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OPERATOR ON KÄHLER MANIFOLDS AND APPLICATIONS

Luca Lussardi

Dipartimento di Matematica, Politecnico di Torino
c.so Duca degli Abruzzi 24, 10129 Torino (Italy)

email: luca.lussardi@polito.it

Abstract. In this paper we will prove an integral inequality of Stampacchia-type for
a fourth-order elliptic operator on complete and connected Kähler manifolds. Our in-
equality implies a Hodge-Kodaira orthogonal decomposition for the Sobolev-type space
Wp,q(X). In particular we will able to prove, under suitable topological conditions on
the manifold X, the existence of an isomorphism between the Aeppli groups Λp,q(X)
and the groups Hp,q(X) of all global harmonic forms of bidegree (p, q).

Keywords: Harmonic forms, Stampacchia-type inequality, Hodge-Kodaira decomposi-
tion, Aeppli groups.

2000 Mathematics Subject Classification: 53C55, 14F25.

1. Introduction

Let X be a complex manifold, and let p, q ≥ 1 integers. The Aeppli groups, even called ∂∂̄-
cohomology groups, defined for the first time by Aeppli in [1] and studied, principally, by Bigolin
in [10] and in [11], were introduced in order to study cycles of algebraic manifolds (see [8]). More
recently the Aeppli groups are under consideration in order to investigate integral transformations
(see [17]), properties of balanced manifolds (see [2],[5],[6]) and properties of 1-convex manifolds
(see [3],[7],[4]). The Aeppli groups were originally defined in [1] by

Λp,q(X) =
Ker{Ap,q(X) d→ Ap+1,q(X)⊕Ap,q+1(X)}

∂∂̄Ap−1,q−1(X)

Vp,q(X) =
Ker{Ap,q(X) ∂∂̄→ Ap+1,q+1(X)}
∂Ap−1,q(X) + ∂̄Ap,q−1(X)

where Ap,q(X) denotes the space af all (p, q)-differential forms with coefficients in C∞(X) and
with complex values. If X is a Stein manifolds then Aeppli, in [1], proves that the Aeppli groups
are isomorphic to the complex De Rham cohomology: more precisely Λp,q(X) and Vp,q(X) are
isomorphic, respectively, to the spaces Hp+q(X) and Hp+q+1(X), where Hr(X) denotes the space
of all global harmonic r-forms. The result of Aeppli gives a characterization of the De Rham
cohomology for Stein manifolds. If the manifold X is Kähler and compact then Bigolin, in [10],
proves, as a consequence of a orthogonal decomposition for the space of all ∂∂̄-closed forms, that
both V p,q(X) and Λp,q(X) are isomorphic to Hp,q(X), where Hp,q(X) denotes the space of all
forms in Hp+q(X) of bidegree (p, q); moreover in the same paper some results proved by Aeppli in
[1] for Stein manifolds are recovered. If we remove the compactness assumption on the manifold X
then, at the moment, it is unknown the relation between Aeppli groups and Hp,q(X). In this paper
we study the non-compact case. We will able to prove, under a technical topological condition on
X (see assumption (5.1)), that the Aeppli groups Λp,q(X) are isomorphic to Hp,q(X) whenever
X is a connected and complete Kähler manifold. The main tool for the proof of our result is a
suitable Hodge-Kodaira orthogonal decomposition. More precisely denoting by Dp,q(X) the space
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of all forms in Ap,q(X) with compact support in X, we can consider, on Dp,q(X), the standard
complex scalar product (·, ·)X of L2-type and the complex scalar product

(u, v)1,X := (u, v)X + (∂̄u, ∂̄v)X + (ϑu, ϑv)X

where ∂ and ∂̄ are the classical complex differential operators and ϑ̄ and ϑ are their adjoints,
respectively. Then if we denote by Wp,q(X) the completion of Dp,q(X) with respect to the scalar
product (·, ·)1,X , in §4 we will able to prove that on Kähler manifolds the following Hodge-Kodaira
decomposition holds:

(1.1) Wp,q(X) = [∂∂̄Dp−1,q−1(X)]1 ⊕⊥ [ϑDp,q+1(X) + ϑ̄Dp+1,q(X)]1 ⊕⊥ Ker � ∩Wp,q(X)

where the square brackets with subscript 1 stands for the closure in Wp,q(X) and ⊕⊥ says that
the direct sum is orthogonal in the sense of the scalar product (·, ·)1,X . The proof of (1.1), in
the absence of compactness, requires an integral inequality of “Stampacchia-type” for a suitable
elliptic operator, and such a inequality is the crucial point. Let us briefly recall the history of
Stampacchia-type inequalities.

