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Abstract. We present a new blow-up method that allows for establishing the first
general formula to compute the perimeter measure with respect to the spherical
Hausdorff measure in noncommutative nilpotent groups. This result leads us to an
unexpected relationship between the area formula with respect to a distance and
the profile of its corresponding unit ball.
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1. Introduction

In the last decade, the study of sub-Riemannian Geometry, in short SR Geometry,
has known a strong impulse in different areas, from PDE and Control Theory to
Differential Geometry and Geometric Measure Theory. In particular, a number of
Riemannian problems has a sub-Riemannian interpretation in a large framework and
this may lead to either foundational questions or to new viewpoints.

The challenging project of developing Geometric Measure Theory on SR manifolds
has shown that both of these aspects can happen. With this aim in mind, finding a
theory of area in SR Geometry represents the starting point of a demanding program.

Historically, since the seminal works by Carathéodory [12] and Hausdorff [32], many
theories grew to study k-dimensional Lebesgue area, smoothness conditions for area
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and coarea formulae, extensions to Finsler spaces, etc. We mention only a few relevant
references [1], [2], [3], [9], [10], [13], [15], [16], [18], [19], [20], [21], [22], [29], [31], [34],
[41], [43], [46], [47], [52], to give a very small glimpse of the much wider literature in
both old and new research lines.

In the modern view, the Riemannian surface area can be computed by Euclidean
tools, since smooth subsets have Lipschitz parametrizations, the Rademacher theorem
holds and change of variables formulae perfectly fit with the standard density given
by the Riemannian metric.

The previous techniques fail completely in the SR case and this is due to two basic
difficulties. First of all, we may not have Lipschitz parametrizations, even for smooth
subsets of a sub-Riemannian manifold. This forces the use of abstract differentiation
theorems for measures, although the second obstacle comes up exactly at this stage. In
fact, the Besicovitch covering theorem, shortly B.C.T., fails to hold precisely for two
important distances, such as the sub-Riemannian distance and the Cygan-Korányi
distance in the Heisenberg group, [36], [48], [51]. Although there exist some special
distances such that the B.C.T. holds, [37], a complete development of Geometric
Measure Theory in the SR framework has to include all homogeneous distances, or
at least the most important ones. To keep this generality, we do not have any general
theorem to differentiate an arbitrary Radon measure.

We will show how to overcome these difficulties for hypersurfaces and for finite
perimeter sets in special classes of nilpotent Lie groups. Our ambient space is the
homogeneous stratified group, corresponding to a stratified Lie group equipped with
a fixed homogeneous distance, see Section 2. Here the natural problem is to compute
the perimeter measure by the Hausdorff measure constructed with the homogeneous
distance of the group.

Homogeneous stratified groups are Ahlfors regular and satisfy a Poincaré inequality,
hence their metric perimeter measure coincides with the variational perimeter [44],
and the general results of [4] give the following formula

(1) |∂HE| = β SQ−1
0 xFHE ,

where β is measurable, Q is the Hausdorff dimension of the group, E ⊂ G is an h-finite
perimeter set, FHE is the reduced boundary and |∂HE| is the variational perimeter
measure on groups, see Section 4 for more details. The (Q− 1)-dimensional spherical

Hausdorff measure with no geometric constant SQ−1
0 is introduced in Definition 3.1.

A variational notion of perimeter measure on SR manifolds has been introduced
in [7], where the divergence operator is only defined by the volume measure. This
implies that the notion of perimeter measure in stratified groups can be introduced
by the standard divergence, see (26).

Finding a geometric expression for β is obviously the crucial question. When the
group is the Euclidean space, the classical De Giorgi’s theory [15] proves that β is
the volume of the unit ball in Rn−1. Here we remark the crucial role of the classical
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area formula, joined with the rectifiability of the reduced boundary. Extensions to
the case of Finsler spaces have been also established, [9].

When we consider a noncommutative stratified group, there is a drastic change of
the problem, where the classical area formula does not apply. In fact, according to
the examples of [35], the reduced boundary FHE in general may not be rectifiable in
the sense of 3.2.14 of [21], so all of the known methods fail. At present there are no
results to find β when the spherical Hausdorff measure is replaced by the Hausdorff
measure. On the other hand, some integral representations for Borel measures with
respect to the spherical Hausdorff measure can be written.

Next, we will state a general integration formula that works in diametrically regular
spaces, namely those metric spaces (X, d) such that for each x ∈ X and R > 0 there
exists δx,R > 0 such that (0, δx,R) 3 t→ diam(B(y, t)) is continuous for every y ∈ X
such that d(x, y) ≤ R. We have denoted by B(y, t) the open metric ball of center
y and radius t. Since we consider metric spaces where all metric balls with positive
radius have positive diameter, if µ : P(X)→ [0,+∞] is a measure, then the set

Sµ,ζb,α = Fb \ {S ∈ Fb : ζb,α(S) = µ(S) = 0 or ζb,α(S) = µ(S) = +∞}

appearing in Theorem 11 of [40] coincides with the family of closed metric balls
Fb, where ζb,α : Fb → [0,+∞), ζb,α(S) = cαdiam(S)α and cα > 0 is an arbitrary
constant that defines both the gauge ζb,α and the corresponding spherical Hausdorff
measure Sα, according to Definition 3.1. Notice that with this definition of Sα and
the definition of θα(µ, x) in (3), the constant cα on the right hand side of (2) cancels.
In fact, this number essentially plays the role of a geometric constant that can be
suitably fixed.

