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1. Introduction

The question of inverting maps is recurrent and important in many circumstances, both
theoretical or applied ones. Also the literature on the subject is very spread (linear and
non-linear functional analysis, differential e/o integral equations, mathematical economics,
etc.) and reflecting different approaches and points of view.

Our motivation on invertibility issues relies on mathematical variational models of con-
tinuum mechanics. In the setting of nonlinear elasticity, in the undeformed state the
material body occupies a bounded open set Ω ⊂ RN . Then one usually looks for mini-
mizers u : Ω → RN of the stored energy I(u) =

∫
Ω W (∇u) dx in an admissible class K

of deformations u. In this framework, the invertibility of deformations u ∈ K corresponds
to the physical assumption of impenetrability of matter. The variational approach to this
kind of problems leads naturally to treat stability of invertibility with respect to suitable
notions of convergence. The question is then to find conditions under which the limit map
of a sequence of invertible maps is itself invertible. This basic and fundamental question
has of course many possible answers. In this paper we are interested in the case of maps
f : Ω ⊂ RN → f(Ω) where the target f(Ω) lies possibly in a metric space (Y, d). Our
main motivation in considering this question comes from [19] where the notion of transport
plan as in Optimal Mass Transportation Theory is proposed as a weak notion of material
deformation. In such case (see [19] for the details) it results useful to consider an energy
functional on maps f : Ω ⊂ RN → (Y, d). Precisely, in [19] Y is the set of probability
measures endowed with the Wasserstein metric. In this model, invertibility of maps over a
metric space was fundamental to obtain lower semicontinuity of the energy functional. It is
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then natural to consider the applicability of inverse function theorem for maps with metric
space targets, as opposed to the usual setting of Euclidean spaces. This necessitates a shift
from degree theory methods (which are standard in the Euclidean case) toward coarser,
and therefore more robust, estimates based on volume growth.

For maps over RN a widely used tool is the Topological Degree Theory. However, for
maps over metric spaces no such theory is available. Observe that also the notion of fixed
point has no meaning in this setting. This is a main obstruction in dealing with maps over
metric spaces. On the other hand, many concepts of Geometric Measure Theory are well
established in this framework ([2, 3, 23, 24, 28]). Following the observation of [20] in which
some inversion results are obtained by using the area formula and lower semicontinuity of
Jacobians, here we investigate inversion results based on Geometric Measure Theory for
Lipschitz maps f : Ω → (Y, d).

1.1. Description of the results. In Section 2 we provide an overview of some approaches
to invertibility based on the Area Formula and on l.s.c. of Jacobians. Many results in the
literature deal with global invertibility obtained by local invertibility. In the framework of
this paper, we observe that in fact considering open maps is enough. The point is that the
so called Invariance Domain Theorem, which state that a continuous locally invertible map
is an open map, is peculiar of the Euclidean setting and anyway it does not hold in general.
Therefore, the notion of open map seems more appropriate in this metric setting. Outside
of the Euclidean setting, i.e. without the benefit of the Invariance Domain Theorem, this
seems the natural way to proceed.

A recurrent notion in literature, especially in the Sobolev setting, is that of open and
discrete maps (see [30, 33, 32, 25, 26]). We also find that this kind of maps is useful from a
metric point of view. Actually, this notion is crucial (see Lemma 3.14 and Theorem 3.15)
to provide easy proofs of l.s.c. of metric Jacobians. Hence we provide a results of stability
for invertible maps also valid over a metric target. Our main result (see Theorem 3.16)
establishes that the uniform limit f of a sequence of equi-Lipschitz invertible maps is also
invertible provided f is open and discrete.

The l.s.c. results for the metric Jacobians are based on l.s.c. of the Hausdorff mea-
sure with respect to Hausdorff convergence of sets. A general l.s.c. result for the metric
Jacobians would probably require more subtle studies of l.s.c. with respect to Hausdorff
convergence. In Section 4 we discuss invertibility of maps related with the so called quasi-
isometries introduced by John and also considered in [19].

2. Local toward global invertibility

Let f : Ω → f(Ω) ⊂ RN be a (Lipschitz) continuous locally invertible map. Suppose
that the Area Formula

(1)
∫

V
N(y, f, Ω) dHN (y) =

∫
f−1(V )

Jf(x) dx

holds true, where HN denotes the N -dimensional Hausdorff measure, while N(y, f, U) :=
#(f−1(y)∩U) is the multilplicity function. This is the case of course for f Lipschitz. It is
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possible to use the Area Formula (1) in different ways in order to obtain global invertibility
of f .

Let x1 6= x2 be such that f(x1) = f(x2). Consider two small disjoint balls B1 :=
B(x1, r1), B2 := B(x2, r2). By the Invariance Domain Theorem we get that f is an open
map. Therefore, the set V := f(B1)∩f(B2) is an open non-empty set. Moreover, it results
N(y, f, Ω) ≥ 2 for every y ∈ V . By using (1) we obtain

(2) 2HN (V ) ≤
∫

V
N(y, f, Ω) dHN (y) =

∫
f−1(V )

Jf(x) dx.

