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Abstract

We study, through a Γ-convergence procedure, the discrete to continuum
limit of Ising type energies of the form

Fε(u) = −
∑
i,j

cεi,juiuj ,

where u is a spin variable defined on a portion of a cubic lattice εZd ∩ Ω,
Ω being a regular bounded open set, and valued in {−1, 1}. If the constants
cεi,j are non negative and satisfies suitable coercivity and decay assumptions,
we show that all possible Γ-limits of surface scalings of the functionals Fε

are finite on BV (Ω; {−1, 1} and of the form∫
Su

ϕ(x, νu) dHd−1.

If such decay assumptions are violated, we show that we may approximate
non local functionals of the form∫

Su

ϕ(νu) dHd−1 +

∫
Ω

∫
Ω

K(x, y)g(u(x), u(y)) dxdy.

We focus on the approximation of two relevant examples: fractional perime-
ters and Ohta-Kawasaki type energies. Eventually, we provide a general crite-
rion for a ferromagnetic behavior of the energies Fε even when the constants
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cεi,j change sign. If such criterion is satisfied, the ground states of Fε are still
the uniform states 1 and −1 and the continuum limit of the scaled energies
is an integral surface energy of the form above.

2010 Mathematics Subject Classification: 49J45.

Keywords: Atomistic-to-continuum limit; Γ-convergence; spin systems; sur-
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1 Introduction

The description and prediction of mesoscopic pattern formation have been and
continue to be an object of extensive research both in the physical and in the math-
ematical literature. A possible approach in pursuing this task, usually adopted in
Statistical Mechanics, is the analysis of discrete models, which aims at predicting
such patterns starting from discrete systems of particles in interaction. A different
but somehow complementary approach is the analysis of continuum models, which
very often correspond to a coarse-graining description of the previous ones, which
averages or smooths away fine details but is capable to capture some of the main
features of the original problems.

Among the discrete models an efficient and celebrated example is given by
the Ising model, introduced originally to model ferromagnetism in Statistical Me-
chanics but then applied successfully in many other contests. In its original form
it amounts to consider an hamiltonian of the form

F (u) = −
∑
n.n.

uiuj (1.1)

which is the energy of a system of interacting spins through their nearest-neighbor
(n.n.) bonds. Here the spin variable u is defined on a portion L of a periodic lattice,
say it Zd, and takes values in {−1, 1}. By scaling Zd by a small parameter ε > 0
and identifying L with εZd∩Ω, where Ω is an open bounded open set of Rd, it can
be proved that the discrete-to continuum limit of suitable power scaling of E, as
ε → 0, resembles that of a Cahn-Hilliard type functional. Namely, it leads in the
limit as ε→ 0 to the surface energy

∫
Su
|νu|1 dHd−1 for u ∈ BV (Ω; {−1, 1}, where

Su is the jump set of u, that is the interface between the {u = 1} phase and the
{u = −1} phase, νu is the unit normal to Su and | · |1 is the l1-norm in Rd.

Ising type energies are more generally written in the form

F (u) = −
∑
i 6=j∈L

ci,juiuj . (1.2)

Here, according to the sign of the constants ci,j , we speak of ferromagnetic in-
teractions, corresponding to ci,j > 0 and favoring uniform pairs ui = uj , or of
anti-ferromagnetic interactions, corresponding to ci,j < 0 and preferring instead
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alternating pairs ui = −uj . Many studies have shown that models involving en-
ergies of the form (1.2), for a suitable choice of the range of interactions and of
the sign of the constants ci,j , can be approximated in the continuum by models
involving surface energies of the form above, where the limiting interfaces may
represent phase or anti-phase boundaries (see [2] for some relevant examples in a
variational framework).

A general question is, then, whether an approximation by surface energies can
be used. Purpose of this paper is to answer to this question and, more precisely, to
determine a large class of energies of the form (1.2) whose discrete-to-continuum
limits can be described by surface functionals.

We start our analysis by considering a bulk scaling of the functionals in (1.2)
and letting the constant ci,j depend also on the small parameter ε. Therefore we
consider energies of the form

Fε(u) = −
∑

i6=j∈Ωε

εdcεi,juiuj , (1.3)

defined for u : εZd ∩ Ω → {−1, 1}, where we have used the notation Ωε := Zd ∩
(ε−1Ω), ui := u(εi). The asymptotic behavior as ε → 0 of energies of the form
(1.3) has been studied in [4] and leads in the continuum limit to a class of integral
functionals of the type ∫

Ω

f(x, u(x) dx,

where the limit variable u represents the magnetization of the spin variable uε,
that is, loosely speaking, u(x) is the average value of uε around x. We underline
that, with this scaling, the asymptotic analysis gives some insight in the structure
of the ground states only when the constants cεi,j change sign, that is there is a
competition between ferromagnetic and anti-ferromagnetic interactions.

Let us focus instead on the purely ferromagnetic case, that is when cεi,j ≥ 0
for all i, j ∈ Ωε. Note that with this assumption the ground states of Fε are trivially
the constant functions u ≡ 1 and u ≡ −1. Nevertheless, if boundary conditions or
additional constraints are added, minimizers are not trivial and it is interesting to
describe their behavior as ε→ 0, that is when the number of indices diverges. To
this end, a higher order description of Fε is needed.

Let, then, mε := minFε = Fε(±1) and consider a surface scaling of Fε given
by

Eε(u) =
Fε(u)−mε

ε
=

∑
i 6=j∈Ωε

εd−1cεi,j(1− uiuj). (1.4)

Let us identify the functions u with their piecewise constant interpolations on
the cells of the lattice εZd. Note that, with this identification, if we split Eε into
the contribution accounting for the interactions between nearest neighbors and
between all the other pairs we may rewrite it as

Eε(u) =

∫
Su

aε(x) dHd−1 +

∫
Ω

∫
Ω

Kε(x, y)|u(x)− u(y)| dxdy +O(1), (1.5)
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for suitable functions aε(·) and Kε(·, ·), where the additional O(1) term is due to
the energetic contribution of the interactions near ∂Ω.

The asymptotic behavior as ε→ 0 of the energies Eε can be described by us-
ing the methods of Γ-convergence (see [9, 12]). We make assumptions of two types
on the constants cεi,j : a coerciveness hypothesis on nearest neighbors, namely that
cεi,j ≥ c > 0 when |j − 1| = 1, which ensures that the limit is finite only on
BV (Ω; {−1, 1}, and a decay assumption as |j − i| → +∞, that allows to neglect
very long-range interactions. We underline that in this case the non-local term on
the right-hand side of (1.5) gives, as ε → 0, only a contribution to the surface
energy. Indeed, under these conditions we show that, up to passing to a subse-
quence, the functionals Eε Γ-converge to an integral surface functional defined on
BV (Ω; {−1, 1}) and of the form∫

Su

ϕ(x, νu) dHd−1 (1.6)

(see Theorem 4.2).
To perform our analysis, we apply an abstract method, originally exploited in

the homogenization theory for multiple integrals and then adapted to a discrete set-
ting in the continuum approximation, by Γ-convergence, of discrete models in non-
linear elasticity (see [3], [5]). It amounts to apply a localization argument which
allows to regard our functionals and their Γ-limits as defined on pairs function-set
and then to prove that all the hypotheses of an integral representation result of
[8] (see Theorem 2.2) are fulfilled.

In the case of periodic interactions, corresponding to have cεi,j = c(i, j − i),
with c(·, ξ) [0, k)d-periodic for some k ∈ N and for any ξ ∈ Zd, we may derive,
as a consequence of our integral representation result, an alternative proof of the
homogenization result proved in [11]. Indeed, in this case the whole family of
functionals Eε Γ-converges to an homogenized surface energy of the form∫

Su

ϕhom(νu) dHd−1, (1.7)

with ϕhom defined by a suitable asymptotic formula (see Theorem 4.7).
As a consequence of our Γ-convergence results, in Section 4.2 we derive the

convergence of mimimum problems involving discrete energies as in (1.4) to the cor-
responding minimum problems involving the limiting energy. We focus on bound-
ary value problems and minimum problems with prescribed volume fraction.

We underline that we limit our analysis to square lattices, but our results
can be easily extended to any Bravais lattice or multi-lattice (see also [6] for an
extension of these results to stochastic lattices). Moreover, we provide an extension
of our analysis to the case of energies accounting for multi-body interactions of
the form, for a given M ∈ N,

EMε (u) =
∑

i1,...,iM∈Ωε

εd−1ψε(i1, . . . , iM , ui1 , . . . , uiM ). (1.8)
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Here the ferromagnetic behavior of EMε is ensured by the assumption that the
potentials ψε are non negative and equal 0 only on the uniform configurations
u1 = u2 = . . . uM . Under coercivity and decay assumptions analogous to those
given in the case of pairwise interactions and applying the same argument ex-
ploited in that case, it is possible to show that the same integral representation
and homogenization results hold for the Γ-limits of energies of the form (1.8) (see
Theorems 4.13 and 4.14). Moreover, we provide an example of energies accounting
for nearest-neighbors 3-body interactions, obtained by adding a term in the poten-
tials of the energies in (1.1) which penalizes changes of direction in the interfaces.
The interesting effect is that such additional term does not give any contribution to
the limiting energy, but acts as a selector of the ground states of Eε (see Example
4.15).

Our decay assumptions on the constants cεi,j are somehow the most general
to guarantee the locality of the continuum limit. Indeed, in Section 5 we show
that, if they are violated, we can approximate non local functionals of the form∫

Su

ϕ(x, ν) dHd−1 +

∫
Ω

∫
Ω

K(x, y)g(u(x), u(y)) dxdy, (1.9)

which resembles the representation of Eε in (1.5). We focus on the approximation
of two relevant examples: fractional perimeters and Ohta-Kawasaki type energies.
The first ones correspond to a non local term on the right-hand side of (1.9) of
the form ∫

Ω

∫
Ω

|u(y)− u(x)|
|y − x|d+s

dx dy,

for s ∈ (0, 1), which is one quarter of the fractional Sobolev space seminorm
1
4 |u|W s,1(Ω). The second ones correspond to a non local term of the form

γ0

∫
Ω

∫
Ω

G(x, y)u(x)u(y) dxdy,

where γ0 > 0 and G is the Green’s function for −∆. The original model proposed
by Ohta-Kawasaki in [16] in the studies of energy-driven pattern forming systems
is based on energies of the form

OKε(u) = ε

∫
Ω

|∇u|2 dx+
1

ε

∫
Ω

(1−u2)2 dx+γ0

∫
Ω

∫
Ω

G(x, y)u(x)u(y) dxdy (1.10)

and in the analysis of their minima subject to prescribed volume fraction. The
first two integrals in (1.10) form the so called ‘Modica-Mortola’ energy which Γ-
converges as ε → 0 to the perimeter functional. It can be easily shown that the
non-local term in (5.14) is an L1 continuous perturbation of the Modica-Mortola
energy. As a consequence, the functionals OKε Γ-converge as ε → 0 with respect
to the L1(Ω) norm to the functional finite on BV (Ω; {−1, 1} and defined by

OK(u) :=
8

3
Hd−1(Su) + γ0

∫
Ω

∫
Ω

G(x, y)u(x)u(y) dx dy. (1.11)
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We provide a variational approximation of an anisotropic version of the functional
in (1.11), given by∫

Su

|νu|1 dHd−1(Su) + γ0

∫
Ω

∫
Ω

G(x, y)u(x)u(y) dx dy. (1.12)

The idea is that the first term can be approximated by the discrete functionals in
(1.1), while the non local term is approximated just by ‘discretizing’ the double
integral. Hence we show that the functional in (1.12) is the Γ-limit of the sequence
of functionals defined by

Êε(u) = −
∑
|j−i|=1

εduiuj + γ0

∑
i,j∈Ωε

ε2d+1G(εi, εj)ujui. (1.13)

The result can be also extended to the periodic case, when Ω = Td, and to functions
satisfying a mean constraint. By virtue of a result proved in [1] and as a conse-
quence of our approximation, we deduce that lamellar configurations are nearby
local minimizers of Êε (see Theorem 5.9). We underline that the periodicity of
minimizers of energies for spin systems with competing interactions and different
scalings, which resembles the behavior of Ohta-Kawasaki type energies, has been
investigated in many papers (see for instance [14, 15]). It would be interesting, in
our opinion, to recast the analysis of that models in our framework.