Since Fb obviously covers any subset finely, following the terminology in 2.8.1 of
[21], the following result is a slightly simplified version of Theorem 11 in [40].

Theorem 1.1. Let (X, d) be a diametrically regular metric space, where all balls with
positive radius have also positive diameter. Let α > 0 and let µ be a Borel regular
measure over X such that there exists a countable open covering of X whose elements
have µ finite measure. If B ⊂ A ⊂ X are Borel sets, then θα(µ, ·) is Borel on A.

In addition, if Sα(A) < +∞ and µxA is absolutely continuous with respect to
SαxA, then we have

(2) µ(B) =

∫
B

θα(µ, x) dSα(x) .

Since diam(B(x, r)) = 2r for all x ∈ G and r > 0, where G is a homogeneous
stratified group and the open ball B(x, r) ⊂ G is introduced in Section 2, then the
assmptions of Theorem 1.1 are satisfied in G. This is completely independent of the
fact that B.C.T. might not hold.
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The spherical Federer density θα(µ, ·) has been recently introduced in [40] and it
has the explicit formula

(3) θα(µ, x) = inf
ε>0

sup

{
µ(B)

cαdiam(B)α
: x ∈ B ∈ Fb, diamB < ε

}
.

If we set cQ−1 = 21−Q in the previous formula, then (2) holds with SQ−1 replaced

by SQ−1
0 . Thus, by this choice, the problem of finding β in (1) corresponds to the

problem of finding a more explicit formula for θQ−1(|∂HE|, ·).
We wish to mention that the spherical Federer density may differ from the α-density

in the sense of 2.10.19 of [21], as shown for instance in [40]. The latter density has
been recently related to a new measure theoretic area formula, proved by Franchi,
Serapioni and Serra Cassano, [28]. In this formula, the spherical Hausdorff measure
of (2) is replaced by the so-called centered Hausdorff measure, introduced by Saint
Raymond and Tricot in [50], see also [17].

Our point is to show that the explicit formula for the Federer density corresponds
to a precise geometric expression. Identifying G with the direct sum of linear spaces
V1 ⊕ V2 ⊕ · · · ⊕ Vι, as explained in Section 2, for each ν ∈ V1 \ {0}, we define its
corresponding vertical subgroup N(ν) = ν⊥ ⊕ V2 ⊕ · · · ⊕ Vι. Here ν⊥ denotes the
subspace of V1 that is orthogonal to ν. In fact, an auxiliary scalar product is fixed on
the linear structure of G. Then we set

(4) β(d, ν) = max
z∈B(0,1)

Hn−1(B(z, 1) ∩N(ν)),

where n is the dimension of G as linear space and Hn−1 is the Euclidean Hausdorff
measure in G arising from the fixed scalar product. The closed metric unit ball B(0, 1)
is introduced in Section 2. The number introduced in (4) represents the maximal area
of all intersections of B(0, 1) with vertical hyperplanes that are orthogonal to the
horizontal direction ν. If B(0, 1) has no symmetries, then the maximal intersection
β(d, ν̃) with hyperplanes orthogonal to a different direction ν̃ might differ. It is also
easy to realize that V1 \ {0} 3 ν → β(d, ν) is 0-homogeneous. We are now in the
position to state our main result.

Theorem 1.2 (Area formula for the perimeter measure). Let G be a stratified group
and let E ⊂ G be an h-finite perimeter set. If FHE is G-rectifiable, then we have

(5) |∂HE| = β(d, νE)SQ−1
0 xFHE .

To compute the Federer density for the perimeter measure, we consider suitable
G-regular sets, see Definition 2.1. From [27], in two step stratified groups the reduced
boundary FHE can be covered by a countable union of these G-regular sets, up to
SQ−1

0 -negligible sets, namely it is G-rectifiable. We use this approach since it allows us
to differentiate the perimeter measure in a way that can be suitable also for potential
extensions to higher codimensional submanifolds.
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The G-rectifiability of FHE also holds in special classes of higher step groups, [42],
and for all C1 smooth open sets of arbitrary stratified groups, [38]. To include all of
these cases, we have stated Theorem 1.2 for all h-finite perimeter sets whose reduced
boundary FHE is G-rectifiable. We also point out that the G-rectifiability of FHE
is necessary and it is clearly a crucial fact also in the classical context of Euclidean
spaces, when G is commutative and equipped with a Euclidean norm. However, in a
general stratified group it is not yet clear whether all reduced boundaries FHE are
automatically G-rectifiable. This is still an important open question.

Rather surprisingly, formula (5) holds for an arbitrary homogeneous distance, with
no regularity assumption, and it also finds an interesting relationship with the shape of
the metric unit ball generated by the distance. As an example of this fact, Theorem 5.2
shows that whenever the unit ball B(0, 1) is convex, then

(6) β(d, v) = Hn−1(N(v) ∩ B(0, 1)).

Thus, it turns out that the Federer density and the (Q − 1)-density coincide when
the metric unit ball is convex. This provides a simpler formula that relates perimeter
measure and spherical Hausdorff measure. The key to prove (6) is a concavity-type
property for the areas of all parallel one codimensional slices of a convex body, see
[11] and Theorem 5.1.

In Section 6 we discuss some classes of symmetries of a homogeneous distance d
such that V1 \ {0} 3 ν → β(d, ν) is a constant function. If we denote by ωG,Q−1

the value of this constant function and we denote by SQ−1
G the spherical Hausdorff

measure constructed by the gauge ζb,Q−1(S) = ωG,Q−1diam(S)Q−1/2Q−1, then we have
a simpler representation of the perimeter measure, according to Theorem 1.3.

