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Abstract. In this note we show that reversed variational inequalities cannot
be studied in a general abstract framework as it happens for classical variational
inequalities with Stampacchia’s Lemma. Indeed, we provide two different situ-
ations for reversed variational inequalities which are of the same type from an
abstract point of view, but which behave quite differently.

1. Introduction. It is now known that bounce problems (see [1], [2]) can be writ-
ten as reversed variational inequalities ([7], [6]), i.e. inequalities in which the verse
of the inequality is opposite with respect to the usual verse in inequalities à la

Stampacchia ([4], [12]).
Inequalities of this kind were introduced in [11] and then studied in [6] and [9]

for elliptic operators defined on Hilbert or Banach spaces, and in [8] for the bounce
problem: if an open subset B of R

N represents the ”billiard”, any bounce trajectory
γ : [0, 1] −→ B between two given points P and Q of B satisfies the following special
reversed variational inequality:



















∫ 1

0

γ̇ · δ̇ dt ≤ 0 ∀ δ ∈ H1
0 ([0, 1], RN) such that

δ(t) · ν(γ(t)) ≥ 0 ∀ t in
{

t ∈ [0, 1] : γ(t) ∈ ∂Ω
}

,

where ν(x) denotes the inward unit normal to B in a point x of ∂Ω. If, in addition,
the bounce is perfectly elastic, also a conservation law for the energy holds, i.e.

1

2
|γ̇(t)|2 = constant;

see [6], [7] and [8] for more details, also in presence of external nonlinear potential
fields.

The nature of inequalities of this type is quite strange, even in the linear case,
since it is not possible to find an abstract formulation to study all of them tout
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court, as the Stampacchia’s Lemma for the classical linear variational inequalities.
For example, let us consider the two following problems:







u ∈ H1
0 (0, 1) such that u ≥ −1 a.e. in (0, 1) and

∫ 1

0

u′(v′ − u′) dx ≤ 0 ∀ v ∈ H1
0 (0, 1) such that v ≥ −1 a.e. in (0, 1),

(1)

and














u ∈ H2(0, 1) ∩ H1
0 (0, 1) such that u ≥ −1 a.e. in (0, 1) and

∫ 1

0

u′′(v′′ − u′′) dx ≤ 0 ∀ v ∈ H2(0, 1) ∩ H1
0 (0, 1)

such that v ≥ −1 a.e. in (0, 1).

(2)

From an abstract point of view these two problems are formally the same. In fact
in both cases one can consider a bilinear form defined in a closed convex subset of a
Hilbert space an look for solutions of the associated reversed variational inequality.
More precisely, concerning problem (1), set H = H1

0 (0, 1) and define the bilinear

and continuous form a : H×H → R defined as a(u, v) =
∫ 1

0
u′v′ dx, which is coercive

by Poincaré’s inequality, while for (2) set H = H2(0, 1)∩H1
0 (0, 1) and consider the

bilinear and continuous form a : H ×H → R defined as a(u, v) =
∫ 1

0 u′′v′′ dx, which
is again coercive by the Open Mapping Theorem (see [11]).

Finally, in both cases set K = {v ∈ H : v ≥ −1 in (0, 1)}, which is easily seen
to be a closed and convex subset of H . Then both problems can be written as

{

u ∈ K and
a(u, v − u) ≤ 0 ∀ v ∈ K.

Therefore, both problems admit a reversed abstract formulation of Stampacchia’s
variational inequalities, which can be written, in the simplest case, as

{

u ∈ K and
a(u, v − u) ≥ 0 ∀ v ∈ K.

(3)

Nevertheless, even in these very simple cases given in (1) and (2), it is impossible to
find an equivalent formulation of the following simplified version of Stampacchia’s
Lemma:

Theorem 1 (Stampacchia). If a : H×H → R is a continuous, bilinear and coercive

form on a Hilbert space H and K is a closed and convex subset of H, then there

exists a unique solution to problem (3).

