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Abstract. We present Lipschitz continuity estimates for a class of convex functions

with respect to Hörmander vector fields. These results have been recently obtained in

collaboration with M. Scienza, [22].

Sunto. Presentiamo alcuni recenti risultati ottenuti in collaborazione con M. Scienza,

[22], riguardanti la determinazione di stime quantitative sulla continuità lipschitziana di

funzioni convesse rispetto a campi vettoriali di Hörmander.
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1. Introduction

This work refers to the “Bruno Pini Mathematical Analysis Seminar”, that I delivered

at the Mathematics Department of Bologna University on June 7, 2012. We precisely

report on a recent work [22], joint with M. Scienza, about a quantitative version of the

Lipschitz continuity of convex functions with respect to Hörmander vector fields.

Let m ≤ n and let X be a set of smooth vector fields X1, . . . , Xm on Rn. We say that

X satisfies the Hörmander condition if for every x ∈ Rn there exists a positive integer r′

such that the following pointwise generating condition holds

(1) span{X[S](x) : |S| ≤ r′} = Rn,

where S = (s1, . . . , sp) ∈ {1, 2, . . . ,m}p, |S| = p and X[S] =
[
Xs1 ,

[
. . . ,

[
Xsp−1 , Xsp

]
. . .
]]
.
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The first important fact is that the everywhere validity of (1) implies the connectivity by

horizontal curves, namely rectifiable curves whose velocity vectors are almost everywhere

linear combinations of elements in X . This introduces the so-called Carnot-Carathéodory

distance associated to these vector fields, as we explain below.

The same set of vector fields X also yields the associated notion of convexity. Precisely,

let Ω be an open set of Rn and let u : Ω→ R. We say that u is X -convex, if the restriction

u ◦ γ is a convex function of one variable, whenever γ : I → Ω satisfies γ̇ =
∑m

i=1 αi Xi ◦ γ

on the open interval I and αi are arbitrary real numbers.

Let us observe that in the case m = n and Xi = ei for all i = 1, . . . , n, where (e1, . . . , en)

is the canonical basis of Rn, then X -convexity coincides with classical convexity for linear

spaces and the metric structure associated to these vector fields is the Euclidean one,

according to the notion of Carnot-Carathéodory distance.

Let us point out that X -convexity is only partially related to the metric structure

induced by the vector fields. Since X generates a sub-Riemannian structure, one may

wonder whether X -convexity only depends on the associated tangent distribution and on

the metric on the distribution, as it happens for the sub-Riemannian distance. However,

it is not difficult to realize that there is no such dependence, not even in the Riemannian

setting. In fact, one can easily find a set X0 = {Y1, . . . , Yn} of vector fields that are

everywhere orthonormal in Rn with respect to the Euclidean scalar product and observe

that the associated family of X0-convex functions is different from the family of classically

convex functions, although both X0 and {e1, . . . , en} yield the same metric structure. This

suggests that X -convexity should not be considered indeed as a typical sub-Riemannian

notion, but it should be interpreted as a notion assigned by a given family of curves.

According to Proposition 3.9 of [21], X -convexity coincides with the weakly H-convexity

introduced in [5], when the vector fields of X along with their iterated commutators are left

invariant with respect to a Lie group operation and span a stratified Lie algebra. Notice

that weakly H-convexity is also called h-convexity. The study of this notion appeared

in connection with the development of a fully nonlinear theory of subelliptic equations

in stratified groups, see [5], [20], [14], [15], [13], [28], [17], but this list is surely not

exhaustive. The notion of X -convexity for a set of vector fields has been introduced
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in [2] to study comparison principles for Monge-Ampere type equations with respect to

Hörmander vector fields.

Now, we introduce the metric structure induced by X . For all x, y ∈ Rn, we define

(2) d(x, y) = inf{t > 0 : there exists γ ∈ Γx,y(t)} ,

where Γx,y(t) is the family of all Lipschitz curves γ : [0, t] → Rn such that γ(0) = x,

γ(t) = y and for a.e. s ∈ [0, t] we have

(3) γ̇(s) =
m∑
j=1

aj(s)Xj(γ(s))

and max1≤j≤m |aj(s)| ≤ 1. This distance along with its properties can be found in [25].

If in this definition we replace the norm max1≤j≤m |aj(s)| with (
∑

1≤j≤m aj(s)
2)1/2, then

we get the Fefferman and Phong distance, [7]. We say that d is the Carnot-Carathéodory

distance with respect to X . Metric balls are denoted as follows

Bx,r = {z ∈ Rn : d(z, x) < r} and Dx,r = {z ∈ Rn : d(z, x) ≤ r}

for every r > 0 and x ∈ Rn. Next, we introduce a special distance associated to X .

