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1. Introduction

Small strain perfect elasto-plasticity is sometimes derided nowadays as over sim-
plistic in its effort to describe creep type behavior in solids and most engineering
applications resort to complex models that incorporate some kind of hardening, so
as to follow more closely the evolution of the strain in materials that are thought to
behave plastically. However, the core elements of plastic behavior should be shared
by all models: a yield stress whose attainment signals the onset of plastic flow, and
the formation of highly localized shear strains, often called shear bands.

The choice of a proper yield criterion is an important step that has been largely
the practitioner’s prerogative for lack of a good understanding of the upscaling
properties of the various dislocation patterns of most crystalline materials.

On the contrary, the criteria that preside over the formation of shear bands or,
more generally, of plastic slips should be exacted from the equations themselves.
Yet, to the best of our knowledge, the only evidence of such discontinuities is numer-
ical. Plastic slips are thought to appear as a putative singular limit of numerically
computed high strains. As a matter of fact, the abundant literature on plasticity
is almost universally silent when it comes to the relationship between plastic flow
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and plastic slips. To our knowledge, the only acknowledgement of such an intimacy
is to be found in [11] (then reiterated in [10, p. 57-58]) where the author(s) derive
necessary conditions on the stress tensor on a jump by postulating an ad-hoc flow
rule on the jumps through an analogy with the bulk flow rule.

Our goal in this contribution is to offer a more unified insight into that intimacy
in the simplest possible elasto-plastic context, that of a Von-Mises type plasticity.
To that end, we will lean heavily on the modern mathematical treatment of plas-
ticity which finds its roots in the work of P.-M. Suquet (see e.g. [14],[15]), later
completed by various works of R. Temam (see e.g. [16]) and R.V. Kohn and R.
Temam (see [12]). That work was revisited, some 20 years later by G. Dal Maso,
A. De Simone and M. G. Mora [6] within the framework of the variational theory
of rate independent evolutions popularized by A. Mielke (see e.g. [13]).

Those evolutions are quasi-static, that is inertialess. The basic tenet is that
the evolution can be viewed as a time-parameterized set of minimization problems
for the sum of the elastic energy and of the add-dissipation; see Section 3 for
details. The minimizers should also be such that an energy conservation statement,
amounting to a kind of first principle in thermodynamics, is satisfied throughout
the evolution. Once such an evolution is secured, it remains to show that it satisfies
the original system of equations.

In the context of elasto-plasticity, the main hurdle is to recover the so-called flow
rule: whenever the (deviatoric part of the) stress reaches the boundary of its admis-
sible set, the plastic strain should flow in the direction normal to that set. The issue
at stake is that the plastic strain and its time derivative are measures which may
have a Lebesgue-singular part that will not interact well with the stresses because
the latter are only defined Lebesgue-almost everywhere. The task is accomplished
through rather delicate duality arguments, as recounted in Section 3 below. In
particular, the classical flow rule is recovered as recalled in Theorem 3.9.

A boundary flow rule is also obtained in Theorem 3.10. That result, originally
derived in [9, Theorem 3.13] is not part and parcel of the classical formulation of
elasto-plasticity.

In this paper, we propose to demonstrate that the existence of a variational
evolution in the elasto-plastic setting actually implies yet another flow rule, this
time on the putative plastic slips. In a Von-Mises setting, that flow rule severely
constrains the possible stresses along the plastic slips, as well as the directions of
those slips. The ensuing constraints are precisely those that had been postulated
in [11]; they are now seen to be a natural outcome of the variational evolution.

As a main consequence, we derive a very simple criterion that, if satisfied on a
subdomain and for a time interval, will prevent the onset of additional slips on that
subdomain and during that time interval.

The paper is organized as follows.
After a short section (Section 2) devoted to notation and mathematical pre-

liminaries, Section 3 recalls the variational approach to quasi-static elasto-plastic
evolutions, specialized to a Von-Mises setting. Details of the derivation of the bulk
(and of the boundary) flow rule are also provided. Then, following the approach
developed in [6], a flow rule for the singular part of the plastic strain is recovered. It
involves a precise representative of the Cauchy stress obtained through an averaging
process.
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In Section 4, we specialize the flow rule to the case of plastic slips, thereby
obtaining the above mentioned restrictions on the form of the precise representative
of the deviatoric stress field (Theorem 4.1). Consequently, we formulate in Theorem
4.3 a general result asserting the absence of plastic slips during part of, or the whole
evolution. To that effect, the set of Lebesgue points for the Cauchy stress must be
large enough.

Such is the case when the external loads and the initial conditions are sufficiently
regular as demonstrated in [4]. Under these additional regularity assumptions, we
finally propose in Theorem 4.7 a sufficient condition for the application of the
general result.

It is remarked that the same arguments would allow one to conclude to the
absence of any kind of Lebesgue-singular plastic strain, provided that we knew that
the possible diffuse Lebesgue-singular (often called Cantor) part of those strains
possesses a rank-one structure. Unfortunately, that result is not available at present
(see Remark 4.8) while its counterpart for full gradients is, thanks to a result of G.
Alberti [1].

