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Abstract. We consider local minimizers of the functional
N∑
i=1

ˆ
(|uxi | − δi)

p
+ dx+

ˆ
f u dx,

where δ1, . . . , δN ≥ 0 and ( · )+ stands for the positive part. Under suitable assumptions on f , we
prove that local minimizers are Lipschitz continuous functions if N = 2 and p ≥ 2, or if N ≥ 2 and
p ≥ 4.

Contents

1. Introduction 1
1.1. Overview 1
1.2. Main results 3
1.3. Plan of the paper 5
2. Preliminaries 5
2.1. Definitions and basic results 5
2.2. Approximation scheme 7
3. Local energy estimates for the regularized problem 10
3.1. Caccioppoli-type inequalities 11
3.2. A Sobolev estimate 13
3.3. Power-type subsolutions 15
4. Proof of Theorem A 17
5. Proof of Theorem B 23
Appendix A. Some properties of the functions gi 29
Appendix B. An anisotropic Sobolev inequality in dimension 2 29
References 30

1. Introduction

1.1. Overview. This paper is devoted to prove Lipschitz continuity for local minimizers of the
anisotropic functional

(1.1) F(u; Ω′) =

N∑
i=1

ˆ
Ω′

(|uxi | − δi)
p
+

p
dx+

ˆ
Ω′
f u dx, u ∈W 1,p

loc (Ω), Ω′ b Ω.

Here Ω ⊂ RN is an open set, 2 ≤ p <∞, δi ≥ 0, ( · )+ stands for the positive part and f ∈ Lp
′

loc(Ω)
where p′ = p/(p−1). This functional F stands for a model case of a more general class of problems,
with specific growth and monotonicity assumptions. For the sake of clarity, the results in this paper
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are only stated for F. However, their proofs can be easily adapted to embrace general functionals
having a similar structure.

The functional F naturally arises in problems of Optimal Transport with congestion and anisotropic
effects, see for example [6, 7] for some motivations. These two papers contained among others some
regularity results for local minimizers of (1.1). For instance [7, Main Theorem] proved that if

f ∈ L∞loc(Ω), then u is “almost Lipschitz”, i.e. u ∈W 1,r
loc (Ω) for every r ≥ 1. On the other hand, in

[6] it is proved that if f ∈W 1,p′

loc (Ω), then

(1.2) (|uxi | − δi)
p
2
+

uxi
|uxi |

∈W 1,2
loc (Ω), i = 1, . . . , N.

However, it must be mentioned that to the best of our knowledge, Lipschitz regularity of local
minimizers is still unknown. More surprisingly, even the case δ1 = · · · = δN = 0 does not seem to
be fully understood.

Observe that local minimizers of (1.1) are local weak solutions of the anisotropic degenerate
equation

(1.3)
N∑
i=1

(
(|uxi | − δi)

p−1
+

uxi
|uxi |

)
xi

= f,

which reduces to the Poisson equation for the so-called pseudo p−Laplacian when δ1 = · · · = δN = 0,
i.e.

(1.4)

N∑
i=1

(
|uxi |p−2 uxi

)
xi

= f.

The terminology “pseudo p−Laplacian” appears in [1]. We point out that such an operator already
appeared in J.-L. Lions’s monograph [17], where existence issues for solutions to evolution equations
are tackled.

In order to neatly explain the difficulty of the problem, we now recall some classes of functionals
for which the Lipschitz property for local minimizers is known to be true. The first one is given by

(1.5)

ˆ
G(∇u) dx,

with G enjoying a p−Laplacian type structure at infinity. This means that there exist c, C > 0 and
m ≥ 0 such that G verifies the ellipticity condition

(1.6) 〈D2G(z) ξ, ξ〉 ≥ c |z|p−2 |ξ|2, |z| > m,

and the growth condition

(1.7) |∇G(z)| ≤ C |z|p−1, |z| > m.

We refer the reader to [5, 8, 9, 12] and [13] for example. For completeness, we mention the papers
[10, 11] and [19] for related regularity results on the term ∇G(∇u), when m > 0.

Another type of well-studied functionals having some similarities with F is given by (see for
example [2, 3] and [14, Section 4])

(1.8)

ˆ
G̃(∇u) dx, with G̃(z) =

N∑
i=1

(µ+ |zi|2)
pi
2 .
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Here µ > 0 and 1 < p1 ≤ p2 ≤ · · · ≤ pN are possibly different exponents. When the pi are not
equal, such a functional belongs to the class of problems with non standard growth conditions, whose
systematic study started with the paper [18] by Marcellini. In this case we can infer local Lipschitz
continuity if the exponents pi are not “too far apart” (see the above mentioned references for more
details).

However, our functional F does not fall neither in the class of the functional (1.5) nor in that of
(1.8). Indeed, observe that in our case

F (z) =
N∑
i=1

(|zi| − δi)p+
p

,

verifies (1.7), but (1.6) crucially fails to hold, since for every m > 0, there always exists z such that
|z| = m and the least eigenvalue of D2F (z) is 0. Observe that this phenomenon already occurs for
the pseudo p−Laplacian, i.e. when δ1 = · · · = δN = 0. Indeed, the main difficulty of the problem
is that the region where ellipticity fails is unbounded.

For the same reason, F is not of the type (1.8), since already in the standard growth case
2 ≤ p1 = p2 = · · · = pN we have

0 < min
|ξ|=1
〈D2G̃(z) ξ, ξ〉, z ∈ RN .

When one allows µ = 0 in (1.8), the corresponding functional becomes degenerate along the axes
zi = 0, like in the case of the pseudo p−Laplacian. This case has been considered in the pioneering
paper [22] by Uralt’seva and Urdaletova. There the Lipschitz character of minimizers has been
shown under some restrictions on the exponents p1, . . . , pN , by using the so-called Bernstein method.
Though the growth conditions considered are more general than ours, the type of degeneracy is
again weaker than that admitted in F (see the next subsection for more comments on the result of
[22]).

About the restriction p ≥ 2 considered in this paper, it is noteworthy to observe that for 1 < p < 2
our functional has a p−Laplacian type structure when δ1 = · · · = δN = 0. Indeed, in this case
p− 2 < 0 and thus (1.6) holds, i.e.

〈D2F (z) ξ, ξ〉 = (p− 1)
N∑
i=1

|zi|p−2 |ξi|2 ≥ (p− 1) |z|p−2 |ξ|2,

while (1.7) is of course satisfied. Then in this case local minimizers are locally Lipschitz continuous
by1 [13, Theorem 2.7].

1.2. Main results. In this paper, we prove the following results. Both results come with a priori
estimates, that for ease of readibility we do not detail here. The interested reader could find them
in Propositions 4.1 and 5.1.

Theorem A (Two dimensional case). Let N = 2 and p ≥ 2. Let f ∈W 1,p′

loc (Ω), where p′ = p/(p−1).

Then every local minimizer U ∈ W 1,p
loc (Ω) of the functional F is a locally Lipschitz continuous

function.

1To be more precise, for 1 < p < 2 the function F is not C2. However, this is not an issue, since the result of [13,
Theorem 2.7] holds for convex functions satisfying a qualified form of uniform convexity for |z| ≥ m. This coincides
with (1.6) if the function is C2, but it is otherwise more general.
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Theorem B (Higher dimensional case). Let N ≥ 2 and p ≥ 4. Let f ∈ W 1,∞
loc (Ω). Then every

local minimizer U ∈W 1,p
loc (Ω) of the functional F is a locally Lipschitz continuous function.

Let us now spend some words about the methods of proofs. The preliminary step in both
cases is a regularization argument. Namely, the functional F is replaced by a regularized version
Fε, for a small parameter ε > 0. This permits to infer the necessary regularity on the solutions
uε of the regularized problem, in order to justify the manipulations needed to obtain a priori
Lipschitz estimates, uniform in ε. Then one aims at taking these estimates to the limit as ε goes
to 0. However, one should pay attention to the fact that F is not strictly convex when at least one
δi 6= 0. Thus a sequence of solutions uε may not necessarily converge to the desired local minimizer.
In [7] a penalization argument was used to fix this issue. Here on the contrary, we use a simpler
argument, based on the fact that the lack of strict convexity of t 7→ (|t| − δi)p+ is “confined” (see
Lemma 2.3).

The core of the proof of Theorem A is the a priori Lipschitz estimate of Proposition 4.1. Such an
estimate is achieved by means of a Moser’s iteration technique applied to the equation solved by the
partial derivatives uxj of the local minimizer. More precisely, we look at power-type subsolutions of
this equation, i.e. quantities like |uxj |s for s ≥ 1. This is a standard strategy for equations having
a p−Laplacian type structure, but as already said our operator does not have such a structure and
this entails several additional difficulties.

As explained in the introduction of [7], the main difficulty of this method is that the Caccioppoli
inequality we get for |uxj |s is quite involved. Indeed, due to the particular structure of D2F , in
principle we have a control only on a “weighted” norm of ∇|uxj |s, the weights being dependent on
all the other components uxi of the gradient (see Lemma 3.6 below). Roughly speaking, what we
control in the Caccioppoli inequality is a quantity like

N∑
i=1

ˆ
|uxi |p−2

∣∣∣(|uxj |s+1
)
xi

∣∣∣2 .
For the diagonal term, i.e. when i = j, we can combine the xj−derivative of uxj with the weigth

|uxj |p−2 and simply recognize the xj−derivative of yet another power of uxj . Since we would like to
have a control on the full gradient of such a power of uxj , we still miss all the xi−derivatives (i 6= j)
of this function. To overcome this difficulty, we use in a crucial way the Sobolev property (1.2)
together with Hölder’s inequality, in order to “cook-up” suitable Caccioppoli inequalities for all
these missing terms. Surprisingly enough, even if the functional F has p−growth in every direction,
we rely on the anisotropic Sobolev inequality due to Troisi (see [21]) in order to produce an iterative
scheme of reverse Hölder’s inequalities. This procedure works for N = 2, but it seems to be limited
just to the two dimensional case (see Remark 4.2 below).

In contrast Theorem B is valid in every dimension, but we need the restriction p ≥ 4. This
second result partially superposes with the already mentioned [22, Theorem 1] by Uralt’seva and
Urdaletova. However, it should be noticed that the monotonicity assumptions on the operator2

made in [22] does not allow for δi > 0. Moreover, the result in [22] is stated for p > 3, but a careful
inspection of the proof reveals that the same condition p ≥ 4 is needed there as well3.

