
ON A VARIATIONAL APPROACH FOR WATER WAVES

D. ARAMA AND G. LEONI

Abstract. Using a variational method due to Alt and Caffarelli [AC], we
study regularity and qualitative properties of local and global minimizers of a
functional with a variable domain of integration related to water waves.

1. Introduction

In a classical paper [AC] Alt and Caffarelli studied existence and regularity of
minimizers of the functional

J (u) =

∫

Ω

(

|∇u (x)|2 + χ{u>0} (x)Q
2 (x)

)

dx (1.1)

in the class

K0 :=
{

u ∈ L1
loc(Ω) : ∇u ∈

(

L2
loc(Ω)

)2
, u = u0 on S

}

.

Here Ω is an open connected set of Rn with locally Lipschitz boundary, S ⊆ ∂Ω is a
measurable set with Hn−1 (S) > 0 and the Dirichlet datum u0 on S is a nonnegative

function u0 ∈ L1
loc(Ω) with ∇u0 ∈

(

L2
loc(Ω)

)2
. The identity u = u0 on S is to be

understood in the sense of traces.
Under the assumptions that Q is a Hölder continuous function satisfying

0 < Qmin ≤ Q (x) ≤ Qmax < ∞, (1.2)

Alt and Caffarelli proved, in particular, full regularity of the free boundary Ω ∩
∂ {u > 0} of local minimizers for n = 2 and partial regularity for n ≥ 3 (see also
the recent paper [CJK] for the case n = 3).

Note that when the free boundary Ω ∩ ∂ {u > 0} is smooth, the Euler-Lagrange
equations of (1.1) are given by

∆u = 0 in Ω ∩ {u > 0} ,
u = 0, |∇u| = Q on Ω ∩ ∂ {u > 0} , (1.3)

u = u0 on S.

One of the main purposes of this paper is to study the loss of regularity of the
free boundary in the case Qmin = 0. Note that in view of Hopf ’s boundary point
lemma at any regular free boundary point one has Q = |∇u| = −∂u

∂ν > 0, where ν
is the outward normal. Thus, if the free boundary touches a point x0 at which Q
vanishes, then x0 cannot be a regular point. More precisely, if Q decays like rα (in
spherical coordinates), then by (1.3)2, the function u decays like rα+1.
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In dimension n = 2 this leads to the formation of angles. Indeed (see e.g.,
Chapter 4 of [Gris]), the solution of the Dirichlet boundary problem

∆v = 0 in A,

v = 0 on ∂A,

where A is the infinite sector given in polar coordinates by

A := {(r, θ) : r > 0, 0 < θ < ω},
is the function

v = r
π
ω sin

(

πθ

ω

)

. (1.4)

Hence, if u decays like rα+1, then a blow-up argument gives ω = π
α+1 . Note that in

[AC] the condition Qmin > 0 implies linear decay of minimizers, which corresponds
to α = 0, that is, ω = π, thus one expects a smooth free boundary.

For simplicity in this paper we consider n = 2 and the function

Q (x, y) =
√

(λ− y)+, (1.5)

where x = (x, y) ∈ R × R, although all the results can be adapted to cover more
general functions of the type

Q (x, y) =
(

(λ− y)+
)b

, b > 0.

The function (1.5) leads to the formation of angles of 2
3π at points at which the

free boundary touches the line y = λ.
The motivation for this choice comes from water waves. Indeed, consider periodic

steady surface waves in a horizontal channel of uniform rectangular cross-section.
We neglect surface tension and we assume that the channel has a flat, rigid bottom
and that the water motion is two-dimensional, irrotational and in a vertical plane.
We choose the frame of reference so that the velocity field and the free surface
profile are time-independent and we assume that the free surface is the graph of a
function f . Thus

D =
{

(x, y) ∈ R
2 : x ∈ R, 0 < y < f (x)

}

,

represents the longitudinal section of the water domain, Γ = {(x, f (x)) : x ∈ R} is
the free surface, and y = 0 represents the bottom of the channel. For simplicity,
assume that f has period ℓ, has a single crest per wavelength, and is symmetrical
about that crest. If v is the velocity of the fluid and ρ its density, the conservation
of mass and the fact that the fluid is irrotational, which are usually given in the
form

dρ

dt
+ div (ρv) = 0 in D,

curlv = 0 in D,

under the present assumptions simplify to div v = 0 and curlv = 0 in D. Hence,
we may write v = (uy,−ux), where the potential u satisfies the following problem

∆u = 0 in D.

Moreover, from Bernoulli’s theorem, in the steady motion of an inviscid fluid at
every point of the same streamline one has p

ρ +K =const, where p is the pressure
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and K is the energy per unit mass of the fluid. In the present setting this becomes

u = 0,
1

2
|∇u|2 + gy = R on Γ,

where g is the gravitational acceleration, R is the Bernoulli’s constant and K has
been taken as the sum of the kinetic and potential energy. Thus we are led to the
following free boundary problem:

∆u = 0 in D,

u (x+ ℓ, y) = u (x, y) in D, (1.6)

u = 0,
1

2
|∇u|2 + gy = R on Γ,

u = q on y = 0,

where q is the volume rate of flow per unit span (see [AT] and [KK] for more
details).

In 1847 Stokes (see [Sto], [Sto2]) assumed that there exists a family of solutions
for this problem, which are parametrized by the heightH of the wave,H := max f−
min f , and he conjectured that there exists a wave of greatest height, which is
characterized by the fact that its shape is not regular but has sharp crests of
included angle 2

3π. He also conjectured that for this wave f ′′ > 0 in
(

0, ℓ
2

)

.
Stokes conjectures have been proved in a series of papers. The starting point was

a paper of Nekrasov in 1922 (see [MT]), where he used a hodograph transformation
to map the region under one period onto the unit circle. More precisely, setting

ϕ (s) = arctan f ′ (x) , (1.7)

one obtains the nonlinear integral equation

ϕ (s) =
1

3π

∫ π

0

sinϕ (t)

µ−1 +
∫ t

0
sinϕ (τ) dτ

log

∣

∣

∣

∣

sn 1
πT (s+ t)

sn 1
πT (s− t)

∣

∣

∣

∣

dt, 0 < s ≤ π, (1.8)

where sn denotes the Jacobian elliptic function whose quarter periods T and iT ′

satisfy T ′

T = 4h
ℓ and h is the mean depth of the fluid (see Section 1.2 of [AT] for

more details). Solutions of (1.8) with µ > 0 correspond to regular waves, while in
the case µ = ∞ one has a Stokes wave.

The first existence result for solutions of Nekrasov’s integral equation (1.8) is
due to Krasovski [K] in 1961, who, using a degree theory argument, proved that
for every angle 0 < β < π

6 there exist µ > 3 coth (2πh/ℓ) and a continuous solution
ϕµ of (1.8) with

sup
s∈[0,π]

ϕµ (s) = β.

In 1978 Keady and Norbury [KN], again using degree theory arguments, proved
that for every µ > 3 coth (2πh/ℓ) there exists a continuous solution ϕµ of (1.8) with
0 ≤ ϕµ < π

2 , while there are no solutions for 0 < µ ≤ 3 coth (2πh/ℓ). These waves
have a smooth profile.

Toland [To] in 1978 and McLeod [ML2] in 1979 showed that as µ → ∞ the
regular waves ϕµ converge to a solution ϕ0 of the limiting problem µ = ∞ and
proved that if the limit lim

s→0+
ϕ0 (s) exists, then it must be π

6 . The existence of the

limit was proved by Amick, Fraenkel, and Toland [AF2] in 1982, and independently
by Plotnikov [Pl] in 1982.
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Finally, in 2004 Plotnikov and Toland [PlT] proved that there exist Stokes waves
with f ′′ > 0 in

(

0, ℓ
2

)

.
Although the hodograph transform (1.7) has proved to be quite successful in

tackling Stokes conjectures, from an intuitive point of view it is difficult to visu-
alize the qualitative properties of the solutions of the nonlinear integral equation
(1.8). In recent years, several papers have addressed water waves using variational
approaches. See, for example, the recent work of Burton and Toland [BT] for steady
surface waves on flows with vorticity, where existence is proved using a minimax
argument, or the paper of Chambolle, Séré, and Zanini [CSZ], where periodic trav-
eling water waves without vorticity, in presence of gravity and surface tension, are
found as minimizers of an energy functional.

In this paper we address the free boundary problem (1.6) using the variational
approach of Alt and Caffarelli [AC]. Indeed, it follows from (1.1), (1.3), that solu-
tions of (1.6) can be regarded as critical points of the functional

Jλ (u) :=

∫

Ω

(

|∇u|2 + χ{u>0}(λ− y)+

)

dx (1.9)

defined in the set

K1 :=
{

u ∈ L1
loc(Ω) : ∇u ∈

(

L2
loc(Ω)

)2
, u(x, 0) = q for x ∈ (−ℓ, ℓ), (1.10)

u (x+ ℓ, y) = u (x, y) in Ω},
where Ω := (−ℓ, ℓ)×(0,∞) and the parameter λ > 0 plays the role of the parameter
µ in (1.8).

In the first part of the paper, following the work of [AC], we study qualitative
properties of local minimizers u of the functional Jλ in the class K1, including
regularity of u and ∂ {u > 0}, decay estimates of u and ∇u near the critical line
y = λ, connectedness properties of the set {u > 0}. In particular, we show that
local minimizers are both “weak solutions” and “variational solutions” of (1.6) in
the sense of Varvaruca and Weiss [VW] (see Definition 3.1 and 3.2 in [VW], see
also the work of Shargorodsky and Toland [ST]). In particular, the monotonicity
formula established in Theorem 3.5 of [VW] applies to local minimizers.

We also prove that if x0 = (x0, λ) ∈ Ω∩∂ {u > 0}, then |∇u (x, y)| ≤ C
√

(λ− y)+
for all x =(x, y) ∈ Br(x0), where r > 0 is sufficiently small. As in the work of Var-
varuca and Weiss (see Proposition 4.7 in [VW]), this decay estimate, together with
the monotonicity formula just mentioned, gives a complete characterization of all
blow-up solutions at the point x0 (see Theorem 4.3 below).

In the second part of the paper we focus our attention to absolute minimizers of
Jλ in the class K1. The main drawback here is that absolute minimizers of Jλ in
the class K1 are one-dimensional functions of the type u = u (y) (see Theorem 5.1).
In particular, the regular water waves constructed by Keady and Norbury [KN] or
the Stokes wave found by Toland [To] and McLeod [ML2] are only critical points
of Jλ in the class K1.

To retain some useful information from absolute minimizers, we restrict our
attention near the crest of a water wave. More precisely, we consider a level y = h1,
where 0 < h1, such that u (·, h1) =: w0 (x) vanishes at ±ℓ (this is certainly true
near the crest if u is a regular water wave or a Stokes wave) and then study the
functional Jλ (with Ω replaced by the smaller domain Ω1 := (−ℓ, ℓ)× (h1,∞)) in
the class of functions (see Figure 1.1)



ON A VARIATIONAL APPROACH FOR WATER WAVES 5

−ℓ ℓu = const.

w0 = u(·, h1)

y = f(x)

y = h1

y = 0

Figure 1.1. Wave of Finite Depth

K3 :=
{

u ∈ L1
loc(Ω1) : ∇u ∈

(

L2
loc(Ω1)

)2
, u(x, h1) = w0(x) for x ∈ (−ℓ, ℓ),

(1.11)

u(−ℓ, y) = u(ℓ, y) = 0 for y ∈ (h1,∞)}.
Inspired by the work of Alt, Caffarelli, and Friedman (see [ACF], [ACF1], [ACF2],

[Fr]), we prove the existence of a critical value λc ∈ (h1,∞) with the property that:

(i) If uλ ∈ K3 is an absolute minimizer of the functional Jλ for λ > λc, then
the support of uλ remains below the line y = λ, and thus uλ and its
free-boundary ∂ {uλ > 0} are smooth by the regularity results of Alt and
Caffarelli [AC].

(ii) If uλ ∈ K3 is an absolute minimizer of the functional Jλ for λ < λc, then
the support of uλ crosses the line y = λ. We refer to this kind of solutions
as non-physical solutions.

