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Abstract

We consider a class of vectorial integrals with linear growth, where, as a key feature, some
degenerate/singular behavior is allowed. For generalized minimizers of these integrals in BV, we
establish interior gradient regularity and — as a consequence — uniqueness up to constants. In
particular, these results apply, for 1 < p < 2, to the singular model integrals∫

Ω

(1 + |∇w(x)|p)
1
p dx .
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1 Introduction

In this paper we are concerned with variational integrals of the form

F [w] :=

∫
Ω

f(∇w(x)) dx for w : Ω→ RN . (1.1)

Here, the dimensions n,N ∈ N (with n ≥ 2) and a bounded, open, connected1 set Ω in Rn with a Lip-
schitz boundary2 are permanently and arbitrarily fixed, and f : RNn → R is a given convex integrand
with linear growth. Prescribing boundary values by means of a given function u0 ∈W1,1(Ω,RN ), we
study the minimization problem for F in the Dirichlet class

D := u0 + W1,1
0 (Ω,RN ).

This problem has a natural generalized formulation — which will be explained in Section 2 and which
we adopt in the following — in the space BV(Ω,RN ) of functions of bounded variation, and we are
mainly interested in regularity and uniqueness results for the generalized minimizers.

Before addressing the case of general integrands f , we want to draw the attention to the singular
model integrals

Mp[w] :=

∫
Ω

(1 + |∇w(x)|p)
1
p dx for w : Ω→ RN (1.2)

with 1 < p < 2 (where |∇w(x)| denotes the Hilbert-Schmidt norm of the gradient matrix ∇w(x) ∈
RNn). In this situation, our main result guarantees C1,α regularity and uniqueness up to additive
constants for the generalized minimizers:

Theorem 1.1 (C1,α regularity and uniqueness for singular model problems). For 1 < p < 2 consider
two generalized minimizers u, v ∈ BV(Ω,RN ) of Mp in a Dirichlet class D. Then u and v are of class
C1,α in the interior of Ω with some positive Hölder exponent α, which depends only on n, N , and p.
Moreover, for some constant vector y ∈ RN there holds u = v + y almost everywhere on Ω.

A formal deduction of Theorem 1.1 from the more general Theorem 1.3 is implemented at the end
of Section 5.

We stress that the second derivatives of the Lagrangian mp in (1.2), given by

mp(z) := (1 + |z|p)
1
p for z ∈ RNn ,

blow up for z → 0. The main novelty of Theorem 1.1 and the present paper lies in the treatment of
such singular structures in a BV-setting. For non-singular integrals in BV, in contrast, closely related
statements are already available in the literature; we refer specifically to the results of [10, 7, 24], which
we eventually discuss in a more general context. We also mention that, in the two-dimensional, scalar
case n = 2, N = 1, a closely related model equation motivated by nonlinear elasticity has recently been
considered in [11]: under strong assumptions on Ω and u0, it has been shown that this non-singular
equation has even a strong solution, which realizes the boundary values in the W1,1 sense.

We further emphasize that by a classical example of Santi [25] (see also [21, Example 15.12] and [4,
Proposition 3.11]) full uniqueness of minimizers generally fails in the BV-context; thus, one cannot hope
to infer u = v in the situation of Theorem 1.1. Nevertheless, one can go slightly beyond the uniqueness
assertion made above (and likewise in the more general Theorem 1.3 below): indeed, once uniqueness

1The connectedness assumption is not mandatory and is only made in order to simplify the formulation of the
uniqueness statements below. Evidently, if this assumption is removed, our theorems still apply on each connected
component of Ω.

2With a few technical modifications, generalized minimizers in BV(Ω,RN ) still make sense for less regular and possibly
unbounded domains Ω, and our results continue to hold in this more general setting. However, in order to avoid some
technicalities, which have already been extensively discussed in [5, 29], we prefer to impose the above-stated stronger
hypotheses on Ω.
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up to constants is established, it follows from [4, Theorem 1.16] that the generalized minimizers in D
form not only an N -parameter, but even a 1-parameter family. This aspect has already been discussed
at length in [4] and will not be reconsidered in the sequel.

At this stage let us rather contrast Theorem 1.1 with the known results for the model integrals Mp:
In the scalar case N = 1, the area functional M2 is of course covered by classical theory (see again [21]).
Still assuming N = 1, Tausch [33] discussed an alternative approach, which is based on the global
gradient estimates of Serrin [30] and Trudinger [35] and which yields the existence of C1,α minimizers
of Mp — for arbitrary 1 < p < ∞, but under extra assumptions on the domain and the data. In
the following account, however, we are mainly interested in the vectorial case with arbitrary N ∈
N, which seems to require different methods: in this generality, everywhere regularity results for
the functional M2 were obtained in [7, 9, 4], and specifically in [4] we have proved L log L gradient
estimates and uniqueness up to constants for the generalized minimizers. Moreover, almost-everywhere
C1,α regularity of generalized minimizers of Mp has been established, first by Anzellotti & Giaquinta
[3] for p = 2 and eventually in [28] for arbitrary 1 < p < ∞. In the case 1 < p < 2 this picture is
finally completed by our Theorem 1.1, while it remains an open question whether or not the analogous
assertions are generally true for 2 ≤ p <∞.

Now we return to functionals of the type (1.1), where the convex integrand f satisfies the linear
growth condition

Lf := lim sup
|z|→∞

f(z)

|z|
<∞ . (H1)

In the first part of our paper, we will establish local Lipschitz regularity for a minimizer u of F ,
when further assumptions on f are imposed only in a neighborhood of ∞ in RNn. For integrands of
superlinear growth, the sufficiency of such asymptotic conditions was studied in detail (see for instance
[12, 14, 16, 26, 27] and the references given there) and is generally very plausible. However, a suitable
result for our purposes is not yet available in the literature and will be established here:

Theorem 1.2 (W1,∞
loc regularity for one minimizer of an asymptotically µ-elliptic problem). Suppose

that f is convex with (H1). Moreover, assume that for some radius R we have

f ∈W2,∞
loc (RNn \ BR) , f(z) = g(|z|) for |z| ≥ R ,

γ|ξ|2

|z|µ
≤ ∇2f(z)(ξ, ξ) ≤ Γ|ξ|2

|z|
for ξ ∈ RNn and a.e. z ∈ RNn \ BR

(H2)

with a function g : [R,∞)→ R, with positive constants γ and Γ, and with an exponent

1 < µ < 3 .

Then, for every u0 ∈ W1,1(Ω,RN ), there exists a generalized minimizer u of F in the Dirichlet class
D = u0 + W1,1

0 (Ω,RN ) such that we have u ∈W1,∞
loc (Ω,RN ) and

|∇u(x0)| ≤ C
(

1 + dist(x0, ∂Ω)−n
∫

Ω

|∇u0|dx
)1+

3(µ−1)
2(3−µ)

for a.e. x0 ∈ Ω , (1.3)

where C depends only on n, Lf , R, µ, γ, and Γ.

The proof of Theorem 1.2 will be carried out in Sections 3 and 4, while for the moment we only
compare our statement with related results in the literature.

We first emphasize that our assumption (H2) does not bound the ratio between the largest and the
smallest eigenvalue of ∇2f(z) for a.e. z ∈ RN \ B2R but that this ellipticity ratio3 may (and actually
must4) blow up for |z| → ∞, at most at the rate of |z|µ−1. In this sense, Theorem 1.2 deals with

3The related quantities
f(z)

∇2f(z)(z,z)
and

|∇2f(z)| |z|2
∇2f(z)(z,z)

may also blow up at the rate of |z|µ−1.
4If (H2) holds with µ = 1 (this corresponds to a uniformly bounded ellipticity ratio), then integration of the lower

bound in (H2) shows f(z) ≥ 1
2
γ|z| log |z| for |z| � 1, so that f necessarily violates (H1). Therefore, integrands which

satisfy (H1) and (H2) with µ = 1 do not exist.
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a type of non-uniform ellipticity, which has already been investigated by Fuchs & Mingione [17] and
Bildhauer & Fuchs [10] in terms of their µ-ellipticity condition and by Marcellini & Papi [24] in a
general growth setting. While the results of [10, 24] apply for 1 < µ < 1+2/n, the improved bound
1 < µ < 3, which appears also in our statement, has first been reached by Bildhauer [7] under an extra
L∞ assumption on u0. We remark that the upper bound µ < 3 has some optimality property, and we
refer to [8, 4] for a further discussion. In contrast to [10, 7] we here impose (H2) only asymptotically
near ∞ and not globally on RNn, and in contrast to [24] we do not assume a priori that there exists
a minimizer of class W1,1.

Turning to the estimate (1.3), we find it worth remarking that the exponent on the right-hand side
tends to 1 for µ↘ 1 and to ∞ for µ↗ 3. In this sense, (1.3) behaves almost homogeneously near the
limit case µ = 1 of uniform ellipticity, but it only yields a rough control for µ > 3.

The choice f = mp satisfies (H2) with the optimal exponent µ = 1 + p, and thus the model
integrals Mp of Theorem 1.1 are included in Theorem 1.2. Even though our main motivation stems
from these concrete singular cases, we would like to stress that the asymptotic hypotheses do in fact
allow for other locally irregular — for instance degenerate — behavior of the integrand as well. In these
regards, Theorem 1.2 resembles the asymptotic regularity result of Cupini & Guidorzi & Mascolo [12],
and to some extent it can be seen as an adaptation of [12] from the superlinear to the linear growth
case. We remark that some refinements of Theorem 1.2 in the spirit of [12] (x-dependent integrands,
convexity only near ∞, no upper bound on ∇2f in case µ < 2) may be achievable. However, we have
not made an effort to deal with these issues and to establish the most general statement here.

Finally, we point out that Theorem 1.2 establishes the existence of only one Lipschitz minimizer,
and that we do not know whether or not Lipschitz regularity holds, under the same hypotheses, for every
generalized minimizer. However, under stronger assumptions on the integrand f (which are once more
satisfied for the model integrals), the result of Theorem 1.2 can be improved a posteriori: C1,α regularity
of the Lipschitz minimizer follows from known results [36, 34, 19, 1, 23] for the superlinear growth
case, and then uniqueness up to additive constants (and thus regularity for every minimizer) can be
concluded by duality methods (in fact, [5, Corollary 2.4] suffices for our purposes, but should also be
compared to previous statements of [6, 10]). This line of argument — which will be discussed formally
in Section 5 — yields the following statement.

Theorem 1.3 (C1 regularity and uniqueness for degenerate/singular problems in BV). Suppose that f
is convex with (H1). Moreover, assume that we have

f ∈ C2(RNn \ {0}) ∩ C1(RNn) , f(z) = g(|z|) for z ∈ RNn ,
γ|ξ|2

|z|2−q + |z|µ
≤ ∇2f(z)(ξ, ξ) ≤ Γ|ξ|2

|z|2−q + |z|
for ξ ∈ RNn and z ∈ RNn \ {0}

|∇2f(z̃)−∇2f(z)| ≤ Ψ(|z|+ |z̃|)Sq,β(|z|, |z̃|)|z̃ − z|β for z, z̃ ∈ RNn \ {0}

(H3)

with positive constants γ, Γ, with exponents

1 < q <∞ , 1 < µ < 3 , and 0 < β ≤ 1 ,

with some function g : [0,∞) → R and a non-decreasing function Ψ: (0,∞) → [0,∞), and with the
scaling factor Sq,β(a, b) := (a+b)q−2−β for q > 2, S2,β(a, b) := 1, and Sq,β(a, b) := aq−2bq−2(a+b)2−q−β

for q < 2. If, in this situation, u ∈ BV(Ω,RN ) is a generalized minimizer of F , then for every
subdomain Ω′ b Ω there is some α > 0 such that u is of class C1,α on Ω′. Moreover, whenever
u, v ∈ BV(Ω,RN ) are generalized minimizers of F in a Dirichlet class D, then we have u = v + y
almost everywhere on Ω for some y ∈ RN .

