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gio.metafune@unile.it, diego.pallara@unile.it
‡Dipartimento di Ingegneria dell’Informazione e Matematica Applicata, Università di Salerno, via Ponte don Melillo, 1,
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1 Introduction

Given a second order elliptic partial differential operator with real coefficients

A =

N∑
i,j=1

Di (aijDj) +

N∑
i=1

FiDi = A0 + F ·D, (1.1)

where A0 =
∑N
i,j=1Di (aijDj), we consider the parabolic problem{

ut(x, t) = Au(x, t), x ∈ RN , t > 0,
u(x, 0) = f(x), x ∈ RN ,

(1.2)

where f ∈ Cb(RN ).
We assume the following conditions on the coefficients of A which will be kept in the whole paper without

further mentioning.

(H) aij = aji, Fi : RN → R, with aij ∈ C1+α(RN ), Fi ∈ Cαloc(RN ) for some 0 < α < 1 and

λ|ξ|2 ≤
N∑

i,j=1

aij(x)ξiξj ≤ Λ|ξ|2

for every x, ξ ∈ RN and suitable 0 < λ ≤ Λ.

Notice that the drift F = (F1, . . . , FN ) is not assumed to be bounded in RN .
Problem (1.2) has always a bounded solution but, in general, there is no uniqueness. However, if f is

nonnegative, it is not difficult to show that (1.2) has a minimal solution u among all non negative solutions.
Taking such a solution u, one constructs a semigroup of positive contractions T (·) on Cb(R

N ) such that

u(x, t) = T (t)f(x), t > 0, x ∈ RN ,

solves (1.2). Furthermore, the semigroup can be represented in the form

T (t)f(x) =

∫
RN

p(x, y, t)f(y) dy, t > 0, x ∈ RN ,

for f ∈ Cb(RN ). Here p is a positive function and for almost every y ∈ RN , it belongs to C
2+α,1+α/2
loc (RN ×

(0,∞)) as a function of (x, t) and solves the equation ∂tp = Ap, t > 0. We refer to Section 2 and [21] for a
review of these results as well as for conditions ensuring uniqueness for (1.2).

Now, we fix x ∈ RN and consider p as a function of (y, t). Then p satisfies

∂tp = A∗yp, t > 0, (1.3)

where A∗y denotes the adjoint operator of A, which acts on the variable y. The great amount of work devoted
to these equations (see e.g. [1] – [7], [12] – [14], [19], [20] and the references there) witnesses the interest
towards global properties of solutions. Beside the effort to extend as far as possible the classical results on
uniformly elliptic and parabolic equations, solution measures are important in stochastics, being stationary
distributions in the elliptic case and transition probabilities in the parabolic one.

For global boundedness and Sobolev regularity, as well as Harnack inequalities and pointwise estimates
in the elliptic case, we refer to [19] and [4]. Pointwise bounds on kernels of Schrödinger operators, which can
be treated with methods similar to those of the present paper, are proved in [20].

The aim of this paper is to study global regularity properties and pointwise bounds of the transition
density p as a function of (y, t) ∈ RN × (a, T ) for 0 < a < T .

We prove that p(x, ·, ·) belongs to W 1,0
k (RN × (a, T )) provided that∫ T

a0

∫
RN

|F (y)|kp(x, y, t) dy dt <∞, ∀k > 1

for fixed x ∈ RN and 0 < a0 < a. This generalises in some sense Theorem 4.1 in [3]. Assuming
that certain Lyapunov functions (exponentials or powers) are integrable with respect to p(x, y, t)dy for
(x, t) ∈ RN × (a, T ), pointwise upper bounds for p are obtained. If in addition F ∈ W 1

∞,loc(R
N ,RN ) and
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|F |kp, |divF |k/2p ∈ L1(RN × (a0, T )) with k > 2(N + 2), then p ∈ W 2,1
k (RN × (a, T )) and we get uniform

upper bounds on |Dyp|. This is the case if F and divF satify some growth conditions of exponential or
power type. Analogously, in the case where F and its derivatives up to the second order satisfy growth
conditions of exponential type, upper bounds are also obtained for |Dyyp| and |∂tp|. Notice also that, in
some situations, the semigroup (T (t)t≥0) is compact on Cb(R

N ), and hence there is no semigroup in any
space Lp(RN ) (see [22, Remark 4.3]) and C0(RN ) is not T (t)-invariant, hence p(x, y, t) 6→ 0 as |x| → ∞.
This means that there is no hope to obtain any decay of p with respect to x.

Finally, if the inward component of the drift term F is of power type, then all upper bounds obtained
before are independent of x ∈ RN and as a consequence we deduce that the transition semigroup T (·) is
differentiable on Cb(R

N ) for t > 0.
Problem (1.3) (even with time-dependent and less regular coefficients) has been considered in [6], [7],

where the initial datum is a L1-function µ. The Authors prove regularity and pointwise estimates for the
solution with respect to the space variables under suitable conditions on µ. Lower bounds are obtained in
[7] from Harnack inequality. Moreover, a version of our Theorem 5.1 is proved in [6, Theorem 2.1] assuming
that the function µ has finite entropy, see also [7, Corollary 3.5]. Our estimates are obtained directly for the
fundamental solution (i.e., when µ is the Dirac measure) and have an explicit behaviour with respect to the
time variable. Bounds for any initial datum µ can be obtained from those of the fundamental solution after
integration, but they explode as t → 0, whereas those in [6], which exploit some smoothness of µ, do not.
We refer the reader also to [24], where other bounds on the fundamental solutions are proved, in particular
situations, using Lyapunov functions which depend also on the time variable

Notation. BR(x) denotes the open ball of RN of radius R and centre x. If x = 0 we simply write BR.
For 0 ≤ a < b, we write Q(a, b) for RN × (a, b) and QT for Q(0, T ). We write C = C(a1, . . . , an) to point
out that the constant C depends on the quantities a1, . . . , an. To simplify the notation, we understand the
dependence on the dimension N and on quantities determined by the matrix (aij) such as the ellipticity
constant or the modulus of continuity of its entries.

If u : RN × J → R, where J ⊂ [0,∞[ is an interval, we use the following notation:

∂tu =
∂u

∂t
, Diu =

∂u

∂xi
, Diju = DiDju

Du =(D1u, . . . ,DNu), D2u = (Diju)

and

|Du|2 =

N∑
j=1

|Dju|2, |D2u|2 =

N∑
i,j=1

|Diju|2.

Let us come to notation for function spaces. Cjb (RN ) is the space of j times differentiable functions in RN ,
with bounded derivatives up to the order j. C∞c (RN ) is the space of test functions. Cα(RN ) denotes the
space of all bounded and α-Hölder continuous functions on RN . We also introduce the space

C2,1
c (Q(a, b)) = {φ ∈ C2,1(Q(a, b)) : suppφ ⊂ BR × [a, b] for some R > 0}.

Notice that we are not requiring that u ∈ C2,1
c (Q(a, b)) vanishes at t = a, t = b.

For 1 ≤ k ≤ ∞, j ∈ N, W j
k (RN ) denotes the classical Sobolev space of all Lk–functions having weak

derivatives in Lk(RN ) up to the order j. Its usual norm is denoted by ‖ · ‖j,k and by ‖ · ‖k when j = 0.
Let us now define some spaces of functions of two variables following basically the notation of [15]).

C0(Q(a, b)) is the Banach space of continuous functions u defined in Q(a, b) such that lim|x|→∞ u(x, t) = 0
uniformly with respect to t ∈ [a, b]. C2,1(Q(a, b)) is the space of all bounded functions u such that ∂tu, Du
and Diju are bounded and continuous in Q(a, b). For 0 < α ≤ 1 we denote by C2+α,1+α/2(Q(a, b)) the space
of all bounded function u such that ∂tu, Du and Diju are bounded and α-Hölder continuous in Q(a, b) with

respect to the parabolic distance d((x, t), (y, s)) := |x − y| + |t − s| 12 . Local Hölder spaces are defined, as
usual, requiring that the Hölder condition holds in every compact subset.

We shall also use parabolic Sobolev spaces. We denote by W 2,1
k (Q(a, b)) the space of functions u ∈

Lk(Q(a, b)) having weak space derivatives Dα
xu ∈ Lk(Q(a, b)) for |α| ≤ 2 and weak time derivative ∂tu ∈

Lk(Q(a, b)) equipped with the norm

‖u‖W 2,1
k (Q(a,b)) := ‖u‖Lk(Q(a,b)) + ‖∂tu‖Lk(Q(a,b)) +

∑
1≤|α|≤2

‖Dαu‖Lk(Q(a,b)).
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Hk,1(QT ) denotes the space of all functions u ∈ W 1,0
k (QT ) with ∂tu ∈ (W 1,0

k′ (QT ))′, the dual space of

W 1,0
k′ (QT ), endowed with the norm

‖u‖Hk,1(QT ) := ‖∂tu‖(W 1,0

k′ (QT ))′
+ ‖u‖W 1,0

k (QT )
,

where 1
k + 1

k′ = 1. Finally, for k > 2, Vk(QT ) is the space of all functions u ∈ W 1,0
k (QT ) such that there

exists C > 0 for which ∣∣∣∣∫
QT

u∂tφdx dt

∣∣∣∣ ≤ C (‖φ‖L k
k−2 (QT )

+ ‖Dφ‖
L

k
k−1 (QT )

)
for every φ ∈ C2,1

c (Q(a, b)). Notice that k/(k− 1) = k′, k/(k− 2) = (k/2)′. Vk(QT ) is a Banach space when
endowed with the norm

‖u‖Vk(QT ) = ‖u‖W 1,0
k (QT )

+ ‖∂tu‖k/2,k;QT ,

where ‖∂tu‖k/2,k;QT is the best constant C such that the above estimate holds.
In the whole paper the transition density p will be considered as a function of (y, t) for arbitrary but

fixed x ∈ RN . The writing ‖p‖ therefore stands for any norm of p as function of (y, t), for a fixed x.

2 Local regularity and integrability of transition densities

As a first step, we construct a semigroup in Cb(R
N ) generated by a suitable realisation of A. Since the

domain will not be dense in Cb(R
N ), we cannot use the Hille-Yosida theorem. Instead we follow a classical

approximation method based on Schauder’s estimates. We only sketch the procedure since it is presented in
detail in [21].

Let us fix a ball B% of centre 0 and radius %. Since A is uniformly elliptic on this ball, the operator A,
endowed with the domain

D(A) =
{
u ∈

⋂
p≥1

W 2
p (B%) : Au ∈ C(B%), u|∂B% = 0

}
,

generates a semigroup (T%(t))t≥0 on Cb(B%), see e.g. [17, Section 3.1.5]. As a consequence, for every
f ∈ Cb(RN ) there exists a unique function u% = T%f satisfying

∂tu% = Au%, x ∈ B%, t > 0,
u%(x, t) = 0, x ∈ ∂B%, t > 0,
u%(x, 0) = f(x), x ∈ B%.

