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ABSTRACT. We consider approximating a measure by a parameterized curve subject to length
penalization. That is for a given finite compactly supported measure µ, with µ(Rd) > 0 for p ≥ 1

and λ > 0 we consider the functional

E(γ) =

∫
Rd

d(x,Γγ)pdµ(x) + λLength(γ)

where γ : I → Rd, I is an interval in R, Γγ = γ(I), and d(x,Γγ) is the distance of x to Γγ .
The problem is closely related to the average-distance problem, where the admissible class are
the connected sets of finite Hausdorff measure H1, and to (regularized) principal curves studied
in statistics. We obtain regularity of minimizers in the form of estimates on the total curvature
of the minimizers. We prove that for measures µ supported in two dimensions the minimizing
curve is injective if p ≥ 2 or if µ has bounded density. This establishes that the minimization over
parameterized curves is equivalent to minimizing over embedded curves and thus confirms that
the problem has a geometric interpretation.

Keywords. average-distance problem, principal curves, nonlocal variational problems
Classification. 49Q20, 49K10, 49Q10, 35B65

1. INTRODUCTION

Approximating measures by one dimensional objects arises in several fields. In the setting
of optimization problems connected to network planning (such as for urban transportation net-
work) and irrigation it was introduced by Buttazzo, Oudet and Stepanov [3], and has been ex-
tensively studied [4, 5, 6, 7, 8, 9, 16, 19, 22].

In this setting the problem is known as the average-distance problem. Given a set Σ ⊂ Rd let
d(x,Σ) = infy∈Σ |x − y|. Let M be the set of finite, compactly supported measures in Rd for
d ≥ 2, with µ(Rd) > 0.

Problem 1.1. Given a measure µ ∈ M, and parameters p ≥ 1, λ > 0, we consider the average-distance
problem in the penalized (as opposed to constrained) form: minimize

Gλ,pµ (Σ) :=

∫
Rd
d(x,Σ)p dµ(x) + λH1(Σ),

with the unknown Σ varying in the family

A := {Σ ⊆ Rd : Σ compact, path-wise connected}.
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Another application in which a measure is to be approximated by a one-dimensional object
arises in machine learning and statistics where one wishes to obtain the curve that best repre-
sents the data given by a (probability) measure µ. The problem in this setting was introduced by
Hastie [12] and Hastie and Stuetzle [13], and its solution is known as the (regularized) principal
curve. A variant of the problem can be formulated as follows: let

(1.1) C := {γ : [0, a] −→ Rd : a ≥ 0, γ is Lipschitz with |γ′| ≤ 1 a.e.}.

For given γ ∈ C, we define its length, L(γ), as its total variation ‖γ‖TV ([0,a]). Furthermore given
γ ∈ C we denote its image by Γγ = γ([0, a]). The problem can be stated as follows:

Problem 1.2. Given a measure µ ∈M, parameters λ > 0, p ≥ 1 find γ ∈ C minimizing

Eλ,pµ (γ) :=

∫
Rd
d(x,Γγ)pdµ(x) + λL(γ).

The problem is different from the Problem 1.1 in that instead of minimizing over sets one
minimizes over functions (parameterized curves). This makes the problem simpler in some
aspects, in particular for numerical approximation of minimizers. However it is important to
note that all competitors in Problem 1.1 are achievable as images of parameterized curves. From
that perspective the main main difference between Problems 1.1 and 1.2 is in the way the length
is penalized: asH1-measure of Γγ in Problem 1.1, and as total variation of γ in Problem 1.2. Thus
if a curve γ passes thrugh the same segment twice, then this length is counted twice by ‖γ‖TV ,
but only once byH1(Γγ). We remark that in machine learning the problem has been considered
most often with p = 2, with a variety of regularizations, as well as with length constraint (instead
of length penalization) [15, 24, 25]. Regularizing with a length term is the lowest order (in other
words the weakest) of regularizations considered. We note that the first term of energy measures
the approximation error while the second term penalizes the complexity of the approximating
object (curve).

The existence of minimizers of Problem 1.2 in the class of parameterized curves follows from
Ascoli-Arzelà theorem and the continuity of the functional with respect to the uniform conver-
gence (Lemma 2.2). However it is not clear if for a general measure µ the minimizing curve is
injective, in other words it may have self-intersections and not be an embedded curve. Here we
show that in two dimensions if p ≥ 2 then the minimizer in fact is an injective curve. We also
show that if µ has bounded density with respect to the Lebesgue measure then the minimizer is
an injective curve for all 1 ≤ p <∞. More precisely the main result of our work is:

Theorem 1.3. Consider dimension d = 2. Let µ ∈ M and let λ > 0 and p ≥ 1. If p < 2 assume that
µ is absolutely continuous with respect to the Lebesgue measure and that its density, ρ, is bounded. Let
γ : [0, L] → R2 be an arc-length-parameterized minimizer of Eλ,pµ . Then γ is injective and in particular
Γγ is a curve embedded in R2.

The theorem implies that the problem can also be posed as a minimization problem among
embedded curves. We note that, as we discuss at the beginning of Section 4, the conclusion of
the theorem holds for all 1 ≤ p <∞ if µ is a discrete measure.
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We hypothesize that the range of p in the theorem is sharp:

Conjecture 1.4. For 1 ≤ p < 2 there exist λ > 0 and a measure µ∈M for which the global minimizer
is not injective.

