A HARNACK’S INEQUALITY FOR MIXED TYPE EVOLUTION
EQUATIONS

FABIO PARONETTO

ABSTRACT. We define a homogeneous parabolic De Giorgi classes of order 2 which suits a mixed
type class of evolution equations whose simplest example is u(m)% — Au = 0 where p can be
positive, null and negative. For functions belonging to this class we prove local boundedness
and show a Harnack inequality which, as by-products, gives Holder-continuity, in particular in
the interface I where p change sign, and a maximum principle.
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1. INTRODUCTION

The purpose of this paper is to study problems related to equations of mixed type whose
simplest example may be
(1) u(x)fg; —Au=0 in Qx (0,7)
where p is a function changing sign and possibly taking also the value zero in some region of
positive measure, 2 an open subset of R™ and 7" > 0. This means that the equation can be
forward parabolic in a subregion Q4 x (0,7, backward parabolic in another subregion _ x
(0,T) and also a family of elliptic equations depending on the parameter ¢ in a third subregion
Qo x (0,T) of @ x (0,T). For the existence of solutions to such equations we refer to [19] and
the forthcoming paper [18]. In these papers coefficient p is considered depending also on time,
but here we confine to i depending only on the spatial variable.
Precisely we give a Harnack type inequality (see Theorem 7.1 and Theorem 7.2) for a wide
class of functions belonging to a proper De Giorgi class. By this result, on one side we give a
generalized Harnack inequality which includes the classical ones for elliptic equations and for
parabolic equations, on the other we study regularity and maximum principles of solutions of
equations like (1); in particular we get some local Holder continuity on the interfaces where p
change sign (see the examples at the end of the paper).

Just to avoid to confine to consider equations with p : @ — {—1,0,1} and, on the contrary,
to consider also, for instance, 1 continuous, one is forced to consider weighted spaces. For this
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reason we consider a more general De Giorgi class suitably defined to contain quasi-minima (see
Section 4) for the equation

(2) ,u% —div(ADu) =0 in Q x (0,7)

with p and A functions in LIIOC(Q), A > 0 while p is valued in R. Indeed the De Giorgi class we
consider contains also solutions of more general equations, like

(3) u(m)% —div A(x, t,u, Du) = B(x,t,u, Du)

with
(A(z,t,u, Du), Du) > A(z)|Dul?,
(4) |A(z, t,u, Du)| < A(z)|Dul,
|B(x,t,u, Du)| < A(x)|Du| .

To give our main result we follow [5] and [10], but we want to stress that the De Giorgi class we
consider is different from the one considered in those papers, also when p = 1 and that not only
because of the more complicate nature of the equations we consider (the reason lies in Lemma
4.6).

Since our class contains parabolic quasi-minima we want recall that quasi-minima or quasi-
minimizers (briefly @-minima) were introduced by Giaquinta and Giusti in [12], where they
prove local Holder continuity extending the result due to De Giorgi for the solution of elliptic
equations, while Harnack inequality for quasi-minima was proved by DiBenedetto and Trudinger
in [6]. In the parabolic setting the definition of quasi-minima is due to Wieser (see [25]), who
proves Holder continuity for a suitable parabolic De Giorgi class.

Going back to degenerate elliptic and parabolic equations, where by “degenerate” we mean
where some weights are involved like in (2), we precise that we consider p and A such that

A ifu=0

a class of weights we introduce in Section 2. Precisely |u|y € Asx and A € As. Moreover we
assume a condition relating |u|y and A, assumption (H.2), which is the existence of two constants
g > 2 and K > 0 such that (x € R", p>r > 0)

5) (|Br<x>|>”” <|M|A<Br<w>>>”q <A<Br<x>>>‘” K.

| By ()] |1IA (B () A(By()) h
We stress that we are forced to introduce the weight |u|y extending |u| because the weight |u|
could be zero in some region with positive measure and in that case the measure associated to
1|, even if non-negative, would not be doubling. We recall that w € L. (Q), w : Q — [0, +oc],
satisfies a doubling condition if there is a positive constant ¢ such that

w(Bzr(x0)) < cw(Br(20))

for every zo € Q and r > 0 such that By, (z9) C © (and where w(A) denotes [, w(z)dz). As-
sumption we need for the weights ||y and A are summarized in (H.1), (H.2), (H.3), (H.4) in
Section 4. In particular (H.4) gives also a condition about the geometry of the interface sepa-
rating the regions Q, = {u > 0},Q = {p = 0},Q2_ = {u < 0}, condition which turns out to
be sufficient to get the Harnack inequality. We do not know if this is sharp and are not able to

||y == { il i #0, and A are Muckenhoupt weights,
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give a counterexample to this condition.

Harnack’s inequality for parabolic equations was first proved separately by Hadamard and Pini
in 1954 just for the heat equations, then Moser, Aronson, Serrin, Trudinger gave some general-
izations of this result. But among the many papers studying Harnack’s inequality and regularity
of partial differential equations, both parabolic and elliptic, we confine to mention some papers
regarding degenerate cases similar to the one we are considering, referring also to the references
contained in them for the more classical results.

First we recall [7] where for the first time, at least for our knowledge, a Muckenhoupt condition
on A, and precisely A € Ag, was consider to study regularity of the solutions of equations like

div(ADu) =0
or more generally div(a - Du) = 0 where a satisfies

A@)|EP < (a(z) - €,€) < LA(@)[¢)?

In this regard we also recall [23] and [24], where some sommability conditions, and not some
local conditions, on the weight were requested.

As regards the parabolic case, we recall that equations like (2) are considered in [2], where p = 1
is considered, and in [4], where u = X is considered. In both these papers a condition Az on
the weight A is considered, when pu = 1 to show that L° bounds and Harnack inequality are
impossible, in the second paper where u = A to show L* bounds and a Harnack inequality. To
get the Harnack inequality with ;4 = 1 a stronger request has to be made, i.e. A has to belong
to Ay 4o/, which is a proper subclass of Az (see [3]).

A more recent paper we mention about linear elliptic equation with principal part in divergence
form [17], where the matrix a defining the principal part satisfies

(6) M(@)€f < (a(@,t) - €,€) < Xa(@)[€f,

but satisfying (5) with A; in the place of A and A9 in the place of |u|y; this implies the Sobolev-
Poincaré inequality

o [ e < o[ [ IDu@Pa @]

— u(z)| 9 (x)dx <Cpl— u(z)|“ A (x)dx

v(By) B, w(By) B,

for every Lipschith function with either support contained in B, or with null mean value. About
parabolic equations with some p in front of 9, we also mention [16], where an equation with
v = X is considered, [8], where the author considers p dyu — div(a(z,t)Du) = 0 with a satisfying
(6), and [14] where A1 and A2 are depending also on time. Finally we quote the recent paper
[22], where the technique used is the one developed by DiBenedetto, Gianazza and Vespri in
[5] and [10] and the result is analogous to that in [3], but it concerns monotone operators with
(p — 1)-growth and the condition about A is Alip/n-

Coming back to our result, we want to stress that our condition (H.2) on the pair (|u|x, A) simply
reduces to require A € Ay when p = A, while is sharp to get, among the Muckenhoupt weights,
A€ Ao/ when p=1 (for this see Remark 2.7, point D, and Remark 2.8), so our result cover
the result obtained in [4] and [3].

Before concluding the introduction we want to stress some difficulties and some interesting thing
regarding the main results (Theorem 7.1 and Theorem 7.2). A first comment is the following:
given a ball B,(z,) C Q and once defined B} (z,) := B,(2,) N {1 > 0}, B, (,) := B,(2,)N{p <
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0}, Bg (x0) := By(x,) N {p = 0}, we (in particular) show there is a positive constant c such that
for every u in a proper class

u (l‘y to + ¥ p2 7“4)\(3;7(330))) ifze B;_ (.Io)

A(Bp(o))
<ec i 122 (Bp(20)) : -
u(xo,to) < CBil(lﬂfo) u (x,to — 9 p? %) if v € B, (7o)
u(zx,t,) ite e Bg(mo).

Notice that the temporal interval where p # 0 is proportional to

2 |1 (By (o))
)\(Bp(%))

where (4 and p— the positive and negative parts of )

1IA(Bp (o)) = ps (B (20)) + 1 (B, (x0)) + N(B)(20)) ;

what we want to stress is then that the natural temporal delay, for instance where pu > 0,
depends also on the measure of the regions where u < 0 and p = 0.
This causes a difficulty in proving our result, in particular Theorem 7.1, because the natural

cylinders are alike
|lx(By ()
B,(x) x <t,t+p2
g A(Bp())

and so (in general) it not true that

2 |uA(Br(z))
A(Br(x))

1A (Br(z))
A(Bg(z))
Other natural difficulties are due to the equation, which can change its nature around an inter-

face, and so every result used by DiBenedetto, Gianazza and Vespri is to be suitably modified
and adapted.

Br(m)x<t,t+r >CBR(JU)><<t,t+R2 ), with 0<r<R.

The paper is organized as follows: in Section 2 we introduce the class of Muchenhoupt weights
and prove some results needed in the following; in particular a simple, but fundamental, ex-
tension of a classical lemma will be needed (see Lemma 2.19). Section 3 is devoted to a brief
comment about mixed type equations, needed to explain a requirement we make in the De Giorgi
class. In Section 4 we introduce a degenerate mixed type evolution equation, the Q-minima for
that equation, assumptions about weights involved in that equation and the De Giorgi class
suited to that equations which, as already mentioned, turns out to be different from the one
introduced in [10] or in [25] also when p = 1; we also show that Q-minima (and then a large
class of solutions) are contained in the De Giorgi class we define. In the following three sections
we prove local boundedness, the fundamental step so-called expansion of positivity (see Section
6) and a Harnack type inequality stated in Theorem 7.1 and Theorem 7.2. Finally, we give
some natural consequences of the inequality we obtain and, due to the particular nature of the
equation, some examples in the hope to help comprehension.

ACKNOWLEDGMENTS - The author is pleased to thank R. Serapioni and V. Recupero for some
nice and interesting discussions on the subject.
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2. PRELIMINARIES ON WEIGHTS

In this section we remind and introduce some definitions and results about A, weights needed
in the following. For most of the results we refer to [9].
By B,(x9) we will denote the open ball {x € R" ||z — 20| < p}, and sometimes we will simply
write B, or B if it is not there is no need to specify further. With the word weight we will mean
a function 7 such that
n weight if: 1 >0a.e. in R" and 7 L (R").

Given a weight 7 and a function u € LP(2,n) with Q open set of R™ we will write

wB) = [ nde. A jurdeie o [ upgas.

Definition 2.1. Let p > 1, K > 0 be constants, w a weight. We say that w belongs to the class
Ap(K) if

1/p (p=1)/p
(7) (][ wdx) <][ wl/(pl)dx> < K for every ball B C R"
B B

We say that w belongs to the class Aso(K,<) if
w(S) ST
(8) — <K <
w(B) | Bl
We denote by Ap = U1 Ap(K). It turns out (see, e.g., [9]) that A = U,~; Ap
Given a positive weight 1, a class Ap(K;n) and all the previous classes may be defined in a

analogous way simply replacing the measure dxr with ndx.
More generally a pair (v,w) of weights belong to A (Bo, K), o € [0,n), Bo ball (possibly R™) if

1/q (r=1)/p
9) |B|*/™ <][ l/dx> <][ w_l/(p_l)dx) < K for every ball B C By.
B B

We simply write Aﬁq(K) if Bp = R". For a = 0 we get the classical Muckenhoupt class of pairs
(for more details we refer to [9]); for a =0, ¢ =p, v =w, By = R"™ we get the class Ap.

We remind some properties of A, weights (the same properties hold for A,(n) weights), for which
we refer to [9]. A, weights verify the doubling property which is the following: for a fixed ¢ > 1
there exists a constant ¢y > 1 which we denote by c4(w), such that

(10) /thdx < cd(w)/dex

for every ball B of R", where by tB we mean the ball concentric to B and whose radius is ¢
times the lenght of the side of B. If w € A,(K) one has that for every ¢ > 0 the constant cq
depends (only) on ¢, n,p, K.

Moreover w € A,(K) satisfies the following reverse Hélder’s inequality: thereis § = é(n,p, K) >
0 and a constant ¢, = ¢,;p(p, K) > 1 such that

1/(1+9)
<][ w1+5dx) < e (][ w dx> ,
(11) B 1/(146) b
<][ w_1’11(1+6)da:) < e <][ w_Plldx>,
B B
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for every ball B. A consequence of the definition of A, weights and of (11) are the two following
inequalities. If w € A,(K) then, called ¢ the quantity ¢/(1 + 0), one has
1ST\” w(sS) w(sS) ST
(12) ( SK——,  —=<cm| g
| B| w(B) w(B) | Bl
for every measurable S C B, for every B ball of R".
REMARK 2.2. - Another interesting property of A, weights is the following.
If w € Ap(K) then there is p’ < p, p’ = p/'(n,p, K), and K’ = K'(n,p, K) such that w € A,/ (K’).
To prove this fact take w € A,(K), 0, ¢y, considered in (11), choose p in such a way that
1 1
T
po1 poit o
(precisely p = (p +0)(1+ §)~! < p) and using (11) we get

p'—1 =
][wdx <][ w_fl’l—ld:x> < ][wdx <][ w_Pil(Hé)dx) <
B B B B
1 L Pt 1
<y ][wdx <][w_17—1d$> < KP.
B B
for every p' € [p, pl.

REMARK 2.3. - Suppose to have v,w € Ay, i.e. there are si,s9, K1, Ko > 1 such that w €
As, (K1) and v € Ag, (K2).
Then the weight w/v € Ax(v), i.e. there is r > 1 such that w/v € A,(¢;v) or

—1/(r—1 r—1
/wdm /<w> o )Vdac
(13) B B \V
/Vda: /de
B B

Indeed multiplying and dividing by |B|" we get that the above inequality is equivalent to

1 YD) <o) / '
< .
Bl /dex</Bw v dzx \C|B|T Bl/d:L‘

Now by Hélder’s inequality, if a=* + b1 =1, a,b > 1, we get that

r—1
1 /wdl’ </ wl/(rl)yr/(rl)dx) <
|B|" Jg B
(r—1)/a (r—1)/b
< ][wdx <][ w“/("l)da:) <][ V’"b/("l)da:) .
B B B

Since a and r are arbitrary we can choose 1 + (r —1)/a = s1, so that w € A4 (,_1)/,(K) and

consequently
(r—-1)/a
][wdx <][w_a/(r_1)daz) < Kj.
B B

Moreover if v € A by the higher summability property of Ay, weights, there is § = §(s2,n, Ka) >
0 such that (11) holds. Notice that it is possible to choose a,b,r > 1 in such a way
1 1 r—1 rb

- 7:17 = _]-,
a+b a 51 r—1

]
|
=

<c¢  for every B ball in R™.

=1+9.
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With these choices there is ¢; = ¢1(s2,n, K3) such that

(r—1)/b r
<][ I/’b/(r_l)dx) < <][ Vdm) .
B B

Then (13) holds with ¢ = Kjc1, ¢ = ¢(s2,n, K1, K2), r = r(s1, s2,n, K1, K3).

We recall now some classical results about weighted inequalities. The following one in partic-
ular can be found in [1] and is the weighted version of the standard Sobolev-Poincaré inequality.
Given two weights v,w in R™ and p, g with 1 < p < ¢ the following condition:

there is a constant K > 0 such that
(B, (@) \*" (1B, @)\ (w(Br(@) "
(14) — — — <K
| B, ()] v(By(7)) w(By(7))
for every pair of concentric balls B, and B, with 0 <r < p,

with a = 1 is essentially necessary and sufficient to have the Sobolev-Poincaré inequality. Below
we confine to state only the result we need. For more details we refer to [1].

Definition 2.4. For a pair of weights v,w and a € [0,n) we will write (this is not a standard
notation)

(v,w) € By, (K)
if it satisfies (14) for every pair of balls B.(Z), B,(z) with r < p and T € R".

Theorem 2.5. Consider p,q such that 1 <p <gq, p >0, xg € R", two weights v,w in R™ such
that w € A, (K1), (r,w) € BI;q(KQ) and v satisfies (10). Then there is a constant 1 depending
(only) on n,p,q, K1, Ka,cq(v) (the doubling constants of the weight v) such that

(15) [V(}Bp) /B \u(as)\%(x)dm}”qmp[w(;p) /B |Du()Peo()de

for every w Lipschitz continuous function defined in B, = B,(xo), with either support contained
in B,(xo) or with null mean value.

}Up

REMARK 2.6. - Notice that the previous theorem holds also for every ¢’ € [1,¢| in the place of
g with the same constant 7;. Indeed condition (14) holds with the same constant K for every
q €[1,q].

Moreover, using (12), one gets that in particular Theorem 2.5 holds when v = w € A, with
g=np/(n—1) > p (and in fact also with some greater value thanks to Remark 2.2).

REMARK 2.7. - Here we want to stress some important facts we will need later.

a - If (v,w) € A;,q(K, By) with 1 <p < q, v € Ay, then there are a € (0,1), G € (p,q), K>K
such that (v,w) € Ag"q(f(, By).

By (12), since v € Ay, we get the existence of ¢ > 0 such that for every § > 0

<VV((§;))>5 < (em))’ (‘\gg‘y(s.

Now we choose § and consequently define ¢ in such a way that

1 1 1
- +0< - and = —4+94.
q D q

SN
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Now we can fix a € (0,1) and we do that in such a way that ¢0 = (1 — «)/n. Then we have for

r<R
w(B (%)) \ /? .
“(Smw) > (o

> 1 <\Br<f>r )“/" V(B (%)) )”q

~ (em(v)? \|BR(@)] v(BRr(T)) '

B - If (v,w) € A1 (K2, Bo) with 1 < p < q, v € As, w € Ay(K1), then there are p' € (1,p),
q € (pq), K} > K2 such that (v,w) € A}, (K3, Bo).

Consider the values of a, ¢/, K/ (K" > Kg) of point 4: then we know that (v,w) € A7 (K, By).

If we consider p’ in such a way that
/

p—0p 1 -«
v
we get, using the assumptions, the fact w € A,(K;

and (12), for r < R

)
w () > Cae) (R CE)

Hl

y

() ()7 (B )

N

.-
_ (1> v ( |Br(2)|
Ky |Br(Z)|
P7P’
Taking Ky = K'K,"” (which depends on K1, Ks, ¢n(v), p, g, n) we conclude.
Actually one can require simply w € Ay and get not only (v,w) € All), o (K3, Bo), but in fact

(v,w) € AY (Kb, Bo) with p’ € (1,p), ¢’ € (p,q), &/ € (a,1).

C-If (vyw) € Aiq(K, By) with g > 2 the function f(z,r) = 7“20‘5%];:(( )) satisfies the following
inequality: by point 4 and Remark 2.6 we get that there are o € (0,1) and K = K (K, (V)
such that

f(z,r) <K*f(z,R)
for every & € By and r, R satisfying 0 < r < R.
Indeed by assumptions we derive

Taking the power 2 we immediately get the thesis.

D - Consider v =1. Then there are ¢ > p and K depending on n,p, K such that
Atpp/n(K)  forn > Ll , R
Py = (Lw) € By ,(K).
Ay(K) forn < —— 1 ’
p—
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First of all notice that for every n we have indeed w € Ay, /,(K). In particular, by Remark
2.2, there is K’ and ¢ such that w € Ay, -(K'). Using the first one in (12) with S = B,(x)
and B = B,(z) (x € Q and p > r > 0) we get

1+2—¢
<’BT’> < K/W(BT).
|Bp| W(Bp)

What we want to prove, since v = 1, is

() ()"

Taking the power p we get the thesis with K = (K")P and choosing some ¢ € (Z% %)

REMARK 2.8. - In this remark we want to stress that the request w € Ay, is optimal among
the Muckenhoupt class to get that (1,w) € B(}’p for some ¢ > p.

Indeed consider w(z) = |z|® which is A, if and only if —n < 8 < (r — 1)n. If we consider
r > 1+ p/n then it is possible to choose § > p and in this case to get (1,w) € Bip for some
q > p we should consider p < 5 < p+ (p/q — 1)n, but this is clearly impossible.

We state now a slight generalization of a result about Muckenhoupt type weights, (see [15] and
[14]).

Theorem 2.9. Consider B, = B,(xo) a ball of R™ whose radius’s lenght is p, w € Ax(K1),
(v,w) € By ,(K3) for some q > 2, v € As, A C By(x0). Then there is 01 € (1,q) (see also the
remark below) such that for every Lipschitz continuous function u defined in B,(xo), with either
support contained in B,(xg) or with null mean value and for every k € (1, 01]

1 / 2 2 2 1 / 2 rele 1 / 2
ul“fvdr <A1 p ul“vdz — Dul|“wdzx
o(B,) )4 G ) (g, 1)

where the inequality holds both with v = v and v = w (and in fact with every weight for which
Theorem 2.5 holds).

REMARK 2.10. - The assumption v € A, means that there is s > 1, K3 > 1 such that v €
As(K3). Following the proof of Theorem 2.9 (and thanks to Remark 2.3) one can see that the
constant x depends (only) on n,q, s, K, Ks.