2. Notation and preliminaries

General notation. For A ⊆ R3, the symbol bA stands for “restricted to A”.
We will denote by L3 the Lebesgue volume measure, and by H2 the two-dim-

ensional Hausdorff measure, which coincides with the usual area measure on suffi-
ciently regular sets (see e.g. [8, Section 2.1] or [3, Section 2.8])

Matrices. We denote by M3
sym the set of 3×3-symmetric matrices and by M3

D the set

of trace-free elements of M3
sym. If M is an element of M3

sym, then MD is its deviatoric

part, i.e., its projection onto M3
D with respect to the Frobenius inner product. The

symbol · stands for that inner product, as well as for the Euclidean product on R3,
and the symbol | · | for the Frobenius norm, as well as for the Euclidean norm on R3.
The set of symmetric endomorphisms on M3

D is denoted by Ls(M3
D). For a, b ∈ R3,

a� b stands for the symmetric matrix such that (a� b)ij := (aibj + ajbi)/2.

Functional spaces. Given E ⊆ R3 Lebesgue measurable, 1 ≤ p < +∞, and M a finite
dimensional normed space, Lp(E;M) stands for the space of p-summable functions
on E with values in M , with associated norm denoted by ‖ · ‖p. Given A ⊆ R3

open, H1(A;M) is the Sobolev space of functions in L2(A;M) with distributional
derivatives in L2.

Throughout, by “a.e.”, we mean “a.e.” for the Lebesgue measure on R3. Other-
wise, we will specify the relevant measure.

Finally, let X be a normed space. We denote by BV (a, b;X) and AC(a, b;X) the
space of functions with bounded variation and the space of absolutely continuous
functions from [a, b] to X, respectively. We recall that the total variation of f ∈
BV (a, b;X) is defined as

VX(f ; a, b) := sup


k∑
j=1

‖f(tj)− f(tj−1)‖X : a = t0 < t1 < · · · < tk = b

 .
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Measures. If E is a locally compact separable metric space, and X a finite dimen-
sional normed space, Mb(E;X) will denote the space of finite Radon measures on
E with values in X. For µ ∈ Mb(E;X), we denote by |µ| its total variation and
by µs its singular part with respect to L3. The space Mb(E;X) is the topological
dual of C0

0 (E;X∗), the set of continuous functions u from E to the vector dual X∗

of X which “vanish at the boundary”, i.e., such that for every ε > 0 there exists a
compact set K ⊆ E with |u(x)| < ε for x 6∈ K.

The (kinematic) space BD. In this paper as in previous works on elasto-plasticity
the displacement field u lies in the space of functions of bounded deformations

BD(Ω) := {u ∈ L1(Ω;R3) : Eu ∈Mb(Ω; M3
sym)}

endowed with the norm

‖u‖BD := ‖u‖1 + ‖Eu‖Mb
.

Here and in the remainder of the paper Ω ⊆ R3 is open, bounded, with Lipschitz
boundary. We refer the reader to e.g. [16, Chapter 2], and [2] for background
material.

Besides elementary properties of BD(Ω), we will only appeal to the structure
of Eu as a Radon measure: more precisely, as is the case for functions of bounded
variation, the measure Eu decomposes as

(2.1) Eu = Eau+ Eju+ Ecu.

Here Eau denotes the part of the measure which is absolutely continuous with
respect to L3, so that

Eau = Eu dL3, with Eu ∈ L1(Ω; M3
sym).

The singular part is further decomposed into a jump part Eju and a Cantor part
Ecu. Specifically,

Eju = [u]� νu dH2bJu,
where Ju stands for the jump set of u (see [3, Definition 3.67]), [u] being the jump
of u across Ju, while Ecu vanishes on Borel sets which are σ-finite with respect to
the area measure H2 (see [2, Proposition 4.4]).

Finally, we say that

un
∗
⇀ u weakly∗ in BD(Ω)

iff

un → u, strongly in L1(Ω;R3) and Eun
∗
⇀ Eu weakly∗ in Mb(Ω; M3

sym).

The (static) space Σ. It is defined as

Σ :=
{
σ ∈ L2(Ω; M3

sym) : div σ ∈ L2(Ω;R3) and σD ∈ L∞(Ω;R3)
}
.

It is classical that, if σ ∈ L2(Ω; M3
sym) with div σ ∈ L2(Ω;R3), σν is well defined

as an element of H−1/2(∂Ω;R3), ν being the outer normal to ∂Ω.
More generally, consider an arbitrary Lipschitz subdomain A ⊂ Ω with outer

normal ν, and ∆ ⊂ ∂A open in the relative topology. We can define the restriction
of σν “on ∆” by testing against functions in H1/2(∂A;R3) with compact support

in ∆. This amounts to viewing σν as an element of the dual to H
1/2
00 (∆;R3).
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If σ ∈ Σ, then, in the spirit of [12, Lemma 2.4], we can define a tangential
component [σν]τ of σν on ∆ such that

(2.2) [σν]τ ∈ L∞(∆;R3) with ‖[σν]τ‖∞ ≤
1√
2
‖σD‖∞.

That vector is often referred to in the mechanics literature as the “resolved shear
stress”. Indeed, consider any regularization σn ∈ C∞(Ā; M3

sym) of σ on Ā such that
σn → σ strongly in L2(A; M3

sym)

divσn → divσ strongly in L2(A;R3)

‖(σn)D‖∞ ≤ ‖σD‖∞.