In simpler terms, since β(d, ·) is constant, the measure β(d, νE)SQ−1
0 xFHE of

Theorem 1.2 becomes ωG,Q−1SQ−1
0 xFHE, so it is natural to include ωG,Q−1 in the

definition of spherical Hausdorff measure, namely SQ−1
G = ωG,Q−1SQ−1

0 . Taking into
account these definitions, we have the following consequence of Theorem 1.2.

Theorem 1.3 (Area formula for symmetric distances). Let G be a stratified group
equipped with a V1-vertically symmetric distance and let E ⊂ G be set of h-finite
perimeter. If FHE is G-rectifiable, then

(7) |∂HE| = SQ−1
G xFHE .

In Definition 6.1, we introduce the class of V1-vertically symmetric distances, whose
metric unit ball has a suitable group of symmetries modeled on V1. Theorem 6.1 shows
that all of these distances have the function V1 \ {0} 3 ν → β(d, ν) constant, hence

in Theorem 1.3 we can define the “natural” spherical Hausdorff measure SQ−1
G .

In each stratified group, we can find a homogeneous distance whose unit ball B(0, 1)
coincides with a Euclidean ball of sufficiently small radius, see Theorem 2 of [33]. In
particular, this distance is V1-vertically symmetric. Many other important examples
of homogeneous distances with this symmetry property are available. We mention for



6 VALENTINO MAGNANI

instance the Cygan-Korányi distance, the distance d∞ of [27] and the sub-Riemannian
distance in the Heisenberg group, see Section 5 and Section 6.

2. Notation, terminology and basic facts

A stratified group can be seen as a graded linear space G = V1 ⊕ · · · ⊕ Vι equipped
with a polynomial group operation such that its graded Lie algebra G = V1⊕ · · ·⊕Vι
satisfies [V1,Vj] = Vj+1 for all integers j ≥ 0, where Vi = {0} for all i > ι and
Vι 6= {0}. We also point out that identifying G with the tangent space T0G of G at
the origin, we have a canonical isomorphism between Vj and Vj, that associates to
each v ∈ Vj the unique left invariant vector field V ∈ Vj such that V (0) = v.

The terminology stratified group is due to G. B. Folland, [23], see also [24] and [49].
Stratified groups equipped with a sub-Riemannian distance are also well known as
Carnot groups, according to the terminology introduced by P. Pansu, [45].

We will denote by n the dimension of G, seen as a linear space. The graded structure
of G allows us to introduce intrinsic dilations δr : G → G as linear mappings such
that δr(y) = riy for each y ∈ Vi, r > 0 and i = 1, . . . , ι.

A homogeneous distance d on G is a continuous and left invariant distance with
d(δrx, δry) = r d(x, y) for all x, y ∈ G and r > 0. It could be a nice exercise for the
reader to show that the latter homogeneity property joined with left invariance imply
the continuity of the distance with respect to the unique topology that makes G a
finite dimensional topological vector space. We define the open and closed balls

B(y, r) =
{
z ∈ G : d(z, y) < r

}
and B(y, r) =

{
z ∈ G : d(z, y) ≤ r

}
.

The corresponding homogeneous norm is denoted by ‖x‖ = d(x, 0) for all x ∈ G.
The terminology homogeneous stratified group may wish to stress that the stratified
group is equipped with a homogeneous distance, although such a distance is often
understood. The symbol Ω will denote an open subset of a stratified group G. Notice
that any homogeneous distance is bi-Lipschitz equivalent to the SR distance.

In our terminology, a C1
h smooth function f : Ω→ R on an open set Ω of a stratified

group G has the property that for all x ∈ Ω and X ∈ V1 the horizontal derivative

Xf(x) = lim
t→0

f(ΦX
t (x))− f(x)

t

exists and it is continuous in Ω, where ΦX denotes the flow of X. We denote by C1
h(Ω)

the linear space of all C1
h smooth functions on Ω.

We define the linear mapping dhf(x) : G→ R such that

dhf(x)(w) =

{
0 if w ∈ V2 ⊕ · · · ⊕ Vι
Wf(x) if w ∈ V1

with w ∈ V1 andW ∈ V1 is the unique left invariant vector field such that expW = w.
Here exp : G → G is the standard exponential mapping of G, seen as a Lie group.
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In view of Folland and Stein’s “stratified mean value theorem”, see (1.41) of [24],
f ∈ C1

h(Ω) if and only if x→ dhf(x) is continuous in Ω and

(8) f(xh)− f(x)− dhf(x)(h) = o(‖h‖) as ‖h‖ → 0.

The class of C1
h functions has a corresponding implicit function theorem.

Theorem 2.1 (Implicit function theorem). Let x ∈ Ω, X ∈ V1 and f ∈ C1
h(Ω) with

Xf(x) 6= 0. Let N be the kernel of dhf(x) and let H = R eX , where eX = expX.
Then we have an open set V ⊂ N with 0 ∈ V , a continuous function ϕ : V → H and
an open neighborhood U ⊂ G of x, such that

f−1(f(x)) ∩ U =
{
xηϕ(η) | η ∈ V

}
.(9)

This result is an immediate consequence of the Euclidean implicit function theorem,
once the proper system of coordinates is fixed. It shows that regular level sets of C1

h

smooth functions are locally graphs with respect to the group operation, [26]. A more
general implicit function theorem for mappings between two stratified groups G and
M can be also obtained. The new algebraic and topological difficulties of this case
are partially overcome using the topological degree and assuming special algebraic
factorizations of the source space. Level sets of these mappings define the general
class of (G,M)-regular sets of G, see [38] and [39] for more information. For the
purposes of this work, the next definition refers to the case M = R. In this special
case, these sets have first appeared in [26] and called G-regular hypersurfaces.