Proof - Consider £ > 1 (to be chosen) and consider hg, > 1 in such a way that
1
ho

Writing [u|?%v as [u[25=D k=1 2y /hoyl=1/hoy 1=k e get

1 1
r—1 o 0
/ |u’2F”U dr < (/ UQI/dJC> (/ ‘u|2hovd$> </ U(l—l/ho)ry(l—n)rdx> .
A A By B,

Now we chose hy = ¢/2 in such a way Theorem 2.5 holds both with v = v and v = w on the left
hand side of the inequality. For such a hg we get (we have not chosen k and r yet)

1
Ern
][ Jul?"0 v dx <mp ][ | Dul?w dx
B, B,

1
(li*l)ﬁL +;:1

1/2



10 FABIO PARONETTO

Now consider v = w. The previous inequality becomes

1

2h "o 2 2 1
/ [ul™ v dx SNe 1L /
By (wW(Bp)) Mo \/B

Since (1 — hy')r =r(k — 1) + 1 we may write

/ w(l—l/ho)ry(l—n)r dr = /
B

BP
Since w/v € Ax(v) (see Remark 2.3) the function w/v satisfies a reverse Holder inequality.
Then there are two positive constants d, ¢, such that, for every ball B,

y(lB) /B (%>1+6 vdr < cp [1/(1B) /B % ydx] 1o e, [j((g))] 146

(the constants c¢,4,0 depend on n,s, K1, K3 if v € As(K3)). Then we will choose k,7 in such a
way that (k — 1)r = § and consequently, by what remarked above, we get

P

]Du\zwdx) .

(8) (k—1)r+1 e

1%
P

k—1)r 1+(k—1)r
w(Bp):|1+( 1) _ (w(Bp)) +(k—1)

(1-1/ho)r, (1—kK)r dr < B |:
w 1% T X CrpV X O
/Bp nv(Bp) v(B,) h (V(Bp))(nfl)r

Then we get the thesis when v = w. If v = v the proof is easier since the quantity v(1~1/ho)r,(A=r)r
reduces to v. O

We briefly recall the definition (a possible definition, in our case equivalent to the other possible
ones) of weighted Sobolev spaces for v € Ay, and w € A,. Given an open and bounded set
Q C R" by LP(Q,v) we denote the set of measurable functions u : & — R such that [, [u[Pv dx

is finite. By W1P(Q,v,w) we denote the space {u € LP(Q,v) N I/Vl})Cl(Q) | Diu € LP(Q,w)} en-
dowed with the obvious norm; by Wol’p(Q, v,w) we denote the closure of C1(Q) in WHP(Q, v, w).
Indeed we will write H(Q, v, w) for Wh2(Q, v, w).

Coming back to the result stated in Theorem 2.9, integrating in time one immediately gets what
follows.

Corollary 2.11. With the same assumptions of Theorem 2.9, consider moreover s1, sz € (0,T).
Consider a family of open sets A(t), t € (s1,s2) in such a way E = Ue(s, ,)A(t) is a an open
subset of B, x (s1,s2). For every v € C%([s1, s2]; L*(B,,v)) N L2(51,82;W01’2(Bp,1/,w)) it holds

U(}BP) //E u* (2, t)v(z) dedt < 7 p° (y(;p)>”‘1 .
| <Sls<l:£)s2 /A(t) uf(z, tv(a) daj) HlW(pr) /:/Bp |Dul?(z,t) w(x) dedt

where the inequality holds both with v =v and v = w.

Lemma 2.12. Consider B, = By(xg) a ball, p € (1,400), ¢ € [1,400), v, w and v €
Wl’p(Bp,V,w) for which assumptions of Theorem 2.5 hold, k,l € R with k < l. Consider



A HARNACK’S INEQUALITY FOR MIXED TYPE EVOLUTION EQUATIONS 11

also a subset Z of B, and denote by v the function taking value 0 in Z and v = v in B, \ Z.
Then

a/p
(1= B o({v < k) ({0 > 1) < 2091 91 0(B,) (B w(B,) ([ DoPwds) .
Byn{k<v<l}
REMARK 2.13. - The previous result holds in every open set €2, provided that Theorem 2.5 holds
with € in the place of B,,.

Proof - Denoted by A the set {x € B, \ Z|v(x) < k} and suppose 7(A) > 0, otherwise there
is nothing to prove. Following the proof of Theorem 3.16 in [13] we have that for every u which
takes the value zero in A

(16) / |u—u3p]ql/dx:/ |u—qu|qux+/ lup, | dx > |quq/Vd1,‘,
B, A A

By

where up, = |B,| ™! pr u(z) dz. Consider the function

_f min{v,l} -k ifo>k
“=Yo0 ifv<k.

and estimate, first from below

/ |u|q17dx:/ (l—k)qﬂdx+/ (v—k)qﬂd:v>(l—k)q/ v,
B {v>1} {k<v<l}

2 {v>1}
and then, using (16), from above

1

1
q q
(/ |u‘q17d$> < </ [lu—up,| + |qu|]‘1;7dx>
B, B,
1 1
q q
< </ |u—qu]qﬂdq:> + (]qu‘q/ Dda:)
By By
1
v(B !
<2 (D((Ap)) /B |uqu]q1/dx> .

P

Now, if ¢ > p we can apply Theorem 2.5; if ¢ < p, notice that (v((B,)) ™! pr lu—up, |V dz)'/1
(v((B,))™* pr |u—qu\q/D dz)'/¢ for ¢ > q. Then, by Theorem 2.5 used if necessary with ¢’ > p,
we finally get

q/p
_ v(B,) v(B))
l—k:q/ vdr < 21+44 qy_( P p / DvulPwdx . O
( ) {v>1} TP v(A) W(Bp)Q/p {k<v<l}| |

Lemma 2.14. Consider xo € Q and p > 0 such that Ba,(zo) C Q, 0 € (0,p), w € Az(K7),
(r,w) € B%,q(KQ), veEAx,q>2, a,8>0. Consider B an open and non-empty subset of B,(zo)
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such that B = {z € Q|dist(z, B) < o} is a subset of B,(xo). Then, for everye,o € (0,1) there
exists n € (0,1) such that for every u € VV&)’S(Q, v,w) satisfying

/ |Dul? wdz < 5M
. h pr
and

v({u>1}NB) > av(B,(xo)),

there exists x* € B with By,(z*) C B such that
v({u> e} 0 Byyla®) > (1 - 8) v(Byp(a™).

Proof - For any positive n satisfying np < 0/2, we can consider a finite disjoint family of balls
(Byp(x;))ier with the property that

U B’r]p(xi) cBcC U Ban(xi) c B.

i€l el
Again for simplicity, we denote by B; the ball B, ,(x;) and by Bj; the ball By,,(z;). We denote
by I and I~ the sets

mV(Bii)}a
ifggz;j'V(lgh)}

where c4(v) is the doubling constant of the weight v, which, from now on, we will simply denote
by c¢q4. By assumption we then get

av(By(ao)) < v(fu>13nB) < 3 v(fu> 13N By) + 2% 3" u(Bi) <
ielt i€l

< Z I/({u > 1}ﬂBii) +% Z V(Bi) <
ielt i€l—
< Z v({u>1}NBy) + %V(B) <

iel+

I"={icl:v({u>1}nBy) >

Iiz{iEI:l/({u>1}ﬂBii)§

< X vl{u> 130 Bi) + 5 v(By(xo)).

ielt
By this we get that
o

(17) 5 V(Bp(0)) < > v({u>1}nBy).

iel+
Now fix &,d € (0,1) and assume by contradiction that
(18) v({u>e}NB;) < (1-0)v(B;), forevery i€ I :==I1"UI .
This clearly would imply in particular that
v({u<e}NBy) _ 0

> — =4 for every i € I .
V(B”) Cd
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By this last inequality, Lemma 2.12 with p = ¢ =2, k = e and | = 1, ¥ = v we would obtain
that

v({u <e} N By)

47% 2 V(B“) / 2
19 < np Dul*wdx .
( ) (1 — 5)2 ( ) W(Bm) {e<u<1}NBy; | ‘

By Remark 2.7, point 4, we get the existence of a € (0,1), K}, such that (see also Remark 2.6)

<|anp<xi>|>“/" (u(anpm)))”? (w(Ban,J(mi)))—”? <KL

’y({u > 1} N By) <

v({u>1}N By) <

| B2y ()| v(Bap(xi)) w(Bap(z;))
o Y(Bonp(@2)) 1y v(Bay(a)
T o Banp(@) = 2 (B

Notice that
v(Bap(w:)) < ca(v) v(By(:)) < ca(v) v(Bap(o)) < (ca))? v(By(xo))
w(Bap(w0)) < w(Bap(i)) < (ca(w))*w(By(@:)) < (ca(w))’w(Bay(2:))
by which we get
v(Bayp(wi)) _ (ca(v))® v(By(x0))
w(Bap(xi)) ~ (ca(w))? w(By(xo))
Summing up on I*, from (17) and (19) we get

a 472 v(Bi;)
O S (B, () < L (np)? / Dufwdz <
5 (Bp(zo)) Z (1—¢)2 () w(Bii) Jie<u<1ynBi; -

el t

i 2(1—a) 2/ ! 5 (ca(v))? V(By (o)) w2 wde
Sz prEG) (ca(w))? w(By(xp)) = /{6<u<1}ﬁB“ [Duf*wde <

4t 2(1—a) [ 71\ 2 (ca(v))?
< V(K B .
(1—¢)? n (K3) (ca(w))? Bv(Bpy(wo))
The conclusion follows by taking the limit n — 0. U

Here we state three results, which are corollaries rispectively of Theorem 2.5, Lemma 2.12,
Lemma 2.14.

Corollary 2.15. In the same assumptions of Theorem 2.5 suppose moreover a,b € R, a < b.

Then
1/p 1/p
l‘)d:ﬂdt} 'ylp // | Du(z, t)|Pw( )d:cdt}

for every w Lipschitz continuous function in B,(xq) x (a, b) such that for every t € (a,b) u(-,t)
has either support contained in B,(xo) or null mean value (with respect to the variable x).

(20)

Proof - 1t is sufficient first to observe that (v((B,)) ™ pr lu—up, [Pvdz)? < (v((B,)) ! pr |u—
qu]q/l/ dm)l/q/ for ¢ > p, then to take the power p and integrate in time. O
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Corollary 2.16. Consider B, = By(xo) a ball, a,b € R, a < b, p € (1,400), v, w and
v € LP(a,b;WYP(B,,v,w)) for which assumptions of Theorem 2.5 hold, k,l € R with k < .
Consider also a subset Z of B, and denote by v the function taking value 0 in Z and v = v in
B,\ Z. Then

(I-kPoal' vkl ({v>1}) <

B
<2 pPo@ L (B, x (a,b)) v(By) // |Dv|P w dxdt .
w(Bp) JJ(B,x(ab)n{k<v<i}
Proof - One can follow the proof of Lemma 2.12 integrating in space and time and finally
applying Corollary 2.15. U

Corollary 2.17. Consider xog €  and p > 0 such that Boy(xo) C Q, a,b € R, a < b,
o€ (0,p), w € Asy(Ky), (v,w) € Biq(Kg), v E Ax, ¢ > 2, a8 > 0. Consider B an open
and non-empty subset of B,(xo) such that also B = {x € Q|dist(xz,B) < o} is a subset of
B,(x0), a,b € R, a <b. Then, for every e,6 € (0,1) there exists n € (0,1) such that for every
u € L*(a, b W1’2(Q, v,w)) satisfying

loc

b
/a/a |Du|? w dxdt <ﬁ(b—a)W(B;§550))

and
v® L' ({u>1}N (B x (a,b))) = a(b—a)v(B,(x0)),
there exists x* € B with By,(z*) C B such that
ve Ll ({u > e} N (Byp(z*) x (a,b))) > (1 —8) (b— a) v(By,y(z*)).

Proof - One can repeat the proof of Lemma 2.14 using a family of disjoint cylinders (B, (x;) x
(a,b));er with the property that

U Bup(:) € B | Bagplai) € B,

iel il

taking the measure v ® L' instead of v and finally using Corollary 2.16 to conclude. O

We conclude stating a standard lemma (see, for instance, Lemma 7.1 in [13]) and one of its
possible generalizations which will be needed later.

Lemma 2.18. Let (yp) be a sequence of positive real numbers such that

h 1
Ynt1 < by

with ¢, >0, b> 1. If yo < cVep=1/0% then

lim yp, =0.

h—+o00

Lemma 2.19. Let (yp)n and (ep,)p two sequences of non-negative real numbers such that

(21) Yni1 < b (yn +en) Yl Ynh+1 < Yn s lim €, =0,
h—+o00

c,a>0,b>1. Ifyp < cYop=1/e? then
lim y, =0.

h—400



A HARNACK’S INEQUALITY FOR MIXED TYPE EVOLUTION EQUATIONS 15

Proof - 1If ¢, = 0 for every h we reduce to Lemma 2.18. Otherwise, say y the limit limy, yp
which exists by the monotonicity of (yz), and suppose that

Yo < C_l/ab_l/a2 .
Now, by contradiction, assume that
5> 0.
By assumptions we have that for each & > 0 there is h = h(e) such that

(22) €n < € for every h > h.

Now for each § > 0 we choose € such that ¢ < § ¢ so that we get dy, > ¢ for every h. In
particular for h > h we get

Yn+1 S cbh (yn + €n) Y <
< et (yn + ) yp <
< b (yn + S yn) yh =
=(149) cbhy}lfa )
Using the lemma above we have that if y; < (1 + 5)_1/a c~V/ep=1/0% than limpyp, = §y = 0,
where h depends on e which depends on the choice of §. By the monotonicity of (yp)p if
yo < (14 5)_1/0‘ ¢ Yep=1/a* the condition on yy, is garanteed whatever the value of h. Since

yo < ¢ V/ap=1/a® there is § > 0 such that yo < (14 8)~ Y/ ¢~ /ap=1/2* and so we would derive
that § = 0, which contradicts the assumption ¢ > 0. d

3. PRELIMINARIES ABOUT MIXED TYPE EQUATIONS

This brief section is devoted to a remark about equations of mixed type, like for example

(23) M(x)% —div(a(z,t, Du)) =0,
where a is a Caratheodory function such that

a(z,t,0) =0,
(24) (a(z,t,€) — alz, t,1),€ —n) = Nz)I€ —nl?,

§
la(z,t,€) — alz, t,n)| < LA(z)|€ —nl,

for every £,n € R"™, where L is a positive constant and p = p(z),A = A(x) are functions, A
positive, while x may change sign (and also be zero in some positive measure regions).

Before talking about mixed type equations we want to recall that a weighted Sobolev space
H'(Q, ||, \) endowed with the norm

[|u||? ::/u2|,u|dx—|-/ | Du|*\da:
Q Q

can be defined even if the function |u| takes the value zero in a subset whose measure is positive
(we refer to [20] for the definition and the completeness of this space). If we denote the space
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L2(0,T; HY(Q, |u], \)) by V and the space {u € V| uu’ € V'} by W (u/ denotes the derivative of
u, V' the dual space of V) one has that a solution of (23) belong to W and (see [19])

ueW = t— /QUQ(:c,t),u(x)daf is continuous in [0,77],
and
(25) /Qu2(a:,t)|,u|(x)dx is finite for every ¢ € [0,T].
On the other hand, for u solution of (23), the function

(26) t— / w?(z,t)\(z)dx  is not necessarily L2 (0,T)
Q

T
even if it is finite for almost every t since / / u?(z,t)\(z)dz is finite. In the next section we
0 JQ

will define a De Giorgi type class of functions requiring
(27) t— / u?(z,t)|p|x(z)dz  belongs to L(0,T) for every A CC Q.
A

This is something more of the natural requirement (25) and this a priori is not guaranteed by
the equation in a general situation, but in many cases it is true, as we mention below. This
condition will be needed only if there is a region in which the equation reduces to a family of
elliptic equations, i.e. if there is an open set in which g = 0.

More in general, using a corollary of Theorem 2.1 in [21] one can prove that, if u is the solution
of the problem

,u({;:: —div(a(z,t) - Du) =0 in Q% (0,7)
28) w=¢ in a0 x (0,7)
u(z,0) = ¢(x) in {z € Q|px) >0}
u(z,0) = P(z) in {z € Q|px) <0}

for some ¢ € W, ¢, € L?(Q), if
¢t €W and a is regular in time

(we refer to [21] for the precise requirement about regularity of a) we derive that the function
w=mn(u—¢) € HY(0,T; H'(Q, |u|,)\)), and then in particular

(29) ue CO(0,T); H'(, |ul, V)
and as a by-product one gets that u satisfies (27) since H' (€, |u|, \) € L3(2, \).

Analogous considerations hold for Neumann boundary conditions.

We observe that in general a solution of a family of elliptic equation will be not regular in time
(if, e.g., a is not regular in time) as we will show with an example in the last section.
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4. DE GIORGI CLASSES AND Q-MINIMA

From this section on we will focus our attention on a class of functions which contains the solu-
tions of some forward-backward evolution equations, also possibly a family of elliptic equations,
whose simplest example is the following () is positive, but u is valued in R)

(30) u?;Z —div(ADu) =0 in Qx(0,7),

but one can think to (23) or to (3). The connection of the class we are going to define and this
equation will be clarified below. We will show that solutions of such a homogeneous equation,
of equation (23) and also of a wider class of homogeneous equations are quasi-minimizers (from
now on we will call them more simply, and according to the original definition, (J-minima, see
Definition 4.3) for equation (30), and @-minima are contained in the De Giorgi class we are
going to define.

Assumptions about ; and A - Given p and A defined in R™, A positive almost everywhere,
while 2 may be positive, null and negative, we define

po it p#0,
o ::{ A ifp=o0.
Once considered 2 on open subset of R™ and T' > 0 we require p and A to satisfy what follows:
there is ¢ > 2 such that
(H.1) - X € As(K,),
(H2) - (|ulx, A) € Bag(Ka),
(H.3) - |ulx € Aso(Ks,<).

This conditions (see Theorem 2.5) garantees the validity of the Sobolev-Poincaré type inequality

1 u(x)|? a;xl/q 1 uxZa::cl/Q
[ty @] " <o [ [ 10w

and of all the results which follows (in particular Theorem 2.9 and Corollary 2.11).
The condition (H.2) (see Remark 2.7, point 4) garantees the existence of a € (0,1), Ko > Ko
depending on K9 and c¢,1,(|p|x) and ¢ € (2, ¢) such that, thanks also to Remark 2.6,
(H.2)" - (lulx,A) € B 3(K2) C B3y(Ka).
We will suppose that the sets
Qp={zeQ|u) >0}, QO :={zecQ|u(x)<0} and Q:=0\ (4 UQ)

are the union of a finite number of open and connected subsets of €2. This means, for instance,
that p cannot change sign in a Cantor type set with positive measure.
Beyond to py and p—, which will denote respectively the positive and negative part of u, we
define

A in Q4 A in Q_ A in Qp
(31) Ay = ) ;A= ) . Ap = )

0 inQ\Qy 0 inQ\Q_ 0 inQ\Q
In this way notice that

lulx = |l + Ao = pt + p— + Ao
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Notice that hypotheses (H.1) and (H.3) (see (10)) implies that A and |u|y are doubling, i.e. there
is a constant ¢ such that

(32) 15 (Bap(2)) < alplx(Bo(x)),
<q

A(Bap(w)) < aA(By())

for every x € Q and p > 0 for which Ba,(x) C €.

Moreover by (12), once denoted by ¢, (A) the constant satisfying (11) with the weight A and
¢(A) the constant appearing in (12) with w = A and ¢, (|p|x) and ¢(|u|x) the analogous with
w = ||, we get that

(33) M) (‘MMS))T ) </\(S)>T

ANQ) T\ (@) (@) ~ 7 \ANQ)
where T = min{c(\)/7,s(|u|x)/2} and k = max{c,,(\) Kg()‘)/T, crn(|1e)n) K;(lulx)ﬂ}‘

Once defined I, the set of “interfaces” as follows:
= (094 N 0N) U (094 NOQ_) U (82 N ON_)

we moreover will assume the following additional assumptions where, for simplicity, we assume
the first holds with the the same constant q as before:

s (Bop(@)) < q s (By(a)) for every o € .
(H.4) - | p—(Bop(y)) < qp—(By(y)) for every x € Q_,
Ao (Bzy(2)) < g )\0( (2)) for every x € Qy,

(H.5) - I is a such that lim |I¥| =0,
e—07t

where (H.4) holds for every p > 0 for which Ba,(x) C €2 and I is the open e-neighbourhood of
I and is defined in (34).

Some comments about (H.4) and (H.5) are in order. First notice that since |u|) satisfies (32),
at least one of the three requirements in (H.4) holds for every x € Q.

Notice moreover that assumption (H.4) is deeply connected to a geometric requirement about
the set I of interfaces, indeed (H.4) has to hold in particular for points belonging to I. Finally,
about the set I, notice that (H.5) is weaker than the requirement that I is a H" !-rectifiable
set because I could be also not rectifiable. For all these comments we refer to the last section,
in which some examples are shown.