2See equation (8) of the paper [22].
3This comes from hypothesis (5) in [22]. Also observe that this condition contains a small typo, mi−2 should be

replaced by mi − 2.
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Both the proofs of Theorem B and that of [22, Theorem 1] are based on a priori Lipschitz bounds,
obtained by means of pointwise estimates in the vein of Bernstein method. However, computations
are not the same and we believe ours to be slightly simpler. In [22] the first step is to look at the
equation solved by a concave power of u, given by the function

w = (u+ ‖u‖L∞ + 1)γ , 0 < γ < 1.

Then they consider the equation solved by (some function of) ∇w. There is an extra term in this
new equation coming from the concave power which crucially leads to the result.

Here on the contrary we obtain the Lipschitz estimate by directly attacking equation (1.3). The
main point is to consider the equation satisfied by the quantity

|∇u|2 + λu2,

for a suitably large paramater λ. We notice that this is exactly the same test function used to prove
classical gradient estimates for linear uniformly elliptic equations (see for example [16, Proposition
2.19]).

One of the drawbacks of these two strategies is the assumption on f , which does not seem to be
optimal. Indeed, we expect the result to be true under the natural hypothesis f ∈ Lqloc(Ω) with
q > N .

1.3. Plan of the paper. In Section 2 we set notations and preliminary results needed throughout
the whole paper. In particular, we introduce a regularized version of the problem which will be
useful in order to get the desired Lipschitz estimate. Then Section 3 is devoted to prove some
Caccioppoli-type inequalities for the gradient of the solution of the regularized problem. The proof
of Theorem A is contained in Section 4, while Section 5 contains the proof of Theorem B. Two
appendices containing some technical results complement the paper.

Acknowledgements. The authors gratefully acknowledge useful conversations with Giovanni Cu-
pini, Guido De Philippis, Nicola Fusco, Tuomo Kuusi, Paolo Marcellini and Giuseppe Mingione.
A quick but stimulating discussion with Nina Uralt’seva in June 2012 led to a better understand-
ing of the paper [22], we thank her. Guillaume Carlier is warmly thanked for his interest in this
work. Part of this paper has been written during the conferences “Journées d’Analyse Appliquée
Nice-Toulon-Marseille” held in Porquerolles in May 2014, “Nonlinear partial differential equations
and stochastic methods” held in Jyväskylä in June 2014 and “Existence and Regularity for Nonlin-
ear Systems of Partial Differential Equations” held in Pisa in July 2014. Organizers and hosting
institutions are gratefully acknowledged. The research of the third author was supported by the
Academy of Finland Grant 268393.

2. Preliminaries

2.1. Definitions and basic results. Let Ω ⊂ RN be an open set and p ≥ 2. In what follows we
set for simplicity

gi(t) =
1

p
(|t| − δi)p+, t ∈ R, i = 1, . . . , N,

where 0 ≤ δ1, . . . , δN are given real numbers. We will also define

(2.1) δ = 1 + max{δi : i = 1, . . . , N}.

Remark 2.1 (Smoothness of gi). When p is an integer and δi > 0, gi is of class Cp−1,1. When

p 6∈ N, then gi ∈ C [p],p−[p](R) where [ · ] denotes the integer part.
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Remark 2.2 (The limit case p = 2). Observe that for p = 2 and δi > 0, we have gi ∈ C1,1(R) ∩
C∞(R \ {δi,−δi}), but gi 6∈ C2(R). In this case, like in [7] a smoothing around |t| = δi would be
necessary, notably for the result of Lemma 2.8 below. However, in order not to overburden the
presentation, for the sequel we will assume for simplicity p > 2 (see [7, Section 2] for more details).

We are interested in local minimizers of the following variational integral

(2.2) F(u; Ω′) =
N∑
i=1

ˆ
Ω′
gi(uxi) dx+

ˆ
Ω′
f u dx, u ∈W 1,p

loc (Ω),

where f ∈ Lp
′

loc(Ω) and Ω′ b Ω. We recall that u ∈ W 1,p
loc (Ω) is said to be a local minimizer of F if

for every Ω′ b Ω we have

F(u; Ω′) ≤ F(u+ ϕ; Ω′), for every ϕ ∈W 1,p
0 (Ω′).

We first observe that F is not strictly convex, unless δ = 1, i.e. δ1 = · · · = δN = 0. Thus minimizers
are not unique in general. The following result guarantees that it will be sufficient to prove the
desired result for one minimizer.

Lemma 2.3 (Propagation of regularity). Let B b Ω be a ball and V ∈ W 1,p(B). Let u1, u2 ∈
W 1,p(Ω) be two solutions of

(2.3) min
{
F(v;B) : v − V ∈W 1,p

0 (B)
}
.

Then it holds

(2.4)
∣∣∣|(u1)xi | − |(u2)xi |

∣∣∣ ≤ 2 δi, a. e. in B, i = 1, . . . , N.

In particular, if a minimizer of (2.3) is (locally) Lipschitz, then this remains true for all the other
minimizers.

Proof. Let us suppose that (2.4) is not true. Then there exists i0 ∈ {1, . . . , N} such that

Ei0 :=
{
x ∈ B :

∣∣∣|(u1)xi0 | − |(u2)xi0 |
∣∣∣ > 2 δi0

}
,

has strictly positive measure. We then set us = (1 − s)u1 + s u2 for some s ∈ (0, 1) and observe
that this is admissible in (2.3). In view of Lemma A.1 in Appendix A,

gi0

(
(1− s) (u1)xi0 + s (u2)xi0

)
< (1− s) gi0((u1)xi0 ) + s gi0((u2)xi0 ), a. e. in Ei0 .

Thus we get
F(us) < (1− s)F(u1) + sF(u2) = F(u1) = F(u2),

which gives the desired contradiction. �

We will also need the following regularity result, which is essentially contained in [20, Theorem
9.2]. A more general result of this type can be found in [4, Main Theorem].

Theorem 2.4. Let B ⊂ RN be a ball, V ∈ C2(B) and f ∈ L∞(B). Let us consider the problem

(2.5) min

{ˆ
B
H(∇v) dx+

ˆ
B
f v dx : v − V ∈W 1,1

0 (B)

}
,

where H : RN → [0,∞) is a C2 convex function such that for some µ > 0

(2.6) 〈D2H(z) ξ, ξ〉 ≥ µ |ξ|2, ξ, z ∈ RN .
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Then there exists a unique solution u. Moreover, u ∈W 1,∞(B).

Proof. By [20, Theorem 9.2], we have that the problem

min

{ˆ
B
H(∇v) dx+

ˆ
B
f v dx : v − V ∈W 1,∞

0 (B)

}
,

admits a solution u ∈ W 1,∞(B), which is also unique by strict convexity of the Lagrangian in the
gradient variable. Then u satisfies the Euler-Lagrange equation

(2.7)

ˆ
Ω
〈∇H(∇u),∇ϕ〉 dx+

ˆ
Ω
f ϕ dx = 0, for every ϕ ∈W 1,∞

0 (B).

Thanks to the hypotheses on H and f and to the fact that ∇u ∈ L∞(B), equation (2.7) still holds

with test functions ϕ ∈W 1,1
0 (B). Thus by convexity, u solves (2.5) as well. �

2.2. Approximation scheme. We now introduce a regularized version of the original problem.
We set

(2.8) gi,ε(t) = gi(t) +
ε

2
t2 =

1

p
(|t| − δi)p+ +

ε

2
t2, t ∈ R.

From now on, we fix U a local minimizer of F. We also fix a ball

B b Ω such that 2B b Ω as well.

Here λB denotes the ball having the same center as B, scaled by a factor λ > 0.
For every 0 < ε� 1 and every x ∈ B, we set Uε(x) = U ∗%ε(x), where %ε is a smooth convolution

kernel, supported in a ball of radius ε centered at the origin.
Then by definition of Uε there exists 0 < ε0 < 1 such that for every 0 < ε ≤ ε0

(2.9) ‖Uε‖W 1,p(B) = ‖∇Uε‖Lp(B) + ‖Uε‖Lp(B) ≤ ‖∇U‖Lp(2B) + ‖U‖Lp(2B).

Finally, we define

Fε(v;B) =
N∑
i=1

ˆ
B
gi,ε(vxi) dx+

ˆ
B
fε v dx,

where fε = f ∗ %ε. The following preliminary result is standard.

Lemma 2.5 (Basic energy estimate). For 0 < ε ≤ ε0 < 1, there exists a unique solution uε to the
problem

(2.10) min
{
Fε(v;B) : v − Uε ∈W 1,p

0 (B)
}
.

Moreover, there exists a constant C = C(N, p) > 0 such that the following uniform estimate holds

(2.11)

ˆ
B
|∇uε|p dx ≤ C

[ˆ
2B
|∇U |p dx+ |B|

p′
N

ˆ
2B
|f |p′ dx+ (ε0 + (δ − 1)p)|B|

]
=: C1.

Proof. We start by observing that existence and uniqueness of uε follow from Theorem 2.4.
In order to prove (2.11), we use the minimality of uε, which implies Fε(uε;B) ≤ Fε(Uε;B). This

gives
N∑
i=1

ˆ
B
gi,ε((uε)xi) dx ≤

N∑
i=1

ˆ
B
gi,ε((Uε)xi) dx+

ˆ
B
|fε| |uε − Uε| dx.
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By recalling the definition (2.8) of gi,ε, we have

(2.12)
1

p

(
|t|p

2p−1
− (δ − 1)p

)
≤ gi,ε(t) ≤

2

p
|t|p + ε0

p− 2

2p
,

The lower bound in (2.12) follows from

|t|p ≤ 2p−1 ((|t| − δi)p+ + δpi ),

and the definition (2.1) of δ, while the upper bound is a consequence of Young’s inequality. This
implies

N∑
i=1

ˆ
B
|(uε)xi |p dx ≤ C

N∑
i=1

ˆ
B
|(Uε)xi |p + C

ˆ
B
|fε| |uε − Uε| dx+ C (ε0 + (δ − 1)p) |B|,

where C = C(N, p) > 0. By using ‖fε‖Lp′ (B) ≤ ‖f‖Lp′ (2B) and (2.9), standard computations

involving Poincaré inequality lead to the desired conclusion. �

Lemma 2.6 (Regularity of the minimizer I). If f ∈ L∞loc(Ω), then U ∈ L∞loc(Ω) and there exists a
constant C = C(N, p) > 0 such that for every B2 %0 b Ω we have

(2.13) ‖U‖L∞(B%0/2
) ≤ C

( 
B%0

|U |p dx

) 1
p

+

(
δ + %

1
p−1

0 ‖f‖
1

p−1

L∞(B2 %0 )

)
%0

 .
Moreover, if uε still denotes the unique minimizer of (2.10), then there exists a constant C =
C(N, p) > 0 such that for every 0 < ε ≤ ε0 we have

(2.14) ‖uε‖L∞(B) ≤ C

[
‖U‖L∞(2B) +

((
C1

|B|

) 1
p

+ δ + |B|
1

N (p−1) ‖f‖
1

p−1

L∞(2B)

)
|B|

1
N

]
.