The proof of the Theorem relies on regularity properties of minimizers, which are of interest
in their own right. In [23] it was shown that for p = 1 minimizers of the Problem 1.1, even for
measures with smooth densities, can be embedded curves which have a corner. Since these are
also minimizers of Problem 1.2, we conclude that minimizers of Problem 1.2 are not C1 curves
in general. We remark that results of [23] can be extended to p ≥ 1 to show existence of global
minimizers which have a corner.

Consequently we consider regularity of minimizers in the sense of obtaining estimates on
the total variation of γ′, where γ is an arc-length-parameterized minimizer. This allows us to
consider the curvature as a measure and provides bounds on the total curvature of a segment of
the minimizing curve in terms of the mass projecting on the segment. To do so we use techniques
developed in [19].

This paper is structured as follows:

• In Section 2 we present preliminary notions and results, and prove existence of minimiz-
ers of Problem 1.2. We furthermore show that the minimizers are contained in the convex
hull of the support of the measure µ.
• In Section 3 we prove the injectivity of minimizers (Theorem 1.3) in the two-dimensional

case.
• In Appendix 4 we extend the regularity estimates of [19] to p > 1 and prove them in the

setting of parameterized curves. We furthermore provide the version of estimates in R2

which roughly speaking bounds how much a minimizer can turn to the left by the mass
to the right of the curve. This is a key result needed to prove injectivity.

2. PRELIMINARIES

In this section we provide some preliminary results including the proof of existence of mini-
mizers of Problem 1.2 (Lemma 2.2).

We define the distance between curves in C as follows: Let γ1, γ2 ∈ C with domains [0, a1],
[0, a2] respectively. We can assume that a1 ≤ a2. Let γ̃1 : [0, a2] → Rd be the extension of γ1 to
[0, a2] as follows

(2.1) γ̃1(t) =

{
γ1(t) if t ∈ [0, a1],

γ1(a1) if t ∈ (a1, a2].

Let
dC(γ1, γ2) = max

t∈[0,a2]
|γ̃1(t)− γ2(t)|.
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The first issue is the existence of minimizers. A preliminary lemma is required. Given a
measure µ ∈M, and p ≥ 1, let

F pµ : A −→ [0,∞), F pµ(Σ) :=

∫
Rd
d(x,Σ)p dµ(x).

Lemma 2.1. Given a measure µ ∈M, parameters λ > 0, p ≥ 1, then for any minimizing sequence {γn}
of Problem 1.2 it holds:

• length estimate:

lim sup
n→∞

L(γn) ≤ µ(Rd)
λ

(
diam supp(µ)

)p
,

• confinement condition: there exists a compact set K ⊆ Rd such that Γγn ⊆ K for all n.

Proof. Boundedness of the length is obtained by using a singleton as a competitor. Fix an arbi-
trary point z ∈ supp(µ), and let γ : [0, 0] −→ {z}. Then

(2.2) inf
C
Eλ,pµ ≤ Eλ,pµ (γ) ≤

∫
Rd
|x− z|pdµ(x) ≤ µ(Rd)

(
diam supp(µ)

)p
.

Since {γn} is a minimizing sequence, (2.2) gives

(2.3) (∀ε)(∃n0)(∀n ≥ n0) λL(γn) ≤ Eλ,pµ (γn) ≤ µ(Rd)
(
diam supp(µ)

)p
+ ε.

To prove the confinement condition, note that for any r ≥ 0, γ ∈ C it holds

Γγ ∩
(
supp(µ)

)
r

= ∅ =⇒ Eλ,pµ (γ) ≥ F pµ(Γγ) ≥ µ(Rd)rp,

where
(
supp(µ)

)
r

= {x ∈ Rd : infy∈supp(µ) |x− y| ≤ r}. Thus (2.2) gives

(∀ε)(∃n0) : (∀n ≥ n0) F pµ(Γγ) ≤ Eλ,pµ (γn) ≤ µ(Rd)
(
diam supp(µ)

)p
+ ε,

and combining with length estimate (2.3) and taking ε = 1 gives

(∃n0)(∀n ≥ n0) Γγn ⊆
(
supp(µ)

)
(diam supp(µ)+µ(Rd)(diam supp(µ))p/λ+1+1/λ)

concluding the proof. �

Given a measure µ ∈ M and a curve γ, let π be a finite measure supported on Rd × Γγ
such that the first marginal of π is µ and that for π-a.e. (x, y), |x − y| = minz∈Γγ |x − z|. The
existence of such a measure is proved in Lemma 2.1 of [19]. Let σ be the second marginal of π.
Then σ is supported on Γγ and π is an optimal transportation plan between µ and σ for the cost
c(x, y) = |x− y|q, for any q ≥ 1. In other words σ is a projection of µ onto Γγ .

