
version: July 31, 2014

An optimal irrigation network
with infinitely many branching points

Andrea Marchese & Annalisa Massaccesi

Abstract. The Gilbert-Steiner problem is a mass transportation problem,
where the cost to transport a measure µ− onto a measure µ+ depends on the
network used to move the mass and it is proportional to a certain power of the
“flow”. In this paper, we introduce a new formulation of the problem which
turns it into the minimization of a convex functional. By associating to µ−
and µ+ a group G and a 0-dimensional current B with coefficients in G, we
prove that the Gilbert-Steiner problem is equivalent to the problem of finding
a mass minimizer, among all 1-dimensional currents Z with coefficients in G
having boundary ∂Z = B. This framework allows us to define calibrations,
which can be used to prove the optimality of concrete configurations. We apply
this technique to prove the optimality of a certain irrigation network, having
the topological property mentioned in the title.

Keywords: Gilbert-Steiner problem, irrigation problem, calibrations, flat G-
chains.

MSC (2010): 49Q15, 49Q20, 49N60, 53C38.

0. Introduction

The Gilbert-Steiner problem is a variant of the optimal transport problem
with a cost depending not only on the position of the masses at the beginning
and at the end of the process, but also on the path that has been chosen to
move them. As in the optimal transport problem, the Gilbert-Steiner’s datum
consists of a positive measure µ− (source) and a positive measure µ+ (well), with
the same total mass ‖µ−‖(Rd) = ‖µ+‖(Rd). One wants to move µ− onto µ+,
minimizing the global cost. The cost of the transport is concave with respect
to the density of the transported mass, as it is in many natural phenomena and
engineering problems.

In particular, if µ− and µ+ are sums of Dirac deltas on a set of sources X
and a set of wells Y , respectively, then a transporting network is described by
a 1-dimensional rectifiable set Σ and a multiplicity function θ ∈ L1(Σ;Z). The
set Σ is a union of paths joining points of X to points of Y and the multiplicity
represents the “flow” of the transported mass through each point of the set Σ.
The cost associated to each transporting network is the integral on the set Σ
of θα for some α ∈ (0, 1). It is interesting to observe the limit cases: if α = 0,
the problem corresponds to the minimization of the 1-dimensional measure of
the set Σ, if α = 1, we recover the Monge-Kantorovich energy and the Monge
problem on optimal transport. When µ− is supported on a single point, we
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talk about irrigation problem. One immediately understands that, by its own
nature, the problem tends to favor large flows and therefore it easily leads to
branched structures.

Several descriptions of this problem have been given by many authors: we
refer to [4] for a detailed overview of the subject, though different models have
been proposed in [19, 10, 2, 17, 12]. Those models are summarized and proved
to be equivalent in [8, 9].

Our starting point is Xia’s approach in [19]: the problem is described in terms
of minimization of a certain energy, depending on α, in a family of transport
paths, that is, normal 1-dimensional currents with boundary µ+ − µ−. An
important feature which is evident in this approach is the non-convex nature
of the problem: the energy of a convex combination of two competitors may be
strictly larger than the energy of each single competitor.

One of the achievements of the present paper is a new formulation of the
Gilbert-Steiner problem which turns it into the minimization of a convex func-
tional. Some useful tools, such as calibrations, are available in this setting. By
associating to the measures µ− and µ+ a normed group G and a 0-dimensional
current B with coefficients in G, we manage to prove that the Gilbert-Steiner
problem is equivalent to the problem of finding a mass minimizer, among all
1-dimensional currents Z with coefficients in G having boundary ∂Z = B. The
group G is chosen depending only on the quantity ‖µ−‖(Rd) = ‖µ+‖(Rd). In
this new framework we can introduce the notion of calibration, that is, a func-
tional analytic tool to prove that a given candidate is a minimizer.

Such an approach is not completely new: in [11], we apply the same procedure
to the study of the Steiner tree problem, which corresponds to the limit case
with α = 0 of the Gilbert-Steiner problem, with an additional connectedness
constraint.

Let us explain with an easy example the rough idea of the new formulation.
Assume we want to irrigate the two wells y1 = (2,−1) and y2 = (2, 1) from
a (unique) source in the origin, which generates a flow of intensity 2. Fix
α = 1/2. The classical description of a competitor for this problem consists
of a superposition of two paths Γ1 and Γ2, both with multiplicity 1: the first
path goes from the origin to y1, the second from the origin to y2. Therefore
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the irrigation network can be identified with the set Γ1∪Γ2 with a multiplicity,
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which is equal to 2 on Γ1 ∩ Γ2 and 1 elsewhere on Γ1 ∪ Γ2. One computes the
energy of such competitor as

H1((Γ1 ∪ Γ2) \ (Γ1 ∩ Γ2)) +
√

2H1(Γ1 ∩ Γ2),

where H1 denotes the 1-dimensional Hausdorff measure. In our formulation we
associate to Γ1 and Γ2 vectors in R2 as multiplicities: g1 and g2, respectively,
where (g1, g2) is an orthonormal basis of R2. In this way the stretch Γ1 ∩ Γ2

is associated to the vector g1 + g2. In order to compute the mass of the corre-
sponding 1-current with coefficients in R2 one has to integrate on Γ1 ∪ Γ2 the
Euclidean norm of the corresponding multiplicity. Clearly this mass coincides
with the energy computed as above, because the Euclidean norm of g1 + g2 is
exactly

√
2.

In the last part of the paper we apply the equivalence result and the calibra-
tion method to prove the optimality of an irrigation tree with the topological
property mentioned in the title of the paper, that is, an infinite number of
branching points. The occurrence of such a topological behaviour for energy-
minimizers has been the aim of various attempts: in [3] some characterizing
principles for infinite irrigation trees are discussed, while in [14] the authors
prove the optimality of an analogous tree for the generalized Steiner tree prob-
lem (see also [13] and [15]). Their proof relies on a fine and rather delicate study
of the geometry of the candidate minimizer. On the contrary, our proof is based
on a calibration argument and we believe its simplicity to be an encouraging
sign for further developments.

Let us describe now, in more detail, the content of each section.
In §1, we collect those definitions and basic results in Geometric Measure

Theory that are necessary to formulate both the discrete version of the Gilbert-
Steiner problem, as introduced in [19] and our new formulation in terms of 1-
dimensional currents with coefficients in a group. Moreover we define a suitable
notion of calibration for these objects and we prove that a calibrated current
minimizes the mass in its homology class.

In §2, we recall and rework the discrete version of the Gilbert-Steiner problem
given by [19], in terms of an energy minimization problem in the family of
classical integral currents, having a fixed boundary, which is supported on the
given set of sources and wells (this is what we call problem (P1)). We also recall
a structure theorem for integral 1-currents (see Theorem 2.4) which allows one
to better understand why such an abstract class of competitors is indeed a
natural choice.