In fact we can prove the following result.

Theorem 2. Problem (1) has an uncountable family of solutions and problem (2)
has only the trivial solution and another nontrivial one, which is symmetric with

respect to x = 1/2.

Here by solution of a reversed variational inequality we mean a function u which
solves the inequality, but not the associated equation. For example a solution of
(1) solves the inequality but not the associated equation u′′ = 0. This means, using
the language of the bounce problem, that there is a real bounce on the ”wall” −1
and not simply a smooth contact.

However, even if the coercivity assumption fails, one can prove existence results
for (1), (2) and also for similar problems. For example in [8] Marino and Saccon
consider a bounce problem in a convex domain and prove a multiplicity result for
the natural reversed variational inequality which describes this phenomenon.
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On the other hand, a natural generalization of (2) is the following. Take Ω
smooth bounded domain of R

N , N ≥ 1, α, c ∈ R, φ : Ω −→ R a negative measurable
function such that supφ < 0 and Kφ =

{

u ∈ H2(Ω)∩H1
0 (Ω)

∣

∣ u ≥ φ a.e. in Ω
}

and
let us consider the problem

(P )



















u ∈ Kφ,
∫

Ω

∆u∆(v − u) dx − c

∫

Ω

Du · D(v − u) dx

−α

∫

Ω

u(v − u) dx ≤ 0 ∀ v ∈ Kφ.

Problem (P ) was introduced in [11] as a limit problem for a family of systems
describing travelling waves on suspension bridges derived from the original model
proposed by Lazer and McKenna in [3], where φ ≡ −1, and then it was studied also
in [6].

Due to the strange behaviour of reversed variational inequalities discussed above,
there are not many existence results for problem (P ), for which an essential role
is played by the value λ2

1 − cλ1: this is the eigenvalue of ∆2 + c∆ on H2(Ω) ∩
H1

0 (Ω) associated to the first eigenfunction e1 of −∆ on H1
0 (Ω). Indeed, due to

the boundary conditions, the eigenfunctions of ∆2 + c∆ are the same of −∆ and
the sequence of eigenvalues (Λi)i of ∆2 + c∆ is obtained rearranging the sequence
of eigenvalues (λi)i of −∆. More precisely, we denote by (Λk)k (Λ1 ≤ Λ2 ≤ . . .)
and by (Ek)k the eigenvalues and the associated eigenfunctions of ∆2 + c∆ in
H2(Ω) ∩ H1

0 (Ω), and by (λn)n (λ1 < λ2 ≤ . . .) the eigenvalues of −∆ in H1
0 (Ω)

with eigenfunctions (en)n. Then
{

Λk

∣

∣ k ∈ N
}

=
{

λ2
n − cλn

∣

∣n ∈ N
}

, and the

eigenfunction corresponding to λ2
1 − cλ1 is exactly e1, as already claimed, and it is

well known that e1 can be chosen strictly positive in Ω.
The first existence results for problem (P ) appear in [11] and are the following:

if

• if α < λ2
1 − cλ1 and N ≤ 3, or

• if α > λ2
1 − cλ1 and N = 2, 3,

then there exists a non trivial solution of problem (P ). As already remarked, the
eigenvalue Λ = λ2

1 − cλ1 corresponds to a critical case, in which there is a strong
lack of compactness and it seems hard to exhibit any solution (see [11]). Moreover,
starting from [11], in [6] the authors provide a multiplicity result which is more
general than the one proved in [11], and for this purpose they use an abstract
theory introduced in [7] and which is extremely useful, for example, in non smooth
cases. In order to recall the multiplicity result, and also for further uses, we finally
set the following notation: if u ∈ H2(Ω) ∩ H1

0 (Ω) we define

fα(u) =
1

2

∫

Ω

|∆u|2 dx −
c

2

∫

Ω

|Du|2 dx −
α

2

∫

Ω

u2 dx.