(iii) We also prove that if λn ց λc and µn ր λc, then the corresponding
sequences of absolute minimizers {uλn} and {uµn} converge strongly in
H1

loc (Ω1) to two absolute minimizers u+ and u− ∈ K of Jλc , respectively.
Moreover suppu+ ⊆ {y ≤ λc}, while suppu− intersects the line y = λc.
We conjecture that u+ = u−. Note that if the conjecture were true, then
the support of u+ would touch the line y = λc and be contained in the set
{y ≤ λc}. We have been unable to prove the conjecture.

Note that part (i) shows the existence of a family of local regular solutions, and
so, in spirit, could be considered a local version of the result of Keady and Norbury
[KN]. However, the main drawback here is that solutions heavily depend on the
choice of the initial datum w0. To recover the result of [KN] one should solve the



6 D. ARAMA AND G. LEONI

boundary value problem

∆vλ = 0 in (−ℓ, ℓ)× (0, h2) ,

vλ (x+ ℓ, y) = vλ (x, y) in (−ℓ, ℓ)× (0, h2) ,

vλ = uλ on y = h2,

vλ = const on y = 0

for some h1 ≤ h2, and then find h2 and w0 in such a way that the function

wλ :=

{

uλ in (−ℓ, ℓ)× (h2, λ) ,
vλ in (−ℓ, ℓ)× (0, h2]

remains harmonic in (−ℓ, ℓ)× (0, λ). This seems far from trivial.
The same difficulty arises when relating part (iii) to the theorems of Toland [To]

and McLeod [ML2] on the existence of a Stokes wave.
We believe, however, that the techniques developed in the proof of (i)-(iii) are

of independent interest.
We conclude by mentioning that in ongoing work [FLM] in collaboration with

I. Fonseca and M.G. Mora, the second author has shown that, under suitable hy-
potheses, if u is a smooth critical point of (2.1) with support below y = λ and
∂ {u > 0} is given by the graph of a smooth function f , then u is actually a local
minimizer of the functional Jλ in the region (−ℓ, ℓ)× (max f − ε,max f) provided
ε > 0 is sufficiently small. The approach consists in deriving new necessary and
sufficient minimality conditions by means of second order variations. It was first
used to study critical points of the Mumford-Shah functional (see [CMM], [MM]).

Note that this result implies, in particular, that the regular waves constructed
by Keady and Norbury [KN] are, near the top of the crest, local minimizers of (2.1).

2. Preliminary Results

In this section we present some preliminary results due to Alt and Caffarelli
[AC]. We consider the functional

Jλ (u) :=

∫

Ω

(

|∇u|2 + χ{u>0}(λ− y)+

)

dx (2.1)

defined in the set

K :=
{

u ∈ L1
loc(Ω) : ∇u ∈

(

L2
loc(Ω)

)2
, u = u0 on S, (2.2)

u (x+ ℓ, y) = u (x, y) in Ω},
where λ > 0, Ω := (−ℓ, ℓ)× (0,∞), S ⊆ ∂Ω is a measurable set with H1 (S) > 0,
and the Dirichlet datum u0 on S is a nonnegative function u0 ∈ L∞(Ω) with

∇u0 ∈
(

L2
loc(Ω)

)2
and u0 (x+ ℓ, y) = u0 (x, y) in Ω.

Definition 2.1. Given u ∈ K with Jλ (u) < ∞, we say that

• u is an absolute minimizer of the functional Jλ if

Jλ (u) ≤ Jλ (v)

for all v ∈ K,
• u is a local minimizer of the functional Jλ if there exists ε0 > 0 such that

Jλ (u) ≤ Jλ (v)
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for all v ∈ K with

‖∇ (u− v)‖(L2(Ω))2 +
∥

∥χ{u>0} − χ{v>0}
∥

∥

L1(Ω)
≤ ε0. (2.3)

Theorem 2.2 (Theorem 1.3 in [AC]). Assume that Jλ (u0) < ∞. Then there exists
an absolute minimizer u ∈ K of the functional Jλ.

Proof. Let α := inf
v∈K

Jλ(v) and let {un} ⊂ K be a minimizing sequence for Jλ, that

is, Jλ(un) → α as n → ∞. Since

Jλ((un)+) ≤ Jλ(un)

and (un)+ ∈ K, without loss of generality we may assume that un ≥ 0 and that

Jλ(un) ≤ α+ 1 for all n ∈ N.

Then {∇un} is bounded in
(

L2(Ω)
)2
.

Let Ωr := (−ℓ, ℓ)×(0, r), where r > 0 is taken so large that Hn−1 (S ∩ ∂Ωr) > 0.
Since un − u0 = 0 on S ∩ ∂Ωr, it follows by Poincaré’s inequality that

∫

Ωr

|un − u0|2 dx ≤ C (S,Ωr)

∫

Ωr

|∇un −∇u0|2 dx

for all n ∈ N. Therefore {un} is bounded in H1(Ωr). Since H1(Ωr) is compactly
embedded in Lp(Ωr), 1 ≤ p < ∞, {un} admits a subsequence (not relabeled) that
converges weakly in H1(Ωr) and strongly in Lp(Ωr) to a function ur ∈ H1(Ωr).

If we now let s > r and extract a further subsequence we may assume that
un ⇀ ur in H1(Ωr) and un ⇀ us in H1(Ωs). By the uniqueness of the weak limit
we have that

ur (x) = us (x) for L2 a.e. x ∈ Ωr.

Taking a sequence rk (:= k) ր ∞ and using a diagonalization argument we may
find a subsequence of {un} (again not relabeled) weakly convergent in H1

loc(Ω) to
the nonnegative function

u(x, y) := urk(x, y) if rk−1 ≤ y < rk, k ∈ N.

Moreover, since
{

χ{un>0}
}

is bounded in L∞(Ω), we may find a function γ ∈
L∞(Ω), 0 ≤ γ ≤ 1 and yet another subsequence such that

{

χ{un>0}
}

converges
weakly star to γ in L∞(Ω).

Next we will prove that γ ≥ χ{u>0}. Since un → u in L1
loc(Ω) and χ{un>0}

∗
⇀ γ

in L∞(Ω), letting n → ∞ in the identity
∫

Ωr

un(1− χ{un>0}) dx = 0

yields
∫

Ωr

u(1− γ) dx = 0 for all r > 0.

Since u ≥ 0 and γ ≤ 1, we conclude that u(1 − γ) = 0 L2 a.e. in Ω. Therefore
γ = 1 L2 a.e. in the set {u > 0}, and so

γ ≥ χ{u>0}.
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This is sufficient to show that u is an absolute minimizer. Indeed, for every r > 0,
∫

Ωr

(|∇u|2 + γ (λ− y)+) dx

≤ lim inf
n→∞

∫

Ωr

|∇un|2 dx+ lim
n→∞

∫

Ωr

χ{un>0}(λ− y)+ dx

≤ lim
n→∞

Jλ(un) = α.

Letting r → ∞ and using the fact that γ ≥ χ{u>0} yields

α ≤ Jλ(u) =

∫

Ω

(|∇u|2 + χ{u>0}(λ− y)+) dx

≤
∫

Ω

(|∇u|2 + γ(λ− y)+) dx ≤ α.

Thus Jλ(u) = α and u ∈ K. �

Lemma 2.3 (Lemma 2.2 in [AC]). Let u ∈ K be a local minimizer of Jλ. Then u
is subharmonic and for every x0 ∈ Ω and 0 < s < r < dist(x0, ∂Ω),

1

|Br (x0)|

∫

Br(x0)

u(y) dy ≥ 1

|Bs (x0)|

∫

Bs(x0)

u(y) dy.

Remark 2.4. In view of the previous lemma we can work with the precise represen-
tative

u (x) := lim
r→0+

1

|Br (x)|

∫

Br(x)

u(y) dy, x ∈ Ω.

Lemma 2.5 (Lemma 2.3 in [AC]). Let u ∈ K be a local minimizer of Jλ. Then

0 ≤ u (x) ≤ sup
Ω

u0

for L2 a.e. x in Ω.

3. Regularity of Local Minimizers

In this section we study qualitative properties of local minimizers of Jλ in the
class K. To prove regularity of local minimizers, the idea in [AC] is to exploit the
competition between the two terms of the functional Jλ. Consider a small ball Br

in Ω and suppose that u is large (in some sense) on the boundary of this ball. Then

the minimizer cannot vanish in the ball because in this case
∫

Br
|∇u|2 dx would

be too big. Therefore u > 0 on Br. Hence, roughly speaking, to minimize the

functional in this ball reduces to minimize
∫

Br
|∇u|2 dx, therefore u is harmonic.

On the other side, if u is small on ∂Br, then u has to be zero at least on a ball Bkr,
for some 0 < k < 1.

In the following theorems we make this competition precise. We adapt the proofs
of Lemmas 3.2 and 3.4 in [AC] to our setting. All the results of this section continue
to hold, with some straightforward modifications, when R

2 is replaced by R
n.

The next theorem follows closely Lemma 3.2 of [AC]. In particular, in Steps
1 and 2 there are essentially no changes from the original proof. We present the
proof for the convenience of the reader and to follow the precise dependence on the
behavior of the function Q.
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Theorem 3.1. There is a constant Cmax > 0 such that for every (small) ball
Br (x0) ⊂ Ω, x0 = (x0, y0), and for every local minimizer u ∈ K of Jλ, if

1

r |∂Br(x0)|

∫

∂Br(x0)

u dH1 > Cmax

√

(λ− y0 + r)+,

then u > 0 in Br (x0).

Proof. Step 1: For simplicity we denote Br (x0) simply by Br. Consider the
harmonic function v in Br with boundary values u. Since u ≥ 0, from the maximum
principle we have that v > 0 in Br. Outside Br define v := u. Since Jλ(u) ≤ Jλ(v),
we have

∫

Br

(

|∇u|2 + χ{u>0}(λ− y)+

)

dx ≤
∫

Br

(

|∇v|2 + (λ − y)+

)

dx. (3.1)

Since ∆v = 0 in Br and u− v = 0 on ∂Br, by the first Green’s formula we have
∫

Br

∇v · (∇u −∇v) dx = 0,

or, equivalently,
∫

Br

|∇v|2 dx =

∫

Br

∇u · ∇v dx.

In turn,
∫

Br

(|∇u|2 − |∇v|2) dx =

∫

Br

(|∇u|2 + |∇v|2 − 2 |∇v|2) dx

=

∫

Br

(|∇u|2 + |∇v|2 − 2∇u · ∇v) dx

=

∫

Br

|∇u−∇v|2 dx.

If we use this in (3.1), we find
∫

Br(x0)

|∇u −∇v|2 dx ≤
∫

Br(x0)

χ{u=0}(λ− y)+ dx. (3.2)

We want to control the right-hand side of the previous inequality by the left-hand
side.
Step 2: In this step, for simplicity in the notation, we take x0 to be the origin.
For |z| ≤ 1

2r consider the transformation T : Br → Br defined by

T (x) : =

(

1− |x|
r

)

z+ x, x ∈ Br. (3.3)

Note that T (0) = z. For x ∈ Br define

uz(x) := u(T (x)), vz(x) := v(T (x)). (3.4)

Consider the set

E :=

{

q ∈ ∂B1 : uz(ρq) = 0 for some ρ ∈
[

1

8
r, r

]}

and for q ∈ E set

ρq := inf

{

ρ ∈
[

1

8
r, r

]

: uz(ρq) = 0

}

.
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By a slicing argument for H1 a.e. q ∈ E the function

g(ρ) := uz(ρq)− vz(ρq), 0 < ρ ≤ r,

is absolutely continuous in (0, r), and so, using also the facts that g (r) = 0 (since
u = v on ∂Br) and that uz(ρqq) = 0, we have

vz(ρqq) = g(r)− g(ρq) =

∫ r

ρq

g′(ρ) dρ =

∫ r

ρq

∇(uz − vz)(ρq) · q dρ.