We remark that in [20] it has been prove d that for any Σ ∈ A, the ridge

RΣ := {x : there exist p, q ∈ Σ, p 6= q, |x− p| = |x− q| = d(x,Σ)}

isH1-rectifiable. Thus for any Σ ∈ A the (point-valued) “projection” map

(2.4) ΠΣ : Rd −→ Σ, ΠΣ(x) := the point of Σ such that |x− π(x)| = d(x,Σ)
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is well defined L2-a.e. Consequently if µ is absolutely continuous with respect to Lebesgue
measure the measures π and σ above are uniquely defined and furthermore σ = ΠΓγ ]µ.

Lemma 2.2. Consider a positive measure µ and parameters λ > 0, p ≥ 1. Problem 1.2 has a minimizer
γ ∈ C. Furthermore, for any minimizer, Γγ is contained in Conv(µ), the convex hull of the support of µ.

A version of the second part of the statement has been proved in Proposition 5.1 of [9]. For
completeness, we provide a simple proof here.

We note that since the energy is invariant under reparameterizing the curve it follows that the
problem has a minimizer γ ∈ C which is arc-length parameterized.

Proof. Consider a minimizing sequence {γn} in C. Since a reparameterization does not change
the value of the functional we can assume that γn are arc-length parameterized for all n. Lemma
2.1 proves that {γn} are uniformly bounded and have uniformly bounded lengths. Let L be the
supremum of the lengths and let γ̃n be the extensions of the curves as in (2.1) to interval [0, L].
The curves {γ̃n} satisfy the conditions of Arzelà-Ascoli Theorem. Thus, along a subsequence
(which we assume to be the whole sequence) they converge uniformly (and thus in C) to a curve
γ : [0, L]→ Rd. Since all of the curves are 1-Lipschitz, so is γ and thus it belongs to C.

Since ϕ 7→ F pµ(Γϕ) is continuous and ϕ 7→ L(ϕ) is lower-semicontinuous with respect to the
convergence in C, it follows lim infn→∞E

λ,p
µ (γ̃n) ≥ Eλ,pµ (γ). Since {γ̃n}n is also a minimizing

sequence, γ is a minimizer of Eλ,pµ .
Now we prove that any minimizer is contained in the convex hull of supp(µ). The argument

relies on fact that the projection onto a convex set decreases length, which follows from the
1-Lipschitz continuity of projection maps, as proven in Proposition 5.3 in the book by Brezis [1].
Let γ ∈ C be a minimizer of Eλ,pµ . Assume it is not contained in the convex hull, K = Conv(µ),
of the support of µ. Then there exists T ∈ [0, a] such that γ(T ) 6∈ K. Let [t1, t2] be the maximal
interval such that γ((t1, t2)) ∩ K = ∅. We claim that σ(γ(t1, t2)) = 0. Otherwise consider γ̃ be
the projection of γ onto K. The distances between γ̃(t) and points in K are strictly less than the
distances between γ(t) and the points inK and thus F pµ(Γγ̃) < F pµ(Γγ). Since the projection map
is 1-Lipschitz, the length of γ̃ is less than or equal to the length of γ. Consequently Eλ,pµ (γ̃) <

Eλ,pµ (γ), which contradicts the assumption that γ is a minimizer. Thus σ(γ(t1, t2)) = 0.
If γ(t1) and γ(t2) belong to K then consider γ2 obtained by replacing the segment γ|[t1,t2] of γ

by a straight line segment. Note that the length of γ2 is less than the length of γ (since otherwise
γ|(t1,t2) would have to be a line segment which contradicts the fact that it is outside of K). Also
note that F pµ(Γγ2) = F pµ(Γγ) and thus Eλ,pµ (γ2) < Eλ,pµ (γ) , which contradicts the assumption that
γ is a minimizer.

If γ(t1) 6∈ K then t1 = 0. Noting that γ2 = γ|[t2,a] has lower energy than γ contradicts the
minimality of γ. The case γ(t2) 6∈ K is analogous. �
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3. INJECTIVITY

The main aim of this section is to prove injectivity for minimizers of Problem 1.2 in two di-
mensions. We say that P ∈ Γγ is a double point if γ−1(P ) has at least two elements. Our goal is to
show that there are no double points. Note that if Γγ is a simple curve, then it admits an injective
parameterization, which is shorter than any noninjective parameterization. Thus to show that
noninjectivity leads to contradiction one only needs to consider minimizers where Γγ contains
a point of order 3, that is points P such tha t for r > 0 small enough (Γγ ∩ B(P, r))\{P} has at
least three connected components. We do not use this fact explicitly, but we do basically focus
on a branching point, whose existence is established in Lemma 3.2.

Lemma 3.1. Let µ ∈ M and let λ > 0 and p ≥ 1. Let γ : [0, L] → Rd be an arc-length-parameterized
minimizer of Eλ,pµ . Assume there exist times 0 < t < s < L such that γ(t) = γ(s). Then γ is
differentiable at t and at s.

Furthermore γ′(t) = γ′(s) or γ′(t) = −γ′(s).

Proof. Assume the claim does not hold. Without a loss of generality we can assume that γ is not
differentiable at s. By Remark 4.3 the one sided derivatives γ′(s−) and γ′(s+) exist and have
unit lengths. Since γ is not differentiable at s, γ′(s−) 6= γ′(s+). Given that γ′(s−) and γ′(s+) are
unit vectors it follows that they are not positive multiples of each other.