Let us comment on the set of assumptions in (H3). For |z| � 1, the assumptions are basically the
same as in (H2) above, but, for |z| � 1, we additionally impose the condition that ∇2f(z) is bounded
from above and below by |z|q−2. Clearly, this extra condition means that ∇2f has a singularity at 0
in the case q < 2, while we deal with a degenerate ellipticity for q > 2. For technical reasons, we also
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need the last requirement in (H3), a local Hölder continuity condition for ∇2f with a scaling factor
Sq,β , which reflects the singular/degenerate behavior.

The exemplary choice f = mp with 1 < p < 2 satisfies (H3) for q = p and µ = 1+p, and thus the
singular model cases of Theorem 1.1 are included in Theorem 1.3. However, also in the degenerate
case q ≥ 2 and in fact for arbitrary q, µ ∈ (1,∞) one can construct integrands f which satisfy (H3).
Without entering into a detailed discussion of such examples, let us mention the following ones: if f
has the form

f(z) =
(
1 + hq/p(|z|)p

) 1
p ,

where 1 < p ≤ q < ∞ are arbitrary and the auxiliary convex function hq/p : [0,∞) → [0,∞) is of

class C2 on (0,∞) with hq/p(t) = tq/p for t � 1 and hq/p(t) = t for t � 1, then (H3) holds with the
given q and µ = 1+p. Thus, for these specific integrands, Theorem 1.3 is applicable whenever p < 2
holds.

To conclude the introductory exposition we mention that the overall strategy of our proofs is quite
close to [10, 7] and is widely inspired by these papers. Nevertheless, our reasoning differs from the one
of [10, 7] in a number of adaptations and technical refinements, for instance in the precise form of the
regularization procedure and of the W1,∞ estimates. The changes are partially caused by the singular
structure of the model integrands mp or the asymptotic formulation of (H2), and all in all we believe
that they deserve the detailed treatment which we provide in the present paper.

2 Preliminaries

Some notation. The open ball in Rm with center x0 and radius R is abbreviated by BR(x0), and
for x0 = 0 we write BR := BR(0). Furthermore, Lm stands for the Lebesgue measure and H` for the
`-dimensional Hausdorff measure on Rm. For an arbitrary set S ⊂ Rm we further denote by ∂S its
topological boundary and by S its closure. For a measurable set S with 0 < Lm(S) < ∞ and an
integrable function defined on S, we indicate by wS := −

∫
S
w dx := Lm(S)−1

∫
A
w dx the mean value

of w over S and by w+ := max{w, 0} the positive part of w (with the convention wp+ := (w+)p). We
further write Im for the (m×m) identity matrix.

Generalized minimizers in BV. Under a Dirichlet class D we understand a subset of W1,1(Ω,RN )
of the form D = u0 + W1,1

0 (Ω,RN ) with some function u0 ∈ W1,1(Ω,RN ). In order to minimize F
in a Dirichlet class, one commonly extends F to all of BV(Ω,RN ) by semicontinuity (see [20, 15] for
motivation and discussion). For convex integrands f : RNn → R with (H1) this extension has the
integral representation

FD[w] :=

∫
Ω

f(∇w) dx+

∫
Ω

f∞
( dDsw

d|Dsw|

)
d|Dsw|+

∫
∂Ω

f∞((u0 − w)⊗ νΩ) dHn−1

for w ∈ BV(Ω,RN ). Here, Dw = ∇w · Ln + Dsw denotes the decomposition of the RNn-valued
gradient measure Dw into its absolutely continuous and its singular part with respect to Ln, νΩ stands
for the outward unit normal vector to ∂Ω, and w and u0 in the boundary integral are meant as traces.
Moreover, the function f∞ is the recession function of f defined via

f∞(z) := lim
s→∞

f(sz)

s
for z ∈ RNn .

We stress that, for a convex integrand f with (H1), its recession function f∞ is well-defined, real-valued,
and 1-homogeneous.

We now introduce the notions of a generalized minimizer and a minimizing sequence for F in a
Dirichlet class D.
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Definition 2.1 (generalized minimizer). Suppose that f is convex with (H1). A function u ∈ BV(Ω,RN )
is called a generalized minimizer of F in D if there holds

FD[u] ≤ FD[w] for all w ∈ BV(Ω,RN ) .

Definition 2.2 (minimizing sequence). Suppose that f is convex with (H1). A sequence (uk)k∈N in a
Dirichlet class D is called a minimizing sequence for F in D if there holds

lim
k→∞

F [uk] = inf
D
F .

Since FD is the extension of F by semicontinuity, generalized minimizers are characterized as limits
of minimizing sequences, compare for instance [20], [6, Theorem A.3] and [4, Theorem 1.8].

Theorem 2.3 (characterization of generalized minimizers). Suppose that f is convex with

0 < lim inf
|z|→∞

f(z)

|z|
≤ lim sup
|z|→∞

f(z)

|z|
<∞ .

Then u ∈ BV(Ω,RN ) is a generalized minimizer of F in D if and only if there exists a minimizing
sequence (uk)k∈N for F in D such that uk converges to u in L1(Ω,RN ). Moreover, one has

inf
BV(Ω,RN )

FD = inf
D
F .

Estimates for convex integrands. Next, we collect some basic properties of a convex integrand f
which satisfies the assumptions (H1) and (H2).

Lemma 2.4. Consider a convex function f : RNn → R. Then the following statements are true:

(i) if f satisfies (H1), then f is globally Lipschitz continuous with Lipschitz constant Lf . In partic-
ular, we have |∇f(z)| ≤ Lf for every point z ∈ RNn of differentiability of f ;

(ii) if f ∈ C1(RNn) satisfies (H1) and (H2), then there hold

ζT∇f(z) · ζTz ≥ −C|ζ|2 ,
∇f(z) · z ≥ ν|z| − C ,

f(z)− f(0) ≥ ν|z| − C ,
f(z)− f(0)−∇f(0) · z ≥ (ν|z| − C)+

for all z, ζ ∈ RNn, with a positive constant ν = ν(R,µ, γ) and with C = C(Lf , R, µ, γ).

Proof. To prove statement (i), we initially observe that f is locally Lipschitz continuous by [13, Theo-
rem 2.31] and thus almost-everywhere differentiable by Rademacher’s theorem, see [2, Theorem 2.14].
We then fix an arbitrary point z0 ∈ RNn of differentiability of f and estimate by convexity of f

Lf = lim sup
|z|→∞

f(z)

|z|
≥ lim sup
|z|→∞

f(z0) +∇f(z0) · (z − z0)

|z|
≥ |∇f(z0)| .

This implies all claims in (i).
In order to verify (ii), we first observe

g(|2s− 1||z|) = f(sz + (1− s)(−z)) ≤ sf(z) + (1− s)f(−z) = g(|z|)

for all s ∈ [0, 1] and z ∈ RNn with |2s−1||z| > R, by convexity and radial structure of f . Hence,
g ∈ C1([R,∞)) is non-decreasing, and from ∇f(z) = g′(|z|)z/|z| we conclude ζT∇f(z) · ζTz ≥ 0
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and ∇f(z) · z ≥ 0 for |z| ≥ R and all ζ ∈ RN . From these inequalities we will now deduce the
assertions in (ii). Indeed, the first inequality is immediate when we also take into account the bound
|∇f | ≤ Lf from (i). For the verification of the remaining claims, we employ (H2) to compute5, for
every z ∈ RNn \ B2R,

∇f(z) · z ≥
(
∇f(z)−∇f(Rz/|z|)

)
· z

=

∫ |z|
R

∇2f
(
tz/|z|

)
(z/|z|, z) dt ≥ γ|z|

∫ 2R

R

t−µ dt =: ν|z| . (2.1)

In combination with (i), this gives the second assertion in (ii) with ν = γR1−µ(1−21−µ)/(µ−1) and
C = 2R(Lf+ν). The third claim in (ii) is obtained from (i) and inequality (2.1) as follows: for every
z ∈ RNn, we have

f(z)− f(0) =

∫ min{|z|,2R}

0

∇f
(
tz/|z|

)
· z/|z|dt+

∫ |z|
min{|z|,2R}

∇f
(
tz/|z|

)
· z/|z|dt

≥ −2RLf + ν(|z| − 2R) .

Finally, we observe that the auxiliary function f∗ : RNn → R, defined by f∗(z) := f(z)−f(0)−∇f(0)·z,
is non-negative and convex with f∗(0) = 0, (H1) (with Lf∗ ≤ 2Lf ), and (H2). Hence, the last claim
in (ii) follows by applying the third one with f∗ in place of f , and the proof of the proposition is
complete.

An iteration lemma. We restate [31, Lemme 5.1], which is employed later to prove W1,∞ regularity
of generalized minimizers.

Lemma 2.5. Consider a function ϕ : [`0,∞) × (0, r0] → [0,∞) and assume that ` 7→ ϕ(`, ρ) is non-
increasing for fixed ρ, and that ρ 7→ ϕ(`, ρ) is non-decreasing for fixed `. Then

ϕ(m, ρ) ≤ K(m− `)−α1(r − ρ)−α2
[
ϕ(`, r)

]1+δ
for all m > ` ≥ `0 and ρ < r ≤ r0 , (2.2)

with some positive constants K, α1, α2, and δ, implies

ϕ(`0 + d, r0/2) = 0

with d given by

dα1 = 2α2+
(1+δ)(α1+α2)

δ Kr−α2
0 [ϕ(`0, r0)]δ .

Proof. For convenience of the reader, we provide the details of the proof. Following [32, Proof of
Lemme 5.1 (with σ = 1/2)] we proceed by iteration. For this purpose we define two sequences (`i)i∈N0

and (ρi)i∈N0 via

`i := `0 + d(1− 2−i) ,

ρi := 2−1r0 + 2−i−1r0 .

We observe that the sequence (`i)i∈N0
is increasing with limit `0+d, whereas the sequence (ρi)i∈N0

is
decreasing with limit r0/2. Furthermore, we notice that differences of two subsequent members are
given by

`i − `i−1 = 2−id and ρi−1 − ρi = 2−i−1r0 .

Applying formula (2.2) with m = `i, ` = `i−1 and ρ = ρi, r = ρi−1 for arbitrary i ∈ N, we obtain

ϕ(`i, ρi) ≤ 2α2+i(α1+α2)Kd−α1r−α2
0

[
ϕ(`i−1, ρi−1)

]1+δ
.

5As we just assume W2,∞ regularity of f , its second derivatives need not exist everywhere. However, the radial
structure of f implies that ∇2f(tz/|z|) exists and fulfills the estimates in (H2) at least for a.e. t ∈ (R, |z|).
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In the next step we prove by induction the estimate

ϕ(`i, ρi) ≤ 2−i
α1+α2

δ ϕ(`0, ρ0) (2.3)

for all i ∈ N0. Indeed, this inequality is trivially valid for i = 0, and for the induction step with i ∈ N,
we employ the choice of d to calculate

ϕ(`i, ρi) ≤ 2α2+i(α1+α2)Kd−α1r−α2
0

[
ϕ(`i−1, ρi−1)

]1+δ

≤ 2α2+i(α1+α2)2−(i−1)
(1+δ)(α1+α2)

δ Kd−α1r−α2
0

[
ϕ(`0, ρ0)

]δ
ϕ(`0, ρ0)

= 2i(α1+α2)−i (1+δ)(α1+α2)
δ ϕ(`0, ρ0) = 2−i

α1+α2
δ ϕ(`0, ρ0) .