The maximum principle yields ‖u%‖∞ ≤ ‖f‖∞ and u%1(x, t) ≤ u%2(x, t) if x ∈ B% and % < %1 < %2, provided
that f ≥ 0. Defining

T (t)f(x) = lim
%→∞

u%(x, t)

one constructs a semigroup of positive contractions in Cb(R
N ), named “the minimal semigroup associated

with A”, which satisfies the following properties.

Theorem 2.1 For f ∈ Cb(RN ), let u(x, t) = T (t)f(x), for t ≥ 0, x ∈ RN . Then

(i) u belongs to the space C
2+α,1+α/2
loc (RN × (0,∞)) and satisfies the equation

∂tu(x, t) =

N∑
i,j=1

Di(aij(x)Dj)u(x, t) +

N∑
i=1

Fi(x)Diu(x, t).

Moreover, if f ∈ C2
c (RN ), then ∂tu(x, t) = T (t)Af(x).

(ii) T (t)f(x)→ f(x) as t→ 0, uniformly on compact sets of RN .

(iii) Let (gn) be a bounded sequence in Cb(R
N ) and suppose that gn(x) → g(x) for every x ∈ RN , with

g ∈ Cb(RN ). Then T (t)gn(x)→ T (t)g(x) in C2,1(RN × (0,∞)).
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In [21] it is also proved that the semigroup is given by a transition density p(x, y, t), that is

T (t)f(x) =

∫
RN

p(x, y, t)f(y) dy.

Local regularity properties of the transition densities with respect to the variables (y, t) are known even
under conditions weaker than our hypothesis (H), see [3]. We combine the results of [3] with the Schauder
estimates to obtain regularity of p with respect to all the variables (x, y, t).

Proposition 2.2 Under assumption (H) the kernel p = p(x, y, t) is a positive continuous function in RN ×
RN × (0,∞) which enjoys the following properties.

(i) For every x ∈ RN , 1 < s < ∞, the function p(x, ·, ·) belongs to Hs,1loc(R
N × (0,∞)). In particular

p,Dyp ∈ Lsloc(RN × (0,∞)) and p(x, ·, ·) is continuous.

(ii) For every y ∈ RN the function p(·, y, ·) belongs to C
2+α,1+α/2
loc (RN × (0,∞)) and solves the equation

∂tp = Ap, t > 0. Moreover

sup
|y|≤R

‖p(·, y, ·)‖C2+α,1+α/2(BR×[ε,T ]) <∞

for every 0 < ε < T and R > 0.

(iii) If, in addition, F ∈ C1(RN ), then p(x, ·, ·) ∈ W 2,1
s,loc(QT ) for every x ∈ RN , 1 < s < ∞, and satisfies

the equation ∂tp−A∗yp = 0, where

A∗ = A0 − F ·D − divF

is the formal adjoint of A.

Proof. Assertion (i) is stated in [3, Corollary 3.9].
Let us prove (ii). Since p(x, ·, ·) is continuous in (y, t) for every fixed x we have p(x, y, t) < ∞ for

every t > 0 and x, y ∈ RN . Under this condition, the proof of [21, Theorem 4.4] ensures that p(·, y, ·) ∈
C

2+α,1+α/2
loc (RN × (0,∞)) for every y ∈ RN and that p solves ∂tp = Ap.

Let us fix y ∈ RN , 0 < ε < τ and t1 > τ . If |y| ≤ R, the parabolic Harnack inequality (see e.g. [16,
Chapter VII]) yields

sup
ε≤t≤τ,x∈B2R

p(x, y, t) ≤ Cp(0, y, t1) ≤ C sup
|y|≤R

p(0, y, t1) = M

for a suitable M > 0. By the interior Schauder estimates (see e.g. [11, Theorem 8.1.1]) we deduce that

sup
|y|≤R

‖p(·, y, ·)‖C2+α,1+α/2(BR×[ε,τ ]) ≤C
(

sup
|y|≤R

‖∂tp(·, y, ·)−Ap(·, y, ·)‖Cα,α/2(B2R×[ε/2,τ ]) +M
)

=CM <∞.

Finally, we prove that p is continuous in RN ×RN × (0,∞). If (xn, yn, tn)→ (x0, y0, t0) with t0 > 0, then

|p(xn, yn, tn)− p(x0, y0, t0)| ≤ |p(xn, yn, tn)− p(x0, yn, t0)|+ |p(x0, yn, t0)− p(x0, y0, t0)|.

The last term tends to zero by the continuity of p(x0, ·, t0) and the first too, as, by the above estimate, Dxp
is uniformly bounded in a neighbourhood of (x0, y0, t0).

Assertion (iii) follows from standard local parabolic regularity.

The minimal semigroup selects one among all bounded solutions of equation (1.2), actually the minimal
among all positive solutions, when f is positive. The uniqueness of the bounded solution does not hold, in
general but it is ensured by the existence of a Lyapunov function, that is of a C2+α

loc -function W : RN → [0,∞)
such that lim|x|→∞W (x) = +∞ and AW ≤ λW for some λ > 0. Lyapunov functions are easily found
imposing suitable conditions on the coefficients of A. For instance, W (x) = |x|2 is a Lyapunov function for
A provided that

∑
i aii(x) + F (x) · x ≤ C|x|2 for some C > 0.

Proposition 2.3 Assume that A has a Lyapunov function W and let u, v ∈ Cb(RN × [0, T ]) ∩ C2,1(RN ×
(0, T ]) solve (1.2). Then u = v.

Proof. It is sufficient to show that if such a u solves (1.2) with f ≥ 0, then u ≥ 0. Define vε = e−λtu+εW ,
where ε > 0 and λ is such thatAW ≤ λW . Then vε has a minimum point (x0, t0) ∈ RN×[0, T ]. If vε(x0, t0) <
0, then t0 > 0, since f ≥ 0, and hence ∂tvε(x0, t0) ≤ 0. Since Dvε(x0, t0) = 0 and

∑
i,j aijDijvε(x0, t0) ≥ 0,

we have also (A− λ)vε(x0, t0) > 0 and this contradicts the equation ∂tvε − (A− λ)vε ≥ 0. Therefore vε ≥ 0
and, letting ε→ 0, u ≥ 0.
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Now we turn our attention to integrability properties of p and show how they can be deduced from the
existence of suitable Lyapunov functions.

The integrability of Lyapunov functions with respect to the measures p(x, y, t) dy is given by the following
result, which is proved in [22], see also [1].

Proposition 2.4 A Lyapunov function W is integrable with respect to the measures p(x, y, t)dy. Setting

ζ(x, t) =

∫
RN

p(x, y, t)W (y) dy, (2.1)

the inequality
ζ(x, t) ≤ eλtW (x)

holds. Moreover, |AW | is integrable with respect to p(x, y, t)dy, ζ ∈ C2,1(RN × (0,∞)) ∩ C(RN × [0,∞))
and

∂tζ(x, t) ≤
∫
RN

p(x, y, t)AW (y) dy.

Assuming that AW tends to −∞ faster than −W one obtains, by Proposition 2.4, that the function ζ
in (2.1) is bounded with respect to the space variables, see [20, Proposition 2.6]. We repeat here the proof
for reader’s convenience.

Proposition 2.5 Assume that the Lyapunov function W satisfies the inequality AW ≤ −g(W ) where g :
[0,∞) → R is a convex function such that lims→+∞ g(s) = +∞ and 1/g is integrable in a neighbourhood
of +∞. Then for every a > 0 the function ζ defined in (2.1) is bounded in RN × [a,∞). Moreover, the
semigroup (T (t))t≥0 is compact in Cb(R

N ).

Proof. Observe that, since g is convex, then∫
RN

p(x, y, t)g(W (y)) dy ≥ g(ζ(x, t)).

Then, form Proposition 2.4 we deduce

∂tζ(x, t) ≤
∫
RN

p(x, y, t)AW (y) dy ≤ −
∫
RN

p(x, y, t)g(W (y)) dy ≤ −g(ζ(x, t))

and therefore ζ(x, t) ≤ z(x, t), where z is the solution of the ordinary Cauchy problem{
z′ = −g(z)
z(x, 0) = W (x).

Let ` denote the greatest zero of g. Then z(x, t) ≤ ` if W (x) ≤ `. On the other hand, if W (x) > `, then z is
decreasing and satisfies

t =

∫ W (x)

z(x,t)

ds

g(s)
≤
∫ ∞
z(x,t)

ds

g(s)
. (2.2)

This inequality easily yields, for every a > 0, a constant C(a) such that z(x, t) ≤ C(a) for every t ≥ a and
x ∈ RN . The compactness of the semigroup is proved in [22, Theorem 3.10].

Let us state a condition under which certain exponentials are Lyapunov functions. Propositions 2.6, 2.7
will be used to check the integrability of |F |k with respect to p.

Proposition 2.6 Let Λ be the maximum eigenvalue of (aij) as in (H). Assume that

lim sup
|x|→∞

|x|1−βF (x) · x
|x|
≤ −c, (2.3)

0 < c < ∞, for some c > 0, β > 1. Then W (x) = exp{δ|x|β} is a Lyapunov function for δ < (βΛ)−1c.
Moreover, if β > 2, there exist positive constants c1, c2 such that

ζ(x, t) ≤ c1 exp
(
c2t
−β/(β−2)

)
(2.4)

for x ∈ RN , t > 0.

6



Proof. Let W (x) = exp{δ|x|β} and set Gi = Fi+
∑
j Djaij . We obtain, by a straightforward computation,

AW (x) =δβ|x|β−1eδ|x|
β

 1

|x|
∑
i

aii(x) +
β − 2

|x|3
∑
i,j

aij(x)xixj

+δβ|x|β−3
∑
i,j

aij(x)xixj +G · x
|x|


≤C1|x|β−1eδ|x|

β (
1 + (δβΛ− c)|x|β−1

)
≤− C2|x|2β−2eδ|x|

β

≤ 0

for |x| large. This shows that W is a Lyapunov function. Finally, if β > 2 it follows that AW ≤ −g(W )

with g(s) = C3s(log s)
2−2/β
+ − C4, for suitable C3, C4 > 0. Then Proposition 2.5 yields the boundedness of

ζ(·, t). To obtain (2.4) we recall that ζ ≤ z where z satisfies (2.2). If ` denotes the zero of g and z(x, t) ≤ 2`
we have simply to choose a suitable c1. If z(x, t) ≥ 2`, then

t ≤
∫ ∞
z

ds

g(s)
≤ C5

∫ ∞
z

ds

s(log s)2−2/β
≤ C6(log z)2/β−1

and (2.4) follows.

The right hand side of (2.4) becomes very big as t→ 0. In order to have a milder behaviour we investigate
when powers are Lyapunov functions.

Proposition 2.7 Assume that

lim sup
|x|→∞

|x|1−βF (x) · x
|x|

< 0, (2.5)

for some β > 2. Then W (x) =
(
1 + |x|2

)α
is a Lyapunov function for every α > 0 and there exists a positive

constant c such that
ζ(x, t) ≤ ct−(2α)/(β−2) (2.6)

for x ∈ RN , 0 < t ≤ 1.