Consequently there exist sequences {s−n } ↘ s, {s+
n } ↗ s, such that ∠γ(s−n )γ(s)γ(s+

n )→ α < π

as n→∞. Note that by Lemma 2.1 for all z ∈ supp(µ) and all y ∈ Γγ , |z − y| < diam(supp(µ)).

γ(s−n )γ(s+
n )

γ(s) = γ(t)

FIGURE 1. This is a schematic representation of the variation. The black lines
belong to the (graph of) γ, while the red dotted line belongs to the (graph of)
competitor γ̃n. Time increases along the direction of the arrows.

Consider the competitors γ̃n constructed in the following way: let

ξ∗n : [0, 1] −→ Rd, ξ∗n(u) := (1− u)γ(s−n ) + uγ(s+
n ),

ξn :
[
0, |γ(s−n )− γ(s+

n )|
]
−→ Rd, ξn(u) := ξ∗n

(
u/|γ(s−n )− γ(s+

n )|
)
.
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Let γ̃n :
[
0, L(γ)− (s+

n − s−n ) + |γ(s−n )− γ(s+
n )|
]
, where

γ̃n(u) :=


γ(u) if u ≤ s−n ,

ξn(u− s−n ) if s−n ≤ u ≤ s−n + |γ(s−n )− γ(s+
n )|,

γ
(
u− s−n − |γ(s−n )− γ(s+

n )|+ s+
n

)
if u ≥ s−n + |γ(s−n )− γ(s+

n )|.

Since by hypothesis ∠γ(s−n )γ(s)γ(s+
n )→ α 6= 0, it follows (for any sufficiently large n)

|s+
n − s−n | − |γ(s−n )− γ(s+

n )| ≥ c|s+
n − s−n |,

for some constant c > 0 independent of n. Hence

(3.1) L(γ) ≥ L(γ̃n) + c|s+
n − s−n |.

By taking n large we can assume that |s+
n − s−n | < 1.

We claim that

(3.2) F pµ(γ̃n)− F pµ(γ) ≤ µ
({
z : argminy∈Γγ |z − y| ⊆ γ

(
(s−n , s

+
n )\{s}

)})
pDp−1|s+

n − s−n |,

where D := 1 + diam supp(µ). Note that if a point z satisfies

d(z,Γγ) < d(z,Γγ̃n)

then argminy∈Γγ |z − y| ⊆ γ
(
(s−n , s

+
n )\{s}

)
.

The constant pDp−1 is due to the fact that any such point z ∈ supp(µ) satisfies, due to Lemma
2.2 and construction of γ̃n,

max{d(z,Γγ), d(z,Γγ̃n)} ≤ D.
By construction there exists a point z′n ∈ Γγ̃n\Γγ satisfying |z − z′n| = d(z,Γγ̃n). Denoting by
z′ ∈ γ

(
(s−n , s

+
n )\{s}

)
a point satisfying |z − z′| = d(z,Γγ), we conclude∣∣|z − z′|p − |z − z′n|p∣∣ ≤ pDp−1|s−n − s+

n |.

Since
⋂
n γ
(
(s−n , s

+
n )\{s}

)
= ∅, it follows that

lim
n→∞

µ
({
z : argminy∈Γγ |z − y| ⊆ γ

(
(s−n , s

+
n )\{s}

)})
= 0.

Combining with (3.1) gives that the minimality of γ is contradicted by γ̃n for sufficiently large n.

To show the second claim assume that γ′(t) 6= γ′(s) and γ′(t) 6= −γ′(s). Consider the following
"reparameterization " of the curve γ. Let γ̃ : [0, L]→ Rd be defined by

γ̃(r) =


γ(r) for r ∈ [0, t],

γ(s− (r − t)) for r ∈ (t, s],

γ(r) for r ∈ (s, L].

Then γ̃ is also a minimizer of Eλ,pµ . However γ̃ is not differentiable at t (and at s), which contra-
dicts the first part of the lemma. �
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Lemma 3.2. Let µ ∈ M and let λ > 0 and p ≥ 1. Let γ : [0, L] → Rd be an arc-length-parameterized
minimizer of Eλ,pµ . There exists δ1 ∈ (0, 1) such that γ is injective on [0, δ1) and (L − δ1, L]. Moreover
the set of double points

D := {t ∈ [0, L] : γ(t) is a double point},
contais its infimum and supremum, that is inf D ∈ D and supD ∈ D.

Proof. Assume there exist no δ2 such that γ is injective on [0, δ2). Then there exist sequences
rk → 0 and sk such that rk < sk and γ(rk) = γ(sk). Three cases arise.

• If γ(0) is a double point, i.e. there exists s 6= 0 with γ(s) = γ(0), then for sufficiently small
δ2 the competitor γ|[δ2,L] contradicts the minimality of γ. This follows by a direct check,
using that the mass projected of γ((0, δ2)) decreases to zero as δ2 → 0.
• If infk sk = 0, then by considering subsequences we can assume that limk→∞ sk = 0, and
rk < sk < rk−1 for all k. Then the intervals [rk, sk] are all mutually disjoint. Since γ(sk) =

γ(rk) we conclude that ‖γ′‖TV (rk,sk) ≥ π which implies that ‖γ′‖TV ([0,L]) is infinite. This
contradicts the regularity estimate of Proposition 4.2.
• If infk sk > 0, then by considering a subsequence we can assume that limk→∞ sk = s for

some s ∈ (0, L]. The continuity of γ gives that γ(0) = γ(s), which reduces the argument
to the first case.