In §3, we describe how to associate to the given measures µ− and µ+ a
normed group G and a mass minimization problem in a class of rectifiable
currents with coefficients in G (which we call problem (P2)). In Theorem 3.6 we
prove the equivalence between the problems (P1) and (P2). Then we apply this
result and the calibration technique introduced in §1 to prove the optimality of
some simple transportation networks. We conclude explaining how one should
modify the two problems (P1) and (P2) in order to keep the equivalence, when
the measures µ−, µ+, given as initial datum, are rescaled.



4 A. Marchese & A. Massaccesi

In §4, we describe an irrigation network on the separable Hilbert space `2.
Then we prove that such a network is a solution to the continuous version of the
Gilbert-Steiner problem associated to the corresponding boundary. The proof
is based on an argument of reduction to a finite dimensional framework, where
we are able to exhibit a calibration and therefore to prove the optimality.

1. Notations and Preliminaries

In this first section, we briefly recall the main definitions and results concern-
ing 1-dimensional rectifiable currents with coefficients in the abelian normed
group (Zn, ‖ · ‖α). In this paper we limit ourselves to the essential facts which
are unavoidable for the statement and the development of the main result. See
[11] for a more general theory and further details.

1.1. Differential forms with values in Rn. The ambient space where we
want to treat the irrigation problem is Rd. Concerning the coefficients, let us
fix a standard basis (g1, . . . , gn) for Rn. We fix α ∈ (0, 1) and consider the
n-dimensional normed vector space (Rn, ‖ · ‖α), with

‖h‖α :=

 n∑
j=1

|hj |
1
α

α

for every h = h1g1 + . . . hngn ∈ Rn. Once for all, we fix the (canonical) basis
(e1, . . . , en) of the dual space of (Rn, ‖ · ‖α) so that 〈ei, gj〉 = δij . With this
notation, the dual space of (Rn, ‖ · ‖α) is the n-dimensional normed vector
space (Rn, ‖ · ‖1−α).

1.2. Definition. An Rn-valued covector in Rd is a map ω : Λ1(Rd)×Rn → R
with the following properties:

(i) 〈ω; τ, ·〉 ∈ Rn for every vector τ ∈ Λ1(Rd);
(ii) 〈ω; ·, h〉 ∈ Λ1(Rd) is a standard 1-dimensional covector in Rd for every

element h ∈ Rn.

The linear space of Rn-valued covectors in Rd, endowed with the comass norm

‖ω‖∗α := sup
|τ |≤1

‖〈ω; τ, ·〉‖1−α,

will be denoted by Λ1
(n,α)(R

d). An Rn-valued (1-dimensional) differential form

defined on Rd is a map ω : Rd → Λ1
(n,α)(R

d), its regularity is the one inherited

from the components

ωj := 〈ω; ·, gj〉 : Rd → Λ1(Rd) ,

for j = 1, . . . , n.

1.3. Definition. Consider a function ψ : Rd → Rn of class C 1. We can
compute the differential dψj of each component ψj of ψ (j = 1 . . . , n), thus we
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will denote

dψ = dψ1e1 + . . .+ dψnen ∈ C (Rd; Λ1
(n,α)(R

d)) .

1.4. Rectifiable currents with coefficients in Rn.

1.5. Definition. Given an integer number n ≥ 1 and a real parameter α ∈
(0, 1), we say that a map Z : C∞c (Rd; Λ1

(n,α)(R
d)) → R is a rectifiable current

with coefficients in the normed abelian group (Zn, ‖·‖α) if there exist a countably
1-rectifiable set Σ ⊂ Rd (see [16], for instance, for details about rectifiable sets),
a vector field τ : Σ→ Λ1(Rd) which is almost everywhere tangent to Σ and an
L1 function θ : Σ→ (Zn, ‖ · ‖α) such that

(i) for every ω ∈ C∞c (Rd; Λ1
(n,α)(R

d)) we can write

Z(ω) =

ˆ
Σ
〈ω(x); τ(x), θ(x)〉 dH1(x) ; (1.1)

(ii) the mass of the current is finite, that is

M(n,α)(Z) :=

ˆ
Σ
‖θ(x)‖α dH1(x) < +∞ .

Moreover, we define the boundary of Z as the linear functional ∂Z :
C∞c (Rd;Rn) → R satisfying ∂Z(ψ) := Z(dψ) for every ψ ∈ C∞c (Rd;Rn). We
require that there exist a finite set of points X = {x1, . . . , xm} ⊂ Rd and a
function η : X → (Zn, ‖ · ‖α) such that

(iii) for every ψ ∈ C∞c (Rd;Rn) we can write

∂Z(ψ) =

m∑
k=1

ψ(xk)η(xk) . (1.2)

Under these conditions, we will often denote Z = JΣ, τ, θK, ∂Z =
∑m

k=1 η(xk)δxk
and M(n,α)(∂Z) :=

∑m
k=1 ‖η(xk)‖α. Moreover, we write Z = (Z1, . . . , Zn), and

we say that Zj are the components of Z, if Zj = JΣj , τj , θjK (j = 1, . . . , n) are
classical1 integral currents satisfying

Z(ω) =

n∑
j=1

ˆ
Σj

〈ωj(x); τj(x)〉θj(x) dH1(x) ,

for every ω ∈ C∞c (Rd; Λ1
(n,α)(R

d)).

The appropriate notion of weak*-topology for the set of rectifiable currents
with coefficients in (Zn, ‖ ·‖α) is dual to the suitable locally convex topology on
the space C∞c (Rd; Λ1

(n,α)(R
d)), built in analogy with the topology on C∞c (Rd)

with respect to which distributions are dual. We write Zi
∗
⇀ Z when the

sequence (Zi)i≥1 is weakly*-converging to Z.

1Throughout the paper we refer to “classical” currents to indicate currents with coefficients
in R or Z (that is, n = 1). An integral 1-current is a classical rectifiable current with integer
coefficients.
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Let us remark that these definitions are consistent with the classical theory
of currents and currents with coefficients in a (normed, abelian, discrete) group.
In particular, rectifiable currents with coefficients in (Zn, ‖ · ‖α) belong to the
larger linear space of currents with coefficients in (Rn, ‖ · ‖α) and the mass of a
current Z is the supremum of |Z(ω)| when ω ∈ C∞c (U ; Λ1

(n,α)(R
d)) has norm

sup
x∈U
‖ω(x)‖∗α ≤ 1.

Despite the complexity of the notation, this framework is not redundant
for the objects we would like to represent and analyze. In fact, Theorem
1.7 provides a reasonable structure for a rectifiable current with coefficients
in (Zn, ‖ · ‖α) as a countable sum of loops plus finitely many Lipschitz curves
in Rd with constant multiplicity. Let us clarify how we endow a curve γ with a
canonical structure of current in the following example.