By the monotonicity properties of ϕ we deduce from (2.3)

ϕ(`0 + d, r0/2) ≤ ϕ(`i, ρi) ≤ 2−i
α1+α2

δ ϕ(`0, ρ0)

for every i ∈ N0, and the assertion follows from the passage to the limit i→∞.

3 Regularization and approximation

Several arguments and computations in this paper cannot be carried out directly for generalized mini-
mizers of F , since their second derivatives need not exist (in the case of Theorem 1.2, even a posteriori
they need not exist anywhere). This leads us to employ a regularization and approximation proce-
dure for the minimization problem infD F . This procedure consists in the construction of a sequence
(Fk)k∈N of functionals and a sequence (Dk)k∈N of Dirichlet classes with the following properties:

(i) regularization: every minimum problem infDk Fk has a regular, unique minimizer uk;

(ii) approximation: these problems approximate infD F in the sense of

lim
k→∞

inf
Dk

Fk = inf
D
F ,

and the sequence (uk)k∈N (sub)converges to a generalized minimizer of F in D.

In what follows, we start by discussing the construction of the functionals Fk (by mollification of the
integrand f and addition of a W1,2 regularization term). Afterwards, we verify the approximation
property (ii), first for W1,2 boundary values and then for general ones. We finally provide uniform
L∞ estimates for the minimizers uk, which rely on standard techniques, but which are essential for the
subsequent gradient estimates in Section 4.

Regularization of the integrand. We introduce regularized integrands fk : RNn → R by mollifi-
cation of f and addition of a quadratic term (where mollification is mainly needed, since (H2) allows
non-existence of ∇2f on BR). Precisely, for k ∈ N we define

fk(z) := 1
2γk|z|

2 + (χk ∗ f)(z) for all z ∈ RNn . (3.1)

Here, (γk)k∈N is a null sequence in (0, 1], χ : RNn → R is a fixed smooth, rotationally symmetric,
non-negative function, supported in the unit ball with

∫
RNn

χdLNn = 1, and χk ∗f denotes the usual6

1/k-mollification of f . The assumptions (H1) and (H2) are preserved in the following sense.

Lemma 3.1. Suppose that f is convex. Then, for every k ∈ N, the mollification χk ∗ f is smooth and
convex, and there holds χk ∗ f ≥ f . Moreover,

6Precisely, the scaled kernels χk are given by χk(z) := kNnχ(kz) and χk ∗ f is the convolution of χk with f .
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(i) if f additionally satisfies (H1), then (H1) is also valid for the mollification χk∗f with Lχk∗f = Lf ,
and χk ∗ f has Lipschitz constant Lf ;

(ii) if f additionally satisfies (H2), then (H2) is also valid for the mollification χk ∗ f — with the
same exponent µ ∈ (0,∞), with R+2/k in place of R, with (2/3)µγ and 2Γ in place of γ and Γ,
and with a different function g.

Proof. In view of the regularity of χ, the convolution χk ∗ f is smooth, and the non-negativity, nor-
malization, and rotational symmetry of χk ensure χk ∗ f ≥ f via Jensen’s inequality. Moreover, it
is easy to verify that mollification preserves convexity and the growth condition (H1), and the claim
about the Lipschitz constant follows from Lemma 2.4 (i).

We now assume that f satisfies (H2). In this case, χk ∗f is rotationally symmetric outside BR+1/k,
and for |z| ≥ R+ 2/k ≥ 2/k we have

γ|ξ|2

( 3
2 |z|)µ

≤ γ|ξ|2

(|z|+ k−1)µ
≤ (χk ∗ ∇2f)(z)(ξ, ξ) ≤ Γ|ξ|2

|z| − k−1
≤ Γ|ξ|2

1
2 |z|

,

where we estimated the integrand in the convolution integral first via (H2) and then by its infimum or
supremum on B1/k(z). As we have ∇2(χk∗f) = χk∗∇2f , this readily yields the claims about (H2).

We next record some consequences of Lemma 3.1 for the regularized integrands. If f is convex
with (H2), we gain upper and lower bounds for ∇2fk(z) = γkINn + ∇2(χk ∗ f)(z). Indeed, for
z, ξ ∈ RNn, k ∈ N, and any constant ν ≤ (2/3)µγ we have

(γk + ν|z|−µ)|ξ|2 ≤ ∇2fk(z)(ξ, ξ) ≤ (γk + 2Γ|z|−1)|ξ|2 whenever |z| > R+ 2 . (3.2)

If f additionally satisfies (H1), then Lemma 2.4 can be applied to the mollified integrands χk ∗ f , and
taking into account ∇fk(z) = γkz +∇(χk ∗ f)(z) we obtain the following bounds:

|∇fk(z)| ≤ γk|z|+ Lf , (3.3)

ζT∇fk(z) · ζTz ≥ −C|ζ|2 , (3.4)

∇fk(z) · z ≥ γk|z|2 + ν|z| − C , (3.5)

fk(z)− fk(0) ≥ γk|z|2 + ν|z| − C , (3.6)

fk(z)− fk(0)−∇fk(0) · z ≥ (ν|z| − C)+ (3.7)

for all z ∈ RNn, ζ ∈ RN , and k ∈ N. Here, the constants ν = ν(R,µ, γ) > 0 and C = C(Lf , R, µ, γ)
in (3.2)–(3.7) can be taken with the same dependencies as in Lemma 2.4 (ii), since the mollifications
χk ∗f satisfy (H2) with R+2 instead of R and with the common constants (2/3)µγ and 2Γ in the lower
and upper bounds. For our purposes, it will be crucial that ν and C are independent of k ∈ N.

Approximation of minimizers with W1,2 boundary values. At this stage, we temporarily
restrict ourselves to the case of W1,2 boundary values u0, and we consider the regularized functionals
Fk, defined for k ∈ N by

Fk[w] :=

∫
Ω

fk(∇w) dx for w ∈W1,1(Ω,RN ) .

Assuming that f is convex with (H1), the functionals Fk are finite (precisely) on the subclass u0 +
W1,2

0 (Ω,RN ) of D; therefore, we need not work with approximations of u0 and D, but can rather take
Dk = D for all k ∈ N. Even though f is merely convex, each functional Fk is strictly convex and has
a unique minimizer uk in D. Evidently, uk belongs to u0 + W1,2

0 (Ω,RN ), but is in fact more regular;
see Lemma 4.2, for instance. In addition, we will now show that the sequence (uk)k∈N is a minimizing
sequence for F in D.
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Lemma 3.2. Consider u0 ∈ W1,2(Ω,RN ) and suppose that f is convex with (H1). Then for every
null sequence (γk)k∈N in (0, 1], the corresponding sequence (uk)k∈N of minimizers of Fk in D is a
minimizing sequence for F in D. Moreover, we have

lim
k→∞

inf
D
Fk = inf

D
F . (3.8)

Proof. We recall from Lemma 2.4 (i) that f is globally Lipschitz continuous, with Lipschitz constant Lf .

To establish (3.8), we fix ε > 0, we first choose a suitable function wε ∈ u0 + W1,2
0 (Ω,RN ), and then

we take k sufficiently large such that

F [wε] ≤ inf
D
F + ε/2, γk‖∇wε‖2L2(Ω,RNn) ≤ ε/2 , and k−1Lf |Ω| ≤ ε/4 .

Here, the first inequality follows from the facts that u0 + W1,2
0 (Ω,RN ) is dense in D and that F is

continuous in W 1,1(Ω,RN ) (due to the Lipschitz continuity of f). From Lemma 3.1 we get f ≤ χk∗f ≤
fk, and thus we have

inf
D
F ≤ F [uk] ≤ Fk[uk] = inf

D
Fk . (3.9)

In addition, the Lipschitz continuity of f implies

0 ≤ (χk ∗ f)(z)− f(z) =

∫
B1/k

[
f(z − z̃)− f(z)

]
χk(z̃) dz̃ ≤ k−1Lf (3.10)

for every z ∈ RNn. With this estimate and the minimality property of uk we then find

inf
D
Fk = Fk[uk] ≤ Fk[wε] = 1

2γk

∫
Ω

|∇wε|2 dx+

∫
Ω

(χk ∗ f)(∇wε) dx

≤ 1
2γk‖∇wε‖

2
L2(Ω,RNn) + F [wε] + k−1|Ω|Lf ≤ inf

D
F + ε ,

by the choices of the function wε and the index k. Combining this inequality with (3.9), we have
verified (3.8) and the convergence F [uk]→ infD F as k →∞. The proof of the lemma is complete.

Approximation of general boundary values. Next, we return to the case of arbitrary boundary
values u0 ∈ W1,1(Ω,RN ), which we approximate with W1,2 functions. For this purpose, we choose a
sequence (u0,k)k∈N in W1,2(Ω,RN ) (for example by mollifying an extension of u0) such that

‖u0,k − u0‖W1,1(Ω,RN ) → 0 as k →∞ , (3.11)

we introduce the corresponding Dirichlet classes

Dk := u0,k + W1,1
0 (Ω,RN ) ,

and we claim that, for a Lipschitz-continuous integrand f with Lipschitz constant Lf (if f is convex
with (H1), this is always at hand), there holds

lim
k→∞

inf
Dk

F = inf
D
F . (3.12)

In fact, we have

F (u0 + v) ≤ F (u0,k + v) + Lf‖u0,k − u0‖W1,1(Ω,RN ) ,

F (u0,k + v) ≤ F (u0 + v) + Lf‖u0,k − u0‖W1,1(Ω,RN )

for all v ∈ W1,1
0 (Ω,RN ), and when we minimize these expressions in v and send k → ∞, we ob-

tain (3.12).
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Approximation of minimizers with general boundary values. Next, still for arbitrary u0 ∈
W1,1(Ω,RN ), we combine the preceding approximation procedures, and thus we look at minimizers uk
of the regularized functionals Fk in the approximating Dirichlet classes Dk. As before, if f is convex
with (H1), then these minimizers uk exist, are unique in Dk, and belong to u0,k + W1,2

0 (Ω,RN ).
In the following lemma we establish — at least for suitable choice of (γk)k∈N — an identity similar

to the ones in (3.8) and in (3.12).

Lemma 3.3. Consider u0 ∈ W1,1(Ω,RN ) with approximations (u0,k)k∈N in W1,2(Ω,RN ) such that
the convergence (3.11) holds, and suppose that f is convex with (H1). Then there exists a null sequence
(γk)k∈N in (0, 1] such that the sequence (uk)k∈N of minimizers uk of Fk in Dk satisfies F [uk]→ infD F
as k →∞ and such that we have

lim
k→∞

inf
Dk

Fk = inf
D
F . (3.13)

If, in addition, (H2) is valid for f , then we also get

sup
k∈N

∫
Ω

(
γk|uk|2 + γk|∇uk|2 + |uk|+ |∇uk|

)
dx <∞ , (3.14)

and a subsequence of (uk)k∈N converges in L1(Ω,RN ) to a generalized minimizer u of F in D.