To get a contradiction we have to estimate the above Jacobian integral in terms of HN (V ).
Actually, there are different possible approaches.

(i) Measure preserving maps: In [19] some inversion properties of measure pre-
serving maps are stated. We say that f is measure preserving if f#LN = HN , where
the push-forward measure is defined by f#LN (V ) := LN (f−1(V )). These kind of
maps are fundamental in Mass Transportation Theory. Denoting by M := Lip(f)
the Lipschitz constant of f , by (2) we estimate

2HN (V ) ≤ MNLN (f−1(V )) = MNf#LN (V ) = MNHN (V ).

Therefore, if M < N
√

2 we get invertibility of f .
(ii) Ciarlet-Necas: In [9] it is considered the condition

(3)
∫

U
Jf(x) dx ≤ HN (f(U)),

which of course holds true with equality sign for invertible maps. Under (3), by (2)
we estimate

2HN (V ) ≤ HN (f(f−1V )) ≤ HN (V ),

leading to invertibility of f .
By using the area formula (see [2, 23, 24, 28]) we get

HN (f(U)) ≤
∫

Y
N(y, f, U) dHN (y) =

∫
U

Jf(x) dx.

Therefore, the opposite inequality

HN (f(U)) ≤
∫

U
Jf(x) dx

is always true also in a metric space setting, whenever the area formula holds true.
(iii) Stability: In [20] it is contained a discussion about stability of invertibility. In

particular it is observed that invertibility of a limit map f of a sequence fn of
invertible maps can be obtained by using the lower semicontinuity of Jacobian’s
integrals under uniform convergence (see [1]). Indeed, fixed ε > 0, by uniform con-
vergence we find fn(A) ⊂ f(A)ε for large n, where Bε denotes the ε-neighborhood
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of the set B. By (2) we obtain

2HN (V ) ≤
∫

f−1(V )
Jf(x) dx ≤ lim inf

n→+∞

∫
f−1(V )

Jfn(x) dx =

lim inf
n→+∞

HN (fn(f−1(V )) ≤ HN (f(f−1(V ))ε) ≤ HN (V ε).

Letting ε → 0 we get (see also Lemma 3.11)

2HN (V ) ≤ HN (V ) = HN (V ),

where we used that ∂V ⊂ ∂f(B1) ∪ ∂f(B2) and that f is open and Lipschitz, so
that Hn(∂V ) = 0.

(iv) Quasi-isometries: Let f be an (m−M)-quasi-isometry, namely such that

0 < m ≤ D−f(x) ≤ D+f(x) ≤ M < +∞,

where

D−f(x0) := lim inf
x→x0

dY (f(x), f(x0))
dX(x, x0)

, D+f(x0) := lim sup
x→x0

dY (f(x), f(x0))
dX(x, x0)

.

The metric derivatives D+, D− are related to inversion properties, see [22, 16, 7]
for an account on these maps. The constants m,M , roughly speaking, provides
estimates of pointwise Lipschitz behavior of f from below and above respectively.
By using (2), and given the volume control condition mNLN (f−1(V ) ≤ HN (V ), it
is possible to estimate (see Section 4)

2HN (V ) ≤
∫

f−1(V )
Jf(x) dx ≤ MNLN (f−1(V )) ≤

(
M

m

)N

HN (V ).

Therefore, if M
m < N

√
2 we get invertibility of f .

Observe that in the approaches stated above, local invertibility is not actually needed. The
fact that f is an open map is enough to conclude, since the main point relies in finding the
open set V such that HN (V ) > 0.

3. Invertibility over metric spaces

We address the question of invertibility for Lipschitz maps

f : Ω ⊂ RN → f(Ω) ⊂ (Y, d),

for a metric space Y . We assume that Y is geodesic and the Hausdorff N -dimensional
measure over Y is non-trivial, i.e. for every ball B ⊂ Y it results 0 < HN (B) < +∞. A
metric space (Y, d) is said to be geodesic if for each pair of points x, y ∈ Y the distance
d(x, y) is given by

(4) d(x, y) := min
{

length(γ) :=
∫ 1

0
|γ̇|(t) dt : γ ∈ Lip([0, 1], Y ), γ(0) = x, γ(1) = y

}
,
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where Lip([0, 1], Y ) denotes the set of Lipschitz maps of [0, 1] over Y , while |γ̇|(t) denotes
the metric derivative defined by

lim
h→+∞

d(γ(t + h), γ(t))
h

which exists for a.e. t due to the Lipschitz condition (see [5] for the basic properties).
Any curve γ achieving the minimum value in (4) is called geodesic. Therefore, the metric
space Y is geodesic if any distance d(x, y) can be obtained as the length of a shortest path
(geodesic) connecting x and y.