Definition 2.1. We say that a subset Σ ⊂ G is a parametrized G-regular hypersurface
if there exists f ∈ C1

h(Ω) such that dhf is everywhere nonvanishing and Σ = f−1(0).

A graded basis (e1, . . . , en) of G is defined by assuming that the families of vectors

(emj−1+1, emj−1+2, . . . , emj)

are bases of the subspaces Vj and mj =
∑j

i=1 dimVi for every j = 1, . . . , ι, where
m0 = 0. We also set m = m1.

In the sequel, a graded basis is fixed and the corresponding Lebesgue measure
Ln is automatically defined on G. The left invariance of Ln with respect to the
group operation makes this measure the Haar measure µ of G. As mentioned in the
introduction, we fix an auxiliary scalar product on G and we make this choice such
that the fixed graded basis is orthonormal. The restriction of this scalar product to
V1 can be translated to the so-called horizontal fibers

HxG = {X(x) ∈ TxG : X ∈ V1}

as x varies in G, hence defining a left invariant sub-Riemannian metric g on G. We
denote by HG the horizontal subbundle of G, whose fibers are HxG. By a slight abuse
of notation, we denote both the norm arising from g and the norm arising from the
scalar product of G by the same symbol | · |.
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Definition 2.2 (Horizontal subbundle and its sections). Let O ⊂ G be an open set.
We denote by HO the restriction of the horizontal subbundle HG to the open set O,
whose horizontal fibers HxG are restricted to all points x ∈ O. We denote by Sc(HO)
the linear space of all smooth sections of HO with compact support in O.

For each parametrized G-regular hypersurface Σ ⊂ G defined by f : Ω → R, we
may define the intrinsic measure of Σ through the perimeter measure

(10) σΣ(O) = sup

{∫
Ef

divX dµ
∣∣∣X ∈ Sc(HO), |X| ≤ 1

}
for any open set O ⊂ Ω, where Ef = {x ∈ Ω : f(x) < 0}. The symbol div denotes
the divergence operator with respect to the Haar measure µ, that in our coordinate
system gives the standard divergence operator.

We introduce the horizontal normal for a parametrized G-regular hypersurface Σ
with defining function f as follows: for each y ∈ Σ we set

νΣ(y) =
∇Hf(y)

|∇Hf(y)|
,(11)

where (X1, . . . , Xm) is an orthonormal basis of V1 and

∇Hf = (X1f, . . . , Xmf)

is the horizontal gradient of f . For our purposes, we do not claim an orientation for
Σ, that is a specific choice of ±νΣ.

3. Upper blow-up of the perimeter measure

In this section we prove the central result for this work, namely, a new blow-up
theorem for the perimeter measure. We recall here our basic notation.

Definition 3.1 (Carathéodory construction). Let F ⊂ P(G) denote a nonempty
family of closed subsets of a stratified group G, equipped with a homogeneous dis-
tance. Let α > 0 and cα > 0 arbitrarily fixed. If δ > 0 and E ⊂ G, then we
define

φδ(E) = inf

{ ∞∑
j=0

cα diam(Bj)
α : E ⊂

⋃
j∈N

Bj, diam(Bj) ≤ δ, Bj ∈ F
}
,

where the diameter diamBj of Bj is computed by the fixed homogeneous distance. If
F coincides with the family of closed balls Fb, then we set

Sα(E) = sup
δ>0

φδ(E).

to be the α-dimensional spherical Hausdorff measure of E. This defines a Borel
regular (outer) measure Sα on all subsets of G. If in the previous definition of Sα we
choose cα = 2−α, then we use the symbol Sα0 .
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In the case F is the family of all closed sets, α = k is a positive integer less
than the linear dimension of G, ck is the volume of the unit ball in Rk and the
Euclidean distance is fixed on G, then the previous construction yields the Euclidean
k-dimensional Hausdorff measure on G, that we denote by Hk.

Theorem 3.1 (Upper blow-up). Let Σ be a parametrized G-regular hypersurface and
let x ∈ Σ. If σΣ is its associated perimeter measure and we have defined θQ−1(σΣ, ·)
as in (3) with cQ−1 = 21−Q, then we have

(12) θQ−1(σΣ, x) = β(d, νΣ(x)) .

Proof. We consider f as the defining function of Σ and select X1 ∈ V1 such that the
element eX1 = expX1 ∈ V1 has unit length and it is orthogonal to the kernel of dhf(x).
Let X2, . . . , Xm ∈ V1 be such that (X2(x), . . . , Xm(x)) is an orthonormal basis of this
kernel. By Theorem 2.1, we have an open neighborhood V ⊂ N of the origin, with
N = ker dhf(x), a continuous function ϕ : V → R and an open neighborhood U ⊂ G
of x, such that

Σ ∩ U =
{
xη(ϕ(η)eX1) | η ∈ V

}
.(13)

Up to changing the sign of f and possibly shrinking U , we assume that X1f ≥ α > 0
everywhere on U . To define the intrinsic measure of Σ, we consider the open set

Ef = {w ∈ U | f(w) < 0} =
{
xη(seX1) ∈ U | η ∈ V, s < ϕ(η)}.