Proof. We first choose a minimizing sequence (vk)k∈N for F in D and then a sequence (wk)k∈N in
u0,k + W1,2

0 (Ω,RN ) with ‖vk − wk‖W 1,1(Ω,RN ) → 0 as k → ∞ (this is possible due to the density

of W1,2
0 (Ω,RN ) in W1,1

0 (Ω,RN ) and the convergence (3.11) of the boundary values). In view of the
Lipschitz continuity of f this implies F [wk]− F [vk]→ 0 as k →∞, and hence we have

F [wk]→ inf
D
F as k →∞ .

We point out that, in spite of this convergence, (wk)k∈N is not a minimizing sequence of F in D in
the sense of Definition 2.2 since the boundary values of wk do not agree with those of u0, but only
approximate them. We set

γk := k−1
(
1 + ‖wk‖2W1,2(Ω,RN )

)−1
,

and, given ε > 0, we choose k sufficiently large such that

F [wk] ≤ inf
D
F + ε/2, Lf‖u0,k − u0‖W1,1(Ω,RN ) ≤ ε , and k−1 + k−1Lf |Ω| ≤ ε/2 .

With these choices we have on the one hand

inf
D
F ≤ F [uk + u0 − u0,k] ≤ Fk[uk] + Lf‖u0,k − u0‖W1,1(Ω,RN ) ≤ inf

Dk
Fk + ε ,

and on the other hand (keeping in mind the estimate (3.10))

inf
Dk

Fk = Fk[uk] ≤ Fk[wk] = 1
2γk

∫
Ω

|∇wk|2 dx+

∫
Ω

(χk ∗ f)(∇wk) dx

≤ k−1 + F [wk] + k−1Lf |Ω| ≤ inf
D
F + ε .

Thus, we have shown (3.13) and the convergence F [uk+u0−u0,k]→ infD F . The claim F [uk]→ infD F
then follows from the W1,1 convergence u0,k → u0 and the Lipschitz continuity of f .

Assuming (H2), we can estimate fk from below via (3.6) (and the fact that fk(0) ≥ f(0)). Hence
we infer from (3.13)

sup
k∈N

∫
Ω

(
γk|∇uk|2 + |∇uk|

)
dx <∞ .

11



This bound implies (3.14), when we also take into account the Poincaré inequalities∫
Ω

γk|uk|2 dx ≤ C
[ ∫

Ω

γk|∇uk|2 dx+ γk‖wk‖2W1,2(Ω,RN )

]
,∫

Ω

|uk|dx ≤ C
[ ∫

Ω

|∇uk|dx+ ‖u0,k‖W1,1(Ω,RN )

]
,

combined with the choice of γk and the convergence (3.11). By Rellich’s theorem, we deduce from (3.14)
that a subsequence of (uk)k∈N converges in L1(Ω,RN ). Finally, the fact that the limit is a generalized
minimizer of F in D is a consequence of Theorem 2.3 (note that the coercivity of f can be inferred from
Lemma 2.4 (ii), applied to mollifications χk ∗ f if f is not C1), since (uk+u0−u0,k)k∈N is a minimizing
sequence for F in D, which has the same L1-cluster points as (uk)k∈N.

L∞ estimates for the minimizers of the regularized functionals Fk. For the remainder of this
paper we fix the boundary values u0 ∈W1,1(Ω,RN ), approximations (u0,k)k∈N of u0 in W1,2(Ω,RN )

with (3.11) and the associated Dirichlet classes Dk := u0,k + W1,1
0 (Ω,RN ), the sequence (γk)k∈N from

Lemma 3.3 (which in turn determines the functionals Fk), and finally the sequence of minimizers uk
of Fk in Dk.

We record that uk solves the Euler-Lagrange system of Fk in its weak formulation∫
Ω

∇fk(∇uk) · ∇ϕdx = 0 for all ϕ ∈W1,2
0 (Ω,RN ) . (3.15)

In the sequel we will obtain uniform estimates for the uk from this system. First we establish interior
L∞ bounds by a Moser-type iteration technique.

Lemma 3.4. Suppose that f is convex with (H1) and (H2). Then the sequence (uk)k∈N is bounded
in L∞loc(Ω,RN ), and for all balls Br0(x0) ⊂ Ω we have

sup
Br0/2(x0)

|uk| ≤ Cr0

[
γkr
−2
0 −
∫

Br0 (x0)

|uk|2 dx+ r−1
0 −
∫

Br0 (x0)

|uk|dx+ 1

]
,

with a constant C, which depends only on n, Lf , R, µ, and γ, but not on k ∈ N.

The proof of Lemma 3.4 follows mainly the reasoning in [4, Section 4]. In the present setting,
however, we have imposed the conditions in (H2) only outside the ball BR, and thus we repeat the
essential arguments in our situation.

Proof. Step 1: A Caccioppoli-type inequality. For arbitrary s ≥ 2 and t ≥ 1 we test the Euler-Lagrange
system (3.15) with the function

ϕ = |uk|t−1ukη
s ,

where η ∈ C∞cpt(Ω, [0, 1]) is a cut-off function with Mη := supΩ |∇η| > 0. By [12, Theorem 1.1], we

have ϕ ∈W1,∞(Ω,RN ), and thus ϕ is admissible as a test function in (3.15). In order to plug ∇ϕ into
(3.15) we compute

∇ϕ = s|uk|t−1uk ⊗ ηs−1∇η + |uk|t−1∇ukηs + (t− 1)|uk|t−3uk ⊗ (uT
k∇uk)ηs =: Φ1 + Φ2 + Φ3 ,

and we observe, taking into account (3.5) and (3.4),

∇fk(∇uk) · Φ2 ≥ γk|uk|t−1|∇uk|2ηs + ν|uk|t−1|∇uk|ηs − C|uk|t−1ηs ,

∇fk(∇uk) · Φ3 ≥ −C(t− 1)|uk|t−1ηs ,
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where ν denotes the positive constant from (3.5) and where C depends only on Lf , R, µ, and γ. We
now use, one by one, the previous estimates, the Euler-Lagrange system (3.15) for ∇ϕ = Φ1 +Φ2 +Φ3,
an explicit estimate for Φ1, the bound (3.3), and finally Young’s inequality to find

γk

∫
Ω

|uk|t−1|∇uk|2ηs dx+ ν

∫
Ω

|uk|t−1|∇uk|ηs dx

≤
∫

Ω

∇fk(∇uk) · [Φ2 + Φ3] dx+ Ct

∫
Ω

|uk|t−1ηs dx

= −
∫

Ω

∇fk(∇uk) · Φ1 dx+ Ct

∫
Ω

|uk|t−1ηs dx

≤ γks
∫

Ω

|uk|t|∇uk|ηs−1|∇η|dx+ Lfs

∫
Ω

|uk|tηs−1|∇η|dx+ Ct

∫
Ω

|uk|t−1ηs dx

≤ γk
2

∫
Ω

|uk|t−1|∇uk|2ηs dx+ γkM
2
η s

2

∫
Ω

|uk|t+1ηs−2 dx

+ CMη(s+ t)

∫
Ω

|uk|tηs−1 dx+ CM1−t
η t

∫
Ω

ηs+t−1 dx . (3.16)

Clearly, the first integral on the right-hand side of (3.16) can be absorbed on the left-hand side. Next
we relate the left-hand side of (3.16) to the gradients of the functions |uk|(t+1)/2ηs/2 and |uk|tηs.
Computing these gradients in the first step, and controlling the occurrences of ∇uk via (3.16) in the
second step, we arrive at

γk

∫
Ω

|∇(|uk|
t+1
2 η

s
2 )|2 dx+ ν

∫
Ω

|∇(|uk|tηs)|dx

≤ γks2

∫
Ω

|uk|t+1ηs−2|∇η|2 dx+ γk(t+ 1)2

∫
Ω

|uk|t−1|∇uk|2ηs dx

+ νs

∫
Ω

|uk|tηs−1|∇η|dx+ νt

∫
Ω

|uk|t−1ηs|∇uk|dx

≤ CγkM2
η t

2s2

∫
Ω

|uk|t+1ηs−2 dx+ CMηt
2(s+ t)

∫
Ω

|uk|tηs−1 dx+ CM1−t
η t3

∫
Ω

ηs+t−1 dx ,

where C still depends only on Lf , R, µ, and γ, and it is in particular independent of the parameters
γk, s, and t.

Step 2: An inequality of reverse Hölder type. For a ball Br0(x0) ⊂ Ω with r0 ≤ 1, we fix η ∈ C∞cpt(Ω)
such that 1Br0/2(x0) ≤ η ≤ 1Br0 (x0) and Mη ≤ 4/r0 hold on Ω. Next we observe that Young’s inequality

with exponents n/(n−1) and n gives

γkr
−1−n
0 (|uk|η2n)

n
n−1 t+1η−4n ≤ γ

n
n−1

k r
− n2

n−1

0 (|uk|
t+1
2 ηnt−n+1)

2n
n−1 + r−n0 (|uk|tη2nt−2n+2)

n
n−1 .

When we employ first the last estimate, then Sobolev’s inequality, and finally the resulting estimate
of Step 1 with the choice s = 2nt−2n+2 ∈ [2, 2nt] and η ≤ 1, we obtain[
γkr
−1−n
0

∫
Br0 (x0)

(|uk|η2n)
n
n−1 t+1η−4n dx+ r−n0

∫
Br0 (x0)

(|uk|η2n)
n
n−1 tη−2n dx+ r

n
n−1 t

0

]n−1
n

≤
[
γ

n
n−1

k r
− n2

n−1

0

∫
Br0 (x0)

(|uk|
t+1
2 ηnt−n+1)

2n
n−1 dx+ 2r−n0

∫
Br0 (x0)

(|uk|tη2nt−2n+2)
n
n−1 dx+ r

n
n−1 t

0

]n−1
n

≤ C
[
γkr

1−n
0

∫
Br0 (x0)

|∇(|uk|
t+1
2 ηnt−n+1)|2 dx+ r1−n

0

∫
Br0 (x0)

|∇(|uk|tη2nt−2n+2)|dx+ rt0

]
≤ Ct4

[
γkr
−1−n
0

∫
Br0 (x0)

(|uk|η2n)t+1η−4n dx+ r−n0

∫
Br0 (x0)

(|uk|η2n)tη−2n dx+ rt0

]
,
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where C now depends only on n, Lf , R, µ, and γ.
Step 3: Moser iteration and conclusion. In order to iterate the preceding inequality, we introduce

the abbreviations

tj :=
( n

n− 1

)j
, Aj :=

(
Ct4j

) 1
tj ,

Ψ(j) :=

[
γkr
−1−n
0

∫
Br0 (x0)

(|uk|η2n)tj+1η−4n dx+ r−n0

∫
Br0 (x0)

(|uk|η2n)tjη−2n dx+ r
tj
0

] 1
tj

,

with the constant C from the inequality in Step 2. As in [4, Proof of Theorem 1.11] we thus have
Ψ(j+1) ≤ AjΨ(j), and the iteration of this inequality yields

Ψ(m+ 1) ≤
( m∏
j=0

Aj

)
Ψ(0) .

Observing
∏∞
j=0Aj <∞ we can pass to the limit m→∞. Recalling the choice of η in Step 2, we find

the claimed estimate

sup
Br0/2(x0)

|uk| ≤ C
[
γkr
−1−n
0

∫
Br0 (x0)

|uk|2 dx+ r−n0

∫
Br0 (x0)

|uk|dx+ r0

]
.