Define the tangential component [σnν]τ := (σn)ν − ((σn)ν · ν)ν. It is readily seen
that [σnν]τ = [(σn)Dν]τ (the tangential component of (σn)D is defined analo-
gously). Since x 7→ ν(x) is an L∞(∆;R3)-mapping, there exists an L∞(∆;R3)-
function [σν]τ such that, up to a subsequence,

[σnν]τ
∗
⇀ [σν]τ weakly∗ in L∞(∆;R3).

If σD ≡ 0 then, clearly, [σν]τ ≡ 0, so that [σν]τ is only a function of (σn)D which
we will denote henceforth by [σDν]τ . Notice that [σDν]τ may depend upon the
approximation sequence {σn}n (or at least upon {(σn)D}n).

Further, according to Proposition ?? in the appendix, |[σnν]τ | ≤ 1/
√

2|(σn)D|,
hence the inequality in (2.2).

Finally, if ∆ is a C2-hypersurface, then [σDν]τ is uniquely determined as an
element of L∞(∆;R3). Indeed, for every ϕ ∈ H1/2(∂A;R3) with support compactly

contained in ∆ (that is by density ϕ ∈ H1/2
00 (∆;R3)),ˆ

∆

[σDν]τ · ϕdH2 = 〈σν, ϕ〉 − 〈(σν)ν , ϕ〉,

where

〈(σν)ν , ϕ〉 := 〈σν, (ϕ · ν)ν〉.
Since the normal component (ϕ·ν)ν of ϕ with respect to ∆ belongs to H1/2(∂A;R3)
in view of the regularity of ν on ∆, the definition of (σν)ν is meaningful.

If ∆ is a countably H2-rectifiable subset of Ω, it admits a well defined normal
ν at H2-a.e. point, so that a construction identical to that detailed above would
yield the analogue of (2.2) in that extended setting, namely

[(σn)Dν]τ
∗
⇀ [σDν]τ weakly∗ in L∞H2(∆;R3)

with ‖[σDν]τ‖∞ ≤
1√
2
‖σD‖∞.

3. Energetic quasi-static evolutions

In this section we investigate the variational formulation of a quasi-static evolu-
tion in perfect plasticity introduced in [6]. A first subsection is devoted to a review
of the available existence, uniqueness, and regularity results, rewritten in the only
case of interest to us in this work namely, three dimensional Von Mises plasticity.
In a second subsection, we recall the bulk flow rule that was recovered in [6, Equa-
tion (6.14)], as well as the boundary flow rule that was subsequently established in
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[9, Equation (3.12)] and specialize them accordingly. We also recall the flow rule
on the singular part of the plastic strain derived in [6, Theorems 6.4 and 6.6] (see
Theorem 3.11).

3.1. The setting and the existence result.

The reference configuration. In all that follows Ω ⊂ R3 is an open, bounded set with
(at least) Lipschitz boundary and exterior normal ν. Further, the Dirichlet part
Γd of ∂Ω is a non empty open set in the relative topology of ∂Ω with boundary
∂b∂ΩΓd in ∂Ω and we set Γt := ∂Ω \ Γ̄d. Reproducing the setting of [9, Section 6],
we introduce the following

Definition 3.1. We will say that ∂b∂ΩΓd is admissible iff, for any σ ∈ L2(Ω; M3
sym)

with

divσ = f in Ω, σν = g on Γt, σD ∈ L∞(Ω; M3
D)

where f ∈ L3(Ω;R3) and g ∈ L∞(Γt;R3), and every p ∈Mb(Ω ∪Γd; M3
D) and w ∈

H1(Ω;R3) such that there exists an associated pair (u, e) ∈ BD(Ω)×L3/2(Ω; M3
sym)

with

Eu = e+ p in Ω, p = (w − u)� νH2bΓd on Γd,

the distribution, defined for all ϕ ∈ C∞c (R3) by

(3.1) 〈σD, p〉(ϕ) := −
ˆ
Ω

ϕσ · (e− Ew) dx−
ˆ
Ω

ϕf · (u− w) dx

−
ˆ
Ω

σ · [(u− w)�∇ϕ] dx+

ˆ
Γt

ϕg · (u− w) dH2

extends to a bounded Radon measure on R3 with |〈σD, p〉| ≤ ‖σD‖∞|p|.

Definition 3.1 covers many “practical” settings like those of a hypercube with
one of its faces standing for the Dirichlet part Γd; see [9, Section 6] for that and
other such settings.

Remark 3.2. Expression (3.1) defines a meaningful distribution on R3. Indeed,
according to [9, Proposition 6.1] if σ ∈ L2(Ω; M3

sym) is such that divσ ∈ L3(Ω;R3)

and σD ∈ L∞(Ω; M3
D), then σ ∈ Lr(Ω; M3

sym) for every 1 ≤ r <∞ with

‖σ‖r ≤ Cr (‖σ‖2 + ‖divσ‖3 + ‖σD‖∞)

for some Cr > 0. On the other hand, u ∈ L3/2(Ω;R3) in view of the embed-
ding of BD(Ω) into L3/2(Ω;R3). Further, u has a trace on ∂Ω which belongs to
L1(∂Ω;R3). Finally note that, if σ is the restriction to Ω of a C1-function and if
H2(∂b∂ΩΓd) = 0, then, an integration by parts in BD (see [16, Chapter 2, Theorem
2.1]) would demonstrate that the right-hand side of (3.1) coincides with the integral
of ϕ with respect to the (well defined) measure σD · p. ¶

Kinematic admissibility. Given the boundary displacement w ∈ H1(Ω;R3), we adopt
the following

Definition 3.3 (Admissible configurations). A(w), the family of admissible config-
urations relative to w, is the set of triplets (u, e, p) with

u ∈ BD(Ω), e ∈ L2(Ω; M3
sym), p ∈Mb(Ω ∪ Γd; M3

D),
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and such that

(3.2) Eu = e+ p in Ω, p = (w − u)� νH2bΓd on Γd.