Some notations - By wuy(y) the function max{u(y),0} and by u_(y) max{—u(y),0}. We
2 to denote

will write ui or uZ
ui(y) = (ur()?,  w(y) = (u_(y).
Given A C ) we will denote, for a given € > 0,

Af = {z € Q|dist(z, 4) < e}, Ae = {z € Q|dist(z, A°) < e},

(34)
while fore =0 A=A, :=A.
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Fix, beyond g, to € (0,T). For a given € > 0 and a ball B,(xy) we define the sets
I,c(xo) := (I N By(xo))°, Bg(xo) = B,(x0) NQ
B;(aco) = B,(z9) N Q4 B, (w0) := By(x0) N Q2
If(zo):=1N Bf(x0), I, (wo):=1INB,(x0), Izo):=1I N B(xo),
I, (@) = (I (w0))* ﬁBJF(SCO) 19 (o) = (I (%0))" \ I, (w0),
I (w0) = (I, (%0))° N B, (z0),  I2%(w0) := (I, (20))" \ I, (20),
(

12,5( 0) = (Ip(w0))" N Bo(wo) 1§ (o) = (Ip(20))° \ p,a(wo) :
We define the following functions
[1lx (By (o)) 2
(35) h($07 p) = TN o o, f(xﬂup) = h(J:Oa p)p .
A (Bp(0))
These functions depend a priori on xg, but just for simplicity we will not specify this dependence

writing only h(p) and f(p) if not strictly necessary.
Notice that the function h satisfies, if u # 0 almost everywhere, the following inequalities

(36) h(zo,p) < qh(zo,2p),  h(xo,2p) < qh(zo,p).
Other sets we define are the following: fix xg € Qand ¢ty € (0,7), R > 0, 3 > 0 and s1,s2 € (0,7
with s1 < tp < s2 and satisfying
i) sy —tg=to—s1 =P h(xg, R)R? when we consider B, (zg) or Bg(zo),
(37) i) s1,s2 arbitrary when we consider BY%(xo) .
Inside the cylinder Br(zg) % (s1,s2) for

6 €[0,1)
we define
(38) 09 := 0 B h(xo, R) R%.

in such a way that oy € [0, B h(wg, R)R?); then for p € (0, R) and ¢ > 0 and taking s1, s2 as in
(37), point i), we define the sets

Q% (0, t0) := Br(wo) x (to,s2), Q% (x0,t0) := Br(zo) x (s1,t0) ,
Q% (w0, to) := Bfi(w0) x (to,s2), Q% (0,t0) := By (o) X (s1,%0),
QRpG('IO’tO) i= B (x0) X (to + 00, 52) ,
(39) QRpO('IO’tO) == B, (%0) X (s1,t0 — 09) ,
QY5 (z0,t0) = { precton) X (to o022 if By, .(x0) = Byye(x0),
P ((B;_(CL‘()))‘E X (to + 09, 52)) U ((I;—(ZE(])) (to,s2)) otherwise,
Q%p’g(ﬂ?o, )= { Bp+i(-%'0> X (s1,to — 0g) . if By, .(20) = Bpte (o),
((B, (x0))° x (s1,to — 09)) U (I, (2z0)) x (s1,t0))  otherwise,
and with s1, s9 arbitrary (see (37)) we define
(40) Q% pesy.p (T0) = Bp(z0) X (s1,82) for p <R,
Qs 5 (0) 1= (BY(0))" X (s1,52)
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The first subscript R below Q denotes that so — ¢y and to — s1 are proportional to R? and that
we consider subsets of Bg x (0,7).

We now introduce the De Giorgi class for equation (23).

In the following definition we will use the measures p4 and p— rescaled by the factor h(zg, R).
We will make the implicit assumption that the support of these measures (or functions) is the
same of py and p_, i.e

M4 : H—
Pt i (x) >0, A=
Pt (z):={ M=o, R) pe) M= .= ! M=o, R)

h(wo, R) 0 if () =0, M@0 0 if p(z) =0,

if u_(z) >0,

Moreover in the definition which follows we require that u € L° ((0,T); L (€, |u]))) even if
only the terms

/Bp w?(z,t)py (z)dz  and /Bp u?(z, t)p_(z)dx

are, a priori, bounded (see Section 3). The fact that also / u?(x, t)\(z)dz is to be finite will
By
be needed, for instance, to prove point iii ) of Theorem 5.1.

Definition 4.1 (De Giorgi classes). Consider Q2 an open subset of R™ and T > 0 and a point
(zo,t0) € @ x (0,T). Consider R,r,7 >0, r <7< R, B >0, 0,0 such that 0 < 0 <0 < 1,
s1,82,t0 € (0,T), s1 < to < sa satisfying (37). We say that a function

u € Lin(0, 5 Higo (2 |2l X)) N LS ((0, T); Lioe (2, 1l))

belongs to the De Giorgi class DG (T, u, \,7), being v a positive constant, if for every e €
[0, R—7] and 0 — 0 = (F —r)?/R? and every k € R the following inequalities hold (og is defined
n (38)):

i) for sy = to+ B h(zo, R)R? and Br(zg) X [to,s2] C Q x (0,T)

sup /B (u— k)% (z,)py(z)de +  sup /ITE(U — k)% (2, )p—(z) dx

te(to-i-dg,sz) ::LE te to,t0+09) X
2
k)y|" Ndzds <
s ™
(41) < s [ e kR () dot
te(toto+oy) If,;_wrg

+ sup /MHE(u—k)Q(mt) (2) dat

te(to+os,s2)

— A B s ,
(f_T)Q //Qg’.j’;_rﬁ(u k)% (Bh(ﬂ?o,R) +)\> dacdt],
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ii) for s1 = to — B h(zo, R)R? and Bgr(xo) x [s1,t0) C Q x (0,T)

sup /B (= k) (e, Op_(2)de +  sup /Ira(u—k)i(a:,t)mr(x)dm

te(shtofdg) ;+€ tG to 007t0)
// k), > Ndzds <
QR T, 0
(42) <y sup / (u— kz)i_(x Hp—(z) dz+
tG(to—O’g,to) 7‘_7‘ r+e

+ sup / R O (2) dat

tE(Sl,to 0'9

= M0 (e ) i

ii1) for s1 and sy arbitrary and Br(zg) X [81,82] cQx(0,7T)

//QO,E |D(u — k)4 |*Xdzdt <

R;r;s1,s9 (:CO)

<7[ sup / (u— 1% (. )i () dat
te(s1,52) J 15T

(s1,82
(43) b [ e B () do
tE(Sl,Sg) ]rriTJFE
//0 . Ad%dt
T /r QRrsl 59

iv) for every sa >ty such that Br(xzg) X [to, s2] C Q x (0,7)

sup /Bi (u— k)2 (x,t)py (x)dr < /B;(u — k)% (2, to) s (z)dar +

te(to,SQ)

(44) + sup / (u—k:)i(ac Hp—(z) de+
) J1

tE(to,SQ +T7
/ / — k)2 Adzdt;
tO B+ Irr 'r

v) for every s1 < to such that Br(xo) X [s1,t0] C Q2 x (0,T)

sup /B(u—k)%r(x,t)u_(:c)dxg/ (u— k)2 (2, to) u—(z)dx +

tE(S1,t0) -

(45) + sup /I”’ T(u — k)% (2, )y (z) dot

tE(to,Sg)
0 - (u—k)3 Adxdt .
(F—r)? Js, B;u]i”“"“( A
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We will say that u belongs to DG_(Q2, T, i, A\, y) if the estimates above holds for (u—k)_ in the
place of (u — k)y. We will say that u belongs to DG(Q, T, u, \,7) if u € DG (T, u, A,y) N
DG_(Q, T, pu, A\, 7).

REMARK 4.2. - Notice that if |u|(Br(xo)) = 0, that is Br(zg) C Qo, (41), (42) and (43) coincide

and reduce to
S92 1 89
2 2
/81/T|D(’LL—,I€)+| )\dﬂ?dt< ’}/(,FT‘)Z/Sl/T(U—k)Jr)\dl‘dt

by which we can derive
(46) / |D(u — k)4 (2, 6) M=) de < % / (u— k)3 (2, 1) M) da
Br (o) (F—r) By(zo)

for almost every t € [sq,s2]. Since by assumption u € L ((0,T); L2 (2 |uln)) we get as a
by-product that u € L2 ((0,7); Hi (R0, A, \)).
In some cases we can derive that (46) can hold for every t € [s1, s2] (see the previous section).

The estimates given in Definition 4.1 are also known as energy estimates or Caccioppoli’s esti-
mates and we will often refer to them in this way.

Now denote by K(2 x (0,7)) the set {K C Q x (0,7)| K compact} and consider the func-
tional

E:L*0,T; H'(Q)) x K(Q x (0,T)) = R, E(w,K) = % //K | Dw|?\ dzdt .

We are going to define a @-minimum following the definition given in [25] (see also [12] for the
elliptic case).

Definition 4.3. We will call a function u: Q x (0,T) — R a Q-minimum for the equation (30)

if we LE (0,75 HE (0 [pl,A) NLS.((0,T); LE (D, |u]))) and there is a constant @ > 1 such
that

_ 09 _
(47) J[ et B sup(o) < Q Bl 6, supp(0)

for every ¢ € CL(Q x (0,T)).

REMARK 4.4. - It is easy to verify that if u € L2(0,T; H*(Q, |u|,\)) is a Q-minimum for equa-
tion (30) than the map L¢ := —ffsupp(¢)u%—fu drdt with ¢ € CL(Q x (0,T)) turns out to

be a linear and continuous form in L2(0,T; Hi (9, |u|,A)), i.e. L belongs to the dual space
L2(0,7T; (H* (S, |1, A))") (the proof can be obtained following the analogous one in [25]).

Solutions are (-minima - Following the analogous proof in [25] one can verify that u is a
solution of (30) if and only if « is a 1-minimum for (30).

A second interesting fact is that a solution of (23) is a Q-minimum for the equation (30). Indeed
using (24) it is easy to see that a solution of (23) satisfies (47) with Q = 2LM.

(Q-minima belong to the class DG - We now want to show that the De Giorgi class defined
above contains ()-minima and in particular solutions of (30). In Section 7 we will show a
Harnack type inequality, and then Hoélder continuity, for functions in the De Giorgi classes, and
consequently for @-minima and solutions of (30). To show this, first of all notice that if u
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satisfies (47) for every ¢ € CL(Q x (0,T)) then, by density of C}(Q x (0,T)) in W, u satisfies
(47) also for ¢ € W; then in particular we could choose ¢ = (u — k), ¢? with ¢ a Lipschitz
continuous and non-negative function such that ((-,t) € Lipg(Br(xo)), |V(¢|, & € L™, G > 0.

To show this fact it is sufficient to consider a point (zg,%p) € Q x (0,T), a function (u — k) ¢>
with ¢ defined in [s1, 2] X Br(zo) with 0 < 51 < tg < s < T and sy — tg = B h(xo, R)R? if
p+(Br(z0)) > 0, tg — 51 = B h(xg, R)R? if u_(Br(zo)) > 0, while if Br(zo) C 2 s1 and sy
arbitrary; then for arbitrary o1, o9 satisfying s; < 01 < 02 < s choose ¢, = (u — k)4 (?7c where

! l(t ) Fj ] ]
€ (t—o1+te 01— 60
Te(t) = _6—1(75 —10'2 —€) {0';0'2 + i]

0 & [01 —€,09 + €]

for a suitable € > 0. Taking such a ¢, in (47) and letting € go to zero one gets that

;/ (u— k)2 (2,02)*(z,00) p(z) do + E(u, K) < Q E(u — ¢, K)+
(48) .

1
3 /BR(Uk?)%r(%Ul)C (w,01) d$+/gl /BR k)3 CCe pdzdt

where we simply denote Bp instead of Br(xg) and K denotes the part of the support of ¢
contained in Br X |07, 02].

- First suppose p4(Br(zp)) > 0 and show (41) and (44). We proceed as follows: con-
sider ¢ = (u — k)42 with ¢ a Lipschitz continuous function to be choosen later. Since we have
that

_Ju u<k
UTOS =R (=) 4k u> k.

and supp(¢) C {u > k} we have that

E(u — ¢,supp(¢)) = ;// " D [(u— k) (1= ¢3)]° Adzdt <
(49) pp
<[ [0 Pt P+ 4= DGR Adod.
supp(¢)

We first prove (41). We consider r,7 > 0 with r < 7 < R, fo,s2 € (0,T) with sy — ¢y =
B h(zo, R)R?, 6,6 such that 0 < § < 6 < 1. By assuming in addition that for ¢ > 0 (and
sufficiently small, say ¢ < R — 7’)

K := supp(¢) N (B(o) x [s1,52]) € Q77" (o, to)

and that || < 1, on the right hand side we estimate (1 — ¢?)? by 1 — ¢? and the second
term by 4(u — k)2 |D¢|?. Moreover using the assumption that u is a Q-minimum and since
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E(u,K) = E((u— k)4, K) we get that for every 1,72 € [tg, s2] with 71 < 7o

/ (1 — B2 (2, 72)C3 (s m)a() i — / (u— 12 (2, 1) (3 (2, m () it
Bite Brc

T2
+2Q// |D(u — k)4 |2 N dzdt <
71 J Brge

T2 T
< 2/ / (u— k)% CG pdadt + 8@/ / (u — k)2 |D¢A dadt+
71 J Bije T1 J Bige

+(2Q - 1) // ) |D(u — k) |*Xdzdt .
QT N(Bax (7))

We then choose a Lipschitz continuous function ¢ (see also Figure A below where we show an

example where p > 0 and p < 0) satisfying also

C =1 in Q%j’g(l‘o, to) s C = in Q%>(ZEQ, to) \ Qg’j’giwra(xo, to) ,
- (F—r)?
D <——\, 60-6= ,
(50) 1Dl F—r R?
1 1
|Gt < = Gr =0, Gu-=0.

o9 —0o5  PBh(ze, R)(F—1)?’

IR i—rqe(o) X {52}
SQ |

pnw<0 or p=0

S1 [

Ire(xo) x {s1}
Figure A
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Plugging such a ¢ into the last inequality and dividing by 2Q) we get that
1 1

— u—k)(z, T dr — — u—k)>2(x, T w(x) dx+
o L HCICES ) MR B
+// ID(u— K)o[*Adadt <
e N(Brx[r1,m2)
2
51 < // u—k)? <8Q/\+ >d:cdt+
( ) 2Q 7"—7" Q[5+r r+e BRX[7_177_2])( )+ Bh($0,R)M+
2@—1

+

|D(u — k)4 |*\dxdt
//QB+T "N (Brx[r1,72])

with
T1 € [to, to -I—Ué(R)] and 7o € [tg + og(R), s2] .

Before going on with the proof we state two lemmas, the first result is a slight generalization of
Lemma 5.1 in [11] (see also Section 4 in [25]).

Lemma 4.5. Consider some non-negative functions f, g1, go : [to, s2] x (0, R] x [0, R] — [0, M],
F,G : [to,s2] x (0,R] x [0,1) x [0, R] — (0, M], M positive constant, satisfying

f(m2,p,€) + g2(T1, p,€) + F(71, 725 p, U, €) < g1(T1, s €) + g2(T2, p, €) +

(52) + G(1,72;p,9,8) + 6 F(11, 72 p, 0, €)

1
(6—¢)?
and

g1(t1,p,€) < g1(71,0,8),  g2(72, p,€) < 92(72, P, €) ,
F(TlaTQ;pa 1975) < F(TlvTQ;ﬁ71§7é)

for every T, 19 € [to, 2], T1 < T2, for every p < p,0 < V,e <€ and 6 € (0,1). Then there is a
constant ¢ > 1 depending only on & such that

f(12,p,€) + ga(T1, p, €) + F(11,72; 0,7, €) <

1

C T
ST 5[91(7'170, €) + g2(72, p, € )]erG(TlvTQ;ﬂ,ﬁﬁ)-

Proof - We take the sequence p,, defined by (n to be chosen)
Jo=0, Unp1 =Y+ L -0 =",  ne 1),
eo==¢, éent1=cen+ (1 —n)(E—-2e)n", ne(0,1).
Notice that

Ent1 — €0 =ent1 —e = (E—e)(1—n"*")

60—|—Z(6n+1 —Sn) =g, ?90+Z(’0n+1 —ﬁn) :’15.
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By (52) we have

f(TQa p7€0) + 92(7-17/)’ 50) + F(TlvTQ; P 190350) <

< g1(711, p,€1) + G272, py€1) +
1

(61 —€0)?

< 91(m1,pre1) + galm, prer) +
X 91\T1, P, €1 g2(72, P, €1 V)
P P (51 _80)2

+ G(71,72;p,V1,€1) + 6 F(71,72; p,V1,€1) <

G (71,725 p,01,€1)+

+ 0|91(71, p,€2) + g2(72, p,€2)+

1
m G (11,725 p, V2, €2) + 0 F (11, 725 p, 192,52)] .

By the monotonicity property of the functions we have in fact
f(72,p,€0) + g2(71, p, €0) + F (71,725 p, Yo, £0) <
< (1+49) [Ql(Tl’Pa £2) +92(72,P,52)} +

1 1)
+ + G(1y,T9; p, 09, €9)+
<(€1 —€0)? (&2 —51)2> (71,725 p, U2, €2)

+ 82 F (11,723 p, U2, £2) .

Iterating NV times these inequalities we first get

f(m2,p,€0) + g2(T1, p, €0) + F (71, 725 p, Yo, €0) . <

<

N
[91(71,P76N+1) + g2(T2, pyEN1 } Z5n+
—0

N 5
+ G(11,72; P, UN+1,ENF1 —
( P - - );_‘:) (€n+1 _5n)2

3

_l’_

+ 0N F (11,725 0, 9N 1, EN 1) 5
then taking the limit as N — 400 we finally obtain
f(7—2> P 5) + 92(7—17 P 5) + F(Tlv 725 P, 297 5) <

1
T35 [91(71:8) + g2(71, )]+

<
1
1
+G(7-177-27p7195)( 1_ 2 E

Taking n € (v/6,1) we are done. Taking for instance n = /(1 +6)/2 one could have ¢ =

(I1+48)/(1—=9).

g
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Call
1 2
f(’i',p,8) . (U—k)+($,T)M+($> d.f,
2Q
P+s
1
g2(1, p,€) == 30 o (u— k)i(a:, T)p—(x) dz,
1 2
(53) 91(7, p,€) = 50 /s, (u— k)3 (2, 7)py (z) do
F(TlvTQapaﬁ 5) :// |D(U*l€)+|2)\d$dt,
Q&S N(Brx[r1,m])
2
G(11,72;p,7,¢) // (u—k)2 <8QA+M+> dxdt ,
T 2Q Q& en(Brx[r,m]) * B h(zo, R)
for p,9,e > 0; now we apply the previous lemma in (51) with 6 = % p=r,E=7—r-+c¢
and since (1 — &) ™! = 2@Q) we derive the existence of a positive constant cg depending only on Q

(for instance, as shown at the end of the proof, one could consider c¢g = 4@ — 1) such that

1

50 /.- (u = k)3 (2, 1)y () dae + @ (u— k)2 (2, 1) p () dao+

+ // |D(u — k)4 |*Ndzdt <

Q% N(Brx[r1,7])
5 < / - W(u— W@ o+ [ = b (o) do
T, F—r+4¢e

(u — k)? 8Q)\+# dxdt
QB + e T+E BRX[’H,TQ] + [.)) h(xo, R) e+ '

Here is the second lemma, a simple but important lemma.

Lemma 4.6. Consider some non-negative functions f,gi,g2,93 : [to,s2] — [0,M], F,G :
[s1,82] = (0, M], M positive constant, satisfying

F(r2) + gs(m) + / P Pt < ga(m) + gn(m1) + / " Gt

T1

for every 1 < 7. Let 0 and 0 be the values considered in (50), o9 = 6 B h(zo, R)R?, o5 =
6B h(zo, R)R? for some positive 3. Then

sup  f(t)+ sup gs(t)+ /52 F(t)dt <

tE(to+o’g,82) te(to,t0+dé) to
52
< 2 sup  g2(t)+  sup gl(t)+/ G(t)dt| .
te(to+og,s2) te(to,t0+0'§)
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Proof - By the assumptions in particular we have

f(12) + g3(11) < g2(72) + g1(m1) + /72 G(t)dt,

T1
T2

/T2 F(t)dt < ga(m2) + 91(71) +/ G(t)dt.

T1 T1

Taking the supremum in both the inequalities we get

sup [f(r2) +ga(m)] = sup  f(m)+ sup  ga(m1) <
71 € (to, to +0'9') Tge(to-i-O'g,SQ) Tle(to,to-i-dé)
T2 € (to + 09, 52)

T2
< e+ o] <
T1

71 € (to, to + 0g)
T2 € (to + 09, 82)

52

< sup ga(m)+ sup gi(m)+ [ G(t)dt
T2€(to+00,52) T1E(to,to+0;) to

and

52

52
/ F(t)dt < sup  g2(m2)+  sup  gi(71) + G(t)dt.

to 7'26(150—{-0'9,82) T1 G(to,to—l—a'g-) to

Summing the two inequalities we get the thesis.