Using the bound (3.14) from Lemma 3.3, we infer that the uk are uniformly bounded on Br0/2(x0),
and since x0 is arbitrary in Ω, this means that the sequence (uk)k∈N is bounded in L∞loc(Ω,RN ).

Remark 3.5. The L∞ estimate of Lemma 3.4 remains valid in the more general form

sup
Br0/2(x0)

|uk − ζk| ≤ Cr0

[
γkr
−2
0 −
∫

Br0 (x0)

|uk − ζk|2 dx+ r−1
0 −
∫

Br0 (x0)

|uk − ζk|dx+ 1

]
with an arbitrary sequence (ζk)k∈N in RN . This results from the observation that also uk−ζk minimizes
Fk, in the Dirichlet class u0,k − ζk + W1,2

0 (Ω,RN ). The particular choice ζk = (uk)Br0 (x0) allows for
the application of Poincaré’s inequality. Using also the triangle inequality, we conclude

sup
Br0/2(x0)

|uk − (uk)Br0/2(x0)| ≤ Cr0

[
γk−
∫

Br0 (x0)

|∇uk|2 dx+−
∫

Br0 (x0)

|∇uk|dx+ 1

]
, (3.17)

where C depends only on n, Lf , R, µ, and γ, but not on k ∈ N.

4 Local Lipschitz regularity for one generalized minimizer

In this section, we prove Theorem 1.2, i.e. we show the existence of one locally Lipschitz continuous
generalized minimizer of F in D.

For this purpose, we derive various uniform-in-k estimates for the functions uk, which were con-
structed in Section 3 as minimizers of the regularized functionals Fk. First, in Subsection 4.1, we
provide certain (weighted) Caccioppoli-type inequalities involving second derivatives. Eventually, in
Subsection 4.2, we obtain uniform W1,p estimates, and finally, in Subsection 4.3, we implement a vari-
ant of De Giorgi’s level set technique which leads to uniform W1,∞ estimates. As a straightforward
consequence of the W1,∞ estimates, the limit of (uk)k∈N is a locally Lipschitz continuous (generalized)
minimizer of F .
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4.1 Caccioppoli-type inequalities

Here, we are concerned with the aforementioned Caccioppoli-type inequalities. We will state these
inequalities for minimizers of a functional H, defined by

H[w] :=

∫
Ω

h(∇w) dx ∈ (−∞,∞] for w ∈W1,1(Ω,RN ) , (4.1)

where the C2-integrand h : RNn → R satisfies

λ|ξ|2 ≤ ∇2h(z)(ξ, ξ) ≤ Λ|ξ|2 for all z, ξ ∈ RNn (4.2)

with some constants Λ ≥ λ > 0. For the moment, it is convenient to work with a general function
h ∈ C2(RNn) satisfying (4.2), but, for later purposes, the only relevant choice is h := fk with fk
from (3.1). We remark, once and for all, that this choice is admissible, as (3.2) implies (4.2) for
h := fk, with certain k-dependent constants λ and Λ.

We now start by establishing an auxiliary lemma which allows to estimate certain expressions
involving second derivatives.

Lemma 4.1. Suppose that h : RNn → R is a convex C2 integrand with h(z) = g(|z|) for all z ∈ RNn,
and consider a function w ∈W2,1

loc(Ω,RN ) with |∇w|2 ∈W1,1
loc(Ω). Then almost everywhere in Ω there

holds
n∑
j=1

∇2h(∇w)(∂j∇w, ∂jw ⊗∇(|∇w|2)) ≥ 0 .

Proof. We first observe

∇2h(z) =
g′′(|z|)
|z|2

z ⊗ z +
g′(|z|)
|z|3

(
|z|2INn − z ⊗ z

)
for z ∈ RNn \ {0}, where g′ and g′′ are non-negative by the convexity and symmetry of h. Thus (also
taking into account that ∇(|∇w|2) vanishes a.e. on {∇w = 0}), it suffices to verify, for the bilinear
forms ∇w ⊗∇w and INn, the two inequalities

|∇w|2
n∑
j=1

INn(∂j∇w, ∂jw ⊗∇(|∇w|2)) ≥
n∑
j=1

(∇w ⊗∇w)(∂j∇w, ∂jw ⊗∇(|∇w|2)) ≥ 0 . (4.3)

To this end, we calculate in coordinates

2
n∑
j=1

(∇w ⊗∇w)(∂j∇w, ∂jw ⊗∇(|∇w|2)) = 2
n∑

i,j,k=1

N∑
α,β=1

∂iw
β∂kw

α∂j∂iw
β∂jw

α∂k(|∇w|2)

=

n∑
j,k=1

N∑
α=1

∂j(|∇w|2)∂kw
α∂jw

α∂k(|∇w|2)

=

N∑
α=1

[
∇wα · ∇(|∇w|2)

]2
and

2

n∑
j=1

INn(∂j∇w, ∂jw ⊗∇(|∇w|2)) = 2

n∑
i,j=1

N∑
β=1

∂j∂iw
β∂jw

β∂i(|∇w|2)

=

n∑
i=1

∂i(|∇w|2)∂i(|∇w|2) = |∇(|∇w|2)|2 .

In view of these calculations, (4.3) becomes obvious, and the proof of the lemma is complete.
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Next we state the announced Caccioppoli-type inequalities involving weights. These inequalities
will be crucial in order to obtain the uniform gradient estimates of the following subsections.

Lemma 4.2 (cf. [7], Lemma 3.2; [4], Lemma 5.1). Suppose that h : RNn → R is a strictly convex
C2 function which satisfies (4.2). If v ∈ W1,2(Ω,RN ) minimizes the functional H from (4.1) in a
Dirichlet class in W1,2(Ω,RN ), then we have v ∈ W2,2

loc(Ω,RN ), and, for all j ∈ {1, 2, . . . , n} and
η ∈ C∞cpt(Ω), there holds∫

Ω

∇2h(∇v)(∂j∇v, ∂j∇v)η2 dx ≤ 4

∫
Ω

∇2h(∇v)(∂jv ⊗∇η, ∂jv ⊗∇η) dx. (4.4)

If we additionally have h(z) = g(|z|) for all z ∈ RNn \ BR, some function g, and a radius R, and
if T ∈ W1,∞

loc (R) is non-negative and non-decreasing on R and constant on [0, R2], then for every
η ∈ C∞cpt(Ω) there holds

∫
Ω

n∑
j=1

∇2h(∇v)(∂j∇v, ∂j∇v)T (|∇v|2)η2 dx

≤ 4

∫
Ω

n∑
j=1

∇2h(∇v)(∂jv ⊗∇η, ∂jv ⊗∇η)T (|∇v|2) dx . (4.5)

Sketch of proof. In principle, the following reasoning is well known, but, for the sake of clarity, we
briefly describe the essential arguments. In order to prove the existence of second order derivatives for v,
one applies standard difference quotient methods to the the Euler-Lagrange system div [∇h(∇v)] = 0.
In this way, relying on (4.2), one finds v ∈W2,2

loc(Ω,RN ). Testing the Euler-Lagrange system with the
derivatives ∂jϕ of ϕ and integrating by parts, we obtain∫

Ω

∇2h(∇v)(∂j∇v,∇ϕ) dx = 0 , (4.6)

first for ϕ ∈ C∞cpt(Ω,R
N ) and then also for ϕ ∈ W1,2

0 (Ω,RN ). The choice ϕ = η2∂jv combined with
an application of Young’s inequality gives (4.4).

The estimate (4.5) is derived similarly. Therefore, we only comment on the additional arguments
which are needed to allow the quantity T (|∇v|2) in the test function, and moreover, we explain how
the structure condition on h enters. The differentiated Euler-Lagrange system (4.6) is now tested with
ϕ = η2∂jvTK(|∇v|2), where TK(τ) := min{T (τ),K} denotes the truncation of T at level K > 0 (by

the chain rule for Sobolev functions, ϕ is in W1,2
0 (Ω,RN ) and hence admissible in (4.6)). In order to

verify that the term arising from the differentiation of TK(|∇v|2) is non-negative, we observe that, by
the monotonicity assumption on T and Lemma 4.1, we have almost everywhere

2T ′K(|∇v|2)

n∑
j=1

∇2h(∇v)(∂j∇v, ∂jv ⊗∇(|∇v|2))η2 ≥ 0 .

Arguing with a Young-type inequality as in the derivation of (4.4), we arrive at the estimate (4.5) with
T replaced by the truncated version TK . The final form of (4.5) is then obtained by the passage to
the limit K →∞, via the monotone convergence theorem.

4.2 W1,p estimates

We now return to the study of the minimization problem for the functional F in the Dirichlet class
D = u0 + W1,1

0 (Ω,RN ) with a given function u0 ∈ W1,1(Ω,RN ). For the remainder of this section,
we will permanently assume that the integrand f is convex and satisfies (H1) and (H2), and we
fix the regularized functionals Fk with integrands fk(z) := χk ∗ f(z) + γk|z|2/2 defined in (3.1), the
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approximating Dirichlet classes Dk, the sequence (γk)k∈N according to Lemma 3.3, and the minimizers
uk of Fk in Dk.

The Caccioppoli-type inequality (4.5) can be employed similarly as in [7, Theorem 5.1] to obtain
the following uniform Lp estimates for the sequence (∇uk)k∈N. These estimates depend crucially on
our assumption that µ is strictly less than 3.

Lemma 4.3. For every p ∈ [1,∞) the sequence (∇uk)k∈N is bounded in Lploc(Ω,RNn). Moreover, for
every ball B4r0(x0) b Ω, we have

−
∫

Br0 (x0)

|∇uk|p dx ≤ C
[
γk−
∫

B4r0
(x0)

|∇uk|2 dx+−
∫

B4r0
(x0)

|∇uk|dx+ 1

] 2
3−µ (p−1)+1

, (4.7)

with a constant C, which depends only on n, Lf , R, µ, γ, Γ, and p, but not on k ∈ N.

Proof. Since the claim is obvious in the case p = 1 (compare Lemma 3.3), in what follows we assume
p > 1. To justify the subsequent computations, we first record that we have uk ∈ W1,∞

loc (Ω,RN ) ∩
W2,2

loc(Ω,RN ) for every k ∈ N. This can be inferred, for instance, from [12, Theorem 1.1] and Lemma 4.2
(applied with h = fk). Now we set ζk := (uk)B2r0

(x0) and introduce the quantity

Mk := 1 + r−1
0 ‖uk − ζk‖L∞(B2r0

(x0),RN ) ,

for which (3.17) yields the estimate

Mk ≤ C
[
γk−
∫

B4r0 (x0)

|∇uk|2 dx+−
∫

B4r0 (x0)

|∇uk|dx+ 1

]
. (4.8)

We will employ the test function

ϕ := (|∇uk| − `)p+(uk − ζk)ηs ,

where we have fixed the level ` := R+2, a cut-off function η ∈ C∞cpt(Ω) with 1Br0 (x0) ≤ η ≤ 1B2r0
(x0)

and |∇η| ≤ 2/r0 on Ω, and s := 2p/(3−µ) > 1 (the last choice is made for later convenience). In order
to test the Euler-Lagrange equation (3.15) with ϕ, we compute

∇ϕ = s(|∇uk| − `)p+(uk − ζk)⊗ ηs−1∇η + (|∇uk| − `)p+∇ukηs

+ p(|∇uk| − `)p−1
+ (uk − ζk)⊗∇|∇uk|ηs =: Φ1 + Φ2 + Φ3 .