The function u denotes the displacement field on Ω, while e and p are the
associated elastic and plastic strains. In view of the additive decomposition (3.2) of
Eu and of the general properties of BD functions recalled earlier, p does not charge
H2-negligible sets. Moreover, given a Lipschitz hypersurface D ⊂ Ω dividing Ω
locally into the subdomains Ω+ and Ω−,

pbD = (u+ − u−)� νH2bD,

where ν is the normal to D pointing from Ω− to Ω+, and u± are the traces on
D of the restrictions of u to Ω±. Since p is assumed to take values in the space
of deviatoric matrices M3

D, u+ − u− is perpendicular to ν, so that only particular
plastic strains are activated along D.

Elastic and plastic properties.

The elasticity tensor: The Hooke’s law is given by an element C ∈ L∞(Ω;Ls(M3
sym))

such that

(3.3) c1|M |2 ≤ C(x)M ·M ≤ c2|M |2 for every M ∈ M3
sym,

with c1, c2 > 0.
For every e ∈ L2(Ω; M3

sym) we set

Q(e) :=
1

2

ˆ
Ω

C(x)e · e dx.

Von Mises dissipation potential: Given σc > 0, the deviatoric part of the stress is
constrained to belong to the region

Kvm := B

(
0,

√
2

3
σc

)
⊆ M3

D.

The so-called dissipation potential H : M3
D → [0,+∞[ given by

H(ξ) := sup{τ · ξ : τ ∈ Kvm} =

√
2

3
σc|ξ|.

For every admissible plastic strain p, we define the dissipation functional as

H(p) :=

ˆ
Ω∪Γd

H

(
p

|p|

)
d|p| =

√
2

3
σc|p|(Ω ∪ Γd),

where p/|p| denotes the Radon-Nikodym derivative of p with respect to its total
variation |p|.

If t 7→ p(t) is a map from [0, T ] to Mb(Ω ∪ Γd; M3
D), we define, for every [a, b] ⊆

[0, T ],

D(0, t; p) :=

√
2

3
σcV(0, t; p).

to be the total dissipation over the time interval [a, b].
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Body and traction forces: We consider external loads with associated potential

〈L(t), u〉 :=

ˆ
Ω

f(t, x) · u(x) dx+

ˆ
Γt

g(t, x) · u(x) dH2(x),

where the body forces f(t) and traction forces g(t) are such that

(3.4) f ∈ AC(0, T ;L3(Ω;R3)), g ∈ AC(0, T ;L∞(Γt;R3)).

We set

〈L̇(t), u〉 :=

ˆ
Ω

ḟ(t, x) · u(x) dx+

ˆ
Γt

ġ(t, x) · u(x) dH2(x),

and assume the following uniform safe load condition:
There exists α > 0 and ρ ∈ AC(0, T ;L2(Ω; M3

sym)) with ρD ∈ AC(0, T ;L∞(Ω; MN
D))

such that

(3.5)

 −div ρ(t) = f(t) in Ω, ρ(t)ν = g(t) on Γt

ρD(t, x) ∈ B
(

0,
√

2
3σc − α

)
, a.e. in Ω.

Prescribed boundary displacements. The boundary displacement w on Γd for the
time interval [0, T ] is given by the trace on Γd of some

(3.6) w ∈ AC(0, T ;H1(R3;R3)).

In what follows, the energetic formulation of the quasi-static evolution is detailed
in the footstep of [6]: the two ingredients of such evolutions are a stability statement
at each time, together with an energy conservation statement that relates the total
energy of the system to the work of the loads applied to that system.

Definition 3.4 (Energetic quasi-static evolution). The mapping

t 7→ (u(t), e(t), p(t)) ∈ A(w(t))

is an energetic quasi-static evolution relative to w iff the following conditions hold
for every t ∈ [0, T ]:

(a) Global stability: for every (v, η, q) ∈ A(w(t))

(3.7) Q(e(t))− 〈L(t), u(t)〉 ≤ Q(η)− 〈L(t), v〉+H(q − p(t)).

(b) Energy equality: p ∈ BV
(
0, T ;Mb(Ω ∪ Γd; M3

D)
)

and

Q(e(t))− 〈L(t), u(t)〉+D(0, t; p) = Q(e(0))− 〈L(0), u(0)〉

+

ˆ t

0

[ˆ
Ω

σ(τ) · Eẇ(τ) dx− 〈L(τ), ẇ(τ)〉
]
dτ −

ˆ t

0

〈L̇(τ), u(τ)〉 dτ,

where σ(t) := Ce(t).

The following result has been proved in [6, Theorem 4.5] (see also [9, Theorem
2.7] for an existence theorem which only necessitates Lipschitz regularity for the
boundary ∂Ω).