Using Holder’s inequality we have

vz(ρqq) ≤
√

r − ρq

(

∫ r

ρq

|∇vz −∇uz|2 (ρq) dρ
)

1
2

,

while, by Poisson’s formula for the harmonic function v,

vz(ρqq) = v(T (ρqq)) =
r2 − |T (ρqq)|2

2πr

∫

∂Br

u(y)

|T (ρqq)− y|2
dH1 (y)

≥ r2 − |T (ρqq)|2

2πr (r + |T (ρqq)|)2
∫

∂Br

u(y) dH1 (y)

=
r − |T (ρqq)|
r + |T (ρqq)|

1

|∂Br|

∫

∂Br

u (y) dH1 (y)

≥ 1

2

r − ρq
r

1

|∂Br|

∫

∂Br

u (y) dH1 (y) ,

where we have used the facts that |T (ρqq)| =
∣

∣(r − ρq)
z
r + ρqq

∣

∣ ≤ ρq+
1
2 (r − ρq),

since |z| ≤ 1
2r and |q| = 1. Squaring and combining the two inequalities we obtain

(r − ρq)

(

1

r |∂Br|

∫

∂Br

u (y) dH1 (y)

)2

≤ C

∫ r

r
8

|∇vz −∇uz|2 (ρq) dρ (3.5)

≤ C

r

∫ r

r
8

|∇vz −∇uz|2 (ρq)ρ dρ.

Integrating the previous inequality in q over E yields
∫

E

(r − ρq)

(

1

r |∂Br|

∫

∂Br

u (y) dH1 (y)

)2

dH1 (q) (3.6)

≤ C

r

∫

∂B1

∫ r

r
8

|∇vz −∇uz|2 (ρq)ρ dρdH1 (q)

=
C

r

∫

Br\Br/8

|∇vz −∇uz| (x)2 dx,

where we have used the fact that ρq is bounded from below by 1
8r. Since the

Jacobian of T can be bounded independently of r (see (3.3) and (3.4)), changing
variable on the right-hand side gives

∫

E

(r − ρq) dH1 (q)

(

1

r |∂Br|

∫

∂Br

u (y) dH1 (y)

)2

≤ C
1

r

∫

Br

|∇v −∇u|2 (x) dx.
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Now
∫

Br(0)\B r
8
(z)

χ{uz=0} (x) dx =

∫

∂B1

∫ r

r/8

χ{uz=0}(ρq)ρ dρdH1 (q)

=

∫

E

∫ r

r/8

χ{uz=0}(ρq)ρ dρdH1 (q)

≤ r

∫

E

(r − ρq) dH1 (q) .

Therefore,
(

∫

Br(0)\B r
8
(z)

χ{uz=0} dx

)

(

1

r |∂Br|

∫

∂Br

u dH1

)2

≤ Cr

∫

E

(r − ρq) dH1

(

1

r |∂Br|

∫

∂Br

u dH1

)2

≤ C

∫

Br

|∇v −∇u|2 dx.

We now need to replace uz by u on the left-hand side of the previous inequality.
We begin by showing that

Br (0) \B 3
16

r(z) ⊆ T
(

Br (0) \B 1
8
r(z)

)

or, equivalently,

T
(

B 1
8
r(z)

)

⊆ B 3
16

r(z).

Indeed,

|T (x)− z| =
∣

∣

∣

∣

(

1− |x|
r

)

z+ x− z

∣

∣

∣

∣

≤ |x|
( |z|

r
+ 1

)

≤ r

8

(

1

2
+ 1

)

=
3

16
r.

Hence, by the change of variables x = T−1(y), we get
∫

Br\B r
8

χ{uz=0}(x) dx =

∫

T
(

Br\B r
8

)

χ{uz=0}(T
−1(y))J

(

T−1(y)
)

dy

=

∫

T
(

Br\B r
8

)

χ{u=0}(y)J
(

T−1(y)
)

dy (3.7)

≥c

∫

T
(

Br\B r
8

)

χ{u=0}(y) dy,

where we used the fact that J
(

T−1(y)
)

is bounded from below by 1
2 , since the

Jacobian of T is bounded by 2 (see (3.3)). Therefore,
∫

Br\B 3
16

r
(z)

χ{u=0} dy

(

1

r |∂Br|

∫

∂Br

u dH1

)2

≤ C

∫

Br

|∇v −∇u|2 dx.

If we write this inequality for two values of z such that B 3
16

r(z1) ∩ B 3
16

r(z2) = ∅,
say z1 = ( r2 , 0), z2 = (− r

2 , 0) and add the two relations, we have

∫

Br

χ{u=0} dy

(

1

r |∂Br|

∫

∂Br

u dH1

)2

≤ C

∫

Br

|∇v −∇u|2 dx.
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Using this inequality together with (3.2), we get
∫

Br

χ{u=0} dy

(

1

r |∂Br|

∫

∂Br

u dH1

)2

(3.8)

≤ C

∫

Br

|∇v −∇u|2 dx ≤
∫

Br

χ{u=0}(λ− y)+ dx.

Step 3: If Br (x0) ⊆ {y ≥ λ}, then by (3.2),
∫

Br(x0)

|∇v −∇u|2 dx =0,

and so u = v > 0 L2 a.e. in Br (x0). If Br (x0) ∩ {y < λ} 6= ∅, then by (3.8),

∫

Br(x0)

χ{u=0} dy

(

1

r |∂Br (x0)|

∫

∂Br(x0)

u dH1

)2

dy

≤ C

∫

Br(x0)

|∇v −∇u|2 dx

≤ C(λ − y0 + r)+

∫

Br(x0)

χ{u=0} dx.

Hence, if
1

r |∂Br (x0)|

∫

∂Br(x0)

u dH1 >
√

C(λ− y0 + r)+,

then, necessarily,
∫

Br(x0)

χ{u=0} dx =0,

and so, again
∫

Br(x0)

|∇v −∇u|2 dx =0

and we proceed as before to conclude u = v > 0 in Br (x0).

We denote Cmax :=
√
C. �

Remark 3.2. (i) The previous theorem implies that if Br (x0) intersects the
free boundary ∂{u > 0}, then

1

r |∂Br(x0)|

∫

∂Br(x0)

u dH1 ≤ Cmax

√

(λ− y0 + r)+.

In particular, if λ− y0 ≤ r, then

1

|∂Br(x0)|

∫

∂Br(x0)

u dH1 ≤ Cmaxr
3
2 .

(ii) It follows from the previous theorem that if u (x0) > 0 for some x0 =
(x0, y0) with y0 > λ, then u is positive and harmonic in the whole set
(−ℓ, ℓ)× (λ,∞).

Theorem 3.3. Let u ∈ K be a local (respectively, an absolute) minimizer of Jλ.
Then the set {u > 0} is open and u is harmonic in {u > 0}. Moreover, if u0 ∈
C1
(

Ω
)

and the set {x ∈ S : u0 (x) > 0} is connected, then the set {u > 0} has
finitely many connected components (respectively, is connected).
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Proof. Fix x0 ∈ Ω such that u(x0) > 0. If x0 = (x0, y0), where y0 > λ, then we can
find a small ball Br (x0) ⊆ {y > λ}, and in view of the last remark, u is positive
and harmonic in this ball. Thus in what follows it suffices to assume that y0 ≤ λ.

By Remark 2.4, for all r sufficiently small

1

|Br(x0)|

∫

Br(x0)

u dy >
1

2
u(x0) > 0. (3.9)

Fix r > 0 so small that (3.9) holds and such that

u(x0)

r
> Cmax

√

λ− y0 + r, (3.10)

and define

g (ρ) :=

∫

∂Bρ(x0)

u dH1, 0 < ρ ≤ r.

Using a slicing argument we have that

1

r

∫ r

0

1

πr
g (ρ) dρ =

1

πr2

∫

Br(x0)

u dy >
1

2
u(x0) > 0,

and thus we may find some 0 < ρ < r such that 1
πr g (ρ) >

1
2u(x0). In turn, since

1
ρ > 1

r ,

1

πρ

∫

∂Bρ(x0)

u dH1 >
1

2
u(x0) > 0.

Hence, also by (3.10) and the fact that ρ < r, we have

1

ρ |∂Bρ(x0)|

∫

∂Bρ(x0)

u dH1 ≥ u(x0)

ρ
> Cmax

√

λ− y0 + r,

It follows by the previous theorem that u > 0 in Bρ(x0) and u is harmonic in
Bρ(x0).

To prove the last part of the theorem, assume that u ∈ K is a local minimizer of
Jλ and let {Aα}α be the connected components of the open set {u > 0}. Assume
by contradiction that there exist countably many connected components {Aαn}n∈N

whose boundaries do not intersect {x ∈ S : u0 (x) > 0}. In view of part (ii) of the
previous remark, without loss of generality, we may assume that Aαn ⊆ (−ℓ, ℓ) ×
(0, λ) for all n ≥ 2. Let l < λ be such that 2ℓ (λ− l) < 1

3ε0, where ε0 > 0 is the
number given in Definition 2.1.

Since
∞
∑

n=2

∫

Aαn

(

|∇u|2 + χ{u>0}(λ− y)+

)

dx ≤
∫

Ω

(

|∇u|2 + χ{u>0}(λ− y)+

)

dx < ∞,

we may find m ∈ N such that
∞
∑

n=m+1

∫

Aαn

|∇u|2 dx ≤
(ε0
3

)2

,

∞
∑

n=m+1

∫

Aαn

χ{u>0}(λ− y)+ dx ≤ ε0 (λ− l)

3
.

Then
∞
∑

n=m+1

∫

Aαn

χ{u>0} dx ≤
∞
∑

n=m+1

1

λ− l

∫

Aαn∩{y<l}
χ{u>0}(λ− y)+ dx

+ 2ℓ (λ− l) ≤ ε0
3

+
ε0
3
.
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Hence, if we define

v (x) :=

{

0 if x ∈ Aαn , n ≥ m+ 1,
u (x) otherwise in Ω,

we have that v ∈ K satisfies (2.3). Since Jλ(v) < Jλ(u), we have reached a contra-
diction.

The proof in the case of absolute minimizers is similar but simpler, so we omit
it. �

The next result is based on Corollary 3.3 in [AC].

Theorem 3.4. Let u ∈ K be a local minimizer of Jλ. Then u is locally Lipschitz.

Proof. Fix ε > 0 and let Ωε := (−ℓ+ ε, ℓ− ε)×
(

ε, 1
ε

)

. We claim that u is Lipschitz
in Ωε. To see this, fix x0 ∈ Ωε such that u(x0) > 0. Since the set {u > 0} ∩ Ωε is
open, we may find Br(x0) ⊂ {u > 0} ∩ Ωε.

Let

ρε(x0) := sup{r > 0 : Br(x0) ⊂ {u > 0} ∩ Ωε}. (3.11)

By the previous theorem for any r < ρε, u is harmonic in Br(x0). In turn ∂u
∂x

and ∂u
∂y are also harmonic in Br(x0), and so, by the mean value and divergence

theorems,

∂u

∂x
(x0) =

1

πr2

∫

Br(x0)

∂u

∂x
(y) dy =

1

πr2

∫

∂Br(x0)

uυ1 dH1, (3.12)

where

υ(x) = (υ1,υ2) =
x− x0

|x− x0|
.

Similarly,
∂u

∂y
(x0) =

1

πr2

∫

∂Br(x0)

uυ2 dH1. (3.13)

There are now two cases. If Bρε(x0) touches ∂Ωε, then by Lemma 2.5 we get
∣

∣

∣

∣

∂u

∂x
(x0)

∣

∣

∣

∣

,

∣

∣

∣

∣

∂u

∂y
(x0)

∣

∣

∣

∣

≤ supu0

πdε(x0)
, (3.14)

where dε(x0) := dist(x0, ∂Ωε).
A similar estimate holds if ρε(x0) ≥ 1

8dε(x0) (replacing supu0 with 8 supu0 in

(3.14)). If ρε(x0) <
1
8dε(x0), then Bρε(x0) touches ∂{u > 0} at some point x1 in

which u(x1) = 0. Let r := 1
4ρε(x0). If y ∈ ∂Br(x0), then, since u is subharmonic

in Bs(y), where
5
4ρε(x0) < s ≤ 3

2ρε(x0), by Poisson’s formula we have

u(y) ≤ 1

|∂Bs(y)|

∫

∂Bs(y)

u dH1.