Let X be a complete and connected hermitian manifold. The classical Stampacchia inequality
is an integral inequality which involves the complex Laplace operator �; Andreotti and Vesentini
proved it in [9] in order to obtain applications to the study of vanishing theorems by means of
an extension of a Kodaira theorem ([13]). More precisely if Lp,q(X) denotes the completion of
Dp,q(X) with respect to the scalar product (·, ·)X and if Br denotes the ball of radius r and
centered in a fixed point 0 ∈ X, then for any r,R, σ > 0, with r < R, it holds

(1.2) (∂̄u, ∂̄u)Br
+ (ϑu, ϑu)Br

≤
(

1
σ

+
c

(R− r)2

)
(u, u)BR

+ σ(�u,�u)BR

for all u ∈ Ap,q(X), where c > 0 is a constant which depends only by the complex dimension of X.
In particular it descends the following characterization of the square-summable harmonic forms
on X:

(1.3) Ker � ∩ Lp,q(X) = {u ∈ Ap,q(X) ∩ Lp,q(X) : ∂̄u = ϑu = 0}.

A real version of inequality (1.2) was proved by Vesentini, with the same technique, in [18]: if M
denotes a complete and connected riemannian manifold then for any r,R, σ > 0, with r < R, it
holds

(1.4) (du, du)Br + (δu, δu)Br ≤
(

1
σ

+
c

(R− r)2

)
(u, u)BR

+ σ(∆u,∆u)BR

for any u ∈ Ap(M), where c > 0 is a constant which depends only by the dimension of M . The
Stampacchia-type inequality (1.4) implies that

Ker ∆ ∩ Lp(M) = {u ∈ Ap(M) ∩ Lp(M) : du = δu = 0}

from which it follows the Hodge-Kodaira decomposition of Lp(M):

(1.5) Lp(M) = [dDp−1(M)]Lp(M) ⊕⊥ [δDp+1(M)]Lp(M) ⊕⊥ Ker ∆ ∩ Lp(M).

In this this paper we will prove a Stampacchia-type inequality like (1.2) for the fourth-order elliptic
operator D given by

D = ∂∂̄ϑϑ̄+ ϑϑ̄∂∂̄ + ϑ̄∂̄ϑ∂ + ϑ∂ϑ̄∂̄ + ϑ̄∂ + ϑ∂̄

which was first considered by Kodaira and Spencer in [15] for the study of the stability of Kähler
manifolds under small deformations (see moreover the important book of Morrow and Kodaira
[16], Ch. 4, § 4). Such a operator D was also considered by Bigolin [10] in the compact case. More
precisely in § 3, following the same technique of Andreotti and Vesentini, we will prove that there
exist four positive constants c1, c2, c3, c4, eventually depending only by the complex dimension of
X, such that for any r,R, σ > 0, with r < R, it holds

(1.6) (�u,�u)BR
+ (ϑϑ̄u, ϑϑ̄u)Br

+ (∂∂̄u, ∂∂̄u)Br
+ (ϑ∂u, ϑ∂u)Br

+ (ϑ̄∂̄u, ϑ̄∂̄u)Br
+

+(∂u, ∂u)Br + (∂̄u, ∂̄u)Br ≤
(

c1
(R− r)2

+
c2

(R− r)4
+

1
σ

)
(u, u)BR

+
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+
c3

(R− r)2
((∂̄u, ∂̄u)BR

+ (ϑu, ϑu)BR
) + c4σ(Du,Du)BR

for any u ∈ Ap,q(X). By means of inequality (1.6) we will able to prove the decomposition (1.1)
and then, in the last section, we will apply such a decomposition in order to study a relation
between the Aeppli cohomology and classical De Rham cohomology.

2. Riemannian and hermitian manifolds

2.1. Riemannian manifolds. For a thorough treatment of the argument we refer the reader to
[12]. Let M be a n-dimensional orientable complete riemannian manifold. Let gαβ be the metric
tensor on M and let gαβ be the inverse of gαβ ; we also denote by g = det gαβ . For any positive
integer p, with p ≤ n, we will denote by Kp(M) the space of all currents on M of degree p; the
subspace Ap(M) will denote the space of all p-differential forms with C∞-coefficients and real
values. In this setting it is well defined the volume form eα1...αn

dx1 ∧ · · · ∧ dxn. Given u ∈ Ap(M)
the adjoint of u is the form given, in local coordinates, by ∗uβ1...βn−p

= eα1...αpβ1...βn−p
uα1...αp . The

operator ∗ : Ap(M) → An−p(M) can be extended to a unique operator ∗ : Kp(M) → Kn−p(M).
On the subspace Dp(M) given by all forms in Ap(M) which have compact support in M the
operator ∗ permits us to define the real scalar product given by

(u, v)M :=
∫
M

u ∧ ∗v.

We will denote by Lp(M) the completion of the space Dp(M) with respect to the scalar product
(·, ·)M . It turns out that Lp(M) is an Hilbert space. Let d : Kp(M) → Kp+1(M) be the exterior
differential and let δ : Kp(M) → Kp−1(M) its formal adjoint, i.e. δ = (−1)np+n+1 ∗ d∗; it is well
known that d2 = δ2 = 0. The laplacian of a current T ∈ Kp(M) is given by ∆T = dδT + δdT ; the
currents belong to Ker ∆ are called harmonic currents, and the forms belong to Ker ∆ are called
harmonic forms. By ellipticity it turns out that if T ∈ Ker ∆ then actually T ∈ Ap(M).

