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Abstract. We address the thermal control of the quasi-static evolution of a

polycrystalline shape memory alloy specimen. The thermomechanical evolu-

tion of the body is described by means of an extension of the phenomenological

Souza-Auricchio model [6, 7, 8, 57] accounting also for permanent inelastic

effects [9, 11, 27]. By assuming to be able to control the temperature of the

body in time we determine the corresponding quasi-static evolution in the en-

ergetic sense. In a similar way as in [28], using results by Rindler [49, 50]

we prove the existence of optimal controls for a suitably large class of cost

functionals.

Shape-memory alloys (SMA) are examples of active materials, showing a remark-

able thermo-mechanical behaviour: at suitably high temperatures they are able to

completely recover comparably large strains during the loading-unloading cycles

(this is the so-called superelastic effect) while at lower temperatures permanent de-

formations appear when unloading, but the material can be forced to recover its

original shape by means of a thermal cycle (this is the so-called shape memory ef-

fect). This characteristic macroscopic behaviour is the result of a solid-solid phase

transition at the metallic lattice level between a highly symmetric crystallographic

phase, called austenite, which is dominant at high temperatures, and less symmetric

phases, called martensites, which are energetically favorable at lower temperatures

or high stresses.

This amazing thermo-mechanical behaviour of the SMA is at the basis of a great

variety of innovative applications, going from biomedicine to different branches of

engineering. Indeed the engineering literature of SMA models is large and the SMA

behaviour has been investigated at all scales and by means of a great number of

models (the interested reader can find a lot of references in this respect for instance

in our previous paper [27]).

Correspondingly, the mathematical treatment of SMA behaviour is comparably less

developed. Some results in this sense refer to the original formulation or modifi-

cations of the Frémond model, [33] or in the Falk or Falk-Konopka models,

[31, 32], see for instance, with no claim of completeness, [1, 2, 19, 22, 35, 38, 48, 62];

we also refer to more recent results concerning phase transitions in shape memory
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alloys, in the framework of the Ginzburg-Landau theory, namely [16, 17] in the

isothermal and non-isothermal setting respectively.

Recently, great attention has been paid to the model originally introduced by Souza,

Mamiya and Zouain [57], and later refined by Auricchio and Petrini [7] - we shall

refer to the Souza-Auricchio model (SA) in the following.

The SA model shows some advantages in terms of simplicity and robustness with

respect to discretization; moreover it is efficient in accommodating modifications

and extensions to more general situations, such as for instance deformation effects

[9, 11], asymmetric material behavior [10], ferromagnetic effects [4, 3], and finite

strains [29, 30].

From the mathematical viewpoint, instead, the isothermal SA model has been

studied in [5, 44] and then extended to involve permanent deformation effects in

[27, 11] (see also [10] for the derivation of the model); the ferromagnetic model is

discussed in [14, 15, 58] and the analysis of the finite strains situation is in [34].

Recently much effort has been done in the direction of including temperature

changes in the SA model; these results fall in the more general framework of the

analysis of non-isothermal problems in mathematical modeling of complex materials,

which is gaining more and more importance in the recent years (see for instance,

without aiming at completeness [12, 24, 25, 26, 51, 52] in the setting of thermo-

visco-elastic or thermo-elasto-plastic materials). In particular, in the setting of

shape memory alloys we can quote the following contributions: [13, 43, 45] (given

temperature, 3D), [47] (unknown temperature, but viscous), [40, 39] (unknown

temperature, 1D), [28] (given temperature, 3D, where also some optimal control

problem is included), [53, 54, 55] (in the direction of the thermodynamics of SMA).

In this paper we focus on the thermal control of a SMA specimen under the

Souza-Auricchio model modified to include also permanent inelastic effects. The

control of SMA devices is obviously of great importance with respect to applica-

tions, as it appears from literature (see for instance [20, 21, 36, 37, 56] and very

recently [59, 60], W14 for a selection of results). On the other hand, due to the re-

cent renewed interest towards the SA models with permanent inelasticity, we really

believe that the result we present can be, beside its interest on its own in com-

pleting a picture the authors started in [27, 28], also a starting point in view of

future engineering applications, for instance in the direction of predicting the onset

of structural and functional fatigue in the material during cyclic transformations or

discussing the possibility of calibrating the constitutive parameters (including the

ones appearing in the control problem) by means of simple experiments, with the

purpose to evidence the qualitative agreement of the modeling predictions with the

outcome of the experimental results.

We assume, also in this contribution, to be able to control the temperature of

the specimen in time. This is possible when a SMA body is relatively thin in at

least one direction and undergoes relatively low-frequency loading-unloading cycles,

so that the heat produced via deformation and phase-change can be assumed to be
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(almost) instantaneously dissipated in the environment; for the sake of simplicity,

we also focus our attention on a space-homogeneous dependent temperature of the

specimen, as this will play the role of the control variable in our setting.

The main results of the paper are, on one hand a novel existence result for the

state problem, i.e. given the temperature, to determine the quasi-static mechanical

evolution of the SMA specimen. We underline that, in the spirit of [28] we require

less regularity for the temperature (a fact that will be important with respect to

optimal control, as we would like to consider the largest possible set of control

temperatures) constructing results that are stronger than the available ones [43, 45,

47]. In particular, the main difficulties come from dealing at the same time with

less restrictive assumptions on the temperature (which is non-homogeneous this

time) and the original non-regularized formulation of the Souza-Auricchio model

with permanent inelasticity, with the extra strain tensor variable εpl coming into

play.

On the other hand, the other relevant result we are able to get is the proof of the

existence of an optimal control for a suitably large class of cost functionals depend-

ing on both mechanics and temperature. The applicative interest in this respect

relies on the possibility of activating SMA devices by controlling the temperature of

the specimen via Joule’s heating, which is one of the basic technological activation

mechanisms currently exploited in real applications [23]. Our argument is basically

the concrete application of the abstract theory developed by Rindler [49] on ex-

istence of optimal controls in the frame of rate-independent systems. We would

like to remark that the present existence result represents just a first step in the

direction of optimally control the complex thermomechanical behavior of SMA via

the Souza-Auricchio model including the permanent inelastic effects. One possible

further investigation goes into the direction of possibly computing optimal controls;

this however seems to be a quite complex task due to the crucially non-smooth na-

ture of the Souza-Auricchio model, which is conserved when the original SA model

is extended in the direction of the description of training and degradation. Some

comments on possible future developments of this investigation can be found in

Subsection 4.1 of [28].