The last question we address is, in the case there is a competition between
ferromagnetic and antiferromagnetic interactions, that is there is no constraint on
the sign of the constants cεi,j , whether energies of type (1.3) still have a ferromag-
netic behavior, that is the ground states are still the uniform states u ≡ 1 and
u ≡ −1 and the continuum limit of the scaled energies is an interfacial energy of
the form (1.6). We restrict our analysis to the homogeneous and ‘short range’ case,
that is cεi,j = cj−i for all i and j and cξ = 0 if |ξ| > R, for some R > 0. We show,

then, that, given M ∈ N, M ≥ R and setting CM = [0,M ]d ∩ Zd, the energies in
(1.3) can be rewritten as

Fε(u) =
∑
i∈Ωε

εdFcell(u, i+ CM ) +O(ε)

for a suitable function Fcell accounting for the interactions within the cells i +
CM . Then the condition which ensures a ferromagnetic behavior is that Fcell is
minimized only by the uniform states 1 and −1 (see Definition 6.3). Under this
condition we study the Γ-limit of the scaled energies Eε defined as in (1.4). Since
it is not our purpose in this paper to investigate boundary layer effects, we limit
our analysis to the case in which Ω is a torus. Then we show that the Γ-limit
of Eε still has an integral representation of the form (1.7), with ϕ defined by a
suitable asymptotic formula (see Theorem 6.5). Eventually, we provide some one
dimensional examples to better explain our analysis and to show its applicability.
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2 Notation and preliminary results

In what follows, given x, y ∈ Rd we denote by (x, y) the usual scalar product in Rd
and we set |x| =

√
(x, x). Moreover we denote by | · |1 the l1-norm in Rd defined

as |x|1 = |x1| + . . . + |xd|. Given t > 0, we will denote by [t] the integer part
of t. For any measurable E ⊂ Rd we denote by |E| the d-dimensional Lebesgue
measure of E and by Hd−1(E) its d − 1-dimensional Hausdorff measure. Given
x0 ∈ Rd, ν ∈ Sd−1 and ρ > 0, we denote by Qν(x0, ρ) a cube centered in x0, with
side length ρ and one face orthogonal to ν. We drop the dependence on ν, x0 or
ρ whenever ν = ei, for i ∈ {1, 2, . . . , d}, x0 = 0 or ρ = 1, respectively, and we set

Q :=
(
− 1

2 ,
1
2

)d
.

Next we recall some basic properties of BV functions with values in {−1, 1} (see
[7] for a general exposition of the subject). Let A be an open subset of Rd. We
denote by BV (A; {−1, 1}) the set of measurable functions u : A→ {−1, 1} whose
distributional derivative Du is a measure with bounded total variation. Note that
if u ∈ BV (A; {−1, 1}), then E := {x ∈ A : u(x) = 1} is a set of finite perimeter in
A. We denote by S(u) the jump set of u and by νu(x) the measure theoretic inner
normal to S(u) at x, which is defined for Hd−1 a.e. x ∈ S(u).

For the reader’s convenience we recall the following compactness result (see
[7]).

Theorem 2.1 Let uk ∈ BV (A; {−1, 1}) such that

sup
k
Hd−1(S(uk)) < +∞.

Then there exists a subsequence (not relabelled) and u ∈ BV (A; {−1, 1}) such that
uk → u in the L1 convergence.

A main tool in the sequel will be the following representation result obtained
in [8]. We state here the result only in the particular case of functionals defined on
BV (Ω; {±1})×A(Ω) and satisfying an additional symmetry property, although a
more general theorem holds. Let Ω be a bounded open subset of Rd and denote
by A(Ω) the family of open subsets of Ω.

Theorem 2.2 Let F : BV (Ω; {±1})×A(Ω)→ [0,+∞) satisfy for every (u,A) ∈
BV (Ω; {±1})×A(Ω) the following hypotheses:

(i) F(u, ·) is the restriction to A(Ω) of a Radon measure;

(ii) F(u,A) = F(v,A) whenever u = v a.e. on A ∈ A(Ω);

(iii) F(·, A) is L1(Ω) lower semicontinuous;

(iv) there exists C > 0 such that

1

C
Hd−1(Su ∩A) ≤ F(u,A) ≤ CHd−1(Su ∩A);
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(v) F(u,A) = F(−u,A).

Then for every u ∈ BV (Ω; {±1}) and A ∈ A(Ω)

F(u,A) =

∫
Su∩A

ϕ(x, νu) dHd−1,

with

ϕ(x0, ν) = lim sup
ρ→0

m(ux0,ν , Qν(x0, ρ))

ρd−1
, (2.1)

where

ux0,ν(x) :=

{
1 if 〈x− x0, ν〉 ≥ 0
−1 otherwise,

(2.2)

and for any (v,A) ∈ BV (Ω; {±1})×A(Ω) we set

m(v,A) = inf{F(w,A) : w ∈ BV (A; {±1}), w = v in a neighborhood of ∂A}.

The sets of BV functions are also defined in a periodic setting: we de-
note by Td the d-dimensional flat torus of unit volume, which can be identified
with the semi-open unit cube [0, 1)d, and by BV (Td; {−1, 1} the set of functions
u ∈ BVloc(Rd; {−1, 1} which are [0, 1)d-periodic. Moreover, with a slight abuse of
notation, for such functions u we identify S(u) with S(u) ∩ [0, 1)d.

Eventually we recall a result proved by Kohn and Sternberg in [13] on the
approximation of local minimizers by Γ-convergence.

Theorem 2.3 Let (X, d) be a metric space and let (Fn)n be a sequence of lower
semicontinuous and equi-coercive functionals from X to R ∪ {+∞}. Assume that
Fn Γ-converge to F and let x be an isolated local minimizer of F . Then there exist
xn → x such that xn is a local minimizer of Fn for n large enough.

3 Setting

In what follows Ω will denote a bounded open set of Rd with Lipschitz boundary.
For fixed ε > 0 we denote by PCε(Ω) the set of functions

PCε(Ω) := {u : εZd ∩ Ω→ {−1, 1}}.

In order to carry on our analysis it is convenient to regard PCε(Ω) as a subset
in L1(Ω). To this aim we will identify a function u ∈ PCε(Ω) with its piecewise-
constant interpolation on the ε-cubes centered in the lattice, still denoted by u.
More precisely, we set u(z) = 0 if z ∈ εZd \ Ω and u(x) = u(zεx), where zεx ∈ Zd
is the closest point to x (which is uniquely defined up to a set of zero measure).
Other similar interpolations could be taken into account, actually not affecting
our asymptotic analysis.
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Thus, with fixed ε > 0, we consider energies Fε : PCε(Ω)→ R of the form

Fε(u) = −
∑
i,j∈Ωε

cεi,jε
duiuj ,

where we use the notation Ωε := Zd ∩ (ε−1Ω), ui = u(εi). Up to the change of
variable ξ = j − i, setting cεi,ξ = cεi,i+ξ, we may equivalently write Fε as

Fε(u) = −
∑
ξ∈Zd

∑
i,i+ξ∈Ωε

cεi,ξε
duiui+ξ. (3.1)

In the sequel we will perform an asymptotic analysis of energies suitably
scaled, focusing first on the case of ’ferromagnetic type’ pairwise interactions.

4 Ferromagnetic case: integral representation of
the continuum limits

In this section we treat the case cεi,ξ ≥ 0 for all i, ξ and ε. Under this hypothesis
uniform states are groundstates. Denoting mε := minFε(u) = Fε(±1) we then
consider the scaled energies

Eε(u) =
Fε(u)−mε

ε
=
∑
ξ∈Zd

∑
i,i+ξ∈Ωε

cεi,ξε
d−1(1− uiui+ξ). (4.1)

Note that Eε can be rewritten as

Eε(u) =
1

2

∑
ξ∈Zd

∑
i,i+ξ∈Ωε

cεi,ξε
d−1(ui+ξ − ui)2

=
∑
ξ∈Zd

∑
i,i+ξ∈Ωε

cεi,ξε
d−1|ui+ξ − ui|

=
∑
ξ∈Zd

∑
i,i+ξ∈Ωε

cεi,ξ|ξ|εd
|ui+ξ − ui|

ε|ξ|

i.e., our energies depend linearly on the difference quotients.

We fix the following set of hypotheses on (cεi,ξ):

(H1) (coerciveness) cεi,ek ≥ c > 0 for all ε > 0, i ∈ Zd and k ∈ {1, . . . , d};

(H2) (growth) set cεξ = supi c
ε
i,ξ, lim supε→0

∑
ξ∈Zd |ξ|cεξ < +∞;

(H3) (decay) ∀ δ > 0 there exists Rδ > 0 such that lim supε→0

∑
|ξ|>Rδ |ξ|c

ε
ξ < δ.
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With a little abuse of notation, we identify the functionals Eε by their extension
on L1(Ω) by setting

Eε(u) =


∑
ξ∈Zd

∑
i,i+ξ∈Ωε

cεi,ξε
d−1|ui+ξ − ui| if u ∈ PCε(Ω)

+∞ otherwise in L1(Ω).

(4.2)

We also define a localized version of our energies on ’regular’ open sets. Let
Areg(Ω) be the subfamily of open subsets of Ω with Lipschitz boundary. For any
A ∈ Areg(Ω), we isolate the contributions due to interactions within the set A by
defining

Eε(u,A) =


∑
ξ∈Zd

∑
i,i+ξ∈Aε

cεi,ξε
d−1|ui+ξ − ui| if u ∈ PCε(Ω)

+∞ otherwise in L1(Ω),

(4.3)

where Aε = Zd ∩ (ε−1A). Moreover we will denote by E′(·, A) and E′′(·, A) the
Γ-lim infε→0 and the Γ-lim supε→0 of Eε(·, A), respectively.

Remark 4.1 We could have also considered a localized version of Eε on any open
set A ∈ A(Ω). In such a case, in order to have an upper bound with a surface energy
of type Hd−1(Su ∩A) (see Proposition (4.4)), we should have slightly modified the
definition of Eε(·, A) accounting only for pairwise contributions indexed by couples
(i, i + ξ) such that the whole segment joining εi, ε(i + ξ) lies in A. Note that this
late definition of Eε(·, A) coincides with that in 4.3 for ε small enough in case of
an open set A with Lipschitz boundary. For the sake of simplicity we prefer to deal
with the class Areg(Ω), extending suitably E′(·, A), E′′(·, A) to A(Ω) as a last step.

We now state the main result of this section.

Theorem 4.2 Let (cεi,ξ) satisfy (H1)–(H3) and let Eε be defined by (4.2). Then for

any sequence εn → 0 there exist a subsequence (εnk) and a function ϕ : Ω×Sd−1 →
[0,+∞) such that the functionals Eεnk Γ-converge with respect to the L1(Ω) strong

topology to the functional E : L1(Ω)→ [0,+∞] defined by

E(u) =


∫
Su

ϕ(x, νu)Hd−1 if u ∈ BV (Ω; {±1})

+∞ otherwise.

(4.4)

Moreover for any u ∈ BV (Ω; {±1}) and A ∈ Areg(Ω) there holds

Γ- lim
k
Eεnk (u,A) = E(u,A) :=

∫
Su∩A

ϕ(x, νu)Hd−1. (4.5)
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We postpone the proof of Theorem 4.2, as it will be a consequence of some propo-
sitions which show that our limit functionals satisfy all the hypotheses of Theorem
2.2.

In the next two Propositions we show that, thanks to hypotheses (H1) and
(H2), for any A ∈ Areg(Ω), E′(u,A) and E′′(u,A) are finite only on BV (A; {±1})
and satisfy hypothesis (4) of Theorem 2.2.

Proposition 4.3 Let (cεi,ξ) satisfy (H1) and A ∈ Areg(Ω). If u ∈ L1(Ω) is such
that E′(u,A) is finite, then u ∈ BV (A; {±1}) and

E′(u,A) ≥ CHd−1(Su ∩A),

for some positive constant C independent on u and A.

Proof. Let Gε the functional accounting only for nearest neighbors interactions
defined by

Gε(u,A) =


d∑
k=1

∑
i,i+ek∈Aε

εd−1|ui+ek − ui| if u ∈ PCε(Ω)

+∞ otherwise in L1(Ω).

(4.6)

In [2] it was proved that theG(·, A) := Γ-limε→0Gε(·, A) is finite only onBV (A; {±1})
and

G(u,A) =

∫
Su∩A

|νu|1 dHd−1, u ∈ BV (A; {±1}),

where | · |1 is the l1-norm in Rd. Since by (H1) we have that Eε(·, A) ≥ CGε(·, A),
the conclusion easily follows.

Proposition 4.4 Let (cεi,ξ) satisfy (H2). Then for every u ∈ BV (Ω; {±1}) and
for every A ∈ Areg(Ω) there holds

E′′(u,A) ≤ CHd−1(Su ∩A), (4.7)

for some positive constant C independent on u and A.