Now we multiply by 2@ the inequality (54) and apply the previous lemma. We get

sup /B (u— k)%r(x,t)y+(x) dxr+  sup )/m(u — k:)2 (z,t)p—(z) dz+

te(to+og,s2) J B/, . te(toto+oy

+2Q // — k)4 PN dadt <
QY

R'rG

<4Q  sup )/IM_HE (u— k)i(x tp—(x) de+

tE(to+O’9 ,82

+4Q sw [, =) dot

to’t0+09) r,r—r4e

2CQ 2 2
(7 —1r)? //BJM rte (u— k)3 <8Q)\+ [Sh(xo,R)MJr) ddt
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Finally, calling v the quantity 16 cg @@ (which turns out to be greater than 1) we get (41)

sup /B (u— k)2 (z,t)us(z)dz +  sup /Ts(u — k)2 (z, ) u—(z) do+

tE(to—i—a’g,SQ) :—_’_5 tG(to,t0+0'9

// — k)|’ A dzdt <
QY

RTG

@[ swp [ e B2 (o) dat

tE(to ,to +O'§)

+
I’r,'Ffr+a

+  sup / o (u— k)i (z, )p—(z) do+
te(to+og,s2) oTorre

1 1
(7 —r)? //Qﬁf’;r“(u & ( ! Bh(ﬂ?oﬂ)%) ' ]
R;r,

Now we prove (44). We integrate in Bg(zg) X [71, 2] with [11, 72| C [t0,82] for an arbitrary so
(we mean that it is not necessary to consider sy = tg + B h(zg, R)R?) and, as done before to
obtain (48), we get for every [r1, 2] C [to, s2]

5 [ (=W ) m) o) do + B K) < QB(u— 6. K)+
Br

1 2
5 [ bR a@ e+ [ -0 pdadt
Br 71/ Br
Now choosing ¢ (whose support depends on 7) such that
(=1 in B} (z0) x [to,7], (=0 in Bg(zo)\ (B (z )UIM ") x [to, 7],

1
CtEOa |DC‘<7~;_ )

r

using the estimate (49) and the inequality which follows it and taking 7 = ¢, we get that for
every T € [to, s2]

u—k)5(z, 7 dm+// Adxdt <
QQ/ Yy ( o \

Bf(u—k) (@, to)p (o )dw+* (u— k)3 (2, T)p—(z) dz+

2Q 2Q 'r'r T
1 T
// ~|D(u—k)|*Ndxdt.
toJ BYUI" "

4 T
* m /t /B*unfr (u— k)i)\ dudt Jr
0785 St

As done to obtain (41), we first use Lemma 4.5 with the analogous functions considered in (53)
(notice that with e = 0 we get g2(to,7,0) = 0), then we use Lemma 4.6 to conclude and get (44).

In an analogous way one can prove (42) and (45), provided that p_(Bg(xo)) > 0.

- We now drop the assumptions py(Br(zo)) > 0 and p_(Bgr(xzo)) > 0 and prove (43).
We recall that in this case we consider K = Bg(xzg) X [s1, s2] with s; and sy arbitrary (but be-
longing to [0, 7]). Now proceeding similarly as before, taking ¢ = (u— k), ¢? with ¢ independent
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of ¢ and satisfying
(=1 in (B%x0))°, C=0 in Bg(xg)\ (B%(xg))™ ",

1
0<¢<l, 0<I[D¢<-—,
F—r
from (48), integrating over (BO)T_’"JFE X (11, 72), we derive for every 71,7y € [s1, 2], T1 < T2,
5 / w R s (0)de 4 g [0 B do
+ //0 |D(u — k:)+|2>\dxdt <
QI?’;T’;Tl,T2
1 1
<5 /I e ORI @ g [ )
2 Ndaxdt 20-1 D(u — k)4 |* X dxdt
0,F—r+te + 20Q 0,F—r+e [D(u— k)] zat.
QR’!‘Tl T QR;T;Tl,TQ
We can apply Lemma 4.5 with 9 =9 =0, p=r, p=7,e>0,6=F—r, § = (2Q — 1)/2Q and
1
QQ(T,P,G) : 2Q Ipe(u_k)i(xﬂ')ﬂ—(w) dz,
1
f(Tvp’e) :gl(Tapve) =35A (U—k)i(I,T)/L+($) dﬂj‘,
2Q Jipe
Flrumipdi)i= [[ D=k PAdsr,
QRp‘rl 2
G(71,72; p, 0, €) :—4// (u— k)% Ndzdt,
QRPT1 T2

and get the existence of cg such that

L[ = k)2 (@, mo)ps () dﬁ/m (o, 7)) () dat

20 J-
// |D(u — k) |*Xdzdt <
Q%

Rir;T,79

< /ﬂ,wxu—km (@) de + /IM ng—kﬁmmaw) o+

4
Q / / 2 \dadt .
7“ — 7" QO ,F—r4€

Rir;T,7T9

Taking the supremum for 71,7 € (s1,52) we get that u satisfies (43) with v = 4cq.

5. LOCAL BOUNDEDNESS FOR FUNCTIONS IN DG

In this section we prove that functions belonging to the De Giorgi class are locally bounded
in Q x (0,7).
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We start proving that a generic function u € DG(Q,T, u, A,7) is bounded in (B, x (a,b)) N
(24 x (0,T)) for some set B, x (a,b) CC Q2 x (0,T).
Fix g € Q, to € (0,T), R > 0 and in what follows assume
p+(Br(zo)) > 0.

Then consider > 0 and s2 € (0,7") with

so—tg =P h(xo,R)R2, BR(xo) X (to,SQ) C Q x (O,T) .
Consider now r,7,7 € (0, R] such that
=7

2

R . _
5<r<r<r<R and 7—r =

and 6, é,é such that
o L (A2
0<f<f<h<1l and 0—9:“}£>
and define analogously as done in (38) (but here we simplify the notation)
o :=0p h(zo, R) R?, & := 0B h(xo, R) R?, 6 := 0P h(xy, R) R?,

in such a way that

,e—ézi——f

0<o<o<o<s—1y.
Since tg, x¢ will remain fixed we will often use the following simplified notations: we will write
[37+ [57 > B7+76 B7+
h(p), Bo, QF " Qr ", Q5> Qrpo
instead of respectively
b b b 76 b
h(x()a p): Bp(m())a %J’_("I;Oa tO)a QE)% >(x07 tO)v Q%;—;@ (1'07 tO)a Q%;ze(x()a tO)

In fact, to further simplify the notations, we will suppose that (it is always possible, up to a
translation)

to=0.
Finally, from now on, we will use this short notations for the following measures
M:=pue L, A=r® L |M|p = |p|a® LY,

M+2:/L+®£1, M_2:M_®E1,
A+I:)\+®£1, A_Z:A_®£1, A()Z:A()@El
where we recall that A, A_, Ao have been defined in (31).

Now fix a function v € DG(Q, T, u, \,v) and define (since § will remain fix we omit it in
the definition of the following set)

AT (k: p,0) = {(,1) € QY |ulw, t) > k.

Consider a function ¢ € Lip(Bj(xg) X [to, s2]) such that ((,t) € Lip.(Bj(xg)) for every t such

that (noticethatf—%-r—%—i—(f—r) andf—%zf—%—i—(f—f))

. 67"’_7 -£ . [37+a -&
¢=1 Q. *(z0,t0), C¢=0 inQY (wo,t0)\ Q5 > (w0,t0),
X YD

1 1 1

0<(¢<1, [D{< ;o 0< G, Gu-=0, |G <

r—r
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In what follows we will denote by Q;’_;’;{;/g(s) the set {(z,t) € Q%.Ez_gﬂ |t = s}

First using Holder’s inequality, then applying Corollary 2.11 to the function (u — k);¢ with
B7+7F7R/2 B>+9T7R/2

R;R/2,0 R;R/2,0 > then in

v=v=|ulyand w =\, E = Q N Q4 (we integrate first in @
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QB#,F—R/Q

RR/26 with respect to the measure udzdt which is supported in E), we estimate

2 »2
|,U|)\ //QBJ” R/2 (u— )+H+dl‘dt |'u|)\ BR //QBJrf R/2( —k‘)+C py dxdt <

RiR/2.0 R;R/2,0
+,F—R/2/.. ~ % %
< (MJr(AR (k7R£’ 9))) //B+T . k)%rncﬁnlu_i_ drdt <
(lnlx(Br)) = |“|A Qg
< (Mo (AL " (k; R/2,0)) = 21 g < 1 ) 1
(Julr(Br) = ! ulx(Br))  (M(Br))V/x
( B / b3 <u—k>i<w,t><2<m,t>u+<x>dx> -
0<t<s2 Q BiR/2d (t)
(//B+r R/2 (u— )+<)| (z,t) Mz )dxdt> <
QRR/ZB
(ML AR R2,0) T e R ( 1 >
(ula(Br) = B \ il (Br)
( sup /[3+r s (u—k)i(w,t)CQ(m,t)qu(m) dr+
0<t<sg Q RoR/2g (t)
+ / /Q bur- f” ID((u— k)4 Q)P (,t) A(z) dxdt> <
(AR TP R2,0) R ( 1 )
(ula(Br) OB \[ula(Br)
. IAY
<0§;l<f;2 /Q;;;Q iz (u— k)2 (2, ) s () da+
2 [ o D= k) Pz ) M R U B (2,0 M) da:dt)
//QzR/” : //Qf? R/29 !

_ (M AT 0 R/2,0)) T ( ] )
(Julr(Br)) = L (NBr)VA \ |ula(Br)

. ( sup /B;(u— k)% (z,t)pt(v)dr + sup / (u— k)2 (2, t) s (z)dx +

te(5,s2) t€(0,5) I;;/Q FR/2

+2//QB+T R/Q\D(u—k)+\2(a:,t)A( )da:dt+ P //QBH R )+(a:,t))\(x)da:dt>

R;R/2,0 RiR/2,6
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where in the last inequality we have used the fact that 2(7 —r) = 7 — 7.
Now we can continue using the energy estimates (41) (with e =7 — R/2)

+,7—R/2,;. Fa L 2/ =1

(M+(AR (k,R/Q,@))) " 2/k R#/" 1 K
Bt R/2 )+M+ drdt < £l N M Bgr))1/~ B .

|M|A Qs (llx(BRr)) = (\(Br)) I (Br)
2y sup / (u— k)2 (z,t)us () dz + 2y sup /R/2 FR/Q(u — k)2 (2, t)pu—(z) do+
t€(0,6) VI 15 + gy te(5,s2) SIS
— k)% ( +)\> dxds 4+ sup / (u— k)2 (@, ) s (z)da+
Qf%;/’; R/2 B h(R) t€(6,8) VI 1y o pyo

//Qf5+r R T )i(xvt))\(l’)dxdt] <

(M+(A+T 2 (k; R/2,0 )))%1 o/ RYF < 1 )m.
(s (Br) = B \ il (Br)

2v+8 a2 e
[TT //QMTR/Q k)i (Bh( )+A>dxdt+(2v+1)t€s(gg2)/m f_R/z(u k)% (z,t)|ul(z)dx

R;R/2, R/z)

~ ~ K=1 k=1
C(Me(AFT P (k RJ2,0))) ) RV ( 1\ 2948
- ulx(Br) (

e v L.
(|l (Br)) L (\(Bg))/* (Br P72
( [B‘N‘)\ BR //QB+T R/2 )+U+dxdt+ //Qﬁ'+7 R/2 ) Adxdt +
R;R/2,0
2y+1,.  _, 1 / )
- —k t dz| .
" 2y +8 (=) A Br) tesilolgz) (s )“R/2(u )i (2, 1)lpl(z)dx

2v+1

518 by 1 and finally multiply and divide in the

Now we divide by sy —tg = B h(R)R2, estimate
right hand side by (B h(R)R 2)%1 We get

dzxdt <
@) Lopggoan @~

R;R/2,0

. M. (AR R2,6))
g 218 (LAY /2.) (1+1)

(7= 7)7 (IMIA(QE)) =
(55) [ 5 // )+,u+da:dt+ B) // — k)2 A, drdt +
IMA(QF Qi?m 0R/2 MQE™) JJQg LT, f”
— k)2 (Ao + A_) drdt +
vl //@2;;2 yie

+ (7 — f)Q ———— sup / (u— k)2 (, )| () dee | -
A( % ) te(0,52) J (I L) R/2 +
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Notice that
52
(u—k)2(No+ A_)dzdt is in fact (u— k)2 (Ao + A_) dadt.
QB 7+ P —R/2 I+ y*—R/2
R;R/2,0
In a similar way one can estimate fo5,+,T,R/2(u — k)%r)\+ dxdt. The main difference is that we

R;R/2,0

use Corollary 2.11 with v = |p|y and v =w = \. We get

QB’ //QMT (= RV dardt <

R;R/2,0
gLt B 2748 (A (AR (k; £/2,0)) =
pr (7 —7)? (AQE N
(56) [ / / — k)% py dadt + / / — k)2 \; dadt +
MA(QF) QEZE/E f” Qﬁ’ Qe J‘”
(Qﬁ’ )//QMT o= B2+ A ) dadt +
R

R;R/2,0

. 1
+ (F —7)? 5o Sup  (u—k)(z ) |pl(z)d|
B (I+/2)’V‘7R/2

AQE") te0.5)
Once defined (for p € [R/2, R])

1/2
Uy, (I p, 05 €) := <\M|A Qﬁ> //Qﬁ+5u—l+,u+da:dt> ,

R;p,¥

1/2
ax, (I; p,V5€) = < Qﬁ’ //QB+Eu—l /\+dxdt> ,

R;p,9

- 2
(U+(l,,0, ?9a 5)) = (Uu+(l;l)ﬂ975)) (UA+(l;Pﬂ9>5)) )
we sum the two inequalities and get

G| (MAET R B Gy)

(i (k; B,0; r — B))% <

(7= 7)? M (@)

A AR P 2005 | 1 e met g osr A

T (g (ks 5,057 — 5)) " + (W' " (u; ks 75 0)
(MA@ (AL D) )’

where C = 2/5 R? — + B (27 + 8) and
TN N R a2
(W' (us b 7;6)) " = A(Q?f) //Qi;/TQGR/Q(u k)3 (Ao + A=) dedt +
(=) su / (u— 1) (2, 1) l(2)do
AQY?) te(0,s) (15, )72
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Notice that for h < k£ we have

AR =
(k — WM (AL (ks B G)) < //  (u—h2pydadt <
AR (R /2,0)

< w—h)%py dedt,
//A;QFR/Q(h;R/Zé)( Vo

that is

M (Q%> -
) (@, 50— )

From that (and the analogous estimate for A+(AE’F7R/2(IC; R/2,0))) we derive

F—R 5
M (AR (1 5,0)) <

Mo (AR R/2.0)) M (ALTR(k:R/2,0 1 ) -
+( R ( / )) < +( R ( / )) < (“u+(h?% 07, g))27

Mz (QF) B ML(Q5) RRCEE
JT—R/2 a JT—R/2 it
Ay (AL (1 Ry2,6)) - A (AR (1 R)2,0)) _ 1 (i, (1 2. 67— B))?
A<QR7>) = A+(Q%>) = (k:—h)2 +\U 5,0, 2
Then, applying these inequalities we get
~ R R Cfll/2 1 ~ R ;. ~ RyE=L [~ R A A R - oA
u+(k’,§,0,’l"—§)<f_7: (k h)L_l U+(h;§,9,7"—§) ® qu(kaf?e;r_j)‘i’uﬂ"—r(u’kﬂ",a)
011/2 1 ~ R j.=  Ry&E=1 [~ R ) R pf 5
<f—f(k—h)“%lUJr(h;f’e’T_i) (U (s 5,057 — 5) + " (us s 7 0)
e S N S N
(57) SFoT (k—h)"~ Up(hs g, 0:7 = 5) = |as(hs g, 057 — 5) + 0" (us by 7 0)| -

Consider the following choices: for n € N, kg € R and a fixed d we define

1
/ﬂnlzko—i-d(l—)/‘k‘o—l-d
R R

TW\*’
1
=g (1 w) 2
0

h(wo, R)R? /' 5 Bhlxo, R) R?.

Ty i=

Op =
Notice that (for these choices)

2(rp —Tpg1) =Tpn—1—Tn -
With this choice of 6, (and since B h(xg, R)R? = sy — tg = s since we are supposing tg = 0) we
have that s
On = 0y B h(zo, R) R =0, 55 52
With this choices we define the sequences

— . R . R — - . e
U: = u—f—(km 57‘9717 Tn — 5) ) w;— =T (’U,, ks T gn)

N

N
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and show that with the particular choices just made above the sequence (uy), is infinitesimal.
To get that it is sufficient to observe that from (57) and using

T+l in the place of 7, On+1 in the place of 0,
Tn in the place of 7, #,, in the place of 0,
Tr_1 in the place of 7, 0,—1 in the place of é,
knt1 in the place of k&, kn_1 in the place of h,
we derive
[ gnrnEt
(58) Uiy < Op 2" e (up wyt ) (un ) w nzl,
(3d) =
where Cy = /1 /R = v/" (1 + B)1/2B 2% (27 + 8)1/2. Setting
k—1 glta
o = PR C+3ada’ b:21+a7 yn:uzv En:w;'
(58) becomes
TJLF—Q—I cb™” ! ( Up—1 +w’rJLr 1) (qu_l)a’ nz L.
In particular we get
2
iy < 0P (ug, +wd) (uh)*, n>0.
Now notice that (u;}), is decreasing. Then, using Lemma 2.19, provided that
glray Ve, 5 12y
(59) uf < <c+ gada) 2 A E = 3d(Cy) T 4T e L
that is
1/2
— ko)3 puy dadt + // —ko)3 Ay dwdt) <
<\M|A QE) //Q%E/Z/f QB’ Q% Efiﬁ?

—_2_1 4
< 3d(0+) a a a2 7

we get that the subsequence (ugy,)y is infinitesimal and since (uy, )y, is decreasing we finally derive

R 1
li = ko +d; = =
(60) notoo M < 0+, 2) 0

where

~ 2
(ig-(1; 0,9))" : (U+(l 0,9;0))
+,u+da:dt+ QB> // (u—1)2 )i Ay dxdt .

\MIA QR> //Q
2

In a complete analogous way, if u—(Bgr) > 0 and taking s; = top — 3 h(wo, R)R , one can prove

that
// (u— ko —d)}p— dwdt = 0,
(61) Q%‘;I}/Q,l/z(:ﬂoio)

(u—ko — d)2\_dzdt =0,

Qzﬁa’;z_a/2,1/2(x0’t0)

Rg'ﬂ
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where Q%;;%/z,1/2(x07 to) = Br(z0) x (to — B h(zo, R)R%, tg — 3B h(zo, R)R?), provided that

1/2
<|M‘A Qf3< //VB_R/2 7]{30 +/L dxdt + Qﬁ7 //B—R/Q *ko A d;pdt) <

R;R,0 R;R,0

< 3d(C- ) —o ozl ,

where C_ = C, = 711/'{ B2 (2 + 8)1/2.
The proof regarding the part in which p = 0 is slightly different and we show it. We define

R? R?

o1 = t0—7, o9 ::to—i-? so that o9 — 01 = R2

Moreover we suppose that
)\o(BR) > 0,

otherwise there is nothing to prove. We consider r, 7,7 € (R/2, R) as before. Consider a function
¢ € Lip.(B5(z0)) (independent of ¢!) such that

(=1 in QR R —3 (x0), (=0 in (BR(xg) (01,02)) \Q?;;i (z0),

7570'170-2

1
0<¢<l, [D{<—:.
F—r
We moreover define
P
AV (ks pyo1,02) = {(z,t) € QRMI o (@0) |u(z,t) > k}.