2.2. Hermitian manifolds. For a thorough treatment of the subject we refer the reader to [16]
and [19]. Let X be a complete hermitian manifold of complex dimension n, let gαβ be the her-
mitian metric on X, and let gαβ be its inverse; as in the real case we denote by g = det gαβ .
For any positive integers p, q, with p, q ≤ n, we will denote by Kp,q(X) the space of all cur-
rents on X of bidegree (p, q); the subspace Ap,q(X) will denote the space of all (p, q)-differential
forms with C∞-coefficients and complex values. Associated to an hermitian metric we have the
fundamental real form ω = igαβdz

αdz̄β ; X is a Kähler manifold if dω = 0. Let, in local co-
ordinates, eα1...αnβ1...βndz

α1 ∧ · · · ∧ dzαn ∧ dz̄β1 ∧ · · · ∧ dz̄βn be the volume form on X. Given
u ∈ Ap,q(X) the adjoint of u is the form given, in local coordinates, by ∗uµ1...µn−qν1...νn−p =
eµ1...µn−qα1...αqν1...νn−pβ1...βp

uα1...αqβ1...βp . The operator ∗ : Ap,q(X) → An−q,n−p(X) can be ex-
tended to a unique operator ∗ : Kp,q(X) → Kn−q,n−p(X). As in the riemannian case on the
subspace Dp,q(X) given by all forms in Ap,q(X) which have compact support in X the operator ∗
permits us to define a complex scalar product given by

(u, v)X :=
∫
X

u ∧ ∗v.

We will denote by Lp,q(X) the completion of Dp,q(X) with respect to the scalar product (·, ·)X .
It turns out that Lp,q(X) is an Hilbert space. Let ∂ : Kp,q(X) → Kp+1,q(X) and ∂̄ : Kp,q(X) →
Kp,q+1(X) be the classical complex differential operators. It is well known that ∂2 = ∂̄2 = 0 and
d = ∂ + ∂̄. The operators ϑ : Kp,q(X)→ Kp,q−1(X) and ϑ̄ : Kp,q(X)→ Kp−1,q(X) can be defined
by setting ϑ = − ∗ ∂∗ and ϑ̄ = − ∗ ∂̄∗, and we get ϑ2 = ϑ̄2 = 0. Let us now recall the following
useful formulas: If at least one form between u and v belong to Dp,q(X) then

(2.1) (∂̄u, v)X = (u, ϑv)X and (∂u, v)X = (u, ϑ̄v)X ;

moreover it holds ∂∂̄ = −∂̄∂ and ϑϑ̄ = −ϑ̄ϑ. If X is a Kähler manifold then it is well known that

(2.2) ∂ϑ+ ϑ∂ = 0, ∂̄ϑ̄+ ϑ̄∂̄ = 0, ∂̄ϑ+ ϑ∂̄ = ∂ϑ̄+ ϑ̄∂.
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We recall that the complex laplacian � : Kp,q(X) → Kp,q(X) is defined by � = ∂̄ϑ + ϑ∂̄; the
currents belong to Ker � are called harmonic currents, and the forms belong to Ker � are called
harmonic forms. On Kähler manifolds by (2.2) it descends

� = � := ∂ϑ̄+ ϑ̄∂.

By ellipticity it turns out that if T ∈ Ker � then actually T ∈ Ap,q(X). On Kähler manifolds it
holds � = 1

2∆. Finally we will denote by Wp,q(X) the Sobolev-type space given by the completion
of Dp,q(X) with respect to the scalar product

(u, u)1,X := (u, u)X + (∂̄u, ∂̄u)X + (ϑu, ϑu)X .

It turns out that Wp,q(X) is an Hilbert space.

3. A Stampacchia-type inequality for the operator D

In the rest of the paper X will denote a complete and connected Kähler manifold of complex
dimension n. Let p, q ≤ n be positive integers. Consider the fourth-order operator D : Kp,q(X)→
Kp,q(X) given by

(3.1) D = ϑ∂̄ϑ∂̄ + ∂̄ϑ∂̄ϑ+ ϑ̄∂ + ϑ∂̄

Remark 3.1. An easy application of formulas (2.2) shows that

(3.2) �2 = ϑ∂̄ϑ∂̄ + ∂̄ϑ∂̄ϑ

and

(3.3) ϑ∂̄ϑ∂̄ + ∂̄ϑ∂̄ϑ = ∂∂̄ϑϑ̄+ ϑϑ̄∂∂̄ + ϑ̄∂̄ϑ∂ + ϑ∂ϑ̄∂̄.

In [15] Kodaira and Spencer show that D (they used, for the principal part of D, the form given
by the right-hand side of (3.3)) is an elliptic operator, since its principal part is given by∑

αβγδ

gβαgδγ
∂4

∂zα∂z̄β∂zγ∂z̄δ

in any local coordinates system. For any u ∈ Ap,q(X) let

(u, u)2,X := (ϑϑ̄u, ϑ̄ϑ̄)X + (∂∂̄u, ∂∂̄u)X + (ϑ∂u, ϑ∂u)X + (ϑ̄∂̄u, ϑ̄∂̄u)X .