Theorem 3 ([11], [6]). Assume that there exists s ∈ N such that

• Λs < Λs+1 ≤ λ2
1 − cλ1 and N ≤ 3; or

• λ2
1 − cλ1 < Λs < Λs+1 and N = 2 or N = 3.

Then ∃ δs > 0 such that, if Λs − δs < α < Λs, problem (P ) has at least 3 nontrivial

solutions uα,i with fα(uα,i) > 0 for i = 1, 2, 3. Moreover, two of such solutions, say

uα,1 and uα,2, are such that

lim
α→Λ−

s

fα(uα,i) = 0, i = 1, 2. (4)
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As before, all these functions solve the inequality, but not the associated problem
{

∆2u + c∆u − αu = 0 in Ω,

u = 0 on ∂Ω,
(5)

so that they are real bounce solutions. In fact, since α is not an eigenvalue of
∆2 + c∆, the unique solution of (5) is the trivial one. On the other hand, adapting
to a non smooth setting the technique used in [10], one can show that also nonlinear
classical variational inequalities in presence of a nonlinearity which behaves like
|u|p−2u, p > 2 and subcritical in the usual sense, have three nontrivial solutions
near each eigenvalue of the principal part (see [5], which extends to variational
inequalities the result found in [10] for the associated equations).

Therefore, Theorem 3 shows that when the bilinear form associated to the prob-
lem is not coercive, multiplicity results are possible and reasonable. On the other
hand, contrary to Stampacchia’s Lemma, also in the coercive case we have multi-
plicity, though we recover uniqueness if we do not consider the trivial solution, as
Theorem 2 states.

2. Proof of Theorem 2. First of all, let us remark that both problems (1) and (2)
admit the trivial function as solution. We now show that the first former problem
has infinitely many other solutions, while the latter has only one nontrivial solution.

Proof of Theorem 2. Concerning problem (1), we explicitly exhibit an uncountable
family of solutions: take α ∈ (0, 1) and consider the function

uα(x) =











−
1

α
x if x ∈ [0, α],

−
1

α − 1
(x − 1) if x ∈ (α, 1]

It is clear that uα belongs to H = H1
0 (0, 1) and that uα ≥ −1. Moreover, computing

a(uα, v − uα) for any v in H greater than −1, we get

∫ 1

0

u′

α(v′ − u′

α) dx = −
1

α

∫ α

0

(

v′ +
1

α

)

dx −
1

α − 1

∫ 1

α

(

v′ +
1

α − 1

)

dx

=
v(α) + 1

α(α − 1)
≤ 0,

since α ∈ (0, 1) and v(α) ≥ −1, for v ∈ K. Therefore, for any α ∈ (0, 1) the function
uα solves (1), so that the first part of the Theorem is proved.

Now consider problem (2). As already remarked, the zero function is a solution,
so let us look for a nontrivial solution u. Since u is of class C1 (recall that H2([0, 1])∩
H1

0 ([0, 1]) →֒ C1([0, 1])), the set C = {x ∈ (0, 1) : u(x) > −1} is open. Moreover, as
in the case of classical variational inequalities, it is easily seen that in C the solution
u satisfies the associated equation u(4) = 0.

Since u is continuous, there is a first point α ∈ (0, 1) such that u(α) = −1. But
u is also of class C1, and α is a minimum point for u, thus u′(α) = 0. Moreover, it
is standard to see that u′′(0) = 0, since u ∈ H2([0, 1]) ∩ H1

0 ([0, 1]). In this way we
get

u(x) =
1

2α3
x3 −

3

2α
x ∀x ∈ [0, α].
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Assume by contradiction that there exists β ∈ (α, 1) such that u(x) = −1 ∀x ∈
[α, β]. Now take v ∈ H2([0, 1])∩H1

0 ([0, 1]) with support contained in [0, β], so that,
taking in mind the boundary conditions,

∫ 1

0

u′′(v′′ − u′′) dx =

∫ α

0

u′′(v′′ − u′′) dx

= u′′(α−)v′(α) − u′′′(α−)v(α) −

∫ α

0

(u′′)2 dx −

∫ 1

β

(u′′)2 dx

=
3

α2
v′(α) −

3

α3
v(α) −

3

α3
−

∫ 1

β

(u′′)2 dx.