Proof. We have, with the notation of Proposition 2.6,

AW (x) =
(
1 + |x|2

)α 2α

1 + |x|2
∑
i

aii(x) +
4α(α− 1)

(1 + |x|2)2

∑
i,j

aij(x)xixj +
2α

1 + |x|2
G · x


≤− C1

(
1 + |x|2

)α+(β−2)/2
= −C1W

γ

for |x| large and with γ = 1 + (β − 2)/(2α) > 1. This shows AW ≤ −g(W ) with g(s) = C2s
γ − C3 for

suitable C2, C3 > 0. Proceeding as in the proof of (2.4) one shows (2.6), the only difference being that the
function t−(2α)/(β−2) goes to 0 as t→ +∞, and then the estimate is not true, in general, for all t > 0.

Remark 2.8 Conditions (2.3), (2.5) are assumptions on the radial component of F . Of course, changing
x/|x| to (x − x0)/|x − x0| leads to new conditions that, though not equivalent to (2.3), (2.5), yield similar
conclusions.

Finally we clarify in which sense the identity pt = A∗yp is satisfied.

Lemma 2.9 Let 0 ≤ a < b and ϕ ∈ C2,1
c (Q(a, b)). Then∫

Q(a,b)

(∂tϕ(y, t) +Aϕ(y, t)) p(x, y, t) dy dt (2.7)

=

∫
RN

(p(x, y, b)ϕ(y, b)− p(x, y, a)ϕ(y, a)) dy.

Proof. If ψ ∈ C2
c (RN ), then ∂tT (t)ψ = T (t)Aψ, see Theorem 2.1(i).

If ϕ ∈ C2,1
c (Q(a, b)), then ∂t (T (t)ϕ(·, t)) = T (t)∂tϕ(·, t) + T (t)Aϕ(·, t). Integrating this identity over

[a, b] and writing T (t) in terms of the kernel p, we obtain (2.7).
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3 Sobolev regularity: Preliminary estimates

In this section we fix T > 0 and consider p as a function of (y, t) ∈ RN × (0, T ) for arbitrary, but fixed,
x ∈ RN . Further, fix 0 < a0 < a < b < b0 ≤ T and assume for definiteness b0 − b ≥ a− a0. Setting

Γ(k, x, a0, b0) :=

(∫
Q(a0,b0)

|F (y)|kp(x, y, t) dy dt

) 1
k

, (3.1)

we show global regularity results for p with respect to the variables (y, t) assuming Γ(k, x, a0, b0) < ∞ for
suitable k ≥ 1. Observe that if Γ(k, x, a0, b0) <∞ then Γ(h, x, a0, b0) <∞ for all h ≤ k. We also recall that
this assumption can be verified, in many concrete cases, using Propositions 2.6, 2.7.

In the following proposition we show that p ∈ Lr(Q(a0, b0)) for small values of r > 1.

Proposition 3.1 If Γ(1, x, a0, b0) <∞, then p ∈ Lr(Q(a0, b0)) for all r ∈ [1, N+2
N+1 ) and

‖p‖Lr(Q(a0,b0)) ≤ C (1 + Γ(1, x, a0, b0))

for some constant C > 0.

Proof. For every ϕ ∈ C2,1
c (QT ) such that ϕ(·, T ) = 0, by (2.7), we obtain, with A0 as in (1.1),∫

Q(a0,b0)

p(∂tϕ+A0ϕ) dy dt =−
∫
Q(a0,b0)

pF ·Dϕdy dt

+

∫
RN

(p(x, y, b0)ϕ(y, b0)− p(x, y, a0)ϕ(y, a0)) dy.

Since
∫
RN p(x, y, t) dy ≤ 1 for all t ≥ 0, x ∈ RN , it follows that∣∣∣∣∣

∫
Q(a0,b0)

p(∂tϕ+A0ϕ) dy dt

∣∣∣∣∣ ≤Γ(1, x, a0, b0)‖ϕ‖W 1,0
∞ (Q(a0,b0))

+ 2‖ϕ‖∞

≤
(

2 + Γ(1, x, a0, b0)
)
‖ϕ‖W 1,0

∞ (Q(a0,b0))
. (3.2)

Fix ψ ∈ C∞c (Q(a0, b0)) and consider the parabolic problem{
∂tϕ+A0ϕ = ψ in QT ,
ϕ(y, T ) = 0, y ∈ RN .

(3.3)

The Schauder theory, see [11, Chapter 9], provides a solution ϕ ∈ C2+α,1+α/2(QT ). Fixing r′1 > N + 2, by
[15, Theorem IV.9.1] we see that ϕ belongs to W 2,1

r′1
(QT ) and satisfies the estimate

‖ϕ‖W 2,1

r′1
(QT )

≤ C‖ψ‖
Lr
′
1 (Q(a0,b0))

. (3.4)

Since r′1 > N + 2, from the Sobolev embedding theorems (cf. [15, Lemma II.3.3]) and (3.4) it follows that

‖ϕ‖W 1,0
∞ (Q(a0,b0))

≤ ‖ϕ‖W 1,0
∞ (QT )

≤ C‖ϕ‖W 2,1

r′1
(QT )

≤ C‖ψ‖
Lr
′
1 (Q(a0,b0))

.

Note that the solution ϕ of (3.3) cannot be inserted directly in (3.2), since it does not have compact support
with respect to the space variables. To overcome this problem we fix a smooth function θ ∈ C∞c (RN ) such
that θ(y) = 1 for |y| ≤ 1 and write (3.2) for ϕn(y, t) = θ(y/n)ϕ(y, t). Letting n → ∞ and using dominated
convergence we see that (3.2) holds also for such a ϕ. Therefore∣∣∣∣∣

∫
Q(a0,b0)

pψ dy dt

∣∣∣∣∣ ≤ C(1 + Γ(1, x, a0, b0)
)
‖ψ‖

Lr
′
1 (Q(a0,b0))

and hence p ∈ Lr1(Q(a0, b0)), where 1
r1

+ 1
r′1

= 1. Since r′1 > N + 2 is chosen arbitrarily, p ∈ Lr(Q(a0, b0))

for all r ∈
[
1, N+2

N+1

)
, and

‖p‖Lr(Q(a0,b0)) ≤ C
(

1 + Γ(1, x, a0, b0)
)
. (3.5)
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Lemma 3.2 If Γ(k, x, a0, b0) < ∞ for k > 1 and p ∈ Lr(Q(a0, b0)) for some 1 < r ≤ ∞, then p ∈
Hs,1(Q(a, b)) for s := rk

r+k−1 if r <∞, s = k if r =∞.

Proof. In the proof we denote by c for a generic constant depending on k, x, a0, b0.
Let η be a smooth function such that 0 ≤ η ≤ 1, η(t) = 1 for a ≤ t ≤ b and η(t) = 0 for t ≤ a0 and

t ≥ b0. Consider ϕ ∈ C2,1
c (QT ). Plugging ηϕ in place of ϕ in (2.7) and setting q := ηp, we obtain∫

QT

q(∂tϕ+A1ϕ) dy dt−
∫
QT

(qG ·Dϕ+ pϕ∂tη) dy dt, (3.6)

where A1 =
∑
i,j aijDij and Gi = Fi +Di(

∑N
j=1 aij).

By Hölder’s inequality we have∫
Q(a0,b0)

|F |sps dy dt =

∫
Q(a0,b0)

|F |sp sk ps(1− 1
k ) dy dt

≤

(∫
Q(a0,b0)

|F |kp dy dt

) s
k
(∫

Q(a0,b0)

p
s(k−1)
k−s dy dt

)1− sk

=

(∫
Q(a0,b0)

|F |kp dy dt

) s
k
(∫

Q(a0,b0)

pr dy dt

)1− sk

≤Γ(k, x, a0, b0)s

(∫
Q(a0,b0)

pr dy dt

)1− sk

,

whence

‖Gp‖Ls(Q(a0,b0)) ≤ c‖p‖
k−1
k

Lr(Q(a0,b0))
.

This yields ∣∣∣∣∫
QT

q(∂tϕ+A1ϕ) dy dt

∣∣∣∣ ≤ c‖p‖ k−1
k

Lr(Q(a0,b0))
‖ϕ‖W 1,0

s′ (QT )
,

where 1
s + 1

s′ = 1. Replacing ϕ by its difference quotients with respect to the variable y

τ−hϕ(y, t) := |h|−1(ϕ(y − hej , t)− ϕ(y, t)), (y, t) ∈ QT , 0 6= h ∈ R,

and since aij ∈ C1
b (RN ), we obtain∣∣∣ ∫

QT

τhq(∂tϕ+A1ϕ) dy dt
∣∣∣ ≤ c‖p‖ k−1

k

Lr(Q(a0,b0))
‖ϕ‖W 2,1

s′ (QT )
. (3.7)

As in the proof of Proposition 3.1 we approximate ϕ inW 2,1
s′ (QT ) with a sequence of functions ϕn ∈ C1,2

c (QT ).
Since q ∈ Ls(QT ), writing (3.7) for ϕn and letting n→∞ we see that (3.7) holds for ϕ.

Since s = (s − 1)s′ < r, and then |τhq|s−2τhq ∈ Ls
′
(QT ). Using [15, Theorem 9.2.3] we choose now

ϕ ∈W 2,1
s′ (QT ) such that {

∂tϕ+A1ϕ = |τhq|s−2τhq, in QT ,
ϕ(y, T ) = 0, y ∈ RN

and
‖ϕ‖W 2,1

s′ (QT )
≤ C‖|τhq|s−1‖Ls′ (QT ).

Therefore we get ∫
QT

|τhq|s dy dt ≤ c‖p‖
k−1
k

Lr(Q(a0,b0))
‖τhq‖s−1Ls(QT )

,

hence

‖Dq‖Ls(QT ) ≤ c‖p‖
k−1
k

Lr(QT )

and Dq ∈ Ls(QT ), q ∈W 1,0
s (QT ).
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Now we treat the time derivative. Using the above estimates we deduce∣∣∣∣∫
QT

q∂tϕdy dt

∣∣∣∣ ≤ ∣∣∣∣∫
QT

qA0ϕdy dt

∣∣∣∣+ c‖p‖
k−1
k

Lr(Q(a0,b0))
‖ϕ‖W 1,0

s′ (QT )

=

∣∣∣∣∣∣
∫
QT

N∑
i,j=1

aijDiϕDjq dy dt

∣∣∣∣∣∣+ c‖p‖
k−1
k

Lr(Q(a0,b0))
‖ϕ‖W 1,0

s′ (QT )

≤c‖Dq‖Ls(QT )‖ϕ‖W 1,0

s′ (QT )
+ c‖p‖

k−1
k

Lr(Q(a0,b0))
‖ϕ‖W 1,0

s′ (QT )

≤c‖p‖
k−1
k

Lr(Q(a0,b0))
‖ϕ‖W 1,0

s′ (QT )

and the statement follows.

Proposition 3.3 If Γ(k, x, a0, b0) <∞ for some 1 < k ≤ N + 2, then p ∈ Lr(Q(a, b)) for all r ∈ [1, N+2
N+2−k )

and p ∈ Hs,1(Q(a, b)) for all s ∈ (1, N+2
N+3−k ).