Moreover, we shall assume that the balls of Y are somehow continuous, namely that
every continuous path connecting interior and exterior points of a ball B intersects the
boundary ∂B. In terms of parametrisation of a Lipschitz curve γ : [0, 1] → Y , we assume
that if γ(0) ∈ B, γ(t) /∈ B̄, then there exists 0 < s < t such that γ(s) ∈ ∂B.

3.1. Open and discrete maps. The Invariance Domain Theorem is peculiar of RN and
heavily relies on Topological Degree Theory. However, such result does not hold in general
metric spaces. Therefore, to our purpose it seems better to handle directly with open maps.
In [27] some metric conditions to obtain open maps are given. In this section we make
some remarks needed in the sequel.

Every open map f maps interior point into interior point. Hence, for every open set it
results ∂f(U) ⊂ f(∂U). On the other hand, maps f such that ∂f(U) = f(∂U) are not
necessarily open. For a metric space X, we say that f : X → Y is discrete (or isolated) if
for every x0 ∈ X there exists r > 0 such that f(x) 6= f(x0) for every x ∈ B(x0, r). If in
addition it results ∂f(B) ⊂ f(∂B), such balls are sometimes called normal neighborhoods.
We also say that f is normal if ∂f(B) ⊂ f(∂B) for every ball B. We have the following

Lemma 3.1. Let f : X → Y be a continuous discrete map. If f is normal, i.e. ∂f(B) ⊂
f(∂B) for every ball, then f is an open map.

Proof. Let y0 = f(x0) ∈ f(U), for an open set U ⊂ X . Consider a normal neighborhood
B0 := B(x0, r). We claim that y0 is an interior point of f(B0). If not, then y0 ∈ ∂f(B0) ⊂
f(∂B0). Therefore y0 = f(x) with x ∈ ∂B0, contradicting the discreteness of f .

�

Lemma 3.2. Let f : Ω → Y be a continuous injective map. If f(Ω) is an open set then
f : Ω → Y is open.

Proof. We may suppose Ω bounded. Given an open set U ⊂ Ω, let y0 = f(x0) ∈ f(U),
with x0 ∈ B ⊂⊂ U . Suppose that y0 is a boundary point of f(B). Then we find a sequence
yn → y0 such that yn /∈ f(B). We claim that there exists δ > 0 such that f(B)δ ⊂ f(Ω).

Indeed, for z ∈ f(B), since f(Ω) is open, we find δz > 0 such that B(z, δz) ⊂ f(Ω). By
compactness f(B) ⊂

⋃h
i=1 B(zi,

δi
2 ), where δi := δzi . Consider δ = min{ δi

2 : i = 1, · · · , h}.
For z ∈ f(B)δ we find x ∈ B such that d(z, f(x)) < δ and an index i such that d(zi, f(x)) <
δi
2 . Hence

d(z, zi) ≤ d(z, f(x)) + d(f(x), zi) < δ +
δi

2
< δi ⇒ z ∈ f(Ω).
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Therefore, for large n, we have yn = f(xn) with xn /∈ B. Considering a subsequence if
necessary, passing to the limit we find y0 = f(x) with x /∈ B contradicting the injectivity
of f . �

Lemma 3.3. Let f : Ω ⊂ RN → Y be a discrete map such that f(Ω) is open. Let fn

be a sequence of continuous, injective normal maps such that fn → f uniformly. Then
f : Ω → Y is open.

Proof. Given an open set U ⊂ Ω, let y0 = f(x0) ∈ f(U). Consider B0 := B(x0, r) ⊂⊂ U
such that f(x) 6= f(x0) for every x ∈ B0. Let us prove that y0 is an interior point of f(B0).

If not, then y0 ∈ ∂f(B0). Therefore, we find a sequence yn → y0 with yn /∈ f(B0). Since
f(Ω) is open, as in the proof of the above Lemma 3.2, we get yn = f(xn) with xn /∈ B0.
By invertibility of fn it results zn := fn(xn) /∈ fn(B0). By uniform convergence we have
zn → y0. On the other hand, y′n := fn(x0) ∈ fn(B0) also converges to y0. Claim: we may
assume that zn ∈ ∂fn(B0).

Indeed, if not consider a point y′′n realizing

min
z∈fn(B0)

d(zn, z).

If such points y′′n are not interior points, by the continuity assumption on the balls of Y ,
we would find points of fn(B0) with lower distance from zn. Therefore we have y′′n ∈
∂fn(B0) ⊂ fn(∂B0). Since

d(y′′n, y0) ≤ d(y′′n, zn) + d(zn, y0) ≤ d(y′n, zn) + d(zn, y0) → 0,

we also have y′′n → y0.
Since y′′n = fn(x′n) with x′n ∈ ∂B0, passing to a subsequence if necessary, we find y0 =

f(x) with x ∈ ∂B0, contradicting the discreteness of f .
�

Lemma 3.4. Let f : X → Y be a map such that D−f(x) ≥ m > 0. Then f is a discrete
map.