Then, via (3.5), (3.15), and (3.3), we obtain∫
Ω

(
γk|∇uk|+ ν

)
|∇uk|(|∇uk| − `)p+ηs dx

≤
∫

Ω

∇fk(∇uk) · Φ2 dx+ C

∫
Ω

(|∇uk| − `)p+ηs dx

= −
∫

Ω

∇fk(∇uk) · (Φ1 + Φ3) dx+ C

∫
Ω

(|∇uk| − `)p+ηs dx

≤ s
∫

Ω

(γk|∇uk|+ Lf )(|∇uk| − `)p+|uk − ζk|ηs−1|∇η|dx

+ p

∫
Ω

(γk|∇uk|+ Lf )(|∇uk| − `)p−1
+ |uk − ζk||∇2uk|ηs dx+ C

∫
Ω

(|∇uk| − `)p+ηs dx

=: sI1 + pI2 + CI3

with the obvious labeling. Next we exploit that we have 1 + |uk − ζk||∇η| ≤ 2Mk and η ≤ 1 and that
|∇uk| ≥ ` ≥ 1 holds wherever (|∇uk| − `)+η

s does not vanish. In this way, we can estimate

I1 + I3 ≤ 2(Lf + 1)Mk

[ ∫
Ω

(
γk|∇uk|+ 1

)
|∇uk|p+

µ−1
2 ηs−1 dx

]
.
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Similarly, using also |uk − ζk| ≤ r0Mk on spt η, we find

I2 ≤ (Lf + 1)Mk

∫
Ω

[
r0γk|∇uk|1+µ−1

2 |∇2uk|ηs + r0|∇2uk|ηs
]
(|∇uk| − `)p−1

+ dx .

The terms on the right-hand side of the last formula can further be controlled via the Young inequalities

r0γk|∇uk|1+µ−1
2 |∇2uk|ηs ≤ r2

0γk|∇2uk|2|∇uk|
µ−1
2 ηs+1 + γk|∇uk|2+µ−1

2 ηs−1 ,

r0|∇2uk|ηs ≤ r2
0ν|∇2uk|2|∇uk|−µ+µ−1

2 ηs+1 + ν−1|∇uk|1+µ−1
2 ηs−1 .

Collecting the estimates for I1, I2, I3, we arrive at∫
Ω

(
γk|∇uk|+ 1

)
|∇uk|(|∇uk| − `)p+ηs dx

≤ CMk

[
r2
0

∫
Ω

(
γk + ν|∇uk|−µ

)
|∇2uk|2(|∇uk| − `)p−1

+ |∇uk|
µ−1
2 ηs+1 dx

+

∫
Ω

(
γk|∇uk|+ 1

)
|∇uk|p+

µ−1
2 ηs−1 dx

]
, (4.9)

where C depends only on Lf , R, µ, γ, and p. Next we deal with the crucial term in (4.9), namely
the one involving ∇2uk. We emphasize that, thanks to the specific choice or our test function ϕ, this
term contains the factor (|∇uk| − `)p−1

+ and vanishes on {|∇uk| ≤ `} =
{
∇uk ∈ BR+2

}
. Therefore,

the uncontrolled behavior of fk on BR+2/k does not interfere with the subsequent estimation of ∇2uk,
which is based on the Caccioppoli-type inequality (4.5) from Lemma 4.2. This inequality is now
employed, with h := fk and the non-decreasing function T : [0,∞)→ [0,∞) which is defined by

T (τ) :=
(√
τ − `

)p−1

+
τ
µ−1
4

and which vanishes on [0, `2]. Using also (3.2), we obtain∫
Ω

(
γk + ν|∇uk|−µ

)
|∇2uk|2(|∇uk| − `)p−1

+ |∇uk|
µ−1
2 ηs+1 dx

≤
∫

Ω

n∑
j=1

∇2fk(∇uk)(∂j∇uk, ∂j∇uk)T (|∇uk|2)ηs+1 dx

≤ (s+ 1)2

∫
Ω

n∑
j=1

∇2fk(∇uk)(∂juk ⊗∇η, ∂juk ⊗∇η)T (|∇uk|2)ηs−1 dx

≤ (s+ 1)2

∫
Ω

(
γk|∇uk|+ 2Γ

)
|∇uk|T (|∇uk|2)ηs−1|∇η|2 dx

≤ Cr−2
0

∫
Ω

(
γk|∇uk|+ 1

)
|∇uk|(|∇uk| − `)p−1

+ |∇uk|
µ−1
2 ηs−1 dx .

Now we plug this estimate into (4.9) and recall spt η ⊂ B2r0(x0). This yields∫
B2r0

(x0)

(
γk|∇uk|+ 1

)
|∇uk|(|∇uk| − `)p+ηs dx ≤ CMk

∫
B2r0

(x0)

(
γk|∇uk|+ 1

)
|∇uk|p+

µ−1
2 ηs−1 dx .

Then, via the inequality |∇uk|p ≤ 2p[(|∇uk| − `)p+ + `p] and the choice ` = R+2, we arrive at∫
B2r0

(x0)

(γk|∇uk|+ 1)|∇uk|p+1ηs dx

≤ C
[
Mk

∫
B2r0

(x0)

(γk|∇uk|+ 1)|∇uk|p+
µ−1
2 ηs−1 dx+

∫
B2r0

(x0)

(γk|∇uk|+ 1)|∇uk|ηs dx

]
,
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with C depending only on Lf , R, µ, γ, Γ, and p. We next use Young’s inequality, with exponents
2p/(2p+µ−3), 2p/(3−µ) and an arbitrary ε > 0, to find

Mk|∇uk|p+
µ−1
2 ηs−1 ≤ ε|∇uk|p+1η(s−1) 2p

2p+µ−3 + C(ε, µ, p)M
2p

3−µ
k |∇uk| .

As we have taken s = 2p/(3−µ), we have the equality (s−1)2p/(2p+µ−3) = s. Therefore, choosing ε
suitably small, employing an absorption argument, and recalling η ≤ 1 ≤Mk, we deduce∫

B2r0 (x0)

(γk|∇uk|+ 1)|∇uk|p+1ηs dx ≤ CM
2p

3−µ
k

∫
B2r0 (x0)

(γk|∇uk|+ 1)|∇uk|dx .

Now we can drop the γk-term on the left-hand side. When we divide by rn0 , exploit η ≥ 1Br0 (x0), and
employ (4.8), we thus end up with

−
∫

Br0 (x0)

|∇uk|p+1 dx ≤ CM
2p

3−µ
k

[
γk−
∫

B4r0
(x0)

|∇uk|2 dx+−
∫

B4r0
(x0)

|∇uk|dx
]

≤ C
[
γk−
∫

B4r0 (x0)

|∇uk|2 dx+−
∫

B4r0 (x0)

|∇uk|dx+ 1

] 2
3−µp+1

,

(4.10)

where C depends only on n, Lf , R, µ, γ, Γ, and p. A final application of Hölder’s inequality yields
the claimed estimate

−
∫

Br0 (x0)

|∇uk|p dx ≤ C
(
−
∫

Br0 (x0)

|∇uk|p+1 dx

) p−1
p
(
−
∫

Br0 (x0)

|∇uk|dx
) 1
p

≤ C
[
γk−
∫

B4r0
(x0)

|∇uk|2 dx+−
∫

B4r0
(x0)

|∇uk|dx+ 1

] 2
3−µ (p−1)+1

with the asserted dependencies of the constant. In particular, taking into account (3.14), we infer that
the sequence (∇uk)k∈N is bounded in Lploc(Ω,RNn).

4.3 A De Giorgi type lemma and the proof of Theorem 1.2

Roughly speaking, De Giorgi’s technique allows to derive L∞ estimates from Caccioppoli inequalities
on superlevel sets; compare [22, Chapter 7]. The following lemma — which resembles some arguments
in [8, Section 3.3.3] — yields the same conclusion in the presence of certain additional weight functions.

Lemma 4.4. Consider non-negative exponents θ, σ with θ+σ ≥ 4, a constant CCacc ≥ 1, and some
function w ∈ W1,2

loc(Ω,RN ) ∩ Lploc(Ω,RN ) with p > (θ+σ)n/2. If w satisfies, for all ` ≥ `0 ≥ 1 and
every η ∈ C∞cpt(Ω), the Caccioppoli-type inequality with weights∫

Ω

|∇w|2|w|−θ(|w| − `)2
+η

2 dx ≤ CCacc

∫
Ω

|w|σ−2(|w| − `)2
+|∇η|2 dx , (4.11)

then we have w ∈ L∞loc(Ω,RN ), and for all balls Br0(x0) b Ω there holds

sup
Br0/2(x0)

|w| ≤ `0 + C

(
−
∫

Br0 (x0)

|w|p dx

) θ+σ
4p

, (4.12)

where C depends only on n, θ, σ, p, and CCacc.

Remark 4.5. In the case θ+σ = 4, the estimates (4.11) and (4.12) are non-degenerate in the sense that
the leading terms on both sides exhibit the same homogeneity in w. However, under our assumptions
we can verify the inequality (4.11) only for θ = µ > 1 and σ = 3, so that we have θ+σ > 4. This
reflects, to some extent, the fact that we deal with non-uniformly elliptic situations.
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Proof of Lemma 4.4. We fix a ball Br0(x0) b Ω, we set

A(`, r) :=
{
x ∈ Br(x0) : |w(x)| > `

}
for ` ≥ `0 and 0 < r ≤ r0, and we define a function ϕ on [`0,∞)× (0, r0] by

ϕ(`, r) :=

∫
A(`,r)

|w|σ−2(|w| − `)2 dx .

We notice that ϕ is finite-valued, since we have assumed w ∈ Lploc(Ω,RN ) with p > (θ+σ)n/2 ≥ σ.
Moreover, ϕ is non-increasing in ` for fixed r, and it is non-decreasing in r for fixed `. Next, in order
to apply Lemma 2.5, we verify that ϕ fulfills (2.2). For this purpose, we consider arbitrary levels
m > ` ≥ `0 and radii 0 < ρ < r ≤ r0, and we choose a cut-off function η ∈ C∞cpt(Ω) which satisfies
1Bρ(x0) ≤ η ≤ 1Br(x0) and |∇η| ≤ 2/(r−ρ). Then we infer from Sobolev’s inequality

ϕ(m, ρ) ≤
∫

Br(x0)

|w|σ−2(|w| −m)2
+η

2 dx

≤ C
[(∫

A(m,r)

|w|σ
n
n+2 |∇η|

2n
n+2 dx

)n+2
n

+

(∫
A(m,r)

|∇w|
2n
n+2 |w|(σ−2) n

n+2 η
2n
n+2 dx

)n+2
n
]

=: C
[
I + II

]
with the obvious labeling and with a constant C which depends only on n and σ. Hölder’s inequality
(applied with exponents (n+2)/2, (n+2)/n) yields for the first term

I ≤
(∫

A(m,r)

|w|n(|w| − `)n dx

) 2
n
∫
A(m,r)

|w|σ−2(|w| − `)−2|∇η|2 dx

≤ (m− `)−4

(∫
A(`,r)

|w|n(|w| − `)n dx

) 2
n
∫
A(`,r)

|w|σ−2(|w| − `)2|∇η|2 dx .