Since |x1 − y| ≤ |x1 − x0|+ |x0 − y|, then x1 ∈ Bs(y) and so, by Remark 3.2,

1

s |∂Bs(y)|

∫

∂Bs(y)

u dH1 ≤ Cmax

√

(λ− y + s)+,

where y = (x, y). Hence,

u(y) ≤ Cmaxs
√

(λ − y + s).



ON A VARIATIONAL APPROACH FOR WATER WAVES 15

Thus, from formulas (3.12) and (3.13), we get
∣

∣

∣

∣

∂u

∂x
(x0)

∣

∣

∣

∣

≤ Cmaxs

πr2

∫

∂Br(x0)

√

(λ− y + s)+ dH1 (x, y)

≤ Cmax
3
2ρε(x0)

π 1
4ρε(x0)r

∫

∂Br(x0)

√

(λ− y + s)+ dH1 (x, y) (3.15)

≤ 12Cmax

√

(λ− y0 + r + s)+

≤ 12Cmax

√

(λ− y0 + 2ρε(x0))+.

Similarly,
∣

∣

∣

∣

∂u

∂y
(x0)

∣

∣

∣

∣

≤ 12Cmax

√

(λ− y0 + 2ρε(x0))+. (3.16)

Since ρε(x0) <
1
8dε(x0), also by (3.14) we obtain

|∇u(x0)| ≤ max

{

supu0

πdε(x0)
, C
√

λ+ dε(x0)

}

.

Since ∇u(x) = 0 for L2 a.e. x ∈ Ωε such that u (x) = 0, we have proved that u is
Lipschitz in Ωε.

If now Ω′ ⊂⊂ Ω we can choose ε so small that Ω′ ⊂ Ωε. Then |∇u| ≤ C (Ωε),
and so u is locally Lipschitz continuous. �

Remark 3.5. (i) It follows from the previous proof that if x0 = (x0, y0) ∈
∂ {u > 0} and r > 0 is sufficiently small, then for every x = (x, y) ∈ Br(x0),

λ− y0 + r ≤ λ− y + 2r ≤ λ− y0 + 3r,

and so from (3.15) and (3.16),

|∇u (x, y)| ≤ C
√

(λ− y0 + 3r)+

for all (x, y) ∈ Br(x0).
(ii) Note that if {x ∈ Ω : u (x) > 0} ⊂ (−ℓ, ℓ) × (0, λ), then again by the

previous proof, for every x0 = (x0, y0) ∈ Ωε such that u(x0) > 0 and
ρε(x0) < 1

8dε(x0), we have that ρε(x0) ≤ λ − y0, and so by (3.15) and
(3.16),

|∇u (x0, y0)| ≤ C
√

3 (λ− y0).

Next we adapt the proof of Lemma 3.4 of [AC] to our setting.

Theorem 3.6. For every k ∈ (0, 1) there exists a positive constant C(k) such that
for every local minimizer u ∈ K of Jλ and for every (small) ball Br(x0) ⊂ Ω, if

1

r |∂Br(x0)|

∫

∂Br(x0)

u dH1 ≤ C(k)
√

(λ− y0 − kr)+, (3.17)

then u = 0 in Bkr(x0).

Proof. The idea of the proof is that if the average of u on ∂Br(x0) is small, then
replacing u by a function w vanishing in Bkr(x0) will decrease Jλ. All the balls used
in this proof are centered at x0, therefore, for simplicity, we write Br for Br(x0).
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Step 1: In this step we find a lower bound for
∫

∂Bkr
u dH1. Define

v(x) :=
ℓu
√
k

log
(

1√
k

) max

{

log
|x− x0|

kr
, 0

}

, x ∈ Br,

where

ℓu :=
1√
k

sup
Br

√
k

u. (3.18)

Note that

∇v (x) =







ℓu
√
k

log
(

1√
k

)

x−x0

|x−x0|2 if |x− x0| > kr,

0 if |x− x0| ≤ kr.
(3.19)

We claim that

ℓu ≤ C1(k)
1

|∂Br|

∫

∂Br

u dH1 (3.20)

for some constant C1 (k) > 0 depending only on k. To see this, let V be the
harmonic function equal to u on ∂Br(x0). By Harnack ’s inequality,

sup
Br

√
k

V ≤ C1 (k) inf
Br

√
k

V ≤ C1 (k)V (x0) = C1 (k)
1

|∂Br|

∫

∂Br

V dH1

= C1 (k)
1

|∂Br|

∫

∂Br

u dH1.

Since u is subharmonic, we have that u ≤ V , and so, possibly changing C1 (k), we
obtain

1√
k

sup
Br

√
k

u ≤ 1√
k

sup
Br

√
k

V ≤ C1 (k)
1

|∂Br(x0)|

∫

∂Br(x0)

u dH1,

which proves (3.20).
Define now

w :=

{

min {u, v} in B√
kr,

u outside B√
kr.

Since w ∈ K, we have Jλ(u) ≤ Jλ (w), which implies that
∫

B√
kr

(

|∇u|2 + χ{u>0}(λ− y)+

)

dx ≤
∫

B√
kr

(

|∇w|2 + χ{w>0}(λ− y)+

)

dx.

Notice that w = 0 in Bkr and outside this ball w = 0 whenever u = 0. Hence,
∫

Bkr

(

|∇u|2 + χ{u>0}(λ − y)+

)

dx ≤
∫

B√
kr\Bkr

(

|∇w|2 − |∇u|2
)

dx (3.21)

≤ 2

∫

B√
kr\Bkr

(∇w −∇u) · ∇w dx,

where the last inequality follows from the fact that if we move all terms to the
right-hand side we obtain a perfect square. On the other hand, since v is harmonic,

0 =

∫

B√
kr\Bkr

(w − u)∆v dx (3.22)

= −
∫

B√
kr\Bkr

(∇w −∇u) · ∇v dx+

∫

∂(B√
kr\Bkr)

(w − u)∇v · ν dH1.
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Therefore,
∫

B√
kr\Bkr

(∇w −∇u) · ∇v dx =

∫

∂(B√
kr\Bkr)

(w − u)∇v · ν dH1 =

= −
∫

∂Bkr

u(∇v · ν) dH1 (3.23)

≤ C2(k)ℓu
r

∫

∂Bkr

u dH1,

where we have used the fact that w = u on ∂Bkr and (3.19) and where C2(k) > 0
depends only on k. We also have

∫

B√
kr\Bkr

(∇w −∇u) · ∇w dx =

∫

B√
kr\Bkr

(∇w −∇u) · ∇v dx. (3.24)

To see this, we split B√
kr \Bkr in the two sets {u ≥ v} and {u < v}. When u ≥ v,

we have that w = v, therefore ∇w = ∇v L2 a.e. in {u ≥ v}. When u < v, we have
that w = u, and so both integrals over the set {u < v} are 0.

We conclude from (3.21), (3.22), (3.23), and (3.24) that
∫

Bkr

(

|∇u|2 + χ{u>0}(λ − y)+

)

dx ≤ C2(k)ℓu
r

∫

∂Bkr

u dH1. (3.25)

Step 2: Define

Qmin :=
√

(λ − y0 − kr)+. (3.26)

If Qmin = 0, then the result follows immediately from (3.17) and (3.20). Thus,
assume that Qmin > 0.

By the trace theorem, (3.18), Young’s inequality, and the fact that Qmin ≤
√

(λ− y)+ in Bkr , we have

∫

∂Bkr

u dH1 ≤ C3(k)

(

1

r

∫

Bkr

u dx+

∫

Bkr

|∇u| dx
)

= C3(k)

(

1

r

∫

Bkr

uχ{u>0} dx+

∫

Bkr

|∇u|χ{u>0} dx

)

≤ C3(k)

[

ℓu
rQ2

min

∫

Bkr

χ{u>0}(λ − y)+ dx

+
1

Qmin

(∫

Bkr

|∇u|2 dx+

∫

Bkr

χ{u>0}(λ− y)+ dx

)]

≤ C3(k)

Qmin

(

ℓu
rQmin

+ 1

)∫

Bkr

(

|∇u|2 + χ{u>0}(λ− y)+

)

dx.

Combined with (3.25), the previous inequality yields
∫

Bkr

(

|∇u|2 + χ{u>0}(λ − y)+

)

dx (3.27)

≤ C2(k)C3(k)ℓu
rQmin

(

ℓu
rQmin

+ 1

)∫

Bkr

(

|∇u|2 + χ{u>0}(λ− y)+

)

dx.

It follows from (3.20) that if

1

rQmin

1

|∂Br|

∫

∂Br

u dH1 ≤ a,
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then
ℓu

rQmin
≤ C1(k)

rQmin |∂Br|

∫

∂Br

u dH1 ≤ C1(k)a

and so

C2(k)C3(k)ℓu
rQmin

(

ℓu
rQmin

+ 1

)

≤ C2(k)C3(k)a (C1(k)a+ 1) < 1

for all a > 0 sufficiently small (depending only on k). Hence, by taking the constant
C(k) in (3.17) sufficiently small, we can ensure that

C2(k)C3(k)ℓu
rQmin

(

ℓu
rQmin

+ 1

)

< 1. (3.28)

This, together with inequality (3.27), implies that u = 0 in Bkr. �

Theorem 3.7. Let u ∈ K be a local minimizer of the functional Jλ. Then for every
0 < l < λ, ∂ {u > 0} is a C∞ curve locally in (−ℓ, ℓ)× (0, l).

Proof. Since in (−ℓ, ℓ)× (0, l),

Q (x, y) =
√

λ− y ≥
√
λ− l > 0,

we have that condition (1.2) is satisfied, and thus we are in a position to apply
Theorem 8.4. in [AC]. �

4. Blow-up limits

Let u ∈ K be a local minimizer of Jλ and assume that the point x0 = (x0, λ) ∈ Ω
belongs to the free boundary ∂ {u > 0}. By Remark 3.5(i) we have that

|∇u (x)| ≤ C
√
r

for all x ∈ Br (x0), where r > 0 is sufficiently small. Hence, if we define the rescaled
functions

un (z) :=
1

ρ
3/2
n

u (x0 + ρnz) , (4.1)

where ρn → 0+, for all n sufficiently large we have that for all z ∈ BR (0), R > 0,

|∇un (z)| :=
1

ρ
1/2
n

|∇u (x0 + ρnz)| .

Since un (0) = 0, it follows by a diagonal argument that there exist a subsequence

(not relabeled) of {un} and a function w ∈ W 1,∞
loc

(

R
2
)

such that for all R > 0,

un → w in Cα (BR (0)) for all 0 < α < 1, (4.2)

∇un
∗
⇀ ∇w in (L∞ (BR (0)))2 . (4.3)

We call w a blow-up limit.

Theorem 4.1. Let u ∈ K be a local minimizer of Jλ and assume that the point
x0 = (x0, λ) ∈ Ω belongs to ∂ {u > 0}. Let {un} be defined as in (4.1). Then

i) ∂ {un > 0} → ∂ {w > 0} locally in Hausdorff distance in R× (−∞, 0);
ii) χ{un>0} → χ{w>0} in L1

loc (R× (−∞, 0)).
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Proof. i) Let Br(z0) ⊂ R × (−∞, 0) be such that Br(z0) ∩ ∂ {w > 0} = ∅. Then
either w > 0 in Br(z0) or w ≡ 0 in Br(z0). In the first case, since un → w in
Cα
(

B̄ r
2
(z0)

)

and min
B̄ r

2
(z0)

w > 0, we have that un > 0 in B̄ r
2
(z0) for all n sufficiently

large, and so B 1
2
r(z0) ∩ ∂ {un > 0} = ∅ for all n sufficiently large. If instead w ≡ 0

in Br(z0), then using the fact that un → w in Cα
(

B̄ 3
4
r(z0)

)

we have that for all

δ > 0 there exists Nδ ∈ N such that

|un(z)| ≤ δ

for all z ∈ B̄ 3
4
r(z0) and for all n ≥ Nδ. Hence, if δ = δ (r) is sufficiently small,

1

3
4r
∣

∣

∣∂B 3
4
r(z0)

∣

∣

∣

∫

∂B 3
4
r
(z0)

un dH1 ≤ 4δ

3r
≤ C(2/3)

√

3

4
r

for all n ≥ Nδ. From the hypothesis and the definition of un we have

1

3
4rρn

∣

∣

∣∂B 3
4
rρn

(z0)
∣

∣

∣

∫

∂B 3
4
r
(z0)

u (x0 + ρnz) ρndH1 (z) ≤ C(2/3)

√

3

4
rρn

and by the change of variables x = x0 + ρnz, we get

1

3
4rρn

∣

∣

∣
∂B 3

4
rρn

(x0 + ρnz0)
∣

∣

∣

∫

∂B 3
4
rρn

(x0+ρnz0)

u (x) dH1 (x) ≤ C(2/3)

√

3

4
rρn.