Then we proceed in a way similar to that above and estimate (A\(Bg))~! foO,rfR/Q (u —

k) Adzxdt using first Corollary 2.11 with ¥ = v = w = A. One has (we write QRp51 s, O

mean QR;p;517S2(x0))

/ / — k)2 N dadt < — k)2 Ao dadt <
w5 o Kaboves Wit
1
(AO(AOT R/Q(k;R/Q;Ul,Ug) o o
= B //Or R/2 k)?l- ¢ odrdt| <
()\(BR)) ® R QR R/2;01,09
JT—R —1
< (A (A(I)% /2(k;; R/27O'1,O'2))) 2/K Rz/ﬂ 1
(A(Bg))"% A(Br)
k—1

. _ )2 ) _ 2

|-



A HARNACK’S INEQUALITY FOR MIXED TYPE EVOLUTION EQUATIONS

Then using the energy estimate (43) we get

//QO,fR/z ID((u—k)+C)[PA dadt <

R;R/2;01,09

S 2//@30va/2 [|D<u — k)+[2¢ 4+ D¢ (u — k)ﬂ Adxdt <

R;R/2;01,09

1
< 2//620,;_R/2 [ID(u — k)4 + e (u— k)i]Adxdt <

R;R/2;01,09

< 27[ sup )/R/z’mm(u— k)3 (2, t)p— () do+

tE(O’1,Ug

+ sup /R/QT R/Q(u — k)% (z, )y () do +

te(o1,02)
// — k)2 Adxdt |+
r — r 0,7—R/2
QR iR/2;01,09
2
= //QOTR/Z w— k)2 Ndadt .
R;R/2;01,09

Then we have, dividing by o2 — o1 in both sides,

2
- <
( 2_0'1 BR M?Or R/2 k)+>\0dl'dt\

R;R/2;01,09

K—1
(AO(AOT R/Q(k R/2; 0'1,0’2))) " o RYE (02 —01)

(02— 01) % (MBr))~ n (09 — o1)* (02— 01)A(Br)

[ sup / (u— k)% (z, )Mo (z)do+
te ( )F R/2

(01762)

(62) +2y sup /R/zT s (u— k)% (z, t)p—(z) do+

te(dl,ag)

_ 2
+27te(8;111;2)/RmR/2(u k)i (z, t)p (z) do +

2'y+8 2
77 //QOT s — k)L (A + M) dedt +

R;R/2;01,09

2
748 // (u— k)2 No ddt| .
r—r QOr R/2

R;R/2;01,09

Now defining

(ﬂo(l?PQE;Ul,UQ))Q - CENT //Q (u— l)i)\o dxdt

Rpal o9
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for e € [0, R/2),

(W (us ks 7)) = (2 ?;Q?BR) ~ te(s;&)/( 2)Mw(u — k)2 (2, ) Mo (2)da+
" te(sﬁ?o—g) /Iéz/?’f‘R/? (u— k)3 (2, t)u—(2) do+
" tesili,? /R/zr oy (U= B)3 (@ g () dar | +
(0'2 — 01)\(BRr) //Q%TR/IZ/jl . — k)3 (Mg + A2) dadt
and for kK > h
Ao(A%(rJQRfS?)f(/;:;—l,0'2)) < ¢ —1h)2 (ﬂo(h; %;f _ %; 1702))

and since o9 — 01 = B R? we reach

n'" B R (27 +8)

k=1
k=1

(k—h)= r—r

: [wf_’:(wk;f) + g (ks &5 7 — %;01,02)] (iio(h; &7 — B 01,09)) 7

do(k; &yr — By 0, 00) <

r—1

. [wf—f(u;k;f’) +ﬂ0(h;§;’f - %01702)] (to(h; %372 - %;01,02)) "

As done before, consider the following choices for n € N, kg € R and a fixed d:

1 R R R
/ﬂn::k’o—i-d(l—)/‘k‘o-i-d TnZZE‘Fﬁ\E,
and define the sequences
ud =t (kp; %; Ty — g; 01,092), WO = W T (s k1)

Making the following choices in (63)

T+l in the place of r, ry, in the place of 7,
Tn—1 in the place of 7,
kni1 in the place of k, kn_1 in the place of h,

7B (2 +8)1? (2%
(3d)"

N
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and then, similarly as before, we derive that

lim u) = (k0+d;};;0’1,02> =1 (k0+d;};;0;01702> =

n——+00
1/2
! / 7 (u — ko — d) N dadt 0
= u — —_ xXT =
(02 = o0)A(BR) Jo /g, v

612 —Tr+2

1 K
uh < 3dvy, "t [3_1/2(27 +8) 2=-D 2 (x-1)?

provided that

Now we continue and conclude this section showing that u is locally bounded in 2. In Figure
B, supposing only x> 0 and p < 0, the sets involved in the stimates of points i) and i ).

Theorem 5.1. Suppose u € DG(Q, T, u, \,7y) and consider (zo,tg) € Q@ x (0,T), p > 0. Then
there is a constant co, depending only on 7,71, K, 3 such that:

i) for every Br(zp) X (to,to + B h(wg, R)R?) C Q x (0,T) if pus (Br(zo)) > 0 we have

11/2
1 2
ess sup |u| < e // w? g dxdt + N // u‘Ay dxdt|
Q22 1M QB’ Qo QY S Jagne ]
ii) for every BR(xo) x (to — B h(zo, R)R%,tg) C Q x (0,T) if p_(Bgr(zg)) > 0 we have
11/2
ess sup |u| < ceo // u?p_ dacdt+ // wA_dxdt|
Qa2 1M IA [MIAQ% ) /ot ﬁ’ ek

iii) for every Br(zo) X (01,02) C Q2 x (0,T), 02 — 01 = RQ, if Mo(Br(zo)) >0

1/2
1
esssup |u| < e // u? o dzdt .
By x(91,02) (A(BR x (01,02)) JJQuH?2

R;R;01,09

Proof - We prove the first point, being the others very similar. By (60) we derive that

esssup u < kg +d
QR;R/Q,l/z

and d has to satisfy (59). For example we can choose
2 1
d=2(C.)n 3 ataztlyd,
By definition of u('{ , defining the quantity

d 2 12, 2 1.(1 ) 302 3n 11
= = 2 (0yyh ab bt 2 2 BT (o gy
Ug B2(--1)

choosing ky = 0 and estimating ui by u? we finally get

1/2
ess sup u < Coo w?py dedt + ——— / / u? Ay dxdt .
B+ <]M\A QR // B+ R/2 + A(Q ) Q%;Eg/z +

QRR/2,1/2 QR.Ro
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Since the analogous argument can be applied to —u we have the first claim. The points i) and

ii1) are completely analogous: the only difference is that the constant ¢, in point i) is the
1 « 6%277N+271
same as in point i), in point 777 ) is 371yt B2 (8y +2)2G-D 2 D2 T O

REMARK 5.2. - Notice that from points ¢) and 4i) it is not possible to derive a pointwise (in
time) estimate: indeed letting 3 go to zero the constant ¢, goes to +oc.

Also in point 447 ) we cannot obtain a pointwise estimate because oo —07 = BR? and the constant
Coo depends on f3.

Nevertheless one could obtain a pointwise estimate if Br C € using (46) and Theorem 2.9.

The local boundedness for a function in the class DG is immediatly needed in the following
section.

(fo,to)

Figure B

6. EXPANSION OF POSITIVITY

In this section we will see many preliminary results needed to prove Harnack’s inequality.
In what follows we fix the following points and sets: given three points (x°t%), (x°t°), (z*t*) €
2 x (0,7) in such a way that

QB (2%1°) = Br(a®) x (°,53) C Q2 x (0,T) where s = t° + B° h(2% R) R?,
%O’<(x°, t°) = Br(z™) x (s1,t°) € 2 x (0,7T) where s = t* — B° h(z*, R) R?,

* % * *
W (2% 1) := Br(a*) x (s},s3) C Qx (0,T)  where s] = t* — ?RQ, sy =1+ ?RQ,

with 3¢, 3°,* > 0.
We recall that, thanks to the results of the previous section, a function belonging to the De
Giorgi class DG is locally bounded.
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Proposition 6.1. Consider three pomts (2% t°), (x°t°), (X t*) € Q x (0,T) and p € (0, R).
Suppose Q%Q’>(a:°, %), QR ‘(2 t°), QS“S2 (x*t*) are contained in Q2 x (0,T). Then for every
choice of 6°,0° € (0,1) and a,o € (0, 1) there are
v° € (0,1), depending only on k,v1,7,a, 6°, B°,

€ (0,1), depending only on k,v1,7v,a, 6°, B°,
v* € (0,1), depending only on k,v1,7,a, (R — p)/R, max{1,1/p*},

€ (0,1), depending only on k,v1,7,a,(R—p)/R,
such that for every u € DG (Q, T, u, A,7y) and fivred m,w satisfying

i)m > BUD G0+ ooy Uy W > osc  u we have that if py(B,) > 0 and

QRiRo(et?)
M, (A}) A
[MIAQF (@0 1)) QY (25,1))
where A = {(,t) € QRRO(.TO, t°) |u(z,t) > m — ow}, then
u(z,t) <M—aow for a.e. (z, t)EQRpeo( z%t%);
i1) T > sup wogoy Us W > 0sc u we have that if u—(B,) > 0 and
Urimo(r5t?) Qio(#°) ’
M (A7) Ay
[M[A(Q% (x5 1°))  AQF “(2°1°))
where Ay = {(xz,t) € Q;;;_RO(:L‘O, t°) |u(z,t) > m — ow}, then
u(z,t) <M—aocw for a.e. (x,t) € Q;’; 9o (25°) 3
100) T = SUP o s U, W= 0sc u we have that if \g(B,) > 0 and
) pQRl 2 (xrtr) Bpr(z*)x(s},s3) / O( p)
Ao(AD) < 7% AMQH™ (2% 17)
0 _ 0 * gk =
where Ay = {(z,t) € QR;R,s;,sg(x %) |u(z, t) > m — ow}, then
u(z,t) <M—aocw for a.e. (x,t) € QOR;p’S?{% (x*t%);
i) M 2 suppg, oy Ul 1), w=> Bo?c )u(-,t) we have that if Br(x*) C Qo and
R(z*
A{z € Br(z*) |u(z,t) > m — ow}) <V AN(Bg(z"))
then

u(z,t) <mM—aocw for a.e. x € B,(z¥)
for a.e. t € (s],s%).
REMARK 6.2. - The requirement 4 (B,) > 0 in point i) (and analogously p—_(B,) > 0 in point

i) and \o(B,) > 0 in point 444 ) is not technically needed, for the proof it would be sufficient to
have p4(Bg) > 0. We require it just to give a meaning to the thesis of the theorem.

Proof - We prove only the first claim, being the other similar. Often we will not write the
point (z%t°), just to simplify the notation. First of all fix a,o € (0,1) which will remain fixed
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for all the proof. Choose 6° € (0,1) and p € (0, R), assume that p4(B,) > 0 and consider the
following sequences (h € N)

pon=p~+e"(R—p), 0, = 6° — 2h9°

where ¢ € (0,1). We require that (65,1 — 0,)R? is to be equal to (pn — pri1)? (as required in
Definition 4.1 and in the proof that a Q-minimum belongs to the De Giorgi class, see (50)): we
derive that 6° has to satisfy

<>:1—€(R—p)2
1+ RZ

(65) 0

Referring to definitions (39) we will consider
xo = 2°, to = t° sy = s5:=1t° + B h(z% R)R?,

but we will often omit to write them just to simplify the notation. Now we moreover define, for
h €N and a,0 € (0,1),

By, = Bﬂh (xo) )

o0

0n =Y (pj—pj+1) =pn—p=2"(R—p) 0,

j=h
Qf = QB?a"‘vﬂh_p(xO, )
(66) h R7p70h
LF = (I (a°))n,
op=ao+e"(1—a)o \ a0, kn=m-—-opw /T —aow,

Notice that

Qi1 CQy s Al C Ay,
pr— ph1 = (1 —e)e"(R —p),
Ony1 B h(z® R) R? — 0;, B° h(z°% R) R% = 6°(1 — £2) €2 B° h(2®, R) R2.

In the next picture we show some possible Q; marked by dashed lines, while the one marked
by longer lines is the limit set (for h — +00).
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3 w<0orpu=

—p P

Figure C

First of all notice that since

(kpa1 — kp)2 My (A h+1 // (u — kp)? )4t dxdt < //Q (u — kp)? )5 pg daedt

h+1 h+1

h+1

and kp+1 —kn = (1 —a) cwe"" we can estimate

(67) 52h+2 (1 _ a)20_2w2 M+(Ah‘;;13 = // u _ k:h +/_L+ dxdt
’M‘A( R ) |M’A QR Qh+1
Similarly
A (A
(68) 22 (1 — a)20%w? +(Ani) < (u— kp)3 A4 dadt .
Be,> +
A( R ) Qh+1

Then we can argue in a completely analogous way as done to obtain (55) and (56). Taking in
(55)

Ph+1 =T, Ph=T, Ph_1 =T, p in place of R/2,

(69) ) )
Ohi1 =10, Op =10, Op—1 =10, kn =k,
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we get (the only difference with (55) is that 2(pp — pr+1) # pr—1 — pp, unless € = 1/2)

(u — kp) +u+dmdt
|M’A QR M2 Q%) //Q

- 1+p3°  2vy+2
ny/m R2 : Y
(Bo)x (Pn — pr1)?

= (u—kp) da:dt—i— 5 // (u— kp) 2\, dxdt +
[!M\A S //Q h+,u+ B or h +
Q — // u—kh)i()\o—i—/\_)dxdt—k
R I t082)

70 sup / (u—kh)i(x,t)\u\(a:)dx].
AQE?Y tewess) J1

+ (pn — prs1)?

Now since (here we use o, < 0)

// (u— kp)%pg dedt < My(Af ) sup (u—kp)? < My(Af ) (ow)?,
Q- Qi1
/ / (1 — k)2 Ay dadt < Ap (AT ) sup (u—kn)? < A (AT )(ow)?,
Qr Qn_1
by the above inequality and by (67) we get
M (Af,) /" R? L+ pe 2v 4 2

]M\A(Q%O >) T e2ht2(1 — a)202w?2 (Bo) (1 —¢)2e2h(R — p)?

< <o O-(JJ + < (O'W)2+
M| (Q 2 ) IM[A(Q% ) AQYE)

+// (u— k)% (Mo + A=) dwdt +
MQY Y M xess)

R — p)%(1 —g)2eg2h
PO [ il @)
AQR ) te(to,s9) J I,

Now defining first

M, A
Yo i=Yp Y, Whereyy = ———5— and y; =
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and, since (u — kp,)% is bounded by (ow)? and estimating

e/ :
_ (u — kn)2 (o + A-) dwdt +
aQwQA(Q‘; ’>) I x(t9,53) + )

— )2(1 — £)2:2(h—1)
(R—p)*(1—c)% sup /+<u_kh>i<x,t>w<x>dx<
Ih

02w2A(Q§;’>) te(t0,3)
o (Aot ALY (I % (% 53)) N (R—p)%(1 — )22V |u|(1;1)
AQY) AQY)

defining also

(Ao + A )Ty x (°s5)  (R—p)*(1 - e)? V| (1)

€Ep 1= 5 o
AQE) AQE™)
we first get
R R2 (2 +2) 14 p° 1

M MyE=L o M A
S ot - PR (oyt 0 ()T Wi Funa e

Taking (69) in (56) we can argue in a similar way to estimate y,jl\ ', and get

2/K p2 o
Ao N AyE=L o M A ‘
yh+1 X (1 IR (I)Z(]_ — 5)252(R — p)2 (BO)% €4h (yh) [yh—l yh—l Gh—l]

Summing the two inequalities and since the sequences (y,iw )b, (y,?)h are decreasing we finally get

2/k 2 <o —
v TR (2y+2) 14+p° 1 =
< - K +
yh+1 X (1 )2(1 5)252(R )2 ( O)i 54h yh_]_ (yh—l eh—l)

for every h > 1; then, for instance,

2/K 2 o _

v "R% (27 + 2) 14+p° 1 =t
< = .
) S T Q)21 — (R P (goyf oo vk (et em)

Using (65) to write R?/(R — p)? and Lemma 2.19 with

eyt 14t k-1, 1
(1 —a)2(1 —e2)eb 9 (poys’ ok g8
(1-a) (B°)

we derive that the subsequence (yop,)n of even indexes, and in fact the whole sequence (yp)p
since (yp)n is decreasing, is converging to zero provided that

My(AD) | AAd) _ ((1 —a)2(1 - %) 5 9°(B) ) R
IMIAQY7)  AQY) % (1 + B0) (27 +2)
By the definition of A; we have that

Qf = Qg;’oj%’R_p(xQ, %) and Af ={(z,t) € Qf |u(z,t) >m —ow}
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but we can consider

Aar:{( )EQR’Jr (SU to }U(l‘,t)>m—o'w}:
= {(@.t) € B (x°) x (t5¢° + h(z*, R)R?) | u(z, ) > 7 — 0w}

since we will consider the measures M and Ay of this set. Then we have derived that
w(z,t) <M—aow for a.e. (z,t) € QRpeo(xQ, t%)

provided that

M(A3) A4 _ o
IMIA(Q%7)  AQ%?)

where

yo:<cL;@%1—e>69%B%i>xlgéﬁb.
" (14 B°) (27 +2)

In a complete analogous way: fix a point (z°¢°) such that p_(Br(z°)) > 0. One gets that
taking the same values as before for p,a,o and 6° € (0, 1) there is 7° > 0 such that if

—0

Mo(A7) A _
MInQE) T A@E )

where the ball Bg is centred in £° and

A5 ={(@,t) € Qg™ (@5 10) |ulw,t) > - 0w}
v = <(1 _261)2(1 — )t (5°)i> - R ;
VR4 B) (27 +2)

then
w(z,t) <M—aow for a.e. (z,t) € Qg;)_go (x°,t°).

Finally we analyse the part in which p = 0, which is slightly different. Fix a point (z* ¢t*) such
that Ao(Bgr(x*)) > 0, consider kj, and oy, as in (66). Arguing as done to obtain (62) and taking
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in (62) for k,r, 7,7 the same values as in (69) and for o1, 02 respectively s} and s5 we get

— kp) 2 Nodzdt <
A(BRX s7,55)) //Q (u h 0 4¥

2 42 (o(4))F
(1= 2262 (R— p)2 (A(Bp x (57, 55))) "

1
A(BR x (s7,83) //0 (u_kh)i)\odxdt+
1 2

(u —kp)2 (A 4+ A dedt+
A(BRx (st,s3)) // _ x(shsh) S+

(1—e)**"(R - p) / 2
sup u—kp)Z(z,t)Ao(x)dx
A(Br x (s1,53))  te(st.s3) (th)ph,p( S

(1= <P (R~ p)?
J

K =1
<AHF (BN R?

(u— k)% (2, )i () dart

0
h—1

+ sup
A(BR X (5){73’2()) te(sy,85

(1— )" (R— p)’
+ )Z

sup

u—kp)? (z,t)p_(z)dx
ABr < (55, 58) scoinp Jy 7 B0

0
h—1
where
Iy = (L) (@) P\ I, (")
Qh - QR’pph,slesQ (Jf 7t*) )
Ap = {(z,t) € Qh |u(z,t) > kn}.
Since, as for (67), we have

Ao(AY ) 1
2h+2 2 2 2 h+1 < —k 2)\ dadt
N @0”’Awa@p%»\Aumxw;%»/éo“L n)3Ao dadt

h+1

// (u— k)3 Ao dzdt < Ao(A)_y) sup (u — kp)? < Ag(A)_,)(ow)?,
Q) _ Q1

we derive

2/K fpx\E=L 2 _
7B RF(2y+2) 1 st

where here we have defined

Uy = Ao(A7)
"~ A(Br x (s7,53))
1
= Ar +A)I0_, x (s%, s5)+
€h A(BRX (8’1(,8’2()) ( + )( h—1 ( 1 2))

+ (R pP(1- )% Qh(Ao«BSh)%f’>+rm<12_1>)].
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Arguing similarly as before we get that y; tends to zero, that is
u(z,t) <M—aow for a.e. (z,t) € QOR;MT’S; (x% %),

provided that

Mo(4)
A(Br x (s1,58)

AN

where

g [P epe (@ T
’71/NR2 (27 +2) B

Notice that (y; > 1)

K

_N2(1 _ ~\2 .6 N2 | k-1 2
[(1 a>2/<: e)2el (R p)] T 1
v TR (27 +2)

and to garantee 7* < 1 for every choice of $* (say less than 1) we can choose ¢ in a suitable
2

8K
way. For example taking € in such a way that e (=-D? /3* = 1/2, i.e.

2
Bt (=)
= (%)

we have 7* < 1 and we get rid of the dependence of 1/f* for * small.

For the last point we can proceed as follows: first notice that Bgr := Bgr(a*) C Q. With the
same kj, and pj, as before we consider By, := B,, (*), define the sequence of test functions

1 in Bh+1 1
: Bp — [0,1], = : Dép| s ———
Ch: Br—[0,1] () { 0 in Br\ By DG Ph — Ph+1
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and for almost every t € (0,T") we define Ay, = {x € B, (z*) |u(x,t) > kj}. Using Theorem 2.5
with 2k in the place of ¢ (see also Remark 2.6) we have

AMAp+t1) 1
1 — a)%02w?e2(h+D) BRYAPS / uw—kp)% (z, )\ (x) dz <

<y [ @ B G @AE) o <

A(Br) /B,
e -
<(3a) ™ S [, ot
<(329) B e N LR
B AT RN

+ W/Bh(u — kh)i)\d:c] <

s (i((gz};))) N igf; (R 1521(1 o) /BM(“ — kn)3 (2, ) M) dar <
<2PR g _7521(1 o (%g;;))w"l .