For the second term we obtain, via a similar application of Hölder’s inequality and the Caccioppoli-type
inequality (4.11),

II ≤
(∫

A(m,r)

|w|(θ+σ−2)n2 (|w| − `)n dx

) 2
n
∫
A(m,r)

|∇w|2|w|−θ(|w| − `)−2|η|2 dx

≤ (m− `)−4

(∫
A(`,r)

|w|(θ+σ−2)n2 (|w| − `)n dx

) 2
n
∫
A(m,r)

|∇w|2|w|−θ(|w| − `)2|η|2 dx

≤ CCacc(m− `)−4

(∫
A(`,r)

|w|(θ+σ−2)n2 (|w| − `)n dx

) 2
n
∫
A(`,r)

|w|σ−2(|w| − `)2|∇η|2 dx .

In view of θ+σ ≥ 4 and CCacc ≥ 1, the last bound for II is also a bound for I. To estimate further,
we use in the first step the inequalities |∇η| ≤ 2/(r−ρ) and

(|w| − `)n ≤ |w|(σ−2)
2p−n(θ+σ)

2(p−σ) +p
n(θ+σ)−2σ

2(p−σ) −(θ+σ−2)n2 (|w| − `)
2p−n(θ+σ)

p−σ on A(`, r)

(the two exponents on the right-hand side are non-negative and sum up to n), and in the second step
we apply Hölder’s inequality (with exponents 2(p−σ)/[2p−n(θ+σ)] and 2(p−σ)/[n(θ+σ)−2σ]). In this
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way we infer

ϕ(m, ρ) ≤ C(m− `)−4(r − ρ)−2

(∫
A(`,r)

[
|w|σ−2(|w| − `)2

] 2p−n(θ+σ)
2(p−σ) |w|p

n(θ+σ)−2σ
2(p−σ) dx

) 2
n

×
∫
A(`,r)

|w|σ−2(|w| − `)2 dx

≤ C(m− `)−4(r − ρ)−2

(∫
Br0 (x0)

|w|p dx

)n(θ+σ)−2σ
n(p−σ)

(∫
A(`,r)

|w|σ−2(|w| − `)2 dx

)1+
2p−n(θ+σ)
n(p−σ)

= C

(∫
Br0 (x0)

|w|p dx

)n(θ+σ)−2σ
n(p−σ)

(m− `)−4(r − ρ)−2[ϕ(`, r)]1+
2p−n(θ+σ)
n(p−σ) ,

where C still depends only on n, σ, and CCacc. We have thus obtained an estimate of the type (2.2),
with

α1 = 4 , α2 = 2 , δ =
2p− n(θ + σ)

n(p− σ)
, and K = C

(∫
Br0 (x0)

|w|p dx

)n(θ+σ)−2σ
n(p−σ)

.

The application of Lemma 2.5 yields

ϕ(`0 + d, r0/2) = 0 , (4.13)

where d is controlled by

d4 = C

(∫
Br0 (x0)

|w|p dx

)n(θ+σ)−2σ
n(p−σ)

r−2
0

[
ϕ(`0, r0)

] 2p−n(θ+σ)
n(p−σ)

≤ C
(
−
∫

Br0 (x0)

|w|p dx

)n(θ+σ)−2σ
n(p−σ)

(
−
∫

Br0 (x0)

|w|σ dx

) 2p−n(θ+σ)
n(p−σ)

≤ C
(
−
∫

Br0 (x0)

|w|p dx

) θ+σ
p

(4.14)

for a constant C depending only on n, θ, σ, p, and CCacc. In other words, (4.13) and (4.14) show
w ∈ L∞(Br0/2(x0),RN ) with

sup
Br0/2(x0)

|w| ≤ `0 + C

(
−
∫

Br0 (x0)

|w|p dx

) θ+σ
4p

,

and the proof of the lemma is complete.

Relying on both Lemma 4.2 and Lemma 4.4, we now improve the uniform Lp estimates of Lemma 4.3
to uniform L∞ estimates for the sequence (∇uk)k∈N.

Lemma 4.6. The sequence (∇uk)k∈N is bounded in L∞loc(Ω,RNn), and, for every ball B4r0(x0) b Ω,
we have

lim sup
k→∞

sup
Br0/2(x0)

|∇uk| ≤ C
(

1 + lim sup
k→∞

−
∫

B4r0
(x0)

|∇uk|dx
)1+

3(µ−1)
2(3−µ)

,

where C depends only on n, Lf , R, µ, γ, and Γ.
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Proof. We first combine the Caccioppoli-type inequality (4.5) (applied with h := fk, v := uk, and
T (τ) := (

√
τ − `)2

+ for ` ≥ `0 := R+2) and the growth condition (3.2) for ∇2fk. In this way we infer∫
Ω

|∇2uk|2|∇uk|−µ(|∇uk| − `)2
+η

2 dx ≤ C
∫

Ω

[
γk|∇uk|2 + |∇uk|

]
(|∇uk| − `)2

+|∇η|2 dx (4.15)

for all ` ≥ `0 and every η ∈ C∞cpt(Ω), where C depends only on R, µ, γ, and Γ. In particular, this
means (in view of γk ≤ 1 ≤ `) that the weighted Caccioppoli inequality (4.11) is satisfied for the
choices w = ∇uk, θ = µ, σ = 4, and with Nn in place of N . Thus, for every k ∈ N, Lemma 4.4 gives

sup
Br0/2(x0)

|∇uk| ≤ R+ 2 + C

(
−
∫

Br0 (x0)

|∇uk|p dx

)µ+4
4p

(4.16)

for every p > (µ+4)n/2, where C depends only on n, R, µ, γ, Γ, and p. By Lemma 4.3, the right-
hand side of the last inequality is k-uniformly bounded, and thus we have shown that the sequence
(∇uk)k∈N is bounded in L∞loc(Ω,RNn). In particular, we have γk|∇uk| ≤ 1 on B4r0(x0) b Ω for
k ≥ k0 = k0(dist(B4r0(x0), ∂Ω)), and when we exploit this insight on the right-hand side of (4.15),
we can slightly improve on the estimate (4.16). Indeed, we can reapply Lemma 4.4 on B4r0(x0), with
σ = 3 instead of σ = 4; then we get (4.16) with the refined exponent (µ+3)/(4p) instead of (µ+4)/(4p)
and for every p > (µ+3)n/2 — but only for k ≥ k0. When we combine this partial refinement of (4.16)
with (4.7), we arrive at

sup
Br0/2(x0)

|∇uk| ≤ C
(

1 + γk−
∫

B4r0
(x0)

|∇uk|2 dx+−
∫

B4r0
(x0)

|∇uk|dx
)( 2

3−µ (p−1)+1)µ+3
4p

for k ≥ k0. In view of γk|∇uk| ≤ 1 on B4r0(x0) for k ≥ k0, we can omit the γk-term on the right-hand
side. Therefore, passing to the limit, fixing an arbitrary admissible p, and observing( 2

3− µ
(p− 1) + 1

)µ+ 3

4p
<

2

3− µ
p · µ+ 3

4p
= 1 +

3(µ− 1)

2(3− µ)
,

we arrive at the claimed estimate.

At this stage, we can finally prove the existence of a locally Lipschitz continuous generalized
minimizer:

Proof of Theorem 1.2. As a consequence of Lemma 3.3, a subsequence of (uk)k∈N converges in L1(Ω,RN )
to a generalized minimizer u of F in the Dirichlet class D. Moreover, for every x0 ∈ Ω, setting
r0 := dist(x0, ∂Ω)/5, we have B4r0(x0) b Ω, and Lemma 4.6 gives

|∇u(x0)| ≤ lim sup
k→∞

sup
Br0/2(x0)

|∇uk| ≤ C
(

1 + lim sup
k→∞

−
∫

B4r0
(x0)

|∇uk|dx
)1+

3(µ−1)
2(3−µ)

, (4.17)

where C depends only on n, Lf , R, µ, γ, and Γ. In order to estimate the right-hand side of (4.17), we ob-
serve on the one hand that the minimality of uk, combined with (3.13), the convergence limk→∞ fk(0) =
f(0), and Lemma 2.4 (i), yields

lim
k→∞

∫
Ω

[
fk(∇uk)− fk(0)

]
dx = lim

k→∞

[
inf
Dk

Fk − (χk ∗ f)(0)Ln(Ω)
]

= inf
D
F − f(0)Ln(Ω)

≤
∫

Ω

[
f(∇u0)− f(0)

]
dx ≤ Lf

∫
Ω

|∇u0|dx . (4.18)

On the other hand, we have ∫
Ω

∇fk(0) · ∇uk dx =

∫
Ω

∇fk(0) · ∇u0,k dx ,
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and in view of (3.11) and (3.3) this gives

lim sup
k→∞

∫
Ω

[
−∇fk(0) · ∇uk

]
dx ≤ Lf

∫
Ω

|∇u0|dx . (4.19)

Now we take advantage of (3.7), and the estimates (4.18), (4.19). We infer

lim sup
k→∞

−
∫

B4r0 (x0)

ν|∇uk|dx ≤ lim sup
k→∞

−
∫

B4r0 (x0)

[
C + fk(∇uk)− fk(0)−∇fk(0) · ∇uk

]
dx

≤ C + Cr−n0 lim sup
k→∞

∫
Ω

[
fk(∇uk)− fk(0)−∇fk(0) · ∇uk

]
dx

≤ C + Cr−n0

∫
Ω

|∇u0|dx ,

where C depends only on n and Lf . Plugging the last estimate into the right-hand side of (4.17), we
conclude

|∇u(x0)| ≤ C
[
1 + r−n0

∫
Ω

|∇u0|dx
]1+

3(µ−1)
2(3−µ)

.

Recalling r0 = dist(x0, ∂Ω)/5, we arrive at the claim (1.3). Since x0 ∈ Ω is arbitrary, this implies in
particular u ∈W1,∞

loc (Ω), and the proof of the theorem is complete.

5 Local C1,α regularity

In this section we establish the regularity and uniqueness results of Theorem 1.1 and Theorem 1.3.
Indeed, we will show that Theorem 1.2 makes it possible to deduce these assertions from standard
regularity results for integrands with q-growth and the uniqueness statement in [5, Corollary 2.5]. The
details of this reasoning are implemented below.

Proof of Theorem 1.3. In the following we consider the case q 6= 2, while the case q = 2 will only be
addressed briefly at the end of the proof.

We first observe that assumption (H3) implies (H2) with γ replaced by γ/2 and with R = 1. Hence,
by Theorem 1.2 there exists a generalized minimizer u of F in D which satisfies u ∈ W1,∞

loc (Ω,RN ).
For the following, we fix a subdomain Ω′ b Ω and a number M ≥ 1 + ‖∇u‖L∞(Ω′,RNn) which will be
specified later.

Now we construct a rotationally symmetric comparison integrand with q-growth which coincides
with f − f(0) on BM . For this purpose, we choose a rotationally symmetric, smooth cut-off function
ηM ∈ C∞cpt(R

Nn) with 1B2M
≤ ηM ≤ 1B4M

and |∇ηM | ≤ M−1 on RNn, and with |∇2ηM (z)(ξ, ξ)| ≤
2M−2|ξ|2 for all z, ξ ∈ RNn. Setting7

hM (z) :=
(√
|z| −

√
M
)2q

+
,

we define a C2,min{2q−2,1} function hM on RNn with

∇2hM (z) = q
(√
|z| −

√
M
)2q−2

+

[
(2q − 1)

z ⊗ z
2|z|3

+
(√
|z| −

√
M
)

+

( INn
|z|3/2

− 3z ⊗ z
2|z|7/2

)]
for z ∈ RNn \ {0}. Moreover, we introduce the rotationally symmetric integrand

fM := ηM (f − f(0)) + hM ∈ C2(RNn \ {0}) ∩ C1(RNn) ,

7In the case q > 2 we could alternatively take hM (z) = (|z|−M)q+, but for q < 2 this choice would not be of class C2.