Proof. Suppose by contradiction that f−1(y) contains an accumulation point x0. Therefore,
we get xn → x0, with xn ∈ f−1(y) and xn 6= x0. Since D−f(x0) ≥ m, there exists a radius
r > 0 such that dX(x, x0) ≤ 1

mdY (f(x), f(x0)) for every x ∈ B(x0, r). For sufficiently large
n, since f(xn) = f(x0) we obtain the contradiction xn = x0.

�

The volume estimate considered in Section 2 are devoted to get N(y, f, Ω) = 1 a.e. which
is then compared with the condition of open map for f . We get the following

Lemma 3.5. Let f : Ω → Y be an M -Lipschitz open map. If N(y, f, Ω) = 1 HN -a.e. then
f is invertible. Moreover, if the extension of f to Ω is injective on the boundary, then f is
globally invertible on Ω.

Proof. Let x1 6= x2 be two points in Ω such that f(x1) = f(x2). Consider two small disjoint
balls B1 := B(x1, r1), B2 := B(x2, r2). Since f is an open map, V := f(B1) ∩ f(B2) is
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an open non-empty set. Moreover, it results N(y, f, Ω) ≥ 2 for every y ∈ V , which is a
contradiction since HN is non-trivial.

Suppose by contradiction to have x1, x2 ∈ Ω such that f(x1) = f(x2) = y0. We may
assume x1 ∈ Ω, x2 ∈ ∂Ω. Let B1 be a small ball around x1. Since f is Lipschitz and
open we find a small radius r > 0 such that f(B(x2, r) ∩ Ω) ⊂ B(y0,Mr) ⊂ f(B1), with
B1 ∩ B(x2, r) = ∅. Again, it follows that V := f(B(x2, r) ∩ Ω) ⊂ f(B1) is a non-empty
open set such that N(y, f, Ω) ≥ 2 for every y ∈ V .

�

3.2. Sequences of invertible maps.

Definition 3.6. A surjective map f : X → Y is said to be a covering map if for every
y ∈ Y there exists a neighborhood Vy such that f−1(Vy) is a disjoint union of open sets
each of which is mapped by f on Vy homeomorphically.

For the basic properties of covering maps we refer for instance to [14]. We mention the
following

Lemma 3.7. Let f : X → Y be a covering map. We have the following
(1) For every open set V ⊂ Y , f : f−1(V ) → V is a covering map
(2) If Y is connected and locally connected, and C is a connected component of X, then

f : C → Y is a covering map.
(3) (Path lifting) Let γ : [0, 1] → Y be a continuous path in Y . Let x ∈ X such that

f(x) = γ(0). Then there exists a unique continuous path γ̃ : [0, 1] → X such that
γ̃(0) = x and f ◦ γ̃ = γ in [0, 1].

(4) If X is connected and Y is simply connected, then f is a global homeomorphism.

Lemma 3.8. Let X be a geodesic metric space satisfying the continuity condition on balls.
Let X be locally compact and locally pathwise connected. Let Y be locally pathwise connected
and locally simply connected. Let fn : X → Y be local homeomorphisms and f : X → Y
be an open and discrete map. If fn → f (locally) uniformly, then for every x0 ∈ X there
exists a neighborhood x0 ∈ U such that every fn is an homeomorphism over U .

Proof. Let x0 ∈ X be fixed. By uniform convergence, we may assume that fn → f in
B(x0, s) with B(x0, s) ⊂ X compact. Since f is discrete we may assume that f(x) 6= f(x0)
for every x ∈ B(x0, s). As in [25, Proposition 7], we look for a common neighborhood of
x0 in which the functions fn are all simultaneously invertible.

Setting y0 = f(x0), yn = fn(x0), let U1 be the connected component of x0 contained in
f−1(B(y0, r)).

Claim: It is possible to choose r sufficiently small so that U1 is a normal neighborhood
of x0 and f(U1) = B(y0, r).

Indeed, let 0 < r < r0 := min{d(y0, y) : y ∈ f(∂B(x0, s))}. Let us show that
U1 ⊂ B(x0, s).

For if, let x ∈ U1 \ B(x0, s). By continuity of balls we would find x′ ∈ ∂B(x0, s) ∩ U1

which would imply r0 ≤ d(y0, f(x′)) < r.
It remains to check that U1 is normal and f(U1) = B(y0, r).
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Let y = f(x) with x ∈ ∂U1. Since U1 is a connected component it results x /∈
f−1(B(y0, r)). Hence y /∈ B(y0, r). We get y ∈ f(U1) \ f(U1) = f(U1) \ f(U1) = ∂f(U1).
Therefore U1 is normal. Moreover, sincef(∂U1) ∩B(y0, r) = ∅ we have f(U1) = B(y0, r) ∩
f(U1). Then, f(U1) is closed and open in B(y0, r). Hence f(U1) = B(y0, r).

By uniform convergence, we may assume that dY (fn(x), f(x)) < r
3 for every x ∈

B(x0, s). Since dY (yn, y0) < r
3 , there exists a connected component Qn of x0 contained in

f−1
n (B(y0,

2r
3 )) ∩ U1. We claim that Qn ⊂ U1.