This is the plan of the paper. In Section 2 we recall the mechanical problem

formulation, collect our assumptions, and state the main results. Section 3 reports

on the analysis of the state problem whereas the existence proof for optimal controls

is developed in Section 4.

1. Mechanical problem formulation

1.1. Reference configuration and prescribed boundary displacement. We

recall some basic features of our SMA model with permanent inelastic effects. The

Reader is referred to [9] for the modelling and to [27] for some mathematical analysis.
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We also refer to [11] for some recent developments and to [57, 7] for the original

Souza-Auricchio model.

We denote by R3×3
sym the space of symmetric 3-tensors in R3 endowed with the

usual scalar product a:b = tr(ab) := aijbij (summation convention) and the cor-

responding norm |a| =
√
a:a. The space R3×3

sym is orthogonally decomposed as

R3×3
sym = R3×3

dev ⊕ R12, where R12 is the subspace spanned by the identity 2-tensor

12, while R3×3
dev is the subspace of all deviatoric symmetric tensors.

The reference configuration of the body is represented by a non-empty, connected,

bounded, and open subset Ω ⊂ R3 with a boundary ∂Ω that we assume to be

Lipschitz; moreover let ΓNeu,ΓDir ⊂ ∂Ω with ΓNeu ∩ ΓDir = ∅ and H2(ΓDir) > 0,

where H2 is the two-dimensional Hausdorff measure.

Given the displacement u : Ω → R3 from the fixed reference configuration with

u ∈ H1
loc(Ω,R3) we consider the corresponding symmetric gradient of u by

ε(u) =
1

2
(ui,j + uj,i)

where ui,j means ∂jui. In particular, throughout the paper we will make tacit use

of the well-known Korn inequality

cKorn||u||2H1(Ω;R3) ≤ ||u||
2
L2(ΓDir;R3) + ||ε(u)||2

L2(Ω;R3×3
sym)

for any u ∈ H1(Ω;R3) and some constant cKorn > 0 depending just on Ω.

We frame our problem within the classical theory of inelastic small strains [41],

thus we additionally decompose ε(u) = εel + εin, where εel represents the elas-

tic part of the strain while εin refers to the inelastic part due to the martensitic

transformations observed in the material. In the particular situation we are going

to consider, the inelastic part of the strain εin turns to be further decomposed as

εin = εtr + εpl where εtr is the recoverable part (or transformation) of the strain

while epl represents the non-recoverable permanent part of the strain (the plastic

part).

The body will be subject to a given surface traction on the part ΓNeu of the

boundary. On the other hand, non-homogeneous Dirichlet conditions for the dis-

placement will be prescribed on ΓDir. More precisely, by letting

(1.1) uDir ∈W 1,1(0, T ;H1(Ω;R3))

be given, the trace of uDir on ΓDir plays the role of the prescribed boundary value for

the displacement u. In particular, for all given times t ∈ [0, T ], the set of admissible

states (u(t), εtr(t), εpl(t)) is given by Y(uDir(t)) where

ū ∈ H1(Ω;R3) 7→ Y(ū)(1.2)

=
{

(u, εtr, εpl) ∈ H1(Ω;R3)×L2(Ω;R3×3
dev )×L2(Ω;R3×3

dev ) : u = ū on ΓDir

}
.

For the sake of brevity, from now on we set

Y := H1(Ω;R3)×L2(Ω;R3×3
dev )×L2(Ω;R3×3

dev ).
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1.2. Elastic energy. We simplify a bit the model by assuming that each phase is

isotropic and described by the same elasticity tensor. In particular, we denote the

elastic energy functional C : H1(Ω;R3×3
sym)→ [0,∞) as

C(a) :=
1

2

∫
Ω

a:Ca dx,

where C is the elastic tensor. Therefore, the elastic contribution to the stored energy

of the material is simply given by C(εel) = C(ε(u)−εtr − εpl).

1.3. Inelastic energy. The inelastic part of the stored energy of the material is a

function of the temperature θ and the inelastic strain (εtr, εpl) only. In particular,

the inelastic energy density takes the form

(1.3) (θ, εtr, εpl) 7→ β(θ)|εtr|+ 1

2
εtr:Htr:εtr +

1

2
εpl:Hpl:εpl + εtr:A:εpl + I(εtr + εpl),

where Htr, Hpl ∈ R3×3×3×3 are the (symmetric) hardening tensors, A ∈ R3×3×3×3
sym

is a linear symmetric coupling tensor such that

(a, b) 7→ 1

2
a:Htr:a+

1

2
b:Hpl:b+ a:A:b

is positive definite. Moreover, I is the indicator function of the ball B := {a ∈
R3×3

dev : |a| ≤ εL} for some εL > 0. In particular I(a) = 0 if a ∈ B and I(a) = ∞
elsewhere. Finally β is a given Lipschitz continuous nonnegative function describing

the temperature dependence of the inelastic response of the medium. In particular,

β(θ) corresponds to the austenite-martensite transition critical stress at temperature

θ > 0. The original choice β(θ) = b(θ−θm)+ of the Souza-Auricchio model (b > 0

and θm being a critical temperature for the martensite-austenite equilibrium in

the stress-free configuration) is included in our frame. Note incidentally that the

latter behaviour is not induced by the plastic evolution of εpl and the constraining

term I(εtr + εpl) refers to the experimental evidence that the inelastic behaviour of

the material is confined to some bounded strain proportion. In particular εL > 0

measures the maximal inelastic strain which can be obtained via reorientation of the

martensitic variants. Other options such that considering two indicator functions

I(εtr) + I(εpl) in the energy may also be considered with minor modifications.

In passing, one shall note that the existence and optimal control issues discussed

here do not rely on the particular form of the inelastic energy and could be possibly

adapted to much more general situations.