Theorem 3.5 (Existence of quasi-static evolutions). Assume that (3.3), (3.4), (3.5),
(3.6) are satisfied, and let (u0, e0, p0) ∈ A(w(0)) satisfy the global stability condition
(3.7).
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Then there exists a quasi-static evolution {t 7→ (u(t), e(t), p(t)), t ∈ [0, T ]} rela-
tive to the boundary displacement w such that (u(0), e(0), p(0)) = (u0, e0, p0). Fi-
nally the Cauchy stress

t 7→ σ(t) := Ce(t)
is uniquely determined by the initial conditions.

The following regularity property holds true (see [6, Theorem 5.2]).

Theorem 3.6 (Regularity in time). Let t ∈ [0, T ] 7→ (u(t), e(t), p(t)) be an energetic
quasi-static evolution according to Definition 3.4. Then

(u, e, p) ∈ AC
(
0, T ;BD(Ω)× L2(Ω; M3

sym)×Mb(Ω ∪ Γd; M3
D)
)

and for a.e. t ∈ [0, T ] the following limits exist

u̇(t) := lim
s→t

u(s)− u(t)

s− t
weakly∗ in BD(Ω),

ė(t) := lim
s→t

e(s)− e(t)
s− t

strongly in L2(Ω; M3
sym),

ṗ(t) := lim
s→t

p(s)− p(t)
s− t

strictly in Mb(Ω ∪ Γd; M3
D),

with (u̇(t), ė(t), ṗ(t)) ∈ A(ẇ(t)). Moreover, the total dissipation D(0, t; p) is abso-
lutely continuous and

Ḋ(0, t; p) =

√
2

3
σc|ṗ(t)|(Ω ∪ Γd) for a.e. t ∈ [0, T ].

Finally there exists a constant C > 0 such that for a.e. t ∈ [0, T ]

(3.8) ‖ė(t)‖2 + |ṗ(t)|(Ω ∪ Γd; M3
D) ≤ C [‖ρ̇(t)‖2 + ‖ρ̇D(t)‖∞ + ‖Eẇ(t)‖2] .

3.2. The flow rule. The extent to which the afore mentioned energetic quasi-static
evolutions are also classical evolutions is described in the following results.

The Cauchy stress satisfies the following properties; see [6, Theorem 6.1] or [9,
Theorem 3.6].

Theorem 3.7 (Cauchy stress). Let t ∈ [0, T ] 7→ (u(t), e(t), p(t)) be an energetic
quasi-static evolution according to Definition 3.4 and let σ(t) := Ce(t) be the asso-
ciated Cauchy stress. Then the following conditions hold:

(a) Balance equations: For every t ∈ [0, T ],

(3.9) −div σ(t) = f(t) in Ω, σ(t)ν = g(t) on Γt.

(b) Stress admissibility condition: For every t ∈ [0, T ],

(3.10) |σD(t, x)| ≤
√

2

3
σc for a.e. x ∈ Ω.

As far as the evolution of the plastic deformations is concerned, the following
result holds true (see [9, Proposition 3.11]):

Theorem 3.8 (Plastic flow). Let t ∈ [0, T ] 7→ (u(t), e(t), p(t)) be an energetic quasi-
static evolution according to Definition 3.4 and let σ(t) := Ce(t) be the associated
Cauchy stress. Assume that ∂b∂ΩΓd is admissible according to Definition 3.1.
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Then, for a.e. t ∈ [0, T ], the dissipation rate and the plastic work rate coincide,
i.e.,

(3.11)

√
2

3
σc|ṗ(t)| = 〈σD(t), ṗ(t)〉 as measures on Ω ∪ Γd,

where 〈σD(t), ṗ(t)〉 denotes the duality between σD(t) and ṗ(t) given through (3.1).

Equality (3.11) should contain all relevant information on the flow of the plastic
strains. However, the recovery of more classical Von Mises flow rules is hindered
by the low regularity of p.

A flow rule for the abolutely continuous part of the plastic strain can be easily
derived.

Theorem 3.9 (Flow rule for the “volumic” plastic deformation). Assume that ∂b∂ΩΓd
is admissible according to Definition 3.1. Let t ∈ [0, T ] be such that equality (3.11)
holds true. If ṗa(t) ∈ L1(Ω; MN

D) denotes the density of the absolutely continuous
part of ṗ(t), then

|σD(t, x)| =
√

2

3
σc and

ṗa(t, x)

|ṗa(t, x)|
=

σD(t, x)

|σD(t, x)|
for L3-a.e. x ∈ {|ṗa(t, x)| > 0},

while

ṗa(t, x) = 0 for L3-a.e. x ∈

{
|σD(t)| <

√
2

3
σc

}
.

Proof. Since, in view of [9, Theorem 6.2],

〈σD(t), ṗ(t)〉a = σD(t) · ṗa(t)L3,

we get that, for a.e. x ∈ Ω,

σD(t, x) · ṗa(t, x) =

√
2

3
σc|ṗa(t, x)| and |σD(t, x)| ≤

√
2

3
σc.

The conclusion easily follows. �

Following [9], we also obtain a boundary flow rule.