1.6. Example. We associate to a Lipschitz path γ : [0, 1]→ R2 (parametri-
zed with constant speed), and a coefficient θ ∈ Rn, the 1-dimensional rectifiable
current Z = JΓ, τ, θK with coefficients in Rn, where Γ is the support of the
curve γ([0, 1]) and, denoting by `(Γ) the length of the curve, the orientation
τ is defined by τ(γ(t)) := γ′(t)/`(Γ) for a.e. t ∈ [0, 1]. The boundary of such
current is ∂T = θ(δγ(1) − δγ(0)).

1.7. Theorem. Let Z be a rectifiable current in Rd with coefficients in
(Zn, ‖ · ‖α), then

Z =
m∑
i=1

Z̃i +
∞∑
`=1

Z̊`.

Here Z̃i = JΓ̃i, τ̃i, θ̃iK are rectifiable currents with coefficients in (Zn, ‖ · ‖α),

Γ̃i being the support of an injective Lipschitz curve and θ̃i a constant on Γ̃i.
Similarly Z̊` = J̊Γ`, τ̊`, θ̊`K are rectifiable currents with coefficients in (Zn, ‖·‖α),

Γ̊` being the support of a Lipschitz closed curve γ` : [0, 1] → Rd, which is

injective on (0, 1). Again, θ̊i is constant on Γ̊i.

For the proof of this theorem and a more detailed statement see 2.3 in [5] (the
proof rivisits the argument employed for classical integral currents in 4.2.25 of
[7]).

1.8. Compactness. We recall the fundamental compactness result for recti-
fiable currents with coefficients in a group.

1.9. Theorem. Consider a sequence (Zi)i≥1 of rectifiable currents with co-
efficients in (Zn, ‖ · ‖α) such that

sup
i≥1

M(n,α)(Zi) +M(n,α)(∂Zi) < +∞ .

Then there exists a rectifiable current Z, with coefficients in (Zn, ‖ · ‖α), and a
subsequence (Zih)h≥1 such that

Zih
∗
⇀ Z .
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The proof of this theorem can be carried out componentwise, using the anal-
ogous celebrated result for classical integral currents (see [7] or [1]). Since the
mass is lower semicontinuous with respect to the same topology, we directly get
the existence of a mass-minimizing rectifiable current for a given boundary.

1.10. Corollary. Let Ẑ be a rectifiable current with coefficients in (Zn, ‖ · ‖α),
then there exists a rectifiable current Z such that

M(n,α)(Z) = min
∂Z=∂Ẑ

M(n,α)(Z) ,

where the minimum is computed among rectifiable currents with coefficients in
(Zn, ‖ · ‖α).

1.11. Calibrations. The main reason why we want to treat the transporta-
tion problem as a mass minimization problem for rectifiable currents is the
availability of the calibration technique as a tool to prove optimality.

1.12. Definition. Consider a rectifiable current Z = JΣ, τ, θK with coeffi-
cients in (Zn, ‖ · ‖α). A smooth Rn-valued differential form ω : Rd → Λ1

(n,α)(R
d)

is a calibration for Z if the following conditions hold:

(i) for every x ∈ Σ we have that 〈ω(x); τ(x), θ(x)〉 = ‖θ(x)‖α;
(ii) the form is closed2, that is, dω = 0;
(iii) for every x ∈ Rd, every unit vector τ ∈ Λ1(Rd) and every h ∈ Rn we

have that
〈ω(x); τ, h〉 ≤ ‖h‖α .

1.13. Theorem. Let Z = JΣ, τ, θK be a calibrated rectifiable current with
coefficients in (Zn, ‖ · ‖α), then Z minimizes the mass among the rectifiable
currents with coefficients in (Zn, ‖ · ‖α) with boundary ∂Z.

Proof. Let ω be a calibration for Z. Consider a competitor Z ′ = JΣ′, τ ′, θ′K
with boundary ∂Z ′ = ∂Z, then, as a consequence of Stokes’ Theorem and
Definition 1.12, we have that

M(n,α)(Z) =

ˆ
Σ
‖θ(x)‖α dH1(x)

(i)
=

ˆ
Σ
〈ω(x); τ(x), θ(x)〉 dH1(x)

(ii)
=

ˆ
Σ′
〈ω(x); τ ′(x), θ′(x)〉 dH1(x)

(iii)

≤
ˆ

Σ′
‖θ′(x)‖α dH1(x) = M(n,α)(Z ′) ,

where each equality (resp. inequality) is motivated by the corresponding rela-
tion in Definition 1.12. �

2For the sake of readability, in Definition 1.3 we did not define what the differential of a
1-dimensional Rn-valued form is. On the one hand, all the examples we will provide have a
constant calibration, so its closedness is trivial. On the other hand, it is not difficult to extend
the classical definition of differential to Rn-valued k-forms componentwise.
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1.14. Remark. In §4, we want to allow the multiplicity of the competitors
to take values in Rn. In other words Z ′ could be a rectifiable current with
coefficients in (Rn, ‖ · ‖α). The existence of a calibration for Z guarantees the
optimality of the mass of Z even in this larger class. The proof of this fact is
the same as that given above.

2. The Gilbert-Steiner problem

2.1. The energy minimization problem. Let X = (x1, . . . , xm) and Y =

(y1, . . . , ym) ∈
(
Rd
)m

, with xi 6= yj for every i, j = 1, . . . ,m. Denote by B
(1,1)
X,Y

the integral 0-current

B
(1,1)
X,Y :=

m∑
i=1

(δyi − δxi). (2.1)

Consider the following problem.

(P1) Among all (classical) integral 1-currents T = JΣ, τ, θK in Rd with ∂T =

B
(1,1)
X,Y , find one which minimizes the Gilbert-Steiner energy

Eα(T ) =

ˆ
Σ
|θ(x)|αdH1(x) .

The problem (P1) is better known as the Gilbert-Steiner problem3, that is, a
transportation problem with sources in x1, . . . , xm and wells in y1, . . . , ym. The
cost of the transportation network is precisely the energy Eα. Note that it is
possible that xi = xj (respectively: yi = yj) for some i 6= j: indeed a point
with higher multilplicity represents a source generating (respectively: a well
absorbing) a more intense flow.