A last term has to be introduced in the overall stored energy of the system in

order to penalize martensite-martensite interfaces. Indeed, we include an interfacial

energy term

(εtr, εpl) 7→ ν

∫
Ω

|∇εtr|dx+ ν̄

∫
Ω

|∇εpl|dx

where ν, ν̄ > 0 are given scale parameters. Note that the latter integrals bear the

meaning of a total variation and, as such, will have also a crucial compactifying

effect. The occurrence of this interfacial term however does not prevent (εtr, εpl)
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from possibly exhibiting jumps. This is a particularly desirable feature in connection

with shape memory alloys where sharp phase boundaries are usually observed.

1.4. Stored energy. Assuming the temperature of the body θ ∈W 1,1(0, T ) to be

(spatially homogeneous and) prescribed, the stored-energy functionalW(·, ·, ·; θ(t)) :

Y(uDir(t)) → [0,+∞] for the body at time t ∈ [0, T ] (where the space Y(uDir(t))

has been introduced in (1.2)) will be hence given by

W(u, εtr, εpl; θ(t)) = C(ε(u)−εtr − εpl)

(1.4)

+

∫
Ω

(
1

2
εtr:Htr:εtr +

1

2
εpl:Hpl:εpl + εtr:A:εpl + I(εtr + epl)

)
dx

+ ν

∫
Ω

|∇εtr|dx+ ν̄

∫
Ω

|∇εpl|dx+

∫
Ω

β(θ(t))|εtr|dx

=: E(u, εtr, εpl) + F(θ(t), εtr)

In particular, the functional E(u, εtr, εpl) collects all terms above which are inde-

pendent of time (i.e., of the temperature θ) while F(θ(t), εtr) contains the only

temperature-driven term. Note that the stored-energy functional W(·, ·, ·; θ(t)) is

uniformly convex in H1(Ω;R3) × L2(Ω;R3×3
dev ) × L2(Ω;R3×3

dev ) even if non-smooth.

We underline moreover that F depends only on the recoverable part of the inelastic

strain while it is independent of its plastic part.

1.5. Load and traction. In addition to the above-prescribed boundary displace-

ment conditions on ΓDir, we shall consider some imposed body force f and surface

traction g, as well. We assume to be given

(1.5) f ∈W 1,1(0, T ;L2(Ω;R3)), g ∈W 1,1(0, T ;L2(ΓNeu;R3))

and define the total load ` ∈W 1,1(0, T ; (H1(Ω;R3))′) as

〈`(t), u〉 :=

∫
Ω

f(t)·udx+

∫
ΓNeu

g(t)·udH2 ∀u ∈ H1(Ω;R3), t ∈ [0, T ]

where 〈·, ·〉 denotes the duality pairing between (H1(Ω;R3))′ and H1(Ω;R3). We

would like to point out that in (1.5) other choices could have been possible, for

instance taking L6/5(Ω;R3) or L4/3(Ω;R3) (and correspondingly L6/5(ΓNeu;R3) or

L4/3(ΓNeu;R3)); we anyway prefer to keep the choice of L2 for the sake of simplicity.

1.6. Dissipation potential. In view of the application of the framework of the

energetic solutions, started in [42, 46], we introduce a dissipation (pseudo-)potential

D : L1(Ω;R3×3
dev ×R

3×3
dev )→ [0,∞), governing the evolution of the quasi-static system,

starting from a suitable initial state (u0, ε
tr
0 , ε

pl
0 ) as

D(a, b) :=

∫
Ω

D(a, b) dx,
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where the dissipation (density) function D : R3×3
dev ×R3×3

dev → [0,+∞) is continuous,

positively 1-homogeneous and fulfills the triangle inequality

(1.6) D(a1 + a2, b1 + b2) ≤ D(a1, b1) +D(a2, b2)

for all a1, a2, b1, b2 ∈ R3×3
dev . Just for fixing the ideas, we can think of

D(ε̇tr, ε̇pl) = ((Rtr)p|ε̇tr|p + (Rpl)p|ε̇pl|p)1/p, p ∈ [1,∞)

as a possible expression for D, where Rtr, Rpl represent positive transformation radii

and with the convention that, in the case p =∞ we have

D(ε̇tr, ε̇tr) = max(Rtr|ε̇tr|+Rpl|ε̇pl|).

Moreover, for any (εtr, εpl) : [0, T ] → R3×3
dev × R3×3

dev we let the total dissipation of

the process on the time interval [s, t] ⊆ [0, T ] be given by

DissD(εtr, εpl; [s, t])

:= sup

{ N∑
i=1

D(εtr(ti)−εpl(ti−1), εtr(ti)−εpl(ti−1)) : {s = t0 < t1 < · · · < tN = t}
}
,

the supremum is taken over the set of all finite partitions of the interval [s, t]. An

analogue notion of DissD(εtr, εpl; [s, t]) based on the functional D for functions of

time taking values in L1(Ω;R3×3
dev × R3×3

dev ) will also be considered.

1.7. Energetic formulation. First of all we define the set of stable states S(t, θ)

at time t and for the temperature θ as

S(t, θ) :=
{

(u, εtr, εpl) ∈ Y(uDir(t)) : E(u, εtr, εpl) <∞ and ∀(ū, ε̄tr, ε̄pl) ∈

Y(uDir(t)), E(u, εtr, εpl) + F(θ, εtr)− 〈`(t), u〉 ≤ E(ū, ε̄tr, ε̄pl) + F(θ, ε̄tr)(1.7)

− 〈`(t), ū〉+D(εtr − ētr, εpl − ēpl)
}
.

This definition can be interpreted as follows: given a stable state (u, εtr, εpl), no

competitor state (ū, ε̄tr, ε̄pl) can be preferred in terms of balance between total en-

ergy and dissipation. This global minimality requirement is here completely justified

by the convexity of the total energy of the body and by the fact that the dissipation

potential depends only on rates but it is independent of the state itself.