Proof. By a density argument, it suffices to prove (4.7) for u such that Su is a
polyhedral set. Up to a localization argument we can further reduce to the case
when Su is an hyperplane, that is u = u0,ν defined in (2.2). Thus, defined uε as
the pointwise interpolation of u, i.e., (uε)i := u(εi), we have that uε → u strongly
in L1(Ω). Moreover, by the assumption regularity on ∂A, for ε small enough, any
pair εi, ε(i+ ξ) such that u attains opposite values at the nodes, being contained
in the interior part of A, crosses the jump set Su. Hence, the energy contribution
can be estimated by

Eε(uε, A) ≤ C
∑
ξ∈Zd

εd−1cεξ#(Aξε ∩ εZd),
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where Aξε := {x = y + tξ : y ∈ Su, −ε ≤ t ≤ 0} ∩A. Since, by regularity of Su,

#(Aξε ∩ εZd) ≤ Cε−d|Aξε| ≤ Cε1−d|ξ|Hd−1(Su ∩A),

we eventually get

Eε(uε, A) ≤ CHd−1(Su ∩A)
∑
ξ∈Zd
|ξ|cεξ.

Passing to the limit as ε→ 0, by (H2) we get the conclusion.

Proposition 4.5 Let (cεi,ξ) satisfy (H1)–(H3) and let A,B,A′ ∈ Areg(Ω) given
with A′ ⊂⊂ A. Then for any u ∈ BV (Ω; {±1})

E′′(u,A′ ∪B) ≤ E′′(u,A) + E′′(u,B). (4.8)

Proof. It is not restrictive to assume as a further hypothesis that A′ is an open
set with smooth boundary. Indeed, being E′′(u, ·) an increasing set function on
Areg(Ω), it is enough to notice that there exists an open set C with smooth bound-
ary such that A′ ⊂⊂ C ⊂⊂ A. Such a set can be actually selected by standard
convolution and selection of level sets arguments.

Without loss of generality we may also suppose E′′(u,A) and E′′(u,B) finite.
Let uε, vε both converge to u in L1(Ω) and be such that

lim sup
ε→0

Eε(uε, A) = E′′(u,A), lim sup
ε→0

Eε(vε, B) = E′′(u,B).

Fix δ > 0 and let Rδ provided by hypothesis (H3). As A′ has smooth bound-
ary, the distance function d(x) := dist (x,A′) inherits the same regularity in a
suitable neigbourhood U of A′. Set

d := dist (A′, U c), Nε :=

[
d

εRδ

]
.

For t ∈ [0, d̄] denote also

At := {x ∈ A : dist (x,A′) ≤ t}.

Plugging classical Sard Theorem in the Fleming-Rishel coarea formula, for L1-a.e.
t ∈ [0, d̄] At is a set of finite perimeter with smooth boundary. Moreover, for any
fixed integer k ∈ {1, . . . , Nε}, we can select values tk ∈ (kεRδ, (k + 1)εRδ) such
that Atk is a smooth set and satisfies

εRδHd−1(∂Atk) ≤
∫ (k+1)εRδ

kεRδ

Hd−1(∂∗At) dt (4.9)

≤
∫
{kεRδ≤d(x)≤(k+1)εRδ}

|∇d(x)| dx = |A(k+1)εRδ \AkεRδ |. (4.10)

12



For any k ∈ {1, . . . , Nε} consider then the family of functions wkε still con-
verging to u in L1(Ω) defined by

wkε := χAtkuε + (1− χAtk )vε.

By taking the regularity of Atk into account, we easily compute

Eε(w
k
ε , A

′ ∪B) ≤ Eε(uε, A
tk ∩ (A′ ∪B)) + Eε(vε, (A

tk)c ∩ (A′ ∪B))

+
∑
ξ∈Zd

∑
i∈Sk,ξε

cεi,ξ ε
d−1|(wkε )i+ξ − (wkε )i|

≤ Eε(uε, A) + Eε(vε, B)

+
∑
ξ∈Zd

∑
i∈Sk,ξε

cεi,ξ ε
d−1|(wkε )i+ξ − (wkε )i|, (4.11)

where Sk,ξε := (ε−1{x = y + tξ, y ∈ ∂Atk , −ε ≤ t ≤ 0} ∩ (A′ ∪B)) ∩ Zd. In order
to get the desired estimate we will argue by splitting the last term in (4.11) in
interactions in Sk,ξε with |ξ| > Rδ and with |ξ| ≤ Rδ, respectively. In the two cases
we will provide different estimates for the energy contribution.

In the first case, by arguing as in the proof of Proposition 4.4, thanks to the
regularity of Atk , we get that∑

|ξ|>Rδ

∑
i∈Sk,ξε

cεi,ξ ε
d−1|(wkε )i+ξ − (wkε )i| ≤ CHd−1(∂Atk)

∑
|ξ|>Rδ

|ξ|cεξ.

By using the mean property (4.9) of Atk we may refined the inquality above

∑
|ξ|>Rδ

∑
i∈Sk,ξε

cεi,ξ ε
d−1|(wkε )i+ξ − (wkε )i| ≤ Cδ

|A(k+1)εRδ \AkεRδ |
εRδ

. (4.12)

We are left with the estimate of the energy accounting for the interactions in Sk,ξε
when |ξ| ≤ Rδ. Note that in this case, by the definition of AkεRδ , we have that
Sk,ξε ⊆ (A(k+1)εRδ \A(k−1)εRδ) ∩B ∩ εZd =: Skε . Moreover, we easily get that

|(wkε )i+ξ − (wkε )i| ≤ 2(|(uε)i+ξ − (uε)i|+ |(vε)i+ξ − (vε)i|+ |(vε)i − (uε)i|);

hence, ∑
|ξ|≤Rδ

∑
i∈Sk,ξε

cεi,ξ ε
d−1|(wkε )i+ξ − (wkε )i|

≤ C(Eε(uε, S
k
ε ) + Eε(vε, S

k
ε )) + Cδ

∑
i∈Skε

εd−1|(vε)i − (uε)i|, (4.13)

for some constant Cδ depending only on Rδ.
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Therefore, summing over k ∈ {1, . . . , Nε−1} and averaging, by (4.11), (4.12)
and (4.13), we get

Iε :=
1

Nε − 1

Nε−1∑
k=1

(
Eε(w

k
ε , A

′ ∪B)
)
≤ Eε(uε, A) + Eε(vε, B)

+
2

Nε − 1
(Eε(uε, A ∩B) + Eε(vε, A ∩B)) + C ′δ

∑
i∈Ωε

εd|(vε)i − (uε)i|+ Cδ|A \A′|

≤ C

Nε
+ Cδ + Cδ‖vε − uε‖L1(Ω), (4.14)

where we have also used that ∪Nεk=0A
(k+1)εRδ \AkεRδ = U \A′ ⊆ A \A′.

Eventually, for any ε > 0 let kε ∈ {1, . . . , Nε − 1} be such that

Eε(w
kε
ε , A

′ ∪B) ≤ Iε. (4.15)

Setting wε := wkεε , we have that wε → u strongly in L1(Ω) and, by (4.14), (4.15),
passing to the limit as ε→ 0 we infer also that

E′′(u,A′ ∪B) ≤ lim sup
ε→0

Eε(wε, A
′ ∪B) ≤ E′′(u,A) + E′′(v,B) + Cδ.

The conclusion follows by the arbitrariness of δ > 0.

In the following proposition we show that E′′(·, ·) satisfies hypothesis (ii) of
Theorem 2.2. The argument we use for the proof is the same exploited to prove
the previous proposition.

Proposition 4.6 Let (cεi,ξ) satisfy (H1)–(H3). Then for any A ∈ Areg(Ω) and for
any u, v ∈ BV (Ω; {±1}) such that u = v a.e. in A there holds

E′′(u,A) = E′′(v,A). (4.16)

Proof. Let A ∈ Areg(Ω) and u, v ∈ BV (Ω; {±1}) be fixed with u = v a.e. in A.
By reversing the role of u and v it is enough to prove that

E′′(v,A) ≤ E′′(u,A). (4.17)

To this aim we used the same argument and constructions of the previous propo-
sition.

With δ > 0 fixed, let Aδ ∈ Areg(Ω) such that Aδ ⊂⊂ A and

Hd−1 Su(A \Aδ) < δ.

Note that A \Aδ ∈ Areg(Ω) and by Proposition 4.4, there holds

E′′(v,A \Aδ) ≤ CHd−1 Su(A \Aδ) ≤ Cδ. (4.18)
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Let uε and vε be converging to u and v in L1(Ω), respectively, and such that

lim sup
ε→0

Eε(uε, A) = E′′(u,A),

lim sup
ε→0

Eε(vε, A \Aδ) = E′′(v,A \Aδ).

Arguing as in the proof of Proposition 4.5, with A′ = Aδ, B = A \ Aδ, we
may choose for any ε > 0 a set Atkε and the relative interpolated function

wkεε := χAtkε uε + (1− χAtkε )vε

such that wkεε converges to v in L1(Ω) and, by passing to the limsup as ε→ 0, it
holds

E′′(v,A) ≤ lim sup
ε→0

Eε(w
kε
ε , A) ≤ E′′(u,A) + E′′(v,A \Aδ) + Cδ.

Hence (4.17) follows by (4.18) and the arbitrariness of δ > 0.

Proof of theorems 4.2. As a consequence of Propositions 4.4 and 4.5, a stan-
dard argument shows that for any u ∈ BV (Ω; {±1}) E′′(u, ·) is inner regular and
subadditive on Areg(Ω). By the compactness property of the Γ-convergence and ar-
guing as in [10, Theorem 10.3], we can easily show that there exists a subsequence
(εnk) such that, for any (u,A) ∈ BV (Ω; {±1})×Areg(Ω) there exists

Γ- lim
k
Eεnk (u,A) =: E(u,A).

Moreover we can extend E(u, ·) to A(Ω) by setting E(u,A) := sup{E(u,A′) :
A′ ∈ Areg(Ω), A′ ⊂ A} and easily verify that all the properties enjoyed by E′′(·, ·)
stated in Propositions 4.3, 4.4, 4.5 and 4.6 still hold true for E(·, ·). Moreover, by
Proposition 4.3,

Γ- lim
k
Eεnk (u) = +∞

for u ∈ L1(Ω) \ BV (Ω; {±1}). So far, it suffices to check that, for every (u,A) ∈
BV (Ω; {±1})×A(Ω), E(u,A) satisfies all the hypotheses of Theorem 2.2. In fact,
it can be easily seen that the superadditivity property of Eε(u, ·) is conserved in
the limit. Thus, thanks to the De Giorgi-Letta criterion (see [10, Theorem 5.2]),
hypotheses (i), (ii), and (iv) hold true. By the lower semicontinuity property of
the Γ-limit, also hypothesis (iii) is fulfilled and finally hypothesis (v) holds since
it is satisfied by Eε(·, A) for any ε > 0.

The previous argument actually provides also a proof of (4.5).

4.1 Homogenization

As a consequence of Theorem 4.2, if the interaction potentials are periodic in
the independent variable we may give an alternative proof of an homogenization
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result proved in [11]. More precisely, assume that cεi,ξ = cξ(i) where, for any ξ ∈ Zd,
cξ : Zd → [0,+∞) is [0, l]d-periodic for some l ∈ N. In this case hypotheses (H1)–
(H3) reduce to:

(H1’) cek(i) ≥ c > 0 for all i ∈ {0, . . . , l − 1}d and k ∈ {1, . . . , d};

(H2’)
∑
ξ∈Zd |ξ|cξ(i) < +∞ for all i ∈ {0, . . . , l − 1}d.

Then the following theorem holds (see [11], Theorem 2.4 and Remark 2.5).

Theorem 4.7 (homogenization) Let Eε be defined by (4.2) and let cεi,ξ = cξ(i),

where, for any ξ ∈ Zd, cξ : Zd → [0,+∞) is [0, l]d-periodic for some l ∈ N. If (H1’)
and (H2’) hold, then the functionals Eε Γ-converge with respect to the L1(Ω) strong
topology, as ε→ 0, to the homogenized functional Ehom : L1(Ω)→ [0,+∞] defined
by

Ehom(u) =


∫
Su

ϕhom(νu)Hd−1 if u ∈ BV (Ω; {±1})

+∞ otherwise,

(4.19)

where

ϕhom(ν) = lim
T→+∞

T 1−d inf

{ ∑
ξ∈Zd

∑
i∈Zd∩TQν

cξ(i)uiui+ξ : u ∈ PC1(Rd),

u(i) = u0,ν(i) for i 6∈ TQν
}
.

Sketch of the proof. The proof is based on a standard argument in homogeniza-
tion theory. Here we highlight only its main steps for the reader’s convenience.

By Theorem 4.13, given a sequence εn → 0 we can extract a subsequence εnk
such that the functionals Eεnk Γ-converge to a functional E defined as in (4.29)
and such that for any u ∈ BV (Ω; {±1}) and A ∈ Areg(Ω) there holds

Γ- lim
k
Eεnk (u,A) =

∫
Su∩A

ϕ(x, νu)Hd−1.