Here C1 is the same quantity appearing in (2.11).

Proof. In order to prove the uniform L∞ estimate, let us introduce the Lagragian

(2.15) Lε(x, u, z) =

N∑
i=1

gi,ε(zi) + fε(x)u.

Then we use again (2.12). This implies that for every Ω′ b Ω and every 0 ≤ ε ≤ dist(Ω′, ∂Ω)/2

(2.16) c |z|p − ‖fε‖L∞(Ω′) |u| − C ′ δp ≤ Lε(x, u, z) ≤
1

c
|z|p + ‖fε‖L∞(Ω′) |u|+ C ′δp.

with 0 < c = c(N, p) < 1 and C ′ = C ′(N, p) > 0. In the previous inequality we also used that
δ ≥ 1. By definition of local minimizer, we have that if we choose B2 %0 b Ω the function U solves

min

{ˆ
B2 %0

L0(x, v,∇v) dx : v − U ∈W 1,p
0 (B2 %0)

}
.

By using (2.16), we can appeal to the local a priori estimate [15, Theorem 7.5] and get for U

‖U‖L∞(B%0/2
) ≤ C

( 
B%0

|U |p dx

) 1
p

+

(
δ + %

1
p−1

0 ‖f‖
1

p−1

L∞(B2 %0 )

)
%0

 ,
with a constant C = C(N, p) > 0.
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We now come to uε, which solves

min

{ˆ
B
Lε(x, v,∇v) dx : v − Uε ∈W 1,p

0 (B)

}
.

Again thanks to (2.16), if we now use [15, Remark 7.6] we get uε ∈ L∞(B) with the global estimate

‖uε‖L∞(B) ≤ C

[( 
B
|uε|p dx

) 1
p

+ ‖Uε‖L∞(∂B) +

(
δ + |B|

1
p−1 ‖fε‖

1
p−1

L∞(B)

)
|B|

1
N

]
,

where C = C(N, p) > 0. We then observe that( 
B
|uε|p dx

) 1
p

≤ C
( 

B
|Uε|p dx

) 1
p

+ C |B|
1
N
− 1

p C
1
p

1 ,

thanks to the triangle inequality, Poincaré inequality and (2.11). If we now use

‖Uε‖Lp(B) ≤ ‖U‖Lp(2B) ≤ |2B|
1
p ‖U‖L∞(2B), ‖Uε‖L∞(∂B) ≤ ‖U‖L∞(2B)

and

‖fε‖L∞(B) ≤ ‖f‖L∞(2B),

we get the desired conclusion. �

Remark 2.7. The uniform L∞ estimate (2.14) will be needed in the proof of Theorem B.

The following result is not optimal, but it is suitable to our needs.

Lemma 2.8 (Regularity of the minimizer II). Let uε still denote the unique minimizer of (2.10).
We have uε ∈ Ckloc(B), where

k =

{
2, if 2 < p ≤ 3,
3, if p > 3.

Proof. By Theorem 2.4 we already know that uε ∈ W 1,∞(B). Thus the quantity ` = ‖∇uε‖L∞(B)

is finite. By optimality, we have that uε solves the elliptic equation

(2.17) div(∇Fε(∇uε)) = fε, in B,

where Fε is given by

Fε(z) =
N∑
i=1

gi(zi) +
ε

2
|z|2, z ∈ RN .

Since we have

ε |ξ|2 ≤ 〈D2Fε(∇uε) ξ, ξ〉 ≤
(
ε+ (p− 1) `p−2

)
|ξ|2, on B,

we can infer uε ∈ W 2,2
loc (B) by a standard differential quotients argument (see for example [15,

Theorem 8.1]). This in turn permits to find the equation locally solved by ∇uε, by differentiating

(2.17). Thus ∇uε ∈ C0,σ
loc (B) by the celebrated De Giorgi–Moser–Nash Theorem, for some σ > 0.

It remains to observe that Fε ∈ Ck,α, where k is as in the statement and

α =

{
min{p− 2, 1}, if 2 < p ≤ 3,
min{p− 3, 1}, if p > 3.

Then [15, Theorem 10.18] implies that uε has the claimed regularity properties. �



10 BOUSQUET, BRASCO, AND JULIN

Lemma 2.9 (Convergence to a minimizer). With the same notation as before, there exists a se-
quence {εk}k∈N ⊂ (0, ε0) converging to 0, such that

lim
k→∞

‖uεk − ũ‖Lp(B) = 0,

where ũ is a solution of

(2.18) min
{
F(v;B) : v − U ∈W 1,p

0 (B)
}
.

Proof. By (2.11), there exists a sequence {εk}k∈N converging to 0 as k goes to ∞ and a function
ũ ∈ W 1,p(B) such that {uεk}k∈N converges weakly to ũ in W 1,p(B) and strongly in Lp(B). Let us
prove that ũ is actually a solution of (2.18).

The function Uεk = U ∗ %εk is of course admissible for the regularized problem (2.10). By using
this, the minimality of uεk , the definition of Fεk and the strong convergence of fεk to f , we get

lim inf
k→∞

Fεk(Uεk ;B) ≥ lim inf
k→∞

Fεk(uεk ;B) ≥ lim inf
k→∞

F(uεk ;B) ≥ F(ũ;B).

In the last inequality we also used the weak lower semicontinuity of F. We then observe that by
using the strong convergence of Uεk to U and inequality (A.2) in Appendix A, we get

lim
k→∞

|Fεk(Uεk ;B)− F(U ;B)| ≤ lim
k→∞

N∑
i=1

ˆ
B
|gi((Uεk)xi)− gi(Uxi)| dx

+ lim
k→∞

εk
2

ˆ
B
|∇Uεk |

2 + lim
k→∞

ˆ
B
|fεk Uεk − f U | dx = 0,

and thus

F(U ;B) = lim
k→∞

Fεk(Uεk ;B) ≥ F(ũ;B).

Since by construction U is a local minimizer of F, the function U itself is a solution of (2.18). Then
the previous inequality implies that ũ is a minimizer. �

3. Local energy estimates for the regularized problem

For the ball B b Ω we consider the regularized problem (2.10). We still denote by uε its unique
solution, which verifies the Euler-Lagrange equation

(3.1)
N∑
i=1

ˆ
g′i,ε((uε)xi)ϕxi dx+

ˆ
fε ϕdx = 0, ϕ ∈W 1,p

0 (B).

From now on, in order to simplify the notation, we will systematically forget the subscript ε on uε
and simply write u.

We now insert a test function of the form ϕ = ψxj ∈ W
1,p
0 (B) in (3.1), compactly supported in

B. Then an integration by parts leads us to

(3.2)
N∑
i=1

ˆ
g′′i,ε(uxi)uxi xj ψxi dx−

ˆ
fε ψxj dx = 0,

for j = 1, . . . , N . This is the equation solved by uxj .
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3.1. Caccioppoli-type inequalities. In what follows we use the parameter δ defined in (2.1).
The general Caccioppoli inequality for an important class of subsolutions is given by the following
result.

Lemma 3.1. Let Φ : R→ R+ be a C2 convex function such that

(3.3) Φ′(t) ≡ 0 for |t| ≤ δ.
Then there exists a constant C2 = C2(p) > 0 such that for every Lipschitz function η with compact
support in B and every j = 1, . . . , N , we have

N∑
i=1

ˆ
Aj

g′′i,ε(uxi)
∣∣∣(Φ(uxj )

)
xi

∣∣∣2 η2 dx

≤ C2

N∑
i=1

ˆ
Aj

g′′i,ε(uxi) |Φ(uxj )|2 |ηxi |2 dx

+ C2

ˆ
Aj

|fε|2
[
Φ′(uxj )

2 + Φ′′(uxj ) Φ(uxj )
]
η2 dx+ C2

ˆ
Aj

Φ(uxj )
2 |ηxj |2 dx,

(3.4)

where we set Aj = {x ∈ B : |uxj | ≥ δ}.

Proof. In (3.2) we take the test function4 ψ = ζ Φ′(uxj ), with Φ : R→ R+ as in the statement and
ζ a nonnegative Lipschitz function with support in B. We thus obtain

N∑
i=1

ˆ
Aj

g′′i,ε(uxi)
(
Φ(uxj )

)
xi
ζxi dx+

N∑
i=1

ˆ
Aj

g′′i,ε(uxi)u
2
xi xj Φ′′(uxj ) ζ dx =

ˆ
Aj

fε
(
ζ Φ′(uxj )

)
xj
dx.

Finally, we test the previous equation against ζ = η2 Φ(uxj ), where η is again a Lipschitz function
with support in B. Then we get

N∑
i=1

ˆ
Aj

g′′i,ε(uxi)
∣∣∣(Φ(uxj )

)
xi

∣∣∣2 η2 dx+ S(η)

≤ 2
N∑
i=1

ˆ
Aj

g′′i,ε(uxi)
∣∣∣(Φ(uxj )

)
xi

∣∣∣ Φ(uxj ) |η| |ηxi |dx+

ˆ
Aj

|fε|
∣∣∣(η2 Φ(uxj ) Φ′(uxj )

)
xj

∣∣∣ dx,
where we have introduced the sponge term

S(η) =

N∑
i=1

ˆ
Aj

g′′i,ε(uxi)u
2
xi xj Φ′′(uxj ) Φ(uxj ) η

2 dx,

which is indeed positive. From the previous inequality, by Young’s inequality in the first term on
the right-hand side

N∑
i=1

ˆ
Aj

g′′i,ε(uxi)
∣∣∣(Φ(uxj )

)
xi

∣∣∣2 η2 dx+ 2S(η)

≤ 4

N∑
i=1

ˆ
Aj

g′′i,ε(uxi) |Φ(uxj )|2 |ηxi |2 dx+ 2

ˆ
Aj

|fε|
∣∣∣(η2 Φ(uxj ) Φ′(uxj )

)
xj

∣∣∣ dx.(3.5)

4Observe that this is a legitimate test function by Lemma 2.8.
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We now estimate the term containing fε. We first observeˆ
Aj

|fε|
∣∣∣ (η2 Φ(uxj ) Φ′(uxj )

)
xj

∣∣∣ dx ≤ ˆ
Aj

|fε| |Φ′(uxj )|
∣∣∣(Φ(uxj )

)
xj

∣∣∣ η2 dx

+ 2

ˆ
Aj

|fε| |Φ′(uxj )|Φ(uxj ) |η| |ηxj | dx+

ˆ
Aj

|fε|
∣∣∣(Φ′(uxj ))xj ∣∣∣ Φ(uxj ) η

2 dx.