Proof. Let us see how the arguments in the proof of Lemma 3.2 can be iterated. Let r1 < (N + 2)/(N + 1),
so that Proposition 3.1 applies, and fix a parameter m (to be chosen later) depending upon k and r. Set
an = a0 + n(a− a0)/m, bn = b0 − n(b0 − b)/m for n = 1, . . . ,m. Suppose that p ∈ Lrn(Q(an, bn)) and take

sn := krn
k+rn−1 . Then, 1 < sn < rn, sn < k and rn = sn(k−1)

k−sn .
We consider again q = ηp with η(t) = 1 for an+1 ≤ t ≤ bn+1 and η(t) = 0 for t ≤ an, t ≥ bn. As in the

proof of Lemma 3.2 we get ∣∣∣∣∫
QT

q∂tϕdy dt

∣∣∣∣ ≤ c‖p‖ k−1
k

Lrn (Q(an,bn))
‖ϕ‖W 1,0

s′n
(QT )

,

where c denotes a constant depending on k, x, a0, b0. Therefore, p ∈ Hsn,1(Q(an+1, bn+1)) and, by Theorem
A.3, we obtain that p ∈ Lrn+1(Q(an+1, bn+1)) where

1

rn+1
=

1

sn
− 1

N + 2
=

1

rn

(
1− 1

k

)
+

1

k
− 1

N + 2
.

Since 1
r1
> N+1

N+2 , it follows that

1

r2
− 1

r1
< −1

k

(
1− 1

N + 2

)
+

1

k
− 1

N + 2
=

1

N + 2

(
1

k
− 1

)
< 0.

Hence, by induction,
(

1
rn

)
is a positive and decreasing sequence which converges to N+2−k

N+2 . Therefore, for

any r < N+2
N+2−k , after finitely many, say m, iterations we get rn > r and p ∈ Lr(Q(a, b)). The second half of

the statement now follows from Lemma 3.2.

Corollary 3.4 If Γ(k, x, a0, b0) <∞ for some k > N + 2, then p belongs to L∞(Q(a, b)).

Proof. We know from Proposition 3.3 that p ∈ Lr(Q(a, b)) for all r ∈ [1,∞). Hence, by Lemma 3.2,
p ∈ Hs,1(Q(a, b)) for all s ∈ (1, k). ChoosingN+2 < s < k it follows from Theorem A.3 that p ∈ L∞(Q(a, b)).

A closer look at the above proof shows that p is globally Hölder continuous in (y, t).

Proposition 3.5 Assume that Γ(k, x, a0, b0) <∞ for some k > N+2. Then, p belongs to Cν([a, b], Cθb (RN ))
for some ν, θ > 0.

Proof. Since k > N + 2, we can choose α > 0 such that 1
k < α < 1

2 and k(1− 2α) > N . So, applying the
embedding theorem in [13, Corollary 7.5] for the space Hk,1(QT ) (with q = p = k, γ = 1 and β = 2α) we
obtain

‖p(t)− p(τ)‖W 1−2α,k(RN ) ≤ C|t− τ |α−
1
k ‖p‖Hk,1(Q(a,b))

for a ≤ τ < t ≤ b, where the constant C > 0 is independent of τ, t. Thus, p belongs to the space
Cα−

1
k ([a, b],W 1−2α,k(RN )). Since k(1− 2α) > N , it follows from the Sobolev embedding theorem that

p ∈ Cα− 1
k ([a, b], Cθb (RN )), for some θ > 0.
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4 Uniform and pointwise bounds on transition densities

We consider the following assumption depending on the weight function ω which, in our examples, will be a
power or the exponential of a power.

(H1) W1,W2 are Lyapunov functions for A, W1 ≤W2 and there exists 1 ≤ ω ∈ C2(RN ) such that for some
c > 0 and k > N + 2

(i) ω ≤ cW1, |Dω| ≤ cω k−1
k W

1
k
1 , |D2ω| ≤ cω k−2

k W
2
k
1 ;

(ii) ω|F |k ≤ cW2.

We denote by ζ1, ζ2 the functions defined by (2.1) and associated with W1,W2, respectively.
We use different Lyapunov functions to obtain more precise estimates in the theorem below and its

corollaries.

Theorem 4.1 Assume (H1). Then, there exists a constant C > 0 such that

0 < ω(y)p(x, y, t) ≤ C

(∫ b0

a0

ζ2(x, t) dt+
1

(a− a0)
k
2

∫ b0

a0

ζ1(x, t) dt

)
(4.1)

for all x, y ∈ RN , a ≤ t ≤ b.

Proof. Step 1. Assume first that ω is bounded. Since Γ(k, x, a0, b0) <∞ then p ∈ L∞(Q(a, b)) for every
a0 < a < b < b0, by Corollary 3.4. We choose a smooth function η(t) such that η(t) = 1 for a ≤ t ≤ b
and η(t) = 0 for t ≤ a0 and t ≥ b0, |η′| ≤ 2

a−a0 . We consider ψ ∈ C2,1
c (QT ) such that ψ(·, T ) = 0. Setting

q = η
k
2 p and taking ϕ(y, t) = η

k
2 ω(y)ψ(y, t) in (2.7) we obtain∫

QT

ωq (−∂tψ −A0ψ) dy dt =

∫
QT

[
q
(
ψA0ω + 2

N∑
i,j=1

aijDiωDjψ + ωF ·Dψ + ψF ·Dω
)

(4.2)

+
k

2
pωψη

k−2
2 ∂tη

]
dy dt.

Since ωq ∈ L1(QT ) ∩ L∞(QT ), Theorem A.5 yields

‖ωq‖L∞(QT ) ≤C
(
‖qD2ω‖

L
k
2 (QT )

+ ‖qDω‖Lk(QT ) + ‖ωqF‖Lk(QT )

+ ‖qF ·Dω‖
L
k
2 (QT )

+
1

a− a0
‖pωη

k−2
2 ‖

L
k
2 (QT )

)
.

Next observe that, by (H1)(ii),

‖ωqF‖Lk(QT ) ≤ ‖ωq‖
k−1
k

L∞(QT )
‖ωqF k‖

1
k

L1(QT )
≤ c‖ωq‖

k−1
k

L∞(QT )

(∫ b0

a0

ζ2 dt

) 1
k

,

and that

‖ωpη
k−2
2 ‖

L
k
2 (QT )

≤ ‖ωq‖
k−2
k

L∞(QT )
‖ωp‖

2
k

L1(Q(a0,b0))
≤ c‖ωq‖

k−2
k

L∞(QT )

(∫ b0

a0

ζ1 dt

) 2
k

.

Next we combine (H1)(i) and (H1)(ii) to estimate the remaining terms

‖qFDω‖
L
k
2 (QT )

≤
(∫

QT

q
k
2 ω

k−2
2 W2 dy dt

) 2
k

≤ c‖ωq‖
k−2
k

L∞(QT )

(∫ b0

a0

ζ2 dt

) 2
k

and, similarly,

‖qD2ω‖
L
k
2 (QT )

≤ c‖ωq‖
k−2
k

L∞(QT )

(∫ b0

a0

ζ1 dt

) 2
k

‖qDω‖Lk(QT ) ≤ c‖ωq‖
k−1
k

L∞(QT )

(∫ b0

a0

ζ1 dt

) 1
k

.
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Collecting similar terms and recalling that W1 ≤W2 we obtain

‖ωq‖L∞(QT ) ≤C‖ωq‖
k−1
k

L∞(QT )

(∫ b0

a0

ζ2 dt

) 1
k

+ C‖ωq‖
k−2
k

L∞(QT )

(∫ b0

a0

ζ2 dt

) 2
k

+
1

a− a0

(∫ b0

a0

ζ1 dt

) 2
k

 .

Hence, after simple computations,

‖ωq‖L∞(QT ) ≤ C

(∫ b0

a0

ζ2 dt+
1

(a− a0)
k
2

∫ b0

a0

ζ1 dt

)
,

and (4.1) follows.
Step 2. If ω is not bounded, we consider ωε = ω/(1 + εω). A straightforward computation shows that ωε
satisfies (H1) with a constant c independent of ε. Therefore, from Step 1 we obtain

0 < ωε(y)p(x, y, t) ≤ C

(∫ b0

a0

ζ2(x, t) dt+
1

(a− a0)
k
2

∫ b0

a0

ζ1(x, t) dt

)
(4.3)

with c independent of ε and, letting ε→ 0 the statement is proved.

Theorem 4.1 can be applied with ω = W1 = 1 yielding uniform bounds on p, for fixed x.

Corollary 4.2 Take ω = W1 = 1 in (H1)(i) and assume that (H1)(ii) holds. Then

‖p‖L∞(Q(a,b)) ≤ C

(∫ b0

a0

ζ2(x, t) dt+
b0 − a0

(a− a0)
k
2

)
.

Let us now see some special cases.

Corollary 4.3 Assume that

lim sup
|x|→∞

|x|1−βF (x) · x
|x|
≤ −c, 0 < c <∞ (4.4)

for some c > 0, β > 2, and that |F (x)| ≤ c1e
c2|x|β−ε for some ε, c1, c2 > 0. Then, if γ < (βΛ)−1c, where Λ

is the maximum eigenvalue of (aij), the inequality

0 < p(x, y, t) ≤ c3 exp
(
c4t
− β
β−2

)
exp

(
−γ|y|β

)
holds for x, y ∈ RN , 0 < t ≤ T and suitable c3, c4 > 0.

Proof. We take ω(y) = eγ|y|
β

, W1(y) = W2(y) = eδ|y|
β

for some γ < δ < (βΛ)−1c and use Theorem 4.1
with a = t and a− a0 = b0 − b = b− a = (1/2)t. The thesis then follows using Proposition 2.6.

Example 4.4 Let us specialise the above corollary to the case of the operators

A = ∆− |x|r x
|x|
·D

with r > 1. Then Corollary 4.3 applies with β = r + 1 and any γ < 1/(r + 1). Therefore

0 < p(x, y, t) ≤ c1 exp
(
c2t
− r+1
r−1

)
exp

(
−γ|y|r+1

)
for all 0 < t ≤ T , x, y ∈ RN .

Under conditions similar to those of Corollary 4.3, the estimate of p can be improved with respect to the
time variable, loosing the exponential decay in y.
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Corollary 4.5 Assume that

lim sup
|x|→∞

|x|1−βF (x) · x
|x|

< 0, (4.5)

for some β > 2. If |F (x)| ≤ c(1 + |x|2)γ1 with γ1 ≥ β−2
4 , then for every γ2 ≥ 0, k > N + 2, there exists a

constant C > 0 such that

0 < p(x, y, t) ≤ C

tσ
(1 + |y|2)−γ2

for all x, y ∈ RN , 0 < t ≤ 1, where

σ =
2

β − 2
((k − 2)γ1 + γ2) .