Now, energetic solutions, according to the definition given in [42, 46], are every-

where defined functions t : [0, T ] 7→ (u(t), εtr, εpl) ∈ Y(uDir(t)) such that

(u(0), εtr(0), εpl(0)) = (u0, ε
tr
0 , ε

pl
0 )

for some give initial datum (u0, ε
tr
0 , ε

pl
0 ) ∈ Y(uDir(0)); moreover the functions t 7→

〈 ˙̀(t), u(t)〉 and t 7→ β′(θ(t))θ̇(t)|εtr| are integrable and for all t ∈ [0, T ] the following

two conditions are satisfied:
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Global stability:

(u(t), εtr(t), εpl(t)) ∈ S(t, θ(t)).(1.8)

Energy balance:

E(u(t), εtr(t), εpl(t)) + F(θ(t), εtr(t))− 〈`(t), u(t)〉+ DissD(εtr, εpl; [0, t])

=E(u(0), εtr(0), εpl(0)) + F(θ(0), εtr(0))− 〈`(0), u(0)〉

+

∫ t

0

∫
Ω

β′(θ(s))θ̇(s)|εtr|dx ds−
∫ t

0

〈 ˙̀(s), u(s)〉ds.(1.9)

2. The state problem

Suppose that the space-homogeneous temperature θ ∈ W 1,1(0, T ) is given. We

would like to prove the existence of a suitably weak solution to the quasi-static state

problem

C(ε(u)−εtr − εpl) = σ in Ω× (0, T ),

∇·σ + f = 0 in Ω× (0, T ),

u = uDir on ΓDir × (0, T ),

σn = g on ΓNeu × (0, T ),

∂ε̇trD(ε̇tr, ε̇pl) + ∂εtrW(u(t), εtr(t), εpl(t); θ(t)) 3 0 in L2(Ω;R3×3
dev× R3×3

dev ),∀t ∈ (0, T ),

∂ε̇plD(ε̇tr, ε̇pl) + ∂εplW(u(t), εtr(t), εpl(t); θ(t)) 3 0 in L2(Ω;R3×3
dev× R3×3

dev ),∀t ∈ (0, T ),

u(0) = u0, εtr(0) = εtr
0 εpl(0) = εpl

0 in Ω

where σ stands for the stress, n is the outward normal to ΓNeu, and ∂ is the subd-

ifferential in the sense of convex analysis [18].

The main result of the section will be the following:

Theorem 2.1 (Existence for the state problem). Assume (1.1) and (1.5). Given

θ ∈W 1,1(0, T ) and an initial value (u0, ε
tr
0 , ε

pl
0 ) ∈ S(0, θ(0)) there exists an energetic

solution (u, εtr, εpl) of the state problem in the sense of (1.8)-(1.9). Moreover, all

energetic solutions belong to the space

(2.1) K := W 1,1(0, T ;H1(Ω;R3)×L2(Ω;R3×3
dev )× L2(Ω;R3×3

dev )).

2.1. Proof. The proof of Theorem 2.1 follows the by-now classical approach of

convergence of time discretization for rate-independent evolution problems, see [42].

In particular, in the spirit of [49] some specific care is devoted to the prove the

convergence of the powers of external actions. In particular, as already observed in

our previous result [28], these powers read here

(2.2)

∫ t

0

∫
Ω

β′(θ(s))θ̇(s)|εtr|dx ds−
∫ t

0

〈 ˙̀(s), u(s)〉ds
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which doesn’t satisfy the classical absolute continuity requirement [42, Assumption

(A5)] of the general energetic solvability theory as θ and ` are just absolutely con-

tinuous here. While the former existence results for given temperature in [43, 45]

by-pass this problem by requiring the temperature to be C1, this would not be

enough here as we are interested in establishing an optimal control result via θ.

Therefore we would like to better consider the least possible time-regularity for the

temperature θ entailing the solvability of the state problem. We try to avoid the

problem of the lack of absolute continuity of the above term (2.2) by considering

their concrete form. For the sake of completeness we present here a sketch of the

proof, in which the difficulties related to the particular form of the external powers

sum up with the problems linked to the presence of permanent inelastic effects.

A change of variables. We perform here a change of variables in order to reduce

to a time-independent state space by considering the case of homogeneous Dirichlet

boundary conditions. In particular, we let v = u − uDir and focus on the triplet

(v, εtr, εpl) taking values in the space Y0 := Y(0). We easily compute that

E(u, εtr, εpl)− 〈`(t), u〉 = E(v, εtr, εpl)

+

∫
Ω

ε(uDir):C(ε(v)−εtr−εpl) dx− 〈`(t), v〉+ C(ε(uDir))− 〈`(t), uDir〉.

Let now L : [0, T ]→ Y ′0 be given by

〈L(t), (v, εtr, εpl)〉

:= −
∫

Ω

ε(uDir(t)):C(ε(v)−εtr−εpl) dx+ 〈`(t), v〉 ∀(v, εtr, εpl) ∈ Y0, t ∈ [0, T ]

and notice that L ∈ W 1,1(0, T ;Y ′0). It turns out that (u, εtr, εpl) is an energetic

solution of the quasi-static evolution problem (1.8)-(1.9) if and only if (v, εtr, εpl) :

t 7→ Y0 is such that (v(0), εtr(0), εpl(0)) = (v0, ε
tr
0 , ε

pl
0 ) := (u0 − uDir(0), εtr

0 , ε
pl
0 ), the

functions t 7→ 〈 ˙̀(t), v(t)〉 and t 7→ β′(θ(t))θ̇(t)|εtr(t)| are integrable, and we have,

for all t ∈ [0, T ],

Stability (in the v variable):

(v(t), εtr(t), εpl(t)) ∈ S̃(t, θ(t)) := {(v, εtr, εpl) ∈ Y0 : ∀ (v̄, ε̄tr, ε̄pl) ∈ Y0,

E(v, εtr, εpl) + F(θ(t), εtr)− 〈L(t), (v, εtr, εpl)〉 ≤ E(v̄, ε̄tr, ε̄pl) + F(θ(t), ε̄tr)

− 〈L(t), (v̄, ε̄tr, ε̄pl)〉+D(εtr−ε̄tr, εpl−ε̄pl)},(2.3)

Energy balance (in the v variable):

E(v(t), εtr(t), εpl(t)) + F(θ(t), εtr(t))− 〈L(t), (v(t), εtr(t), εpl(t))〉

+ DissD(εtr, εpl; [0, t])