On the set Aj we have

(3.6) g′′j,ε(uxj ) ≥ (p− 1),

since δ ≥ 1 by definition (2.1). Let us consider the first term above containing fε:ˆ
Aj

|fε| |Φ′(uxj )|
∣∣∣(Φ(uxj )

)
xj

∣∣∣ η2 dx ≤ 1

2 τ

ˆ
Aj

|fε|2 |Φ′(uxj )|2 η2 dx

+
τ

2

ˆ
Aj

∣∣∣(Φ(uxj )
)
xj

∣∣∣2 η2 dx

≤ 1

2 τ

ˆ
Aj

|fε|2 |Φ′(uxj )|2 η2 dx

+
τ

2 (p− 1)

ˆ
Aj

g′′j,ε(uxj )
∣∣∣(Φ(uxj )

)
xj

∣∣∣2 η2 dx.

In the last estimate we used (3.6). Then the last integral can be absorbed in the left-hand side
of (3.5), by taking τ = (p − 1)/2. The second term containing fε is simply estimated by Young’s
inequalityˆ

Aj

|fε| |Φ′(uxj )|Φ(uxj ) η |ηxj | dx ≤
1

2

ˆ
Aj

|fε|2 |Φ′(uxj )|2 η2 dx+
1

2

ˆ
Aj

Φ(uxj )
2 |ηxj |2 dx,

while for the last one we use the sponge term S(η) to absorb the Hessian of u. Namely, we haveˆ
Aj

|fε|
∣∣∣(Φ′(uxj ))xj ∣∣∣ Φ(uxj ) η

2 dx =

ˆ
Aj

|fε| |uxj xj |Φ′′(uxj ) Φ(uxj ) η
2 dx

≤ τ

2

ˆ
Aj

u2
xj xj Φ′′(uxj ) Φ(uxj ) η

2 dx

+
1

2 τ

ˆ
Aj

|fε|2 Φ′′(uxj ) Φ(uxj ) η
2 dx

≤ τ

2 (p− 1)
S(η) +

1

2 τ

ˆ
Aj

|fε|2 Φ′′(uxj ) Φ(uxj ) η
2 dx.

In the last estimate we used again (3.6). The term τ/(p − 1)S(η) can then be absorbed in the
left-hand side of (3.5). This concludes the proof. �

If we allow for derivatives of fε on the right-hand side of (3.4), the previous estimate is simpler
to get. In this case we can allow for more general subsolutions.

Lemma 3.2 (Right-hand side in a Sobolev space). Let Φ : R → R+ be a C1 convex function.
Then there exists a constant C3 = C3(p) > 0 such that for every Lipschitz function η with compact
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support in B and every j = 1, . . . , N , we have

N∑
i=1

ˆ
g′′i,ε(uxi)

∣∣∣(Φ(uxj )
)
xi

∣∣∣2 η2 dx

≤ C3

N∑
i=1

ˆ
g′′i,ε(uxi) |Φ(uxj )|2 |ηxi |2 dx+ C3

ˆ
|(fε)xj | |Φ′(uxj )| |Φ(uxj )| η2 dx.

(3.7)

Proof. Let us suppose for simplicity that Φ ∈ C2. If this were not the case, a standard smoothing
argument would be needed, we leave the details to the reader.

We start by observing that equation (3.2) can also be written as

N∑
i=1

ˆ
g′′i,ε(uxi)uxi xj ψxi dx+

ˆ
(fε)xj ψ dx = 0, j = 1, . . . , N.(3.8)

Then we take in (3.8) the test function ψ = ζ Φ′(uxj ) as before, with Φ as in the statement and ζ
a nonnegative Lipschitz function supported in B. We obtain

N∑
i=1

ˆ
g′′i,ε(uxi)

(
Φ(uxj )

)
xi
ζxi dx ≤ −

ˆ
(fε)xj Φ′(uxj ) ζ dx,

thanks to the fact that ζ Φ′′ ≥ 0. Finally, we take again ζ = η2 Φ(uxj ), to get

N∑
i=1

ˆ
g′′i,ε(uxi)

∣∣∣(Φ(uxj )
)
xi

∣∣∣2 η2 dx ≤ 2
N∑
i=1

ˆ
g′′i,ε(uxi)

∣∣∣(Φ(uxj )
)
xi

∣∣∣ Φ(uxj ) |η| |ηxi | dx

+

ˆ ∣∣(fε)xj ∣∣ |Φ′(uxj )| |Φ(uxj )| η2 dx.

By using Young’s inequality as before, we get

N∑
i=1

ˆ
g′′i,ε(uxi)

∣∣∣(Φ(uxj )
)
xi

∣∣∣2 η2 dx ≤ 4
N∑
i=1

ˆ
g′′i,ε(uxi) |Φ(uxj )|2 |ηxi |2 dx

+ 2

ˆ
|(fε)xj | |Φ′(uxj )| |Φ(uxj )| η2 dx.

This concludes the proof. �

3.2. A Sobolev estimate. In what follows we set

Wj = δ2 + (|uxj | − δ)2
+, j = 1, . . . , N.

Lemma 3.3. There exists a constant C4 = C4(p) > 0 such that for every Lipschitz function η with
compact support in B and every j = 1, . . . , N , we have

N∑
i=1

ˆ ∣∣∣∇W p
4
i

∣∣∣2 η2 dx ≤ C4 δ
p−2

N∑
i,j=1

ˆ
W

p−2
2

i Wj |ηxi |2 dx+ C4 δ
p−2

N∑
j=1

ˆ
|(fε)xj |

√
Wj η

2 dx.

(3.9)



14 BOUSQUET, BRASCO, AND JULIN

Proof. We insert the test function ψ = η2 uxj in (3.8). With computations similar to that of Lemma
3.2, we now get for every j = 1, . . . , N

N∑
i=1

ˆ
g′′i,ε(uxi) |uxi xj |2 η2 dx ≤ 4

N∑
i=1

ˆ
g′′i,ε(uxi) |uxj |2 |ηxi |2 dx+ 2

ˆ
|(fε)xj | |uxj | η2 dx.(3.10)

Then we observe that by Lemma A.3 for |t| ≥ δ

g′′i,ε(t) ≥ (p− 1)

(
δ − δi
δ

)p−2 (
δ2 + (|t| − δ)2

+

) p−2
2

≥ p− 1

δp−2

(
δ2 + (|t| − δ)2

+

) p−4
2 (|t| − δ)2

+.

(3.11)

In the second inequality above we also used that p ≥ 2 and δ − δi ≥ 1. Then, by (3.11) we have5

g′′i,ε(uxi) |uxi xj |2 ≥
p− 1

δp−2
W

p−4
2

i (|uxi | − δ)2
+ |uxi xj |2 =

c

δp−2

∣∣∣∣(W p
4
i

)
xj

∣∣∣∣2 ,
where c = c(p) > 0. We further observe that

|uxj | ≤
√

2
√
Wj ,

which implies as well

(3.12) g′′i,ε(uxi) = (p− 1) (|uxi | − δi)
p−2
+ + ε ≤ cW

p−2
2

i ,

where c = c(p) > 0. Then we get the desired result from (3.10). �

In what follows, we will use for simplicity the notation 
E
ϕdx :=

1

|E|

ˆ
E
ϕdx.

Corollary 3.4. There exists a constant C5 = C5(p,N) > 0 such that for every pair of concentric
balls BR1 b BR0 b B, we have

N∑
j=1

1

RN−2
1

ˆ
BR1

∣∣∣∇W p
4
j

∣∣∣2 dx ≤ C5 δ
p−2

(
R0

R1

)N−2 ( R0

R0 −R1

)2 N∑
j=1

 
BR0

W
p
2
j dx

+ C5 δ
p−2

(
R0

R1

)N−2

R
2

p−1
−N+2

0

ˆ
BR0

|∇fε|p
′
dx.

(3.13)

Proof. Let us assume for simplicity that the balls are centered at the origin. It is sufficient to insert
the test function

η(x) = min

{
1,

(R0 − |x|)+

R0 −R1

}
,

in (3.9) and then use Hölder’s and Young’s inequalities in the right-hand side. These give

N∑
i,j=1

ˆ
W

p−2
2

i Wj |ηxi |2 dx ≤
1

(R0 −R1)2

N∑
i,j=1

(ˆ
BR0

W
p
2
i dx

) p−2
p
(ˆ

BR0

W
p
2
j dx

) 2
p

,

5Observe that the inequality holds true everywhere, not only on Ai, since Wi is constant outside Ai.
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and
N∑
j=1

ˆ
|(fε)xj |

√
Wj η

2 dx ≤ p− 1

p

N∑
j=1

R
2

p−1

0

ˆ
BR0

|(fε)xj |p
′
dx+

1

pR2
0

N∑
j=1

ˆ
BR0

W
p
2
j dx,

which concludes the proof. �

Remark 3.5 (Uniform Sobolev estimate). From the previous result, we obtain that if f ∈W 1,p′

loc (Ω),

then for every i = 1, . . . , N the function W
p/4
i enjoys a W 1,2

loc (B) estimate independent of ε, thanks
to (2.11) and

‖fε‖W 1,p′ (BR0
) ≤ ‖f‖W 1,p′ (2B).

3.3. Power-type subsolutions. We still use the notation

Wj = δ2 + (|uxj | − δ)2
+, j = 1, . . . , N.

Then we have the following result.

Lemma 3.6. There exists a constant C6 = C6(p) > 0 such that for every s ≥ 0, every Lipschitz
function η with compact support in B and every j = 1, . . . , N , we have

N∑
i=1

ˆ
g′′i,ε(uxi)

∣∣∣∣∣
(
W

s+1
2

j

)
xi

∣∣∣∣∣
2

η2 dx ≤ C6

N∑
i=1

ˆ
W

p−2
2

i W s+1
j |∇η|2 dx

+ C6 (s+ 1)2

ˆ
|fε|2W s

j η
2 dx.