Let 0 ∈ X be a fixed point; for any r > 0 we will denote by Br the ball centered in 0 with
radius r. For the sake of simplicity we will use the notation (·, ·)r and (·, ·)2,r respectively for the
quantities (·, ·)Br and (·, ·)2,Br . Notice that the completeness of X ensures that the generic ball Br
is relatively compact in X, by Hopf-Rinow theorem; in particular all quantities (u, u)r and (u, u)2,r

are finite. The fundamental result of this section is an integral inequality of Stampacchia-type for
the operator D.

Theorem 3.2. (Stampacchia-type inequality) For every R, r, σ > 0 with r < R it holds

(3.4) (�u,�u)r + (u, u)2,r + (∂u, ∂u)r + (∂̄u, ∂̄u)r ≤

≤
(

c1
(R− r)4

+
c2

(R− r)2
+

1
σ

)
(u, u)R +

c3
(R− r)2

((∂̄u, ∂̄u)R + (ϑu, ϑu)R) + c4σ(Du,Du)R

for any u ∈ Ap,q(X), with c1, c2, c3, c4 positive constants eventually depending only by the complex
dimension n.

Proof. Using the same argument of Lemma 6 in [9] we can construct a function ϕ : X → [0, 1]
with ϕ = 1 on Br, ϕ = 0 on X \ BR such that there exist two positive constants M1 and M2,
depending only by n, with

(3.5) (Lϕ ∧ u, Lϕ ∧ u)R ≤
M1

(R− r)2
(u, u)R, (Nϕ ∧ u,Nϕ ∧ u)R ≤

M2

(R− r)4
(u, u)R

for any u ∈ Ap,q(X), whenever L ∈ {∂, ∂̄, ϑ, ϑ̄} and N ∈ {∂∂̄, ϑϑ̄, ϑ∂, ϑ̄∂̄}. Let u ∈ Ap,q(X); then
ϕmu has support in BR for any positive integer m. Now we divide the proof in two steps; first we
collect some useful estimates for the first and the second order terms that appears in D, and then
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we will prove (3.4).

Step 1. Let us consider the first order terms. We have

∂(ϕ4u) = 4ϕ3∂ϕ ∧ u+ ϕ4∂u

and then

(∂u, ∂(ϕ4u))R = (ϕ2∂u, 4ϕ∂ϕ ∧ u+ ϕ2∂u)R = 4(ϕ2∂u, ϕ∂ϕ ∧ u)R + (ϕ2∂u, ϕ2∂u)R.

Taking into account formulas (2.1) we deduce that

(3.6) (ϕ2∂u, ϕ2∂u)R = (ϑ̄∂u, ϕ4u)R − 4(ϕ2∂u, ϕ∂ϕ ∧ u)R.

By applying the same argument we get

(3.7) (ϕ2∂̄u, ϕ2∂̄u)R = (ϑ∂̄u, ϕ4u)R − 4(ϕ2∂̄u, ϕ∂̄ϕ ∧ u)R.

Let us now consider the second order terms. We easily have

ϑ∂̄(ϕ4u) = ϑ(2ϕ3∂̄ϕ ∧ u+ ϕ2∂̄(ϕ2u)) =

= 6ϕ2ϑϕ ∧ ∂̄ϕ ∧ u+ 2ϕ3ϑ∂̄ϕ ∧ u+ (−1)p+q2ϕ3∂̄ϕ ∧ ϑu+ 2ϕϑϕ ∧ ∂̄(ϕ2u) + ϕ2ϑ∂̄(ϕ2u) =
= 10ϕ2ϑϕ ∧ ∂̄ϕ ∧ u+ 2ϕ3ϑ∂̄ϕ ∧ u+ (−1)p+q2ϕ3∂̄ϕ ∧ ϑu+ 2ϕ3ϑϕ ∧ ∂̄u+ ϕ2ϑ∂̄(ϕ2u)

from which we obtain
(ϑ∂̄u, ϑ∂̄(ϕ4u))R =

= (ϕ2ϑ∂̄u, 10ϑϕ ∧ ∂̄ϕ ∧ u+ 2ϕϑ∂̄ϕ ∧ u+ (−1)p+q2ϕ∂̄ϕ ∧ ϑu+ 2ϕϑϕ ∧ ∂̄u+ ϑ∂̄(ϕ2u))R =
= (ϑ∂̄(ϕ2u)− 2ϑϕ ∧ ∂̄ϕ ∧ u− 2ϕϑ∂̄ϕ ∧ u− (−1)p+q2ϕ∂̄ϕ ∧ ϑu− 2ϕϑϕ ∧ ∂̄u, 10ϑϕ ∧ ∂̄ϕ ∧ u+

+2ϕϑ∂̄ϕ ∧ u+ (−1)p+q2ϕ∂̄ϕ ∧ ϑu+ 2ϕϑϕ ∧ ∂̄u+ ϑ∂̄(ϕ2u))R.
Then taking into account (2.1) we get