Indeed, if xj → x with xj ∈ Qn we have

dY (f(x), y0) ≤ dY (f(x), fn(x)) + dY (fn(x), fn(xj)) + dY (fn(xj), y0) <

dY (f(x), fn(x)) + dY (fn(x), fn(xj)) +
2
3
r.

Letting j → +∞ we get

dY (f(x), y0) ≤ dY (f(x), fn(x)) +
2
3
r < r.

Since U1 is a connected component it results x ∈ U1.
Setting B0 := B(y0,

2r
3 ), consider the local homeomorphisms fn : Qn → B0. Let us check

that fn is a proper map, i.e. f−1
n (K) is compact in Qn for every compact set K of B0.

Indeed, consider a sequence xh ∈ f−1
n (K). By compactness, by passing to subsequences,

we may assume that xh → x and fn(x) ∈ K ⊂ B0. If x /∈ Qn, since Qn ⊂ U1 it results
x ∈ ∂Qn ∩U1. Hence, there exists a small connected neighborhood x ∈ Ux ⊂ U1 such that
fn(Ux) ⊂ B0. Therefore, Ux ⊂ f−1

n (B0)∩U1 contradicting the fact that Qn is a connected
component.

Since we may assume that B0 is connected, it turns out that (see for instance [8, Th.
1]) fn is onto. Moreover, by [8, Lemma 3] fn is a covering map.

Moreover, since we may assume that B0 is simply connected, we find (see also [8, Th.
2]) that each fn maps homeomorphically Qn onto B0.

As in the previous part of the proof, we find a connected normal neighborhood x0 ∈
U2 ⊂ B(x0, s) such that f(U2) = B(y0,

r
3). For every x ∈ U := U1 ∩ U2 we have

dY (fn(x), y0) ≤ dY (fn(x), f(x)) + dY (f(x), y0) <
r

3
+

r

3
=

2r

3
.

Therefore, U ⊂ f−1
n (B0) ∩ U1 which implies that U ⊂ Qn. Therefore, the restriction of fn

to U is injective for every n ≥ 1. �

Lemma 3.9. Let fn : X → Y be a sequence of invertible maps such that fn → f uniformly.
We have the following

(i): if f−1
n are equi-Lipschitz, then f is invertible.

(ii): if f−1
n uniformly converge to a continuous map g, then f is invertible.

In the same assumptions of Lemma 3.8, if f−1
n are locally equi-Lipschitz, or f−1

n is locally
uniformly convergent, then f is locally invertible.
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Proof. Suppose by contradiction that f(x1) = f(x2) with x1 6= x2. Fixed ε > 0, by uniform
convergence and the equi-Lipschitz condition we get

dX(x1, x2) = dX(f−1
n (fn(x1)), f−1

n (fn(x2))) ≤ HdY (fn(x1), fn(x2)) ≤

H (dY (fn(x1), f(x1)) + dY (f(x1), f(x2)) + dY (f(x2), fn(x2))) ≤ 2Hε,

where H is a common Lipschitz constant for f−1
n . By the arbitrariness of ε we get the

contradiction x1 = x2.
If the sequence f−1

n is uniformly convergent, denote by gn := f−1
n . Hence gn → g

uniformly. We derive the contradiction

x1 = lim
n→+∞

gn(fn(x1)) = g(f(x1)) = g(f(x2)) = lim
n→+∞

gn(fn(x2)) = x2.

For the local statement, fixed x0 ∈ X, following the notation of the proof of Lemma 3.8,
by reducing the radius r if necessary, we may assume that conditions (i) or (ii) are satisfied
on B0. Then, we may use the same above arguments on the common neighborhood U .

�

In the sequel we will provide some more conditions under which the limit of invertible
maps is still an invertible map.

For N = 1 the quantity D−f(t) coincide a.e. with the metric derivative |f ′|(t) (see [5]).
Observe that the length of a Lipschitz curve coincides with the total variation (see [5, Th.
4.1.6]). Moreover, the total variation is a lower semicontinuous functional as the supremum
of a family of continuous functionals (see the proof of [5, Th. 4.3.2]).

By using the metric area formula and the l.s.c. of the total variation, using the same
reasonings of point (iii) of Section 2, we can state the following

Theorem 3.10. Let fn, f : I → (Y, d) be Lipschitz maps. Suppose that fn → f uniformly
and fn be invertible. If f is open then f is invertible.

Proof. Following the reasonings of point (iii) of Section 2, we get

2H1(V ) ≤
∫

V
N(y, f, I) dH1(y) =

∫
f−1(V )

|f ′|(t) dt ≤ lim inf
n→+∞

∫
f−1(V )

|f ′n|(t) dt

= lim inf
n→+∞

H1(fn(f−1(V ))) ≤ H1(V ).