Proof. Observe that Wr(x) = (1 + |x|2)r is a Lyapunov function for every r > 0. If ζr(x, t) is the
corresponding function defined in (2.1), then Proposition 2.7 yields

ζr(x, t) ≤ crt
−2r
β−2

for x ∈ RN and 0 < t ≤ 1. We set a = t and a− a0 = b0 − b = b− a = (1/2)ts, where s ≥ 1 will be chosen

later, and we apply Theorem 4.1 with ω(x) = W1(x) =
(
1 + |x|2

)γ2
and W2(x) =

(
1 + |x|2

)kγ1+γ2
. Thus we

obtain
p(x, y, t) ≤ C

(
t−

2(kγ1+γ2)
β−2 +s + t−

2γ2
β−2−s

k
2+s
)

(1 + |y|2)−γ2 .

Minimising over s we get s = (4γ1)/(β − 2) and the thesis follows.

Example 4.6 (i) Choosing γ1 = β−1
2 , γ2 = 0 in the above corollary one obtains the following estimate

of the norm of T (t) as an operator from L1(RN ) to L∞(RN )

‖T (t)‖L1(RN )→L∞(RN ) ≤ ct−(k−2)
β−1
β−2 , 0 < t ≤ 1.

Observe, finally, that the operator T (t) need not map Lp(RN ) into itself, for any p ≥ 1. A simple
example of this situation is given by the 1-dimensional operator D2 − x3D (for which β = 4 is in the
estimate above), see [22, Remark 4.3].

(ii) Let us consider again the operators

A = ∆− |x|r x
|x|
·D

with r > 1. Then Corollary 4.5 applies with β = r + 1 and γ1 = r/2 yielding

p(x, y, t) ≤ Ct−(k−2)
r
r−1−

2γ2
r−1
(
1 + |y|2

)−γ2
.

5 Pointwise bounds for the derivatives of transition densities

In this section we derive pointwise estimates on the derivatives of the kernel. The first step consists in
showing that p

1
2 belongs to W 1,0

2 (Q(a1, b1)). Observe that estimates in this space are known for invariant
measures, that is for the limit, as t→∞, of the transition kernels p(x, ·, t), see [2], [5], [19], [4].

As in Section 4, we fix 0 < a0 < a < a1 < b1 < b < b0 ≤ T with b− b1 ≥ a1 − a, a1 − a ≥ a− a0.

Theorem 5.1 Assume that (H1) holds for a certain weight function ω such that∫
RN

(
1

ω(y)

)1−ε

dy <∞ (5.1)

for some ε ∈ (0, 1). Then the function p log p is integrable in RN for all t ∈ [a, b] and∫
Q(a,b)

|Dp(x, y, t)|2

p(x, y, t)
dy dt ≤ 1

λ2

∫
Q(a,b)

|F (y)|2p(x, y, t) dy dt

− 2

λ

∫
RN

[
p(x, y, t) log p(x, y, t)

]t=b
t=a

dy <∞.

In particular, p
1
2 belongs to W 1,0

2 (Q(a, b)).
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Proof. Let us first observe that the functions p log2 p and p log p are integrable in Q(a, b) and in RN for all
fixed t ∈ [a, b], respectively, as follows from Theorem 4.1 and (5.1).

Since p ∈W 1,0
k (Q(a, b)) by Lemma 3.2, we get from (2.7)

∫
Q(a,b)

p∂tϕdy dt =

∫
Q(a,b)

∑
i,j

aijDiϕDjp− pF ·Dϕ

 dy dt

+

∫
RN

[
p(x, y, t)ϕ(t, y)

]t=b
t=a

dy (5.2)

for every ϕ ∈ C2,1
c (Q(a, b)). By density, the previous equality holds if ϕ belongs to W 1,1

2 (Q(a, b)) with
compact support in y. Let us take ξ ∈ C∞c (RN ) such that ξ(y) = 1 for |y| ≤ 1 and ξ(y) = 0 for |y| ≥
2, ξn(y) = ξ( yn ) and note that, by Proposition 2.2, the functions ξ2n log p(x, ·, ·) belong to W 1,1

2 (Q(a, b)).
Plugging ϕ = ξ2n log p in (5.2) and writing a(ξ, η) for

∑
i,j aijξiηj we get∫

Q(a,b)

ξ2n∂tp dy dt =

∫
Q(a,b)

(
ξ2n
a(Dp,Dp)

p
+ 2ξn log p a(Dp,Dξn)

− ξ2nF ·Dp− 2ξnp log pF ·Dξn
)
dy dt

+

∫
RN

[
p(x, y, t)ξ2n(y) log p(x, y, t)

]t=b
t=a

dy.

That is ∫
Q(a,b)

ξ2n
a(Dp,Dp)

p
dy dt = −2In + Jn + 2Kn +

∫
RN

ξ2n

[
p− p log p

]t=b
t=a

dy, (5.3)

where

In =

∫
Q(a,b)

ξn log p a(Dp,Dξn) dy dt

Jn =

∫
Q(a,b)

ξ2n(F ·Dp) dy dt

Kn =

∫
Q(a,b)

ξnp log pF ·Dξn dy dt.

By Hölder’s inequality we have

|In| ≤

(∫
Q(a,b)

ξ2n
a(Dp,Dp)

p
dy dt

)1/2(∫
Q(a,b)

p log2 p a(Dξn, Dξn) dy dt

)1/2

(5.4)

≤ε
∫
Q(a,b)

ξ2n
a(Dp,Dp)

p
dy dt+

C

εn2

∫
Q(a,b)

p log2 p dy dt.

Also

|Jn| ≤

(∫
Q(a,b)

|F |2 p dy dt

)1/2(∫
Q(a,b)

ξ2n
|Dp|2

p
dy dt

)1/2

≤ ε
λ

∫
Q(a,b)

ξ2n
a(Dp,Dp)

p
dy dt+

C

ε

∫
Q(a,b)

|F |2 p dy dt

and

|Kn| ≤
C

n

∫
Q(a,b)

|F | p| log p| dy dt.

Hence (5.3) yields(
1−

(
2 +

1

λ

)
ε
)∫

Q(a,b)

ξ2n
a(Dp,Dp)

p
dy dt ≤ C

εn2

∫
Q(a,b)

p log2 p dy dt

+
C

ε

∫
Q(a,b)

|F |2 p dy dt+
C

n

∫
Q(a,b)

|F | p log p dy dt+

∫
RN

ξ2n

[
p− p log p

]t=b
t=a

dy.

14



Letting n→∞, since the function p log2 p is integrable in Q(a, b), it follows that∫
Q(a,b)

a(Dp,Dp)

p
dy dt <∞

and hence, by the first inequality in (5.4), In → 0 as n → ∞. Since also Kn → 0, letting n → ∞ in (5.3)
and estimating Jn as above we obtain

λ

∫
Q(a,b)

|Dp|2

p
dy dt ≤

∫
Q(a,b)

a(Dp,Dp)

p
dy dt

≤

(∫
Q(a,b)

|F |2 p dy dt

)1/2(∫
Q(a,b)

|Dyp|2

p
dy dt

)1/2

+

∫
RN

[
p− p log p

]t=b
t=a

dy

≤ε
∫
Q(a,b)

|Dp|2

p
dy dt+

1

4ε

∫
Q(a,b)

|F |2 p dy dt

+

∫
RN

[
−p log p

]t=b
t=a

dy,

because
∫
RN p(x, y, a)dy =

∫
RN p(x, y, b)dy = 1, see [21, Proposition 5.9], and the statement follows choosing

ε = λ
2 .

Assuming also that F ∈W 1
∞,loc(R

N ) and∫
Q(a0,b0)

(|F |k + |divF |k/2)p dy dt <∞, k > 2(N + 2), (5.5)

we can now prove that Dp is bounded.

Lemma 5.2 Assume that (H1), (5.1) and (5.5) hold. Then

Dp ∈ Ls(Q(a1, b1))

for all 1 ≤ s ≤ ∞.

Proof. From Corollary 3.4 and Lemma 3.2 we know that Dp ∈ Lk(Q(a, b)).
Consider the function q = ηp, where η(t) = 1, a1 ≤ t ≤ b1, and η(t) = 0 for t ≤ a, t ≥ b. Observe that, by
Theorem 5.1,

√
q ∈W 1,0

2 (QT ). Let us consider r1 > 1 with

1

r1
=

(
1− 2

k

)
1

k
+

2

k
.

By taking α = k
r1

and β > 1 such that 2
α + 1

β = 1, we deduce, using Hölder’s inequality and Theorem 5.1,
that ∫

QT

|F |r1 |Dq|r1 dy dt =

∫
QT

|F |r1q 1
α q−

1
α |Dq| 2α |Dq|r1− 2

α dy dt

≤

(∫
Q(a,b)

|Dp|2

p
dy dt

) 1
α (∫

QT

|F |r1αq dy dt
) 1
α
(∫

QT

|Dq|(r1− 2
α )β dy dt

) 1
β

=

(∫
Q(a,b)

|Dp|2

p
dy dt

) 1
α (∫

QT

|F |kq dy dt
) 1
α
(∫

QT

|Dq|k dy dt
) 1
β

<∞.

By Proposition 2.2(iii) the function q belongs to W 2,1
r1,loc

(QT ) ∩ Lr1(QT ) and solves the parabolic problem{
∂tq −A0q = −F ·Dq − qdivF + p∂tη, in QT ,
q(y, 0) = 0, y ∈ RN ,

whose right hand side belongs to Lr1(QT ) by (5.5) and the previous estimate. By parabolic regularity (see
[15, Theorem IV.9.1]), we deduce that q ∈W 2,1

r1 (QT ).
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If r1 < N + 2 we use again the Sobolev embedding theorem to deduce that Dq ∈ Ls1(QT ) for 1
s1

=
1
r1
− 1

N+2 .
Now, we iterate the above procedure by setting for every n ∈ N

1

rn+1
=

(
1− 2

k

)
1

sn
+

2

k
,

1

sn
=

1

rn
− 1

N + 2
and s0 = k.

If rn < N + 2 for every n, then 0 ≤ sn ≤ sn+1. Take s = limn→∞ sn. Since k > 2(N + 2) one can see that

1

s
=

(
1− 2

k

)
1

s
+

2

k
− 1

N + 2
< 0.

Thus, rn > N + 2 for some n and hence Dq ∈ L∞(QT ), by the Sobolev embedding. Similarly, if rn = N + 2
for some n, then sn < ∞ is arbitrary and hence rn+1 > N + 2, taking sn sufficiently large and using
k > 2(N + 2). Thus Dq ∈ L∞(QT ) in all cases.

The statement follows now from Theorem 5.1, since∫
QT

|Dq| dy dt ≤
(∫

QT

|Dq|2

q
dy dt

) 1
2
(∫

QT

q dy dt

) 1
2

<∞,

and the proof is complete.

We can now refine Lemma 5.2 providing also a quantitative estimate for the W 2,1
k/2-norm of p.

Theorem 5.3 Assume that (H1), (5.1) and (5.5) hold. Then p(x, ·, ·) ∈ W 2,1
k/2(Q(a1, b1)). Moreover there

is a constant C > 0 such that

‖p(x, ·, ·)‖W 2,1
k
2

(Q(a1,b1))
≤C

(
∫
Q(a,b)

|F |kp
) 1

2

(∫
Q(a,b)

|Dp|2

p
dy dt

) 1
2

+ ‖p‖
k−2
k

L∞(Q(a,b))

((∫
Q(a,b)

|divF | k2 p
) 2
k

+
(b− a)

2
k

a1 − a

)}
.