= E(v(0), εtr(0), εpl(0)) + F(θ(0), εtr(0))− 〈L(0), (v(0), εtr(0), εpl(0))〉

+

∫ t

0

∫
Ω

β′(θ(s))θ̇(s)|εtr|dxds−
∫ t

0

〈 ˙̀(s), v(s)〉ds.(2.4)

Note that this change of variables does not affect the part of the energy F(θ(t), εtr)

depending only on θ and εtr.
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Time discretization. Assume to be given a sequence of partitions {0 = tn0 < tn1 <

· · · < tnNn−1 < tnNn = T} with diameter τn = maxi=1,...,Nn(tni −tni−1) going to 0 as

n→∞. We inductively define (a sequence of) unique solutions {(vni , ε
tr,n
i , εpl,n

i )}Nn

i=0

of the incremental problems

(vni , ε
tr,n
i , εpl,n

i ) = Arg Min(v,εtr,εpl)∈Y0

(
E(v, εtr, εpl) + F(θ(tni ), εtr)

−〈L(tni ), (v, εtr, εpl)〉+D(εtr−εtr,n
i−1 , ε

pl − εpl,n
i−1 )

)
(2.5)

for i = 1, . . . , Nn with (vn0 , ε
tr,n
0 , εpl,n

0 ) = (v0, ε
tr
0 , ε

pl
0 ). The latter minimum problems

are uniquely solvable due to the fact that the map (u, εtr, εpl) 7→ E(u, εtr, εpl) +

F(θ(t), εtr)−〈L(t), (u, εtr, εpl)〉+D(εtr−ε̄tr, εpl− ε̄pl) is uniformly convex and lower

semicontinuous in Y0 for any given θ(t) ∈ R and (ε̄tr, ε̄pl) ∈ L1(Ω;R3×3
dev × R3×3

dev ).

Next, we denote by (vn, ε
tr
n , ε

pl
n ) the right-continuous and piecewise constant in-

terpolant of the values {(vni , ε
tr,n
i , εpl,n

i )}Nn

i=0 on the partition. Moreover, we let

tn : [0, T ]→ [0, T ] be given by tn(t) = tni−1 for t ∈ [tni−1, t
n
i ) for i ∈ 1, . . . , Nn.

Stability at the discrete level. The minimality in (2.5) entails that (vni , ε
tr,n
i , εpl,n

i )

is stable at time tni , that is (vni , ε
tr,n
i , εpl,n

i ) ∈ S̃(tni , θ(t
n
i )), for all i = 1, . . . , N . In-

deed, for any (v̄, ε̄tr, ε̄pl) ∈ Y0, we get

E(vni , ε
tr,n
i , εpl,n

i ) + F(θ(tni ), εtr,n
i )− 〈L(tni ), (vni , ε

tr,n
i , εpl,n

i )〉

+D(εtr,n
i −εtr,n

i−1 , ε
pl,n
i − εpl,n

i−1 ) ≤ E(v̄, ε̄tr, ε̄pl) + F(θ(tni ), ε̄tr)− 〈L(tni ), (v̄, ε̄tr, ε̄pl)〉

+D(ε̄tr−εtr,n
i , ε̄pl−εpl,n

i ) +D(εtr,n
i −εtr,n

i−1 , ε
pl,n
i −εpl,n

i−1 )

and the term D(εtr,n
i −εtr,n

i−1 , ε
pl,n
i −εpl,n

i−1 ) cancels out.

Convergence to a time-continuous evolution. Due to the minimality (2.5) of

(vni , ε
tr,n
i , εpl,n

i ) we deduce that

E(vni , ε
tr,n
i , εpl,n

i )− E(vni−1, ε
tr,n
i−1 , ε

pl,n
i−1 ) + F(θ(tni ), εtr,n

i )−F(θ(tni−1), εtr,n
i−1)

− 〈L(tni ), (vni , ε
tr,n
i , εpl,n

i )〉+ 〈L(tni−1), (vni−1, ε
tr,n
i−1 , ε

pl,n
i−1 )〉

+D(εtr,n
i − εtr,n

i−1 , ε
pl,n
i − εpl,n

i−1 )

≤ F(θ(tni ), εtr,n
i−1)−F(θ(tni−1), εtr,n

i−1)− 〈L(tni )− L(tni−1), vni−1〉.

Summing up for i from 1 to m ≤ Nn, we get

E(vnm, ε
tr,n
m , εpl,n

m )− E(v0, ε
tr
0 , ε

pl
0 ) + F(θ(tnm), εtr,n

m )−F(θ(0), εtr
0 )

− 〈L(tnm), (vnm, ε
tr,n
m , εpl,n

m )〉+ 〈L(0), (v0, ε
tr
0 , ε

pl
0 )〉+

m∑
i=1

D(εtr,n
i −εtr,n

i−1 , ε
pl,n
i −εpl,n

i−1 )

≤
∫ tnm

0

∫
Ω

β′(θ(s))θ̇(s)|εtr
n |dx ds−

∫ tnm

0

〈 ˙̀(s), vn(s)〉ds.

(2.6)
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By exploiting the discrete Lemma and the coercivity of E we deduce that

sup
t∈[0,T ]

(
E(vn(t), εtr

n (t), εpl
n (t))+F(θ(t), εtr

n (t))
)

and DissD(εtr
n , ε

pl
n ; [0, T ])

are bounded independently of n.(2.7)

Now Helly’s selection principle entails the possibility of finding a (not relabeled)

subsequence of partitions and a non-decreasing function φ : [0, T ] → [0,∞) such

that

(εtr
n (t), εpl

n (t))→ (εtr(t), εpl(t)) weakly in L2(Ω;R3×3
dev × R3×3

dev ) ∀t ∈ [0, T ]

DissD(εtr
n , ε

pl
n ; [0, t])→ φ(t) ∀t ∈ [0, T ]

DissD(εtr
n , ε

pl
n ; [s, t]) ≤ φ(t)− φ(s) ∀[s, t] ⊂ [0, T ].(2.8)

On the other hand, due to the quadratic character of E(·, εtr, εpl) we have from

minimality (2.5) that vn = L(εtr
n , ε

pl
n , L ◦ tn) where L : L1(Ω;R3×3

dev × R3×3
dev )×Y ′0 →

H1(Ω;R3) is a linear and continuous operator. In particular vn = L(εtr
n , ε

pl
n , L ◦

tn) → L(εtr, εpl, L) =: v. Moreover the convergence of energy and dissipation can

be also achieved.