We can conclude similarly as before using Lemma 2.18 and provided that

AAo) {(1 —a)?(1—e)?e8 (R - p)T o 0
A(Bg) Y R? (27 +2)

Proposition 6.3. Consider three points (z°t°), (z°1t°), (x*t*) € Q x (0,T) and r € (0,R).
Suppose QRQ’>(x°, t%) Q%O’<(3:°, t°) ;{,55 (x*,t*) are contained in Q@ x (0,T). Then for every
choice of 6°,0° € (0,1) and a,o € (0,1) there are

© € (0,1), depending only on k,v1,7,a, 6°, B°,

€ (0,1), depending only on k,~v1,7,a, 6°, B°,

€ (0,1), depending only on k,v1,7,a,(R—r)/R, max{1,1/p*},

v € (0,1), depending only on k,v1,v,a,(R—1)/R,

such that for every uw € DG_(Q, T, u, A\, y) and fixed m,w satisfying

X

RR IR
* O

i)m< ianﬁo,+ (wogo) U W > osc u we have that if pu4(Byr) > 0 and
AR08 om0 (01°)

M (A7) Ay (49)
MIAQF(2512)  AQE (%))

< e

X VY,
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where A = {(,t) € Qggo(xo, t°) |u(z,t) < m+ ow}, then

u(z,t) >2m+aocw for a.e. (x, t)GQRroo(mo,to);
i) m < me;;O(MO) u, w= .. 08¢ uwe have that if u—(B;) > 0 and
QR;’Ry()(x )t )
M_(Ay) A_(4y) o

<v

[¢] + o N Z
[M[A(Q “(z51°))  AQF “(2°°))
where Ay = {(z,t) € Q;;_Rﬁ(xo, t°) |u(z,t) < m+ ow}, then

u(z,t) >Zm+aocw for a.e. (z,t) € Q. 4o (x°1°);
i1 ) m < inf ox u, w>= osc u we have that if \o(B;) >0 and
Q 1 2( *t*) ST’SE
Qr’ ?(zxt*)
Ao(A]) < v AMQ™ (2% 1)
where A) = {(z,t) € QOR;R,s;,sg (x5 t*) |u(x,t) < m+ ow}, then

0 :

u(z,t) >m+aocw fora.e. (z,1) € QR gr o5 (5 17) 5

iv) m < infg, e u(,t), w> Bo?c )u( t) we have that if Br(x*) C Qo and
Rr(z*

)\({$ € Br(z™)|u(z,t) <m+ aw}) < v AN(Bg(z"))
then
u(z,t) >m+aocw for a.e. x € By(x*)
for a.e. t € (0,T).

We now need some results which are preparatory for one fundamental step in view of proving
the Harnack’s inequality, Lemma 6.7, which is usually referred to as expansion of positivity.

We define, for a fixed point (7, 5) € 2 x (0,7") and a fixed h > 0, the sets
A (5.5) = {z € B} (§) |u(z,5) < h},

(70) Ay (9,5) = {x € B, (9) [ u(z,5) <h},
A p(5:5) = {z € B)(g) | u(x,5) < h}.

REMARK 6.4. - Observe that the condition u(x,5) > h for every € B,(y) implies that
Anap(¥,5) C Bap(y) \ B,(y) and then in particular, if w is a doubling weight (c,, denotes the
doubling constant of w), one has

W(AhAp(x*at*)) < W(B4p($*) \ Bp(x*)) < (1 - 052) W(B4p($*)) .

In our situation this holds for |u|y, thanks to (32), but also for p4, p—, Ag thanks to the
assumtpion (H.4).
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Lemma 6.5. Given (z*t*) such that By,(x*) C € then

i) if Mo(Bap(z*)) > Xo(Bp(z*)) > 0 there exists n € (0,1), depending only on q, such that for
every t € (0,T) we have that, given h > 0 and u > 0 belonging to DG(Q, T, u, \,~y) for which
the following holds

u(z,t) = h  a.e in Bg(a:*),
then
1
a2
If Bay(z*) x [t* — B h(z* 4p) p*,t* + B h(z* 4p) p*] € Q x (0,T) with B € (0,16] then:

i) if py (Bap(2*)) > py (Bo(x*)) > 0 there exists n € (0,1), depending only on v,q, and there

exists B € (0,B], depending only on v and B, such that, given h > 0 and u > 0 belonging to
DG(Q, T, u, A\, 7y) for which the following holds

)\O(Agh,4p(£v*,f)) < (1 —% ) )\O(ng(x*))~

u(z,t*y > h  a.e in B;'(x*),

then for every t € [t*,t* + B h(x", 4p) p?]
At *N < (1 L1 B (z%));

i1 ) if p— (B4p(x*)) > U (Bp(:v*)) > 0 there exists n € (0,1), depending only on 7, q, and there
exists p € (0, B], depending only on ~ and P, such that, given h > 0 and u > 0 belonging to
DG(Q, T, u, A, 7y) for which the following holds

u(z,t*) =2 h  ae in B, (2"),

then for every t € [t* — Bh(x*, 4p) p*, t*]

@) < (1= 55 ) e (Bl

iv) there exist n € (0,1), depending only on v and q, and there exists B € (0,p], depending
only on v and B, such that, given h > 0 and u > 0 belonging to DG (2, T, i, A,y) for which the
following holds

uw(z,t*) > h  a.e in By(z"),
then
1
a2

* — * * * 1
A (A (@5 D) U AT (0% 5) U A (05 1)) < (1 -5

) i (Bay(a))

for every t € [t*,t* + B h(x* 4p) p?] and s € [t* — B h(z* 4p) p?,t*].

Proof - First we prove point i3 ). Consider s1 = t* — Bh(z* 4p)p?, so = t* + Bh(z* 4p)p®. Apply
the energy estimate (44) to the function (u — h)_ with xg = a*, tg = t*, r = 4p(1 — o) for an
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arbitrary o € (0,1), R =7 = 4p, ¢ = 0. With this choice we have 7 — r = 4po. Then we get

sup /B (u— )2 (&, )us (2)dz <

te(t*,s2) Ip(l—o)(x*)

</ (u —h)? (z,t" )y (x)dx + sup / (u—h)2 (2, t)u_(x) de+
Bf (z*) te(tr,s2) JI{PHP7

Y 52 2
+// u — h)2 Adxds.
(4pa)? Jp ij(x*)uljpv“f”( )

Now, in addition to this inequality, we use the two following inequalities: first that in a set Ay, ,
we have that (u—h)_ > (1—n)h; moreover, since u > 0, (u—h)_ < h. Then, using also Remark
6.4, we get for every ¢ € [t*, sq]

(1 - 7])2h2/'5+ (A;rhAp(l_U) (:E*7 t)) <

< /A (u— B2 (, )iy () <

+ *
nh,4p(1*0)(x t)

</ (0= B)2 (2, )i () <

ip(1—a) (@)

‘ N o, b
< W2 g (Bap(x%) \ By(a®)) + h2u_ (177477 +

(4po)?

A((BI (@) UIP7) x (°,52)).

Using the following decomposition

AT, (at) = AT

Thdp ohodp(1—0) (z*t)U{z € Bzrp(z*) \ BZ;)(l—U) (") ’u(m,t) < nh},

and then the last estimate we get
(1= 1) (A7, 4, (2% 1)) <
< (1 - 77)2 [:U’-I— (A;;_hAp(l_g) (x*, t)) + Mt (B4p(x*) \ B4p(1fo) (IL’*))} <

(71) <t (Bap(x*) \ Bp(x*)) + p_ (I37%7) + ﬁ A((B (") ULP7) x (£, 5))+

+ (1= 0)?ps (Bap(*) \ Bap1—o) (™).
If the thesis were false we would have that for every B e (0, B] and n € (0,1) there would be
t € [t*,t* + B h(x* 4p) p?] such that

(1= 5 ) e (B) < s (A 407 0)

and then
) wi (B () <

< g (Bap(@*) \ By(a)) + p—(I377) + ﬁ A((B(a") UIEPY7) x (1, 59)) +

+ (1= 0)?py (Bap(z*) \ Bup(1—o)(x7)).
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Then taking, for instance, B = o2, letting o and 7 go to zero we would find the contradiction
(and here is needed g4 (Bap(z*)) > pg (Bp(z*)) > 0)

11
1- 22 puy (B ("

51 (B(a")) < s (Byla) .

In a way analogous to (71) we can derive for every s € [sq,t*]
(1 =) (A 4,(z%s)) <
< (=02 [l (A sy (859)) + 1= (Bay(@*) \ Baya—)(2)] <
(72) < (Bup(e)\ By(a?)) + i (I97) + L A (B (o) UT7) x (51, )+

(4po)?
+ (1= n)*u_ (Bap(z*) \ Bapr—o)(z"))

by which, again by contradiction, we prove point zm)

)) < g (Bap(2") \ By(a7))
4
<

Point i) is quite immediate. Since (u — (x,t) > n)h in Anh 4p(T” ,t) we immediately get

( ) hZ)‘O(Anh4p(1 o) IE Z))
<[ wemEepn@ <
A0 )
g/ (u — h)? (2, Do(@)de < B2 2o(Buy(a®) \ By(z*))
that is

(1= )220 (A%, 41 (@5 D) < wMﬂnmmwgcf;)%wMﬂ»

and then 7 is easily found.

Point iv ) is obtained simply summing and rearranging the previous inequalities. O

Lemma 6.6. Consider p € (0,16] and (x*t*) such that Bs,(z*) x [t* — B h(z* 4p) p*, t* +
B h(z* 4p) p?] C 2x(0,T), consider n and B to be the values determined in Lemma 6.5. Consider
k and T the constants appearing in (33). Consider u > 0 in DG(Q,T, u, A,v), h > 0.

i) If py (Bap(x*)) > py (By(x*)) > 0 and u(-,t*) > h a.e. in B} (z*)
then for every e > 0 there exists m1 € (0,7n), m depending only on v1,7,q, 6,77,(3 such that

My ({u < mh} 0 [BL %) x (5,0 + B p*h(a7,4p))] ) <
< e [Ma(Big(a) x (¢°,¢" + B ph(a’, 40)) ).
A+<{u < mh}n [ij(x*) x (15,1 + B p?h(a*, 4p))]) <

< ke A(Bap(a®) x (1,1 + B pPh(x74p)) )
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i) if p (Bap(z*)) > p—(Bp(2*)) > 0 and u(-,t*) = h a.e. in B, (x*) )
then for every e > 0 there exists n1 € (0,7n), m depending only on 1,7, q,€,n, B such that
M- ({u < mhy 0 [By(a%) x (¢ = B pha”, 4p).1)] ) <
< e [M|x (Bip(a*) x (¢ = B p*h(a",4p),8)),
A~ (fu < mn}n [By(a) x (" = B p?h(a’ 4p), )] ) <
< Ke' A(B4p(x*) X (t* — B p?h(z*, 4p),t*));
iii) consider p > 0 such that Bs,(z*) x [t* — B h(z* 4p) p?, t* + B h(z* 4p) p*] C 2 x (0,T): if
Ao (Buap(z*)) > Xo(By(x*)) > 0 andu > h a.e. in (BY(x*)x (t*—B p*h(z* 4p), t*+B p*h(z* 4p)))
then for every e > 0 there exists n1 € (0,7n), m1 depending only on 1,7, q,€,n, B such that
No({u < mh} 0 [BYe)x (" = B p?h(a",4p),t" + B p*h(a",4p))] ) <
<e A(B4p(m*) x (t* — B p*h(z* 4p), t* + B p*h(z", 4p));

iv) if Bsy(x*) C Qo and u(-,t) > h a.e. in B,(x*) then for every e > 0 there exists m1 € (0,7m), m
depending only on v1,7, q, €, such that for almost every t € [t*—B h(x* 4p) p?, t*+ B h(z* 4p) p?]

A({u < mh} N (Bap(z*) % {t})) <e /\<B4p(a¢*)>.

Proof - We first show point i ). Consider B and 7 to be the values determined in Lemma 6.5,
point i ). For simplicity, by f we will denote the quantity

(% 4p) = h(a*,4p) p*.

Now we consider m € N, 7 € [t"t* + Bf(:vj, 4p)] and o € [t* — Bfgx*, 4p),t*]. First of all
notice that for every t*, for every 7 € [t*,t* + B f(z* 4p)] and o € [t* — B f(z* 4p), t*] and every
t € (t* — ap®h(x* dp),t* + «p?h(z* 4p)) we derive, using Lemma 6.5 and since for m € N

it holds A;rh2—m74p(x*’ T) C A;;—hAp(LL’*,T), A;hQ_mAp(a:*, o) C A, (a%0), A2h2_m74p(a;*, t*) C
AghAp(:E*, t*), that if py (Bp(x*)) >0, u_ (Bp(a:*)) > 0, Ao(Bp(x*)) >0

1
g2 1 (B (") e (Bl \ A3 4,0 7)) € 1 (B0 \ Ay 45", 7)),

(73) 2; p— (By(2*)) < pe (B, (a) \ Ay, 4, (2%,0)) < pe (B (@) \ ALy 4, (27%0)),

1

2 Ao (ng(:v*)) < Ao (Bffp(:n*) \ AghAp(ZL‘*, t)) < Xo (ng(ac*) \AghQ,m’4p(ac*, t)).
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Again for simplicity, we define (since x* is fixed we omit it)

. . . . t*+B f(z*4p) N
D) = Ay g a7 i [ e (Af (7)) dr,
t*
Anl0) Ay gy @00 = [ (@) do
t*—B f(z*4p)
t*+o f(z*,4p)
) =M (), ai= [ No(AS, (£))dt.
’ t— o f (2% 4p)
A () ::Anh27m’4p(ﬂf*’ t), By, = By,(z"),
t*+B f(z*4p) t*
&= MA@t = [ M)
t* t*—B f(a*4p)

t*+o f(z*4p)
dyp = / MAp())dt.
1~ f(a*4p)

First we prove point ¢ ). Now we estimate from above and from below the quantity

e (Bl \ AL 0) [

[ (=) @@

2m
Using also (73) we get that for every 7 € [t* t* + B f(z* 4p)]

1 nh
2q2 o (Bip) g (A (7)) <

h
< py (B3, \ A;_1(7))%M+(A:@+1(T)) <

(BN AL ) [ (0 ) (e =
< e (BN AL () 2 (45()

that is we get that for every 7 € [t t* + B f(z* 4p)]

nh

(74) 2; 1 (BY) 2:,7%% (Am1(7)) < 1 (B \ A1 (7)) i (A (7)) -

Now to estimate the right hand side of (74) we use Lemma 2.12 in the ball By,(z*) with
k=mnh/2m, 1= nh/2m1 g =1, p € (1,2) arbitrary, w = A, v = |u|y (7 = puy) we get for every
T e (5t + Bf(z%4p))

nh

Ht (BQL \ A;rn—1<7))2*mu+ (A:Z(T)) <

1/
< 8vp M+(sz) |1[x(Bap) ] / |DulP(z,7) A da ’
h (A(Bap))1/? An(NAm(r)
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By this last inequality and (74) and integrating in time between t* and t* + Bf (z* 4p) we get

1 nh
2T|22m+16%+1<

* | Q * l/p
|1|x(Bap) /t +B f(z*4p) /
<8 — . DulP(z,7) Ad dr <
B, P S

* TI\Am(T)
1A (Bap) t+B f(ende) |Dul?(z, ) l/p(~ #( ))p;l
<8y p—~——~E / / DulP(z,7) Adxdr Bf(xz*4p)) » <
OB\ e A (D\ A ()

. b1 t*+B f(z*4p)
<m><8wp'”“&”(ﬁﬂﬁAM)p-<[ DMm1hD—M&Mﬂﬂm>

(A(Bap))'/P .
t*+B f(z*4p)
L
nh

Now we want to estimate the term in the right hand side involving the gradient of u — 55 and
to do this we apply the energy estimates (41), (42), (43) in some suitable subsets of

Bsp(a*) x ("= B f (2" 4p), t* + B f (2", 4p)).

t*+B f(z"4p)
to estimate the quantity / /
t* B4p

ing in (41) to = t* — Bf(z*4p), so = t* + Bf(z*4p), R=7 =5p, r =4p, ¢ = 0, § = 0 and

A h(xz%4p) .
9= ;fghgmg; in (41),

/t*+ﬁ f(w*,4p)/
t* ij

<y [/1+ (u - QZ@l)i(m,t* — Bf(a*4p)) py (z) da+

- 2m71

oh ) 1/2
D(u )_‘ (SU,T))\d:EdT> .

nh
mel

2
) ‘ (x,7) Adxdr. First we estimate, tak-

D(u—

2
) ‘ (z,7) Adzdr <

D(u ~ gmo1

ho\2
+ sup / (u - 22_1> (x,t)u—(z) dx+
te(ts, 4+ f(z%dp)) T 17" -

1 nh \? fit
— = _ <
+ 7 //Q"’”’ (u Qm_l)_(x,T) (h(x*, ) + A ) dedr| <

5p;5p,0
2 2
nh nh 50,
< ’Y[ <2m_1) /’L"F(I;;),p) + <2m_1> ILL_(I—‘,-p P)+
2
nh 1 M, 4
) S (A ) (@, <
“(71) 7 (e +4) @

2
ST <2:Zﬁ1> : [pz |14|(Bsp) + 2 X\(Bs)) 2 B f(z 4p)] .

2
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Then taking in (42) to = t* + 2B f(z*4p), sy = t*, R=7 = 5p, r = 4p, e = 0, # = 0 and

h(z%4p) i
= B sy n (41),

P f(x*4p) D(u— U}i Q(x’q-))\dxdT <
1 A, ‘ ( 2 1>_‘

<7 [/ (u - 2;71]31)2_(33715* + 2B/ (2, 4p)) () da+

nh \?
+ sup / <u — m) (@, t)py (z) dx+
et 4B flamap) J100 N 2T -

N // 22@1)2_(93,7) (MH) dxdT] <

2
nh _ nh 5p,
< 7[ <2m1> 'U’*(IE)P:[)) + (2m 1) 'LLJF(I_p p)+

() b (s + ) @sthoo >] <

2
ST (22h1) plz [p2 |11|(Bsp) + 4P A(Bs,) f(x, 4p)] .

Finally taking in (43) s; = t*, sy = t* + Bf(z*4p), R=7 = 5p, r = 4p, ¢ = 0 in (41),

/t*+l3 f(:v*,4p)/
t* BY ”

< 7[ sup / s
te(t*, t*+p f(z*4p)) /17"

nh_\?
+ sup ] (u — o ) (x,t) g (z) de+
te (s, t+p f(z4p)) /10" 2 -

t*+B f(z*4p) )
* 12/ / (u - n}i1> (z,7) Ndzdr| <
P Jer (ng)p 2m _
’I’]h 2 5 77h 2 1
<7[<2m> |l (157°) + <2m_1> —)\((B4p) ) B f(a" 4p)] <

B
nh 2 1
<7 (gamr) o [P 10I(Ba) + BA(Bs,) S 40)

2
MY () det
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Summing up we get

/t*JrB f($*74p)/
t* By,

ho\2 3
S 7(2;7“> /)12 [3,)2 |u|(Bsp) + 9B f(z*,4p) A(Bs))

D<u_ 272]31>_‘2<957T)>\da;d7- <

(76)

and so we can conclude, from (75), that

A (By ~ * p—1 2-p
m+1 < 647, 71/2q2M (Bf(%‘lp)) P -(d>_1 —d>) 2 .

(A(Bap))'/P " "
1/2
: [3p2 |ul(Bsp) +9B (27, 4p) A(Bs,)
Taking the power 22%’1) and summing between m = 1 and m = m* we have

2p

m 2(p—1)

Z 2 = < (647 ’yl/qu) (|M|>\(B4P)); ([3 fla*, 40)) 2p—p1 .
- (A(Bap))?-

_p
~ 2-p
: [3p2 |1 (Bsp) +9B f(%4p) A(Bsp) | (dg —dpye) -

2p

.
Since the sequences (a;},)men and (d;,)men are decreasing we can estimate >, (a)f )27

from below by m*(a +*+1) 5 and dy — d. from above by d} and d} by B f(z* 4p) A(By,) and
get

21 20 (|pl(Bay)) T 2-1)
(a7 41)77 < — (64my'2q%) 7 W(B f:x J4p))
- [3,02 (o) + 95 £ 490 A(Bry) | B S 49 M(By) <
< 7 (B 49) ™5 (B =
= Cm (M1 (Bigla®) x (86" + B, 49)))) 7

where C' = 64y17/2¢%/2(3 + 9 3)Y/2p~1/2, by which finally

2-p

0t <C ( 1) MIa(Bay(a®) % (¢,¢" + BF (2", 49))

m

2—
Then for every € > 0 one can find m* such that C/ m*Tpp < €. Then we consider

L [ 64y 223+ 9B\ P
me > [31/2

Ui

AL

and m =



A HARNACK’S INEQUALITY FOR MIXED TYPE EVOLUTION EQUATIONS 61

which depends on 71,7, q, €, B, 7.
Now by (33) we immediately get that

A+({u <mh} N [ij(x*) X (t,t* + B p*h(a*, 4p))})
A(B4p(a¢*) X (t*,t* + B p2h(z*, 4p))>
M+<{u <mh} N [ij(x*) X (t,t* + B p2h(a*, 4p))D
[M|x (Bapla®) x (1, + B p?h(a*, 4p)))

<

T

T
< Ke .