Proof. Take η as in Lemma 5.2 such that |η′| ≤ 2
a1−a . Since Dq ∈ L∞(QT ) by Lemma 5.2, it follows that∫

QT

|F | k2 |Dq| k2 dy dt =

∫
QT

|F | k2 |Dq|
k−2
2
|Dq|
√
q

√
q dy dt

≤‖Dq‖
k−2
2

L∞(QT )

(∫
Q(a,b)

|Dp|2

p
dy dt

) 1
2 (∫

QT

|F |kq dy dt
) 1

2

,

since Dq ∈ L∞(QT ). This gives

‖|F ||Dq|‖
L
k
2 (QT )

≤
(∫

Q(a,b)

|F |kp
) 1
k ‖Dq‖

k−2
k

L∞(QT )

(∫
Q(a,b)

|Dp|2

p
dy dt

) 1
k

.

Let us consider again the parabolic problem satisfied by q{
∂tq −A0q = −F ·Dq − qdivF + p∂tη, in QT ,
q(y, 0) = 0, y ∈ RN .

Using (5.5) and the previous computation, the L
k
2 -norm of the right hand side can be estimated through

(∫
Q(a,b)

|F |kp
) 1
k ‖Dq‖

k−2
k

L∞(QT )

(∫
Q(a,b)

|Dp|2

p
dy dt

) 1
k

+ ‖q‖
k−2
k

L∞(QT )

((∫
Q(a,b)

|divF |k/2p
) 2
k

+
(b− a)

2
k

a1 − a

)
.
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Therefore, q ∈W 2,1
k
2

(QT ) and, using the embedding of W 1,0
k
2

(QT ) in L∞(QT ), we get

‖q‖W 2,1
k
2

(QT )
≤C

(
∫
Q(a,b)

|F |kp
) 1
k ‖q‖

k−2
k

W 2,1
k
2

(QT )

(∫
Q(a,b)

|Dp|2

p
dy dt

) 1
k

+ ‖q‖
k−2
k

L∞(QT )

((∫
Q(a,b)

|divF |k/2p
) 2
k

+
(b− a)

2
k

a1 − a

)}

≤C

ε‖q‖W 2,1
k
2

(QT )
+ Cε

(∫
Q(a,b)

|F |kp
) 1

2

(∫
Q(a,b)

|Dp|2

p
dy dt

) 1
2

+ ‖q‖
k−2
k

L∞(QT )

((∫
Q(a,b)

|divF |k/2p
) 2
k

+
(b− a)

2
k

a1 − a

)}

and the estimate for ‖q‖W 2,1
k
2

(QT )
follows choosing Cε = 1

2 .

The following result is similar to Theorem 4.1, but relies upon Theorem 5.3 rather than Corollary 3.4.
In the sequel, we shall use the following assumption.

(H2) F ∈ C2(RN ,RN ), W1 ≤ W2 are Lyapunov functions for A and there exists 1 ≤ ω ∈ C4(RN ) such
that

(ωk + |Dω|k + |D2ω|k + |D3ω|k + |D4ω|k) ≤ CW1

and

(ωk + |Dω|k + |D2ω|k + |D3ω|k)(1 + |F |k) + (ωk + |Dω|k + |D2ω|k)

(1 + |DjF |k + |divDjF |k) ≤ CW2, j = 1, . . . , N,

for some k > 2(N +2) and a constant C > 0. Moreover we suppose that (5.1) holds for some ε ∈ (0, 1).

We still denote by ζ1, ζ2 the functions defined by (2.1) and associated with W1,W2, respectively.

Remark 5.4 The C4 requirement on ω is not always necessary. In order to simplify the presentation, we
refrain from specifying the minimal regularity needed in each statement.The minimal degree of smoothness
will be clear from the context. Notice also that (H2) implies (H1) and (5.5), hence all the estimates depending
on (H1) and (5.5) are true under (H2).

Theorem 5.5 Assume that (H2) holds. Then there is a constant C > 0 such that

|ω(y)Dp(x, y, t)| ≤C

‖Dp‖ k−2
k

L∞(Q(a1,b1))

(∫
Q(a,b)

|Dp|2

p
dy dt

) 1
k
(∫ b

a

ζ2(x, t) dt

) 1
k

+‖p‖
k−2
k

L∞(Q(a,b))

(∫ b

a

ζ2(x, t) dt+
1

(a1 − a)k/2

∫ b

a

ζ1(x, t) dt

) 2
k

 .

for all x, y ∈ RN , and a1 ≤ t ≤ b1.

Proof. As in the proof of Theorem 5.3, let us take q = ηp. Then we have ω(y)q(y, 0) = 0 and

∂t(ωq)−A0(ωq) =ω(∂tq −A0q)− 2a(Dω,Dq)− qA0ω

=− ωF ·Dq − ωqdivF + ωp∂tη − 2a(Dω,Dq)− qA0ω. (5.6)

Assumption (H2) easily gives

‖ωqdivF‖Lk/2(QT ) + ‖qA0ω‖Lk/2(QT ) ≤ C‖q‖
k−2
k

L∞(QT )

(∫ b

a

ζ2(x, t) dt

) 2
k

and

‖ωp∂tη‖Lk/2(QT ) ≤ ‖p‖
k−2
k

L∞(Q(a,b))

C

a1 − a

(∫ b

a

ζ1(x, t) dt

) 2
k

.
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To treat the terms containing Dq we proceed as in Theorem 5.3, getting∫
QT

ωk/2|F |k/2|Dq|k/2 dy dt =

∫
QT

ωk/2|F |k/2|Dq|
k−2
2
|Dq|
√
q

√
q dy dt

≤‖Dq‖
k−2
2

L∞(QT )

(∫
QT

|Dq|2

q
dy dt

) 1
2
(∫

QT

ωk|F |kq dy dt
) 1

2

,

whence

‖ω|F ||Dq|‖Lk/2(QT ) ≤ C‖Dq‖
k−2
k

L∞(QT )

(∫
QT

|Dq|2

q
dy dt

) 1
k

(∫ b

a

ζ2(x, t) dt

) 1
k

.

The term |Dω ·Dq| is estimated in the same way. Then the right hand side of (5.6) belongs to Lk/2(QT ).
Hence, ωq ∈W 2,1

k/2(QT ) and the following estimate holds

‖ω(·)p(x, ·, ·)‖W 2,1
k/2

(Q(a1,b1))
≤ C

‖Dp‖ k−2
k

L∞(Q(a1,b1))

(∫
Q(a,b)

|Dp|2

p
dy dt

) 1
k
(∫ b

a

ζ2(x, t) dt

) 1
k

+‖p‖
k−2
k

L∞(Q(a,b))

(∫ b

a

ζ2(x, t) dt+
1

(a1 − a)k/2

∫ b

a

ζ1(x, t) dt

) 2
k

 . (5.7)

Since k > 2(N + 2), we use Sobolev embedding (see [15, Lemma II.3.3]) to get the same estimate for the
L∞-norm of D(ωq) in QT . Now we use Theorem 4.1 with ω replaced by ω̃ = (1 + |Dω|2)k/2, to obtain

‖qDω‖L∞(QT ) ≤‖q‖
k−1
k

L∞(QT )
‖q|Dω|k‖

1
k

L∞(QT )

≤‖q‖
k−1
k

L∞(QT )
‖qω̃‖

1
k

L∞(QT )

≤C‖p‖
k−1
k

L∞(Q(a,b))

(∫ b

a

ζ2(x, t) dt+
1

(a1 − a)k/2

∫ b

a

ζ1(x, t) dt

) 1
k

≤C‖p‖
k−2
k

L∞(Q(a,b))

(∫ b

a

ζ2(x, t) dt+
1

(a1 − a)k/2

∫ b

a

ζ1(x, t) dt

) 2
k

.

Using all the above estimates, one finally gets the result from the inequality

‖ωDq‖L∞(QT ) ≤ ‖D(ωq)‖L∞(QT ) + ‖qDω‖L∞(QT ).

We can prove similar decay for D2p and ∂tp.

Theorem 5.6 Assume that (H2) holds for certain weight functions ω and ω0 such that ω|F | ≤ c̃ω0 for a
constant c̃ > 0. If aij ∈ C2

b (RN ), then there is a constant C > 0 such that

|ω(y)D2p(x, y, t)| ≤C

‖Dp‖ k−2
k

L∞(Q(a1,b1))

(∫
Q(a,b)

|Dp|2

p
dy dt

) 1
k

+ ‖p‖
k−2
k

L∞(Q(a,b))


(∫ b

a

ζ2(x, t) dt+
1

(a1 − a)
k
2

∫ b

a

ζ1(x, t) dt

) 2
k

.

for all x, y ∈ RN , and a1 ≤ t ≤ b1.

Proof. Suppose, for simplicity, that aij = δij . From the proof of Theorem 5.5 we know that the function

v = ωq belongs to W 2,1
k/2(QT ) and satisfies v(y, 0) = 0 and

∂tv −∆v = −ωF ·Dq − ωqdivF + ωp∂tη − 2Dω ·Dq − q∆ω. (5.8)
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Since F ∈ C2, by local parabolic regularity v ∈ W 3,1
k/2,loc(QT ). We can therefore differentiate (5.8) with

respect to yj ∈ R, j = 1, . . . , N , thus obtaining(
∂

∂t
−∆

)
Djv =− (Djω)F ·Dq − ωDjF ·Dq − ωF ·DDjq − q(Djω)divF

− ω(Djq)divF − ωqdiv (DjF ) + (Djω)p∂tη + ω(Djp)∂tη

− 2DDjω ·Dq − 2Dω ·DDjq − (Djq)∆ω − q∆Djω. (5.9)

As in the proof of Theorem 5.5 one can see that Assumption (H2) easily implies that

‖q∆(Djω)‖Lk/2(QT ) + ‖ωqdiv (DjF )‖Lk/2(QT ) + ‖qDjωdivF‖Lk/2(QT )

≤ C‖q‖
k−2
k

L∞(QT )

(∫ b

a

ζ2(x, t) dt

) 2
k

and

‖(Djω)F ·Dq‖Lk/2(QT ) + ‖ωDjF ·Dq‖Lk/2(QT ) + ‖ωdivFDjq‖Lk/2(QT )
+ ‖Djq∆ω‖Lk/2(QT ) + ‖DDjω ·Dq‖Lk/2(QT )

≤ C‖Dq‖
k−2
k

L∞(QT )

(∫
QT

|Dq|2

q
dy dt

) 1
k

(∫ b

a

ζ2(x, t) dt

) 1
k

.