Stability of the limit trajectory. We now prove that the set

S :=
⋃

t∈[0,T ]

(t, S̃(t, θ(t)))

is closed with respect to the weak topology of R×Y0. Let (tk, vk, ε
tr
k , ε

pl
k ) ∈ S with

tk → t and (vk, ε
tr
k , ε

pl
k )→ (v, εtr, εpl) weakly in Y0. By the lower semicontinuity of

E and F and accounting of the strong continuity of D in L1(Ω;R3×3
dev × R3×3

dev ) and

the continuity of θ and L we get

E(v, εtr, εpl) + F(θ(t), εtr)− 〈L(t), (v, εtr, εpl)〉

≤ lim inf
k→+∞

(
E(vk, ε

tr
k , ε

pl
k ) + F(θ(tk), εtr

k )− 〈L(tk), (vk, ε
tr
k , ε

pl
k )〉
)

≤ lim inf
k→+∞

(
E(v̄, ε̄tr, ε̄pl) + F(θ(tk), ε̄tr)− 〈L(tk), (v̄, ε̄tr, ε̄pl)〉+D(εtr−ε̄tr, εpl−ε̄pl)

)
= E(v̄, ε̄tr, ε̄pl) + F(θ(t), ε̄tr)− 〈L(t), (v̄, ε̄tr, ε̄pl)〉+D(εtr − ε̄tr, εpl − ε̄pl),

for any (v̄, ε̄tr, ε̄pl) ∈ Y0. Then (t, v, εtr, εpl) ∈ S.

Now we would like to exploit the latter closure property in order to prove

that (v(t), εtr(t), εpl(t)) is a stable state, i.e. (2.3) holds. First of all we have

that t 7→ tn(t) converges uniformly to the identity and (vn(t), εtr
n (t), εpl

n (t)) =

(vn(tn(t)), εtr
n (tn(t)), εpl

n (tn(t))) converges to (v(t), εtr(t), εpl(t)). Since

(tn(t), vn(tn(t)), (εtr
n (tn(t)), εpl

n (tn(t))) ∈ S

then the stability (2.3) follows and the set S is closed.
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Upper energy estimate. We can rewrite the inequality (2.6) in the following way

E(vn(t), εtr
n (t), εpl

n (t)) + F(θ(tn(t)), εtr
n (t))− 〈L(tn(t)), (vn(t), εtr

n (t), εpl
n (t))〉

+ DissD(εtr
n , ε

pl
n ; [0, tn(t)]) ≤ E(v0, ε

tr
0 , ε

pl
0 ) + F(θ(0), εtr

0 )− 〈L(0), (v0, ε
tr
0 , ε

pl
0 )〉

+

∫ tn(t)

0

∫
Ω

β′(θ(s))θ̇(s)|εtr
n |dx ds−

∫ tn(t)

0

〈 ˙̀(s), vn(s)〉ds.

We now pass to the lim inf in the latter relation by exploiting the lower semicon-

tinuity of E and F , the integrability of ˙̀ and of (β ◦ θ)̇, and the boundedness of

vn from (2.7)-(2.8). By the Lebesgue Dominated Convergence Theorem, we deduce

that

E(v(t), εtr(t), εpl(t)) + F(θ(t), εtr(t))− 〈L(t), (v(t), εtr(t), εpl(t))〉

+ DissD(εtr, εpl; [0, t]) ≤ E(v0, ε
tr
0 , ε

pl
0 ) + F(θ(0), εtr

0 )− 〈L(0), (v0, ε
tr
0 , ε

pl
0 )〉

+

∫ t

0

∫
Ω

β′(θ(s))θ̇(s)|εtr|dx ds−
∫ t

0

〈 ˙̀(s), v(s)〉ds,(2.9)

for all t ∈ [0, T ], i.e., the upper energy estimate.

Lower energy estimate. Let us now check the converse inequality with respect

to (2.9). Fix t ∈ [0, T ] and assume to be given a sequence of partitions {0 = sm0 <

sm1 < · · · < smMm−1 < smMm = t} such that maxj=1,...,Mm(smj −smj−1) → 0. We shall

let sm(s) := smj for s ∈ (smj−1, s
m
j ], j = 1, . . . ,Mm, vm := v ◦ sm, εtr

m := εtr ◦ sm
and εpl

m := εpl ◦ sm. From the stability condition (v(smj−1), εtr(smj−1), εpl(smj−1)) ∈
S̃(smj−1, θ(s

m
j−1)) we have

E(v(smj−1), εtr(smj−1), εpl(smj−1)) + F(θ(smj−1), εtr(smj−1))

− 〈L(smj−1), (v(smj−1), εtr(smj−1), εpl(smj−1))〉

≤ E(v(smj ), εtr(smj ), εpl(smj )) + F(θ(smj−1), εtr(smj ))

− 〈L(smj−1), (v(smj ), εtr(smj ), εpl(smj ))〉+D(εtr(smj )−εtr(smj−1), εpl(smj )−εpl(smj−1)).

We now add

F(θ(smj ), εtr(smj ))−F(θ(smj−1), εtr(smj ))−〈L(smj )−L(smj−1), (v(smj ), εtr(smj ), εpl(smj ))〉

to both sides and rearrange the terms in order to obtain

E(v(smj ), εtr(smj ), εpl(smj )) + F(θ(smj ), εtr(smj ))− 〈L(smj ), (v(smj ), εtr(smj ), εpl(smj ))〉

+D(εtr(smj−1)−εtr(smj ), εpl(smj−1)−εpl(smj )) ≥ E(v(smj−1), εtr(smj−1), εpl(smj−1))

+ F(θ(smj−1), εtr(smj−1))− 〈L(smj−1), (v(smj−1), εtr(smj−1), εpl(smj−1))〉

+ F(θ(smj ), εtr(smj ))−F(θ(smj−1), εtr(smj ))

− 〈L(smj )− L(smj−1), (v(smj ), εtr(smj ), εpl(smj ))〉.
(2.10)
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Summing up for j = 0, . . . ,Mm we deduce that

E(v(t), εtr(t), εpl(t)) + F(θ(t), εtr(t))− 〈L(t), (v(t), εtr(t), εpl(t))〉

+ DissD(εtr, εpl; [0, t]) ≥ E(v0, ε
tr
0 , ε

pl
0 ) + F(θ(0), εtr(0))− 〈L(0), (v0, ε

tr
0 , ε

pl
0 )〉

+

Mm∑
j=1

∫
Ω

(
β(θ(smj ))− β(θ(smj−1))

)
|εtr(smj )|dx−

∫ t

0

〈 ˙̀(s), vm(s)〉ds.