�

The above computation is related to the lower semicontinuity of the Mass of metric
currents. Actually, every Lipschitz map f : Ω → Y induces in a canonical way a 1-
dimensional metric current (see [2]). See also [18] for an explicit computation. For N = 1
the mass is given just by

∫
I |f

′|(t) dt.
In higher dimensions the question is more complicated since in the computation of the

mass a volume factor λ appears.
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Precisely, given a norm ‖ · ‖ on RN , the volume factor λ‖·‖ (see [2]) is defined as

λ‖·‖ =
2N

ωN
sup

{
LN (B‖·‖

1 )
LN (P )

: B
‖·‖
1 ⊂ P, P parallelepiped

}
,

where as usual ωN denotes the volume of the unit sphere in RN . It is possible to show

(5) N− 1
N ≤ λ‖·‖ ≤

2N

ωN
.

Introducing the metric differential (see [24])

mdf (x)(v) = lim
t→0

d(f(x + tv), f(x))
t

which is defined a.e. and it results a seminorm on RN for a.e. x ∈ Ω, the total mass
correspondent to the (invertible) Lipschitz map f (see [3]) is given by

(6)
∫

Ω
λmdf (x)J(mdf (x)) dx,

where, for a seminorm s on RN , J(s) = ωN

HN ({x : s(x)≤1}) = ωN

HN (Bs
1)

is the metric Jacobian.
The metric Jacobian is also related to the metric area formula ([2, 23, 28, 24]) and for a.e.
x ∈ Ω it can be also expressed by the volume derivative

(7) J(mdf (x)) = lim
r→0

HN (f(B(x, r)))
ωNrN

.

Another way to introduce the metric Jacobian is by considering the so called pullback
measure (see [28]). Anyway, for Lipschitz maps all these notions coincide a.e.

3.3. Lower semicontinuity of metric Jacobians. Given A,B ⊂ Y we define the Haus-
dorff distance

dH(A,B) = inf
ε>0

{A ⊂ Bε, B ⊂ Aε} .

We say that An
H→ iff dH(An, A) → 0. Observe that dH is actually a semi-distance, while

it is a distance on closed sets. We have the following semicontinuity properties

Lemma 3.11. We have the following

(Upper semicontinuity): If An
H→ A, with A bounded, then

(8) lim sup
n→+∞

HN (An) ≤ HN (A).

(Lower semicontinuity): Let K ⊂ Y be closed and bounded. If K \ An
H→ K \ A,

then

(9) HN (K∩
◦
A) ≤ lim inf

n→+∞
HN (K ∩An).
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Proof. Let ε > 0. For large n we have An ⊂ Aε. Hence it results lim supn→+∞HN (An) ≤
HN (Aε). Since HN is non-trivial, by continuity properties of the Hausdorff measure we
have

lim
ε→0

HN (Aε) = HN

(⋂
ε>0

Aε

)
≤ HN (A).

By (8) we have

lim sup
n→+∞

HN (K \An) ≤ HN (K \A) ≤ HN (K\
◦
A).

By additivity of HN , (9) follows. �

Lemma 3.12. Let Ω ⊂ RN be bounded and let fn, f : Ω → Y be normal Lipschitz maps
such that fn → f (locally) uniformly. Moreover, suppose that f is discrete. Then, for every
open set U ⊂ Ω it results

(10) HN (f(U)) ≤ lim inf
n→+∞

HN (fn(U)).

Proof. Observe that by Lemma 3.1 f is open. Fixed ε > 0, we prove that for large n it
results

f(Ω) \ fn(U) ⊂
(
f(Ω) \ f(U)

)ε
.

If not, we find a sequence yn ∈ f(Ω)\fn(U) such that d(yn, z) ≥ ε for every z ∈ f(Ω)\f(U).
Passing to a subsequence, we may suppose yn → y ∈ f(Ω). It results y ∈ f(U). Let
y = f(x0) and let B0 ⊂⊂ U be a neighborhood of x0 such that f(x) 6= f(x0) for every
x ∈ B̄0. Consider a point zn realizing

min
z∈fn(B0)

d(yn, z).

By the continuity property of balls of Y , we find zn ∈ ∂fn(B0) such that zn → y. Since fn

is normal, we get zn = fn(xn), with xn ∈ ∂B0. By uniform convergence and by passing to
a subsequence if necessary, we get y = f(x) with x ∈ ∂B0, contradicting the discreteness
of f .

By (9) we get

HN (f(U)) = HN (f(Ω) ∩ f(U)) ≤ lim inf
n→+∞

HN
(
fn(U) ∩ f(Ω)

)
≤ lim inf

n→+∞
HN (fn(U)).

�

Remark 3.13. Actually, in the proof of the above Lemma it suffices that f is normal and
∂fn(B) → ∂f(B).