Theorem 3.10 (Boundary flow rule). Assume that ∂b∂ΩΓd is admissible according
to Definition 3.1. Let t ∈ [0, T ] be such that equality (3.11) holds true, and let
[σD(t)ν]τ ∈ L∞(Γd;R3) be any tangential trace of σD(t)ν on Γd defined according
to (2.2). Then,

(3.12) |[σD(t)ν]τ (x)| =
√

1

3
σc and

[σD(t)ν]τ (x)

|[σD(t)ν]τ (x)|
=

ẇ(t, x)− u̇(t, x)

|ẇ(t, x)− u̇(t, x)|
for H2-a.e. x such that ẇ(t, x) 6= u̇(t, x),

while

ẇ(t, x) = u̇(t, x) for H2-a.e. x ∈

{
|[σD(t)ν]τ | <

√
1

3
σc

}
.
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Proof. The proof is similar to that of Theorem 3.9. It suffices to recall that

ṗ(t)bΓd = [ẇ(t)− u̇(t)]� νH2bΓd
so that, heeding the choice of the Frobenius norm as matrix norm, we obtain

|ṗ(t)|bΓd =
1√
2
|ẇ(t)− u̇(t)|H2bΓd.

Since, according to [9, Lemma 3.8],

〈σD(t), ṗ(t)〉bΓd = [σD(t)ν]τ · [ẇ(t)− u̇(t)]H2bΓd.
equality (3.11) becomes

[σD(t)ν]τ · [ẇ(t)− u̇(t)]H2bΓd =

√
1

3
σc|ẇ(t)− u̇(t)|H2bΓd.

By construction of [σD(t)ν]τ , we get, thanks to (2.2),

|[σD(t)ν]τ | ≤
√

1

3
σc,

so that the conclusion easily follows. �

In order to obtain a flow rule for the singular part of the plastic deformation, we
follow the method introduced in [6, Section 6.2].

For every r > 0 and x ∈ Ω we define the stress averages

σr(t, x) :=
1

|Br(x) ∩Ω|

ˆ
Br(x)∩Ω

σ(t, y) dy.

The following result holds true (compare with [6, Theorems 6.4 and 6.6]).

Theorem 3.11 (Flow rule on the singular support of ṗ(t)). Assume that ∂b∂ΩΓd is
admissible according to Definition 3.1. Let t ∈ [0, T ] be such that equality (3.11)
holds true, and let ṗs(t) denote the singular part of ṗ(t). Then for r → 0+

σrD(t)→ σ̂D(t) strongly in L1
|ṗs(t)|(Ω; M3

D),

where
(3.13)

|σ̂D(t, x)| =
√

2

3
σc and

ṗs(t)

|ṗs(t)|
(x) =

σ̂D(t, x)

|σ̂D(t, x)|
for |ṗs(t)|-a.e. x ∈ Ω.

In (3.13), ṗs(t)/|ṗs(t)| denotes the Radon-Nikodym derivative of ṗs(t) with respect
to its total variation.

Proof. Let us consider A ⊂⊂ Ω. Since for r small enough, σr(t) is continuous with
a continuous divergence on A (thanks to the equilibrium condition (3.9)), we have
that

(3.14) 〈σrD(t), ṗ(t)〉 = σrD(t) · ṗ(t)
|ṗ(t)|

|ṗ(t)| on A.

Moreover, since
σr(t)→ σ(t) strongly in L2(A; M3

sym)

and
div σr(t)→ div σ(t) strongly in L3(A;R3)

we deduce that

〈σrD(t), ṗ(t)〉 ∗⇀ 〈σD(t), ṗ(t)〉 weakly* in Mb(A).
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In view of the stress admissibility condition (3.10),

(3.15) |σrD(t)| ≤
√

2

3
σc on A,

so that, up to a subsequence in r,

(3.16) σrD(t)
∗
⇀ σ̂D(t) weakly* in L∞|ṗs(t)|(A; M3

D).

In the light of (3.14) and (3.11) we deduce the equality

σ̂D(t) · ṗ
s(t)

|ṗs(t)|
=

√
2

3
σc

ṗs(t)

|ṗs(t)|
|ṗs(t)|-a.e. on A.

The previous equality and (3.15) entail (3.13) on A: in particular, σ̂D(t) is uniquely
determined and there is no need to pass to a subsequence. Moreover, (3.15) and the

fact that |σ̂D(t, x)| =
√

2/3 σc |ṗs(t)|-a.e. on A, imply that the weak* convergence
in (3.16) can be improved to strong convergence in L1

|ṗs(t)|(A).

Since A is arbitrary, and σrD is uniformly bounded on Ω, the previous results
can be extended to Ω, which completes the proof. �

4. Prohibiting plastic slips

4.1. Flow rule for plastic slips. Let

t 7→ (u(t), e(t), p(t)) ∈ A(w(t))

be a quasi-static evolution according to Definition 3.4 with associated Cauchy stress
σ(t) := Ce(t).

Theorem 4.1 (Flow rule on a slip). Assume that ∂b∂ΩΓd is admissible according
to Definition 3.1. Let t ∈ [0, T ] be such that equality (3.11) holds true. Then σ̂D(t)
defined in Theorem 3.11 satisfies

(4.1) |σ̂D(t, x)| =
√

2

3
σc and

[u̇(t, x)]� νu̇(t)

|[u̇(t, x)]� νu̇(t)|
=

σ̂D(t, x)

|σ̂D(t, x)|
for H2-a.e. x ∈ Ju̇(t).

In particular for H2-a.e. x ∈ Ju̇(t), there exists a basis (e′1, e
′
2, e
′
3) such that

(4.2) σ̂D(t, x) = diag

(
− σc√

3
, 0,

σc√
3

)
.

Moreover the orthogonal lines determined by [u̇(t, x)] and νu̇(t)(x) are bisected by
e′1 and ±e′3 (and viceversa).