(3.14)

Proof. In equation (3.4) we make the choice6

Φ(t) =
(
δ2 + (|t| − δ)2

+

) s+1
2
,

for s ≥ 0 which satisfies hypothesis (3.3). Observe that by definition we have

Φ(uxj ) = W
s+1
2

j ,

so that ∣∣∣(Φ(uxj )
)
xi

∣∣∣2 =

∣∣∣∣∣
(
W

s+1
2

j

)
xi

∣∣∣∣∣
2

.

Thus the left-hand side of (3.4) coincides with

N∑
i=1

ˆ
g′′i,ε(uxi)

∣∣∣∣∣
(
W

s+1
2

j

)
xi

∣∣∣∣∣
2

η2 dx.

We now come to the right-hand side:

N∑
i=1

ˆ
g′′i,ε(uxi) |Φ(uxj )|2 |ηxi |2 dx =

N∑
i=1

ˆ
g′′i,ε(uxi)W

s+1
j |ηxi |2 dx

≤ C
N∑
i=1

ˆ
W

p−2
2

i W s+1
j |ηxi |2 dx,

6Observe that this function is not C2, but only C1,1 near t = δ or t = −δ. This is not a big issue, since in any case
Φ′′ stays bounded as |t| → δ, thus we can use (3.4) for a regularization of Φ and then pass to the limit at the end.
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thanks to (3.12). For the other two terms, by using the definition of Φ we simply have

ˆ
Aj

|fε|2
[
Φ′(uxj )

2 + Φ′′(uxj ) Φ(uxj )
]
η2 dx+

ˆ
Aj

Φ(uxj )
2 |ηxj |2 dx

≤ C (s+ 1)2

ˆ
|fε|2W s

j η
2 dx

+
N∑
i=1

ˆ
W

p−2
2

i W s+1
j |ηxj |2 dx,

where we used that [
Φ′(t)2 + Φ′′(t) Φ(t)

]
≤ C (s+ 1)2

(
δ2 + (|t| − δ)2

+

)s
,

for some C > 0 independent of s and W s+1
j ≤

∑N
i=1 W

p−2
2

i W s+1
j , which follows from Wi ≥ 1. �

In particular, we get an estimate for the diagonal terms, corresponding to i = j.

Corollary 3.7. There exists a constant C7 = C7(p) > 0 such that for every s ≥ 0, every Lipschitz
function η with compact support in Ω and every j = 1, . . . , N , we have

ˆ ∣∣∣∣(W p
4

+ s
2

j

)
xj

∣∣∣∣2 η2 dx ≤ C7 δ
p−2

N∑
i=1

ˆ
W

p−2
2

i W s+1
j |∇η|2 dx

+ C7 δ
p−2 (s+ 1)2

ˆ
|fε|2W s

j η
2 dx.

(3.15)

Proof. We fix j, by keeping only the term i = j and dropping all the others in the left-hand side of
(3.14), we get

ˆ
Aj

g′′j,ε(uxj )

∣∣∣∣∣
(
W

s+1
2

j

)
xj

∣∣∣∣∣
2

η2 dx ≤ C6

N∑
i=1

ˆ
W

p−2
2

i W s+1
j |∇η|2 dx

+ C6 (s+ 1)2

ˆ
|fε|2W s

j η
2 dx,

where we recall that Aj = {x ∈ B : |uxj | ≥ δ}. We now observe that again by Lemma A.3 on Aj
we have

g′′j,ε(uxj ) ≥
p− 1

δp−2

[
δ2 + (|uxj | − δ)2

+

] p−2
2 =

p− 1

δp−2
W

p−2
2

j ,

and that

W
p−2
2

j

∣∣∣∣∣
(
W

s+1
2

j

)
xj

∣∣∣∣∣
2

=

(
2 + 2 s

p+ 2 s

)2 ∣∣∣∣(W p
4

+ s
2

j

)
xj

∣∣∣∣2 ≥ (2

p

)2 ∣∣∣∣(W p
4

+ s
2

j

)
xj

∣∣∣∣2 ,
so that the conclusion follows. �



WIDELY DEGENERATE PROBLEMS 17

4. Proof of Theorem A

The core of the proof of Theorem A is the a priori estimate of Proposition 4.1 below. We
postpone it and proceed with the proof of Theorem A.

Proof. Let Ω′ b Ω and set d = dist(Ω′, ∂Ω). We take 0 < r0 ≤ d/100, then Ω′ can be covered by
a finite number of balls centered at points in Ω′ and having radius r0. Let Br0 := Br0(x0) b Ω be
one of these balls, it is clearly sufficient to show that

‖∇U‖L∞(Br0 ) < +∞.

To this aim we take the solution uε of the regularized problem (2.10) in the ball B := B4 r0(x0).
Observe that by construction we have 2B = B8 r0(x0) b Ω. Then there exists ε0 = ε0(r0) > 0 such
that for every 0 < ε ≤ ε0

‖fε‖W 1,p′ (B2 r0 ) + ‖fε‖L2 p′ (B2 r0 ) ≤ ‖f‖W 1,p′ (2B) + ‖f‖L2 p′ (2B) ≤ C ‖f‖W 1,p′ (2B),(4.1)

for some C = C(p, |B|) > 0. In the second estimate we used Poincaré-Sobolev inequality, indeed
for N = 2 we have7

W 1,p′(2B) ↪→ L2 p′(2B), since 2 p′ <
2 p′

2− p′
.

By using (4.1) and (2.11) in estimate (4.3) below with R0 = 2 r0 we get

(4.2) ‖∇uε‖L∞(Br0 ) ≤ C, for every 0 < ε ≤ ε0,

where C > 0 depends only on p, δ, r0, ‖f‖W 1,p′ (2B) and the constant C1 in (2.11). We then observe

that by Lemma 2.9, we can find a sequence {εk}k∈N converging to 0 and such that {uεk} converges
strongly in Lp(B) and weakly in W 1,p(B) to a solution ũ of

min{F(v;B) : v − U ∈W 1,p
0 (B)}.

By lower semicontinuity we have that ũ still satisfies (4.2). It is now sufficient to use Lemma 2.3 in
order to transfer this Lipschitz estimate from ũ to the original local minimizer U . This concludes
the proof. �

Proposition 4.1 (Uniform Lipschitz estimate, N = 2). Let N = 2 and p ≥ 2. Then for every pair
of concentric balls Br0 b BR0 b B and i = 1, 2 we have

(4.3)
∥∥∥(uε)xi

∥∥∥
L∞(Br0 )

≤ C8 δ
p−2

(
R0

R0 − r0

)4

J (uε, fε;R0, r0)2

( 
BR0

|(uε)xi |
p dx

) 1
p

+ δ

 ,
where C8 = C8(p) > 0 is a constant that only depends on p and

J (uε, fε;R0, r0) = δp−2

(
R0

R0 − r0

)2
[ 

BR0

|∇uε|p dx+ δp

]

+ δp−2R
2

p−1

0

ˆ
BR0

|∇fε|p
′
dx+ δp−2R

2
p

0

(ˆ
BR0

|fε|2 p
′
dx

) 1
p′

.

7In contrast with p∗, the exponent 2 p′ has the advantage of being well-defined even in the case p = p′ = 2.
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Proof. For notational simplicity, we write again u in place of uε. We still use the notation

Wj = δ2 +
(
|uxj | − δ

)2
+
, j = 1, 2.

We give the proof for ux1 , the one for ux2 being exactly the same. By (3.15) we already know that

ˆ ∣∣∣∣(W p
4

+ s
2

1

)
x1

∣∣∣∣2 η2 dx ≤ C7 δ
p−2

2∑
i=1

ˆ
W

p−2
2

i W s+1
1 |∇η|2 dx+ C7 δ

p−2 (s+ 1)2

ˆ
|fε|2W s

1 η
2 dx,

where η is any Lipschitz function supported on B and such that 0 ≤ η ≤ 1. We add the termˆ
|ηx1 |

2 W
p
2

+s

1 dx,

on both sides of the previous inequality and observe that
ˆ ∣∣∣∣(W p

4
+ s

2
1

)
x1

∣∣∣∣2 η2 dx+

ˆ
W

p
2

+s

1 |ηx1 |2 dx ≥
1

2

ˆ ∣∣∣∣(W p
4

+ s
2

1 η
)
x1

∣∣∣∣2 dx.
We thus obtain

ˆ ∣∣∣∣(W p
4

+ s
2

1 η
)
x1

∣∣∣∣2 dx ≤ C δp−2
2∑
i=1

ˆ
W

p−2
2

i W s+1
1 |∇η|2 dx

+ C δp−2 (s+ 1)2

ˆ
|fε|2W s

1 η
2 dx,

(4.4)

with C = C(p) > 0, where we used that δ ≥ 1.
The main problem of the Caccioppoli inequality (3.14) is that apparently we can not use it to

control the missing term (
W

p
4

+ s
2

1

)
x2
.

Thus there is an obstruction to derive estimates for ∇W
p
4

+ s
2

1 which could lead to an interative
scheme of reverse Hölder’s inequalities. In order to overcome this problem, we observe that∣∣∣∣(W p

4
+ s

2
1

)
x2

∣∣∣∣ =
p+ 2 s

p

∣∣∣∣(W p
4

1

)
x2

∣∣∣∣ W s
2

1 .

Then if we fix 1 < q < 2, by Hölder’s inequality with exponents 2/q and 2/(2− q), we have(ˆ ∣∣∣∣(W p
4

+ s
2

1

)
x2

∣∣∣∣q ηq dx) 2
q

≤
(
p+ 2 s

p

)2
(ˆ ∣∣∣∣(W p

4
1

)
x2

∣∣∣∣2 η2 dx

)(ˆ
spt(η)

W
q

2−q
s

1 dx

) 2−q
q

.

The precise value of q will be specified later. We now add the term(ˆ
W

p q
4

+ s q
2

1 |ηx2 |q dx
) 2

q

,

on both sides of the previous inequality and observe that by triangle inequality(ˆ ∣∣∣∣(W p
4

+ s
2

1

)
x2

∣∣∣∣q ηq dx) 2
q

+

(ˆ
W

p q
4

+ s q
2

1 |ηx2 |q dx
) 2

q

≥ 1

2

(ˆ ∣∣∣∣(W p
4

+ s
2

1 η
)
x2

∣∣∣∣q dx) 2
q

.