Thus all three cases lead to a contradiction. Proof of injectivity on (L− δ1, L] is analogous.
To prove t0 := inf D ∈ D, consider a sequence tk in D such that tk ↘ t0. Since γ(tk) are all

double points, there exists t′k 6= tk such that γ(tk) = γ(t′k). By considering subsequences we
assume t′k → t′0. The continuity of γ gives γ(t′k) → γ(t′0). If t′0 6= t0, it follows t0 ∈ D. If t′0 = t0,
and hence t′k ↘ t0, by considering subsequences we can assume that t′k < tk < t′k−1 Then the
intervals [t′k, tk] are all mutually disjoint. Since γ(tk) = γ(t′k) we conclude that ‖γ′‖TV (t′k,tk) ≥ π

which implies that ‖γ′‖TV ([0,L]) is infinite. This contradicts the regularity estimate of Proposition
4.2. The same arguments applied to γ̃ : [0, L]→ Rd, γ̃(s) := γ(L− s), prove supD ∈ D. �

Proof of Theorem 1.3. Let γ : [0, L] → R2 be an arc-length-parameterized minimizer of Eλ,pµ , and
let Γγ = γ([0, L]). Recall that P ∈ Γγ is a double point if γ−1(P ) has at least two elements. Our
goal is to show that Γγ has no double points.

By Lemma 3.2 there exists δ1 > 0 such that γ([0, δ1)) and γ((L − δ1, L]) contain no double
points. Assume that there are double points on γ([δ1, L− δ1]). Let

t2 = sup{t < L− δ1 : γ(t) is a double point}.

Note that γ is injective on (t2, L]. By Lemma 3.2, γ(t2) is a double point. Hence, for suffi-
ciently small δ1, there exists t1 ∈ (δ1, t2) such that γ(t1) = γ(t2). By Lemma 3.1, there are two
possibilities: either γ′(t1) = γ′(t2) or γ′(t1) = −γ′(t2). Since the arguments are analogous we
assume γ′(t1) = γ′(t2). By regularity of γ established in (4.11), there exists δ2 ∈ (0, δ1) such that
‖γ′‖TV (t1,t1+δ2) <

1
8 and ‖γ′‖TV (t2,t2+δ2) <

1
8 . Therefore γ restricted to [t1, t1 + δ2] is injective.

Since γ((t2, t2 + δ2)) has no double points γ((t1, t1 + δ2)) ∩ γ((t2, t2 + δ2)) = ∅.
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We can assume without a loss of generality that γ(t1) = 0 and γ′(t1) = e1. The bound on
total variation of γ′ above implies that γ′ · e1 > 7

8 on the intervals considered. Therefore we
can reparameterize the curve using the first coordinate as the parameter. That is there exists
Lipschitz functions x, α, β : [0, 7

8δ2)→ R such that 7
8 < x′(s) ≤ 1 a.e. and for all s ∈ [0, δ2],

γ1(t1 + s) = (x(s), α(x(s))) and γ2(t2 + s) = (x(s), β(x(s)))

define two branches of γ. Let δ = δ2/3. Without a loss of generality we can assume that α > β

on (0, δ).
Our goal is to arrive at contradiction by showing that α = β on some interval [0, δ̃). The

reason is that α cannot separate from β is that for α to turn upward, by Lemma 4.4, there must
be mass beneath α talking to that part of the curve. But the mass beneath αwhich talks to αmust
lie above β. However the region between α and β cannot contain enough mass to allow for the
needed turn. Below we make this argument precise. For a.e. x ∈ [0, δ), α and β are differentiable
at x and we define `+α (x) = {(x, α(x)) + r(α′(x), 1) : r ≥ 0} to be the halfline perpendicular to
α at x extending above α and `−α (x) = {(x, α(x)) + r(α′(x), 1) : r ≤ 0} the halfline below. The
halflines `+β (x) and `−β (x) are defined analogously, as illustrated on Figure 2.

xAβ(x)
`+β (x)

P

Q

Z α

β

θ

ξ
¯̀

FIGURE 2. The geometry of the configuration near the last double point.

Let Sα(x) = {(z, α(z)) : z ∈ [0, x]} and Sβ(x) = {(z, β(z)) : z ∈ [0, x]}. Let Uα(x) be
the connected component of R2\(Sα(x) ∪ `−α (x) ∪ Sβ(δ)) containing the point (x/2, (α(x/2) +

β(x/2))/2). Analogously we define Aβ(x) be the connected component of R2\(Sα(δ) ∪ `+β (x) ∪
Sβ(x)) containing the point (x/2, (α(x/2)+β(x/2))/2). Note that all of the mass below the curve
α and talking to Sα(x) is a subset ofUα(x). Likewise all of the mass above the curve β and talking
to Sβ(x) is a subset of Aβ(x).
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We introduce:

(3.3) f(x) = sup
0≤z≤x

α′(z)

|(1, α′(z))|
and g(x) = inf

0≤z≤x

β′(z)

|(1, β′(z))|
.