2.2. Remark. The existence of a solution for (P1) is again a consequence of
the direct method, indeed

(i) the class of competitors is non-empty, in fact the current B
(1,1)
X,Y is the

boundary of a current with finite energy. Take, for instance, the integral
1-current T̂ =

∑m
i=1Jσi, τi, 1K, where σi is the segment between xi and

yi and τi = (yi−xi)/|yi−xi|, then it is trivial to check that ∂T̂ = B
(1,1)
X,Y

and Eα(T̂ ) < +∞;

(ii) the set of integral currents in Rd with boundary B
(1,1)
X,Y and energy

bounded by a constant is contained in a weak* compact set;
(iii) the energy Eα is lower semicontinuous with respect to the weak* topo-

logy.

3The actual version of the Gilbert-Steiner problem allows as competitors also polyhedral
chains with real multiplicities. The issue whether or not this version is in general equivalent
to our problem (P1) will be partially discussed later in §3.12. For the purposes of this paper,
such issue is not fundamental, indeed the method we use to prove that a certain object is
a solution to problem (P1) is strong enough to prove also the optimality among polyhedral
chains with real multiplicities (see Remark 1.14).
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2.3. The structure of integral 1-currents. Let us recall the analogue of
Theorem 1.7 in the simpler setting of 1-dimensional integral currents in Rd,
with the double aim of an easier picture and a better understanding of the
Gilbert-Steiner problem.

2.4. Theorem. Let T be an integral 1-current in Rd, with4 M(∂T ) = 2m.
Then

T =
m∑
i=1

T̃i +
∞∑
`=1

T̊` , (2.2)

where T̃i are integral 1-currents associated to injective Lipschitz paths, for every
i = 1, . . . ,m and T̊` are integral 1-currents associated to Lipschitz paths γ` :
[0, 1] → Rd satisfying γ`(0) = γ`(1) and injective on (0, 1), for every ` ≥ 1. In

particular ∂T̊` = 0 for every ` ≥ 1. Moreover

M(T ) =
m∑
i=1

M(T̃i) +
∞∑
`=1

M(T̊`). (2.3)

2.5. Remark. Since M(∂T ) = 2m we can represent ∂T =
∑m

i=1(δyi − δxi),
where (x1, . . . , xm) and (y1, . . . , ym) ∈

(
Rd
)m

, satisfy xi 6= yj for every
i, j = 1, . . . ,m. Without loss of generality, we may assume that there ex-
ists a permutation σ ∈ Sm such that in the decomposition (2.2) we have

∂T̃i = δyi − δxσ(i) .

2.6. Remark. In Theorem 2.4, if we represent T̃i = JΓ̃i, τ̃i, θ̃iK, we may

assume that the multiplicity θ̃i is always non negative, hence if H1(Γ̃i∩ Γ̃j) > 0,

then by (2.3) τ̃i = τ̃j H1-a.e. on Γ̃i ∩ Γ̃j . This implies that the multiplicity of

the current T̃1 + . . .+ T̃m is θ̃1 + . . .+ θ̃m.

3. Gilbert-Steiner problem and currents with coefficients in Rn

3.1. The mass minimization problem. The Gilbert-Steiner problem (P1)
can be rephrased as a mass minimization problem for rectifiable currents with
coefficients in (Zn, ‖·‖α), where n is the number of sources (resp. wells), counted
with multiplicity, in the boundary datum X = (x1, . . . , xn), Y = (y1, . . . , yn) ∈
(Rd)n.

(P2) Among all permutations σ ∈ Sn and among all rectifiable currents Z =
JΣ, τ, θK in Rd with coefficients in (Zn, ‖ · ‖α) and boundary

B
(n,α)
σ(X),Y =

n∑
j=1

gj(δyj − δσ(xj)) ,

find one which minimizes the mass

M(n,α)(Z) =

ˆ
Σ
‖θ(x)‖αdH1(x) .

4We will denote by M the mass of a classical currents.
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It will be clear from Definition 3.3 that fixing the permutation σ in (P2) cor-
responds somehow to prescribe which source goes into which well (see also the
description of the who goes where problem given in [2]). This is not prescribed,
instead, when we fix the boundary datum in (P1). This is the reason why in
(P2) we need to minimize also among all permutations σ ∈ Sn. Of course we
may drop this condition when the set of sources contains only one point with
multiplicity n, as in the case of the irrigation problem.

3.2. The equivalence of (P1) and (P2). In the next theorem we state
the equivalence between the problems (P1) and (P2). Let us first describe a
canonical way to associate to a competitor for the problem (P1) a competitor
for the problem (P2) and vice versa.

3.3. Definition. Let X = (x1, . . . , xn), Y = (y1, . . . , yn) ∈ (Rd)n, with xi 6=
yj for every i, j = 1, . . . , n.

(1) Given an integral current T in Rd with boundary ∂T = B
(1,1)
X,Y as in (2.1),

consider a decomposition according to Theorem 2.4 (indeed, M(∂T ) =
2n), satisfying the assumption of Remark 2.5, that is

T =
n∑
i=1

T̃i +
∞∑
`=1

T̊`

and there exists σ ∈ Sn such that

∂T̃i = δyi − δxσ(i) .
We set

Z[T ] := (T̃1, . . . , T̃n) ,

(according to the basis (g1, . . . , gn)) which is a rectifiable current with
coefficients in (Zn, ‖ · ‖α) and boundary

∂(Z[T ]) = B
(n,α)
σ(X),Y .

Notice that Z[T ] depends on the decomposition chosen for T , therefore
it may be non-unique.

(2) Vice versa, given a rectifiable current Z with coefficients in (Zn, ‖ · ‖α),
we can write it componentwise as Z = (Z1, . . . , Zn) and we set

T [Z] := Z1 + . . .+ Zn ,

which is an integral current with boundary B
(1,1)
X,Y .

3.4. Remark. Consider a rectifiable current Z = JΣ, τ, θK with coefficients
in (Zn, ‖ · ‖α). Then

Eα(T [Z]) ≤Mn,α(Z) .

Indeed, the integral current T [Z] has multiplicity θ1 + . . . + θn, where θ =
θ1g1 + . . .+ θngn is the multiplicity of Z. Moreover∣∣∣ n∑

j=1

θj

∣∣∣α ≤ ( n∑
j=1

|θj |
1
α

)α
= ‖θ‖α , (3.1)
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because θj ∈ Z for any j = 1, . . . , n and 0 < α < 1. Notice that the equality
holds in (3.1) if and only if θj ∈ {0, 1} for every j = 1, . . . , n.

3.5. Proposition. Consider an integral current T in Rd with M(∂T ) = 2n
and a decomposition of type (2.2) as in Theorem 2.4. Then

Mn,α(Z[T ]) = Eα
( n∑
i=1

T̃i

)
.

Proof. Let us denote by θ = θ̃1g1 + . . . + θ̃ngn the multiplicity of Z[T ].