Proof. Because ṗs(t)bJu̇(t) = [u̇(t)] � νu̇(t)H2bJu̇(t), (4.1) is a direct consequence
of the flow rule (3.13) for the singular part of the plastic deformation. Finally,
property (4.2) follows by Proposition A.1 in the Appendix. �

Remark 4.2. The previous result shows that the part of yield surface ∂slipKvm

for which plastic slips can be activated is a three dimensional sub-manifold of the
four dimensional manifold ∂Kvm. If the normal to the slip plane is given, then the
admissible stresses form a one dimensional manifold (parameterized by the direction
of the slip in the plane). ¶
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4.2. On the formation of plastic slips. We now have at our disposal the various
ingredients for the formulation of a condition which will prevent the formation of
plastic slips. Defining Sσ(t) to be the complement of the set of Lebesgue points for
σ(t), we obtain the following

Theorem 4.3 (Absence of plastic slips). Assume that ∂b∂ΩΓd is admissible accord-
ing to Definition 3.1. Let A ⊆ Ω be open, and let the Cauchy stress satisfies the
following assumptions for a.e. t ∈ [t1, t2] ⊆ [0, T ]:

(a) H2(Sσ(t) ∩A) = 0;
(b) The Lebesgue values σ̃(t, x) for x ∈ A do not satisfy (4.2).

Then, no plastic slip can occur on A in the time interval [t1, t2], i.e., for every
t ∈ [t1, t2],

(4.3) [u(t)]� νu(t)H2b(Ju(t) ∩A) = [u(t1)]� νu(t1)H2b(Ju(t1) ∩A).

In particular, if H2(Ju(t1) ∩A) = 0, then, for t ∈ [t1, t2],

(4.4) p(t) = pa(t, x)L3 + Ecu(t) on A, pa(t) ∈ L1(Ω; M3
D).

Proof. Thanks to Theorem 4.1, we get

(4.5) H2(Ju̇(t) ∩A) = 0 for a.e. t ∈ [t1, t2].

Indeed, the representation (4.2) cannot hold true in view of the assumptions on the
stress, since

σ̂D(t, x) = σ̃D(t, x) for H2-a.e. x ∈ Ju̇(t).

Recall that t 7→ u(t) is absolutely continuous in BD(Ω). However, since BD(Ω) is
not reflexive, we cannot in general express the measure Eu(t) as a Bochner integral
of its derivative. Nevertheless, for every ϕ ∈ Cc(Ω; M3

sym), and for t ∈ [t1, t2], we
may write

〈Eu(t), ϕ〉 − 〈Eu(t1), ϕ〉 =

ˆ t

t1

〈Eu̇(τ), ϕ〉 dτ.

Let K ⊆ A be compact and contained in a C1-hypersurface, and let ψ ∈ C(K; M3
D).

Consider a sequence (ϕn)n∈N converging pointwise to ψ1K with ‖ϕn‖∞ ≤ ‖ψ‖∞.
In view of (3.8) we deduce by dominated convergence that

〈Eu(t), ψ1K〉 − 〈Eu(t1), ψ1K〉 =

ˆ t

t1

〈Eu̇(τ), ψ1K〉 dτ = 0,

where the last equality is obtained in view of (4.5). Since K is arbitrary, the
countably H2-rectifiability of Ju(t), together with the basic decomposition (2.1) for
Eu(t), yields that

Eju(t) = Eju(t1) on A,

which entails (4.3). Finally (4.4) is a consequence of (4.3) and of the admissibility
condition Eu(t) = e(t) + p(t). �

Remark 4.4. Let A ⊆ Ω∪Γd be open in the relative topology. Require additionally
that any tangential trace [σD(t)ν]τ on Γd be such that

|[σD(t)ν]τ | <
√

1

3
σc, H2-a.e. on A ∩ Γd.

In view of the flow rule (3.12) on the boundary, we conclude that no plastic slips
occur on A (boundary included) in the time interval [t1, t2]. ¶
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Item (a) in Theorem 4.3 will be implied by suitable regularity on the Cauchy
stress. Assume that, besides (3.4), the external body force f satisfies

(4.6)

{
Df ∈ L∞(0, T ;L3

loc(Ω;M3×3))

∆f ∈ L∞(0, T ;L3
loc(Ω;R3)),

while the initial configuration (u0, e0, p0) ∈ A(w(0)) satisfies

(4.7) σ0 := Ce0 ∈ H1
loc(Ω; M3

sym).

Then the following result holds true.

Proposition 4.5 (Higher regularity for the stress). Assume that ∂b∂ΩΓd is admis-
sible according to Definition 3.1 and that the additional smoothness assumptions
(4.6) and (4.7) hold true. Then,

(4.8) σ ∈ L∞(0, T ;H1
loc(Ω; M3

sym)).

In particular, the Lebesgue points of σ(t) for a.e. t ∈ [0, T ] have full H2-measure
in Ω.

Proof. With the assumptions of Theorem 3.5, together with (4.6)-(4.7), at our
disposal, the regularity (4.8) for the stress has been proved in e.g. [7, Theorem
2.1], provided that the boundary ∂Ω is C2 and that ∂b∂ΩΓd is also C2. See also
similar results in [4]. The seemingly more stringent assumption on the regularity of
the boundary found in [7] is only there to ensure existence of a quasistatic evolution
in the sense of Theorem 3.5. Since we appeal to more recent results which only
require Lipschitz regularity of the boundary ∂Ω [9, Theorem 2], the regularity result
extends verbatim to that setting.