The theorem is proved if we show that ϕ does not depend on x and ϕ ≡ ϕhom.
To prove the first claim, by using the periodicity assumption, one can easily show
that if we set E(u,A) =

∫
Su∩A ϕ(x, νu)Hd−1, then

E(ux,ν , B(x, ρ)) = E(uz,ν , B(z, ρ)) (4.20)

for any ν ∈ Sd−1, x, z ∈ Ω and ρ > 0 such that B(x, ρ) ∪ B(z, ρ) ⊆ Ω. Thus, the
independence of ϕ on x easily follows from (4.20).
So far, assuming for the sake of simplicity that 0 ∈ Ω, by using the characterization
of ϕ in (2.1), we have

ϕ(ν) = lim sup
ρ→0

m(u0,ν , ρQν)

ρd−1
,
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where for any (v,A) ∈ BV (Ω; {±1})×A(Ω)

m(v,A) = inf{E(w,A) : w ∈ BV (A; {±1}), w = v in a neighborhood of ∂A}.

By using the convergence of boundary value problems stated in Theorem 4.9 and
taking into account Remark 4.10, we infer that

ϕ(ν) = lim
k→+∞

T 1−d
k inf

{ ∑
ξ∈Zd(M−1)

∑
i∈Zd∩TkQν

cξ(i)uiui+ξ : u ∈ PC1(Rd),

u(i) = u0,ν(i) for i 6∈ TkQν
}
, (4.21)

for some suitable sequence Tk → +∞. A standard argument in homogenization
theory, based on the periodicity assumption, shows that the limit in (4.32) exists
and is finite for any ν ∈ Sd−1. Hence, by (4.21), we immediately conclude that
ϕ ≡ ϕhom.

As a straightforward application of Theorem 4.2, in the following example we
show that if the constants cεi,ξ do not satisfy the periodicity assumptions before,
we may obtain in the continuum limit more general not homogeneous surface
functionals.

Example 4.8 Let Ω = (−1, 1)2 and let c : [−1, 1]2 → R be defined as

c(x) =

 1 if x ∈ [0, 1]× [−1, 1]

2 otherwise in [−1, 1]2 .

Let Eε : L1(Ω)→ [0,+∞] be defined as in (4.2) with d = 2, cεi,ξ = 0 if ξ /∈ {e1, e2}
and cεi,e1 = cεi,e2 = c(εi). Then the functionals Eε Γ-converge with respect to the

L1(Ω) strong topology to the functional E(u) defined as in (4.4) with ϕ(x, ν) = |ν|1
if x ∈ [0, 1) × (−1, 1) and ϕ(x, ν) = 2|ν|1 if x ∈ (−1, 0) × (−1, 1). Indeed, by
Theorem 4.2, it suffices to show that Γ-limε→0Eε(ux0,ν) = E(ux0,ν) for every
(x0, ν) ∈ Ω×Sd−1. The Γ-lim inf inequality follows by a standard slicing argument,
while, for the Γ-limsup inequality, a recovery sequence for ux0,ν is provided by an
infinitesimal right translation of the pointwise interpolation of ux0,ν , defined by
(uε)i = ux0,ν(εi− εe1).

More generally, an analogous convergence result could be inferred in any di-
mension, considering a finite coolection of disjoint sets {Ak}Nk=1 in Ω with Ak ∈
Areg(Ω) and positive constants c1, . . . , cN . Indeed, set c(x) =

∑N
k=1 ckχAk(x)

and let Eε be defined as in (4.2) with cεi,ξ = 0 if ξ /∈ {e1, . . . , ed} and cεi,e1 =
. . . = cεi,ed = c(εi). Then as a consequence of Theorem 4.2 and applying the
argument above, we could deduce that the functionals Eε Γ-converge to with re-
spect to the L1(Ω) strong topology to the functional E(u) defined as in (4.4) with

ϕ(x, ν) = a(x)|ν|1 and a : Ω → (0,+∞) defined by a(x) =
∑N
k=1 ckχAk(x) +∑N

k,h=1 ck ∧ chχ∂Ak∩∂Ah(x).
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4.2 Convergence of minimum problems

In this section we show that, as a consequence of the Γ-convergence result stated
in Theorem 4.2, we may derive the convergence of minimum problems involving
discrete energies as in (4.2) to the corresponding minimum problem involving the
limiting energy. We focus on boundary value problems and minimum problems
with prescribed volume fraction.

In order to state boundary value problems, let A ∈ Areg(Ω) and assume
u0 ∈ BVloc(Rd; {−1, 1}) to be fixed with Su0

polyhedral and transversal to A, that
is Hd−1(Su ∩ ∂A) = 0. Actually, more general boundary data could be also taken
into account. Here for the sake of simplicity we prefer to restrict our analysis for
a boundary datum u0 as above.

For any ε, η > 0 set Aη = {x ∈ A : dist (x, ∂A) < η},

PCu0,η
ε (A) := {u ∈ PCε(Ω) : u(εi) = u0(εi) for any i ∈ Zd ∩ (ε−1Aη)},

and

mη
ε(u0, A) := inf{Eε(u,A) : u ∈ PCu0,η

ε (A)} (4.22)

It is easy to show that mη
ε(u0) is increasing in η and bounded uniformly in η and

ε.

Theorem 4.9 Let (cεi,ξ) satisfy (H1)–(H3) and let Eε and mη
ε(u0) be defined by

(4.1) and (4.22), respectively. Given a sequence εn → 0 let (εnk) and E(u,A) be
as in Theorem 4.2. Then

lim
η→0

lim sup
k→+∞

mη
εnk

(u0, A) = m(u0, A), (4.23)

where

m(u0, A) := inf{E(u,A) : u ∈ BV (A; {−1, 1}), u(x) = ũ0(x)

in a neighborhood of ∂A}.

Proof. Let η > 0 be fixed and let uk ∈ PCu0,η
εnk

(A) such that Eεnk (uk, A) ≤
mη
εnk

(u0, A)+k−1. Since, by the coerciveness assumption (H1),Hd−1(Suk∩A) ≤ C,

then, by Theorem 2.1, up to extracting a subsequence uk converge strongly in
L1(A) to some u ∈ BV (A; {−1, 1}). Moreover it is easy to show that u = u0 on
Aη. Hence, by Theorem 4.2, we get

m(u0, A) ≤ E(u,A) ≤ lim inf
k

Eεnk (uk, A) ≤ lim inf
k

mη
εnk

(u0, A).

By the arbitrariness of η it follows that

m(u0, A) ≤ lim
η→0

lim sup
k→+∞

mη
εnk

(u0, A).
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It remains to prove the opposite inequality. To this end, given δ > 0, let u ∈
BV (A; {−1, 1} such that u = u0 in a neighborhood of ∂A and E(u,A) ≤ m(u0, A)+
δ. Let uk → u strongly in L1(A) such that limk Eεnk (uk, A) = E(u,A). Then, by
applying the argument used in the proof of Proposition 4.5, choosing suitable con-
vex combinations of uk and ũ0, it is possible to construct functions vk ∈ PCu0,η

εnk
(A)

for some η > 0 such that limk Eεnk (vk, A) = E(u,A). Hence we get

lim sup
k→+∞

mη
εnk

(u0, A) ≤ lim
k→+∞

Eεnk (vk, A) = E(u,A) ≤ m(u0, A) + δ.

The conclusion follows by the arbitrariness of η and δ.

Remark 4.10 It can be shown that if the density function ϕ(x, ν) in Theorem 4.2
is continuous in A× Sd−1, then

m(u0, A) = inf

{∫
SuA,u0

∩A
ϕ(x, νuA,u0 ) dHd−1 : u ∈ BV (A; {−1, 1})

}
,

where

uA,u0
(x) :=

{
u(x) if x ∈ A
u0(x) if x 6∈ A.

Moreover in this case it can be also shown that

m(u0, A) = lim
k→+∞

min{Eu0
εnk

(u,A) : u ∈ PCεnk (A)}

where
Eu0
ε (u,A) :=

∑
ξ∈Zd

∑
εi∈Aε

cεi,ξε
d−1|uA,u0

(ε(i+ ξ))− uA,u0
(εi)|

(see Theorems 4.2 and 4.4 in [6]).
On the other hand Example 4.8 shows that ϕ(x, ν) is lower semicontinuous

but not necessarily continuous with respect to the variable x.

We conclude the section presenting the convergence result of minimum prob-
lems with prescribed volume fraction. More precisely we consider minimum prob-
lems of the type

mε := min{Eε(u) : #{i ∈ Ωε : ui = 1} = lε},

where lε ∈ {0, . . . ,#Ωε}. We suppose that there exists p ∈ [0, 1] such that

lim
ε→0

lε(#Ωε)
−1 = p (4.24)

(this is not restrictive, up to passing to a subsequence). Set

PClεε (Ω) := {u ∈ PCε(Ω) : #{i ∈ Ωε : ui = 1} = lε}
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and let Elεε : L1(Ω)→ [0,+∞] be defined by

Elεε (u) =

Eε(u) if u ∈ PClεε (Ω)

+∞ otherwise in L1(Ω),

(4.25)

with Eε as in (4.1). The following Γ-convergence theorem holds.

Theorem 4.11 Let (cεi,ξ) satisfy (H1)–(H3) and let lε satisfy (4.24). Given any
sequence εn → 0, let (εnk) and E(u) be as in Theorem 4.2. Then the functionals

E
lεnk
εnk

Γ-converge with respect to the L1(Ω) strong topology to the functional Ep :

L1(Ω)→ [0,+∞] defined as

Ep(u) =

E(u) if |{u = 1}| = p|Ω|

+∞ otherwise in L1(Ω).
(4.26)

Proof. For the sake of notation, in what follows we drop the dependence on the
sequence nk. Let, then, uε ∈ PClεε (Ω) converge to u strongly in L1(Ω) such that
lim infεEε(uε) < +∞. By (4.24) and taking into account that εd#Ωε → |Ω|, we
immediately infer that |{u = 1}| = p|Ω|. As a straightforward consequence of
Theorem 4.2, we get

lim inf Elεε (uε) ≥ Ep(u).

It remains to prove the Γ-limsup inequality. Thanks to the density result stated
in Theorem 7.1 and Remark 7.2, it is enough to consider u ∈ BV (Ω; {−1, 1}) with
|{u = 1}| = p|Ω| and Su a polyhedral set. Let uε be a recovery sequence for E(u).
Note that, arguing as in the proof of Proposition 4.5 and taking into account that
Eε(u,A) is negligible as ε→ 0 for any open set A ⊂ Ω\Su, we could replace uε by
χAεuε + (1 − χAε)u, where Aε is a suitable neighborhood of Su, still obtaining a
recovery sequence for E(u). Hence, it is not restrictive to assume uε = u in Ω\Sδ,
where Sδ is a δ-neighborhood of Su for some suitable δ > 0 such that |Ω \Sδ| > 0.

Having set l̃ε = #{i ∈ Ωε : uε(εi) = 1}, we have that limε→0 |l̃ε − lε|εd =
0. If l̃ε = lε for infinite infinitesimal values of ε, there is nothing left to prove.
Assume on the contrary that l̃ε > lε (the other case being totally simmetric). Let

hε := (l̃ε − lε)
1
d , hε := [hε], where we denote by [t] the integer part of t ∈ R. Note

that εhε → 0 and 0 < hdε − h
d

ε ≤ dhd−1
ε . Set Gδε := {u = 1} ∩ (Ω \ Sδ), we choose

iε ∈ Ωε such that Qε := εiε + [0, hεε)
d ⊂ Gδε and let Jε ⊂ (Gδε \Qε)∩ εZd be such

that #Jε = hdε − h
d

ε . We then set

vε(εi) =

{
−1 if εi ∈ Qε ∪ Jε
uε(εi) otherwise.

Then, by construction, vε ∈ PClεε (Ω), vε → u strongly in L1(Ω) and moreover

Eε(vε) ≤ Eε(uε) + Cεd−1(#(∂Qε ∩ εZd) + #Jε) ≤ Eε(ṽε) + C(εhε)
d−1,
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from which the conclusion for d ≥ 2. For d = 1 we may assume that there exist
iε ∈ Ωε and η > 0 independent of ε such that εiε ∈ Suε and (εiε−η, εiε] ⊂ {uε = 1}
or [εiε, εiε + η) ⊂ {uε = 1}. Hence a recovery sequence vε ∈ PClεε (Ω) is given by
vε := uε − 2χ((iε−l̃ε+lε)ε,εiε] in the first case or vε := uε − 2χ[εiε,(iε+l̃ε−lε)ε) in the
second case.

As a straightforward consequence of Theorem 4.11, the compactness result
stated in Theorem 2.1 and the standard properties of Γ-convergence, we eventually
get the following result.

Theorem 4.12 Under the hypotheses of Theorem 4.11, we get

lim
k

min{Eεnk : #{i ∈ Ωεnk : ui = 1} = lεnk } = min{E(u) : |{u = 1}| = p|Ω|}

Moreover if (uk) is a converging sequence such that #{i ∈ Ωεnk : ui = 1} = lεnk
and

lim
k
Eεnk (uk) = lim

k
min{Eεnk : #{i ∈ Ωεnk : ui = 1} = lεnk },

then its limit is a minimizer to min{E(u) : |{u = 1}| = p|Ω|}.