<K

In a complete analogous way one can prove point ).

Point #i7): the case where p = 0, as usual, is a bit different. Let us see a sketch of the proof.
Integrating between t* — B p>h(x* 4p) and t* + B p*h(x* 4p) and using Lemma 2.12 similarly as
before but with v = X and v = Ag|p, (,+), We get

2—-p

Lot o s p (M Ba) /t%w’@) MAm 1 () = MAm(t)] dt v
5 a7 1 0 L m— - m '
2q7 gt tm S ETL A t=—B f(a"4p) 1

—1 t*+B f(z*4p) 2
(2B f(z%4p) T / / D(u— Z’fl) ’(m,t)kdxdt
t*fﬁ f(m*’4p) B4p 2 -

Now estimating the part involving the gradient of u — 2 similarly as (76) we get

1/2

2m
bzt 00 ([ b))
2q2 1 mn S AN C / m—1(%)) — m( t .
2¢2 2m+1 +1 1Y 4p b F(z40) 1

1
2

(2B £(@%40) "7 (;fil) [302 |1l(Bsp) + 18 B f(x" 4p) A(Bs))

and proceeding as before we reach

1

agl*+l < Cl <7n*) N A(B4p(x*) X (t*_ Bf(x*a 4p)7t* + I?)f(x*a 4P)))

with C’ = 64v,7'/2q°/2(3 + 18 B)1/2(2B) /2. The conclusion is as before.

Finally let us see point iv ). If By,(z*) C Qg we have

1 nh 1 nh
ﬁ W)\(Aerl(t)) = qu W/\(Am+1(t)) <

1/p
<871 p (A(Bi)) 7 - / \DulP(z,0) Adx | dr <
A1 (O\Am ()
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Since Bs,(2*) C Qg taking 7 = 5p, r = 4p and € = 0 in (46), we get for almost every ¢ that

D(u — 22};)_‘2(37,0 AMz)dx <

1 nh \2 nh \? 1
<73 - < =
ST p* s, (u 2m—1>_($’ DA@) dr <y <2m—1> 2 A(Bsp)

2
and then A(Ap11(£)) < 64927172 (MAm_1(1)) — A(Am(1))) 2 (M(Bs,))"/>. By that we can
conclude similarly as above. O

Now we state a result known as expansion of positivity. It will be a fundamental step to prove
the Harnack inequality.

Lemma 6.7. Consider (z*t*) such that Bs,(z*) x [t* — 16 h(x* 4p) p*,t* + 16 h(z* 4p) p?] C
Qx(0,7).
Consider the value  determined in Lemma 6.5 and used in in Lemma 6.6. Then for every

6 € (0,1) there is A > 0 depending only on v1,7,4, K, B,é such that for every h > 0 and u > 0
in DG(Q,T, u, A\, y) points i) and ii) are true:

i) if pe (By(a*) > 0 and
u(,t*) = h a.e. in B;'(J:*)
then
u > Ah a.e. in B;p(:n*) x (¢ + 0B h(z*,4p)p* t* + Bh(aj*,4p)p2);
i) if p— (B, (x*)) >0 and
u(-,t*) = h a.e. in B, (z")
then
u > Ah a.e. in By (z%) X (t" + 0B h(x*,4p)p?, t* + B h(z*,4p)p 2).
Moreover for every B > 0 for which Bs,(z*) x [t* — B h(x* 4p) p*,t* + B h(z* 4p) p? X

p?] C Q
(0,T) there is A > 0 depending only on v1,7,q,k, B such that for every h > 0 and u > 0 in
DG(Q,T, u, A\, y) point iii ) is true:

i1 ) if Ao(Bp(z*)) > 0 and
w>h e in BY)(x*) x (t* — B h(z*,4p)p° t* + B h(z*,4p)p?)
then
u > Ah a.e. in ng(x*) X (t* — B h(z*, 4p)p* t* + B h(x*,4p)p2).

If Bs,(x*) C Qq there is A > 0 depending only on 1,7, q, &k such that for every h >0 and u > 0
in DG(Q,T, p, A, ) point iv) is true:

iv) for almost every t € (0,T) if

then
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Proof - The proof is a consequence of Proposition 6.3 and Lemma 6.6. We start from point
i): in Proposition 6.3 we consider m = 0, R = 4p, r = 2p, p° = B (the value determined in
Lemma 6.5 and used in Lemma 6.6 and belonging to (0, 16]), 6° and a € (0, 1) arbitrary; from
Proposition 6.3 we derive the existence of v® € (0, 1) such that if, for ¢ > 0 an arbitrary constant,
the following holds

M+<{u <} N (Bap(a®) x (5, + szh(:v*,élp))))
IM|x(Bapla®) x (¢, + B p?h(a*, 49)))
A+<{u <} N (Bap(a®) x (¢, + éth(:c*,sz))))
A<B4p(x*) x (1, t* + B p2h(a™, 4p)))

_l’_

SV

then
u>=ac in B;p(x*) X (t* + 6°B h(z*, 4p)p?, t* + 6h(w*,4p)p2> .

Now we use Lemma 6.6: consider n the value determined in Lemma 6.5 and used in in Lemma
6.6, take B = 16 and € such that € + k€* = v°® and conclude that there is n; (depending on
1,7, 4, B,n,v° and then on v1,7,4q, B, 7, K, a,d°, but n depends only on v and ¢) such that

M+<{u < mh} 0 (Byp(a*) x (8, + Bp2h(x*,4p))))
IMIa(Bapla) x (2,2 + B p2h(a%, 4p)))
A ({u < mh} 0 (Bagla) x (1,07 + BoPh(a”, 4p))))
A<B4p(:c*) x (£, t* + B p2h(a*, 4p))>

_l’_

<U.

Then

u>anh in B;;(x*) X (t* + 0°B h(z*, 4p)p* t* + Bh(:c*,élp)pZ) .
Taking 6 = 6°, a = 1/2 for simplicity and A = 7, /2 we conclude the proof of point ). In the
same way one can prove point point i ).

Let us see point point iii). In Proposition 6.3 we consider again m = 0, R = 4p, r = 2p,
p* = B h(z*,4p)/8 and a € (0,1) arbitrary. We derive the existence of v* € (0, 1) such that if,
for ¢ > 0 an arbitrary constant, the following holds

A0<{u < c} N (B4p(x*) X (t* — B h(z*,4p) p*, t* + B h(z*,4p) p2)>) <

< v A(Buyla®) x (8 = Bh(",4p) o2 " + Bh(2",4p) 7))
then
u>=ac in ng(x*) x (t* — B h(z*,4p) p*, t* + B h(z*, 4p) p*) .
Now in Lemma 6.6 take ¢ = v* and conclude that there is 71 (depending on ~v1,7, q, k, a, ) such
that
u>anh in ng(:z:*) x (t* = B h(z*,4p) P2t + B h(x*, 4p) ,02) .

Taking, e.g, a = 1/2 we conclude.
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To prove point iv) we consider m, R, r and a € (0,1) as above and use point iv) of Proposition
6.3. Then we get the existence of v € (0, 1) such that, for ¢ > 0, if

A{z € Byp(a*) |u(z,t) < c}) < v A(Byp(z"))

then u(x,t) > ac for a.e. © € Byy(zr*). Using Lemma 6.6 we conclude as above. O

7. THE HARNACK TYPE INEQUALITY

The following theorems (Theorem 7.1 and Theorem 7.2) are the main results of the paper.

Theorem 7.1. Assume uw € DG(Q, T, p, A\, y), u >0, (x0,t) € Q% (0,T) and fix p > 0.
i) Suppose z, € Qy UI. For every 94 € (0,1] for which Bs,(x) X [to — h(%o, p)p*, to +
16 h(wo,4p)p? + V4 h(z0,p)p?] C Q x (0,T) there exists cy > 0 depending (only) on
Y1, 9, Ky O K, T Kl, Ko, K37 q,s, 19+ such that
(2o, o) < cp  inf wu(z,ty + 9y p2h(20, p)).
B;’ To
ii) Suppose x, € Q_ U 1. For every I_ € (0,1] for which Bs,(x,) X [to — 16 h(zo, 4p)p* +
I_h(zo, p)p?, to + h(z0, p)p?] C Q x (0,T) there exists c— > 0 depending (only) on
71,7, 9, K, @, K, T, Kl, KZ, K3, q,q, J_ such that
w(zo,to) < inf u(z,ty —I_ p*h(z,, p)).
p (zo
iii) Suppose x, € Qo U I. Suppose Bsy(z,) X [to — 16 h(o,4p)p*, to + 16 h(z0,4p)p?] C
Q x (0,T). For every si,sy for which so —t, = t, — s1 < 16h(x,,4p)p?, suppose
s9 —to = to — 851 = Wh(x,,4p)p? for w € (0,16], there is co depending (only) on
Kl, K2a K37 q,S, K V1,7, W, h($0a 4p)7 q such that
sup u < ¢ inf U.
B;‘(:co)x[sl,sz] B;—(xO)X[SIaSQ}
iv) Suppose Bs,(x,) C Qo. Then there is ¢ depending (only) on Ki, Ko, K3,q,5,k,71,7, 4
such that for almost every t € (0,T)
sup u(-,t) <c inf wu(-,t).
Bp(0) By (o)
Proof - We start by proving the first of the three inequalities under the assumption that
B (x,) # 0. For some ri,r3 > 0 and (Z,) € Bsp(xo) X [to — h(xo, p)p?, to + 16 h(z0,4p)p* +
I h(zo, p)p?] C Q2 x (0,T) we define the sets

QL s @0 = (BL@) X [ = h(@ )t ), Q37 @0 = (BH@) x 1+ h(g,r2)r8))

We may write u(,,t,) = bp~¢ for some b, & > 0 to be fixed later. Define the functions

M(r) = sup  u,  AN(r)=blp—r)"¢  rel0,p).
Q+7< (xmto)

mh(zo,p)
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Let us denote by 7, € [0, p) the largest solution of M(r) = A((r). Define
N = (r,) = b(p —1,)"¢.
We can find (y,,7,) € QT (o) (%o, to) such that

3N

(77) 1

sup u< N
QL s h(yo,po )(yO’TO)

where p, € (0, (p —10)/2]. If po < (p —10)/2 then By (yo) C Bpiro (,). We want the value of
2
Po to be be chosen in such a way that

Q:o,< (Wospo )(yoaTo) C Qp+ro h(zo p)(xmto)

and the request p, < (p — 7,)/2 may be not sufficient. We also need 7, — h(y,, po)p2 = t, —
h(zo, p)(p 4 70)%/4 and this is guaranteed if

+7,)2
(78) h(Yos po)pz < (o, p) [(;;40) - 7“3} ,
which in turn is true, since rg < pro, if
2
p—r
h(Yo, o) Pl < h(2o, p) (o= ro)”

4
so we will choose p, satisfying these two requests. Notice that this last request can be satisfied

writing A (Yo, po) P2 = h(Yo, po) p2® ,00( ) because, thanks to Remark 2.7, point ¢, and (H.2)" we
have

h(Yo, o) P2 < K3 h(yo, 2p)(2p)*

- Biy(,))
< K2 |,LL|)\( 4P o 2p 2c <
2 A Bap(we) )
<4°K3 97 h(wo, p)p**

and then we have
h(yor po)py < A°K3 07 h(zo, p) o™ p3 ).
Then (78) holds if in particular

N _ 2
4aK22 q2 h(.fCo, )p2apg(l «) < h(!IIO,p) (P 47'0)
that is
1 1 p—
(79) plrog —— P2
20Koq p* 2

and it is always possible to choose p, small enough such that (79) is satisfied. Therefore p, will
be chosen satisfying

1
. Jp—1o 1 1 p—ry|l-a
80 = — — .
( ) Po mln{ 5 y |:2aK2q pa 2 :| }
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By this choice of p, and by the choice of r, we have

(81) sup u < sup u<9\[<p+%) = 2N.

+.<
Q 0.k (Yo, ﬂo)(yo’T") QP+7”0 h(zo p)( Zosto)

We now proceed dividing the proof in six steps.

Step 1 - In this step we want to show that there is 7 € (0, 1), depending only on k,~v1,7,&,q,
such that

({u >¥in on/2 N ympo)(yo,ro))

>V,
(82) ‘M|A ( po/g,h(ympo) (yOa To))
Ay ({u > Nyn on/g h(yo,pe) (Yo 7'0)> .
14
A (QS o1y oy Wor 7))
and that
(83) / |Du|2 )\d.ﬁEdt < 97 (25]\])2 h(yo,po) )\(Bpo (yo)> .
Qp— h(Wo,po )(yoﬂ'o)

To prove (82) first we show that there is v € (0, 1) such that

<{u > N} N QpO/Q h(yo, po)(yoa 7'0)) n Ay ({u >3 } a 00/2 h(yo,po)(yoﬂ'o))
| M| ( p0/27h(yo,po)(ycﬂ7—o)) (Q< /2,h(yo, pg)(yo,Ta))

Argue by contradiction and suppose that (84) is false. Since

(84)

>v.

+7< — o h O o o
5 s (00 72) = (B (00) % [r0 = oo ) 22508 ] )
+7< J— o h osFo o
8 h(yo,pe) Yo To) = (Bé (o) [TO b, ) (;53,,#/)2)%770}) ’

setting in Proposition 6.1

3
= w = 2N, R:%, p=Po 19761 a:al<1—>,

4 96+2
2
p R (Yo, po) 3
¢ — to = h o ¢ = 90 - -
x yO 9 (y07 po) 4 9 B h(yo, p0/2) ) 4 )

we obtain from Proposition 6.1 that

3N
T in on s h(Yo,p0) (yo>To)

N

u

which contradicts (77). Notice that B® € [q7',q]. Now by (84) we derive that at least one of
the two addends in (84) is greater or equal to v/2. Now we get (82) by (33) taking

_ 1 <u>i
v=— (=) .
K \2
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To prove (83) we use (41). In (41) we choose zo = Yo, to = To — h(Yo, Po) P2 R = po, ¥ = po,
r=po/2,e=0, le,Gz%,@z%,k—Oandsmceu 26N we get

// | Dul? N dzdt <
Q_‘p—é’(h

3T
52 h(yo,po) (yo O)

N2 s (T o () + @SN i (1% () +

2 ( H+ ) ]
Po U + M) dxdt| <
(yo)) N X [To_h(ymﬂo)pg/ro] h(yo, pO)

4 h(Yo, po)
AR [h(w) rins ((P500)

73(25N>2 1(Yos o) P2 N (Bpy (o)) -

Step 2 - The goal of this step is to show the existence of t € [1, — h(yo, po)%‘%, To] such that

ui ({2 € B (o) [u(a. ) > §})

v
> = )

]y (Bpo/Q(yo)) 2

+ + ) (Yo) ‘u x,t) > % -

(85) A ({ze B, e
( po/2(y0)) 2’

/ | Due, P M)dr < MY (g ny2 ABesWe)).
(Bl (v)) * v P2

To this aim we introduce the following sets (b being a positive number to be fixed later)

N 2
A+(t) = {x = B;O/Q(yo) u(zx,t) > 2} , t€[ro— h(yo,po)%’,To]

pr(AT() 7 }

(B, 2(v0) 2
/ | Dul@, t)PA(z)dz < b(25N)? A(BP;y))} '
(B*%(yo))v

Iy = {té[ — (Yo po) % 7o)

2
Jp = {t € [To - h(yov Po)%ﬂb] P
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Using (82) we can write

2 To +
_ P py (AT (1))
U (Yo, po)— < / dt =
° O) 4 To h(y07p0 5 |:u’|>\ (Bpo/Q(yO))

:/ p (AT (2 )) dt+/ ) pr (AT (1)) dt <
i [

b ‘M’A( Po/2 yo ) fr,,—h(yo,po)ef",7',)]\1+ |M|)\ (Bpo/Q(yo))
2

<UL+ 2 o o) 22

by which
2

Po
h(ym po) e

Jr
\IM\> 1

VAN

Now from one hand we have (83), on the other

2
/ / |Dul? \dxdt > b(sz)ZMB”"Q(yO))H — (Yo po) 22 To}\Jb’
[Fo—h(yospo) 2 o]\ J (B, <yo>>T Ps 4’

Then we get

36
|| = h ymPo) 1 <1—bry>-

Choosing b > 36~ this inequality is not trivial. Choosing, e.g., b = 144+ /7 one gets

5 V) = 1+ 1] = 15 U] > 2 b )2

»Mt\

Step 3 - Here we show that for every § € (0,1) there are n € (0,1) and y* € Bp /2(y0) n=

n(K1, Ka,q, K3,5,6), y* = y*(7,2°N, 7, K1, Ko, q, K3,5,6) = y*(7,2°N, £, 71,9, K1, K2, ¢, K3,5,6),
such that Bn%o(y*) C B;,:O (yo) and such that

(56) o ({0 < T} 0B 07) <5 Brg )

To see that it is sufficient to use the informations of the previous step and to apply Lemma 2.14
to the function 2u/N with w = A\, v = |ulx, e = 1/2, p = po, o = Yo, B = B:o/2(y°)’ 0= po/2,
a=1% f= @ (26N)? and we get

(o= T} nBe0) > 0- B 00)

which is equivalent to (86). Notice that n depends on Ki, Ks,q, K3,s, the constants of the
weights, 4 and not on the value V.

Step 4 - Here we show that an estimate like that of the third step can be established also in a
cylinder. Precisely we show that for every d € (0,1) there is T € B, Lo (y*), € € (0,1) which will

depend only on & and g, and s* = (£7 po/4)? h(Z,en’) such that (£,8,n, po as above)

87 M, <{u < Z} A (Buyes () x [+ s*])) <M, (Buyes (7) % [+ 57])
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Notice that Z implicitely depends on y* and ¢ and then Z depends on 7, 25N, k,v1, q, K1, Ko, q, K3,, 9, 6.
To see this we consider ¢ € (0,1) and a disjoint family of balls {B,, 2o (zj)}72, such that

B %(.Tj) C Bn%o(y*)) for every j=1,...,m, and

and define
s = (enpo/4)*h (Ij, 67}%) :
If necessary one can choose e small enough so that ¢ + s; <T. We apply the energy estimate

(44) to the function (u — N/4)_ in each of the sets Ban%)(l'j) x [t,t + s7]. Since Bn%o(y*) C Qy
we get

N 2
s [ (=) @0 <
tefti+s;] /B, pe (z;) 4 )_

N\? 16y [t+s] N\?2
< / <u - 4> (z, ) py (v)dz + —— / / (u - 4) A dzdt
Bsino(l’j) — n=po Ji Being(xj) —

and summing over j and using (86)

m N 2
> ow | <u—> (2, s () <
N2 1 tts5 N2
g/ (u—) (a:,ﬂqu(x)dw—FZQGZ/ 7 (u—) Adzdt <
B, og (")) 4)_ TPt B, ) 4)_

N2 N .
< Te Mt ({U(:ﬂ < 4} N By e (y )> +

— 1°p; 16
N? * o~ 167 N? 5 503 Po

< E5/~L+(Bn%o(y ) ;772(2)168 16 (95]75774> AN (Boyee (z5)) <

N2 . ,quQEQ
Sk E(”Mb\(Bn%’(y ))) + 16 Z ’M’/\(Bsn”—o(xj)) S

j=1

N2 2 *

<a75 0 +7) A (Byee (7))




70 FABIO PARONETTO

we easily get (for t € [t,f + s7])

2

/BE,,%O(:EJ) (u - %)i(x,t)HJr(aC)dx P /Bj(t) (u — g)z_(x,t)w(x)dx > %|M|)\(Bj(t)).

Now putting together these inequalities we get

]\Zﬁ;|M’A ({u < ]5\;[} N (Beyee (2) x [fa’?ﬂLS;])) S

Once 6 € (0,1) is chosen we consider ¢ and § in such a way that
496 +~e%) <6

and then we get

m N o e .

S IMla ({u < 8} O (Boyes () x [EE+ 5] ) 52 ]M]A< e (47) [t,t—l—sj]) .

j=1

Notice that s depend on € and consequently on the choice of 0. To find a cylinder, independent

of 4, in which the estimate above holds true notice that, whatever the choice of §, by the last
inequality at least one among the z;’s has to satisfy (87). We call Z that z; and s* := s¥

j .
Step 5 - Here we show that

N : - -~ (enpo)? Poy - (Enpo)® . po
= — .e. o —_— —_— —) .
(88) uZ 16 a.e mBenps(a:)x[t—i- " h(z 5774)t+ G h(m,5n4)
First notice that ¢ depens only on § and q. By (87) and (33) we also get
N = I r * * I r *
(89) A <{u < 8} N (Bgn%o(:n) X [t,t+s ])) < KOTA(Boyee (y') x [6,E+57]) .

Now we want to apply Proposition 6.3, so first notice that, by the choice of Z and p,, since u > 0
and by (92) we have, choosing € even smaller if necessary so that ¢ + s* < 7,, that

0scC < 26N .

