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Abstract. We review the proof of existence and uniqueness of the Poisson’s equation

∆u+divm = 0 whenever m is a unit L2-vector field on R3 with compact support; by

standard linear potential theory we deduce also the H1-regularity of the unique weak

solution.
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1. Introduction

In the standard theory of ferromagnetic materials is usually considered an energy, called

magnetostatic, which is the energy of the magnetostatic field set up by the magnetization

vector field m. It turns out that the magnetostatic energy takes the form∫
|∇u|2 dx

where the scalar potential u : R3 → R satisfies the following equation arising from Maxwell’s

equations:

div(∇u+ mχΩ) = 0, on R3, (1.1)

being Ω an open and bounded domain in R3, which represents the region occupied by a

ferromagnetic material, and χΩ its characteristic function, that is χΩ = 1 on Ω and 0 otherwise

in R3; for more details on equation (1.1) see [2], [5] and [6]. Without loss of generality, since

we will not vary the temperature, which is related with the variation of |m|, we will consider

vector fields m : Ω→ S2, being S2 the boundary of the unit ball in R3. Replacing mχΩ with

m : R3 → R3, equation (1.1) takes the form

∆u+ divm = 0, on R3, with |m| = χΩ. (1.2)

There is a huge literature on the Poisson’s type equation (1.2); we just mention a very recent

application in the context of micromagnetics materials: such an equation has been considered

in [3] and [4] where an homogenization procedure of a more complete energy functional for

polycrystalline magnetic materials has been investigated. In order to solve equation (1.2) we
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have to introduce its weak formulation, that is∫
(∇u+ m) · ∇ϕdx = 0, ∀ϕ ∈ C∞c (R3). (1.3)

In this short note we will explain how the proof of existence and uniqueness of the solution

of equation (1.3) in a suitable space of Sobolev-type works; moreover, we will find, exploiting

the standard tools coming from the linear potential theory, the explicit form of the solution

from which, in particular, it will descends more regularity of such a solution: more precisely,

the unique weak solution turns out to be H1(R3), and such a regularity has been stated in

[5], but without proof.

2. Some preliminaries of potential theory

We now recall some well known results coming from potential theory; for details we refer

to [7]. Let n ≥ 1 be an integer and, for each f : Rn → R measurable and for each α > 0, let

Iα be the Riesz potential given by

Iα(f)(x) := c(n, α)

∫
f(y)

|x− y|n−α
dy, x ∈ Rn, (2.1)

for a suitable positive constant c(n, α). It turns out that if α, β > 0 and α + β < n then for

any f ∈ S(Rn), being S(Rn) the Schwartz space on Rn,

Iα(Iβ(f)) = Iα+β(f). (2.2)

Let α ∈ (0, n) and 1 ≤ p < +∞ with

1

p
− α

n
< 1.

First of all, it turns out that if, more generally, f ∈ Lp(Rn) then the integral on the right

hand-side of (2.1) converges absolutely for almost any x ∈ Rn. Moreover, if in particular

1

q
=

1

p
− α

n

then

Iα : Lp(Rn)→ Lq(Rn) (2.3)

is linear and continuous. Strictly related with Riesz potentials is the notion of Riesz transform:

for any f ∈ Lp(Rn), with 1 ≤ p < +∞, and for any j = 1, . . . , n, we let

Rj(f)(x) := c(n) lim
ε→0+

∫
|y|>ε

xj − yj
|x− y|n+1

f(y) dy, x ∈ Rn,

whenever the limit exists; c(n) is a suitable positive constant. It turns out that

Rj : Lp(Rn)→ Lp(Rn)
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is linear and continuous; furthermore, we have the following fundamental relation between

the first order Riesz potential I1 and the Riesz transform:

Rj(f) = −∂jI1(f), (2.4)

for any j = 1, . . . , n.

3. Existence and uniqueness

Let f ∈ L2(R3;R3). We first investigate existence and uniqueness of weak solutions of

∆u + div f = 0 on R3, following, for instance, [1]. Let E : R3 \ {0} → R be the fundamental

solution of the Laplace operator on R3, i.e.

E(x) := − 1

4π|x|
.

Moreover, let

P(f)(x) := −
∫
∇E(x− y) · f(y) dy, x ∈ R3.

Theorem 3.1. Let H := {u ∈ L6(R3) : ∇u ∈ L2(R3;R3)}. Then P(f) is the unique weak

solution in H of the equation ∆u+ div f = 0 on R3.

Proof. We divide the proof in some steps.