4.3 Generalization: multi-body interactions

In this section we extend the previous results to the case of energies accounting
for multi-body interactions. More precisely, given M ∈ N, we consider energies of
the form

Eε(u) =


∑

i1,...,iM∈Ωε

εd−1ψε(i1, . . . , iM , ui1 , . . . , uiM ) if u ∈ PCε(Ω),

+∞ otherwise in L1(Ω).

(4.27)

Here ψ : ZdM × {−1, 1}M → [0,+∞) satisfies the following hypothesis:

(HM0) minu ψε(i, u) = ψε(i,±1) = 0 for any i ∈ ZdM and either ψε(i, ·) ≡ 0 or
ψε(i, u) > 0 for all u 6= ±1, where we have used the notation

i := (i1, . . . , iM ), u := (u1, . . . , uM ), 1 = (1, . . . , 1).

Hypothesis (HM0) implies the Eε has a ferromagnetic behavior, in the sense that

min Eε = Eε(u) = 0 if and only if u ≡ ±1.

As for pairwise interactions, through the change of variables i = i1, ξl = il+1 − i,
l ∈ {1, . . . ,M − 1}, we find convenient to rewrite Eε(u) for u ∈ PCε(Ω) as

Eε(u) =
∑

ξ∈Zd(M−1)

∑
i,i+ξ1,...,i+ξM−1∈Ωε

εd−1ψε(i, i+ ξ, ui, ui+ξ),
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where we have used the notation

ξ := (ξ1, . . . , ξM−1), i+ξ := (i+ξ1, . . . , i+ξM−1), ui+ξ = (ui+ξ1 , . . . , ui+ξM−1
).

The analogue of assumptions (H1)–(H3) is given by the following set of hypotheses:

(HM1) (coerciveness) min{ψε(i, i+ξ, u) : ∃ l ∈ {1, . . . ,M−1} with ξl = ek, ul+1 =
−u1} ≥ c > 0 for all ε > 0 and k ∈ {1, . . . , d};

(HM2) (growth) set cε,ξ = supi,u ψε(i, ξ, u) it holds lim sup
ε→0

∑
ξ∈Zd(M−1)

|ξ|cε,ξ < +∞;

(HM3) (decay) ∀ δ > 0 there exists Rδ > 0 such that lim sup
ε→0

∑
|ξ|>Rδ

|ξ|cε,ξ < δ,

where we denote by |ξ| the standard euclidean norm of ξ as a vector in Rd(M−1).
We define also a local version of the functionals in (4.27), by setting for any

A ∈ A(Ω)

Eε(u,A) =


∑

i1,...,iM∈Aε

εd−1ψε(i1, . . . , iM , ui1 , . . . , uiM ) if u ∈ PCε(Ω),

+∞ otherwise in L1(Ω).

(4.28)

By applying the abstract method exploited in the previous section, we can show
the all possible Γ-limits of Eε(u,A) satisfy the hypotheses of Theorem 2.2 and prove
the following theorem, which is the analogue of Theorems 4.2. We omit its proof,
since it follows, step by step, the proof of Theorem 4.2 without any significant
changes.

Theorem 4.13 Let ψε satisfy (HM0)–(HM3) and let Eε be defined by (4.27).
Then for any sequence εn → 0 there exist a subsequence (εnk) and a function
ϕ : Ω× Sd−1 → [0,+∞) such that the functionals Eεnk Γ-converge with respect to

the L1(Ω) strong topology to the functional E : L1(Ω)→ [0,+∞] defined by

E(u) =


∫
Su

ϕ(x, νu)Hd−1 if u ∈ BV (Ω; {±1})

+∞ otherwise.

(4.29)

Moreover for any u ∈ BV (Ω; {±1}) and A ∈ Areg(Ω) there holds

Γ- lim
k
Eεnk (u,A) = E(u,A) :=

∫
Su∩A

ϕ(x, νu)Hd−1. (4.30)

Under periodicity assumptions on the interaction potentials, the analogue
of the homogenization result stated in Theorem 4.7 holds true. More precisely,
assume that
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(HMP) ψε(i, i + ξ, u) = ψ(i, ξ, u), where, for any ξ ∈ Zd(M−1) and u ∈ {−1, 1}M ,

ψ(·, ξ, u) is [0, l]d-periodic for some l ∈ N.

In this case assumptions (HM2) and (HM3) reduce to:

(HM2’)
∑

ξ∈Zd(M−1)

|ξ| sup
u
ψ(i, ξ, u) < +∞ for any i ∈ {0, . . . , l − 1}d.

Theorem 4.14 Let ψε satisfy (HM0), (HM1), (HMP) and (HM2’) and let Eε be
defined by (4.27). Then the functionals Eε Γ-converge with respect to the L1(Ω)
strong topology, as ε→ 0, to the homogenized functional Ehom : L1(Ω)→ [0,+∞]
defined by

Ehom(u) =


∫
Su

ϕhom(νu)Hd−1 if u ∈ BV (Ω; {±1})

+∞ otherwise,

(4.31)

where

ϕhom(ν) = lim
T→+∞

T 1−d inf

{ ∑
ξ∈Zd(M−1)

∑
i∈Zd∩TQν

ψ(i, ξ, ui, ui+ξ) : u ∈ PC1(Rd),

u(i) = u0,ν(i) for i 6∈ TQν
}
.(4.32)

Again the proof follows step by step that of Theorem 4.7, taking into account that
the convergence of boundary value problems stated in Theorem 4.9 holds also in
the present case of multi-body interactions.

The following example provides an approximation of the usual l1-anisotropic
perimeter in R2 by means of energies accounting for nearest-neighbor 2-body and
3-body interactions. The related asymptotics highlights how the presence of non
pairwise interaction potentials may induce formation of special optimal patterns
among those arising in the simpler ‘central’ case.

Example 4.15 Let Eε(u) be defined as in (4.27) with d = 2 and

ψε(i, j, k, ui, uj , uk) = |ui − uj |+ |ui − uk|+ |ui − uj ||ui − uk|

if (i, j, k) = (i, i + e1, i + e2) and 0 otherwise. Note that Eε is obtained by adding
the 3-body interaction potential |ui − ui+e1 ||ui − ui+e2 | in the definition (4.6) of
the functionals Gε. In fact Eε and Gε share the same Γ-limit, that is Eε(u) Γ-
converge to the functional E(u) defined as in (4.31), with ϕhom(ν) = |ν|1. In order
to prove this result, since the functionals Eε satisfy the hypotheses of Theorem
4.14, it suffices to check that Γ-limε→0 Eε(u0,ν) = E(u0,ν) for any ν ∈ Sd−1. The
Γ-liminf inequality follows at once by neglecting the 3-body interaction potential,
that is, using the inequality

Eε(u) ≥ Gε(u).
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Conversely, it is easy to check that, given Nε ∈ N such that limε εNε = 0 and
set δε := εNε, then the functions uε ∈ PCδε(Ω) ⊂ PCε(Ω) defined by uε(δεi) =
u0,ν(δεi), i ∈ Zd, is a recovery sequence for Gε at u0,ν . A direct computation
shows that the 3-body potential gives a positive contribution to Eε(uε) only on the
‘corners’ of the interface of uε, that is when the interface of uε changes direction.
Hence, whenever ν 6∈ {e1, e2} we get

Eε(uε) = G(uε) + CN−1
ε .

Thus, uε is a recovery sequence for Eε at u0,ν if and only if limε→0Nε = +∞. The
computation above shows that the 3-body potential does not give any contribution
to the limiting energy but acts as a selector of the optimal states of Gε.

5 Approximation of non local continuum func-
tionals

In this section we show if hypothesis (H3) is violated, then energies as in (4.1)
can approximate non-local functionals. We will focus on the approximation of
two relevant examples of non-local functionals: fractional perimeters and Ohta-
Kawasaki type energies.

5.1 Fractional perimeters

We first recall the definition of fractional perimeters.

Definition 5.1 Let E ⊂ Ω and 0 < s < 1. The s-fractional perimeter Ps(E; Ω)
of E is defined as follows

Ps(E,Ω) :=

∫
E

∫
Ec∩Ω

1

|y − x|d+s
dx dy. (5.1)

Note that Ps(E,Ω) is simply half of the fractional Sobolev space seminorm
|χE |W s,1(Ω), where χE denotes the characteristic function of E. Moreover, if u :=
χE − χEc then

Ps(E,Ω) =
1

4
|u|W s,1(Ω) :=

∫
Ω

∫
Ω

|u(y)− u(x)|
|y − x|d+s

dx dy. (5.2)

We recall that if E is a set of finite perimeter in Ω, then Ps(E,Ω) is also finite, since
in general BV (Ω) ⊂ W s,1(Ω) for any s ∈ (0, 1). We will approximate functionals
defined on BV (Ω; {±1}) and of the form∫

Su

ϕ(νu)Hd−1 +

∫
Ω

∫
Ω

|u(y)− u(x)|
|y − x|d+s

dx dy. (5.3)
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By the results in [2], we may approximate the first term in (5.3) by ferromagnetic
energies accounting for example only for nearest neighbors interactions. In order
to approximate the second term in (5.3), the idea is simply to discretize it. In fact,
setting Qεi = εi+ [0, ε)d for i ∈ Zd, we have∫

Ω

∫
Ω

|u(y)− u(x)|
|y − x|d+s

dx dy =
∑
i,j

∫
(Ω∩Qε

i
)×(Ω∩Qε

j
)

|u(y)− u(x)|
|y − x|d+s

dx dy

=
∑
i,j∈Ωε

ε2d |u(εj)− u(εi)|
|ε(j − i)|d+s

+ o(1) =
∑
ξ∈Zd

∑
i,i+ξ∈Ωε

εd−1cεξ|ui+ξ − ui|+ o(1),

where cεξ := ε1−s

|ξ|d+s .

Let, then, Eε : L1(Ω)→ [0,+∞] be defined by

Eε(u) :=



∑
|j−i|=1

εd−1|uj − ui|+
∑
ξ∈Zd

∑
i,i+ξ∈Ωε

εd−s
|ui+ξ − ui|
|ξ|d+s

=: Elocε (u) + Enlε (u) if u ∈ PCε(Ω)

+∞ otherwise

(5.4)

In the next proposition we show that Enlε is essentially a ‘continuous’ perturbation
of Elocε .

Proposition 5.2 Let uε : Ωε → {±1} be such that uε → u in L1(Ω) and
supεHd−1(Suε) < +∞. Then u ∈ BV (Ω;±1) and

lim
ε→0

Enlε (uε) =

∫
Ω

∫
Ω

|u(y)− u(x)|
|y − x|d+s

dx dy. (5.5)

Proof.
Let us extend uε outside Ωε by setting uε(εi) = 1 if i ∈ Zd \ ε−1Ω. Since ∂Ω

is Lipschitz, we still have that supεHd−1(Suε) < +∞, which implies that for any
h ∈ Rd it holds ∫

Rd
|uε(x+ h)− uε(x)| dx ≤ C|h|, (5.6)

with C > 0 independent of ε and h. Given δ > 0, we split Enlε (uε) into two terms
accounting for the interactions at distance greater and less than δ, respectively,
i.e.

Enlε (uε) =
∑

ξ∈Zd∩Bδ/ε

∑
i,i+ξ∈Ωε

εd−s
|(uε)i+ξ − (uε)i|

|ξ|d+s

+
∑

ξ∈Zd\Bδ/ε

∑
i,i+ξ∈Ωε

εd−s
|(uε)i+ξ − (uε)i|

|ξ|d+s
=: I1

ε,δ + I2
ε,δ (5.7)
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It is easy to show that

I2
ε,δ =

∫
Ω×Ω∩{|y−x|>δ}

|uε(y)− uε(x)|
|y − x|d+s

dx dy + o(1),

from which we get that

lim
ε→0

I2
ε,δ =

∫
Ω×Ω∩{|y−x|>δ}

|u(y)− u(x)|
|y − x|d+s

dx dy. (5.8)

We proceed now by estimating I1
ε,δ. It can be easily shown that

I1
ε,δ ≤

∑
ξ∈Zd∩Bδ/ε

ε−s

|ξ|d+s

∫
Rd
|uε(x+ εξ)− uε(x)| dx

Hence, by (5.6), we get

I1
ε,δ ≤ Cε1−s

∑
ξ∈Zd∩Bδ/ε

1

|ξ|d+s−1
. (5.9)

Note that

∑
ξ∈Zd∩Bδ/ε

1

|ξ|d+s−1
=

[δ/ε]−1∑
k=1

∑
ξ∈Zd∩(Bk+1\Bk)

1

|ξ|d+s−1

≤
[δ/ε]−1∑
k=1

#(Zd ∩ (Bk+1 \Bk))

kd+s−1
≤ C

[δ/ε]−1∑
k=1

1

ks
≤ C

(
δ

ε

)1−s

.