23



and we claim that ∇2fM satisfies the following growth and Hölder continuity conditions

γM |z|q−2|ξ|2 ≤ ∇2fM (z)(ξ, ξ) ≤ ΓM |z|q−2|ξ|2 for ξ ∈ RNn and z ∈ RNn \ {0} , (5.1)

|∇2fM (z̃)−∇2fM (z)| ≤ LMSq,κ(|z|, |z̃|)|z̃ − z|κ for z, z̃ ∈ RNn \ {0} (5.2)

with positive M -dependent constants γM , ΓM , LM , and for every κ such that

0 < κ ≤ min{β, 2q − 2} .

In order to check (5.1), we first observe that (H3) gives

γ(4M)−q−2|z|q−2|ξ|2 ≤ ∇2f(z)(ξ, ξ) ≤ Γ|z|q−2|ξ|2 for |z| ≤ 4M ,

while direct computation shows

2γ0|z|q−2|ξ|21Rn\B2M
(z) ≤ ∇2hM (z)(ξ, ξ) ≤ Γ0|z|q−2|ξ|2 for arbitrary z ∈ RNn

with certain positive constants γ0 and Γ0, which depend8 only on q. From these two observations we
directly get (5.1) in the cases |z| ≤ 2M and |z| ≥ 4M , using that ∇2fM (z) = ∇2f(z) + ∇2hM (z)
holds in the first case and ∇2fM (z) = ∇2hM (z) in the second one. Turning to the remaining case
2M < |z| < 4M , we first estimate the terms

X(z, ξ) := (∇f(z) · ξ)(∇ηM (z) · ξ) + (f(z)− f(0))∇2ηM (z)(ξ, ξ) ,

which contain derivatives of ηM . With the help of Lemma 2.4 (i) we find

|X(z, ξ)| ≤ Lf
[
M−1 + 2|z|M−2

]
|ξ|2 ≤ 9LfM

−1|ξ|2 ≤ 1

4
γ0M

q−2|ξ|2 ≤ γ0|z|q−2|ξ|2 ,

where we have finally fixed the parameter M sufficiently large that the third inequality in the preceding
formula holds true (this is indeed possible, as the relevant constants Lf , γ0 are M -independent and as
q−2 > −1). Altogether we can thus bound

∇2fM (z)(ξ, ξ) = ηM (z)∇2f(z)(ξ, ξ) +X(z, ξ) +∇2hM (z)(ξ, ξ)

from below by γ0|z|q−2|ξ|2 and from above by (Γ+γ0+Γ0)|z|q−2|ξ|2, so that we arrive at (5.1) also in
the last case.

In order to verify (5.2), we proceed as follows. First of all, if |z̃−z| ≥ |z|/2, we get (5.2) directly
from the upper bound in (5.1) via the estimate

|∇2fM (z̃)−∇2fM (z)| ≤ 2ΓM max{|z|q−2, |z̃|q−2} ≤ 10ΓMSq,κ(|z|, |z̃|)|z̃ − z|κ .

Otherwise, if |z̃−z| < |z|/2, we distinguish three subcases: in the subcase |z| < M/2, we have
∇2fM (z) = ∇2f(z) and ∇2fM (z̃) = ∇2f(z̃), so that the inequality in (5.2) follows from (H3); in
the subcase M/2 ≤ |z| ≤ 8M , the scaling factor Sq,κ(|z|, |z̃|) is bounded (away from 0 and ∞), and
it suffices to use the C2,κ regularity of the involved functions; in the last subcase |z| > 8M , we have
∇2fM (z) = ∇2hM (z) and ∇2fM (z̃) = ∇2hM (z̃), and (5.2) follows once more, as ∇2hM is of class C1

outside B4M with derivatives of (q−3)-growth.
Exploiting the above properties of fM (which are sometimes referred to as Uhlenbeck structure),

we will next deduce regularity of u from classical results in the spirit of Uhlenbeck’s famous paper [36].
To this end, we recall that u is a generalized minimizer of F , which is W1,∞ on Ω′. In particular, u
then minimizes w 7→

∫
Ω′
f(∇w) dx in u + W1,∞

0 (Ω′,RN ), and in view of ‖∇u‖L∞(Ω′,RNn) < M and
fM = f − f(0) on BM , the corresponding Euler equation gives∫

Ω′
∇fM (∇u) · ∇ϕdx =

∫
Ω′
∇f(∇u) · ∇ϕdx = 0 ,

8The M -independence of γ0 and Γ0 can also be inferred from the formula ∇2hM (z) = Mq−2∇2h1(z/M).
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first for all ϕ ∈W1,∞
0 (Ω′,RN ) and then also for all ϕ ∈W1,q

0 (Ω′,RN ). As fM is convex, u minimizes
w 7→

∫
Ω′
fM (∇w) dx in u+ W1,q

0 (Ω′,RN ), and we can rely on classical regularity results for integrands
with q-growth and rotational symmetry. Precisely, we observe that (5.1) implies suitable growth con-
ditions for fM and ∇fM , and then we apply9 [19, Theorem 3.1] in the case q > 2 and [1, Theorem 1.1]
in the case q < 2. From these results we infer the existence of an exponent α > 0 (which in general
may depend on M and thereby on Ω′) such that u ∈ C1,α

loc (Ω′,RN ) holds. Since Ω′ b Ω was arbitrary,
this proves the claim of Theorem 1.3 regarding C1,α regularity. In particular, u is of class C1 on Ω,
and therefore the claimed uniqueness statement follows from [5, Corollary 2.5]10.

Finally, we comment on the particular case q = 2, in which the basic reasoning is very similar to
the one just given. However, in order to quote a suitably formulated result from the literature, it
seems advantageous to work with an auxiliary integrand fM of superquadratic growth. This can, for
instance, be accomplished by choosing

hM (z) :=
(
|z| −M

)3
+
.

Then one obtains for fM the non-degenerate growth condition

γM (1 + |z|)|ξ|2 ≤ ∇2fM (z)(ξ, ξ) ≤ ΓM (1 + |z|)|ξ|2

and a correspondingly scaled Hölder condition with exponent β, so that C1,α regularity of u on Ω′ still
follows from [19, Theorem 3.1].

Remark 5.1. In non-degenerate situations, one can improve on the regularity result of Theorem 1.3.
Indeed, if, under the assumptions of the theorem with β < 1, u is a generalized minimizer of F , then
Ω∗ := {x ∈ Ω : ∇u(x) 6= 0} is an open set and we have u ∈ C2,β

loc (Ω∗,RN ). Furthermore, in the

non-degenerate case q = 2 we even have u ∈ C2,β
loc (Ω,RN ).

The statements of Remark 5.1 are routine consequences of Theorem 1.3. Nevertheless, we comment
briefly on the proof.

Sketch of proof for Remark 5.1. Since we already know that u is of class C1, the set Ω∗ of non-
degenerate points is open. Now we consider a subdomain Ω′ b Ω and the corresponding exponent
α ∈ (0, 1) (which exists by Theorem 1.3) such that we have u ∈ C1,α(Ω′,RN ). Then, it is not difficult
to show that the partial derivatives ∂iu with i ∈ {1, 2, . . . , n} are W1,2 solutions of the differentiated
Euler equation ∫

Ω∗∩Ω′
∇2f(∇u)(∇∂iu,∇ϕ) dx = 0 for all ϕ ∈ C∞cpt(Ω

∗ ∩ Ω′,RN ) ,

where the coefficients ∇2f(∇u) are uniformly elliptic, bounded, and of class C0,βα on compact subsets
of Ω∗ ∩ Ω′. By means of the Schauder estimates [18, Theorem 5.19] it follows that the ∂iu are locally
C1,βα on Ω∗ ∩ Ω′. Thus, the coefficients ∇2f(∇u) are even locally C0,β on Ω∗, and then, by a second
application of the Schauder estimates, the ∂iu are C1,β on Ω∗. In the case q = 2, the same reasoning
works on all of Ω.

Proof of Theorem 1.1. We argue that the choice f = mp, with a fixed 1 < p < 2, does indeed satisfy
the assumption (H3) — as already claimed in the introduction. Indeed, the conditions in the first line

9Both papers quoted here build on an application of the De Giorgi-Nash-Moser theorem to a certain subsolution
H(∇u) of an elliptic equation, but it is not accurately justified why H(∇u) is of class W1,2 or why it is a subsolution.
However, these difficulties disappear in our situation, since we have the extra information u ∈ W1,∞(Ω′,RN ) at our
disposal. With this knowledge, it is straightforward to adapt the arguments of [19, 1] and to obtain the relevant
W1,2 regularity of H(∇u).

10In [5, Definition 3.1], we introduced a notion of generalized minimizers which makes sense even for possibly unbounded
and irregular Ω. It follows from [2, Corollary 3.89] that this notion coincides with the one of Definition 2.1 in the case
of bounded Lipschitz domains Ω considered here.

25



of (H3) are obviously valid, and the ones in the second line can be verified — for q = p, µ = 1+p, and
constants γ, Γ, which depend only on p — with the help of the explicit formula

∇2mp(z) = (1 + |z|p)
1
p−1|z|p−2INn + (1 + |z|p)

1
p−2(p− 2− |z|p)|z|p−4z ⊗ z . (5.3)

In order to verify the last requirement in (H3), we read off from (5.3) that ∇2mp = `1H1 + `2H2 holds
for fixed functions `1, H1, `2, H2 such that `1 and `2 are bounded Lipschitz functions on RNn, while
H1 and H2 are homogeneous of degree p−2 and smooth on RNn \ {0}. From the homogeneity of H1

we infer
|H1(z)| ≤ C|z|p−2 , |H1(z̃)−H1(z)| ≤ CSp;1(|z|, |z̃|)|z̃ − z|

for all z, z̃ ∈ RNn \ {0}, and for the product `1H1, taking into account that `1 is bounded and
Lipschitz-continuous, it is not difficult to show

|`1(z̃)H1(z̃)− `1(z)H1(z)| ≤ C1(1 + |z|+ |z̃|)Sp;1(|z|, |z̃|)|z̃ − z| ,

still for all z, z̃ ∈ RNn \ {0}, and with a constant C1 ∈ R. Evidently, the same reasoning works for
`2H2, and thus the third line of (H3) is verified for q = p, for β = 1, and — assuming that for `2H2

we have an analogous estimate with a constant C2 — for Ψ(t) = (C1+C2)(1+t).
Consequently, Theorem 1.3 is applicable to the model integrals Mp with 1 < p < 2, and it yields

the claimed uniqueness statement and C1 regularity on Ω for every generalized minimizer u of Mp.
Moreover, by Remark 5.1, we even have C2 regularity of u on Ω∗, and it just remains to reason that u
is locally C1,α on a neighborhood of Ω \ Ω∗ in Ω, with a fixed Hölder exponent α(n,N, p) > 0 (which
in particular does not depend on the distance to ∂Ω). However, this last requirement is ensured, when
we notice that every point of Ω is a Lebesgue point of ∇u (by C1 regularity) and then apply the local
regularity result [28, Theorem 2.5] in every point of Ω \ Ω∗.
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