(3.8) (ϑ∂̄(ϕ2u), ϑ∂̄(ϕ2u))R = (ϑ∂̄ϑ∂̄u, ϕ4u)R − 10(ϑ∂̄(ϕ2u), ϑϕ ∧ ∂̄ϕ ∧ u)R+

+20(ϑϕ ∧ ∂̄ϕ ∧ u, ϑϕ ∧ ∂̄ϕ ∧ u)R + 20(ϕϑ∂̄ϕ ∧ u, ϑϕ ∧ ∂̄ϕ ∧ u)R+
+20(−1)p+q(ϕ∂̄ϕ ∧ ϑu, ϑϕ ∧ ∂̄ϕ ∧ u)R + 20(ϕϑϕ ∧ ∂̄u, ϑϕ ∧ ∂̄ϕ ∧ u)R+

−2(ϑ∂̄(ϕ2u), ϕϑ∂̄ϕ ∧ u)R + 4(ϑϕ ∧ ∂̄ϕ ∧ u, ϕϑ∂̄ϕ ∧ u)R + 4(ϕϑ∂̄ϕ ∧ u, ϕϑ∂̄ϕ ∧ u)R+
+2(−1)p+q(ϕ∂̄ϕ ∧ ϑu, ϕϑ∂̄ϕ ∧ u)R + 4(ϕϑϕ ∧ ∂̄u, ϕϑ∂̄ϕ ∧ u)R − 2(−1)p+q(ϑ∂̄(ϕ2u), ϕ∂̄ϕ ∧ ϑu)R+

+4(−1)p+q(ϑϕ ∧ ∂̄ϕ ∧ u, ϕ∂̄ϕ ∧ ϑu)R + 4(−1)p+q(ϕϑ∂̄ϕ ∧ u, ϕ∂̄ϕ ∧ ϑu)R+
+4(ϕ∂̄ϕ ∧ ϑu, ϕ∂̄ϕ ∧ ϑu)R + 4(−1)p+q(ϕϑϕ ∧ ∂̄u, ϕ∂̄ϕ ∧ ϑu)R − 2(ϑ∂̄(ϕ2u), ϕϑϕ ∧ ∂̄u)R+

+4(ϑϕ ∧ ∂̄ϕ ∧ u, ϕϑϕ ∧ ∂̄u)R + 4(ϕϑ∂̄ϕ ∧ u, ϕϑϕ ∧ ∂̄u)R + 4(−1)p+q(ϕ∂̄ϕ ∧ ϑu, ϕϑϕ ∧ ∂̄u)R+
+4(ϕϑϕ ∧ ∂̄u, ϕϑϕ ∧ ∂̄u)R + 2(ϑϕ ∧ ∂̄ϕ ∧ u, ϑ∂̄(ϕ2u))R + 2(ϕϑ∂̄ϕ ∧ u, ϑ∂̄(ϕ2u))R+

+2(−1)p+q(ϕ∂̄ϕ ∧ ϑu, ϑ∂̄(ϕ2u))R + 2(ϕϑϕ ∧ ∂̄u, ϑ∂̄(ϕ2u))R.
After the same computation we can obtain a similar identity for the term (∂̄ϑ(ϕ2u), ∂̄ϑ(ϕ2u))R.

Step 2. Now we will prove (3.4). By taking the sum of (3.6),(3.7),(3.8) and the similar identity
for the term (∂̄ϑ(ϕ2u), ∂̄ϑ(ϕ2u))R, taking into account the very definition of D, Young inequality
and (3.5) we easily obtain

(3.9) (ϑ∂̄(ϕ2u), ϑ∂̄(ϕ2u))R + (∂̄ϑ(ϕ2u), ∂̄ϑ(ϕ2u))R + (ϕ2∂u, ϕ2∂u)R + (ϕ2∂̄u, ϕ2∂̄u)R ≤

≤ |(Du, ϕ4u)R|+
1
2

[(ϑ∂̄(ϕ2u), ϑ∂̄(ϕ2u)R+(∂̄ϑ(ϕ2u), ∂̄ϑ(ϕ2u))R+(ϕ2∂u, ϕ2∂u)R+(ϕ2∂̄u, ϕ2∂̄u)R]+

+
(

α

(R− r)2
+

β

(R− r)4

)
(u, u)R +

γ

(R− r)2
((∂̄u, ∂̄u)R + (ϑu, ϑu)R)

for some positive constants α, β, γ depending only on the complex dimension n. Then

(ϑ∂̄(ϕ2u), ϑ∂̄(ϕ2u))R + (∂̄ϑ(ϕ2u), ∂̄ϑ(ϕ2u))R + (ϕ2∂u, ϕ2∂u)R + (ϕ2∂̄u, ϕ2∂̄u)R ≤

≤ 2|(Du, ϕ4u)R|+
(

2α
(R− r)2

+
2β

(R− r)4

)
(u, u)R +

2γ
(R− r)2

((∂̄u, ∂̄u)R + (ϑu, ϑu)R).
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Now observe that

(ϑ∂̄(ϕ2u), ϑ∂̄(ϕ2u))R + (∂̄ϑ(ϕ2u), ∂̄ϑ(ϕ2u))R = (�(ϕ2u),�(ϕ2u))R

and, at the same time, applying (3.3),

(ϑ∂̄(ϕ2u), ϑ∂̄(ϕ2u))R + (∂̄ϑ(ϕ2u), ∂̄ϑ(ϕ2u))R = (ϕ2u, ϕ2u)2,R.