Note that f(x) − g(x) > 0 on (0, δ) and that, using the assumption on total variation of γ′, it
follows that for x ∈ [0, δ), |f(x)| and |g(x)| are less than 1

8 .
Let ¯̀be the line passing through Q = (x, α(x)) whose slope is 1

8 . It stays above the graph of
α on (x, δ). Let Z be the intersection point of ¯̀and `+β (x). We note that θ:= ∠ZPQ < arctan(1

8)

and thus [QZ] is the shortest side of the triangle ∆PZQ. Therefore

|PZ| < 2|QP | = 2(α(x)− β(x)) ≤ 2x(f(x)− g(x)).

Since f(x)− g(x) is a nondecreasing function we conclude that

sup
z∈Aβ(x)

d(z,Γγ) ≤ 2x(f(x)− g(x)).

Likewise
sup

z∈Uα(x)
d(z,Γγ) ≤ 2x(f(x)− g(x)).

Lemma 4.4 implies that

(3.4) f(x) ≤ p

λ
(2x(f(x)− g(x)))p−1µ(Uα(x)) and g(x) ≥ −p

λ
(2x(f(x)− g(x)))p−1µ(Aβ(x)).

We first focus on p ≥ 2. From the above inequalities it follows that for some constant c > 0

(f(x)− g(x))2−p ≤ cxp−1.

Since as x → 0+ the left-hand side has uniform positive lower bound while the right-hand side
converges to zero we obtain a contradiction, as desired.

We now consider the more delicate case: 1 ≤ p < 2. Recall that we now assume that µ has
bounded density ρ. To obtain a bound on µ(Aβ(x)) we estimate the area of Aβ(x). The area of
Aβ(x) is bounded from above by the sum of the areas of the region between the curves to the
left of line segment [PQ] and the area of triangle PZQ on Figure 2.

We note that θ < arctan(1
8) and the angle ∠ZQP is π

2 + arctan(1
8). Therefore ξ = ∠QZP > π

6 .
Using the law of sines and α(x)− β(x) ≤ x(f(x)− g(x)) we obtain

1

2x(f(x)− g(x))
<

sin ξ

α(x)− β(x)
=

sin θ

|QZ|
<

1

8|QZ|
.

Therefore
Area(∆PZQ) ≤ 1

2
|QP | · |QZ| ≤ 1

8
x2(f(x)− g(x))2.

Consequently

(3.5) Area(Aβ(x)) ≤ x2(f(x)− g(x)) + x2(f(x)− g(x))2 ≤ 2x2(f(x)− g(x)).

Same upper bound holds for Area(Uα(x)). Therefore

max{µ(Uα(x)), µ(Aβ(x))} ≤ 2‖ρ‖L∞x2(f(x)− g(x)).



AVERAGE-DISTANCE PROBLEM FOR PARAMETERIZED CURVES 11

Combining with estimate (3.4), (choosing δ2 sufficiently small) and using that 2x(f(x)−g(x)) < 1

gives that for a.e x ∈ [0, δ)

0 ≤ f(x)− g(x) ≤ 4
p

λ
‖ρ‖L∞ x2(f(x)− g(x)).

This implies that for a.e. x > 0 small enough f(x) = 0 and g(x) = 0, which means that the
curves coincide. Contradiction. �

We remark that the statement of Theorem 1.3 can be extended to measures µ � L2 with
Radon-Nikodym derivative ρ ∈ Lq, q > 1/(p − 1). All arguments up to, and including, (3.4)
follow straightforwardly. Moreover, (3.4) gives

0 ≤ f(x)− g(x) ≤ C(2x(f(x)− g(x)))p−1 max{µ(Uα(x)), µ(Aβ(x))}

≤ C(x(f(x)− g(x)))p−1(µ(Uα(x)) + µ(Aβ(x)))

≤ C(x(f(x)− g(x)))p−1(Area(Uα(x))1/q′ + Area(Aβ(x))1/q′)‖ρ‖Lq
(3.5)
≤ C(x(f(x)− g(x)))p−1(x2(f(x)− g(x)))1/q′

= Cxp−1−2/q′(f(x)− g(x))p−1+1/q′ .

The third line is due to Hölder inequality, with q′ denoting the Hölder conjugate of q. Here C
may denote different (positive) constants. Conditions p < 2 and q > 1/(p − 1) imply p − 1 +

1/q′ > 1, which forces f(x) = g(x) = 0 for sufficiently small x, hence the two curves coincide.
Contradiction.

4. APPENDIX: CURVATURE OF MINIMIZERS

In [23, 19] we studied the average-distance problem considered over the family of connected
1-dimensional sets. Here we study the problem among parameterized curves. The conditions
for stationarity and regularity estimates of [23, 19] still apply in this setting. Here we state
the estimates for general p ≥ 1, while we previously considered only p = 1. The extension is
straightforward.