Let Γcx,y(t) be the family of all Lipschitz curves γ : [0, t]→ Rn with γ(0) = x, γ(t) = y,

such that (3) holds for a.e. s ∈ [0, t] and (a1, . . . , am) ∈ {±e1, . . . ,±em}, where the curve

(a1, . . . , am) is piecewise constant on [0, t] and (e1, . . . , em) is the canonical basis of Rm.

For all x, y ∈ Rn we define ρ(x, y) to be the infimum among all t > 0 such that Γcx,y(t) 6= ∅.

The distance ρ was introduced by Franchi and Lanconelli, [8], [18], [9]. As pointed out

by D. Morbidelli, the distances d and ρ are bi-Lipschitz equivalent on compact sets of

Rn. This fact is a consequence of the techniques of [25] and it can be also found as a

consequence of Theorem 3.1 of [23]. It plays an important role in the proof of the local

Lipschitz continuity of X -convex functions.

Convexity with respect to vector fields can be also characterized by a second order

condition. When X generates a stratified Lie group structure, this approach has been

introduced in [20] and [17]. In these works the class of v-convex functions is introduced

as the family of upper semicontinuous functions u : Ω → R, defined on an open set

Ω ⊂ Rn, such that ∇2
X u ≥ 0 in the viscosity sense, where the entries of this horizontal
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Hessian in the case u is smooth are exactly the symmetrized second order derivatives

(XiXju+XjXiu)/2 for all i, j = 1, . . . ,m.

In this setting, the set X is constituted by a basis of the first layer of the stratified Lie

algebra. On the other hand, the notion of v-convexity makes perfectly sense for every

family of vector fields, as it was observed in [20]. If X yields a stratified group structure on

Rn, then X -convex functions that are locally bounded from above coincide with v-convex

functions. This result has been first proved in Heisenberg groups without assuming the

boundedness from above, [1], and also in general stratified groups [17], [21], [26], [30].

The main result of [2] is that in the class of upper semicontinuous functions, v-convexity

and X -convexity coincide, for an arbitrary set of C2 vector fields X . It is worth to mention

that this characterization for C2 functions can be easily established as in the case of groups,

see Proposition 5.1 of [21]. In fact, taking X =
∑m

j=1 αjXj and γ : I −→ Ω such that

γ̇ =
∑m

j=1 αj Xj ◦ γ, then u ◦ γ is convex if and only if

(4) (u ◦ γ)′′ =
m∑

j,i=1

αiαj (XiXju) ◦ γ =
m∑

j,i=1

αiαj (∇Xu)ij ◦ γ

that immediately implies the characterization, due to the arbitrary choice of all αj’s.

Notice that this proof automatically extends to differentiable manifolds and might be a

first step to extend the study of X -convexity to this framework.

In the case of stratified groups, the quantitative estimates on the Lipschitz continuity

are stated as follows:

sup
w∈Bx,r

|u(w)| ≤ C0

∫
Bx,2r

|u(w)| dw(5)

ess sup
w∈Bx,r

|∇Hu(w)| ≤ C0

r

∫
Bx,2r

|u(w)| dw .(6)

These estimates are proved in [5] for continuous h-convex functions and in [20] and [17] for

v-convex functions. These two classes of functions indeed coincide with locally Lipschitz

continuous h-convex functions. Notice that the constant C0 is independent of r > 0 and

x ∈ Rn, since these estimates are invariant under rescaling by the intrinsic dilations of

the group. The estimates (5) and (6) play a key role in the study of fine properties

of h-convex functions. For instance, they are necessary to prove the a.e. second order
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differentiability of weakly H-convex functions, starting from the a.e. L1 differentiability of

second order, see for instance [6], [21]. This step has been used in the proof of the second

order differentiability of h-convex functions in two step stratified groups, where the key

problem is the monotonicity of certain integral operators, [6], [13], [14], [15], [28]. In this

connection, we mention some recent results on monotonicity of new Hessian operators

in Heisenberg groups, [29]. Another application of (5) and (6) is in the proof of the

distributional characterization of h-convex functions, [3].

Our purpose is to present how the estimates (5) and (6) can be extended to X -convex

functions with respect to Hörmander vector fields, according to Theorem 1.1, below stated.

The characterization of X -convexity by v-convexity in stratified groups allows for different

approaches to their Lipschitz continuity. In [20], see also [17], the above mentioned

estimates have been established for v-convex functions by a purely PDE approach. One

of the central points here is the notion of “subelliptic cone” that also requires comparison

principle and Harnack inequality for ∞-harmonic functions in order to establish that v-

convex functions are locally bounded. To reach (5), the authors observe that viscosity

subsolutions of the sub-Laplacian are subharmonic, then show by standard arguments

that bounded subharmonic functions are distributional subsolutions of the sub-Laplacian

and finally apply the regularity results for nonnegative weak subsolutions, [9], [19], [16],

[4]. The comparison principle for subelliptic cones leads the authors also to (6).