From [26], this set has finite perimeter and defining the graph mapping Φ : V → Σ
by Φ(η) = xη(ϕ(η)eX1) for every η ∈ V , we also have the formula

σΣ(B(y, t)) = |∂Ef |H(B(y, t)) =

∫
Φ−1(B(y,t))

√∑m
j=1 Xjf(Φ(η))2

X1f(Φ(η))
dHn−1(η)

for t > 0 small and y ∈ U . We make the change of variables n = Λtη, where
Λt : N → N and

Λtη =
m∑
j=2

t ηjej +
ι∑
i=2

mi∑
j=mi−1+1

tiηjej .

We notice that δt|N = Λt and the Jacobian of Λt is tQ−1, where Q is the Hausdorff
dimension of G. By a change of variables, we get

(14) σΣ(B(y, t)) = tQ−1

∫
Λ1/t

(
Φ−1(B(y,t))

)
√∑m

j=1Xjf(Φ(Λtη))2

X1f(Φ(Λtη))
dHn−1(η) .

The general definition of spherical Federer’s density, [40], in our setting gives

(15) θQ−1(σΣ, x) = inf
r>0

sup
y∈B(x,t)
0<t<r

σΣ(B(y, t))
tQ−1

.
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Due to (14), to find θQ−1(σΣ, x) we first observe that the sets

(16) Λ1/t(Φ−1(B(y, t))) =
{
η ∈ Λ1/tV | (δ1/t(y

−1x)) η
(
ϕ(δtη)
t

eX1

)
∈ B(0, 1)

}
are bounded, uniformly with respect to t, as y ∈ B(x, t). To see this fact, since f is
C1
h smooth, by (8), we first choose

0 < ε0 <
α

‖eX1‖
≤ infU X1f

‖eX1‖

such that, for V possibly shrinked, containing the origin and depending on ε0, for all
η ∈ V there holds

|f(xη)|
‖η‖

=
|f(xη)− f(x)− dhf(x)(η)|

‖η‖
≤ ε0.

Let us consider y ∈ B(x, t) and choose

w ∈ Λ1/t(Φ−1(B(y, t)).

Thus, we have

ε0 ≥
|f(xδtw)|
‖δtw‖

=
|f(xδtw(ϕ(δtw)eX1))− f(xδtw)|

‖δtw‖

=

∣∣∣ ∫ ϕ(δtw)

0
X1f(xδtwδseX1) ds

∣∣∣
t ‖w‖

≥ α

‖w‖
|ϕ(δtw)|

t
.

Notice that the previous estimates remain true also in the case ϕ(δtw) = 0. Taking
into account that d(x, y) ≤ t, we get

(17) w

(
ϕ(δtw)

t
eX1

)
∈ B(0, 2).

The previous inclusion gives

‖w‖ ≤ 2 + ‖
(
t−1ϕ(δtw)eX1

)−1‖ = 2 + ‖t−1ϕ(δtw)eX1‖ ≤ 2 + ‖eX1‖
ε0

α
‖w‖ .

It follows that (
1− ‖eX1‖ε0

α

)
‖w‖ ≤ 2 .

As a consequence, setting R0 = 2/(1 − ‖eX1
‖ε0

α
), we have proved that for t > 0

sufficiently small

(18) Λ1/t(Φ−1(B(y, t))) ⊂ B(0, R0) .
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The first consequence of this inclusion is that θQ−1(σΣ, x) < +∞, hence there exist a
sequence {tk} ⊂ (0,+∞) converging to zero and a sequence of elements yk ∈ B(x, tk)
such that

θQ−1(σΣ, x) = lim
k→∞

∫
Λ1/tk

(
Φ−1(B(yk,tk))

)
√∑m

j=1Xjf(Φ(Λtkη))2

X1f(Φ(Λtkη))
dHn−1(η) .

Possibly extracting a subsequence, there exists z ∈ B(0, 1) such that

(19) δ1/tk(y
−1
k x)→ z−1 ∈ B(0, 1).

Setting Sz = N ∩ B(z, 1), we wish to show that for each w ∈ N \ Sz there holds

(20) lim
k→∞

1Ak(w) = 0 ,

where Ak = Λ1/tk(Φ−1(B(yk, tk))). For this, we have to prove that

(21) lim
t→0+

ϕ(δtw)

t
= 0.

Since ϕ is only continuous, this makes the proof of this limit more delicate. We define

A(w) =
{
t ∈ R | t > 0, ϕ(δtw) 6= 0

}
.

If A(w) does not contain zero, the limit (21) becomes obvious. If 0 ∈ A(w), then we
choose an arbitrary infinitesimal sequence {τk} ⊂ A(w). Using the stratified mean
value inequality in (1.41) of [24], we notice that

lim
k→∞

f(xδτkw)

τk
= lim

k→∞

f(xδτkw)− f(x)

τk
= 0 .

Since ϕ(δτkw) 6= 0, we can multiply and divide by ϕ(δτkw), getting

(22) 0 = lim
k→∞

f(xδτkw)

τk
=
(
−X1f(x)

)
lim
k→∞

ϕ(δτkw)

τk
.

This proves (21), hence (20) follows. We consider the following integral as the sum∫
Ak

√∑m
j=1Xjf(Φ(Λtkη))2

X1f(Φ(Λtkη))
dHn−1(η) = Ik + Jk ,

where, introducing the density function

α(t, η) =
(
X1f(Φ(Λtη))

)−1

√√√√ m∑
j=1

Xjf(Φ(Λtη))2,

we have set

Ik =

∫
Ak∩Sz

α(tk, η) dHn−1(η) and Jk =

∫
Ak\Sz

α(tk, η) dHn−1(η) .
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In principle, when w ∈ N ∩ ∂B(z, 1) we do not have information on the limit of
1Ak∩Sz(w) as k → ∞. Taking into account (16), this depend on the geometry of
x−1Σ ∩ B(0, 1). However, in this step we wish to prove only one inequality. Then we
consider the following inequality

(23) Ik ≤
∫
Sz

α(tk, η) dHn−1(η) .