It follows from Theorem 3.6 that u ≡ 0 in B 3
4
rρn

(x0 + ρnz0). Therefore, un ≡ 0 in

B 3
4
r (z0). Hence, also in this case,

B 1
2
r(z0) ∩ ∂ {un > 0} = ∅

for all n sufficiently large.
On the other hand, if Br(z0) ⊂ R× (−∞, 0) is such that

Br(z0) ∩ ∂ {un > 0} = ∅
for a subsequence, then, up to a further subsequence, we may assume that either
un > 0 in Br(z0) for all n ∈ N or un ≡ 0 in Br(z0). In the first case, by Theorem 3.3,
we have that un is harmonic in Br(z0), and so w is also harmonic and nonnegative.
If w is zero in some point z1 ∈ Br(z0), then by the maximum principle, w ≡ 0 in
Br(z0). Hence, either w ≡ 0 or w > 0 in Br(z0), which implies that

Br(z0) ∩ ∂ {w > 0} = ∅. (4.4)

Finally, if un ≡ 0 in Br(z0) for all n ∈ N, then w ≡ 0 in Br(z0) and so (4.4)
continues to hold.

A straightforward compactness argument shows that ∂ {un > 0} → ∂ {w > 0}
locally in Hausdorff distance in R× (−∞, 0).
ii) We begin by proving that

L2 ((R× (−∞, 0)) ∩ ∂ {w > 0}) = 0. (4.5)

Fix z0 ∈ (R× (−∞, 0))∩ ∂ {w > 0}, z0 = (a0, y0). Since by part (i), ∂ {un > 0} →
∂ {w > 0} locally in Hausdorff distance inR×(−∞, 0), there exists zn ∈ (R× (−∞, 0))∩
∂ {un > 0}, zn = (xn, yn), such that zn → z0. By (4.1), x0 + ρnzn belongs to
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∂ {u > 0} and since y0 < 0, we have that λ + ρnyn < λ for all n sufficiently large.
Hence, by Theorem 3.6,

1

s |∂Bs(x0 + ρnzn)|

∫

∂Bs(x0+ρnzn)

u (x) dH1 (x) ≥ C(1/2)

√

(−ρnyn − 1

2
s)+

for all s > 0 sufficiently small (depending on y0 but not on n). Taking s = ρnr and
changing variables as in part (i), we get

1

r |∂Br(zn)|

∫

∂Br(zn)

un dH1 ≥ C(1/2)

√

(−yn − 1

2
r)+

and since un → w in Cα (BR (0)) for all R > 0, letting n → ∞, we obtain

1

r |∂Br(z0)|

∫

∂Br(z0)

w dH1 ≥ C(1/2)

√

(−y0 −
1

2
r)+

for r > 0. Similarly by Theorem 3.1,

1

r |∂Br(z0)|

∫

∂Br(z0)

w dH1 ≤ Cmax

√

(−y0 + r)+.

Note that −y0 > 0. Hence, for all ε > 0 we are in position to apply Theorems 4.3
and 4.5 in [AC] to conclude that for every compact set K ⊂ R× (−∞, 0),

H1 (K ∩ ∂ {w > 0}) < ∞,

which implies (4.5).
Fix z0 ∈ (R× (−∞, 0)) \ ∂ {w > 0}, z0 = (a0, y0). Since y0 < 0 and ∂ {w > 0}

is closed, there exists Br(z0) ⊂ (R× (−∞, 0)) \ ∂ {w > 0}. Hence, either w > 0 in
Br(z0) or w ≡ 0 in Br(z0). By the first part of the proof of i), it follows that in
the first case un > 0 in Br(z0) for all n large, while in the second case, un = 0 in
Br(z0) for n large. Hence,

χ{un>0}(z0) = χ{w>0}(z0).

This shows that χ{un>0} → χ{w>0} in L1
loc (R× (−∞, 0)). �

Theorem 4.2. Let u ∈ K be a local minimizer of Jλ and assume that the point
x0 = (x0, λ) ∈ Ω belongs to ∂ {u > 0} and that

{x ∈ Ω : u (x) > 0} ⊂ (−ℓ, ℓ)× (0, λ) .

Let {un} be defined as in (4.1). Then the blow-up limit w of {un} is a local mini-
mizer for the functional

J (v) =

∫

B1(0)

[

|∇v|2 + χ{v>0} (−t)+

]

dz, z = (s, t) ∈ R
2,

defined over all v ∈ H1(B1(0)) such that v = w on ∂B1(0).

Proof. Consider a function η ∈ C1
0 (B1(0); [0, 1]) and for every v ∈ H1(B1(0)), with

v = w on ∂B1(0), define

vn(z) := v(z) + (1− η(z)) (un(z) − w(z)) , z ∈ B1(0).

Since for z ∈ ∂B1(0),

vn(z) = un(z) =
1

ρ
3/2
n

u (x0 + ρnz) ,
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the function

wn(x) :=

{

ρ
3/2
n vn

(

x−x0

ρn

)

if x ∈ Bρn(x0),

u(x) if x ∈ Ω \Bρn(x0),

belongs to K, and thus
Jλ (u) ≤ Jλ (wn) .

This implies that
∫

Bρn (x0)

[

|∇u|2 + χ{u>0} (λ− y)+

]

dx ≤
∫

Bρn (x0)

[

|∇wn|2 + χ{wn>0} (λ− y)+

]

dx.

After the change of variables x = x0 + ρnz, we obtain
∫

B1(0)

[

|∇un|2 + χ{un>0} (−t)+

]

dz ≤
∫

B1(0)

[

|∇vn|2 + χ{vn>0} (−t)+

]

dz.

Using the facts that

(2− η(z)) |∇un(z) −∇w(z)|2 ≥ 0

and that
χ{vn>0} ≤ χ{v>0} + χ{η<1},

the previous inequality becomes
∫

B1(0)

[

2∇un · ∇w − |∇w|2 + χ{un>0} (−t)+

]

dz

≤
∫

B1(0)

[

|∇v|2 +
(

χ{v>0} + χ{η<1}
)

(−t)+

]

dz

+

∫

B1(0)

[(∇un −∇w) · (2 (1− η)∇v − 2 (1− η) (un − w)∇η)

+ (un − u)∇η · (2∇v + (un − w)∇η)] dz.

Since un ⇀ w in L2 (B1(0)), also by the previous theorem, letting n → ∞ we
obtain that
∫

B1(0)

[

|∇w|2 + χ{w>0} (−t)+

]

dz ≤
∫

B1(0)

[

|∇v|2 +
(

χ{v>0} + χ{η<1}
)

(−t)+

]

dz.

Choosing a sequence of functions ηk such that ηk ր 1, by the Lebesgue dominated
convergence theorem, we obtain

∫

B1(0)

[

|∇w|2 + χ{w>0} (−t)+

]

dz ≤
∫

B1(0)

[

|∇v|2 + χ{v>0} (−t)+

]

dz,

which proves the theorem. �

Using some recent results of Varvaruca and Weiss [VW], which rely on a mono-
tonicity formula, we are able to show that there are only two types of blow-up
limits. More precisely, we have the following result.

Theorem 4.3. Let u ∈ K be a local minimizer of Jλ and assume that the point
x0 = (x0, λ) ∈ Ω belongs to ∂ {u > 0} and that

{x ∈ Ω : u (x) > 0} ⊂ (−ℓ, ℓ)× (0, λ) . (4.6)

Then either

lim
r→0+

1

r3

∫

Br(x0)

χ{u>0}(λ− y)+ dx = 0,
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in which case the blow-up limit is w = 0, or

lim
r→0+

1

r3

∫

Br(x0)

χ{u>0}(λ− y)+ dx =

∫

B1(0)

(λ− y)+χ{cos( 3
2 (θ−π

2 ))>0} dx,

in which case the blow-up limit is

w (ρ, θ) =

√
2

3
ρ3/2 max

{

cos

(

3

2

(

θ − 3π

2

))

, 0

}

.

Here (ρ, θ) are polar coordinates centered at x0.

Proof. Let a := 1
2 min {ℓ− x0, x0 + ℓ} > 0. In view of (4.6) and Theorems 3.3 and

3.7, the function

v (x, ζ) := u (x, λ − ζ)

is a weak solution (see Definition 3.2 in [VW]) of the problem

∆(x,ζ)v = 0 in A ∩ {v > 0} , (4.7)

|∇v|2 = ζ on A ∩ ∂ {v > 0} ,
where A := {(x, ζ) : x ∈ (x0 − a, x0 + a) , ζ ∈ (−1, λ)}. Moreover, in view of (4.6),
Theorem 3.4, and Remark 3.5 (ii), we have that

|∇v (x, ζ)|2 ≤ Cζ+

locally in A. Hence, we are in a position to apply Lemma 3.4 in [VW], and, in turn,
Proposition 4.7 in [VW] to conclude that the only possible blow-up limits for the
problem (4.7) are v0 = 0, with

lim
r→0+

1

r3

∫

Br((x0,0))

ζ+χ{v>0} dxdζ

either 0 or
∫

B1(0)
ζ+ dxdζ, or

v0 (ρ, θ) =

√
2

3
ρ3/2 max

{

cos

(

3

2

(

θ − π

2

)

)

, 0

}

,

with density

lim
r→0+

1

r3

∫

Br((x0,0))

ζ+χ{v>0} dxdζ =

∫

B1(0)

ζ+χ{cos( 3
2 (θ−π

2 ))>0} dxdζ.

However, in view of Theorem 4.1(ii), we have that in the case v0 = 0 the function
χ0 in the proof of Proposition 4.7 in [VW] is identically zero, and so in this case

lim
r→0+

1

r3

∫

Br((x0,0))

ζ+χ{v>0} dxdζ = 0.

�

Remark 4.4. (i) For critical points that are not local minimizers, one cannot
exclude a priori the case in which the blow-up limit is w = 0 but with

lim
r→0+

1

r3

∫

Br(x0)

χ{u>0}(λ− y)+ dx =

∫

B1(x0)

(λ− y)+ dx.

A significant part of the work of Varvaruca and Weiss ([VW], Sections 6-11)
is devoted to treat this additional case.
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(ii) We believe that the case w = 0 should be excluded. Note that if one
could prove that in Remark 3.5 (ii), the constant C is one, that is, that the
sharper inequality

|∇u (x, y)|2 ≤ (λ− y)+ (4.8)

holds, then one could prove that in the previous theorem the case w = 0
cannot occur (see Lemma 4.4 in [VW], see also Theorem 5.11 below).

Corollary 4.5. Let u ∈ K be a local minimizer of Jλ and assume that the point
x0 = (x0, λ) ∈ Ω belongs to ∂ {u > 0} and that (4.6) holds. If

lim
r→0+

1

r3

∫

Br(x0)

χ{u>0}(λ− y)+ dx = 0, (4.9)

then there is r > 0 (small) such that u = 0 in Br/8((x0, λ− r)).