Thus, since ϕ = 1 on Br, we deduce that

(�u,�u)r + (u, u)2,r + (∂u, ∂u)r + (∂̄u, ∂̄u)r ≤
(

4α
(R− r)2

+
4β

(R− r)4

)
(u, u)R+

+
4γ

(R− r)2
((∂̄u, ∂̄u)R + (ϑu, ϑu)R) + 4|(Du, ϕ4u)R|.

Finally, applying again Young inequality, we obtain, for any η > 0,

(�u,�u)r + (u, u)2,r + (∂u, ∂u)r + (∂̄u, ∂̄u)r ≤
(

4α
(R− r)2

+
4β

(R− r)4
+

4
η

)
(u, u)R+

+
4γ

(R− r)2
((∂̄u, ∂̄u)R + (ϑu, ϑu)R) + 4η|(Du,Du)R|

which is, up to constants, inequality (3.4). �

4. A Hodge-Kodaira decomposition for the space Wp,q(X)

This section is devoted to the proof of a Hodge-Kodaira orthogonal decompostion for the space
Wp,q(X).

Proposition 4.1. It holds

(4.1) Ker � ∩Wp,q(X) = KerD ∩Wp,q(X) = {u ∈ Ap,q(X) ∩Wp,q(X) : ϑϑ̄u = ∂u = ∂̄u = 0}.

Proof. Let u ∈Wp,q(X) with Du = 0. Then inequality (3.4) implies that

(ϑϑ̄u, ϑϑ̄u)r + (∂u, ∂u)r + (∂̄u, ∂̄u)r ≤
(

c1
(R− r)4

+
c2

(R− r)2
+

1
σ

)
(u, u)X+

+
c3

(R− r)2
((∂̄u, ∂̄u)X + (ϑu, ϑu)X)

for any R, r, σ > 0 with r < R. Observe that since X is connected we get

(ϑϑ̄u, ϑϑ̄u)r + (∂u, ∂u)r + (∂̄u, ∂̄u)r → (ϑϑ̄u, ϑϑ̄u)X + (∂u, ∂u)X + (∂̄u, ∂̄u)X

as r → +∞. Choosing r = R/2 and by taking the lim sup as R, σ → +∞ we deduce that
(ϑϑ̄u, ϑϑ̄u)X = (∂u, ∂u)X = (∂̄u, ∂̄u)X = 0. Then ϑϑ̄u = ∂u = ∂̄u = 0. Conversely if u ∈ Ap,q(X)
and if ϑϑ̄u = ∂u = ∂̄u = 0 then recalling (3.3) we immediately have Du = 0. Then

KerD ∩Wp,q(X) = {u ∈ Ap,q(X) ∩Wp,q(X) : ϑϑ̄u = ∂u = ∂̄u = 0}.

Now if u ∈ Ap,q(X) ∩Wp,q(X) and �u = 0 then applying (1.2) and the same for � we get
∂u = ∂̄u = ϑu = ϑ̄u = 0, and thus Du = 0. Conversely if u ∈ Ap,q(X) ∩Wp,q(X) and Du = 0
then by (3.4) we have

(�u,�u)r ≤
(

c1
(R− r)4

+
c2

(R− r)2
+

1
σ

)
(u, u)X +

c3
(R− r)2

((∂̄u, ∂̄u)X + (ϑu, ϑu)X).

Reasoning as before we conclude. �

Lemma 4.2. If at least one form between u and v belong to Dp,q(X) then

(4.2) (∂u, v)1,X = (u, ϑ̄v)1,X and (∂̄u, v)1,X = (u, ϑv)1,X .
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Proof. By direct computation we have, since (2.1) and (2.2) hold,

(∂u, v)1,X = (∂u, v)X + (∂̄∂u, ∂̄v)X + (ϑ∂u, ϑv)X = (u, ϑ̄v)X + (ϑ∂̄∂u, v)X + (∂̄ϑ∂u, v)X =

= (u, ϑ̄v)X + ((ϑ∂̄ + ∂̄ϑ)∂u, v)X = (u, ϑ̄v)X + ((∂ϑ̄+ ϑ̄∂)∂u, v)X =
= (u, ϑ̄v)X + (∂ϑ̄∂u, v)X = (u, ϑ̄v)X + (ϑ̄∂u, ϑ̄v)X

and
(u, ϑ̄v)1,X = (u, ϑ̄v)X + (∂̄u, ∂̄ϑ̄v)X + (ϑu, ϑϑ̄v)X =

= (u, ϑ̄v)X + (ϑ∂̄u, ϑ̄v)X + (∂̄ϑu, ϑ̄v)X = (u, ϑ̄v)X + (ϑ∂̄u+ ∂̄u, ϑ̄v)X =
= (u, ϑ̄v)X + (∂ϑ̄u+ ϑ̄∂u, ϑ̄v)X = (u, ϑ̄v)X + (ϑ̄∂u, ϑ̄v)X .