B_, po (Z) X [t,t+5*]

en

Po
1
Then taking in Proposition 6.3, point 7 ), the following values

m =0, w = 2N, r:m)%, Rzan%,
"1:0 'f tQ:t_? 60: 17
11 1 1
i - = 0° = —
T8 YT 2

we have the existence of v°, which in this case depends only on x,~1, ", such that if

My ({u < ¥} 0 (Boyee (2) x [f +5)  A({u<§I0 (B @) x FT+57))

t
4
My (Bsn%"('f t ) A(Bsn%"(i') X [ta t+ S*])
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then (95) holds. Then, by (87) and (89), it is sufficient to choose § in the fourth step in such a
way that

d+kd" =v°
to get that (95) holds (so 6 depends only on &, 71,7, K, T).

Step 6 - Now, starting from (95), we are in the conditions to apply the expansion of positivity.
Before going on we recall the dependence of some parameters that are involved (and that we
will need):

n= n(Kl’KZa q, K37§a 5) = 77(K17 K2a q, K37§a 67 T, CI) = 77(K1, K?a q, K37g7 Ry 71, 7, K, CI)»
e =e(0) = (8, q) = e(k, 7,7, K, T, 9),

We call just for simplicity

= 2P0 and 5 :t_+4h<i",577&> 2
8 4
In Lemma 6.7 we consider
. -, (empo)® Po _ - N
" =1 7h( ):7 0, h=-
T z, + 16 T,eN— 1 S p=r 16

and get that there is f depending on v and for every 0 there is A > 0 depending on v1,7, q, K, B, 6
such that

N . -
u=A 16 a.e. in By, () x [54— 0 B h(z,4r)r? 5+ B h(z, 47”)7"2} :

Since this holds for every ¢ € [5+ 60 B h(z,4r)r?, 5 + B h(Z, 4r)r?], applying again this lemma we
reach

N
}\2
16

Iterating this arguement m times we get

a.e. in B} () x {5 +0B (h(z,4r) + 4h(Z,87))r, 5 + é(h(f,élr) + 4h(z, 8r))r2] :

N m . - moo .
u>=A" 1 a.e. in B, () x Z 47z, 27 ), 54 Br? Zéﬂflh(:ﬁ, 27T2p)

Now we define the quantities (m € N is still to be fixed)

m

Since T € B,(z,) requiring that 2™r > 2p provides that Bom,(Z) D B,(z,) so we require that
m is such that

(90) 20 <2Mr < 4p, ie. 14 logQ <m<2+ log2 iy
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What we have still to fix in the times interval is the value of § and moreover the values of b and
¢. Now notice that for every z,y € Q and ¢ > 0 such that By,(z) C Q and Ba,(y) C Q and such
that | — y| < o we have

|1lA(Bo())
A(Bo(y))

[IA(B2o(y)) < qula(Bo(y))
A(Bao(7)) < g A(B,())

<
<

by which we derive
h(z, 0) < 4°h(y, o).
Then, using this last estimate, (H.2)" (see also Remark 2.7, point ¢) and (90) we can estimate

Z4j_lr2h(:i‘,2]+2r) < g2 42 h(x,, 203r) =
j=1 Jj=0
2 m_l . . .
_ % (4J+37"2)1_a(4J+ST2)ah(l'o,2j+3’l”) <
7=0
9 m—1 ' ~
<5 D W R4 )k, 27 ) =
j=0
m—1
— %K§(4m+2 2)ah 2m+2 Z 43 2 j e 41 a) <
7=0
2 2
q° K
< g (e, 2 ) <
4498 K?
< g P (o p)
by which
4q° K2
<s+0p2 T e P Mo, p).
Now for a fixed constant ¥4 € (0, 1] we can choose
N 4 — 4 1
0 <9Iy —
4 Be°K;

indipendent of m, and, since 5 < t,, we get
Sm < to+ U4+ th(a;O, p) -

Notice that once 6 is fixed A depends only on 1,7, q, K, B By the choice of m and recalling the
definition of N we have

blo—r. )¢
u > A" (’Olgo) a.e. in B;r(azo) X [Smy tm)] -
By the choice we made of p, in (80) we have that
1 1 . 1 1 1 1
or = either —

p=To  2po p—ro 2% qKy p* ph
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Then, by the definition of  and since u(z,,t,) = bp~¢, in the first case we get

2N b(e ) ¢
art) > R T — A S (ot

a.e. in Bf (o) X [y, tm] -

In the second we get

o) >3 () e (D))

= (2= ym M 1
(206-40q Ky) p*
(1-a)¢
= (2= ym L w(o,to) a.e. in BY (o) X [Sm tm] -

(26—4aq K2)§
So we can get rid of the dependence of m choosing now ¢ in such a way that
2A=1 in the first case,
2(1—a)E) = 1 in the second case.

Since r depends on p,, which depends on r,, which depends on £, once we have fixed £ we have
also chosen the value of r, and consequently of m. Summing up, we have reached

u(z,t) = coulx,,to) a.e. in B;(xo) X [Sm, tm)
with s, < to + U4 p?h(x0, p), Where

13 (1-a)¢
en en
Co = (26624 or Co = (6—4) e
(2 aq Kg)

By the dependence of 7, € and £ and since K> depends only on K5 we have that
¢, depends on vl,y,q,/@,[g,oz, K, T, K1, K9, K3,q,¢

Now we are done if ¢, > t, + 94 p>h(z,, p) and the constant cy is c,.
If, otherwise, t,, < t, + 94 p?h(z,, p) We consider

t € [Sm, tm] such that £+ 0 B h(zo, 4p)p? < to + 94 h(e, p)p° .
By (36) this is true, taking if necessary 6 smaller, if
s~ 0
0 < Y+
0°p
Applying again Lemma 6.7 and since u(x,t) > cou(o,t,) a.e. in B (2,) X [sm;tm] (and then
also in 3;4(1’0) X [Sm, tm]) we get, in particular, that both
u(z,t) = Acou(xo, to) a.e. in B;rp(a:o) X [f + 0B h(xo,4p)p%,  + B h(z, 4p)p2}
and
u(x,t) = Acou(wo, to) a.e. in B:)F/Q(xo) X [f+ 0B h(xo,p)p? /16,1 + B h(zo, p)p2/16} ;
then in particular

u(z,t) = Ao u(xo,ty) a.e. in BJ () X [f+ 0B h(xo, p)p*/16,1 + B h(z,, p)p2/16] .
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Repeating this argument for every ¢ in [f—i— 6B h(zo, p)p? /16,1 + [gh(mo, p)p2/16] we get
w(z,t) = A2 cou(o, ty) a.e. in B;r(:vo) X [f—l— 20 B h(zo, p)p>/16,% + 2B h(z,, p)p2/16} :

If necessary, we add the requirement 20 < 1 so that [f + 20 B h(zo, p)p® /16,1 + 2B h(x,, p)p2/16} N
T+ 0B (o, p)p®/16,1 + Bh(mo,p)p2/16] # (). Going on, we get

w(z,t) = N3 cou(,, to) a.e. in B;r(:co) X [f + 30 B h(xo, p)p?/16,t + 3B h(xo, p)p2/16}

requiring 30 < 2, which is freeAsince we already imposed 20 < 1. We iterate k times, without
additional assumptions about 6, till £ + & B h(z,, p)p?/16 > t, + O h(z,, p)p? and get

u(z,t) = A cou(zo, to) a.e. in Bf (z,) x [f—l— kOB h(xo, p)p*/16,1 + k B h(z,, p)p2/16} .

Since t, — t > h(x,, p)p?, the inequality

. kP
i+ Tg, Mo, p)p° > to + Uy h(zo, p)p°

holds if we choose
16
k > E (1 + 19+) .

For instance we can choose [ (1 +,)] 4 1, the minimum integer greater that 18 (1 +19,) and

B - N B
the constant cy is A*¢,, where k depends only on B and ¥,. Since B depends only on v we

conclude that ¢4 depends (only) on

71,759, K, @, K, T, K17K27K37q7§719+ .

In a complete analogous way one can prove point i ).

We see now point 77 ). Since s1 and sg will remain fixed in the following we will use the simplified
notations, for some r > 0 and Z € 2,

QS(E) = Bg(i’) X [81,82], Qr(:ﬁ) = Br(:i’) X [81,82].

Similarly as for point i), we may write u(z,,t,) = bp~¢ for some b,& > 0 to be fixed later.
Define the functions

M(r) = sup u, A(r) =b(p—1)75, r € [0,p).
Q2(z0)

Let us denote by r, € [0, p) the largest solution of M (r) = A[(r). Define
N = A(15) = b(p —15)7%.
We can find y, € BY (z,) such that

3N
(91) 4 < sup u <N
%TO(yD)
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where p, = (p —15)/2, 50 B) (yo) C Byro (o). By this choice of p, and by the choice of r, we
2
have

(92) sup u<  sup u<9\[<p+ro> = 2¢N.
Qo) Q0. (20)
2

We now proceed dividing the proof in four steps.

Step 1 - In this step we want to show that there is 7 € (0,1), depending on , 71,7, such that

a0 ({5 100 0)) > 72 @ patin)

and that

)

Arguing by contradiction we immediatly get the first inequality: indeed if that were false, setting
in Proposition 6.1, point i ),

)‘(Bpo (yo)) ]

2

2K2
|Dul?> Xdxzdt < v (2°N)? ( L + 4) (s — 1) P

p/2 yo

_ P p . - 3
m:w:2£N7 R:507 P:fv 0—:1_251’ a_0—1<1_2§+2>7
8(s2 —t
$*:y07 t*:t07 6*2(82,00)’ 5,1(:‘317 852527
o

we would get that
3N |
u < T m 320/4(yo) X (81,82)
which contradicts (91). To prove (93) we choose in (43) zo = Yo, R = po, T = po, T = po/2,
e =0, k=0 and since u < 2°N we get

// | Dul? A dzdt <

p/2y°

< [Nl (1, 12y // po u /\dxdt]
ya)

X 81 52}

N2 [ (15 >)+<2§N>2%mh(wo,zxmm(&o(yo))

o

<

N
)
<
Q

< 3N [ lula By (o)) + i‘;’h<xo,4p>p2A(Bpo<yo>)} -

o

3 5N [ h(gor o) + e h<x0,4p)p2] A(By (1)) <

o
2

[ 8w
< NP [LRE bl 49) + 2 h<x0,4p>p2} A(Bo, (o))

o o

Step 2 - Here we show that for every 6 € (0,1) there are n € (0,1), which will depend only on
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Ki,K5,K3,q,6,6, and y* € Bgo/z(yo), which will depend only on ~, 2N, 7, K1, Ko, K3,¢,5, W, 8
(6 will be chosen depending on x, 71,7, w h(xe,4p))), such that B,, 5(yo) C 320/2(1/0) and
N « %
(94) AM{o< T} @uem) <o8@p00).

Indeed by Step 1 and applying Corollary 2.17 to the function 2u/N with w = v = A, ¢ = 1/2,
P = Pos %0 = Yoy B= B 11(4o), 0 = po/2,a=s1,b=s3, 0 =7, f =7 (2N)* (2K5 g w ™' +4)
we get the existence of B, 2o (y*) C Bgo /2(y0) such that

A ({u . JZ} n (Q,,p;(y*))> > (1= 8) A(Qe (47))

which is equivalent to (87).
Step 3 - Here we show that

N . *
(95) u > 5 a.e. in Qo (y*).
Now we want to apply Proposition 6.3 so first notice that, since u > 0 and by (92) we have that
osc < 2%N.
Qnep (¥7)
Then taking in Proposition 6.3, point éii ), the following values
Po Po
=0, =2¢N, =nk2, —pte
m w T=y 5
* =yF, " =t,, 87 =81 85 = S,
2
*_ p _ 11 _1
[3 _8wh(x074p)ngpga 0_4257 a_2

we have the existence of v* € (0,1), which in this case depends only on &, y1, 7y, w h(x,, 4p), such
that if

N . ¥
A ({u < 4} N (Qnee(y ))> <V A(Qyee (7)) -
then (95) holds. Then it is sufficient to choose 6 = v* (so 0 depends only on &, v1,7, w h(z,,4p)).
Step 4 - Now we want to apply the expansion of positivity. We call, for simplicity

"
=0y
Taking in Lemma 6.7, point #ii ),
p=r, P=w
we get that
N : 0 *
u=A 5 a.e. in By, (y*) X [s1, s2

with A depending on 71,7, q, k, w. Now taking in Lemma 6.7, point i ),
p=2r, P=w
we get that

N
u > N 5 a.e. in BY.(y*) x [s1,59] .



A HARNACK’S INEQUALITY FOR MIXED TYPE EVOLUTION EQUATIONS 77

We iterate this argument m times getting

N
u= A" N a.e. in BYm, (y*) X [s1, s2]
till Bom,(y*) D By(x,) and this is guaranteed if
20 <2™Mr < dp.
As done before, observe that
N bnt  2mE bnt 2mE
m=' _ am m _
u(z,t) = A S =A sy ) > A et 7(4p)§_

= (2"

25§+3 w(xo, to) .

Then, as before, choosing ¢ in such a way 26\ = 1 we get rid of the dependence of m and then
in particular we get

u(z,t) = cou(xo, t,) a.e. in Bg(xo) X [s1, $2]
where ¢y = 2;@% depends (only) on Ky, Ky, K3,q,s,k, 71,7, W, h(x,,4p),q, the constants by
which A and 7 depend.

Finally the proof of point iv) can be obtained similarly to that of point 47i), using in the or-
der Proposition 6.1, point iv ), Lemma 2.14, Proposition 6.3, point v ), Lemma 6.7, point iv ). O

The previous theorem has an immediate consequence which we state here below.

Theorem 7.2. Assume u € DG(Q,T,u,\,v), u > 0. Fiz p > 0 and ¥ € (0,1] for which
Bsp(w0) X [to—16 h(w0, 4p) p* =N (20, p)p°, to+16 h(o, 4p) p* + 0N (T0, p)p?] C Q2 (0,T). Suppose
o € I. Then there exists ¢ > 0 depending on v1,7,q, K, o, K, T, K1, Ko, K3,q,¢,94 such that

(o, to) < ¢ inf u(x
(@ to) < e inf i(x)

p\To
where
u(z,to + 9 h(zo,p)p?) ifx € B (x,) ,
0 € 0Q Q,
{ W, to— Oh(eop)p?) fzeBr(e,) 0 T SOND
u(z,ty +9h(ze,p)p?) ifx € B;(xo) ,
= ) Q Qo,
{u<x,t0> foe B, 7 T SO0
u(z,ty — 9 h(ze,p)p?) ifx € B () ,
_ , €00 Ny,
{ (i, ) foeB,) 7 T COR-N
u(z,to +9h(zo,p)p?) ifx € B (x,)
i(x) =3 ulz,to—Dh(ze, p)p*) ifx € B, (zo) if o€ 004 NON_
u(z,t,) if v e Bg(:co).

Proof - By Theorem 7.1 we immediately get the result taking ¥ = ¥4 = Y- and ¢ =
max{cy,c_,co}. O



78 FABIO PARONETTO

One can give many different and equivalent formulations of the classical parabolic Harnack’s
inequality. We conclude giving only one possible equivalent formulation, which can be proved
by standard arguements, to the one given above. Under the assumptions of Theorem 7.2 one has
for u € DG, u > 0, and for instance for x, € 0024 NI NIN_ (and with obvious generalization
in the other cases)

sup a(z) < ¢ inf wu(z,t,)

Bp(zo) By (o)
u(z,ty — 9 h(zo,p)p?) ifz € B (x,)
(96) where @(z) = u(z,to+ 0 h(zo, p)p?) if z € B, (2,)
u(z, to) if z € B (x,).

Some consequences of the Harnack inequality - An important and standard consequence
for a function satisfying a Harnack’s inequality is Holder-continuity. By classical computations
and assuming (if necessary taking v bigger)

v
— <2
v—1

one can get that if u € DG(Q, T, u, A, y) then u is locally a-Hélder continuous with respect to x
and «/2-Holder continuous with respect to ¢, where a = (logy %), in (QLUQ_UI) % (0,7).
As regards o we can only get that for every ¢ € (0,T) u(-,t) is locally a-Holder continuous in
Q. Notice that in the interface I separating )y and 1 U€_ the function u is regular also with
respect to t.

Another consequence is a strong maximum pronciple, which one can get, again by standard
arguement, using (96). One can derive a “standard” maximum principle from Theorem 7.1,
which we do not state, and others from Theorem 7.2.

If, for instance, we suppose z, € 94+ N INQy N IN_ (and again with obvious generalization in
the other cases) we could briefly state the maximum principles as follows: suppose (z,,t,) €
2 x (0,7) is a maximum point for v in a set

(BF (20)  (t0 0 (o p)0 10 + 0 b0, 0)*)) U (B (o) x {1}) U
(U B, (20)  (to =9 h(wo, p)P, o + 0 b, p)6?))

for some ¥ € (0, 1], then u is constant in the set

(B (20) % (to = 0 (o, p)p? 1)) U (BY(w0) x {to}) U (U By (w0) % [tor o + 0 b, p)p?))

8. EXAMPLES

In this section we show some possible examples of 1 (and consequently of I) and A. In all the
examples, just for simplicity, we suppose  C R?.
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. In the simplest situation when . = A\ = 1 we get the classical case in which the De Giorgi

class contains the solutions of

0
8—1: —div(a(z, t,u, Du)) = b(x, t,u, Du)
with a, b satisfying
(a(x,t, u,Du),Du) > A|Dul?,
la(x,t,u, Du)| < A|DufP~,
Ib(,t, u, Du)| < A|DufP!,
with A, A positive numbers. Obviously if 4 = —1 we have the analogous results for

backward parabolic equations.

. If p=0and A =1 we have a family (in the parameter ¢) of elliptic equations for which

one cannot expect regularity in time, neither for “solutions”. The same may happen g
is a proper subset of €.
For example, in dimension 1 consider the solutions of

2 <a(x,t)§z> —0,  w(0)=0, u(2) =1,
with
a(z,t) = a(t) in [0, 1] and a(xz,t) = B(t) in [1, 2]

with «(t) # B(t) for every t and o and [ discontinuous. The solutions are clearly
discontinuous in time for x € (0, 2).

. If p > 0 and A > 0 we have the Harnack’s inequality for doubly weighted equations, like

for instance

ou
Y div(\Du) = 0.
By div(ADu) =0

In the particular case p = 1 we rescue the result contained in [3], while if © = A we
rescue the result contained in [4].

. Consider now an example where for simplicity |u| = A = 1 in £, but p # 1. Suppose,

for instance, that p changes sign around an interface like that in the first of the two
following pictures where I is a cross intersecting in a point x,. This kind of interface
clearly satisfies assumptions (H.4) and (H.5) and then also in a neighbourhood of the
points (z,,t), t € (0,T), the solution, e.g., of (97) is Holder-continuous.

Also an interface like that shown in the second of the two following pictures is admitted.
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p=-1 p=1

5. Consider i > 0 and, for simplicity, suppose that p takes only the values 1 and 0. in the
pictures below there are two simple examples: in the first one the interface is made by
just a line, in the second one is made by two intersecting lines. In both cases a function
belonging to the De Giorgi class turns out to be Holder-continuous in (4 UI) x (0,T).
In particular it is continuous in the interface I both in x and ¢, even if it could not be
continuous in €}y as shown in the second example.

6. Also some cusps like the one in the picture below can be admitted, provided that as-
sumption (H.4) is satisfied. For example, suppose (part of) the interface is that in the
picture below and the vertex is the point (0,0) and suppose u # 0. If uy satisfies (H.4)
then we are in the assumptions and the theorems of Section 7 and Section ?? hold.

For instance, suppose A = 1 and consider y = —1 on the left of the curve and 4 =1 on
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n

the other side of the curve which is the union of the graphs of f(z) = 2™ and g(z) = —z
for x € [0, L], L > 0, and n € N, n > 1. We have that

fiy (B2p(0,0)) < qpuy (B,((0,0)))

for some q depending on n.
While if, for instance, we consider f(x) = e~'/% and g(z) = —e /% the above inequality
does not hold any more.

05| |

05 0 05 1 15

If we consider different u, i.e. p which can degenerate to zero, the geometry of the
interface can change depending also on how the weights |u| and A degenerate near the
interface.

. The final example is the following: again for simplicity suppose || = A = 1 in R? and
suppose i = 1 in the region above the graphic of f, which we will call Q. , and = —1
in the region below the graphic of f, which we will call 2_, where

fly) = ycos; (£(0) =0).

In spite of the fact that the length of the graphic inside the ball B := B;(0,0) is infinite,
the measure (the 2-dimensional Lebesgue measure £2) of the e-neighbourhood of I is
of order € and then going to zero when ¢ — 07. Moreover, due to the simmetry of the
graphic of f we have that

pi+ (B2,(0,0)) = 352 (B2,(0,0)) < %cﬁ (B,(0,0)) = %CM (B,(0,0))

where ¢ denotes the doubling constant for £2. Therefore also in this case assumptions
(H.4) and (H.5) are satisfied and even if I is not rectifiable can be an admissible interface.
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