Lemma 3.14. Let fn, f : Ω → Y be normal Lipschitz maps such that fn → f (locally)
uniformly. Moreover, suppose that f is locally invertible. Then∫

Ω
Jf(x) dx ≤ lim inf

n→+∞

∫
Ω

Jfn(x) dx,

where we denote by Jf(x) := J(mdf(x)) the metric Jacobian of f .
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Proof. Since Ω can be covered by disjoint balls, we may assume with no loss of generality
that Ω is bounded. Since f is locally invertible, by a Vitali covering argument, Ω is a
disjoint union of balls Bi on which f is invertible. By using the metric area formula,
Lemma 3.12 and Fatou’s Lemma we evaluate∫

Ω
Jf(x) dx =

∑
i

∫
Bi

Jf(x) dx =
∑

i

HN (f(Bi)) ≤
∑

i

lim inf
n→+∞

HN (fn(Bi)) ≤

≤ lim inf
n→+∞

∑
i

HN (fn(Bi)) ≤ lim inf
n→+∞

∑
i

∫
Bi

Jfn(x) dx = lim inf
n→+∞

∫
Ω

Jfn(x) dx.

�

Observe that the Jacobian integral is always u.s.c. (for sequences of invertible maps) on
closed (or on sets with boundaries of null measure) sets. Indeed, for such a set C, by the
Area Formula and (8) we have

lim sup
n→+∞

∫
C

Jfn(x) dx = lim sup
n→+∞

HN (fn(C)) ≤

HN (f(C)) ≤ HN (f(C)) = HN (f(C)) ≤
∫

C
Jf(x) dx.

In the case Y = RN , the easiest way to obtain l.s.c. of Jacobians is maybe for equi-Lipschitz
sequences. In such case, one can use the weak continuity of Jacobians, see for instance [4].
Also in the metric target case, this is true with no invertibility assumptions on f .

Theorem 3.15. Let fn, f : Ω → Y be normal Lipschitz maps such that fn → f (locally)
uniformly. Moreover, suppose that Lip(fn) ≤ M (or more generally such that the Jacobians
are equi-integrable) and f is discrete. Then∫

Ω
Jf(x) dx ≤ lim inf

n→+∞

∫
Ω

Jfn(x) dx.

Proof. Since f is Lipschitz, following the arguments of [24] let Dr be the Borel set on which
the metric Jacobian exists and it is a norm. It results, up to a null measure set, Jf(x) = 0
for x /∈ Dr. By the results of [24], we find a decomposition of Dr on disjoint compact
sets Ei ⊂ Ω on which f is invertible. Fixed ε > 0, we also find open sets Ui such that
Ei ⊂ Ui ⊂ Ω and LN (Ui \ Ei) < ε

2i . We now check the l.s.c. of Jacobians.∫
Ω

Jf(x) dx =
∫
Dr

Jf(x) dx =
∑

i

∫
Ei

Jf(x) dx =
∑

i

HN (f(Ei)) ≤
∑

i

HN (f(Ui)) ≤

∑
i

lim inf
n→+∞

HN (fn(Ui)) ≤ lim inf
n→+∞

∑
i

HN (fn(Ui)) ≤ lim inf
n→+∞

∑
i

∫
Ui

Jfn(x) dx ≤

lim inf
n→+∞

∫
Ω

Jfn(x) dx + MNε.

Letting ε → 0 the thesis follows. �
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In the case Y = RN and if f ∈ C1 no assumptions on f are actually needed. In fact, in
such case we may write Ω = U ∪ Bf where Bf is the branch set of f , namely the set of
points where f is not locally invertible. By Local Inversion Theorem we have Bf ⊂ Zf ,
where Zf := {x ∈ Ω : f differentiable at x, Jf(x) = 0}. Moreover, since f is locally
invertible on the open set U , we show that fn : U → RN are open maps for large n.

Indeed, for every x ∈ U , concerning the topological index (see for instance [13, 30] for
the basic properties) it results i(x, f) = ±1. Fix a ball B on which f is invertible. For
x ∈ B, by uniform convergence, for large n we have

deg(fn(x), fn, B) = deg(f(x), fn, B) = deg(f(x), f, B) = i(x, f) = ±1.

Let y = fn(x) ∈ fn(V ) for an open set V ⊂ U . For y′ ∈ B(y, rn) in a small ball we get

deg(y′, fn, B) = deg(y, fn, B) = ±1.

Therefore, there exists x′ ∈ B such that y′ = fn(x′). Hence y′ ∈ B(y, rn) ⊂ fn(B) ⊂ fn(V ).
Hence, Lemma 3.14 applies.
This is also the case of everywhere differentiable maps (see [29]). The same argument

also holds for Sobolev maps under topological conditions. Actually, if f is open and dis-
crete, or discrete and sense-preserving, then Bf ⊂ Zf ∪ Sf , where Sf := {x ∈ Ω :
f is not differentiable at x} (see [32]). Analogous results in a metric setting could also
related to structure properties of the branch set Bf .

As consequence of the previous results we get the following stability result.

Theorem 3.16. Let fn, f : Ω → Y (resp. Y be locally pathwise connected and simply
connected) be Lipschitz maps such that (resp. locally equi-Lipschitz) Lip(fn) ≤ M (or
more generally such that the Jacobians are equi-integrable) and fn → f (locally) uniformly.
Moreover, suppose that fn are invertible (resp. local homeomorphisms), f(Ω) is open (resp.
f is open) and f is discrete. Then f is invertible (resp. locally).

