
E = SN−1, M = N, N = N − 1, k = 2, f(x1, x2, . . .) = (x1, x2), thenˆ

SN−1

g(x)Ckd
EfxdHN−1(x) =

ˆ
R2

ˆ
SN−1∩{y1=x2,y2=x2}

g(y)dHN−3(y)d(x1, x2)

=

ˆ
B1(0)

ˆ
√

1−x2
1−x2

2S
N−3

g(x1, x2, xr)dHN−3(xr)d(x1, x2).

In our case g(x) = x2
1x

2
2, thus g(x1, x2, xr) is independent of xr and we obtainˆ

SN−1

x2
1x

2
2Ckd

EfxdHN−1(x) =

ˆ
B1(0)

x2
1x

2
2

ˆ
√

1−x2
1−x2

2SN−3

dHN−3(xr)d(x1, x2)

Consider Ckd
Efx. For a given x ∈ SN−1, assume that B ∈ RN ×RN−1 extends x to an orthonormal basis of

RN . Then x+Bt, t ∈ RN−1, parametrizes the tangent plane of E at x. The derivative of f(x+Bt) = (x1, x2)
at x in direction t is

L := dEfx = ∂tf(x+Bt)|t=0 = EB, E :=

(
e>1
e>2

)
We are interested in

√
detLL> =

√
det(EBB>E). Now

I2 = EInE
> = E

(
B x

)( B>

x>

)
E> = EBB>E + Exx>E>,

thus

LL> = EBB>E = I2 − Exx>E> = I2 −
(
x1

x2

)(
x1 x2

)
=

(
1− x2

1 −x1x2

−x1x2 1− x2
2

)
,

and consequently

Ckd
Efx =

√
det(LL>) =

√
(1− x2

1)(1− x2
2)− x2

1x
2
2 =

√
1− x2

1 − x2
2.
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Consequentlyˆ
SN−1

x2
1x

2
2(1− x2

1 − x2
2)dHN−1(x) =

ˆ
B1(0)

x2
1x

2
2

ˆ
√

1−x2
1−x2

2SN−3

dHN−3(xr)d(x1, x2)

By putting the Ck term into the denominator of g, we obtain the more useful formˆ
SN−1

x2
1x

2
2dHN−1(x) =

ˆ
B1(0)

√
1− x2

1 − x2
2

−1

x2
1x

2
2

ˆ
√

1−x2
1−x2

2S
N−3

dHN−3(xr)d(x1, x2).

The right-hand side is ˆ 1

0

ˆ 2π

0

r
√

1− r2
−1
r4 cos2 α sin2 α

∣∣∣√1− r2SN−3
∣∣∣ drdα

=

ˆ 2π

0

cos2 α sin2 αdα

ˆ 1

0

√
1− r2r5

∣∣∣√1− r2SN−3
∣∣∣ dr

=
π

4

ˆ 1

0

√
1− r2

−1
r5
∣∣∣√1− r2SN−3

∣∣∣ dr
=

π

4

ˆ 1

0

√
1− r2

−1
r5
√

1− r2
N−3
|SN−3|dr

=
π

4
|SN−3|

ˆ 1

0

r5
√

1− r2
N−4

dr

=
π

4
|SN−3| 8

N(N + 2)(N − 2)

=
π

4

(N − 2)π(N−2)/2

Γ(1 + (N − 2)/2)

8

N(N + 2)(N − 2)

=
2πN/2

N(N + 2)Γ(N/2)
.

Using the fact that
´ 2π

0
cos4(α)dα = 3

´ 2π

0
cos2 α sin2 αdα we finally obtain

Ci0j0 =

ˆ
SN−1

ν2
i0ν

2
j0dH

N−1(x) =
|SN−1|

N(N + 2)
·
{

1, i0 6= j0,
3, i0 = j0.

This completes the proof.
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