Thus, from (5.9) we deduce that

I1
ε,δ ≤ Cδ1−s. (5.10)

Eventually, by (5.7), (5.8) and (5.10), we infer that

lim
ε→0

Enlε (uε) =

∫
Ω×Ω∩{|y−x|>δ}

|u(y)− u(x)|
|y − x|d+s

dx dy +O(δ1−s)

and the conclusion follows by the arbitrariness of δ > 0.

As a straightforward consequence of Proposition 5.2 and the results in [2], we
derive the following Γ-convergence result.

Theorem 5.3 The functionals Eε, defined in (5.4), Γ-converge with respect to
the L1(Ω) strong topology to the functional E : L1(Ω)→ [0,+∞] defined by

E(u) =


∫
Su

|νu|1Hd−1 +

∫
Ω

∫
Ω

|u(y)− u(x)|
|y − x|d+s

dx dy if u ∈ BV (Ω; {±1})

+∞ otherwise.

(5.11)
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Proof. Notice that Elocε (u) = Gε(u) for u ∈ PCε(Ω), where Gε is defined in (4.6),
and we have already recalled that in [2] it was proved that

Γ- lim
ε→0

Gε(u) =


∫
Su

|νu|1Hd−1 if u ∈ BV (Ω; {±1})

+∞ otherwise.

(5.12)

Hence, the thesis follows by Proposition 5.2.

Remark 5.4 Note that the functional Eε defined in (5.4) is of the form (4.1) with

cεi,ek = 1 + ε1−s, for k ∈ {1, . . . , d}, cεi,ξ = ε1−s

ξd+s
if ξ ∈ (Zd ∩ BR/ε) \ {e1, . . . , ed}

and cεi,ξ = 0 otherwise, where R := diam(Ω). A direct computation shows that for
any R > 0

lim sup
ε→0

∑
ξ∈Zd∩BR/ε

ε1−s

|ξ|d+s
< +∞; lim sup

ε→0

∑
ξ∈Zd∩(BR/ε\BR/2ε)

ε1−s

|ξ|d+s
≥ C > 0.

(5.13)
Hence hypotheses (H1), (H2) are satisfied, while (H3) is violated.

Remark 5.5 (Generalization) The argument used to prove Proposition 5.2 and
Theorem 5.3 can be easily adapted to approximate more general non-local function-
als. More precisely, let K : Ω×Ω→ [0,+∞) be such that K ∈ C1(Ω×Ω\{x = y})
and K(x, y) ≤ C|y − x|−d−s in a neighborhood of {x = y} for some s ∈ (0, 1).
Moreover let Hε : L1(Ω)→ [0,+∞] be defined by

Hε(u) :=



∑
|j−i|=1

εd−1|uj − ui|

+
∑
ξ∈Zd

∑
i,i+ξ∈Ωε

ε2dK(εi, ε(i+ ξ))|ui+ξ − ui| if u ∈ PCε(Ω),

+∞ otherwise

and let H : L1(Ω)→ [0,+∞] defined by

H(u) =


∫
Su

|νu|1Hd−1 +

∫
Ω

∫
Ω

K(x, y)|u(y)− u(x)| dx dy if u ∈ BV (Ω; {±1})

+∞ otherwise,

Then Theorem 5.3 still holds with Hε in place of Eε and H in place of E.

5.2 Ohta-Kawasaki type energies

A canonical mathematical model in the studies of energy-driven pattern forming
systems is based on the following energy first proposed by Ohta-Kawasaki, see [16]:

Eε(u) = ε

∫
Ω

|∇u|2 dx+
1

ε

∫
Ω

(1−u2)2 dx+ γ0

∫
Ω

∫
Ω

G(x, y)u(x)u(y) dxdy. (5.14)
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Here u is an H1(Ω) phase parameter describing the density distribution of the
components (u = −1 stands for one phase, u = +1 for the other), subject to the
constraint m = −

∫
Ω
u dx, that is the difference of the phases’ volume fractions is

prescribed, and G is the Green’s function for −∆. The first two integrals in (5.14)
form the so called ‘Modica-Mortola’ energy which Γ-converges as ε → 0 to the
perimeter functional. It can be easily shown that the non-local term in (5.14) is
an L1 continuous perturbation of the Modica-Mortola energy. As a consequence,
the functionals Eε Γ-converge with respect to the L1(Ω) norm to the functional
E : L1(Ω)→ [0,+∞] given by

E(u) :=


8

3
Hd−1(Su) + γ0

∫
Ω

∫
Ω

G(x, y)u(x)u(y) dx dy if u ∈ BV (Ω; {±1})

+∞ otherwise.

(5.15)

We provide a variational approximation of an anisotropic version of the func-
tional in (5.15), that is functionals finite on BV (Ω; {±1}) and of the type∫

Su

ϕ(νu) dHd−1(Su) + γ0

∫
Ω

∫
Ω

G(x, y)u(x)u(y) dx dy.

We may ’discretize’ the non-local as in the previous section, that is∫
Ω

∫
Ω

G(x, y)u(x)u(y) dx dy =
∑
i,j

∫
(Ω∩Qε

i
)×(Ω∩Qε

j
)

G(x, y)u(x)u(y) dx dy

=
∑
i,j∈Ωε

ε2dG(εi, εj)u(εi)u(εj) + o(1)

=
∑
ξ∈Zd

∑
i,i+ξ∈Ωε

ε2dG(εi, ε(i+ |ξ|))ui+ξui + o(1). (5.16)

We note that the Green’s function G satisfies

|G(x, y)| ≤ C|x− y|d−1

and in particular ∫
Ω

∫
Ω

|G(x, y)| dxdy < +∞. (5.17)

A discrete version of (5.17) is provided by the following estimate∑
ξ∈Zd

∑
i,i+ξ∈Ωε

ε2dG(εi, ε(i+ |ξ|)) ≤ C
∑

ξ∈Zd∩Br/ε

εd
1

|εξ|d−1

= Cε
∑

ξ∈Zd∩Br/ε

1

|ξ|d−1
≤ C, (5.18)
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where we have set r := diam(Ω).
Let, then, F̂ε : L1(Ω)→ [0,+∞] be defined by

F̂ε(u) :=


−

∑
|j−i|=1

εduiuj + γ0

∑
ξ∈Zd

∑
i,i+ξ∈Ωε

ε2d+1G(εi, ε(i+ |ξ|))ui+ξui

=: F̂ locε (u) + F̂nlε (u) if u ∈ PCε(Ω)

+∞ otherwise.

Note that F̂ε is of the form (3.1). Moreover, we underline that, since G(·, ·) changes
sign, F̂ε mixes ferromagnetic and anti-ferromagnetic interactions. Hence the uni-
form states u ≡ ±1 are not absolute minimizers of F̂ε. Neverthless, estimate (5.18)
yields that F̂nlε (u) vanishes uniformly w.r.t. u as ε goes to 0, and then

F̂ε(±1) = min F̂ε +O(ε) = F̂ locε (±1) +O(ε).

We then consider the scaled energies

Êε(u) :=
F̂ε(u)− F̂ locε (±1)

ε
,

which can be written as

Êε(u) =



∑
|j−i|=1

εd−1|uj − ui|+ γ0

∑
ξ∈Zd

∑
i,i+ξ∈Ωε

ε2dG(εi, ε(i+ |ξ|))ui+ξui

=: Êlocε (u) + Ênlε (u) if u ∈ PCε(Ω)

+∞ otherwise.

(5.19)

Arguing as in the proof of Proposition 5.2, it can be proved the following
result.

Proposition 5.6 Let uε : Ωε → {±1} be such that uε → u in L1(Ω). Then

lim
ε→0

Ênlε (uε) =

∫
Ω

∫
Ω

G(x, y)u(x)u(y) dx dy. (5.20)

As a consequence of Proposition 5.6 and the result of [2] stated in (5.12), we derive
the following Γ-convergence result. Its proof is straightforward.

Theorem 5.7 The functionals Êε, defined in (5.19), Γ-converge with respect to
the L1(Ω) strong topology to the functional Ê : L1(Ω)→ [0,+∞] defined by

Ê(u) :=


∫
Su

|νu|1 dHd−1(Su) + γ0

∫
Ω

∫
Ω

G(x, y)u(x)u(y) dx dy

if u ∈ BV (Ω; {±1})

+∞ otherwise.

(5.21)
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The result in Theorem 5.7 can be easily extended to the periodic case, when
Ω = Td, and to functions satisfying a mean constraint. More precisely, assume
ε = 1

n and, given ln ∈ {0, . . . nd}, set

PClnn (Td) :=
{
u :

1

n
Zd → {−1, 1}, u [0, 1)d-periodic and

#{i ∈ ([0, n) ∩ Z)d : ui = 1} = ln
}
.

We assume that there exists p ∈ [0, 1] such that

lim
n→+∞

n−dln = p (5.22)

Then, consider the functionals Elnn : L1(Td)→ [0,+∞] defined as

Elnn (u) =



∑
|j−i|=1

n1−d|uj − ui|+ γ0

∑
ξ∈Zd

∑
i∈nQ∩Zd

n−2dG
( i
n
,

(i+ |ξ|)
n

)
ui+ξui

if u ∈ PClnn (Td)

+∞ otherwise.

(5.23)

Then, by following the same steps of the proof of Theorem 4.11 and taking into
account Theorem 7.1 and Remark 7.2, it can be proved the following result.

Theorem 5.8 Let (ln) satisfy (5.22). Then, the functionals Elnn , defined in (5.23),
Γ-converge with respect to the L1(Td) strong topology to the functional Ep : L1(Td)→
[0,+∞] defined by

Ep(u) :=



∫
Su

|νu|1 dHd−1(Su) + γ0

∫
Td

∫
Td
G(x, y)u(x)u(y) dx dy

if u ∈ BV (Td; {±1}) and |{u = 1}| = p

+∞ otherwise.

(5.24)

The previous result allows to deduce the existence of ‘lamellar-type’ local
minimizers for the discrete energies Epnn : according to a definition introduce in
[1], we say that a function u ∈ PClnn (Td) is an isolated L1-local minimizer for the
functional Elnn if there exists δ > 0 such that

Elnn (u) ≤ Elnn (v), for all v ∈ PClnn (Td) with 0 < min
τ∈ 1

nZd
‖u− v(·+ τ‖L1(Td) ≤ δ.

An analogous definition of isolated local minimizers can be given in the continuum
for the functional Ep(u).

In [1], Proposition 5.6 it was proved the following result: given p ∈ (0, 1), set

Lk := T d−1 × ∪kl=1

[
l − 1

k
,
l − 1

k
+
p

k

]
, k ∈ N (5.25)
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and denote by Lp,k the collection of all sets which may be obtained from Lk by
translations and relabeling of coordinates. Then, for any γ0 > 0 and L ∈ Lp,k
the function uL := χL − χLc is an isolated L1-local minimizer for the functional
Ep : L1(Td)→ [0,+∞] defined by

Ep(u) :=


Hd−1(Su) + γ0

∫
Td

∫
Td
G(x, y)u(x)u(y) dx dy

if u ∈ BV (Td; {±1}) and |{u = 1}| = p

+∞ otherwise,

(5.26)

for k large enough. Since Hd−1(Su) ≤
∫
Su
|νu|1 dHd−1 and the equality holds for

uL, we get that uL is also an isolated L1-local minimizer for the functional Ep.
Hence, as a straightforward consequence of Theorem 2.3 and Theorem 5.8, we
deduce the following result.

Theorem 5.9 (Local minimality of lamellae) There exist k0 ∈ N such that
for any k ∈ N, k > k0 and L ∈ Lp,k there exists n0 ∈ N and a family {un}n>n0

of
isolated local minimizers of Elnn such that un → uL strongly L1(Td), as n→ +∞,
where uL := χL − χLc .

6 General criterion for a ferromagnetic behavior

In this section we consider energies of type (3.1) in the homogeneous case cεi,ξ = cξ
for all i and ξ, but without constraints on the sign of such constants. Our main
goal is to provide a general criterion which ensures that such energies still have a
ferromagnetic behavior, that is the ground states are still the uniform states u ≡ 1
and u ≡ −1 and the continuum limit of the scaled energies is an interfacial energy
of the form (4.4). We restrict our analysis to the case in which only short range
interactions are taken into account, that is there exists R > 0 such that cξ = 0 if
|ξ| > R. Hence, we consider energies of the form

Fε(u) = −
∑

ξ∈Zd∩B(0,R)

∑
i,i+ξ∈Ωε

cξε
duiui+ξ. (6.1)

on PCε(Ω) and equal to +∞ otherwise in L1(Ω). In order to introduce and better
explain the ferromagnetic criterion we are going to define we first consider two
one-dimensional examples.