By definition of Z[T ], each θ̃j is the multiplicity of T̃j = JΓ̃j , τ̃j , θ̃jK. Since

M(∂T ) = 2n, then θ̃j ∈ {0, 1} almost everywhere on
⋃
j Γ̃j (in particular,

θ̃j = 1 a.e. on Γ̃j). Thus, we can infer that

‖θ‖α = |θ̃1 + . . .+ θ̃n|α

almost everywhere on
⋃
j Γ̃j . The conclusion follows, because the multiplicity

of
∑n

j=1 T̃j is precisely θ̃1 + . . .+ θ̃n (see Remark 2.6). �

3.6. Theorem. Let X and Y be as in Definition 3.3. Then the problems
(P1) and (P2) are equivalent. More precisely, the following results hold.

(1) If T is an energy minimizer for the Gilbert-Steiner problem (P1) with

boundary B
(1,1)
X,Y =

∑n
j=1(δyj − δxj ), then Z[T ] is a mass minimizer for

the problem (P2). Moreover Eα(T ) = Mn,α(Z[T ]).
(2) If Z is a solution for the problem (P2) with the datum (X,Y ), then

T [Z] minimizes the energy Eα among all integral currents with boundary

B
(1,1)
X,Y . Moreover Mn,α(Z) = Eα(T [Z]).

Proof. (1) Let T be a solution to the Gilbert-Steiner problem (P1).
Since we want to show that Z[T ] is a solution for the problem (P2),
then we compare its mass with the mass of an admissible competitor
for (P2), that is, a rectifiable current Z ′ with coefficients in (Zn, ‖ · ‖α)

and boundary B
(n,α)
σ′(X),Y for some σ′ ∈ Sn. Then we have that

Mn,α(Z ′)
3.4
≥ Eα(T [Z ′]) ≥ Eα(T )

(2.3)

≥ Eα
( n∑
i=1

T̃i

)
3.5
= Mn,α(Z[T ]) .

Let us explain that the first inequality is due to Remark 3.4, the second
one holds because T is a minimizer for the energy Eα with boundary

B
(1,1)
X,Y and the third one holds because of (2.3). Finally, the last equality

has already been proved in Proposition 3.5. Notice also that the third
inequality indeed must be an equality, because

∑n
i=1 T̃i is a competitor

of T in (P1).
(2) Let Z be a solution to the problem (P2). We have claimed that T [Z]

is a solution to (P1): indeed, if T ′ is an integral current with boundary
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B
(1,1)
X,Y , then we have that

Eα(T ′)
(2.3)

≥ Eα
( n∑
i=1

T̃ ′i

)
3.5
= Mn,α(Z[T ′]) ≥Mn,α(Z)

3.4
≥ Eα(T [Z]) .

As before, let us remind that the first inequality is a consequence of (2.3)
and the equality is due to Proposition 3.5. Finally, the last inequality
relies on Remark 3.4. This last is an equality, indeed. This follows from
the fact that the multiplicity of every component Zj = JΣj , τj , θjK of
Z is 1 (H1-a.e. on Σj) and the inequality in (3.1) is an equality when
every θj is either 0 or 1.

�

3.7. Examples of calibreted minima. We show now some examples of cal-
ibrations for the problem (P2) with the only aim to make the reader confident
with this technique and to throw light on some issues that one may not no-
tice immediately in the general formulation. In the first example there are two
sources and two wells with unit multiplicity on the vertices of a rectangle in R2.
The second example is an irrigation problem with only two wells, but where we
allow also higher multiplicities.

3.8. Example. Fix the parameter α = 1/2 and the following points in the
plane

x1 := (−3,−2), x2 := (−2,−3), y1 := (1, 0), y2 := (0, 1), z := (−2,−2) .

Consider the 0-dimensional current in R2 with coefficients in Z2 given by

B
(2,1/2)
(x1,x2),(y1,y2) = −g1δx1 − g2δx2 + g1δy1 + g2δy2 .

We claim that a solution to the problem (P2) for the boundary B
(2,1/2)
(x1,x2),(y1,y2)

is

Z = Jσ1, τ1, g1K + Jσ2, τ2, g2K + Jσ3, τ3, g1 + g2K + Jσ4, τ1, g1K + Jσ5, τ2, g2K

where σ1 is the segment from x1 to z with orientation τ1 = (1, 0), σ2 is the
segment from x2 to z with orientation τ2 = (0, 1), σ3 is the segment from z to
0 with orientation τ3 =

(√
2/2,
√

2/2
)
, σ4 is the segment from 0 to y1 and σ5 is

the segment from 0 to y2.
Firstly, we exhibit a constant5 calibration ω(x) ≡ ω ∈ Λ1

(2,1/2)(R
2), which

proves that Z is a mass minimizer for the boundary B
(2,1/2)
(x1,x2),(y1,y2). Then we

will prove that the achieved minimum (that is, the value M(2,1/2)(Z)) is less

than or equal to the minimum for the boundary B
(2,1/2)
(x1,x2),(y2,y1) (remember that

in (P2) we require to minimize among all possible permutations).

5Since ω is constant, we do not care about condition (ii) in Definition 1.12.
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Let us remind that an R2-valued covector acts bilinearly on the pair (τ, g) ∈
Λ1(R2) × Z2 and we can represent it as a 2 × 2 matrix with real coefficients.
We put

ω(x) ≡
(

1 0
0 1

)
.

Now we can easily check that 〈ω; τi, gi〉 = 1 for i = 1, 2, while

〈ω; τ3, g1 + g2〉 =
√

2 = ‖g1 + g2‖α ,

so the condition (i) in Definition 1.12 is fulfilled. Condition (iii), concerning
the norm of ω, is trivially verified (for α = 1/2 it is sufficient to chech that the
Euclidean norm of the matrix is less than or equal to 1).

To prove that the minimum M(2,1/2)(Z) is less than or equal to the minimum

for the boundary B
(2,1/2)
(x1,x2),(y2,y1), we fix a competitor Z ′ for this second problem.

Without loss of generality, we can consider Z ′ as the sum of two curves, one
with multiplicity g1 and one with multiplicity g2. There are two cases: either
the two curves in Z ′ do not intersect, in this case

M(2,1/2)(Z ′) ≥ |x1 − y2|+ |x2 − y1| = 6
√

2 > 8 = M(2,1/2)(Z) , (3.2)

or the curves intersect at some point z′. In this case, it is sufficient to “switch”
the multiplicity g1 with g2 from that point to the part of the boundary supported
on {y1, y2}.

−g2

g2
g1

−g1
−g1
−g2 −g2

−g1

g1 g2
g2 g1

Z Z ′ Z ′′

In this way, we created a competitor Z ′′ for the problem with boundary

B
(2,1/2)
(x1,x2),(y1,y2) with the property that

M(2,1/2)(Z ′) = M(2,1/2)(Z ′′) .