The other one is similar. �

Theorem 4.3. (Hodge-Kodaira decomposition) The following Hodge-Kodaira orthogonal de-
composition holds:

(4.3) Wp,q(X) = [∂∂̄Dp−1,q−1(X)]1 ⊕⊥ [ϑDp,q+1(X) + ϑ̄Dp+1,q(X)]1 ⊕⊥ Ker � ∩Wp,q(X).

Proof. Taking into account (4.1) it is sufficient to show that

Wp,q(X) = [∂∂̄Dp−1,q−1(X)]1 ⊕⊥ [ϑDp,q+1(X) + ϑ̄Dp+1,q(X)]1⊕⊥
⊕⊥{u ∈ Ap,q(X) ∩Wp,q(X) : ϑϑ̄u = ∂u = ∂̄u = 0}.

Step 1. First we prove that the subspaces

[∂∂̄Dp−1,q−1(X)]1 and [ϑDp,q+1(X) + ϑ̄Dp+1,q(X)]1
are orthogonal in the space Wp,q(X). Let u = ∂∂̄ũ for some ũ ∈ Dp−1,q−1(X) and let v = ϑṽ1+ϑ̄ṽ2

for some ṽ1 ∈ Dp,q+1(X) and ṽ2 ∈ Dp+1,q(X). Then taking into account (4.2) we get

(u, v)1,X = (∂∂̄ũ, ϑṽ1)1,X + (∂∂̄ũ, ϑ̄ṽ2)1,X = −(∂̄∂ũ, ϑṽ1)1,X + (∂∂̄ũ, ϑ̄ṽ2)1,X =

= −(∂ũ, ϑ2ṽ1)1,X + (∂̄ũ, ϑ̄2ṽ2)1,X = 0.
Passing to the closures in Wp,q(X) we conclude.

Step 2. Taking into account Step 1 and applying the projection theorem in an Hilbert space
we obtain the orthogonal decomposition

Wp,q(X) = [∂∂̄Dp−1,q−1(X)]1 ⊕⊥ [ϑDp,q+1(X) + ϑ̄Dp+1,q(X)]1⊕⊥
⊕⊥[∂∂̄Dp−1,q−1(X)]⊥1 ∩ [ϑDp,q+1(X) + ϑ̄Dp+1,q(X)]⊥1 .

Using the same argument as before we easily get

{u ∈ Ap,q(X) ∩Wp,q(X) : ϑϑ̄u = ∂u = ∂̄u = 0} ⊆

⊆ [∂∂̄Dp−1,q−1(X)]⊥1 ∩ [ϑDp,q+1(X) + ϑ̄Dp+1,q(X)]⊥1 .
Now if u ∈ [∂∂̄Dp−1,q−1(X)]⊥1 ∩ [ϑDp,q+1(X) + ϑ̄Dp+1,q(X)]⊥1 then for each v ∈ Dp−1,q−1(X),
w ∈ Dp,q+1(X) and z ∈ Dp+1,q(X) we have

(4.4) (∂∂̄v, u)1,X = (ϑw + ϑ̄z, u)1,X = 0.

Let ū ∈ Dp,q(X); then considering (3.3) we have

(Dū, u)1,X = (∂∂̄ω1, u)1,X + (ϑω2 + ϑ̄ω3, u)1,X

where

ω1 = ϑϑ̄ū ∈ Dp−1,q−1(X), ω2 = ∂̄ϑ∂ū ∈ Dp,q+1(X), ω3 = ϑ̄∂∂̄ū+ ∂ϑ̄∂̄ū ∈ Dp+1,q(X)

and thus from (4.4) we deduce that (Dū, u)X = 0. Then u is a weak solution of the equation
D = 0; since D is an elliptic operator we get u ∈ Ap,q(X). By (4.2) we finally obtain

(v, ϑϑ̄u)1,X = (w, ∂̄u)1,X = (z, ∂u)1,X = 0

for all v ∈ Dp−1,q−1(X), w ∈ Dp,q+1(X) and z ∈ Dp+1,q(X). Therefore ϑϑ̄u = ∂u = ∂̄u = 0, and
this concludes the proof of (4.3). �
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5. Applications to the study of Aeppli groups

Let p, q ≥ 1 integers. As recalled in the Introduction, the Aeppli groups Λp,q were originally
defined by

Λp,q =
Ker{Ap,q(X) d→ Ap+1,q+1(X)}

∂∂̄Ap−1,q−1(X)
.