Proof. Using (4.6), and the Hölder and Poincaré inequalities, we obtain

∫

Br(x0)

u dx ≤ π1/2r

(

∫

Br(x0)

u2 dx

)1/2

≤ Cr2

(

∫

Br(x0)

|∇u|2 dx

)1/2

≤ Cr2

(

∫

Br(x0)

χ{u>0}(λ− y)+ dx

)1/2

,

where the last inequality follows from Remark 3.5. Hence, also by (4.9),

lim
r→0+

1

r7/2

∫

Br(x0)

u dx ≤ C lim
r→0+

(

1

r3

∫

Br(x0)

χ{u>0}(λ− y)+ dx

)1/2

= 0.

Since u ≥ 0 andBr/4((x0, λ− r/2)) ⊂ Br((x0, λ)) = Br(x0) it follows, in particular,
that

lim
r→0+

1

r7/2

∫

Br/4((x0,λ−r/2))

u dx = 0. (4.10)

Using a slicing argument we have that

8

r

∫ r/4

r/8

1

2πρ5/2

∫

∂Bρ((x0,λ−r/2))

u dH1 dρ ≤ C

r

∫ r/4

r/8

1

r5/2

∫

∂Bρ((x0,λ−r/2))

u dH1 dρ

≤ C

r7/2

∫

Br/2((0,λ−r/2))

u dx.

Fix k := 1
2and let C(1/2) > 0 be the constant given in Theorem 3.6. In view of

(4.10), we may find r0 > 0 so small that

8

r

∫ r/4

r/8

1

2πρ5/2

∫

∂Bρ((x0,λ−r/2))

u dH1 dρ <

√

3

2
C(1/2)

for all 0 < r < r0. Fix any such r > 0 and find r/8 < ρ < r/4 such that

1

2πρ5/2

∫

∂Bρ((x0,λ−r/2))

u dH1 <

√

3

2
C(1/2).
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Using the fact that
√

3
2ρ ≤

√

r
2 − ρ

2 , it follows that

1

2πρ2

∫

∂Bρ((x0,λ−r/2))

u dH1 < C(1/2)

√

3

2
ρ ≤ C(1/2)

√

(

λ−
(

λ− r

2

)

− ρ

2

)

+
,

and so we are in a position to apply Theorem 3.6 to conclude that u = 0 in
Bρ/2((x0, λ− r/2)). �

5. Absolute Minimizers

In this section we study properties of absolute minimizers. The following theorem
shows that absolute minimizers of Jλ in the class K1 (see (1.10)) are one-dimensional
functions of the type u = u (y).

Theorem 5.1. Let u ∈ K1 be an absolute minimizer of the functional Jλ. Then
u = u (y).

Proof. Step 1: Consider the one-dimensional functional

Iλ (v) :=

∫ ∞

0

(

|v′ (y)|2 + χ{v>0} (y) (λ− y)+

)

dy

defined in the class

K4 =
{

v ∈ H1
loc ((0,∞)) : v (0) = c

}

.

We claim that the minimization problem

α1 := inf
v∈K4

Iλ (v)

has only one solution. To see this, let v be an absolute minimizer of Iλ, which exists
by Theorem 2.2. By Theorem 3.3, the set {v > 0} is either (0,∞) or (0, a) for some
a > 0. Moreover v is harmonic in {v > 0}, therefore linear. If {v > 0} = (0,∞),
then, necessarily, v ≡ c, since otherwise Iλ (v) would be infinite. Assume next that
{v > 0} = (0, a) for some for some a > 0. Then

v (y) =

{

c
a (−y + a) if 0 < y ≤ a,
0 if y > a.

(5.1)

Therefore,

Iλ (v) =

∫ a

0

(

( c

a

)2

+ (λ− y)+

)

dy

=
c2

a
+

λ2

2
− (λ−min {a, λ})2

2
.

To find the value of a, note that a must be a solution of the infimum infimum
problem

inf
t>0

f (t) ,

where

f (t) :=
c2

t
+

λ2

2
− (λ−min {t, λ})2

2
.

Note that

f ′ (t) =

{

− c2

t2 − t+ λ if 0 < t < λ,

− c2

t2 if t > λ.
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Since f (t) → ∞ as t → 0+ and f ′ (t) < 0 for t > λ, it follows that 0 < a < λ, with
f ′ (a) = 0. Hence,

a3 − λa2 + c2 = 0.

Consider the cubic function

g (s) := s3 − λs2 + c2, s ∈ R.

Since g (s) → −∞ as s → −∞ and g (0) = c2 > 0, the cubic equation g (s) = 0
has one negative zero, but a > 0, and so it must also have two positive zeros
0 < s1 ≤ s2, and a = s1. Note that g has a local minimum at

s0 =
2λ

3
.

Necessarily, g (s0) ≤ 0, which implies that

λ ≥ 3
( c

2

)
2
3

.

In conclusion, we have shown that v ≡ c for all λ < 3 (c/2)
2/3

, while v is given by

(5.1), where a > 0 is the first positive zero of g when λ ≥ 3 (c/2)2/3.
Step 2: Let u ∈ K1 be an absolute minimizer of the functional Jλ. By a standard
slicing argument we have that u(x, ·) ∈ K4 for L1 a.e. x ∈ (−ℓ, ℓ) and so, also by
Tonelli’s theorem,

Jλ (u) =

∫ ℓ

−ℓ

∫ ∞

0

(

|∇u (x, y)|2 + χ{u>0} (x, y) (λ− y)+

)

dydx

≥
∫ ℓ

−ℓ

Iλ (u(x, ·)) dy ≥ 2ℓα1.

On the other hand, the minimizer v of Iλ given in the previous step belongs to K1

and so Jλ (u) ≤ Jλ (v) = 2ℓα1. Thus, Jλ (u) = 2ℓα1. Since Iλ (u(x, ·)) ≥ α1 for L1

a.e. x ∈ (−ℓ, ℓ), it follows that Iλ (u(x, ·)) = α1 for L1 a.e. x ∈ (−ℓ, ℓ), which, by
the previous step, implies that u(x, ·) = v for L1 a.e. x ∈ (−ℓ, ℓ). This concludes
the proof. �

In view of the previous theorem, in the remaining of this section we assume that
the set S is given by the segment [−ℓ, ℓ]×{0} and by the two half-lines {±ℓ}×[0,∞),
and that the datum u0 satisfies the following properties

u0(−ℓ, y) = u0(ℓ, y) = 0 for y ∈ [0,∞),

u0(·, 0) ∈ C1
0 ([−ℓ, ℓ]) ,

{x ∈ (−ℓ, ℓ) : u0(·, 0) > 0} is connected,

or equivalently, that

K :=
{

u ∈ L1
loc(Ω) : ∇u ∈

(

L2
loc(Ω)

)2
, u(x, 0) = v0(x) for x ∈ (−ℓ, ℓ), (5.2)

u(−ℓ, y) = u(ℓ, y) = 0 for y ∈ (0,∞)},
where v0 ∈ C1

0 ([−ℓ, ℓ]) and the set {x ∈ (−ℓ, ℓ) : v0(0) > 0} is connected. As ex-
plained in the introduction, by replacing h with a smaller height, this corresponds
to localizing our attention near the crest. The drawback is that all the results ob-
tained in this section are only local and depend strongly on the particular choice
of the initial datum v0.
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In the next theorem we show that if λ is large, then the support of an absolute
minimizer stays below the line y = λ.

Remark 5.2. If u ∈ K is a local minimizer, by extending u to zero in R× [0,∞)\Ω,
it follows that Theorem 3.6 remains valid if Br(x0) intersects the lateral boundary
of Ω.

Theorem 5.3 (Existence of regular solutions). There exists λ0 >> 1, depending
on the initial datum v0, such that for all λ ≥ λ0 and for every absolute minimizer
u ∈ K of Jλ, the support of u is contained in the set [−ℓ, ℓ]× [0, λ).

Proof. Fix y0 > 0, and let k := 1
2 and r := y0

2 . Then for x0 ∈ [−ℓ, ℓ],

Br (x0, y0) ⊂ R×
[y0
2
,∞
)

,

and thus we are in a position to apply Remark 5.2. By Lemma 2.5 for every absolute
minimizer u ∈ K of Jλ we have (see (3.18)),

ℓu =
√
2 sup
B√

2r(x0,y0)

u ≤
√
2 max
[−ℓ,ℓ]

v0,

while (see (3.26))

Qmin =

√

(

λ− 3

2
y0

)

+

.

It now follows from (3.28) that

C(12 )ℓu

rQmin

(

ℓu
rQmin

+ 1

)

≤ C(12 )
√
2 ‖v0‖∞

y0

2

√

(

λ− 3
2y0
)

+





√
2 ‖v0‖∞

y0

2

√

(

λ− 3
2y0
)

+

+ 1



 < 1

for all λ ≥ λ0 = λ0 (‖v0‖∞ , y0).

Thus by Theorem 3.6 (see (3.27)), we have that u ≡ 0 in [−ℓ, ℓ] ×
[

3y0

4 , 5y0

4

]

,

which implies that u ≡ 0 in [−ℓ, ℓ]×
[

3y0

4 ,∞
)

, (recall Theorem 3.3). �

Remark 5.4. Since the support of u remains below the line y = λ, λ ≥ λ0, we are
in a position to apply the regularity results of Alt and Caffarelli (see Theorem 3.7)
to conclude that ∂ {uλ > 0} is locally a C∞ curve. This gives a family of regular
solutions. This result can be considered somehow in the same spirit of the theorem
of Keady and Norbury [KN] in the sense that it gives local existence of regular
waves (depending however on the initial datum v0).

In the previous theorem, we have shown that for all λ sufficiently large the
support of every absolute minimizer u ∈ K of Jλ remains well-below the line y = λ.
Next we prove that for λ very small the support of u crosses the line y = λ. To
highlight the dependence on the parameter λ in what follows we denote by uλ ∈ K
an absolute minimizer of the functional Jλ. Note that minimizers of Jλ are not
necessarily unique.

In what follows, we adapt to our setting ideas from [ACF], [ACF1], [ACF2].
Following Theorem 10.2 in [Fr] we have the following result.

Theorem 5.5 (Monotonicity). Consider 0 < µ < λ and let uλ, uµ ∈ K be absolute
minimizers of Jλ and Jµ, respectively. Then

{uλ > 0} ∩ {y < λ} ⊆ {uµ > 0} ∩ {y < λ} (5.3)



ON A VARIATIONAL APPROACH FOR WATER WAVES 27

and
uλ ≤ uµ. (5.4)

Moreover, if uµ is regular, then uλ < uµ in {uµ > 0}.
Proof. Define v1 := min {uλ, uµ} and v2 := max {uλ, uµ}. Since v1 and v2 belong
to K,

Jλ(uλ) + Jµ(uµ) ≤ Jλ(v1) + Jµ(v2).

Let A1 := {uµ < uλ} and A2 := {uµ ≥ uλ}. Then the previous inequality becomes
∫

A1∪A2

(

|∇uλ|2 + χ{uλ>0}(λ− y)+

)

dx

+

∫

A1∪A2

(

|∇uµ|2 + χ{uµ>0}(µ− y)+

)

dx

≤
∫

A1∪A2

(

|∇v1|2 + χ{v1>0}(λ− y)+

)

dx

+

∫

A1∪A2

(

|∇v2|2 + χ{v2>0}(µ− y)+

)

dx.

Since v1 = uµ, v2 = uλ in A1 and v1 = uλ, v2 = uµ in A2, the integrals containing
gradients cancel out. Therefore,

∫

A1∪A2

χ{uλ>0}(λ − y)+ dx+

∫

A1∪A2

χ{uµ>0}(µ− y)+ dx

≤
∫

A1

χ{uµ>0}(λ− y)+ dx+

∫

A2

χ{uλ>0}(λ− y)+ dx

+

∫

A1

χ{uλ>0}(µ− y)+ dx+

∫

A2

χ{uµ>0}(µ− y)+ dx.