We start by stating the conditions for the case that µ is a discrete measure, µ =
∑n

i=1miδxi
where mi > 0 for all i and

∑n
i=1mi = 1. Arguing as in Lemma 7 of [23] we conclude that any

minimizer of Problem 1.2 is a solution of a euclidean traveling salesman (for Problem 1.1 the
minimizers were Steiner trees) and is thus a piecewise linear curve with no self-intersections
(i.e. γ is injective). Such γ can be described as a graph as follows. Let V , the set of vertices, be
the collection of all minimizers over Γγ of distance to each of the point inX = {x1, . . . , xn}. That
is let

(4.1) V =
n⋃
i=1

argminz∈Γγ |z − xi|.

We can write V = {v1, . . . , vm}where v are ordered as they appear along Γγ (in increasing order
with respect to parameter of γ). Then Γγ is the piecewise linear curve [v1, . . . , vm].



12 XIN YANG LU AND DEJAN SLEPČEV

For j = 1, . . . ,m let Ij be the set of indices of points in X for which vj is the closest point in V

Ij = {i ∈ {1, . . . , n} : (∀k = 1, . . . ,m) d(xi, vj) ≤ d(xi, vk)}
= {i ∈ {1, . . . , n} : (∀y ∈ Γγ) d(xi, vj) ≤ d(xi, y)}.

(4.2)

If i ∈ Ij then we say that xi talks to vj . We say that a vertex vj is tied down if for some i, vj = xi.
We then say that vj is tied to xi. A vertex which is not tied down is called free. As shown in [23],
if xi talks to vj and vj is free then xi cannot talk to any other vertex.

As in [23] we consider the optimal transportation plan between µ and its projection onto Γγ .
That is, consider an n by m matrix T such that

(4.3) Tij ≥ 0,
m∑
j=1

Tij = mi, and Tij > 0 implies i ∈ Ij

Note that µ =
∑n

i=1

∑m
j=1 Tijδxi . Furthermore observe that if vj is tied to xi then i ∈ Ij and

Tij = mi. Let π =
∑

i,jmiδx1 ⊗ δvj . We note that the first marginal of π is µ and that it describes
an optimal transportation plan between µ and a measure supported on V ⊂ Γγ . We define σ to
be the second marginal of π as before (above Lemma 2.2). Then σ is a projection of µ onto the set
Γγ in that the mass of µ is transported to a closest point on Γγ . More precisely

(4.4) σ =

m∑
j=1

n∑
i=1

Tijδvj .

We note that the matrix T describes an optimal transportation plan between µ and σ with respect
to any of the transportation costs c(x, y) = |x− y|q, for q ≥ 1.

We note that in this discrete setting

Eλ,pµ (γ) =

n∑
i=1

mid
p(xi,Γγ) + λ

m−1∑
i=1

|vi+1 − vi|

=
m∑
j=1

∑
i∈Ij

Tij |xi − vj |p + λ
m−1∑
i=1

|vi+1 − vi|
(4.5)

Taking the first variation in vj provides an extension to p > 1 of conditions for stationarity of
Lemma 9 in [23]:

Lemma 4.1. Assume that γ minimizes Eλ,pµ for discrete µ =
∑n

i=1miδxi . Let V be the set of vertices as
defined in (4.1) and T be any matrix (transportation plan) satisfying (4.3). Then

• For endpoints j = 1 and j = m let w = v2 if j = 1 and w = vm−1 otherwise.
If p > 1 or vj is free then

(4.6)
∑
i∈Ij

p Tij (xi − vj)|xi − vj |p−2 + λ
w − vj
|w − vj |

= 0.
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If vj is tied to xk and p = 1 then

(4.7)

∣∣∣∣∣∣
∑

i∈Ij ,i 6=k
Tij

xi − vj
|xi − vj |

+ λ
w − vj
|w − vj |

∣∣∣∣∣∣ ≤ mk.

• If j = 2, . . . ,m− 1 then if p > 1 or vj is free

(4.8)
∑
i∈Ij

p Tij (xi − vj)|xi − vj |p−2 + λ

(
vj−1 − vj
|vj−1 − vj |

+
vj+1 − vj
|vj+1 − vj |

)
= 0.

If vj is tied to xk and p = 1 then

(4.9)

∣∣∣∣∣∣
∑

i∈Ij ,i 6=k
Tij

xi − vj
|xi − vj |

+ λ

(
vj−1 − vj
|vj−1 − vj |

+
vj+1 − vj
|vj+1 − vj |

)∣∣∣∣∣∣ ≤ mk.

The proof of the lemma is analogous to the one in [23].
Note that the condition at a corner provides an upper bound on the turning angle in terms

of the p − 1-st moment of the mass that talks to the corner. These conditions can be used as in
[19] to obtain estimates on the curvature (in the sense of a measure) of minimizers γ of Eλ,pµ for
general compactly supported measures µ. In particular adapting the proof of Theorem 5.1 and
Lemma 5.2 of [19] implies:

Proposition 4.2. Let µ ∈M and let λ > 0 and p ≥ 1. If γ : [0, L]→ Rd is an arc-length-parameterized
minimizer of Eλ,pµ then γ′ ∈ BV ([0, L],Rd) and

(4.10) ‖γ′‖TV ([0,L]) ≤
p

λ
diam(supp(µ))p−1 µ(Rd).