WIDELY DEGENERATE PROBLEMS 19

Thus we get

(ˆ ∣∣∣∣(W p
4

+ s
2

1 η
)
x2

∣∣∣∣q dx) 2
q

≤ C (1 + s)2

(ˆ ∣∣∣∣(W p
4

1

)
x2

∣∣∣∣2 η2 dx

) (ˆ
spt(η)

W
q

2−q
s

1 dx

) 2−q
q

+ C

(ˆ
W

p q
4

+ s q
2

1 |ηx2 |q dx
) 2

q

,

(4.5)

with C = C(p) > 0. We assume again for simplicity that all the balls are centered at the origin.
We then fix the two radii R0 > r0 > 0 of the statement and we set

(4.6) R1 :=
R0 + r0

2
.

For r0 < r < R < R1, we take η ∈W 1,∞
0 (BR) to be the standard cut-off function

η(x) = min

{
1,

(R− |x|)+

R− r

}
.

By multiplying (4.4) and (4.5) we get

(ˆ ∣∣∣∣(W p
4

+ s
2

1 η
)
x1

∣∣∣∣2 dx
)(ˆ ∣∣∣∣(W p

4
+ s

2
1 η

)
x2

∣∣∣∣q dx) 2
q

≤ C δp−2

[
1

(R− r)2

2∑
i=1

ˆ
BR

W
p−2
2

i W s+1
1 dx+ (s+ 1)2

ˆ
BR

|fε|2W s
1 dx

]

×

[
(s+ 1)2

(ˆ
BR

∣∣∣∣(W p
4

1

)
x2

∣∣∣∣2 dx
) (ˆ

BR

W
q

2−q
s

1 dx

) 2−q
q

+
1

(R− r)2

(ˆ
BR

W
p q
4

+ s q
2

1 dx

) 2
q

]
.

(4.7)

We now estimate the terms appearing in the right-hand side of (4.7). To this aim, it will be useful
to introduce the quantity

I(W1,W2, fε;R0, R1) =

2∑
i=1

[(
R0

R1

)2  
BR0

W
p
2
i dx+

ˆ
BR1

∣∣∣∇W p
4
i

∣∣∣2 dx]

+R
2
p

0

(ˆ
BR0

|fε|2 p
′
dx

) 1
p′

.

(4.8)

Then we start with the first term on the right-hand side of (4.7). Observe that

2∑
i=1

ˆ
BR

W
p−2
2

i W s+1
1 dx =

ˆ
BR

W
p
2

1 W s
1 dx+

ˆ
BR

W
p−2
2

2 W1W
s
1 dx.



20 BOUSQUET, BRASCO, AND JULIN

We use Hölder’s inequality in conjunction with Sobolev-Poincaré inequality8, to get

ˆ
BR

W
p
2

1 W s
1 dx ≤ C

[ 
BR1

W
p
2

1 dx+

ˆ
BR1

∣∣∣∇W p
4

1

∣∣∣2 dx] R 2
p′
0

(ˆ
BR

W s p
1 dx

) 1
p

≤ C I(W1,W2, fε;R0, R1)R
2
p′
0

(ˆ
BR

W s p
1 dx

) 1
p

,

(4.9)

and

ˆ
BR

W
p−2
2

2 W1W
s
1 dx ≤ C

 2∑
i=1

(ˆ
BR1

(
W

p
4
i

)2 p′

dx

) 1
p′
 (ˆ

BR

W s p
1 dx

) 1
p

≤ C

{
2∑
i=1

[ 
BR1

W
p
2
i dx+

ˆ
BR1

∣∣∣∇W p
4
i

∣∣∣2 dx]} R
2
p′
0

(ˆ
BR

W s p
1 dx

) 1
p

≤ C I(W1,W2, fε;R0, R1)R
2
p′
0

(ˆ
BR

W s p
1 dx

) 1
p

,

(4.10)

for some constant C = C(p) > 0 depening only on p.

The term containing fε in (4.7) is estimated as follows. By Hölder’s inequality and the definition
of I(W1,W2, fε;R0, R1)

ˆ
BR

|fε|2W s
1 dx ≤

(ˆ
BR0

|fε|2 p
′
dx

) 1
p′ (ˆ

BR

W s p
1 dx

) 1
p

≤ I(W1,W2, fε;R0, R1)R
− 2

p

0

(ˆ
BR

W s p
1 dx

) 1
p

(4.11)

For the last term on the right-hand side of (4.7), by Hölder’s inequality and estimate (4.9) we have(ˆ
BR

W
p q
4

+ s q
2

1 dx

) 2
q

≤ C R
2
(

2
q
−1

)
0

ˆ
BR

W
p
2

1 W s
1 dx

≤ C R
2
(

2
q
− 1

p

)
0 I(W1,W2, fε;R0, R1)

(ˆ
BR

W s p
1 dx

) 1
p

,

(4.12)

where C = C(q) > 0.

Finally, for the left-hand side of (4.7), we have(ˆ ∣∣∣∣(W p
4

+ s
2

1 η
)
x1

∣∣∣∣2 dx
)(ˆ ∣∣∣∣(W p

4
+ s

2
1 η

)
x2

∣∣∣∣q dx) 2
q

≥ T 2
q

(ˆ (
W

p
4

+ s
2

1 η
)q∗

dx

) 4
q∗

.(4.13)

8Since we are in dimension N = 2, we have W 1,2(BR1) ↪→ L2 p′(BR1) and(ˆ
BR1

(
W

p
4
i

)2 p′

dx

) 1
p′

dx ≤ C R
2
p′
1

[ 
BR1

(
W

p
4
i

)2
dx+

ˆ
BR1

∣∣∣∇W p
4
i

∣∣∣2 dx] ,
with a constant C = C(p) > 0.
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Here we used the anisotropic Sobolev-Troisi inequality (see Appendix B) for the compactly sup-

ported function W
(p+2 s)/4
1 η. The exponent q∗ is defined by

q∗ =
2 q

2− q
, where

1

q
=

1

2

(
1

2
+

1

q

)
,

so that

q =
4 q

2 + q
and q∗ =

4 q

2− q
,

the constant Tq only depends on q and it degenerates to 0 as q goes to 2.

By using (4.9), (4.10), (4.11), (4.12) and (4.13) in (4.7), we then arrive at

[ˆ
Br

(
W

p
2

+s

1

) 2 q
2−q

dx

] 2−q
q

≤ C δp−2

[(
R0

R− r

)2

I(W1,W2, fε;R0, R1)R
− 2

p

0

(ˆ
BR

W s p
1 dx

) 1
p

+(s+ 1)2 I(W1,W2, fε;R0, R1)R
− 2

p

0

(ˆ
BR

W s p
1 dx

) 1
p

]

×

[
(s+ 1)2 I(W1,W2, fε;R0, R1)

(ˆ
BR

W
q

2−q
s

1 dx

) 2−q
q

+

(
R0

R− r

)2

R
2
(

2
q
− 1

p
−1

)
0 I(W1,W2, fε;R0, R1)

(ˆ
BR

W s p
1 dx

) 1
p

]
,

(4.14)

for a constant C = C(p, q) > 0. We now choose 1 < q < 2 as follows

(4.15) q =
2 p

p+ 1
.

Observe that with such a choice, we have

q

2− q
= p and

2

q
− 1

p
− 1 = 0.

We further observe that (
W

p
2

+s

1

)2 p

≥W 2 s p
1 ,

since Wi ≥ 1. Then (4.14) becomes(ˆ
Br

W 2 p s
1 dx

) 1
p

≤ C δp−2 I(W1,W2, fε;R0, R1)2

[(
R0

R− r

)2

+ (s+ 1)2

]2

R
− 2

p

0

(ˆ
BR

W s p
1 dx

) 2
p

.

By using that R0/(R − r) ≥ 1 and (s + 1) ≥ 1 and introducing the notation ϑ = p s, then the
previous estimate finally gives

‖W1‖L2ϑ(Br) ≤

[
C δ

p−2
2 I(W1,W2, fε;R0, R1)

(
R0

R− r

)2 (ϑ
p

+ 1

)2
] p

ϑ

R
− 1

ϑ
0 ‖W1‖Lϑ(BR),(4.16)

possibly for a different constant C = C(p) > 0. This is the iterative scheme of reverse Hölder’s
inequalities needed to launch a Moser’s iteration.
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We now recall the definition (4.6) of R1 and consider the sequences

rk = r0 +
R1 − r0

2k
and ϑk = 2ϑk−1 = 2k ϑ0 = 2k

p

2
.

Then iterating (4.16) infinitely many times with R = rk and r = rk+1, we get

‖W1‖L∞(Br0 ) ≤ C δ2 (p−2)

(
R0

R0 − r0

)8

I(W1,W2, fε;R0)4R
− 4

p

0

(ˆ
BR1

W
p
2

1 dx

) 2
p

,

for some constant C = C(p) > 0. We notice that u2
x1 ≤ W1 ≤ u2

x1 + δ2, by definition of W1. Then
we obtain with simple manipulations

‖ux1‖L∞(Br0 ) ≤ C δp−2

(
R0

R0 − r0

)4

I(W1,W2, fε;R0, R1)2

( 
BR0

|ux1 |
p dx

) 1
p

+ δ

 ,
for a possibly different constant C = C(p) > 0. By recalling that R1 is defined in (4.6) and using
Corollary 3.4, the term I(W1,W2, fε;R0, R1) defined in (4.8) can be estimated as follows

I(W1,W2, fε;R0, R1) ≤ C δp−2

(
R0

R0 − r0

)2
 2∑
j=1

 
BR0

|uxj |p dx+ δp


+ C δp−2R

2
p−1

0

ˆ
BR0

|∇fε|p
′
dx+ δp−2R

2
p

0

(ˆ
BR0

|fε|2 p
′
dx

) 1
p′

.

This concludes the proof. �

Remark 4.2. Observe that the previous strategy does not seem to work for N ≥ 3. Indeed, in
this case we would have N − 1 missing terms, i.e.

∂xiW
p
4

+ s
2

1 , i = 2, . . . , N.

By proceeding as before for each of these terms, i.e. combining (3.9) and Hölder’s inequality, one
would have on the left-hand side the term(ˆ ∣∣∣∣(W p

4
+ s

2
1 η

)
x1

∣∣∣∣2 dx
)

N∏
i=2

(ˆ ∣∣∣∣(W p
4

+ s
2

1 η
)
xi

∣∣∣∣q dx) 2
q

,

which in turn can be estimated from below by Sobolev-Troisi inequality by(ˆ
Br

(
W

p
4

+ s
2

1

)q∗
dx

) 2
q∗

.