Bigolin, in [11], proves, using certain resolutions of the sheaf of germs of ∂∂̄-closed functions, that
there exists an algebraic isomorphism between Λp,q and

Λ̃p,q :=
Ker{Kp,q(X) d→ Kp+1,q+1(X)}

∂∂̄Kp−1,q−1(X)
.

First we prove the following lemma.

Lemma 5.1. The natural map

[Ker{Dp,q(X) d→ Dp+1,q(X)⊕Dp,q+1(X)}]1
[∂∂̄Dp−1,q−1(X)]1

→ [Ker{Dp+q(X) d→ Dp+q+1(X)}]Lp+q

[dDp+q−1(X)]Lp+q

.

is injective.

Proof. Using the same argument of the proof of theorem 4.3 it is possible to show that

[Ker{Dp,q(X) d→ Dp+1,q(X)⊕Dp,q+1(X)}]1 = [ϑDp,q+1(X) + ϑ̄Dp+1,q(X)]⊥1 .

Taking into account the Hodge-Kodaira decomposition (4.3) we deduce that

[Ker{Dp,q(X) d→ Dp+1,q(X)⊕Dp,q+1(X)}]1
[∂∂̄Dp−1,q−1(X)]1

and Ker � ∩Wp,q(X)

are isomorphic. Now Ker � ∩Wp,q(X) ⊆ Ker ∆ ∩ Lp+q(X). Since

[Ker{Dp+q(X) d→ Dp+q+1(X)}]Lp+q(X) = [δDp+1(X)]⊥Lp(X)

then, by the classical Hodge-Kodaira decomposition (1.5),

Ker ∆ ∩ Lp+q(X) and
[Ker{Dp+q(X) d→ Dp+q+1(X)}]Lp+q(X)

[dDp+q−1(X)]Lp+q(X)

are isomorphic, and this concludes the proof. �

In order to prove the main theorem of this section, i.e. a characterization of the Aeppli groups
Λp,q(X), we have to assume a technical topological condition on the manifold X. More precisely
we will assume that

(5.1) ∂∂̄Kp−1,q−1(X) is weakly closed in Kp,q(X)

where the weak topology on Kp,q(X) is the usual weak topology of distributions (recall that
Kp,q(X) is the dual space of Dp,q(X)). It is well known that compact manifolds and Stein manifolds
are examples of manifolds satisfying condition (5.1), so that our result extends the results contained
in [1] and [10]. Moreover we point out that condition (5.1) is a necessary condition in order to
prove only the next theorem: all the rest of the paper holds independently from this assumption;
in particular the Stampacchia-type inequality (3.4) and the Hodge-Kodaira decomposition (4.3)
hold for any connected and complete Kähler manifolds.

Theorem 5.2. Let us assume (5.1). Then the Aeppli group Λp,q(X) is isomorphic to the group
Hp,q(X), where we recall that Hp,q(X) denotes the space of all global harmonic (p + q)-forms of
bidegree (p, q).
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Proof. Since

Hp+q(X) ' Ker{Kp+q(X) d→ Kp+q+1(X)}
dKp+q−1(X)

and since the image of the natural map

i :
Ker{Kp,q(X) d→ Kp+1,q+1(X)}

∂∂̄Kp−1,q−1(X)
→ Ker{Kp+q(X) d→ Kp+q+1(X)}

dKp+q−1(X)

is exactly Hp,q(X), then it is sufficient to show that i is injective. Let T ∈ Kp,q(X) with T = dS
for some S ∈ Kp+q−1(X). Then we have to show that there exists R ∈ Kp−1,q−1(X) such that T =
∂∂̄R. Since Dp+q−1(X) is dense in Kp+q−1(X) then there exists a sequence (Sh)h∈N ⊆ Dp+q−1(X)
with Sh → S as h → +∞. Then dSh → T and we can suppose, without loss of generality, that
dSh ∈ Dp,q(X). Let Th = dSh. Taking into account lemma 5.1 we get

Th ∈ [∂∂̄Dp−1,q−1(X)]1
so that

Th = lim
k→+∞

T kh

with T kh = ∂∂̄Ukh for some Ukh ∈ Dp−1,q−1(X). Since we are assuming ∂∂̄Kp−1,q−1(X) weakly
closed in Kp,q(X) then

Th = ∂∂̄Rh

for some Rh ∈ Kp−1,q−1(X), and then T = ∂∂̄R for some R ∈ Kp−1,q−1(X), which ends the
proof. �

Remark 5.3. One can repeat all the considerations on the operator

D∗ = ϑ∂̄ϑ∂̄ + ∂̄ϑ∂̄ϑ+ ∂̄ϑ+ ∂ϑ̄

and in particular we get the Hodge-Kodaira orthogonal decomposition

Wp,q(X) = [ϑϑ̄Dp+1,q+1(X)]1 ⊕⊥ [∂Dp−1,q(X) + ∂̄Dp,q−1(X)]1 ⊕⊥ Ker � ∩Wp,q(X)

which permits to study the Aeppli groups Vp,q(X) reasoning as in lemma 5.1 and in theorem 5.2.
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