Remark 4.3. A particular consequence of this estimate is that for all T ∈ [0, L), v = limt→T+ γ
′(t)

exists (see Corollary 2.23 of [18]). Furthermore since |γ′(t)| = 1 a.e. it follows that |v| = 1. It is
then straightforward to prove, using the definition of a one-sided derivative, that γ has a right derivative
γ′(T+) and that γ′(T+) = v. Analogous statements hold for the left derivative.

We note that the estimate holds if we consider the same problem on the class of curves with
fixed endpoints: γ : [0, L] → Rd with γ(0) = P and γ(1) = Q with P,Q ∈ Conv(µ). The proof is
essentially the same.

A consequence of this observation is that we can formulate a localized version of the estimate.
In particular let γ be the minimizer of Eλ,pµ as in the Proposition 4.2. Let π and σ be as defined
above Lemma 2.2. For any interval I = (t, t+ δ) ⊂ [0, L]

(4.11) ‖γ′‖TV (I) ≤ p diam(supp(µ))p−1 1

λ
σ(γ(I)).

The estimate bounds how much can the curve γ turn within interval I based on the p − 1-st
moment of the mass in µ that projects onto the set γ(I). Let µI be the measure defined as µI(U) =

π(U×γ(I)), that is the µmeasure of the set of points that projects onto γ(I). The estimate follows
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from Proposition 4.2 using the observation that γ|I is a minimizer of Eλ,pµI among curves which
start at γ(t) and end at γ(t + δ). We recall that a previous estimate on the oscillation of the
tangent direction has been obtained in Theorem 3 of [17].

In this work we need finer information. We focus on dimension d = 2. We need information
not only on how much a curve turns but also on about the direction it turns in.

Lemma 4.4. Consider dimension d = 2. Let µ ∈ M, λ > 0 and p ≥ 1. Let γ : [0, L] → R2 be an
arc-length-parameterized minimizer of Eλ,pµ . Let t ∈ [0, L). By rotation and translation we can assume
that γ(t) = 0, γ′(t+) = e1. Let I = (t, t+δ) be such that t+δ < L, ‖γ′‖TV (I) <

1
2 . We define the region

underneath the curve segment γ(I) to be as depicted on Figure 3. That is let `−1 = {s(0, 1) : s ≤ 0} and
`−2 = {γ(t+ δ) + s(γ′((t+ δ)−))⊥ : s ≤ 0}. Let U be the connected component of R2\(`−1 ∪ `

−
2 ∪ γ(I))

which contains the point γ(t+ δ
2)− δ

4(0, 1).
Let D be the maximal distance of a point in supp(µ) ∩ U , which talks to γ(I). That is let D =

sup{d(x, γ(I)) : x ∈ supp(µ) ∩ U, argminz∈Γγ d(x, z) ∩ γ(I) 6= ∅}. Then

(4.12) sup
s∈I

γ′(s) · e2 ≤
p

λ
Dp−1µ(U).

U

A

`−2`−1

`+2
`+1 γ

FIGURE 3. The geometry and regions relevant to obtaining one-sided turning-
angle estimates.

Proof. By approximating as in the proof of Theorem 5.1 in [19] the problem can be reduced to
considering discrete measures. Thus we assume that µ =

∑n
i=1miδxi .

Let A be the region above the curve segment γ(I). That is let `+1 = {s(0, 1) : s ≥ 0} and
`+2 = {γ(t+δ)+s(γ′)⊥(t+δ−) : s ≥ 0} and letA be the connected component of R2\(`+1 ∪`

+
2 ∪γ(I))

which contains the point γ(t + δ
2) + δ

4(0, 1). Note that all of the mass of µ that talks to γ(I) is
contained in U ∪A ∪ γ(I).

Due to an assumption on I , for all vj ∈ γ(I) the angle between vj+1 − vj and e1 is less than
π/4 and so is the angle vj − vj−1 and e1. Therefore if i ∈ Ij and xi ∈ A then the directed angle
between e1 and xi − vj is between π/4 and 3π/4. Therefore (vj − xi) · e2 < 0.
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Let us first consider the case that p > 1. Then from (4.8) follows that for j such that vj ∈ γ(I)∑
i∈Ij ,xi∈U

p Tij |xi − vj |p−2(vj − xi) · e2 ≥
∑
i∈Ij

p Tij |xi − vj |p−2(vj − xi) · e2

= λ

(
vj+1 − vj
|vj+1 − vj |

− vj − vj−1

|vj − vj−1|

)
· e2.

Consider s ∈ (t, t+ δ). Summing up over all j such that vj ∈ γ((t, s)) gives

pµ(U)Dp−1 ≥ λγ′(s−) · e2,

which establishes the desired claim.
Consider now p = 1. From (4.9) follows that for j such that vj ∈ γ(I)∑

i∈Ij ,xi∈U
Tij

1

|xi − vj |
(vj − xi) · e2 ≥

∑
i∈Ij

Tij
1

|xi − vj |
(vj − xi) · e2

≥ λ
(
vj+1 − vj
|vj+1 − vj |

− vj − vj−1

|vj − vj−1|

)
· e2 − µ(vj).

Summing over j such that vj ∈ γ((t, s)) again provides the desired claim. �
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