In [5], the approach to the proof of (5) and (6) is more geometric. The estimate (6)

is obtained directly from (5), using the convexity inequality on the first order expansion.

The proof of (5) uses Jensen’s inequality and suitable averages along horizontal planes. In

particular, the integration of the first order expansion inequality, that involves the hori-

zontal gradient, has a key cancellation of the linear part, since the domain of integration is

symmetric. In the case of groups, the important aspect is that the composition of different

iterated horizontal flows yields an open set of the space, due to the Lie bracket generating

condition. This allows for iterating the previously mentioned averaging procedure, then

reaching the integral estimates on a bounded open set.

The local Lipschitz continuity of upper semicontinuous and locally bounded X -convex

functions has been proved in Theorem 6.1 of [2], where the set X is only assumed to
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generate a finite Carnot-Carathéodory distance. On the other hand, it is not clear yet

whether this generality still allows for having integral estimates similar to (5) and (6).

It is possible to show that (5) and (6) suitably extend to X -convex functions, where X

is a set of Hörmander vector fields. This is precisely stated in the next theorem.

Theorem 1.1 ([22]). Let Ω ⊂ Rn be open, let K ⊂ Ω be compact and let X be a set of

Hörmander vector fields. Then there exist C > 0 and R > 0, depending on K, such that

each X -convex function u : Ω → R, that is locally bounded from above, for every x ∈ K

satisfies the following estimates

sup
Bx,r

|u| ≤ C

∫
Bx,2r

|u(w)| dw ,(7)

|u(y)− u(z)| ≤ C
d(y, z)

r

∫
Bx,2r

|u(w)| dw ,(8)

for every 0 < r < R and every y, z ∈ Bx,r.

Contrary to the case of stratified groups, the constant C > 0 in the previous theorem

cannot be chosen independently of K, since general Carnot-Carathéodory spaces need not

have either a group operation or dilations and their Hausdorff dimension can change in

different parts of the space.

The approach of [22] to prove (7) and (8) differs from both the geometric approach of

[5] and the PDE approach of [20] and [17]. It partly relies on a PDE approach for local

upper estimates and partly on a geometric approach to turn these estimates into local

Lipschitz estimates. The next section is devoted to the presentation of this method, along

with some other new results from [22].

The estimates (7) and (8) are also related to some results for k-convex functions with

respect to Hörmander vector fields, [28]. A smooth k-convex function has the property that

all j-th elementary symmetric functions of the horizontal Hessian∇2
Xu are nonnegative for

all j = 1, . . . , k and k ≤ m. Nonsmooth k-convex functions with respect to X have been

introduced by N. S. Trudinger in [28], taking L1
loc-limits of smooth k-convex functions. In

the sub-Riemannian setting, this approach was first considered by C. Gutierrez and A.

Montanari, taking locally uniform limits of smooth k-convex functions, [14], [15].



66 VALENTINO MAGNANI

In [28], among other results, it is also proved in particular that all locally summable

k-convex functions with respect to Hörmander vector fields are α-Hölder continuous when

k < m and divXj = 0 for all Xj ∈ X . The last condition can be rephrased as follows

X∗j = −Xj. We also have an interesting formula for the Hölder exponent

(9) α =
k(Q+m− 2)−m(Q− 1)

k(m− 1)
< 1 ,

where Q is the doubling dimension. The α-Hölder continuity of [28] has α < 1 also in

the case k = m, although formula (9) yields α = 1 for k = m. Since the second order

characterization of smooth X -convex functions says that X -convex functions coincide with

smooth m-convex functions, as a consequence of Theorem 1.1, all nonsmooth m-convex

functions with respect to Hörmander vector fields are indeed locally Lipschitz continuous.

This shows that formula (9) also holds for k = m.

2. Method and other results

This section is mainly concerned with the main ideas to establish Theorem 1.1. Here

an important step is the fact that local boundedness from above of X -convex functions

implies local Lipschitz continuity.

Theorem 2.1 ([22]). Let Rn be equipped with Hörmander vector fields X and let Ω ⊂ Rn

be an open set. It follows that for every compact set K ⊂ Ω there exists C > 0 such

that for every X -convex function u : Ω → R that is locally bounded from above and

0 < r < distd(K,Ω
c) for all x, y ∈ K we have

(10) |u(x)− u(y)| ≤ C

r
d(x, y) sup

Kr

|u| ,

where Kr = {z ∈ Rn : distd(K, z) ≤ r} ⊂ Ω

This result precisely extends Theorem 3.18 of [21] to the general setting of Hörmander

vector fields. It amounts to a regularity theorem, since we start from a function that

is only assumed to be locally bounded from above and convex along a given family of

curves and then establish its Lipschitz continuity, without any measurability assumption.