The integrals over A2 cancel out, therefore
∫

A1

χ{uλ>0}(λ− y)+ dx+

∫

A1

χ{uµ>0}(µ− y)+ dx

≤
∫

A1

χ{uµ>0}(λ− y)+ dx+

∫

A1

χ{uλ>0}(µ− y)+ dx,

which implies
∫

A1

(

χ{uλ>0} − χ{uµ>0}
)

(λ− y)+ dx ≤
∫

A1

(

χ{uλ>0} − χ{uµ>0}
)

(µ− y)+ dx,

or, equivalently,
∫

A1

(

χ{uλ>0} − χ{uµ>0}
)

((λ − y)+ − (µ− y)+) dx ≤ 0. (5.5)

Since A1 = {uµ < uλ} and µ < λ, we have that the integrand is nonnegative, which
implies that it is actually zero L2 a.e. in A1. By the continuity of uµ and uλ we
have that

{uλ > 0} ∩ {y < λ} ∩ {uµ < uλ} ⊆ {uµ > 0} ∩ {y < λ} ∩ {uµ < uλ}.
On the other hand, since A2 = {uµ ≥ uλ}, we have that

{uλ > 0} ∩ {uµ ≥ uλ} ⊆ {uµ > 0} ∩ {uµ ≥ uλ},
and so (5.3) holds.
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Since equality holds in (5.5), we have actually proved that

Jλ(uλ) + Jµ(uµ) = Jλ(v1) + Jµ(v2),

which implies that Jλ(uλ) = Jλ(v1) and Jµ(uµ) = Jµ(v2).
Hence, v1 and v2 are absolute minimizers for Jλ and Jµ, respectively. In partic-

ular, by Theorem 3.3, they are harmonic in the set where they are positive.
If 0 < uλ (x0) = uµ (x0) for some x0 = (x0, y0) ∈ (−ℓ, ℓ) × (0,∞), then in a

neighborhood of x0 the functions uλ − v2 ≤ 0 and uµ − v2 ≤ 0 are harmonic and
attain a maximum in an interior point. It follows by the maximum principle that
uλ − v2 = uµ − v2 ≡ 0 in the connected component of {v2 > 0} that contains x0.
By Theorem 3.3 we have that uµ = uλ in Ω.

If uµ is a regular solution, this is a contradiction. Indeed, at a positive distance
below the line y = µ, we can apply Theorem 3.7 to obtain that ∂{uλ > 0} is
locally a C∞ curve. By classical regularity results we can write the Euler-Lagrange
equations of the functional Jλ to deduce, in particular, that ∂uλ

∂ν (x, y) = λ− y and
∂uµ

∂ν (x, y) = µ− y on ∂ {uλ > 0}, which contradicts the fact that uµ = uλ in Ω.
If uλ (x) 6= uµ (x) for all x ∈ {uλ > 0} ∪ {uµ > 0}, then, since {uµ > 0} is open

and connected by Theorem 3.3, we must have that either uµ > uλ in {uµ > 0} or
uµ < uλ in {uµ > 0}. Assume by contradiction that uµ < uλ in {uµ > 0}. Since
equality holds in (5.5), it follows from (5.3) that

{uλ > 0} ∩ {y < λ} = {uµ > 0} ∩ {y < λ}.
In turn, since µ ≤ λ,

∫

Ω

χ{uλ>0}(λ− y)+ dx =

∫

Ω

χ{uµ>0}(λ− y)+ dx,

∫

Ω

χ{uλ>0}(µ− y)+ dx =

∫

Ω

χ{uµ>0}(µ− y)+ dx.

Using the facts that Jλ(uλ) ≤ Jλ(uµ) and Jµ(uµ) ≤ Jµ(v2), it follows that
∫

Ω

|∇uλ|2 dx =

∫

Ω

|∇uµ|2 dx.

Consider the function v := 1
2uλ +

1
2uµ ∈ K. By the strict convexity of the Dirichlet

energy
∫

Ω

|∇v|2 dx <

∫

Ω

|∇uλ|2 dx =

∫

Ω

|∇uµ|2 dx,

while {v > 0} ∩ {y < λ} = {uλ > 0} ∩ {y < λ}, so that
∫

Ω

χ{v>0}(λ− y)+ dx =

∫

Ω

χ{uµ>0}(λ − y)+ dx.

It follows that Jλ(v) < Jλ(uλ), which is a contradiction. Hence, uµ > uλ in
{uµ > 0}. This concludes the proof. �

We now prove the existence of a critical level λc, which should correspond to
solutions whose free boundary forms an angle 2

3π as in Stokes waves.

Theorem 5.6. Let

λc := inf{λ ≥ 0 : there is an absolute minimizer uλ ∈ K
of Jλ with suppuλ ⊆ {y ≤ λ}}.
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Then 0 < λc < ∞, every absolute minimizer of Jλ is a regular solution for λ > λc,
while every absolute minimizer of Jλ is a non-physical solution for λ < λc, in the
sense that its support crosses the line y = λ.

Proof. By Theorem 5.3 we have that λc ≤ λ0 < ∞. If λ > λc, by the definition
of λc there exists λc < µ < λ such that suppuµ ⊆ {y ≤ µ} for some absolute
minimizer uµ ∈ K of Jµ. Let uλ ∈ K be an absolute minimizer of Jλ. By (5.3),

{uλ > 0} ∩ {y < λ} ⊆ {uµ > 0} ∩ {y < λ} ⊆ {y ≤ µ},
which implies that suppuλ ⊆ {y ≤ µ}. Thus uλ is a regular solution. Hence, every
absolute minimizer of Jλ is a regular solution.

On the other hand, if λc > 0 and 0 < µ < λc, let uµ ∈ K be an absolute
minimizer of Jµ. If by contradiction suppuµ ⊆ {y ≤ µ}, then reasoning as in the
first part of the proof, we would have that every absolute minimizer of Jλ is a
regular solution for µ < λ < λc, which would contradict the definition of λc. Thus,
every absolute minimizer of Jµ is a non-physical solution.

To prove that λc > 0, fix λ > λc, let uλ ∈ K be an absolute minimizer of Jλ and
let 0 < λ1 < λ be such that the line y = λ1 intersects the set {uλ > 0}. By (5.3)
once more, for every 0 < µ ≤ λ1 < λ and for every absolute minimizer uµ ∈ K of
Jµ,

{uλ > 0} ∩ {y < λ} ⊆ {uµ > 0} ∩ {y < λ},
and, since the line y = λ1 intersects the set {uλ > 0}, it also intersects the set
{uµ > 0}. Since the set {uµ > 0} is connected and µ ≤ λ1, the line y = µ
intersects the set {uµ > 0}. This shows that λc ≥ λ1 > 0. �

Next we prove that as λ ց λc and λ ր λc, corresponding minimizers uλ ap-
proach two minimizers at level y = λc.

Theorem 5.7. Let {λn} ⊂ (0,∞) be a sequence such that λn → λc and let {uλn} ⊆
K be absolute minimizers of the functionals Jλn . Then (up to a subsequence) {uλn}
converges strongly in H1

loc (Ω) to an absolute minimizer u ∈ K of Jλc .

Proof. Extend v0 to a function v0 ∈ C1
(

Ω
)

such that supp v0 is contained in

[−ℓ, ℓ] ×
[

0, λc

2

]

. Let n1 ∈ N be so large that λn > λc

2 for all n ≥ n1. As in
the proof of Theorem 2.2 we may extract a subsequence (not relabeled) {uλn} such
that {uλn} converges weakly to some function uλc ∈ K, while

{

χ{uλn>0}
}

converges
weakly star to a function γ in L∞ (Ω) with

γ (x) ≥ χ{uλn>0} (x) for L2 a.e. x ∈ Ω.

It remains to show that uλc is an absolute minimizer for Jλc . As in the last part of
the proof of the Theorem 2.2, for every r > 0 and u ∈ K, we have

∫

Ωr

(|∇uλc |2 + χ{uλn>0} (λc − y)+) dx ≤
∫

Ωr

(|∇uλc |2 + γ (λc − y)+) dx

≤ lim inf
n→∞

∫

Ωr

(|∇uλn |2 + γ (λn − y)+) dx (5.6)

≤ lim inf
n→∞

Jλn (uλn) ≤ lim sup
n→∞

Jλn (uλn)

≤ lim sup
n→∞

Jλn (u) = Jλc (u) .
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Letting r ր ∞, we conclude that

Jλc (uc) ≤ Jλc (u)

for all u ∈ K. Since uλc ∈ K, we have that uλc is an absolute minimizer for Jλc .
Note that taking u = uλc in (5.6) and letting r ր ∞, gives

Jλc (u) = lim
n→∞

∫

Ω

(

|∇uλn |2 + χ{uλn>0} (λn − y)+

)

dx.

On the other hand, since

lim inf
n→∞

∫

Ω

|∇uλn |2 dx ≥
∫

Ω

|∇uλc |2 dx

and

lim inf
n→∞

∫

Ω

χ{uλn>0} (λn − y)+ dx ≥
∫

Ω

χ{uλc>0} (λc − y)+ dx,

it follows that

lim
n→∞

∫

Ω

|∇uλn |2 dx =

∫

Ω

|∇uλc |2 dx

and

lim
n→∞

∫

Ω

χ{uλn>0} (λn − y)+ dx =

∫

Ω

χ{uλc>0} (λc − y)+ dx.

It follows that {∇uλn} converges strongly to ∇uλc in
(

L2 (Ω)
)2
, and hence {uλn}

converges strongly to uλc in H1
loc (Ω). �

Corollary 5.8. Let {λn}, {µn} ⊂ (0,∞) be such that λn ց λc and µn ր λc.
Then {uλn} and {uµn} converge strongly in H1

loc (Ω) and uniformly to two absolute
minimizers u+ and u− ∈ K of Jλc , respectively. Moreover suppu+ ⊆ {y ≤ λc},
while suppu− intersects the line y = λc.

Proof. By Theorem 5.5 the sequence {uλn} is increasing, while the sequence {uµn}
is decreasing. Thus for all x ∈ Ω there exist

lim
n→∞

uλn (x) = u+ (x) , lim
n→∞

uµn (x) = u− (x) .

It follows by the previous theorem, that u+ and u− are absolute minimizers of Jλc .
Since u+ and u− are continuous (see Theorem 3.4), by Dini’s monotone convergence
theorem, the convergence is uniform.

To prove the second part of the statement, assume by contradiction that there
exists x0 = (x0, y0) ∈ (−ℓ, ℓ)×(λc,∞) such that u+ (x0) > 0. Since {uλn} converges
uniformly to u+, we have that

uλn (x0) >
u+ (x0)

2
for all n sufficiently large. Since λn ց λc, taking so large that λn < y0, we have
contradicted the fact that suppuλn ⊆ {y < λn}. Thus suppu+ ⊆ {y ≤ λc}.

Next, assume by contradiction that

suppu− ⊆ {y < λc} .
Fix ε > 0 such that suppu− ⊆ {y < λc − ε}. Let C (1/2) be the constant given in
Theorem 3.6 with k = 1

2 . Since µn ր λc and {uµn} converges uniformly to zero in
[−ℓ, ℓ]× [λc − ε, λc], we may find n1 so large that

µn > λc −
ε

4
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and

uµn < C
(

1
2

) ε

4

√

3

8
ε in [−ℓ, ℓ]× [λc − ε, λc] (5.7)

for all n ≥ n1.
We now apply Theorem 3.6 and Remark 5.2 to uµn taking x0 ∈ (−ℓ, ℓ), y0 =

λc − 3
4ε, r = ε

4 . By (5.7), for all n ≥ n1, we have

1

r |∂Br(x0)|
1

√

(λ− y0 − 1
2r)+

∫

∂Br(x0)

uµn dH1

=
1

ε
4

∣

∣∂B ε
4
(x0)

∣

∣

1
√

(µn − λc +
5
8ε)+

∫

∂B ε
4
(x0)

uµn dH1

< C
(

1
2

)

√

3
8ε

√

(µn − λc +
5
8ε)+

≤ C
(

1
2

)

,

where in the last inequality we have used (5.7) and the fact that µn > λc − ε
4 .

It follows from Theorem 3.6 and Remark 5.2 that uµn = 0 in B ε
4

(

x0, λc − ε
4

)

for
all x0 ∈ (−ℓ, ℓ) and for all n ≥ n1. Since {uµn > 0} is connected by Theorem 3.3,
we have contradicted the fact that suppuµn meets the line y = µn.