Finally, because σ(t) ∈ H1
loc(Ω; M3

sym) for a.e. t ∈ [0, T ], it admits a precise
representative cap2-a.e., hence Hα-a.e. in Ω for α > 1 (see e.g. [8, Sections 4.7,
4.8]). In particular, H2-a.e. point in Ω is a Lebesgue point for σ(t). �

Remark 4.6. For general Lipschitz domains, any additional regularity of σ(t) up
to the boundary is unclear; however, see [5] for possible extensions of the regularity
up to the boundary. ¶

Using the regularity properties of the stress, we can formulate the following
result.

Theorem 4.7 (A sufficient condition for the absence of plastic slips). Let ∂b∂ΩΓd be
admissible according to Definition 3.1 and assume that the additional smoothness
assumptions (4.6) and (4.7) hold true. Let A ⊆ Ω be open, and let [t1, t2] ⊆ [0, T ]
be such that there exists η > 0 with

(4.9)

∣∣∣∣σ1
D(t, x) +

σc√
3

∣∣∣∣+ |σ2
D(t, x)|+

∣∣∣∣σ3
D(t, x)− σc√

3

∣∣∣∣≥ η
for a.e. x ∈ A and a.e. t∈ [t1, t2],

where σ1
D(t, x) ≤ σ2

D(t, x) ≤ σ3
D(t, x) are the eigenstresses of σD(t, x).

Then, the conclusion of Theorem 4.3 still holds true, i.e., no plastic slip can
occur on A in the time interval [t1, t2].
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Proof. Thanks to Proposition 4.5, H2-a.e. point in A is a Lebesgue point for σ(t).
We claim that condition (4.9) is satisfied at every Lebesgue point of σ(t) in A, i.e.,
if σ̃(t, x) denotes the Lebesgue value of σ(t) at x, that

(4.10)

∣∣∣∣σ̃1
D(t, x) +

σc√
3

∣∣∣∣+ |σ̃2
D(t, x)|+

∣∣∣∣σ̃3
D(t, x)− σc√

3

∣∣∣∣ ≥ η.
Then σ̃D(t, x) cannot have the critical structure (4.2), and the conclusion follows
by Theorem 4.3.

In order to prove (4.10), let x ∈ A be a Lebesgue point for σ(t). Recall that
Lebesgue point are points of approximate continuity (see e.g [8, Section 1.7]), so
that, for every ε > 0,

lim
r→0+

1

rN
LN ({y ∈ Br(x) : |σ(t, y)− σ̃(t, x)| > ε}) = 0.

Since a.e. y ∈ Br(x) satisfies (4.9), a diagonal argument (in r and ε) yields a
sequence xn → x satisfying (4.9) and such that

σ(t, xn)→ σ̃(t, x).

A continuity argument on the eigenvalues of a matrix entails in turn that

σiD(t, xn)→ σ̃iD(t, x) i = 1, 2, 3

so that (4.10) follows. �

Remark 4.8 (On the Cantor part of the plastic strain). The structure for σD(t) at
a plastic slip is a consequence of the symmetrized rank-one structure of ṗ(t)/|ṗ(t)|
on Ju̇(t). If such a structure was also available for the Cantor part of ṗ(t), then the

analogue of (4.5) would hold true for the whole L3-singular part of Eu̇(t). In turn,
this would entail that plasticity can only develop in an absolutely continuous way,
i.e., that the measure ṗ(t) would be absolutely continuous w.r.t. L3. Since ṗc(t) =
Ecu̇(t), the symmetrized rank-one structure would be implied by an extension of
Alberti’s rank one theorem [1] from the BV to the BD setting.

Similarly, such an extension would also permit to obtain the precise representa-
tion (4.2) |ṗs(t)|-a.e. on Ω ∪ Γd. ¶

Appendix A

The following result in linear algebra proves useful for our work.

Proposition A.1. Let a, b ∈ R3 be non zero vectors with a · b = 0. There exists
an orthonormal basis (e′1, e

′
2, e
′
3) such that

a� b = diag

(
−|a||b|

2
, 0,
|a||b|

2

)
.

Moreover, the orthogonal lines with directors a, b are bisected by e′1 and ±e′3 (and
viceversa).

Proof. Note that 0 is an eigenvalue with eigenvector a × b. We can thus choose a
basis (e′1, e

′
2, e
′
3) of eigenvectors for a� b such that e′2 is parallel to a× b, so that in

particular

(A.1) span{a, b} = span{e′1, e′3}.
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Since a� b has zero trace,

a� b = diag(−λ, 0, λ)

for some λ ≥ 0 in the basis (e′1, e
′
2, e
′
3) (upon possible permutation of the vectors e′1

and e′3). Taking into account that

|a� b| = |a||b|√
2
,

the diagonal representation easily follows.
Thanks to (A.1), the orthogonality of the vectors a and b leads to

ea :=
a

|a|
= αe′1 + βe′3

eb :=
b

|b|
= ∓βe′1 ± αe′3.

Since

(ea � eb)ea =
1

2
eb and (ea � eb)eb =

1

2
ea,

while

ea � eb = diag

(
−1

2
, 0,

1

2

)
we get

|α| = |β| = 1√
2
,

and the geometric property thus follows. �
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