Example 6.1 (NN and NNN interactions) Let Ω = (0, 1) and let Fε the en-
ergy accounting for nearest and next-to-nearest neighbours interactions defined by

Fε(u) := −c1
∑

i,(i+1)∈Z∩(0,ε−1)

εuiui+1 − c2
∑

i,(i+2)∈Z∩(0,ε−1)

εuiui+2.
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Note that, given λ ∈ R, we may rewrite Fε as

Fε(u) =
∑

i∈Z∩(0,ε−1−2)

ε(−c1(λuiui+1 + (1−λ)ui+1ui+2)− c2uiui+2) +O(ε), (6.2)

where the additional infinitesimal term is due to the energetic contribution of the
interactions near 0 and 1. Set, for v : {0, 1, 2} → {−1, 1},

F 2
cell(v) := −c1(λv0v1 + (1− λ)v1v2)− c2v0v2.

Then a condition which guarantees that the uniform states −1 and 1 are the only
two minimizers of Fε up to lower order terms is the following

F 2
cell(v) > F 2

cell(±1) = −c1 − c2 ∀ v : {0, 1, 2} → {−1, 1}, v 6≡ ±1. (6.3)

Indeed, if (6.3) is satisfied, formula (6.2) immediately infers that

Fε(±1) = minFε +O(ε).

It is easy to show that (6.3) is satisfied with λ = 1
2 if and only if c1, c2 ∈ A :=

{c1 > 0, 2c2 > −c1}. Moreover, easy computations show that

1) if c1, c2 ∈ B := {c1 < 0, 2c2 > c1} we have two ground states given by the
alternating states (−1)i and −(−1)i;

2) if c1, c2 ∈ C := {c1 < 0, 2c2 < c1} ∪ {c1 > 0, 2c2 < −c1} we have four

ground states given by (−1)[
i+k
2 ], k = 0, 1, 2, 3;

3) if c1, c2 ∈ A ∩ B = {c1 = 0, c2 > 0} we have four ground states given by
the uniform states 1 and −1 and the alternating states given by (−1)i and
−(−1)i; if c1, c2 ∈ A ∩ C = {c1 > 0, 2c2 = −c1} we have six ground states

given by the uniform states 1 and −1 and the states (−1)[
i+k
2 ], k = 0, 1, 2, 3;

if c1, c2 ∈ B∩C = {c1 < 0, 2c2 = c1} we have six ground states given by the

alternating states (−1)i and −(−1)i and the states (−1)[
i+k
2 ], k = 0, 1, 2, 3.

Example 6.2 (NN, NNN and NNNN interactions) Let Ω = (0, 1) and let
Fε the energy accounting for nearest, next-to-nearest and next-to-next-to-nearest
neighbours interactions defined by

Fε(u) := −c1
∑

i,(i+1)∈Z∩(0,ε−1)

εuiui+1 − c2
∑

i,(i+2)∈Z∩(0,ε−1)

εuiui+2

−c3
∑

i,(i+3)∈Z∩(0,ε−1)

εuiui+3.

Adopting the same argument of the previous example, given λ, α, β ∈ R, we may
rewrite Fε as

Fε(u) =
∑

i∈Z∩(0,ε−1−3)

ε(−c1(αuiui+1 + βui+1ui+2 + (1− α− β)ui+2ui+3)
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−c2(λuiui+2 + (1− λ)ui+1ui+3)− c3uiui+3) +O(ε). (6.4)

Set, for v : {0, 1, 2, 3} → {−1, 1},

F 3
cell(v) := −c1(αv0v1 + βv1v2 + (1− α− β)v2v3)− c2(λv0v2 + (1− λ)v1v3)− c3v0v3.

In this case the uniform states −1 and 1 are the only two minimizers of Fε up to
lower order term if there holds

F 3
cell(v) > F 3

cell(±1) = −c1 − c2 − c3 ∀ v : {0, 1, 2, 3} → {−1, 1}, v 6≡ ±1. (6.5)

One can check that (6.5) is satisfied in particular if c1, c2, c3 ∈ {c1 > −3c3 >
0, 3c2 > −c1 − 3c3} ∪ {c1 = 0, c2 > 0, c3 > 0}. Note that for other values
of c1, c2 and c3 it is in principle possible that neither the uniform states 1 and
−1 nor different periodic states are minimizers of F 3

cell. In this case one could
push further the argument before as follows: given M ∈ N, M ≥ 3, three set of
constants {αk1 , . . . , αkM−k+1}, k = 1, 2, 3, satisfying

∑M−k+1
j=1 αkj = 1 for any k,

one can rewrite Fε as

Fε(u) =
∑

i∈Z∩(0,ε−1−M)

ε

− 3∑
k=1

cl

M−k+1∑
j=1

αkjui+j−1ui+j+k−1

+O(ε)

and define, for v : {0, 1, . . . ,M} → {−1, 1},

FMcell(v) := −
3∑
k=1

ck

M−k+1∑
j=1

αkj vj−1vj+k−1

Then, as before, the uniform states −1 and 1 are the only ground states if there
holds

FMcell(v) > FMcell(±1) = −c1 − c2 − c3 ∀ v : {0, 1, . . . ,M} → {−1, 1}, v 6≡ ±1.
(6.6)

We now generalize the argument exploited in the previous examples. Let Fε
be defined by (6.1). Note that, for any M ∈ N, M ≥ R, we may rewrite Fε as

Fε(u) =
∑

εi∈ΩMε

εd

− ∑
|ξ|≤R

cξ
∑

j,j+ξ∈CM

ϕM (j, ξ)ui+jui+j+ξ

+O(ε), (6.7)

where CM := [0,M ]d∩Zd, ΩMε := {i ∈ Zd : εi+εCM ⊂ Ω} and ϕM : CM×Zd → R
satisfies for any fixed ξ ∈ Zd ∑

j,j+ξ∈CM

ϕM (j, ξ) = 1.
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Note that the additional infinitesimal term in (6.7) is due to the energetic contri-
bution of the interactions near the boundary of Ω. Set, for v : CM → {±1},

FMcell(v) := −
∑
|ξ|≤R

cξ
∑

j,j+ξ∈CM

ϕM (j, ξ)vjvj+ξ. (6.8)

Definition 6.3 (ferromagnetic criterion) We say that the family {cξ : ξ ∈
Zd ∩ B(0, R)} has a ferromagnetic behavior if there exists M ∈ N, M ≥ R and
ϕM : CM × Zd → R such that∑

j,j+ξ∈CM

ϕM (j, ξ) = 1 ∀ ξ ∈ Zd

and

FMcell(v) > FMcell(±1) = −
∑
|ξ|≤R

cξ ∀ v : CM → {±1}, v 6≡ ±1. (6.9)

Formula (6.9) is a sufficient condition for the minimality of the uniform states 1
and −1. Indeed, if (6.9) is satisfied, formula (6.7) immediately infers that

Fε(±1) = minFε +O(ε)

We may, then, consider the scaled energies

Eε(u) =
Fε(u)− Fε(±1)

ε
, (6.10)

which can be written on PCε(Ω) as

Eε(u) =
∑

εi∈ΩMε

εd−1

∑
|ξ|≤R

cξ
∑

j,j+ξ∈CM

(1− ϕM (j, ξ))ui+jui+j+ξ

+O(1)

Let us set

EMcell(v) := FMcell(v)− FMcell(±1) =
∑
|ξ|≤R

cξ
∑

j,j+ξ∈CM

(1− ϕM (j, ξ))vjvj+ξ. (6.11)

Moreover, with a little abuse of notation, set for u ∈ PCε(Ω) and i ∈ Ωε

EMcell(u, i+ CM ) := EMcell(u(1/ε ·+i)).

Note, then, that we get

Eε(u) =
∑

εi∈ΩMε

εd−1EMcell(u, i+ CM ) +O(1). (6.12)

In the next proposition we show that the functionals Eε are equi-coercive
with respect to the L1(Ω)-topology and their possible Γ-limits are finite only on
BV (Ω; {−1, 1}).
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Proposition 6.4 Assume that the family {cξ : ξ ∈ Zd ∩ B(0, R)} has a ferro-
magnetic behavior, according to Definition 6.3, and let Eε be defined by (6.10).
Let uε be such that supεEε(uε) < +∞. Then there exist a subsequence εk and
u ∈ BV (Ω; {−1, 1}) such that uεk converge to u strongly in L1(Ω).

Proof. Let
{

Ωk
}

be an increasing sequence of open sets compactly contained in
Ω such that ∪k∈NΩk = Ω. By (6.9) and (6.12), we have that for any k ∈ N

Hd−1(S(uε) ∩ Ωk) ≤ Cεd−1#{i ∈ Zd ∩ 1

ε
Ωk : EMcell(uε, i+ CM ) > 0}

≤ CEε(uε) ≤ C

By Theorem 2.1 and by a diagonalization argument we get the conclusion.

Now we pass to show that the Γ-limit of Eε is an interfacial energy of the
form (4.4). Since it is not our purpose in this paper to investigate boundary layer
effects, we assume that Ω = Td, ε = 1

n , n ∈ N. Moreover from now on we will use
the notation En in place of E 1

n
. In this periodic setting En turns out to be defined

on all [0, 1)d-periodic functions u : 1
nZ

d → {−1, 1} as

En(u) =
∑

ξ∈Zd∩B(0,R)

∑
i∈Zd∩nQ

cξn
1−d(1− uiui+ξ)

=
∑

i∈Zd∩nQ

n1−dEMcell(u, i+ CM ), (6.13)

equal to +∞ otherwise in L1(Td), and

En(±1) = minEn = 0.

Theorem 6.5 Assume that the family {cξ : ξ ∈ Zd∩B(0, R)} has a ferromagnetic
behavior, according to Definition 6.3, and let En be defined by (6.13). Let M > R
and ϕ : CM × Zd → R such that (6.9) is satisfied. Then the functionals En
Γ-converge with respect to the L1(Td)-topology to the functional E : L1(Td) →
[0,+∞] defined by

E(u) =


∫
S(u)

ϕ(νu) dHd−1 if u ∈ BV (Td; {−1, 1})

+∞ otherwise,

(6.14)

and ϕ : Sd−1 → [0,+∞) is the restriction to Sd−1 of a convex and positively
homogeneous function of degree one and it is defined by

ϕ(ν) := lim
T→+∞

1

T d−1
min

 ∑
i∈Zd∩TQν

EMcell(u, i+ CM ) : u ∈ D(TQν)

 , (6.15)

where Qν := Qν(0, 1) and

D(TQν) := {u : Zd → {−1, 1} : u(i) = u0,ν(i) ∀ i ∈ Zd \ (T −R)Qν}. (6.16)
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Remark 6.6 (bounds) It can be proved that the function ϕ defined in (6.15)
satisfies the following bounds

α|ν|1,∞ ≤ ϕ(ν) ≤ β|ν|1,∞, ∀ ν ∈ Sd−1,

where α := min{EMcell(v) : v 6≡ ±1}, β := max{EMcell(v) : v 6≡ ±1} and |ν|1,∞ :=
max{

∑
k 6=l |νk| : l ∈ {1, . . . N}}. The proof of the lower bound can be obtained

by using a slicing argument along the directions el, where l ∈ argmax |ν|1,∞, and
taking into account that, by (6.9), the transition between the two states 1 and −1
costs a positive energy. The proof of the upper bound can be easily obtained by
testing the minimum problem in (6.15) with u = u0,ν and using again a slicing
argument.

The next proposition shows that the definition of ϕ in (6.15) is well posed. We
omit its proof, since it relies on an argument which is standard in homogenization
theory and is very similar to that exploited in the construction of the recovery
sequence in the proof of Theorem 6.5.

Proposition 6.7 Let M > R and ϕ : CM × Zd → R such that (6.9) is satisfied
and let D(TQν) be defined by (6.16) for all ν ∈ Sd−1 and T > 0. Then the limit

lim
T→+∞

1

T d−1
min

 ∑
i∈Zd∩TQν

EMcell(u, i+ CM ) : u ∈ D(TQν)


exists for all ν ∈ Sd−1.

Proof of Theorem 6.5. We first prove the lim inf inequality. Let un → u in
L1(Td) such that lim infnEn(un) < +∞. Up to passing to a subsequence we
may assume that lim infnEn(un) = limnEn(un). Since un is [0, 1)d-periodic,
then u is [0, 1)d-periodic. By Proposition 6.4, we immediately deduce that u ∈
BV (Td; {−1, 1}). We now use a blow-up argument. Let Q = [0, 1)d and set

µn :=
∑

i∈Zd∩nQ

n1−dEMcell(un, i+ CM )δ 1
n i
.

Since supn µn(Q) = supnEn(un) < +∞, we may suppose, up to passing to a
further subsequence, that there exists a positive finite measure µ such that µn ⇀ µ.
By the Radon-Nikodym Theorem, we may decompose µ into two mutually singular
positive measures as

µ = ψHd−1bS(u)+µs.