Moreover,

‖(Djω)p∂tη‖Lk/2(QT ) ≤
C

a1 − a
‖p‖

k−2
k

L∞(Q(a,b))

(∫ b

a

ζ1(x, t) dt

) 2
k

and

‖ω(Djp)∂tη‖Lk/2(QT ) ≤
C

a1 − a
‖Dq‖

k−2
k

L∞(QT )

(∫
QT

|Dq|2

q
dy dt

) 1
k

(∫ b

a

ζ1(x, t) dt

) 1
k

.

To treat the terms containing the second order derivatives of q we use (H2), Theorem 5.5 and (5.7) with ω
replaced by ω0, since ω|F | ≤ c̃ω0. Hence,

‖ωF ·DDjq‖Lk/2(QT ) ≤c̃‖ω0 ·DDjq‖Lk/2(QT )
≤c̃
{
‖q|DDjω0|‖Lk/2(QT ) + ‖Djω0|Dq|‖Lk/2(QT )

+‖|Dω0|Djq‖Lk/2(QT ) + ‖ω0q‖W 2,1
k/2

(QT )

}
≤C

‖Dq‖ k−2
k

L∞(QT )

(∫
QT

|Dq|2

q
dy dt

) 1
k

(∫ b

a

ζ2(x, t) dt

) 1
k

+ ‖q‖
k−2
k

L∞(QT )

(∫ b

a

ζ2(x, t) dt+
1

(a1 − a)k/2

∫ b

a

ζ1(x, t) dt

) 2
k

 .

Now, applying (5.7) with ω replaced by (1 + |Dω|2)1/2, the same arguments yield

‖Dω ·DDjq‖Lk/2(QT ) ≤C

‖Dq‖ k−2
k

L∞(QT )

(∫
QT

|Dq|2

q
dy dt

) 1
k

(∫ b

a

ζ2(x, t) dt

) 1
k

+ ‖q‖
k−2
k

L∞(QT )

(∫ b

a

ζ2(x, t) dt+
1

(a1 − a)k/2

∫ b

a

ζ1(x, t) dt

) 2
k

 .

Therefore the right hand side of (5.9) is in Lk/2(QT ). Thus, Since Djv ∈ Lk/2(QT ) and Djv(y, 0) = 0, by

the parabolic regularity Djv ∈W 2,1
k/2(QT ) and, by Sobolev embedding [15, Lemma II.3.3], Dijv = Dij(ωq) ∈
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L∞(QT ). Moreover, from the above estimates, we get

‖Dij(ωq)‖L∞(QT ) ≤C

(
‖Dq‖

k−2
k

L∞(QT )

(∫
QT

|Dq|2

q
dy dt

) 1
k

+ ‖q‖
k−2
k

L∞(QT )

)
(∫ b

a

ζ2(x, t) dt+
1

(a1 − a)k/2

∫ b

a

ζ1(x, t) dt

) 2
k

. (5.10)

Since ωDijq = Dij(ωq) − qDijω − DiωDjq − DjωDiq, it follows from (H2), Theorem 4.1 with ω replaced
by (1 + |D2ω|2)1/2 and Theorem 5.5 with (1 + |Dω|2)1/2 instead of ω, that ωDijq ∈ L∞(QT ). Finally, the
estimate for D2p follows from Theorem 4.1, Theorem 5.5 and (5.10).

Theorem 5.7 Assume that (H2) holds for certain weight functions ω and ω0 such that ω(|F |+|divF |) ≤ c̃ω0

for a constant c̃ > 0. If aij ∈ C2
b (RN ), then there is a constant C > 0 such that

|ω(y)∂tp(x, y, t)| ≤C

‖Dp‖ k−2
k

L∞(Q(a1,b1))

(∫
Q(a,b)

|Dp|2

p
dy dt

) 1
k

+ ‖p‖
k−2
k

L∞(Q(a,b))


(∫ b

a

ζ2(x, t) dt+
1

(a1 − a)
k
2

∫ b

a

ζ1(x, t) dt

) 2
k

.

for all x, y ∈ RN , and a1 ≤ t ≤ b1.

Proof. As in the proof of Theorem 5.6 we assume, for simplicity, that aij = δij . It follows from Proposition
2.2 that

ω(y)∂tp = ω(y)∆p− ω(y)F ·Dp− ω(y)divFp.

Hence, by assumption we have

|ω(y)∂tp(x, y, t)| ≤ |ω(y)∆p(x, y, t)|+ c̃ω0(y)|Dp(x, y, t)|+ c̃ω0(y)p(x, y, t).

So the estimate for ∂tp follows now from Theorem 4.1, Theorem 5.5 and Theorem 5.6.

Remark 5.8 In concrete examples, the weight ω and the Lyapunov functions W1,W2 are powers or expo-
nentials of powers. The above results are formulated in a unified way, but the two situations are different. In
the exponential case, in fact, slightly simpler statements are possible: typically, one has ω(y) = exp{γ|y|β}
and W1(y) = W2(y) = exp{δ|y|β}, with β > 0 and δ > γ > 0, so only one Lyapunov function is needed.

6 Some applications

We show that, under the main assumptions of the previous section, the semigroups T (·) associated with the
transition kernels p are differentiable in Cb(R

N ). We remark that if the drift F is unbounded, the associated
semigroup is rarely analytic in Cb(R

N ), see [23].

Theorem 6.1 Suppose that aij ∈ C2
b (RN ), F ∈ C2(RN ) and that there exist constants c > 0, β > 2 such

that
lim sup
|x|→∞

|x|1−βF (x) · x
|x|
≤ −c.

Assume moreover that |F (x)| + |DF (x)| + |D2F (x)| ≤ c1 exp(c2|x|β−ε) for some ε, c1, c2 > 0. Then the
inequalities

(i) 0 < p(x, y, t) ≤ c3 exp
(
c4t
− β
β−2

)
exp

(
−γ|y|β

)
(ii) |Dp(x, y, t)| ≤ c3 exp

(
c4t
− β
β−2

)
exp

(
−γ|y|β

)
(iii) |D2p(x, y, t)| ≤ c3 exp

(
c4t
− β
β−2

)
exp

(
−γ|y|β

)
(iv) |∂tp(x, y, t)| ≤ c3 exp

(
c4t
− β
β−2

)
exp

(
−γ|y|β

)
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hold for suitable c3, c4, γ > 0 and for all 0 < t ≤ T and x, y ∈ RN .

Proof. From Proposition 2.6 we deduce that the function exp{δ|x|β} is a Lyapunov function for a
sufficiently small δ > 0. We fix ω(y) = exp{γ|x|β}, ω0(y) = exp{γ0|x|β}, W1(y) = W2(y) = exp{δ|x|β} with
γ < γ0 and kγ0 < δ. With these choices, it is easily seen that assumption (H2) holds both for ω and ω0 so
that all the results of the previous sections apply. Moreover

ζ(x, t) ≤ c1 exp
(
c2t
− β
β−2

)
for suitable c1, c2 > 0 and every x ∈ RN , t > 0, where ζ is the function defined in (2.1) and associated with
W1 = W2.

Statement (i) follows from Corollary 4.3. For the proof of the other statements we apply Theorem 5.1
with a = t, b = 2t. Estimating the integral of |F |2p through ζ and using (i) for that of p log p we deduce∫ 2t

t

∫
RN

|Dp(x, y, s)|2

p(x, y, s)
dy ds ≤ c3 exp

(
c4t
− β
β−2

)
for x ∈ RN , t > 0 and suitable positive constants c3, c4. Inserting this estimate in Theorem 5.3 and using
(i) and Sobolev embedding we obtain

|Dp(x, y, s)| ≤ c3 exp
(
c4t
− β
β−2

)
for x, y ∈ RN , t ≤ s ≤ 2t. Finally, (ii), (iii), (iv) follow using these estimates in Theorems 5.5, 5.6, 5.7,
respectively.

Remark 6.2 Observe that the assumption aij ∈ C2
b (RN ) is not needed for (i) and (ii).

Remark 6.3 Let us point out a variant of Theorem 6.1. We assume that aij ∈ C2
b (RN ), F ∈ C2(RN ) and

that there exist constants c > 0, β > 2 such that

lim sup
|x|→∞

|x|1−βF (x) · x
|x|
≤ −c.

We assume moreover that |F (x)| + |DF (x)| + |D2F (x)| ≤ c1(1 + |x|2)γ1 for some γ1, c1, c2 > 0. Then, for
sufficiently large γ2 the following estimate holds

p(x, y, t) + |Dp(x, y, y)|+ |D2p(x, y, t)|+ |∂tp(x, y, t)| ≤ Ct−σ(1 + |y|2)−γ2 ,

for x, y ∈ RN , 0 < t ≤ 1 and with a suitable σ depending on γ1, γ2. In fact, the estimate for p is contained
in Corollary 4.5 where the dependence of σ on γ1, γ2 is explicitly stated. The corresponding bounds for the
derivatives of p can be obtained as in Theorem 6.1. We refrain from stating the explicit dependence of σ in
the general case since it does not seem to be optimal.

Finally, let us show that the transition semigroup T (·) is differentiable in spaces of continuous functions,
under the assumption of Theorem 6.1. We observe that in the case β = 2 the semigroup need not to be
differentiable as the example of the Ornstein-Uhlenbeck operator shows, see [18]. Moreover, even when β > 2
the semigroup is not, in general, analytic, see [23]. Finally we point out that our methods allow to prove the
differentiability of the semigroup without requiring that the drift F is a gradient.

Theorem 6.4 Under the assumptions of Theorem 6.1, the transition semigroup T (·) is differentiable on
Cb(R

N ) for t > 0.

Proof. Let us fix 0 < a < T . By Theorem 6.1 we know |∂tp(x, y, t)| ≤ c1 exp(−c2|y|β) for every a ≤ t ≤ T ,

x, y ∈ RN . Since p(·, y, ·) ∈ C1+α/2,2+α
loc (RN × (0,∞)), for every f ∈ Cb(RN ) and t > 0 the function

T (t)f(·) =

∫
RN

p(·, y, t)f(y) dy

is differentiable with respect to the norm of Cb(R
N ) and

d

dt
T (t)f(·) =

∫
RN

∂tp(·, y, t)f(y) dy.

As an example, we obtain that the operator A = ∆−x|x|r ·D, r > 0, generates a differentiable semigroup
in Cb(R). The same result is proved also in [23, Proposition 4.4], where the proof was based on results on
intrinsic ultracontractivity of Schrödinger operator proved in [9] and therefore used the gradient structure
of the drift.
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A Appendix

In this appendix we present a simple, purely analytical, proof of the embeddings of the spaces Hk,1(QT ), due
to Krylov, see [13]. Krylov proves the above embeddings for the more general case of stochastic parabolic
Sobolev spaces. We also prove by the same method an embedding for the spaces Vk(QT ) which we used in
Section 3. Finally, we prove an estimate for the L∞ norm of solutions of certain parabolic problems.