Therefore we may conclude

M(2,1/2)(Z ′) = M(2,1/2)(Z ′′) ≥M(2,1/2)(Z) .

3.9. Example. Fix α = 1/2 and θ := arccos(1/
√

3) ∈ (0, π/2). Fix
x, y1, y2 ∈ R2 given by x = (− cos θ,− sin θ), y1 = (1, 0) and y2 = (0, 1). Denote

X = (x, x, x) ∈ (R2)3

and

Y = (y1, y2, y2) ∈ (R2)3.
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We claim that the only mass-minimizing current with coefficients in (Z2, ‖·‖1/2)

among those with boundary B
(2,1/2)
X,Y is

T = Jσ̂0, τ̂0, g1 + g2 + g3K + Jσ̂1, τ̂1, g1K + Jσ̂2, τ̂2, g2 + g3K

where σ̂0 is the segment from x to 0 and σ̂i is the segment from 0 to yi for
i = 1, 2. The orientation τ̂i on each segment goes from the first to the second
extreme point.

g2 + g3

g1

−(g1 + g2 + g3)

The constant R3-valued form

ω̂(x) ≡

 1 0

0
√

2/2

0
√

2/2


is a calibration for T . Indeed

〈ω̂; τ̂0, g1 + g2 + g3〉 =
√

3 = ‖g1 + g2 + g3‖1/2;

〈ω̂; τ̂1, g1〉 = 1 = ‖g1‖1/2;

〈ω̂; τ̂2, g2 + g3〉 =
√

2 = ‖g2 + g3‖1/2,
therefore condition (i) is satisfied. Moreover ‖〈ω̂; τ, ·〉‖1/2 = 1 for every τ ∈ R2,
hence (iii) is also satisfied. As before, condition (ii) is trivially verified because
ω̂ is constant.

3.10. Rescaled problems. In §4 we want to deal with a boundary made of
infinitely many points. To this aim it is worthwhile to mention the approach by
Xia in [19], where the continuous version of the Gilbert-Steiner problem (i.e. µ−
and µ+ are not necessarily atomic measures) is defined through the relaxation
of the Gilbert-Steiner energy. Given a normal 1-dimensional current T one con-
siders all possible sequences Tn of polyedral currents which are approximating
T in the flat norm, then one defines the energy of T as

Eα(T ) := inf
Tn
{lim inf

n
Eα(Tn)}.

As shown in Theorem 2.7 of [20], only rectifiable currents enter in the compe-
tition, because non-rectifiable normal currents have infinite energy.

As a first step to prove the optimality of our irrigation network in §4, it is
convenient to introduce a renormalized version of the problem (P1), in which
the boundary is rescaled to have mass equal to 2. More precisely, consider the

following problem, where B
(1,1)
X,Y and n are as in §2.1.
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(P1’) Among all rectifiable 1-currents T ′ = JΣ, τ, θK in Rd with real coeffi-

cients, with T ′ = n−1T and T is an integral current with ∂T = B
(1,1)
X,Y ,

find one which minimizes the extended Gilbert-Steiner energy

Eα(T ′) =

ˆ
Σ
‖θ‖α dH1 .

There is a clear bijection between the competitors of the problems (P1) and
(P1’). The feature we want to underline is how the energy rescales. Indeed

Eα(n−1T ) = n−αEα(T ), (3.3)

for every T which is a competitor for (P1).
The quantity we minimize in the problem (P2), instead, has naturally a linear

rescaling, therefore if we want to mantain the equality between the minima, we
have to rescale the problem (P2) differently. It turns out that the correct version
of the rescaled problem is the following.

(P2’) Among all permutations σ ∈ Sn and among all the rectifiable currents
Z ′ = JΣ, τ, θK in Rd with coefficients in n−αZn and with boundary

∂Z ′ = n−αB
(n,α)
σ(X),Y = n−α

n∑
j=1

gj(δyj − δxσ(j)) ,

find one which minimizes the mass

Mn,α(Z ′) =

ˆ
Σ
‖θ‖α dH1.

Note that, if Z is a competitor for (P2), then n−αZ is a competitor for (P2’)
and naturally

Mn,α(n−αZ) = n−αMn,α(Z). (3.4)

The canonical way to associate to a competitor for the problem (P1’) a com-
petitor for the problem (P2’) and vice versa is a straightforward modification
of the method explained in Definition 3.3.

(1) To a competitor T ′ for (P1’) we associate the current

Z ′[T ′] := n−αZ[nT ′]

(note that nT is a competitor for (P1)).
(2) To a competitor Z ′ for (P2’) we associate the current

T ′[Z ′] := n−1T [nαZ ′] .

It is easy to observe that with this rescaling the analog of Remark 3.4 and of
Proposition 3.5 still hold, therefore we have the following corollary.

3.11. Corollary. The problems (P1’) and (P2’) are equivalent in the sense
of theorem 3.6.
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Proof. By construction, the solutions of the problem (P1’) are in bijection
with the solutions of the problem (P1). Analogously the solutions of the prob-
lem (P2’) are in bijection with the solutions of the problem (P2). Thus the
equivalence follows from Theorem 3.6 and from (3.3) and (3.4). �

3.12. Convex problems and existence of calibrations. Even if we have
found a description of the Gilbert-Steiner problem which consists in a mini-
mization of a convex functional, we cannot really claim that we are solving a
“convex problem”, in which case a powerful machinery for the computations of
minima would be available. Indeed our class of competitors is not a convex set.
While for the classical formulation of the Gilbert-Steiner problem (see footnote
3) one can safely extend the minimization problem to a convex and compact
class of objects (being the energy infinite for non-rectifiable currents), this is
not the case for the problem (P2). Moreover, in (P2) we cannot guarantee that
there is no gap of mass between the minimizers among normal currents and
minimizers among integral currents. An interesting occurrence of this gap phe-
nomenon in a non-Euclidean setting is given in [11]. We conjecture that in the
Euclidean setting there is no such gap. The validity of this conjecture would
imply that the Gilbert-Steiner problem can be viewed as a convex problem and
moreover the existence of (a sort of) calibration is a necessary and sufficient
condition for the minimality (see §4 of [11] for more details).

4. A minimizer with infinitely many branching points

4.1. Currents in metric spaces. In this section we prove the optimality of
a certain irrigation network having an infinite boundary datum, as mentioned
in §3.10. The main tools to prove its optimality have already been introduced
in §1 and §3, more precisely in Theorem 1.13 (the existence of a calibration
is a sufficient condition for minimality) and in Corollary 3.11 (the equivalence
of problems (P1’) and (P2’)). Nevertheless, since the ambient space for this
irrigation network is the separable Hilbert space6 `2, a short digression on cur-
rents in metric spaces is needed. In order to keep the discussion here as incisive
as possible, we recall only those facts that are strictly unavoidable to define
a certain irrigation problem and to prove the optimality of our configuration.
The reader is referred to [1] for the theory of currents in a metric space and for
all the relevant definitions. Throughout this section, we will assume α = 1/2.