(2.11)

We can handle the first term in the last line of (2.11) as follows

Mm∑
j=1

∫
Ω

(
β(θ(smj ))− β(θ(smj−1))

)
|εtr(smj )|dx =

∫ t

0

∫
Ω

(∫
m

d

dt
(β ◦ θ)

)
|εtr ◦ sm|dx ds

where we used some obvious notation for the piecewise mean on the partition. As

DissD(εtr, εpl; [0, t]) <∞ we have that (εtr, εpl) is continuous in L1(Ω,R3×3
dev ×R3×3

dev )

with the exception of at most a countable number of times. This in particular

entails that εtr
m → εtr and εpl

m → εpl pointwise almost everywhere in [0, t]. Moreover,

β ◦ θ ∈W 1,1(0, T ) and one has that∫
m

d

dt
(β ◦ θ)→ β′(θ)θ̇ a.e. in [0, t].

Hence, by Dominated Convegence we can conclude that

Mm∑
j=1

∫
Ω

(
β(θ(smj ))− β(θ(smj−1))

)
|εtr(smj )|dx→

∫ t

0

∫
Ω

β′(θ(s))θ̇(s)|εtr|dxds.

From the fact that (v(s), εtr(s), εpl(s)) ∈ S̃(s, θ(s)) for all s ∈ [0, t] we readily

deduce that v = L(εtr, εpl, L). In particular, v has at most a countable number of

discontinuity points in time and vm → v pointwise almost everywhere. Eventually,

we can pass to the limit into inequality (2.11) and conclude that

E(v(t), εtr(t), εpl(t)) + F(θ(t), εtr(t))− 〈L(t), (v(t), εtr(t), εpl(t))〉

+ DissD(εtr, εpl; [0, t]) ≥ E(v0, ε
tr
0 , ε

pl
0 ) + F(θ(0), εtr(0))− 〈L(0), (v0, ε

tr
0 , ε

pl
0 )〉

+

∫ t

0

∫
Ω

β′(θ(s))θ̇(s)|εtr|dxds−
∫ t

0

〈 ˙̀(s), v(s)〉ds.

Absolute continuity of the evolution. Let us now prove that indeed t 7→
(v(t), εtr(t), εpl(t)) is absolutely continuous inH1(Ω;R3)×L2(Ω;R3×3

dev )×L2(Ω;R3×3
dev ).

To this end, we come back to the original variables (u, εtr, εpl) = (v+ uDir, εtr, εpl).

From the stability (1.8) at time s and the uniform convexity of E + F of constant
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α > 0 we get that

α‖u(t)−u(s)‖2H1(Ω;R3) + α‖εtr(t)−εtr(s)‖2
L2(Ω;R3×3

dev )
+ α‖εpl(t)−εpl(s)‖2

L2(Ω;R3×3
dev )

≤ E(u(t), εtr(t), εpl(t)) + F(θ(s), εtr(t))− 〈`(s), u(t)〉 − E(u(s), εtr(s), εpl(s))

−F(θ(s), εtr(s)) + 〈`(s), u(s)〉+D(εtr(t)−εtr(s), εpl(t)−εpl(s))

≤ E(u(t), εtr(t), εpl(t)) + F(θ(t), εtr(t))− 〈`(t), u(t)〉 − E(u(s), εtr(s), εpl(s))

−F(θ(s), εtr(s)) + 〈`(s), u(s)〉+ DissD(εtr, εpl; [s, t])−F(θ(t), εtr(t))

+ F(θ(s), εtr(t)) + 〈`(t)−`(s), u(t)〉 (1.9)
=

∫ t

s

∫
Ω

β′(θ(r))θ̇(r)|εtr|dxdr

−
∫

Ω

(
β(θ(t))− β(θ(s))

)
|εtr(t)|dx−

∫ t

s

〈 ˙̀(r), u(r)〉dr + 〈`(t)−`(s), u(t)〉

=

∫ t

s

∫
Ω

β′(θ(r))θ̇(r)
(
|εtr(r)|−|εtr(t)|

)
dxdr −

∫ t

s

〈 ˙̀(r), u(r)−u(t)〉dr

≤
∫ t

s

∫
Ω

|β′(θ(r))θ̇(r)| |εtr(r)−εtr(t)|dxdr

+

∫ t

s

‖ ˙̀(r)‖(H1(Ω;R3))′‖u(r)−u(t)‖H1(Ω;R3)dr.

Hence, by means of Gronwall’s Lemma one checks that

‖u(t)−u(s)‖H1(Ω;R3) + ‖εtr(t)−εtr(s)‖L2(Ω;R3×3
dev ) + ‖εpl(t)−εpl(s)‖L2(Ω;R3×3

dev )

≤ c

∫ t

s

∫
Ω

(
|β′(θ(r))θ̇(r)|+| ˙̀(r)|

)
dxdr

for some suitable constant c depending just on α and T . In particular, the absolute

continuity of t 7→ (v(t), εtr(t), εpl(t)) ensues.