We recall that Hk,1(QT ) consists of all functions u ∈ W 1,0
k (QT ) with ∂tu ∈ (W 1,0

k′ (QT ))′ and that, for

k > 2, Vk(QT ) is the space of all functions u ∈W 1,0
k (QT ) such that there exists C > 0 for which∣∣∣∣∫

QT

u∂tφdx dt

∣∣∣∣ ≤ C (‖φ‖L k
k−2 (QT )

+ ‖Dφ‖
L

k
k−1 (QT )

)
for every φ ∈ C2,1

c (QT ). ‖∂tu‖k/2,k;QT denotes the best constant C such that the above estimate holds. Note

that if a smooth function belongs to Hk,1(QT ) or to Vk(QT ) the estimate for ∂tu implies that u vanishes at
times 0, T .

Lemma A.1 There exist linear, continuous extension operators E1 : Hk,1(QT ) → Hk,1(RN+1) and E2 :
Vk(QT )→ Vk(RN+1).

Proof. The proof is easily achieved using standard reflection arguments with respect to the variable t.

Lemma A.2 The restrictions of functions in C∞c (RN+1) to QT are dense in Hk,1(QT ) and in Vk(QT ).

Proof. If u ∈ Hk,1(QT ) we consider v = E1u ∈ Hk,1(RN+1). By standard arguments involving
convolutions and multiplications by cut-off functions, we may approximate v with smooth functions with
compact support in the norm of Hk,1(RN+1), hence u. The proof for Vk(QT ) is similar.

Theorem A.3 (i) If 1 < k < N + 2, then Hk,1(QT ) is continuously embedded in Lr(QT ) for 1
r = 1

k −
1

N+2 .

(ii) If k = N + 2, then Hk,1(QT ) is continuously embedded in Lr(QT ) for N + 2 ≤ r <∞.

(iii) If k > N + 2, then Hk,1(QT ) is continuously embedded in C0(QT ).

Proof. By Lemma A.2 it is sufficient to establish the estimate

‖u‖Lr(QT ) ≤ C‖u‖Hk,1(QT )
for every u ∈ C∞c (RN+1), with C independent of u, where r is as in (i), (ii) or r =∞ in case (iii).

We consider the fundamental solution G of the operator ∂t −∆ in RN+1. We have

G(x, t) =

{ 1
(4πt)N/2 exp

(
− 1

4t |x|
2
)

t > 0

0 t ≤ 0

Let u ∈ C∞c (RN+1), ψ ∈ C∞c (QT ) and consider φ = G∗ψ. The function φ belongs to C2(RN+1) and satisfies
∂tφ−∆φ = ψ, see e.g. [11, Theorem 8.4.2]. Since ψ has support in RN × [0, T ], then G ∗ψ = GT ∗ψ, where
GT = Gχ[0,T ]. By a straightforward computation one sees that GT ∈ Ls(RN+1) for 1 ≤ s < (N + 2)/N and
DGT ∈ Ls(RN+1) for 1 ≤ s < (N + 2)(N + 1). Young’s inequality then yields ‖φ‖W 1,0

s (QT )
≤ c1‖ψ‖L1(QT )

for s < (N + 2)/(N + 1). Since k > N + 2, k′ < (N + 2)/(N + 1) and we get∣∣∣∣∫
QT

uψ dx dt

∣∣∣∣ =

∣∣∣∣∫
QT

u(∂tφ−∆φ) dx dt

∣∣∣∣ =

∣∣∣∣∫
QT

u(∂tφ) +Du ·Dφdxdt
∣∣∣∣

≤ c2‖u‖Hk,1(QT )‖φ‖W 1,0

k′ (QT )
≤ c3‖u‖Hk,1(QT )‖ψ‖L1(QT ).

This proves (iii).
In order to prove (ii) we fix N + 2 < r <∞ and choose 1 < s < (N + 2)/(N + 1) such that

1

k′
=

1

s
+

1

r′
− 1.

Young’s inequality then yields ‖φ‖W 1,0

k′ (QT )
≤ c1‖ψ‖Lr′ (QT ) hence∣∣∣∣∫

QT

uψ dx dt

∣∣∣∣ ≤ c‖u‖Hk,1(QT )‖ψ‖Lr′ (QT )
and (ii) is proved.

To prove (i) we use the estimate ‖φ‖W 2,1

r′ (QT )
≤ c‖ψ‖Lr′ (QT ), see [15, Theorem 9.2.3] and the embedding

W 2,1
r′ (QT ) ⊂W 1,0

k′ (QT ), see [15, Lemma II.3.3] to conclude as before.
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A closer look at the above proof shows an embedding of the space Vk(QT ), used in Section 4.

Theorem A.4 If k > N + 2, then Vk(QT ) is continuously embedded in C0(QT ). Moreover

‖u‖L∞(QT ) ≤ C
(
‖Du‖Lk(QT ) + ‖∂tu‖k/2,k;QT

)
.

Proof. As above we may assume that u ∈ C∞c (RN+1). Choose φ, ψ as in the above theorem. Then∣∣∣∣∫
QT

uψ dx dt

∣∣∣∣ =

∣∣∣∣∫
QT

u(∂tφ−∆φ) dx dt

∣∣∣∣ =

∣∣∣∣∫
QT

u∂tφ+Du ·Dφdxdt
∣∣∣∣

≤
(
‖Du‖Lk(QT ) + ‖∂tu‖k/2,k;QT

)(
‖Dφ‖

L
k
k−1 (QT )

+ ‖φ‖
L

k
k−2 (QT )

)
≤ C

(
‖Du‖Lk(QT ) + ‖∂tu‖k/2,k;QT

)
‖ψ‖L1(QT )

by the above estimates for φ, since k/(k − 1) < (N + 2)/(N + 1) and k/(k − 2) < (N + 2)/N .

We need the following estimate of the sup norm of solution of parabolic problems.

Theorem A.5 Let k > N + 2, v ∈ Lk(QT ), w ∈ L k
2 (QT ) and assume that u ∈ Lk(QT ) satisfies∫

QT

u(∂tφ+A0φ) dx dt =

∫
QT

(v ·Dφ+ wφ) dx dt (A.1)

for every φ ∈ C2,1
c (QT ). Then u ∈ Vk(QT ) and

‖u‖L∞(QT ) ≤ C1‖u‖Vk(QT ) ≤ C2

(
‖v‖Lk(QT ) + ‖w‖

L
k
2 (QT )

)
where C1, C2 depend on N,T, k and the C1

b -norm of aij.

Proof. Step 1. First we show that

‖u‖Lk(QT ) ≤ C
(
‖v‖Lk(QT ) + ‖w‖

L
k
2 (QT )

)
. (A.2)

For φ ∈W 2,1
k′ (QT ), Sobolev embedding gives

‖φ‖
L

k
k−2 (QT )

≤ C‖φ‖W 2,1

k′ (QT )
(A.3)

since k > N + 2 and 1 − 1/k − 2/(N + 2) < 1 − 2/k < 1 − 1/k. As a consequence, since u ∈ Lk(QT ), by
approximation (A.1) holds if φ belongs to W 2,1

k′ (QT ). Let us fix ψ ∈ C∞c (QT ). Using [15, Theorem 9.2.3] we

choose now φ ∈W 2,1
k′ (QT ) such that {

∂tφ+A0φ = ψ, in QT ,
φ(x, T ) = 0, x ∈ RN .

We have also
‖φ‖W 2,1

k′ (QT )
≤ C‖ψ‖Lk′ (QT ),

where C depends on k, T and the coefficients (aij). Therefore, inserting this φ in (A.1) and using (A.3), we
obtain ∣∣∣∣∫

QT

uψ

∣∣∣∣ ≤ C (‖v‖Lk(QT ) + ‖w‖
L
k
2 (QT )

)
‖ψ‖Lk′ (QT )

and (A.2) follows.
Step 2. We have ∫

QT

u(∂tφ+A1φ) dx dt =

∫
QT

(g ·Dφ+ wφ) dx dt,

where A1 =
∑
i,j aijDij and gi = vi + uDi(

∑N
j=1 aij) and therefore∣∣∣∣∫

QT

u(∂tφ+A1φ) dx dt

∣∣∣∣ ≤C[(‖u‖Lk(QT ) + ‖v‖Lk(QT )
)
‖Dφ‖

L
k
k−1 (QT )

+ ‖w‖
L
k
2 (QT )

‖φ‖
L

k
k−2 (QT )

]
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Replacing φ by its difference quotients with respect to the variable x we obtain as in Lemma 3.2∣∣∣∣∫
QT

τhu(∂tφ+A1φ) dx dt

∣∣∣∣ ≤C[(‖u‖Lk(QT ) + ‖v‖Lk(QT )
)
‖φ‖W 2,1

k
k−1

(QT )

+ ‖w‖
L
k
2 (QT )

‖Dφ‖
L

k
k−2 (QT )

]
.

By Sobolev embedding
‖Dφ‖Ls(QT ) ≤ C‖φ‖W 2,1

k
k−1

(QT )

if 1/s = 1 − 1/k − 1/(N + 2). Since k/(k − 1) < k/(k − 2) < s, because k > N + 2, we can estimate the
Lk/(k−2)-norm of Dφ with its W 2,1

k/(k−1)-norm thus obtaining∣∣∣∣∫
QT

τhu(∂tϕ+A1φ) dx dt

∣∣∣∣ ≤ C (‖u‖Lk(QT ) + ‖v‖Lk(QT ) + ‖w‖
L
k
2 (QT )

)
‖φ‖W 2,1

k
k−1

(QT )
.

We approximate φ in W 2,1
k/(k−1)(QT ) with a sequence of functions ϕn ∈ C1,2

c (QT ). Since u ∈ Lk(QT ), writing

the above inequality for φn and letting n→∞ we see that it holds for φ.
Proceeding as above we now choose φ ∈W 2,1

k′ (QT ) such that{
∂tφ+A1φ = |τhq|k−2τhu, in QT ,
φ(x, T ) = 0, x ∈ RN

and
‖φ‖W 2,1

k′ (QT )
≤ C‖|τhu|k−1‖Lk′ (QT ).

This yields u ∈W 1,0
k (QT ) and

‖Du‖Lk(QT ) ≤ C
(
‖u‖Lk(QT ) + ‖v‖Lk(QT ) + ‖w‖

L
k
2 (QT )

)
.

Now we treat the time derivative. We have∫
QT

u∂tφdx dt =

∫
QT

(
∑
i,j

aijDiuDjφ+ v ·Dφ+ wφ) dx dt

and hence, using the above estimates,∣∣∣∣∫
QT

u∂tφdx dt

∣∣∣∣ ≤C[(‖u‖Lk(QT ) + ‖v‖Lk(QT ) + ‖w‖
L
k
2 (QT )

)
‖Dφ‖

L
k
k−1 (QT )

+ ‖w‖
L
k
2 (QT )

‖φ‖
L

k
k−2 (QT )

]
.

Then u ∈ Vk(QT ) and hence Theorem A.4 yields u ∈ L∞(QT ) and

‖u‖L∞(QT ) ≤ C
(
‖Du‖Lk(QT ) + ‖∂tu‖k/2,k;QT

)
≤C

(
‖u‖Lk(QT ) + ‖v‖Lk(QT ) + ‖w‖

L
k
2 (QT )

)
≤C

(
‖v‖Lk(QT ) + ‖w‖

L
k
2 (QT )

)
,

having used (A.2) in the last inequality.
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