Let T be a rectifiable 1-current in `2 (see §4 in [1]) and let ‖T‖ be the
associated mass (in the sense of Definition 2.6 of [1]). In particular, T is
supported on a countably H1-rectifiable set Σ and ‖T‖ = θH1 Σ for some
non-negative θ ∈ L1(Σ,R). We call the extended Gilbert-Steiner energy7 of T

6We choose this setting instead of the more natural Euclidean space, because the possiblity
to have infinitely many mutually orthogonal direction allows us to find a very simple calibration
for the problem we will introduce.

7We denote the extended Gilbert-Steiner energy by E, omitting α, because α = 1/2
throughout all the current section.
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the quantity

E(T ) :=

ˆ
Σ

√
θ(x) dH1(x) , (4.1)

if the integral makes sense, or +∞ otherwise. One may notice immediately that
the extended Gilbert-Steiner energy is still subadditive, i.e.,

E(T1 + T2) ≤ E(T1) + E(T2) .

Since the projection on a finite dimensional space is going to be a fundamental
simplification in the handling of our problem, we recall the following proposi-
tion, which just relies on the concavity of the square root.

4.2. Proposition. Let π : `2 → V be the orthogonal projection of `2 onto a
subspace V . Then, for every rectifiable 1-current T in `2, there holds8 E(π]T ) ≤
E(T ).

4.3. Construction of the irrigation tree. Let (ei)i∈N be the standard or-
thonormal basis for `2. Roughly speaking, we are going to define a rectifiable
1-dimensional current T in `2 (with coefficients in Q) in the following way:
we start from a “trunk”, which is the oriented segment from the origin O to
e1 ∈ `2, with unit multiplicity, then, for every n ∈ N, we are going to build a
family of 2n “branches”, that is, 2n currents supported on segments connected
to the main “tree”, with suitable length, orientation and multiplicity in Q. The
irrigation tree will be the sum, up to infinity, of these currents.

To begin with, we deal with the orientations of the segments. If it is not
obvious from the context, we always denote by σ(p, q) a segment in `2 from p to
q and by xσ(p,q) the (unit) orientation of σ(p, q) from p to q. Now we establish
the directions y(x), z(x) according to which we will assign the orientation of

the segments of a new generation. For every x ∈ `2 of the form x =
∑l

i=1 aiei,
with al 6= 0, we put

y(x) :=

√
2

2

l∑
i=1

ai(ei + el+i)

and

z(x) :=

√
2

2

l∑
i=1

ai(ei − el+i) .

Notice that y(x) and z(x) are orthogonal and y(x)+z(x) is parallel to x. More-
over, if we start with a set of mutually orthonormal directions {x1, . . . , xm},
then {y(x1), z(x1), . . . , y(xm), z(xm)} are mutually orthonormal, too.

We give the following iterative construction.

◦ We set
T0 = Jσ(O, e1), x0, 1K ,

where σ(O, e1) is the segment from the origin to e1 and x0 = e1 is the
outgoing orientation of σ(O, e1). Moreover, we define E0 := {σ(O, e1)}.

8For the definition of the pushforward F]T of a current T through a map F , see Definition
2.4 of [1].
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◦ For every line segment σ(p, q) ∈ En−1 with orientation x = xσ(p,q), we
put in the set En the pair of segments

σ(q, q + 4−ny(x)) and σ(q, q + 4−nz(x)).

Finally, we define

Tn :=
∑
i≤n

∑
σ∈Ei

Jσ, xσ, 2−iK .

Notice that9 M(∂Tn) = 2 for every n ∈ N.

If we call

En :=
⋃
σ∈En

σ,

then the support of the irrigation tree is defined as the limit

E :=
⋃
n∈N

En .

Notice that the segments are growing in orthogonal directions, hence H1-a.e.
p ∈ E belongs to a unique segment σ(p) ∈ En(p) and we can define an orientation

τ : E → `2 setting τ(p) = xσ(p). Analogously, we can define a multiplicity

m : E → Q setting m(p) = 2−n for every p ∈ En. The irrigation tree T is
defined as

T := JE, τ,mK .
The truncated currents Tn play a fundamental role in the proof of optimality

of the irrigation tree T , because they are a good approximation for T (as we
underline with Remark 4.4) and they are essentially embedded in a finite dimen-
sional space (indeed, suppTn ⊂ span{e1, . . . , e2n}). Since the segments in E are

essentially disjoint, we can also write Tn = T
(⋃

i≤nE
n
)

:= J
⋃
i≤nE

n, τ,mK.

4.4. Remark. By construction, the following facts hold.

(i) E(T − Tn) =
∑

j>n 2j2−
j
2 4−j =

∑
j>n 2−

3
2
j .

(ii) M(T − Tn) =
∑

j>n 2j2−j4−j =
∑

j>n 2−2j .

(iii) If πn : `2 → span{e1, . . . , e2n} is the orthogonal projection and if
{q1, . . . , q2n} are the second extreme points of the segments in En, then
(πn)](Tn) is a candidate for the minimization problem (P1’) in 3.10,
where

X = (0, . . . , 0), Y = (q1, . . . , q2n) .

Indeed 2n(πn)]Tn is an integral current.

We are now ready to prove the optimality of T .

4.5. Theorem. The rectifiable 1-current T in `2 minimizes the generalized
Gilbert-Steiner energy (4.1) among all rectifiable currents in `2 with boundary
∂T .

9Here and in the following, M(T ) denotes the total mass of the mass measure ‖T‖.
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Proof. We split the proof into several steps.
Step 1: general strategy. Let S be an admissible competitor, i.e., S is a
rectifiable 1-current in `2 with ∂S = ∂T .

We want to reduce the problem to an energy minimization problem for rectifi-
able 1-currents in a finite dimensional space and then exploit the tools developed
in the previous sections. For every n ∈ N, let Sn := S−T +Tn and notice that
∂Sn = ∂Tn. By Proposition 4.2, we have that

E((πn)]Sn) ≤ E(Sn) ∀n ∈ N .
Fix ε > 0. Since, by subadditivity of E, we have that

E(Sn) ≤ E(S) + E(Tn − T ) ∀n ∈ N
and the energy E(Tn − T ) is going to 0 (see Remark 4.4), then there exists
n(ε) ∈ N such that E(Tn(ε)−T ) ≤ ε, thus E(S) ≥ E(Sn(ε))− ε. If we can prove
that

E(Tn) ≤ E((πn)]Sn) (4.2)

for every n ∈ N, then we have that

E(T ) ≤ E(Tn(ε)) + E(Tn(ε) − T ) ≤ E(Tn(ε)) + ε

≤ E((πn(ε))]Sn(ε)) + ε ≤ E(Sn(ε)) + ε ≤ E(S) + 2ε ,

which proves the theorem, since ε can be arbitrarily small.
Step 2: reduction to problem (P1’). We have already noticed that (πn)]Tn
is an admissible candidate for the problem (P1’). The issue is that, in general,
(πn)]Sn is not an admissible competitor and we cannot immediately look for

a calibration for the current Z ′[(πn)]Tn]10. Indeed (πn)]Sn is a rectifiable cur-
rent, with admissible boundary datum, but its coefficients are in R and not
necessarily in 2−nZ, as required in (P1’)11.