The right-hand side would still contain the term(ˆ
BR

W
q

2−q
s

1 dx

) 2−q
q

.

The exponent q∗ is now defined by

q∗ =
N q

N − q
, where

1

q
=

1

N

(
1

2
+
N − 1

q

)
,
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so that

q =
2N q

2N + q − 2
and q∗ =

2N q

2N − q − 2
.

Then Moser’s iteration would work if

q∗

2
s >

q

2− q
s ⇐⇒ q <

2

N − 1
.

Of course, when N ≥ 3 the last condition does not fit with the requirement q > 1.

5. Proof of Theorem B

Proof. The proof follows the same lines as that of Theorem A described at the beginning of Section
4. The essential difference is the uniform Lipschitz estimate of Proposition 5.1 below, which replaces
that of Proposition 4.1. More precisely, with the notation already introduced at the beginning of
Section 4, we only need to replace (4.1) by

‖fε‖W 1,∞(B2 r0 ) ≤ ‖f‖W 1,∞(2B).

Then we observe that by (2.14) and (2.13) of Lemma 2.6

‖uε‖L∞(BR0
) ≤ C

[( 
4B
|U |p dx

) 1
p

+

((
C1

|B|

) 1
p

+ δ + |B|
1

N (p−1) ‖f‖
1

p−1

L∞(8B)

)
|B|

1
N

]
,

for some C > 0 independent of ε. The quantity C1 is the same appearing in (2.11) and the previous
estimate is obtained by choosing B%0 = 4B in (2.13). Then from (5.1) below we obtain a local
uniform Lipschitz estimate. We leave the details to the reader. �

Proposition 5.1 (Uniform Lipschitz estimate, p ≥ 4). Let N ≥ 2 and p ≥ 4. For every pair of
concentric balls Br0 b BR0 b B, we have

‖∇uε‖L∞(Br0 ) ≤ C9

[(
1 +

1

(R0 − r0)2/p

)
δ + ‖fε‖

1
p−1

W 1,∞(BR0
)

+

(
1 +

1

(R0 − r0)2

)
‖uε‖L∞(BR0

)

]
,

(5.1)

where C9 = C9(N, p) > 0 does not depend on ε.

Proof. As usual, for notational simplicity we simply write u in place of uε. By Lemma 2.8, we get
that u is indeed a local C3 solution of the equation (3.1) in B, i.e. it verifies

N∑
i=1

(
g′i,ε(uxi)

)
xi

= fε, in B′,

for every B′ b B. This means that pointwise we have

(5.2)
N∑
i=1

g′′i,ε(uxi)uxi xi = fε in B′.

We now derive the previous equation with respect to xj and obtain

(5.3)
N∑
i=1

[
g′′′i,ε(uxi)uxi xi uxi xj + g′′i,ε(uxi)uxi xi xj

]
= (fε)xj , in B′.
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We introduce the following linear differential operator

(5.4) L[ψ] =
N∑
i=1

[
g′′′i,ε(uxi)uxi xi ψxi + g′′i,ε(uxi)ψxi xi

]
,

then (5.3) can be simply written as L[uxj ] = (fε)xj . Also observe that

L[ϕψ] = ϕL[ψ] + ψ L[ϕ] + 2
N∑
i=1

g′′i,ε(uxi)ϕxi ψxi .

Thus for ϕ = ψ = uxj we obtain

L[u2
xj ] = 2uxj L[uxj ] + 2

N∑
i=1

g′′i,ε(uxi)
[(
uxj
)
xi

]2
= 2uxj (fε)xj + 2

N∑
i=1

g′′i,ε(uxi)u
2
xj xi .

By linearity of L we thus get

L
[
|∇u|2

]
= 2

N∑
j=1

uxj (fε)xj + 2

N∑
i,j=1

g′′i,ε(uxi)u
2
xj xi .

We now fix a pair of concentric balls Br0 b BR0 b B as in the statement of Proposition 5.1. Let
ζ ∈ C2

0 (BR0) be a function such that 0 ≤ ζ ≤ 1 and

(5.5) ζ = 1 on Br0 , |∇ζ|2 ≤ C

(R0 − r0)2
ζ and |D2ζ| ≤ C

(R0 − r0)2
,

for some universal constant C > 0 and consider in BR0 the equation for the function ζ |∇u|2 +λu2.
The parameter λ will play a crucial role and will be chosen later. By using the product rule for L
and its linearity, we get

L
[
ζ |∇u|2 + λu2

]
= ζ L

[
|∇u|2

]
+ |∇u|2 L[ζ] + 2

N∑
i,j=1

g′′i,ε(uxi) (u2
xj )xi ζxi + λL[u2]

= 2

N∑
j=1

uxj (fε)xj ζ + 2

N∑
i,j=1

g′′i,ε(uxi)u
2
xj xi ζ

+ |∇u|2 L[ζ] + 2

N∑
i,j=1

g′′i,ε(uxi) (u2
xj )xi ζxi

+ 2λuL[u] + 2λ

N∑
i=1

g′′i,ε(uxi)u
2
xi .

By using the expression (5.4) of L and the equation (5.2), we can rewrite the previous identity as
follows

L
[
ζ |∇u|2 + λu2

]
= 2F + 2 ζ G1 + 2G2 + 2λG3 + G4,(5.6)

where we used the notation

F = λu fε + ζ

N∑
j=1

uxj (fε)xj , G1 =

N∑
i,j=1

g′′i,ε(uxi)u
2
xj xi ,
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G2 =
N∑

i,j=1

g′′i,ε(uxi) (u2
xj )xi ζxi +

|∇u|2

2

N∑
i=1

g′′i,ε(uxi) ζxi xi , G3 =
N∑
i=1

g′′i,ε(uxi)u
2
xi ,

and

G4 =

N∑
i=1

g′′′i,ε(uxi)uxi xi
[
2λuuxi + |∇u|2 ζxi

]
.

We proceed to estimate separately each term on the right-hand side of (5.6).

The term F .

We set for simplicity

(5.7) M := ‖u‖L∞(BR0
).

We can suppose that M > 0, otherwise there is nothing to prove. By Cauchy-Schwarz inequality,
Young’s inequality and the fact that 0 ≤ ζ ≤ 1 we get

F ≥ −λ ‖u‖L∞(BR0
) ‖fε‖L∞(BR0

) − ζ |∇u| |∇fε|

≥ −λ
pMp

p
− 1

p
|∇u|p − c ‖fε‖p

′

W 1,∞(BR0
)
,

(5.8)

where c = c(p) > 0.

The term G1.

This is a positive term and for the moment we simply keep it. It will act as a sponge term, in
order to absorb (negative) terms containing the Hessian of u.

The term G2.

This can be estimated by Young’s inequality and (5.5) as follows

G2 ≥ −τ
N∑

i,j=1

g′′i,ε(uxi)u
2
xj xi ζ

2
xi −

1

τ

N∑
i,j=1

g′′i,ε(uxi)u
2
xj

− |∇u|
2

2

N∑
i=1

g′′i,ε(uxi) |ζxi xi |

≥ −τ C

(R0 − r0)2
ζ G1 −

|∇u|2

2

(
C

(R0 − r0)2
+

2

τ

) N∑
i=1

g′′i,ε(uxi),

where τ > 0 is a positive parameter. We then observe that the last term can be further estimated
by using

(5.9) g′′i,ε(uxi) ≤ (p− 1) |∇u|p−2 + 1,

so that

|∇u|2
N∑
j=1

g′′i,ε(uxi) ≤ N((p− 1) |∇u|p + |∇u|2) ≤ N
(
p− 1 +

2

p

)
|∇u|p +N

p− 2

p
.
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In the end we get

(5.10) G2 ≥ −τ
C

(R0 − r0)2
ζ G1 −

C ′1 (τ + (R0 − r0)2)

τ (R0 − r0)2
|∇u|p − C ′1 (τ + (R0 − r0)2)

τ (R0 − r0)2
,

where C ′1 = C ′1(p,N,C) > 0.

The term G3.

By using the form of gi,ε, the convexity of the function m 7→ mp−2 and recalling the definition
(2.1) of δ, we have

G3 =

N∑
i=1

g′′i,ε(uxi) |uxi |2 ≥ (p− 1)

(
1

2p−3

N∑
i=1

|uxi |p − δp−2 |∇u|2
)
.

By further applying Young’s inequality to estimate the term δp−2 |∇u|2 and using that

N∑
i=1

|uxi |p ≥ N
2−p
2 |∇u|p,

we end up with

(5.11) G3 ≥ C ′′1 |∇u|p − C ′′2 δp,
where C ′′1 = C ′′1 (p,N) > 0 and C ′′2 = C ′′2 (p,N) > 0.

The term G4

This is the most delicate term and it is precisely here that the condition p ≥ 4 becomes vital.
First we have

G4 ≥ −
N∑
i=1

|g′′′i,ε(uxi)| |uxi xi |
[
2λ |u| |uxi |+ |∇u|2 |ζxi |

]
.

Then we observe that by Cauchy-Schwarz inequality (recall the definition (2.8) of gi,ε) we have

|∇u|2
N∑
i=1

|g′′′i,ε(uxi)| |uxi xi | |ζxi | ≤ c |∇u|2
(

N∑
i=1

(|uxi | − δi)
p−2
+ u2

xi xi |ζxi |
2

) 1
2

×

(
N∑
i=1

(|uxi | − δi)
p−4
+

) 1
2

≤ c

(
N∑
i=1

(|uxi | − δi)
p−2
+ u2

xi xi |ζxi |
2

) 1
2

|∇u|
p
2

for some constant c = c(N, p) > 0. In the last inequality we used that

(|uxi | − δi)
p−4
+ ≤ |uxi |p−4,

which is true since p ≥ 4. By further using (5.5), the definition of gi,ε and Young’s inequality, from
the previous inequality we get

|∇u|2
N∑
i=1

|g′′′i,ε(uxi)| |uxi xi | |ζxi | ≤
c
√
C

R0 − r0
(ζ G1)

1
2 |∇u|

p
2 ≤ τ C ′′′1

(R0 − r0)2
ζ G1 +

C ′′′1

τ
|∇u|p,
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for some constant C ′′′1 = C ′′′1 (C,N, p) > 0. Similarly, by recalling (5.7) we have

2λ
N∑
i=1

|g′′′i,ε(uxi)| |uxi xi | |u| |uxi | ≤ cM λ

(
N∑
i=1

g′′i,ε(uxi)u
2
xi xi

) 1
2
(

N∑
i=1

(|uxi | − δi)
p−4
+ |uxi |2

) 1
2

≤ cM λG
1
2
1 |∇u|

p−2
2 ≤ C ′′′2

(
M2 λ2 G1

) p
p+2 + C ′′′2 |∇u|p,

for some constant C ′′′2 = C ′′′2 (N, p) > 0. By keeping everything together, we get

(5.12) G4 ≥ −τ
C ′′′1

(R0 − r0)2
ζ G1 −

(
C ′′′1

τ
+ C ′′′2

)
|∇u|p − C ′′′2

(
M2 λ2 G1

) p
p+2 .