Proof. By Lemma 3.3 f is an open map. Suppose with no loss of generality that Ω is
bounded. By using Theorem 3.15 it is sufficient to argue as in Section 2. Actually, suppose
that f(x1) = f(x2) with x1 6= x2. We find small disjoint balls x1 ∈ B1, x2 ∈ B2 such that
V = f(B1) ∩ f(B2) is a non-empty open set. We compute

2HN (V ) ≤
∫

V
N(y, f, Ω) dHN (y) =

∫
f−1(V )

Jf(x) dx ≤

lim inf
n→+∞

∫
f−1(V )

Jfn(x) dx = lim inf
n→+∞

HN (fn(f−1(V ))) ≤ HN (f(f−1(V ))) ≤ HN (V ),

by (8) and since HN (∂V ) = 0.
For the local statement it is sufficient to apply Lemma 3.8. �

Remark 3.17. It is sufficient to consider fn injective and normal, or such that fn(Ω) is
an open set. Of course, in the case Y ⊂ Rn, all these conditions are redundant by the
Invariance Domain Theorem.

Theorem 3.16 can be compared with the results of [31, 25, 26]. A main point here is
that we are not using degree theory.
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4. Small contraction maps

Maps satisfying

(11) 0 < m < D−f(x) ≤ D+f(x) < M < +∞
were introduced by John (see for instance [22]). We may obtain some results related to
quasi-isometries by using some of the above arguments. Let us mention some preliminary
basic facts (see [12, 7, 22]).

Definition 4.1. A metric space E is said to be C-convex if for every a, b ∈ E there exists
a rectifiable curve γ joining a, b such that length(γ) ≤ Cd(a, b).

It turns out that C-convex spaces are bi-Lipschitz homeomorphic to a length metric
space.

Lemma 4.2 (Lemma 2.3 of [12]). Let M > 0, A ⊂ X be a C-convex set and let f : A → Y
be a function such that D+f(x) ≤ M ∀x ∈ A. Then f is CM -Lipschitz.

Proposition 4.3. Let fn be homeomorphisms such that D−fn ≥ m > 0. If Y is C-convex
and fn → f uniformly, then f is invertible.

Proof. By Remark 2.5 and Lemma 3.3 of [19] it follows D+f−1(f(x)) = 1
D−f(x)

. By
Lemma 4.2 it follows that the sequence f−1

n is equi-Lipschitz. By using the second part (ii)
of Lemma 3.9 the thesis follows. �

Remark 4.4. By using Lemma 3.8 it is possible to state a correspondent local statement.

Remark 4.5. For a.e. x ∈ Ω it results D−f(x) ≥ m ⇒ Jf(x) ≥ mN . Indeed, by the
inequality

D−f(x)|v| ≤ mdff (x)(v) ≤ D+f(x)|v|
it follows that Jf ≥ mN .

In order to get inversion results, we consider the following variant of Ciarlet-Necas
condition

(12) for open set U ⊂ X : mNLN (U) ≤ HN (f(U)).

By using the area formula, condition (12) is trivially satisfied by invertible maps such that
Jf ≥ mN .

Theorem 4.6. Let f : Ω → Y be a M -Lipschitz open map satisfying (12). If M
m < N

√
2,

then f is invertible.

Proof. Following the reasonings of Section 2, by the Metric Area Formula and (12) we
obtain the contradiction

(13) 2(HN (V )) ≤
∫

f−1(V )
Jf(x) dx ≤ MNLN (f−1(V )) ≤

(
M

m

)N

HN (V ) < 2HN (V ).

�
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This inversion results can be compared with the results of [22, 15, 16, 17]. Actually, by
(12) we compute

HN (f(B(x, r)))
ωNrN

≥ mN .

Passing to the limit we obtain Jf(x) ≥ mN .
Observe that our metric approach allow to consider a general open set Ω ⊂ RN , while

the results of [22, 15, 16, 17] are restricted to particular geometries of the domain of
f . In particular, maps satisfying Jf ≥ mN are considered in [17] in the case of local
homeomorphisms f : B → RN , defined on a ball B ⊂ RN . Therefore, the restriction to
balls or to locally invertible maps could be not strictly necessary. Another advantage of
the volume condition (12) is the stability with respect to uniform convergence.

Theorem 4.7. Let fn : Ω → Y be M -Lipschitz maps satisfying (12). Suppose that fn → f
uniformly. If f is open and M

m < N
√

2, then f is invertible.

Proof. Following the computation in (13) we get

2(HN (V )) ≤
∫

f−1(V )
Jf(x) dx ≤ MNLN (f−1(V )).

Since mNLN (f−1(V )) ≤ HN (fn(f−1(V ))), recalling (8), passing to the limit we obtain the
contradiction

2(HN (V )) ≤ MNLN (f−1(V )) ≤
(

M

m

)N

HN (f(f−1(V ))) < 2HN (V ),

since HN (∂V ) = 0. �
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