In order to overcome this issue, we have to perform a second approximation.
Fix δ > 0. We associate to (πn)]Sn a polyhedral current Ŝ = 1

2nNR, where

N ∈ N and R has integer multiplicity. We can choose Ŝ in such a way that the
boundary is unchanged, i.e.,

∂Ŝ = ∂(πn)]Sn = ∂(πn)]Tn ,

and
E(Ŝ) ≤ E ((πn)]Sn) + δ . (4.3)

The existence of Ŝ is a consequence of Proposition 4.4 of [20].

Step 3: construction of Ẑ.
Since we want to move the problem of energy minimization in the setting of

(rational multiples of) rectifiable currents with coefficients in Z2n , we associate

10The definition of Z′[(πn)]Tn] is given in §3.10. The role of the basis (g1, . . . , g2n) here is
played by (πn(x1), . . . , πn(x2n)), where x1, . . . , x2n are the (mutually orthogonal) orientations
of the segments in the family En

11In particular, we do not have a canonical way to associate to (πn)]Sn a current with

coefficients in R2n whose mass is less than or equal to the energy of (πn)]Sn (see Proposition
3.5).
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to Ŝ a current Ẑ in R2n with coefficients in R2n . We can choose Ẑ in such a
way that the boundary is

∂Ẑ = ∂Z ′[(πn)]Tn]

and
M(2n,1/2)(Ẑ) ≤ E(Ŝ) . (4.4)

The construction of Ẑ, starting from Ŝ, is analogous to that presented in Def-
inition 3.3. Let x1, . . . , x2n be the (mutually orthogonal) orientations of the
segments in the family En. Let us write the polyhedral integral 1-current
R = 2nNŜ as

R =
∑
i∈I

Jσi, τi, aiK ,

where σi is an oriented segment with orientation τi and ai ∈ {1, . . . , 2nN}.
Decomposing12 R as in (2.2), one may notice that the current Z[R] (according
to the basis (πn(x1), . . . , πn(x2n))) has the form

Z[R] =
∑
i∈I

Jσi, τi, biK ,

where

◦ bi = ci,1πn(x1) + . . .+ ci,2nπn(x2n);
◦ ci,j ∈ N ∪ {0} and ci,j ≤ N for every j = 1, . . . , 2n13;
◦ ci,1 + . . .+ ci,2n = ai.

We can compute

‖bi‖ =
√
c2
i,1 + . . .+ c2

i,2n ≤
√
ci,1N + . . .+ ci,2nN =

√
Nai .

Denote Ẑ := 2−n/2N−1Z[R]. We have

∂Ẑ = ∂(2−n/2N−1Z[R]) = 2−n/2N−1∂Z[N2nŜ]

= 2−n/2N−1∂Z[N2n(πn)]Tn] = ∂(2−n/2Z[2n(πn)]Tn]) = ∂Z ′[(πn)]Tn] .

Moreover

M(2n,1/2)(Ẑ) = 2−n/2N−1M(2n,1/2)(Z[R]) = 2−n/2N−1
∑
i∈I
‖bi‖H1(σi)

≤ 2−n/2N−1/2
∑
i∈I

√
aiH1(σi) = 2−n/2N−1/2E(R)

= E(2−nN−1R) = E(Ŝ) .

Step 4: proof of the minimality of Z ′[(πn)]Tn]. Even if, technically speak-

ing, Ẑ does not belong to the set of competitors for (P2’), we can still prove
that

M(2n,1/2)
(
Z ′[(πn)]Tn]

)
≤M(2n,1/2)(Ẑ) (4.5)

12Without loss of generality we can assume R to be acyclic, i.e., R̊` = 0 for every ` ∈ N.
13Roughly speaking, ci,j is the portion of the multiplicity ai of σi, which is due to all paths

ending in the second extreme of the segment of En having orientation xj
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via the calibration technique (see Remark 1.14).
Consider the basis of R2n (πn(x1), . . . , πn(x2n)). The current Z ′ [(πn)]Tn]

has the following property: the multiplicity on each line segment of its support
is a multiple of the orientation of the segment itself14 (the orientation being
defined above). This implies that, if we denote by ω : R2n → R2n the identity
map, then ω can be seen as a R2n-valued (constant) differential 1-form, which
in particular is a calibration for Z ′ [(πn)]Tn]: the verification of conditions (i),
(ii) and (iii) of Definition 1.12 is elementary, as in the Example 3.8. Theorem
1.13 and Remark 1.14 allow us to conclude.
Step 5: conclusion. Eventually we can prove the claim (4.2), indeed

E((πn)]Sn) + δ
(4.3)

≥ E(Ŝ)
(4.4)

≥ M(2n,1/2)(Ẑ)
(4.5)

≥ M(2n,1/2)
(
Z ′[(πn)](Tn)]

)
and, from the arbitrariness of δ, from Corollary 3.11, together with the fact
that supp(Tn) is contained in span{e1, . . . , e2n}, we finally get that

E((πn)]Sn) ≥M(2n,1/2)
(
Z ′[(πn)](Tn)]

) 3.11
= E ((πn)]Tn) = E(Tn) .

�

4.6. Remark. In [6] the authors combine the notion of currents in metric
spaces of [1] and currents with coefficients in a group of [18]. In this setting we
can give a meaning to the problem of minimizing the mass in a class of currents
in `2 with coefficients in `2 with given boundary. It is possible to associate to
the current T , defined in §4.3, a current Z in `2 with coefficients in `2, in a way
which is similar to that explained in Definition 3.3. Via a simple calibration
argument (the calibration being again the “identity” with respect to suitable
coordinates) one can prove that Z minimizes the mass among all currents in `2

with coefficients in `2, with boundary ∂Z.

The latter remark suggests the possibility to describe, in general, the con-
tinuous version of the Gilbert-Steiner problem as a mass minimization problem
among currents in the Euclidean space, with coefficients in `2. The advantage of
this formulation would be, for example, the availability of well known numerical
methods for the minimization of a convex functional.
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