Let us mention that in the case X generates a stratified Lie group strucure on Rn, then
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measurable h-convex functions are locally Lipschitz continuous, [27]. This result is actu-

ally missing in the setting of Hörmander vector fields. On the other hand, even in higher

step stratified groups it is not known yet whether h-convex functions are locally Lipschitz

continuous, when no additional condition is assumed.

The proof of Theorem 2.1 follows the scheme used in [21], where the generating property

of Proposition 3.12 of [21] is replaced by the properties of the so-called approximate

exponential introduced by D. Morbidelli in [23]. By this tool, it is still possible to cover

the Carnot-Carathéodory ball by suitable iterated compositions of flows of the vector

fields of X and this can be performed in a quantitative way, as for stratified groups. This

allows us to extend the Lipschitz estimates along horizontal curves, arising from the one

dimensional convexity, to Lipschitz estimates on some bounded open set.

The local Lipschitz continuity of u implies in particular that it belongs to the anisotropic

Sobolev space W 1,2
X ,loc(Ω), since it belongs indeed to W 1,∞

X ,loc(Ω), see [10], [12]. We have

defined W 1,p
X (Ω), with 1 ≤ p ≤ ∞, as follows

W 1,p
X (Ω) = {f ∈ Lp(Ω), Xjf ∈ Lp(Ω), j = 1, . . . ,m} ,

where C∞c (Ω) denotes the class of smooth functions with compact support and Xju is the

distributional derivative of u ∈ L1
loc(Ω), namely

〈Xiu, φ〉 =

∫
Ω

u X∗i φ dx, φ ∈ C∞0 (Ω),

and X∗i is the formal adjoint of Xi, namely, X∗i = −Xi − divXi. The next step is to

show that our X -convex function, which is also W 1,2
X ,loc, is locally a weak subsolution of a

suitable sub-Laplacian. A function u ∈ W 1,2
X (Ω) is an L-weak subsolution of

(11) Lu =
m∑
i=1

X2
i u = 0,

if for every nonnegative η ∈ W 1,2
X ,0(Ω), we have

m∑
i=1

∫
Ω

Xiu X
∗
i η dx ≥ 0.
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The second derivatives along the vector fields Xi are nonnegative due to the X -convexity

assumption. However, to turn this information into its “distributional version”, even-

tually involving the sub-Laplacian L =
∑m

j=1X
2
j , we need all the vector fields Xi to be

nonvanishing. At this point we face an important obstacle, related to the choice of general

Hörmander vector fields, since many of them may vanish at some fixed point. This clearly

cannot occur in the case of stratified groups. We overcome this difficulty constructing new

locally nonvanishing Hörmander vector fields and consider their associated sub-Laplacian.

We have the following result.

Theorem 2.2 ([22]). Let x0 ∈ Ω and let u : Ω → R be a X -convex function that is

locally bounded from above. There exist δ0 > 0 and a new family of Hörmander vector

fields X1 = {Y1, . . . , Ym}, both depending on x0, such that Bx0,δ0 ⊂ Ω and u is a weak

subsolution of the equation

(12)
m∑
i=1

Y 2
i v = 0 on Bx0,δ0 ,

where the vector fields of X1 are linear combinations of elements in X .

The previous theorem allows us to appeal to the now classical local upper integral

estimates for weak subsolutions to the sub-Laplacian equation, [9], [19], [16], [4]. As a

consequence, we obtain local estimates of the following form

(13) sup
By, r2

u ≤ κx

∫
By,r

|u(z)|dz

for all 0 < r < σx and y sufficiently close to x, where κx clearly depends on x. The

lower estimate can be obtained using again the approximate exponential, that extends

this estimate to a lower estimate on a small metric ball. This yields

(14) 2Nx u(x)− (2Nx − 1) sup
Bx,N̄δ

u ≤ inf
Bx,bδ

u ,

where Nx depends on x and it satisfies the condition 1 ≤ Nx ≤ N̄ on some compact set.

This leads us to the following theorem.
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Theorem 2.3 ([22]). Let Ω ⊂ Rn be open, let K ⊂ Ω be compact and let u : Ω→ R be a

X -convex function that is locally bounded from above. Then there exists C0 > 0, b0 > 0

and N0 > 1, depending on K, such that for every x ∈ K there holds

sup
Bx,r

|u| ≤ C0

∫
Bx,N0r

|u(z)| dz

whenever 0 < r < b0 and K0 = {z ∈ Rn : dist(K, z) ≤ N0 b0} ⊂ Ω.

The local doubling property of the Lebesgue measure leads to the proof of (7). The

estimate (8) essentially follows from Theorem 2.1 joined with (7). We can resume our

approach saying that the PDE tools give the upper estimates and the geometric tools

provided by the approximate exponentials yield the lower estimates, finally leading to

quantitative estimates on the Lipschitz constant of the X -convex function.
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