Due to (18), we have

Jk ≤
∫
B(0,R0)\Sz

1Ak(η)α(tk, η) dHn−1(η) .

The integrand of the previous integral goes to zero as k →∞, due to (20), and it is
uniformly bounded, therefore Lebesgue’s convergence theorem implies that Jk → 0.
Again Lebesgue’s theorem gives

lim
k→∞

∫
Sz

α(tk, η) dHn−1(η) = Hn−1(Sz) .

In fact, Xjf(0) = 0 for j = 2, . . . ,m, hence α(tk, η)→ 1 as k →∞. This gives

θQ−1(σΣ, x) = lim
k→∞

∫
Ak

√∑m
j=1 Xjf(Φ(Λtkη))2

X1f(Φ(Λtkη))
dHn−1(η) ≤ Hn−1(Sz) ≤ Hn−1(Sz0) ,

where z0 ∈ B(0, 1) is such that

(24) Hn−1(Sz0) = β(d, νΣ(x)) .

To prove the opposite inequality, we select y0
t = xδtz0 ∈ B(x, t) and fix λ > 1. We

observe that

sup
0<t<r

σΣ(B(y0
t , λt))

(λt)Q−1
≤ sup

y∈B(x,t)
0<t<λr

σΣ(B(y, t))
tQ−1

for every r > 0, therefore the definition of spherical Federer density (15) yields

lim sup
t→0+

σΣ(B(y0
t , λt))

(λt)Q−1
≤ θQ−1(σΣ, x) .

Taking into account (16), we set

(25) A0
t = Λ1/λt(Φ−1(B(y0

t , λt))) =
{
η ∈ Λ1/λtV | η

(
ϕ(δλtη)
λt

eX1

)
∈ B(δ1/λz0, 1)

}
,

that implies

σΣ(B(y0
t , λt))

(λt)Q−1
=

∫
A0
t

α(λt, η) dHn−1(η) =
1

λQ−1

∫
δλA

0
t

α(λt, δ1/λη) dHn−1(η) .
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We have δλA
0
t = {η ∈ Λ1/tV | η

(ϕ(δtη)
t
eX1

)
∈ B(z0, λ)} and observe that α(t, η) is

well defined and bounded on [0, ε̄] × (N ∩ B(z0, λ)), for ε̄ sufficiently small. Taking
into account that

lim
t→0+

1δλA0
t
(w) = 1

for all w ∈ N ∩B(z0, λ), along with the inequality

λ1−Q
∫
N∩B(z0,λ)

1δλA0
t
(w)α(λt, δ1/λη) dHn−1(η) ≤

σΣ(B(y0
t , λt))

(λt)Q−1
,

it follows that

λ1−QHn−1(N ∩B(z0, λ)) ≤ θQ−1(σΣ, x).

As λ→ 1+ the opposite inequality follows, hence concluding the proof. �

4. Area formulae for the perimeter measure

This section is devoted to establish the general relationship between perimeter
measure and spherical Hausdorff measure. Joining Theorem 3.1 with Theorem 1.1,
we obtain the following result.

Theorem 4.1 (Area formula). Let Σ be a parametrized G-regular hypersurface. If
σΣ is its associated perimeter measure (10), then

σΣ = β(d, νΣ)SQ−1
0 xΣ .

This theorem also yields an area formula for the perimeter measure. To present
this result we introduce a few more definitions. A subset S ⊂ G is G-rectifiable if
there exists a countable family {Σj | j ∈ N} of parametrized G-regular hypersurfaces
Σj such that

SQ−1
0 (S \

⋃
Σj) = 0.

A measurable set E ⊂ G has h-finite perimeter if

(26) sup

{∫
E

divX dµ
∣∣∣X ∈ C1

c (G, HG), |X| ≤ 1

}
< +∞.

This allows for defining a finite Radon measure |∂HE| on G, see for instance [7]. The
reduced boundary FHE is the set of points x ∈ G such that there exists νE(x) ∈ V1

with |νE(x)| = 1 and

lim
r→0+

1

|∂HE|(B(x, r))

∫
B(x,r)

νE(y) d|∂HE|(y) = νE(x) ,

where νE is the generalized inward normal of E, see [27] for more information.
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Proof of Theorem 1.2. Since the perimeter measure is asymptotically doubling, the
perimeter measure |∂HE| is concentrated on the reduced boundary FHE, see [4].
Moreover, the G-rectifiability of FHE implies the existence of a countable family
{Σj | j ∈ N} of parametrized G-regular hypersurfaces Σj such that

SQ−1
0

(
FHE \

⋃
Σj

)
= 0 and νE(y) = ±νΣj(y) for |∂HE|-a.e. y ∈ Σj ∩ FHE.