The conclusion follows by showing that

ψ(x0) ≥ ϕ(νu(x0)) for Hd−1bS(u) a.e. x0 ∈ S(u).

For Hd−1bS(u) a.e. x0 ∈ S(u) it holds:
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(i) limρ→0
1
ρd

∫
x0+ρQ±νu(x0)

|u(x)−±1| dx = 0,

(ii) limρ→0
1

ρd−1Hd−1(S(u) ∩ {x0 + ρQνu(x0)
}) = 1,

(iii) limρ→0

µ(x0+ρQνu(x0)
)

Hd−1(S(u)∩{x0+ρQνu(x0)
}) = ψ(x0).

Fix such a x0 ∈ S(u) and let (ρm) be a sequence of positive numbers converging
to zero such that µ(x0 + ρmQνu(x0)

) = 0. By (ii) and (iii) we get

ψ(x0) = lim
m

µ(x0 + ρmQνu(x0)
)

ρd−1
m

= lim
m

1

ρd−1
m

lim
n

∑
i∈Zd∩n(x0+ρmQνu(x0)

)

n1−dEMcell(un, i+ CM ).

Observe that, for any m and n we can find ρm,n with limn ρm,n = ρm and xn0 ∈ Zd
with 1

nx
n
0 → x0, such that

Zd ∩ (xn0 + nρm,nQνu(x0)
) = Zd ∩ n(x0 + ρmQνu(x0)

).

Then

ψ(x0) = lim
m

lim
n

∑
i∈Zd∩(xn0 +nρm,nQνu(x0)

)

(nρm,n)1−dEMcell(un, i+ CM )

= lim
m

lim
n

∑
j∈Zd∩(nρm,nQνu(x0)

)

(nρm,n)1−dEMcell(un, x
n
0 + j + CM )

Let vm,n : 1
nρm,n

Zd → {−1, 1} be defined by

vm,n

(
1

nρm,n
j

)
= un

(
1

n
(xn0 + j)

)
j ∈ Zd

By (i) and since un → u in L1(Q) we get

lim
m

lim
n

∫
Qνu(x0)

|vm,n − u0,νu(x0)
| dx = 0.

Hence, by a standard diagonalization argument, we can find a sequence of positive
numbers λk → 0 and a sequence vk : λkZd → {−1, 1} such that vk → u0,νu(x0)

in

L1(Qνu(x0)
) and

ψ(x0) ≥ lim
k

∑
j∈Zd∩λkQνu(x0)

λd−1
k EMcell(vk, j + CM )
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By Lemma 6.8, there exists wk : λkZd → {−1, 1} such that wk(λkj) = uν(λkj) if
j ∈ Zd \

(
1
λk
−R

)
Qνu(x0)

and

ψ(x0) ≥ lim inf
k

∑
j∈Zd∩ 1

λk
Qνu(x0)

λd−1
k EMcell(wk, j + CM ). (6.17)

Eventually the functions ŵk : Zd → {−1, 1} defined as

ŵk(j) := wk(λkj), j ∈ Zd

belong to D
(

1
λk
Qνu(x0)

)
and, setting Tk := 1

λk
, by (4.15), (6.15) and Proposition

6.7, we get

ψ(x0) ≥ lim inf
k

T 1−d
k

∑
j∈Zd∩TkQνu(x0)

EMcell(ŵk, j + CM ) ≥ ϕ(νu(x0)).

We now pass to the construction of a recovery sequence. We perform this construc-
tion just for functions u ∈ BV (Td; {−1, 1}) such that S(u) is a polyhedral set, since
the set of these functions is dense in BV (Td; {−1, 1}). We further restrict to the
case in which S(u) is the restriction to Q of an hyperplane, since this construction
is easily generalized to each face of a polyhedral boundary. Fix, then, ν ∈ Sd−1

and let u be such that S(u) = Πν ∩ Q, where Πν is an hyperplane orthogonal to
ν. Without loss of generality we may assume Πν = {x ∈ Rd : 〈x, ν〉 = 0}, which
corresponds to u = u0,ν on Q. Given δ > 0, by Proposition 6.7, there exist Tδ > 0
and uδ ∈ D(TδQν) such that Tδ > Rδ−1, and

1

T d−1
δ

∑
i∈Zd∩TQν

EMcell(uδ, i+ CM ) ≤ ϕ(ν) + δ.

Let {b1, . . . , bd} be an orthonormal base of Rd such that bd = ν and Qν = {x ∈
Rd : |〈x, bl〉| < 1/2, l = 1, . . . , d}. For any j ∈

⊕d−1
l=1 Z(Tδ + 2R)bl set xj = [j] =

([j1], . . . , [jd]). Then let un : 1
nZ

d ∩Q→ {−1, 1} be such that

un

(
i

n

)
= uδ(i− xj) for i ∈ Zd ∩ (Tδ + 2R)Qν + xj , j ∈

d−1⊕
l=1

Z(Tδ + 2R)bl

and u ≡ uν otherwise. It can be easily verified that un → u in L1(Q). Note that,
by (6.9), the interactions giving non zero energetic contribution are only those
inside the domains of the form 1

n ((Tδ + 2R)Qν + xj) and in a R
n -neighborhood of

∂( 1
n ((Tδ + 2R)Qν + xj)) ∩Πν ∩Q. Summing up all such contributions, we get

E′′(u) ≤ lim sup
n

En(un) ≤ Hd−1(S(u)(Tδ + 2R)1−d
∑

i∈Zd∩TQν

EMcell(uδ, i+ CM )
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+CR
(Tδ + 2R)d−2

(Tδ + 2R)d−1
≤ Hd−1(S(u)(1 + δ)d−1(ϕ(ν) + δ) + CRδ.

The conclusion follows by letting δ tend to 0.

Lemma 6.8 Let λk → 0 and let vk : λkZd → {−1, 1} be such that vk → u0,ν in
L1(Qν). Then there exist wk : λkZd → {−1, 1} such that wk(λkj) = u0,ν(λkj) if
j ∈ Zd \

(
1
λk
−R

)
Qν and

lim inf
k

∑
j∈Zd∩ 1

λk
Qν

λd−1
k EMcell(wk, j + CM ) ≤ lim inf

k

∑
j∈Zd∩ 1

λk
Qν

λd−1
k EMcell(vk, j + CM ).(6.18)

Proof. Note that if ‖vk−u0,ν‖L1(Qν) ≤ Cλ2
k, then #{j ∈ Zd∩(Qν \

(
1
λk
−R

)
Qν) :

vk(λkj) 6= u0,ν(λkj)} ≤ Cλ2−N
k . In this case it can be easily verified that the thesis

holds for
wk := χ(1−Rλk)Qνvk + (1− χ(1−Rλk)Qν )u0,ν .

Otherwise, we may assume that lim infk
1
λ2
k

‖vk − u0,ν‖L1(Qν) = +∞. In this case,

set Nk :=

[√
‖vk−u0,ν‖L1(Qν )

λk

]
and, for l ∈ {1, . . . , Nk}, set

Qkν,l := {x ∈ Qν : dist(x,Qcν) ≥ Rlλk}.

Then for any k ∈ {1, . . . , Nk} consider the family of functions wlk defined by

wlk := χQk
ν,l
vk + (1− χQk

ν,l
)u0,ν .

Arguing as in the proof of Proposition 4.5, we can find lk ∈ {1, . . . , Nk} such that

∑
j∈Zd∩ 1

λk
Qν

λd−1
k EMcell(w

lk
k , j + CM ) ≤

∑
j∈Zd∩ 1

λk
Qν

λd−1
k EMcell(uk, j + CM )

+
∑

j∈Zd∩ 1
λk

(Qν−λkNkQν)

λd−1
k EMcell(u0,ν , j + CM ) + o(1).

The conclusion follows by choosing wk := wlkk and noticing that

lim
k

∑
j∈Zd∩ 1

λk
(Qν−λkNkQν)

λd−1
k EMcell(u0,ν , j + CM ) = 0.
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7 Appendix

In this section we consider sets of finite perimeter in a bounded Lipschitz set Ω with
assigned measure and prove a density result with sets having polyhedral boundary
in Ω and maintaining the assigned measure.

Theorem 7.1 Let Ω ⊆ Rd be a bounded open set with Lipschitz boundary and let
m ∈ (0, 1) be fixed. Then for any set E with |E| = m|Ω| there exists a sequence
En such that ∂En∩Ω is a polyhedral set, |En| = m|Ω|, limn→+∞ |En4E| = 0 and
limn→+∞ Per(En) = Per(E).

Proof. Let us fix a set E of finite perimeter and measure equal to m|Ω|. By a
standar density result we select a sequence (Fn)n of sets with polyhedral boundary
converging in measure and in perimeter to E. Then the measures of Fn satisfy
Fn = mn|Ω| with limn→+∞mn = m but in general mn 6= m. In the sequel we
will slightly modify the sets Fn taking care that all the convergence and structure
properties remain valid.

Let 0 < η < 1 be fixed to be chosen later. By the regularity of Ω it is possible
to find a positive r > 0 and finite set of disjoint cubes of side r such that their
union covers Ω up to an error less than η, that is, there exists a (finite) set Ir such
that

|Ω \ tx∈IrQr(x)| ≤ η|Ω|.
We now claim that there exist 0 < h < k < 1 and points xh, xk ∈ Ir such that

|E ∩Qr(xh)| > hrd, |E ∩Qr(xk)| < krd. (7.1)

In fact, assuming by contradiction on k, h that |E∩Qr(x)| ≤ hrd, |E∩Qr(x)| ≥ krd
for any x ∈ Ir we get

m|Ω| = |E| ≥
∑
x∈Ir

|E ∩Qr(x)| ≥ k
∑
x∈Ir

rd#(Ir) ≥ k(1− η)|Ω|

and

m|Ω| = |E| = |E \ tx∈IrQr(x)|+ | tx∈Ir E ∩Qr(x)|
≤ |Ω ∩ tx∈IrQr(x)|+

∑
x∈Ir |E ∩Qr(x)| ≤ |Ω| − (1− h)rd#(Ir)

≤ h|Ω|+ η(1− h)|Ω| = (h(1− η) + η)|Ω|.

Hence, according to fix at the beginning η < min{m, 1 −m}, we may select h, k
such that 0 < h(1 − η) < m − η < m < k(1 − η) and also k < 1, and get a
contradiction in both the inequalities above.

Thus let xk, xh be such that inequalities (7.1) hold for the initial set E. By
taking into account the L1 convergence of Fn to E, for n large enough, a weak
version of (7.1) holds for Fn with h, k replaced by h/2, (k + 1)/2, i.e.

|Fn ∩Qr(xh)| > h

2
rd, |Fn ∩Qr(xk)| < k + 1

2
rd. (7.2)
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In addition we also assume that |mn −m| < min{(h/4)rd, (1 − k)/4rd}. We will
modify Fn in Qr(xk) or alternatively in Qr(yk), accordingly to the sign of the gap
mn −m.

Let us treat first the case in which mn < m. Set rn = (4|mn − m|/(1 −
k))1/d and consider a collection of disjoint cubes Qrn(y) of radius rn in Qr(xk),
intersecting along faces. We have that∑

Qrn (y)⊆Qr(xk)

|Qrn(y) ∩ Fn| ≤ |Qr(xk) ∩ Fn| <
k + 1

2
rd,

hence, by the mean value theorem, taking into account that the cubes well con-
tained in Qr(xk) are [r/rn]d, we can find Qrn(ynk ) such that, refining h, k as above,

|Fn ∩Qrn(ynk )| < k + 3

4
rn
d. (7.3)

Note that the function (0, rn) 3 t → |Qt(ynk ) \ Fn| is continuous and, thanks
to (7.3), suriective on the set [0,m − mn], so we may select tn such that En =
Fn ∪ Qtn(ynk ) satisfies the measure constraint. In case mn > m we will argue
analogously subdividing Qr(xh) in small cubes with a slight different radius r′n
depending on h but still proportional to |mn −m|1/d and select znh , t

′
n such that

En = Fn \ Qt′n(znh ) has mean volume fraction equal to m. Clearly, in both cases
the regularity result of the boundary is maintained as well as the convergence in
measure and in perimeter thanks to the fact that the additional perimeter of En
with respect to Fn is contained in the boundary of a cube of radius tn or t′n of
order |m−mn|1/d.

Remark 7.2 By the locality of the construction above the same result holds for
more general settings, for instance when Ω is substituted by the d-dimensional flat
torus. Actually in this last case it is enough to work locally on a single chart of the
torus. Moreover, Theorem 7.1 can be extended to a density result with prescribed
measure also for functions assuming a finite set of fixed values, as for instance spin
functions. Analogously one can replace the convergence of perimeters with suitable
surface energies satisfying the hypotheses of Theorem 2.2. Note that in case Ω is
the whole space Rd or a cone for example, the same result can be directly achieved
by mean of standard homothety arguments.
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