Of course it is not possible that the last quantity is non positive for any v chosen
as above, and so u cannot be a solution of (2). Then u cannot be equal to −1 in a
right neighborhood of α.

We can also exclude that there exists β ∈ (α, 1) such that u(x) > −1 ∀x ∈ (α, β)
and u(β) = −1. In fact, there should be a maximum point γ ∈ (α, β) and so u′(γ) =
0 and u′′(γ) ≤ 0. But, as before, u is a polynomial of degree 3 in (α, β) and therefore
it cannot become convex twice, near α and β, otherwise its second derivative should
have two zeroes in (α, β), which is impossible, since u′′ is a polynomial of degree 1.

Of course, this procedure lets us actually exclude that there is another contact
point except α, even if α is not the first contact point.

Therefore we can conclude that u(x) > −1 ∀x ∈ (α, 1]. Proceeding as before we
can find

u(x) =
(x − 1)3

2(α − 1)3
−

3(x − 1)

2(α − 1)
∀x ∈ (α, 1].

Summing up, we have

u(x) =



















1

2α3
x3 −

3

2α
x if x ∈ [0, α]

(x − 1)3

2(α − 1)3
−

3(x − 1)

2(α − 1)
if x ∈ (α, 1].

Now, for any v ∈ H2([0, 1]) ∩ H1
0 ([0, 1]) with v ≥ −1, let us compute

∫ 1

0

u′′(v′′ − u′′) dx =

∫ α

0

u′′v′′ dx +

∫ 1

α

u′′v′′ dx −

∫ 1

0

(u′′)2 dx

= v′(α)
(

u′′(α−) − u′′(α+)
)

+ v(α)
(

u′′′(α+) − u′′′(α−)
)

− 3

(

1

α3
−

1

(α − 1)3

)

= 3v′(α)

(

1

α2
−

1

(α − 1)2

)

− 3
(

v(α) + 1
)

(

1

α3
−

1

(α − 1)3

)

.

By assumption v(α) + 1 ≥ 0 and
1

α3
−

1

(α − 1)3
> 0, since α ∈ (0, 1), so that

−3
(

v(α) + 1
)

(

1

α3
−

1

(α − 1)3

)

≤ 0.

Therefore, if u is a solution it is necessary and sufficient that the coefficient of
v′(α) in the right hand side of the previous inequality is 0. Indeed, assume by
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contradiction that
1

α2
−

1

(α − 1)2
< 0. Then one can choose v ∈ H2([0, 1]) ∩

H1
0 ([0, 1]) with v ≥ −1 such that v′(α) < 0 and, more precisely, so negatively large

that

v′(α)

(

1

α2
−

1

(α − 1)2

)

>
(

v(α) + 1
)

(

1

α3
−

1

(α − 1)3

)

;

for example one can take v such that v(α) = 0 and

v′(α) = 2

1

α3
−

1

(α − 1)3

1

α2
−

1

(α − 1)2

< 0.

Thus, for such a v, we would have
∫ 1

0

u′′(v′′ − u′′) dx > 0,

that is u does not satisfy the reversed variational inequality.

The case
1

α2
−

1

(α − 1)2
) > 0 can be treated in the same way, and so we can

conclude that
1

α2
−

1

(α − 1)2
= 0,

i.e. α = 1/2. In this way we have shown that the unique nontrivial solution of
problem (2) is

u(x) =











4x3 − 3x if x ∈ [0, 1/2]

−4(x − 1)3 + 3(x − 1) if x ∈ (1/2, 1].

Of course, this solution is symmetric with respect to x = 1/2, and Theorem 2 is
thus completely proved.
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