Step 1. First of all we claim that P(f) ∈ H. For, let g ∈ L2(R3) and, for any i = 1, 2, 3 we

let

Pi(g)(x) := −
∫
∂iE(x− y)g(y) dy, x ∈ R3.

Since

∂iE = c
xi
|x|3

then

|Pi(g)(x)| ≤ c
∫
|g(y)|
|x− y|2

dy = I1(|g|)

and Pi(g) ∈ L6(R3) from (2.3), being g ∈ L2(R3). In order to prove that ∂jPi(g) ∈ L2(R3), let

us choose a sequence (gh)h∈N in C∞c (R3) with gh → g strongly in L2(R3). Using the explicit

form of E , we immediately get

|Pi(gh)− P(g)| ≤ c|I1(gh − g)|, on R3.

Hence, by the continuity of I1 : L2(R3)→ L6(R3), we get Pi(gh)→ Pi(g), strongly in L6(R3).

Now, for any h ∈ N we have

Pi(gh)(x) =

∫
E(x− y)∂igh(y) dy = c̃I2(∂igh)(x), c̃ 6= 0.
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Therefore, using (2.4) and (2.2) we easily get

RjRi(gh) = ∂jI2(∂igh) =
1

c̃
∂jPi(gh).

By the continuity of the Riesz transform we deduce that ||∂jPi(gh)||2 ≤ c̄||gh||2. Thus ∂jPi(gh) ⇀

uij , for some uij ∈ L2(R3). Passing to the limit as h→ +∞ in∫
∂jPi(gh)ϕdx = −

∫
Pi(gh)∂jϕdx

we deduce that uij = ∂jPi(g) which means that ∇Pi(g) ∈ L2(R3;R3). In order to conclude

it is sufficient to notice that

P(f) =

3∑
i=1

Pi(f (i))

being f (i), for i = 1, 2, 3, the components of f .

Step 2. Now we prove that P(f) is a weak solution of the equation ∆u+ div f = 0, that is∫
(∇P(f) + f) · ∇ϕdx = 0, ∀ϕ ∈ C∞c (R3). (3.1)

Let (fh)h∈N be a sequence in C∞c (R3;R3) with fh → f strongly in L2(R3;R3). First of all we

have, integrating by parts,

−P(fh)(x) =

∫
E(x− y) div fh(y) dy

and therefore, since E is the fundamental solution of the Laplace operator on R3,

−
∫
P(fh)∆ϕdx =

∫
div fhϕdx = −

∫
fh · ∇ϕdx.

Passing to the limit as h→ +∞ we obtain

−
∫
P(f)∆ϕdx = −

∫
f · ∇ϕdx

which means, since P(f) ∈ H,∫
∇P(f) · ∇ϕdx = −

∫
f · ∇ϕdx.

Therefore we get (3.1).

Step 3. In order to conclude the proof, we have to show that the weak solution in H is

unique. If u1, u2 ∈ H satisfy∫
(∇u+ f) · ∇ϕdx = 0, ∀ϕ ∈ C∞c (R3)

then w := u2 − u1 satisfies ∫
∇w · ∇ϕdx = 0, ∀ϕ ∈ C∞c (R3).
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Now, if we choose ϕh → w in H then passing to the limit as h→ +∞,

0 =

∫
∇w · ∇ϕh dx→

∫
|∇w|2 dx

from which we get w constant, and since w ∈ H, we deduce that w = 0, and thus u1 = u2,

which yields the conclusion. �

We are ready to prove the existence and uniqueness result for the equation (1.3).

Corollary 3.2. Let Ω be an open and bounded domain in R3 and let m ∈ L2(R3;R3) with

|m| = χΩ. Then the equation ∆u + divm = 0 on R3 admits a unique weak solution u ∈
H1(R3).

Proof. Taking into account Theorem 3.1, it is sufficient to prove that P(m) ∈ L2(R3). Using

the very definition of P(m) and E , we have, since |m| = χΩ, |P(m)| ≤ cI1(χΩ) and I1(χΩ) ∈
L2(R3) since χΩ ∈ L∞(Ω) and Ω is bounded; this yields the conclusion. �
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[3] O. Bottauscio, V. Chiadò Piat, M. Eleuteri, L. Lussardi and A. Manzin, Homogenization of random

anisotropy properties in polycrystalline magnetic materials, Phys. B, 407 (2012), 1417–1419.

[4] (MR3042914) [10.1142/S0218202513500073] O. Bottauscio, V. Chiadò Piat, M. Eleuteri, L. Lussardi and
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