Collecting all the estimates.

We now go back to (5.6) and use (5.8), (5.10), (5.11) and (5.12). Then we get

L[ζ |∇u|2 + λu2] ≥
[
2− τ

(R0 − r0)2
(2C + C ′′′1 )

]
ζ G1 − C ′′′2 (M λ)

2 p
p+2 G

p
p+2

1

+

(
2λC ′′1 − 2

C ′1 (τ + (R0 − r0)2)

τ (R0 − r0)2
− 2

p
− C ′′′1

τ
− C ′′′2

)
|∇u|p

− 2

(
C ′1 (τ + (R0 − r0)2)

τ (R0 − r0)2
+ λC ′′2 δ

p

)
− 2

p
(M λ)p − 2 c ‖fε‖p

′

W 1,∞(BR0
)
.

We now choose τ and λ as follows

(5.13) τ =
(R0 − r0)2

2C + C ′′′1

and λ =
1

2C ′′1

(
1 + 2

C ′1 (τ + (R0 − r0)2)

τ (R0 − r0)2
+

2

p
+
C ′′′1

τ
+ C ′′′2

)
.

Observe that the choices of τ and λ only depend on N, p and (R0 − r0)2 and are in particular
independent of ε. Thus we obtain

(5.14) L[ζ |∇u|2 + λu2] ≥
(
ζ G1 + |∇u|p

)
− C ′′′2

(
M2 λ2 G1

) p
p+2 − c̃.

where we set for simplicity

(5.15) c̃ := 2
C ′1 (τ + (R0 − r0)2)

τ (R0 − r0)2
+ 2λC ′′2 δ

p +
2λp

p
Mp + 2 c ‖fε‖p

′

W 1,∞(BR0
)
.

Let us now consider the maximum of the function ζ |∇u|2 + λu2 in BR0 . Let x0 ∈ BR0 be such a
maximum point, we first prove

(5.16) ζ(x0)
1
2 |∇u(x0)| ≤ C̃,

for some constant C̃ > 0 depending on the data of the problem.
If x0 ∈ ∂BR0 , then (5.16) trivially holds true, since ζ(x0) = 0. Thus, let us assume that x0 ∈ BR0 .

In this case we get
∇
(
ζ |∇u|2 + λu2

)
= 0 at x = x0,

and
D2
(
ζ |∇u|2 + λu2

)
≤ 0 at x = x0.

Thus at the maximum point x0 we have

L[ζ |∇u|2 + λu2] =

N∑
i=1

g′′i,ε(uxi)
(
ζ |∇u|2 + λu2

)
xi xi
≤ 0.
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By combining this with (5.14), we then get

c̃ ≥ ζ G1 − C ′′′2

(
M2 λ2 G1

) p
p+2 + |∇u|p.

We multiply the previous by ζ(x0)p/2 > 0, then by Young’s inequality once again we get

c̃ ζ(x0)
p
2 ≥ ζ(x0)

p+2
2 G1 − C ′′′2 (M λ)

2 p
p+2

(
ζ(x0)

p+2
2 G1

) p
p+2

+ ζ(x0)
p
2 |∇u(x0)|p

≥
(

1− C ′′′2

p

p+ 2
α

)
ζ(x0)

p+2
2 G1

− 2α−
p
2

p+ 2
C ′′′2 (M λ)p + ζ(x0)

p
2 |∇u(x0)|p.

If we choose

α =
p+ 2

p

1

C ′′′2

,

and use that ζ ≤ 1, from the previous estimate we get (5.16), with

C̃ :=

[
c̃+

2λpMp

p+ 2

(
p

p+ 2

) p
2

(C ′′′2 )
p+2
2

] 1
p

.

By using the bound (5.16), we can now conclude. Indeed, we get (recall that ζ = 1 on Br0)

max
Br0

|∇u| ≤
(

max
Br0

[
ζ |∇u|2 + λu2

]) 1
2

≤ ζ(x0)
1
2 |∇u(x0)|+ λ

1
2 u(x0)

≤ C̃ + λ
1
2 u(x0) ≤ C̃ + λ

1
2 M.

(5.17)

In order to obtain the claimed estimate (5.1), we first observe that by recalling the choices (5.13)
of τ and λ, we have

λ ≤ C
(

1 +
1

(R0 − r0)2

)
,

for some C = C(N, p) > 0. Then from (5.15) we get

c̃ ≤ C
(

1 +
1

(R0 − r0)2

)
(1 + δp) + C

(
1 +

1

(R0 − r0)2

)p
Mp + C ‖fε‖p

′

W 1,∞(BR0
)
,

possibly for a different constant C = C(N, p) > 0. We use this to estimate the constant C̃ above:

subaddivitiy of m 7→ m1/p and the fact that δ ≥ 1 imply

C̃ ≤ C
(

1 +
1

(R0 − r0)2

) 1
p

δ + C

(
1 +

1

(R0 − r0)2

)
M + C ‖fε‖

1
p−1

W 1,∞(BR0
)
,

still for some C = C(N, p) > 0. With some simple manipulations, from (5.17) we now get the
desired estimate. �
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Appendix A. Some properties of the functions gi

The functions gi have the following convexity property.

Lemma A.1. For every t1, t2 ∈ R such that |t1 − t2| > 2 δi we have

(A.1) gi((1− s) t1 + s t2) < (1− s) gi(t1) + s gi(t2), s ∈ (0, 1), i = 1, . . . , N.

Proof. The function gi is convex so that the inequality “≤” holds true for every t1, t2. If gi((1 −
s) t1 + s t2) = (1− s) gi(t1) + s gi(t2), then gi is affine on the segment [t1, t2]. This can only happen
when t1, t2 ∈ [−δi, δi], in which case |t1 − t2| ≤ 2δi. �

They also satisfy the following Lipschitz-type estimate.

Lemma A.2. Let p ≥ 2. For every t1, t2 ∈ R and i = 1, . . . , N , we have

(A.2) |gi(t1)− gi(t2)| ≤
(
|t1|p−1 + |t2|p−1

)
|t1 − t2|.

Proof. By basic calculus we have

|gi(t1)− gi(t2)| = |g′i((1− s) t1 + s t2)| |t1 − t2|,

for some s ∈ [0, 1]. For p ≥ 2, the function t 7→ |g′i(t)| is convex and

|g′i(t)| ≤ |t|p−1, t ∈ R.

Thus we get the conclusion. �

The following basic estimate has been used various times.

Lemma A.3. Let p ≥ 2. For every i = 1, . . . , N and every T ≥ δi, we have

g′′i (t) ≥ (p− 1)

(
T − δi
T

)p−2 (
T 2 + (|t| − T )2

+

) p−2
2 , for every |t| ≥ T.

Proof. For T = δi there is nothing to prove, thus we can suppose that T > δi. We use the elementary
inequality

T

T − δi
(|t| − δi) ≥ |t|, for every |t| ≥ T.

This implies that for every |t| ≥ T , we have

T

T − δi
(|t| − δi)+ ≥ T + (|t| − T )+ ≥

(
T 2 + (|t| − T )2

+

) 1
2 .

By multiplying everything by (T − δi)/T and raising to the power p − 2, we get the desired
conclusion. �

Appendix B. An anisotropic Sobolev inequality in dimension 2

In the proof of Proposition 4.1 we used Sobolev-Troisi inequality. For the reader’s convenience,
we give a proof of the particular case we needed.

Lemma B.1. Let 1 < q < 2, then for every u ∈ C∞0 (R2) we have

(B.1) Tq
(ˆ

R2

|u|
4 q
2−q dx

) 2−q
2 q

≤
(ˆ

R2

|ux1 |2 dx
) 1

2
(ˆ

R2

|ux2 |q dx
) 1

q

,
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where the constant Tq is given by

Tq =
(2− q)2

4 q2 − (2− q)2
> 0.

Proof. We first observe that for every α, β > 1, by basic calculus we have

|u(x1, x2)|α = α

ˆ x1

−∞
ux1(t, x2) |u(t, x2)|α−2 u(t, x2) dt,

and

|u(x1, x2)|β = β

ˆ x2

−∞
ux2(x1, s) |u(x1, s)|β−2 u(x1, s) ds.

Thus

|u(x1, x2)|α+β ≤ αβ
(ˆ

R
|ux1(t, x2)| |u(t, x2)|α−1 dt

) (ˆ
R
|ux2(x1, s)| |u(x1, s)|β−1 ds

)
.

If we now integrate over R2 and use Fubini Theorem on the right-hand side, we get

(B.2)

ˆ
R2

|u|α+β dx ≤ αβ
(ˆ

R2

|ux1 | |u|α−1 dx

) (ˆ
R2

|ux2 | |u|β−1dx

)
.

By Hölder’s inequality we then have(ˆ
R2

|ux1 | |u|α−1 dx

)(ˆ
R2

|ux2 | |u|β−1dx

)
≤
(ˆ

R2

|ux1 |2 dx
) 1

2
(ˆ

R2

|ux2 |q dx
) 1

q

×
(ˆ

R2

|u|2 (α−1) dx

) 1
2
(ˆ

R2

|u|
q

q−1
(β−1)

dx

) q−1
q

.

We now choose α and β in such a way that

2 (α− 1) = α+ β and
q

q − 1
(β − 1) = α+ β,

that is

α =
2 + q

2− q
and β =

3 q − 2

2− q
.

Observe that with these choices we have α+ β = 4 q/(2− q). Thus from (B.2) we get (B.1), with

Tq =
1

α

1

β
=

(2− q)2

4 q2 − (2− q)2
,

as desired. �
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