In fact, locality of the perimeter measure, see Corollary 2.6 of [6], shows that for
|∂HE|-a.e. z ∈ Σj ∩ FHE there holds νE(z) = ±νΣj(z). On each Σj we define the
Radon measure

µj = β(d, νΣj)S
Q−1
0 xΣj ,

hence the area formula of Theorem 4.1 gives µj = σΣj . The argument of the upper
blow-up theorem clearly simplifies in the case of the following centered blow-up, giving

(27) lim
r→0+

σΣj(B(y, r))
rQ−1

= Hn−1(N(νΣj(y)) ∩ B(0, 1))

for all y ∈ Σj. From Theorem 1.2 of [5], there exists RE ⊂ FHE such that

|∂HE|
(
FHE \ RE

)
= 0

and for every x ∈ RE the following vertical halfspace

Z(νE(x)) =
{
v ∈ G | v = v1 + v0, v1 ∈ V1, v0 ∈ V2 ⊕ · · · ⊕ Vι, 〈v1, νE(x)〉 > 0

}
belongs to Tan(E, x), see Definition 6.3 of [5]. Since |∂HE| is asymptotically doubling,
[4], the perimeter measure |∂HE| can differentiate µj, hence we can define

(28) δE(x) = lim
r→0+

µj(B(x, r))
|∂HE|(B(x, r))

= lim
r→0+

σΣj(B(x, r))

|∂HE|(B(x, r))

for each x ∈ R1
E ∩ Σj, where we have chosen R1

E ⊂ RE such that

(29) |∂HE|(RE \ R1
E) = 0 and νE(x) = ±νΣj(x)

for each j ∈ N and each x ∈ R1
E∩Σj. Moreover, for the same x the vertical half-space

Z(νE(x)) belongs to Tan(E, x) and there exists an infinitesimal positive sequence (rk)
of radii, possibly depending on x, such that

(30) |∂HEx,rk |(B(0, 1)) −→ |∂HZ(νE(x))|(B(0, 1)) as k →∞ ,

where we have defined the translated and rescaled sets Ex,rk = δ1/rk(x
−1E). By

standard formulae on the translated and rescaled perimeter measure, it follows that

(31) |∂HE|
(
B(x, rk)

)
= rQ−1

k |∂HEx,rk |
(
B(0, 1)

)
The boundary of Z(νE(x)) is precisely N(νE(x)), that is a parametrized G-regular
hypersurface. We also have

(32) |∂HZ(νE(x))|(B(0, 1)) = Hn−1
(
N(νE(x)) ∩ B(0, 1)

)
.
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The previous equality could be obtained directly from the definition of perimeter
measure, since we have a smooth boundary. We may also use the formula of [26]
for the representation of the perimeter measure. In this case, we consider the linear
defining function f0 : G→ R, where

f0(y) = 〈π1(y), νE(x)〉
and π1 : G → V1 is the projection with respect to the direct sum G = V1 ⊕ · · · ⊕ Vι.
We can select an orthonormal basis of V1 such that X1(0) = νE(x), hence

|∂HZ(νE(x))|(B(0, 1)) =

∫
Φ−1

0 (B(0,1))

√∑m
j=1 Xjf0(Φ0(η))2

X1f0(Φ0(η))
dHn−1(η)

= Hn−1(N(νE(x)) ∩ B(0, 1)) ,

since Φ0(η) = η. Joining (27) with y = x, (29), (30), (31) and (32), we obtain that
δE(x) = 1, hence (28) immediately leads us to the conclusion. �

5. Vertical sections of convex homogeneous balls

In this section we study those homogeneous distances with convex unit ball. The
following classical result of convex geometry will play a key role.

Theorem 5.1 ([11]). Let H be an n-dimensional Hilbert space with n ≥ 2 and let C be
a compact convex set with nonempty interior that contains the origin. Let v ∈ H \{0}
and let N denote the orthogonal space to v. Then the function

ψ(t) =
[
Hn−1(C ∩ (tv +N))

]1/(n−1)

is concave on the interval {t ∈ R : C ∩ (tv +N) 6= ∅}.

Thus, we are in the position to establish the result of this section.

Theorem 5.2. If d is a homogeneous distance such that the corresponding unit ball
B(0, 1) is convex and v ∈ V1 \ {0}, then we have

(33) β(d, v) = Hn−1(N(v) ∩ B(0, 1)) .

Proof. Let us set N = N(v), where

N(v) = v⊥ ⊕ V2 ⊕ · · · ⊕ Vι
is the vertical subgroup orthogonal to the horizontal direction v, with respect to the
fixed scalar product. The Euclidean Jacobian of the translation τz : N → zN is one
for all z ∈ G, hence

Hn−1(N ∩ B(z, 1)) = Hn−1(B(0, 1) ∩ z−1N) .

To study the previous function with respect to z, we introduce

a(z) = Hn−1(B(0, 1) ∩ zN) .
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Defining H = Rv, we have two canonical projections π1 : G → H and π2 : G → N
such that y = π1(y)π2(y) for all y ∈ G, see Proposition 7.6 of [39]. Since H is
a horizontal subspace, one can also check that π1 : G → H is precisely the linear
projection onto H with respect to the direct sum of linear spaces H ⊕N = G. As a
consequence,

(34) a(z) = Hn−1(B(0, 1) ∩ zN) = Hn−1(B(0, 1) ∩ π1(z)N) .

Furthermore, π1(z)N = π1(z) +N and B(0, 1)−1 = −B(0, 1), therefore

a(z) = Hn−1(B(0, 1) ∩ (π1(z) +N)) = Hn−1(B(0, 1) ∩ (− π1(z) +N))

and the property −π1(z) = π1(z−1) yields

a(z) = Hn−1(B(0, 1) ∩ (π1(z−1) +N)) = Hn−1(B(0, 1) ∩ (π1(z−1)N)).