Hence, suppu− is not contained in {y < λc}. �

Conjecture 5.9. We conjecture that Jλc has a unique absolute minimizer.

Note that if the conjecture were true, then u+ = u−, and so the support of u+

would touch the line y = λc and be contained in the set {y ≤ λc}. This would
prove the local existence of a solution behaving like a Stokes wave near the crest.
We have been unable to prove the conjecture.

Next we show that if the initial datum v0 is even and decreasing in (0, ℓ), then
there exists an absolute minimizer whose boundary is given by the graph of a
function x = g (y) for x > 0.

Theorem 5.10. Suppose that the function v0 in (5.2) is even in (−ℓ, ℓ) and de-
creasing in (0, ℓ). Then there exists an absolute minimizer u ∈ K of the functional
Jλ such that u (x, y) = u (−x, y) and the function x ∈ [0, ℓ] 7→ u (x, y) is decreasing
for all y ≥ 0.

Proof. Step 1: In this step we show the existence of two absolute minimizers that
are even in the x-variable. Let u be a minimizer for J . Define

w1(x, y) :=

{

u (x, y) if x ≥ 0,
u (−x, y) if x < 0,

w2(x, y) :=

{

u (−x, y) if x ≥ 0,
u (x, y) if x < 0.

Since v0 is even, it follows that w1, w2 belong to K. A simple computation yields

Jλ (w1) + Jλ (w2) = 2Jλ (u) .

Since both Jλ (w1) and Jλ (w2) are bigger than Jλ (u), we must have

Jλ (w1) = Jλ (w2) = Jλ (u) .

Therefore w1 and w2 are two minimizers of Jλ that are even in the x-variable.
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Step 2: In this step we prove that if an absolute minimizer u ∈ K of Jλ is
symmetric in x, then the symmetric decreasing rearrangement of u in the variable
x (see Corollary 2.14 and Remark 2.32 in [Kaw]), denoted by u∗, is also an absolute
minimizer of Jλ. Notice that by Step 1, Ω ∩ {u > 0} coincides with its Steiner
symmetrization. By Corollary 2.14 in [Kaw], we have

∫

Ω

|∇u∗(x, y)|2 dxdy ≤
∫

Ω

|∇u(x, y)|2 dxdy, (5.8)

while by Fubini’s theorem

∫

Ω

χ{u>0}(λ− y)+ dx =

∫ λ

0

(λ− y)+

(

∫ ℓ

−ℓ

χ{u>0} (x, y) dx

)

dy,

and similarly

∫

Ω

χ{u∗>0}(λ− y)+ dx =

∫ λ

0

(λ− y)+

(

∫ ℓ

−ℓ

χ{u∗>0} (x, y) dx

)

dy.

By the definition of u∗ we have for any fixed y ∈ R,

∫ ℓ

−ℓ

χ{u>0} (x, y) dx =

∫ ℓ

−ℓ

χ{u∗>0} (x, y) dx,

therefore
∫

Ω

χ{u>0}(λ− y)+ dx =

∫

Ω

χ{u∗>0}(λ − y)+ dx,

which together with (5.8), implies that Jλ (u
∗) ≤ Jλ (u). Using the fact that v0 =

v∗0 , we have that u∗ (x, 0) = u (x, 0) = v0 (x). �

In view of the previous theorem, if v0 is even in (−ℓ, ℓ) and decreasing in (0, ℓ),
there exists an absolute minimizer u ∈ K of Jλ whose free boundary can be described
by the graph of a function x = g (y) in (0, ℓ)× R. Indeed, it suffices to define

g (y) := sup {x ∈ [−ℓ, ℓ] : u (x, y) > 0} . (5.9)

Next we prove that for the absolute minimizer constructed in the previous the-
orem there is only one blow-up limit (see Theorem 4.3).

Theorem 5.11. Assume that v0 is even in (−ℓ, ℓ), and decreasing in (0, ℓ), and
let u ∈ K be the absolute minimizer of Jλ given by Theorem 5.10. Assume that the
point (0, λ) ∈ Ω belongs to ∂ {u > 0} and that

{x ∈ Ω : u (x) > 0} ⊂ (−ℓ, ℓ)× (0, λ) . (5.10)

Then the only blow-up limit is

w (ρ, θ) =

√
2

3
ρ3/2 max

{

cos

(

3

2

(

θ − 3π

2

))

, 0

}

and

lim
r→0+

1

r3

∫

Br((0,λ))

χ{u>0}(λ− y)+ dx =

∫

B1(0)

(λ− y)+χ{cos( 3
2 (θ−π

2 ))>0} dx.
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First proof. In view of Theorem 4.3, it remains to exclude the case in which a
blow-up limit is w = 0 with

lim
r→0+

1

r3

∫

Br((0,λ))

χ{u>0}(λ− y)+ dx = 0. (5.11)

If (5.11) holds, then by Corollary 4.5, there exists r > 0 such that u = 0 in
Br/8((0, λ− r)). However, since the function x ∈ [0, ℓ] 7→ u (x, y) is decreasing for
all y ≥ 0, it follows that u (x, λ − r) = 0 for all x ∈ (−ℓ, ℓ), which contradicts the
fact that {x ∈ Ω : u (x) > 0} is connected (see Theorem 3.3). �

We present a second proof of Theorem 4.3, which does not make use of Corollary
4.5.

Second proof. Step 1. We claim that the function y ∈ [0, λ] 7→ u (0, y) is decreas-
ing. Indeed, assume by contradiction that there exist 0 ≤ y1 < y2 < λ such that
u (0, y1) < u (0, y2). Since u is continuous (see Theorem 3.4) and u (0, λ) = 0 by
(5.10), there exists y2 < y3 ≤ λ such that u (0, y1) = u (0, y3). Hence, the function
y ∈ [y1, y3] 7→ u (0, y) has an absolute maximum at some y0 ∈ (y1, y3). In turn,
since u (x, y) = u (−x, y) and the function x ∈ [0, ℓ] 7→ u (x, y) is decreasing for
all y ≥ 0, the point (0, y0) is a point of absolute maximum for the function u in
[−ℓ, ℓ]× [y1, y3]. By replacing [y1, y3] with a subinterval containing y0, without loss
of generality, we may assume that u > 0 in [y1, y3] and that

u (0, y1) = u (0, y3) < u (0, y0) .

Again by continuity, we may assume that u > 0 in [−ℓ1, ℓ2]× [y1, y3] for some 0 <
ℓ1 ≤ ℓ. Since u is harmonic in the set {u > 0} (see Theorem 3.3), this contradicts
the maximum principle.
Step 2. We claim that

u (0, y) ≥ C (λ− y)
3/2

(5.12)

for all y ∈ [0, λ] and for some C > 0. To see this, fix 0 < y0 < λ. Without loss of
generality, we may assume that

λ− y0 ≤ min {λ+ h, ℓ} .
Fix k := 1

2and let C(1/2) > 0 be the constant given in Theorem 3.6. Let r :=
1
8 (λ− y0) and x0 :=

(

0, y0 +
1
8 (λ− y0)

)

. If

1

r |∂Br (x0)|

∫

∂Br(x0)

u dH1 < C(1/2)

√

(

λ−
(

y0 +
1

8
(λ− y0)

))

+

,

then by Theorem 3.6, u = 0 in ∂Br/2 (x0), which contradicts the fact that u (0, y) >
0 in [0, λ) by Step 1 and the fact that (0, λ) ∈ ∂ {u > 0}. Hence,

1

r |∂Br (x0)|

∫

∂Br(x0)

u dH1 ≥ C(1/2)

√

7

8
(λ− y0)+.

Since u (x, y) = u (−x, y) and the functions y ∈ [0, λ] 7→ u (0, y) and x ∈ [0, ℓ] 7→
u (x, y) are decreasing, it follows that

u (0, y0) ≥
1

|∂Br (x0)|

∫

∂Br(x0)

u dH1

≥ 1

8
C(1/2)

√

7

8
(λ− y0)+ (λ− y0) ,
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which proves the claim.
Using (4.2) and (5.12), we obtain that for every blow-up limit w,

w (0, t) ≥ C (−t)
3/2

, (5.13)

which implies that w cannot be zero. �

In the next theorem we prove, without using the results of [VW], that if the free
boundary forms an angle ω, then, necessarily, ω = 2π

3 .

Theorem 5.12. Assume that v0 is even in (−ℓ, ℓ), and decreasing in (0, ℓ), and let
u ∈ K be the absolute minimizer of Jλc given by Theorem 5.10 and with suppu ⊆
{y ≤ λc}. Let g be defined as in (5.9) and assume that there exist the limits

lim
y→(λc)−

g (y) =: g (λc) ∈ [0, ℓ) , (5.14)

and

lim
y→(λc)−

g (y)− g (λc)

λc − y
=: ξ ∈ R. (5.15)

Then g (λc) = 0 and ξ = tan π
3 .

Proof. Step 1. In this step we prove that g (λc) = 0. Indeed, assume by con-
tradiction that g (λc) > 0. By (5.14) and (5.15), the free boundary is contained
in a thin sector centered at (g (λc) , λc). Since the function x ∈ [0, ℓ] 7→ u (x, y)
is decreasing for all y ≥ 0, we deduce that for some 0 < a < g (λc) and for some
small ε > 0, u > 0 in (−a, a)× (λc − ε, λc). Using the fact that u (x, λc) = 0 for all
x ∈ (−ℓ, ℓ), we have that ∂u

∂x (x, λc) = 0. Writing the Euler-Lagrange equations in

(−a, a)×(λc − ε, λc), it follows by the Bernoulli’s boundary condition |∇u|2 = λ−y
that ∂u

∂y (x, λc) = 0 for x ∈ (−a, a), which contradicts Hopf’s lemma.

Step 2. Let w be the blow-up limit of the sequence {un} defined in (4.1), with
x0 = (0, λc). By (5.9), after the change of variables x = x0 + ρnz, z = (s, t), we
have that the free boundary of un can be described by the function

hn (t) :=
1

ρn
g (λc + ρnt) , t < 0.

Note that by (5.15),

lim
n→∞

hn (t) = ξt.

On the other hand, since ∂ {un > 0} locally converges in Hausdorff distance to
∂ {w > 0} in R × (−∞, 0), it follows that the function h (t) = ξt, t < 0 describes
the free boundary of w in [0,∞)× (−∞, 0]. Since by Theorem 4.2, w is a minimizer
of the functional and (0, 0) ∈ ∂ {w > 0}, it follows by Theorem 3.1 that

1

|∂Br(0)|

∫

∂Br(0)

w dH1 ≤ Cmaxr
3
2 (5.16)

for all r > 0 sufficiently small, while by (5.13),

w (0, t) ≥ C (−t)
3/2

(5.17)

for t ∈ [−1, 0].
Consider the triangle

T := {(s, t) ∈ R : ξt < s < −ξt, t ∈ [−1, 0]}
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and let ϕ ∈ C∞
c

(

R
2; [0, 1]

)

be such that ϕ ≡ 1 on Bε(0) and ϕ ≡ 0 outside Bε(0).
Then wϕ = 0 on ∂T , while

∆ (wϕ) = (∆w)ϕ+ 2∇w · ∇ϕ+ w∆ϕ

= 2∇w · ∇ϕ+ w∆ϕ in T.

It follows by Theorem 4.4.3.7 in Chapter 4 of [Gris] that in a neighborhood U of 0,

w = wϕ =
∑

−1<λm<0

CmSm + v

for some v ∈ H2 (U), where for every m ∈ Z, Cm ∈ R,

λm :=
mπ

ω
,

Sm :=
r−λm

√
ωλm

cos
(

λmθ +
π

2

)

η
(

reiθ
)

,

where ω ∈ (0, π] is the angle at 0, (r, θ) are polar coordinates centered at 0 and η
is a smooth function, which is 1 in a small neighborhood of 0 and whose support
does not intersect the side of T opposite to 0. By (5.16) and (5.17), the singularity
of w is of the type r3/2 in a neighborhood of the origin. Since ω ∈ [0, π],

−λm = −mπ

ω
=

3

2

can hold only for m = −1. From this we conclude that

ω =
2

3
π,

which is the expected Stokes angle. �
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