3. The optimal control problem

As already mentioned in the introduction, in this section we are going to present

a result of existence of optimal controls. Our focus here is on the situation of a

SMA specimen which deforms under given mechanical loading under the influence

of a controlled space-homogeneous time-dependent temperature θ. In particular,

given the temperature θ ∈W 1,1(0, T ) we denote by

Sol(θ) ⊂ K

the set of energetic solutions of the state problem from Theorem 2.1, where we recall

that the set K has been introduced in (2.1). Let the set of admissible temperatures

(controls) be denoted by Θ ⊂ W 1,1(0, T ). Then, the optimal control problem

consists in the minimization of a given cost functional

J : K ×Θ→ (−∞,∞]

which is depending on both the energetic solution and the control. Our problem is

to find an optimal control θ∗ ∈ Θ and a corresponding optimal energetic solution
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(u∗, ε
tr
∗ , ε

pl
∗ ) ∈ Sol(θ∗) such that

(u∗, ε
tr
∗ , ε

pl
∗ ) ∈ Arg Min

{
J (u, εtr, εpl, θ) | (u, εtr, εpl) ∈ Sol(θ), θ ∈ Θ

}
.

For brevity, from now on we set

(3.1) K := L∞(0, T ;H1(Ω;R3)×L2(Ω;R3×3
dev )× L2(Ω;R3×3

dev )).

In order to possibly find optimal controls we shall consider the following standard

requirements.

Compatibility of the initial value and the controls:

(u0, ε
tr
0 , ε

pl
0 ) ∈ S(0, θ(0)) ∀θ ∈ Θ.(3.2)

Compactness of controls:

Θ is weakly compact in W 1,r(0, T ) for some r > 1.(3.3)

Lower semicontinuity of the cost functional:

θn → θ weakly in W 1,r(0, T ) for some r > 1

(un, ε
tr
n , ε

pl
n ) ∈ Sol(θn),

(un, ε
tr
n , ε

pl
n )→ (u, εtr, εpl) weakly-star in K


⇒ J (u, εtr, εpl, θ) ≤ lim inf

n→∞
J (un, ε

tr
n , ε

pl
n , θn).(3.4)

The compatibility condition in (3.2) was already presented in [49] and is im-

portant to ensure that the initial values are stable independently of the choice of

the control. The compactness of Θ from (3.3) is here chosen just for the sake of

simplicity. In particular it can be relaxed by asking for some extra coercivity with

respect to θ on the functional J .

The lower semicontinuity requirement in (3.4) is standard. We remark that a

possible quadratic cost functional covered by our theory is

J(u, εtr, εpl, θ)

=

∫ T

0

∫
Ω

|u−ud|2dxdt+

∫ T

0

∫
Ω

|εtr−εtr
d |2dxdt+

∫ T

0

∫
Ω

|εpl−εpl
d |

2dx dt

+

∫
Ω

|u(T )−uf |2 dx+

∫
Ω

|εtr(T )−εtr
f |2 dx+

∫
Ω

|εpl(T )−εpl
f |

2 dx

where ud : [0, T ] → L2(Ω;R3), εtr
d , ε

pl
d : [0, T ] → L2(Ω;R3×3) are given desired

displacement and inelastic strain profiles whereas uf ∈ L2(Ω;R3) and εtr
f , ε

pl
f ∈

L2(Ω;R3×3) are desired target states. Note that the latter functional is not lower

semicontinuous with respect to the weak-star topology of K, where we remind that

K has been introduced in (3.1). Still, it fulfills (3.4) due to the fact that the required

extra compactness is provided by the condition (un, ε
tr
n , ε

pl
n ) ∈ Sol(θn).
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Our main result is the following.

Theorem 3.1 (Existence of optimal controls). Under assumptions (1.1), (1.5), and

(3.2)-(3.4) there exists an optimal control θ∗ and a corresponding optimal energetic

solution (u∗, ε
tr
∗ , ε

pl
∗ ) ∈ Sol(θ∗).

Remark 3.2. We would like to point out that we interpret our result as follows: the

existence of an optimal control θ in the sense that it minimizes J together with

some (possibly suitable selected) response (u∗, ε
tr
∗ , ε

pl
∗ ) ∈ Sol(θ∗).

3.1. Proof. We shall finally turn to the proof of Theorem 3.1. Let (un, ε
tr
n , ε

pl
n , θn)

with (un, ε
tr
n , ε

pl) ∈ Sol(θn) be a minimizing sequence for J , namely

J (un, ε
tr
n , ε

pl
n , θn)→ inf

{
J (u, εtr, εpl, θ) : (u, εtr, εpl) ∈ Sol(θ), θ ∈ Θ

}
.

Owing to the compactness (3.3), we can extract a not relabeled subsequence in such

a way that both θn → θ and β ◦ θn → β ◦ θ weakly in W 1,r(0, T ) and uniformly. By

exploiting the energy balance (1.9) we readily get that

sup
t∈[0,T ]

(
E(un(t), εtr

n (t), εpl
n (t))+F(θn(t), εtr

n (t))
)
; DissD(εtr

n , ε
pl
n ; [0, T ])

are bounded independently of n.

We can hence extract again (still not relabeling) in order to get that:

εtr
n → εtr pointwise in L2(Ω;R3×3

dev )

εpl
n → εpl pointwise in L2(Ω;R3×3

dev )

un → u pointwise in H1(Ω;R3) (by linearity)

(un, ε
tr
n , ε

pl
n )→ (u, εtr, εpl) weakly-star in K.

The proof of Theorem 2.1 can be adapted to the present situation in order to

ensure that (u, εtr, εpl) ∈ Sol(θ). To this aim, the differences arise solely in the treat-

ment of those terms containing θn. In particular, the above-mentioned convergences

of θn and εtr
n entail directly the convergence∫

Ω

β(θn(t))|εtr
n (t)|dx→

∫
Ω

β(θ(t))|εtr(t)|dx ∀t ∈ [0, T ].

Moreover, one can also check for the limit∫ t

0

∫
Ω

β′(θn(s))θ̇n(s)|εtr
n |dxds→

∫ t

0

∫
Ω

β′(θ(s))θ̇(s)|εtr|dxds

as we have that β′(θn)θ̇n → β′(θ)θ̇ weakly in Lr(0, T ) and (by possibly extracting

again) εtr
n → εtr strongly

in Lp(Ω×[0, T ];R3×3
dev ) for all p ∈ [1,∞) (recall that εtr

n are uniformly bounded

in R3×3
dev ). As we now have that (u, εtr, εpl) ∈ Sol(θ), the assertion follows directly

from the lower semicontinuity assumption (3.4).
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