Thus, by (34) we get a(z) = Hn−1(B(0, 1) ∩ (z−1N)) = a(z−1) = a(−z), hence a is
an even function. For every t ∈ R we may define the function

b(t) =
[
Hn−1

(
B(0, 1) ∩ (tv +N)

)]1/(n−1)

By Theorem 5.1, the function b(t) = n−1
√
a(tv) is concave and even on the compact

interval

I = {t ∈ R : B(0, 1) ∩ (tv +N) 6= ∅} ,
hence we get

β(d, v) = max
z∈B(0,1)

Hn−1((B(z, 1) ∩N(v)) = Hn−1(N(v) ∩ B(0, 1)) .

Being N(v) ∩ ∂B(0, 1) locally parametrized by Lipschitz mappings on an (n − 2)
dimensional open set, then we obviously have Hn−1(N(v)∩∂B(0, 1)) = 0, concluding
the proof. �

In any general homogeneous group we can always find a homogeneous distance with
convex unit ball, [33]. The next examples provide other distances with this property.

Example 5.3. Let N = V1 ⊕ V2 be an H-type group. We have an explicit formula
for a homogeneous distance d(x, y) = ‖x−1y‖ such that

‖x‖ = 4
√
|x1|4 + 16|x2|2

where x, y ∈ N , x = x1 + x2 and xi ∈ Vi for i = 1, 2, see [14]. The unit ball with
respect to this distance is clearly a convex set.

Example 5.4. Let G = V1 ⊕ V2 ⊕ · · · ⊕ Vι be any stratified group. From the Baker-
Campbell-Hausdorff formula it is easy to see the existence of constants εj > 0, with
j = 1, . . . , ι and ε1 = 1, such that setting

‖x‖ = max{εj|xj|1/j}
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with xi ∈ Vi for all i = 1, . . . , ι, we have actually defined the homogeneous distance
d∞(x, y) = ‖x−1y‖, as it was observed in [27]. The unit ball B(0, 1) with respect to
d∞ is clearly a convex set.

6. Vertically symmetric distances

The next definition introduces those distances whose symmetries allows for having
a precise geometric constant in the definition of the spherical Hausdorff measure SQ−1

G ,
as discussed in the introduction. Theorem 6.1 below will prove this fact.

Definition 6.1. Let G be a stratified group of topological dimension n, with direct
decomposition G = V1⊕W andW = V2⊕· · ·⊕Vι. We equip G by a scalar product that
makes V1 and W orthogonal. We consider a family F1 ⊂ O(V1) that acts transitively
on V1, where O(V1) denotes the group of isometries of V1. We set

O1 = {T ∈ GLn(G) : TW = IdW , T |V1 ∈ F1}.
We denote by p1 : G→ V1 the orthogonal projection onto V1 and set

B(0, 1) = {y ∈ G : d(y, 0) ≤ 1},
where d is a homogeneous distance of G. We say that d is V1-vertically symmetric if

(1) p1(B(0, 1)) = B(0, 1) ∩ V1 = {h ∈ V1 : |h| ≤ r0} for some r0 > 0,

(2) T(B(0, 1)) = B(0, 1) for all T ∈ F1.

Remark 6.1. It is not difficult to observe that the distances of Example 5.3 and
Example 5.4 are both V1-vertically symmetric. The sub-Riemannian distance of the
Heisenberg group is also V1-vertically symmetric. This can be also checked by the
explicit formula for the profile of its sub-Riemannian unit ball.

Theorem 6.1. If a homogeneous distance d is V1-vertically symmetric, then β(d, ·)
is a constant function.

Proof. Let z ∈ B(0, 1) and choose ν1, ν2 ∈ V1. Since F1 is transitive on V1 there exists
T ∈ F1 such that T (ν1) = ν2. We set H = Rν1 and see G as the inner semidirect
product between H and N(ν1). In fact, we have the two canonical projections

π1 : G→ H and π2 : G→ N(ν1)

such that y = π1(y)π2(y) for all y ∈ G. We set π1(z−1) = h and π2(z−1) = n, therefore

Hn−1(B(z, 1) ∩N(ν1)) = Hn−1(B(0, 1) ∩ (h+N(ν1))) .

By property (2) of Definition 6.1, it follows that

Hn−1(B(z, 1) ∩N(ν1)) = Hn−1
(
B(0, 1) ∩ (Th+ T

(
N(ν1)

)
)
)
.

Since π1 is the linear projection onto H with respect to the decomposition H⊕N(ν1)
and H⊥N(ν1), we can write z−1 as the following sum of orthogonal vectors

w + h′ + h ,
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where w ∈ W and h, h′ ∈ V1. By property (1) of Definition 6.1, we get

p1(z−1) = h′ + h ∈ B(0, 1) ∩ V1 = {y ∈ V1 : |y| ≤ r0}.
Since h and h′ are orthogonal, we get h ∈ {y ∈ V1 : |y| ≤ r0} = B(0, 1) ∩ V1, hence

T (h) ∈ B(0, 1) ∩ V1.

Since T is orthogonal, T(N(ν1)) = N(ν2) and we obtain

Hn−1(B(z, 1) ∩N(ν1)) = Hn−1
(
B(0, 1) ∩ (

(
T (h)

)
N(ν2))

)
.

It follows that

Hn−1(B(z, 1) ∩N(ν1)) = Hn−1
(
B
(
T (h)−1, 1

)
∩N(ν2)

)
≤ β(d, ν2) .

The arbitrary choice of z ∈ B(0, 1) yields β(d, ν1) ≤ β(d, ν2). Exchanging the role of
ν1 for that of ν2, we conclude the proof. �

Acknowledgements. The author thanks Luigi Ambrosio for fruitful conversations.
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