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Abstract

Given an open domain (possibly unbounded) Ω ⊂ Rn, we prove that uniformly
elliptic second order differential operators, under nontangential boundary conditions,
generate analytic semigroups in L1(Ω). We use a duality method, and, further, give
estimates of first order derivatives for the resolvent and the semigroup, through prop-
erties of the generator in Sobolev spaces of negative order.

1 Introduction

The aim of this paper is to show how a duality method can be used to prove that uniformly
elliptic operators endowed with non-tangential boundary conditions generate analytic semi-
groups in L1. It is well-known that the methods used in Lp spaces, with 1 < p <∞, cannot
be extended to the cases p = 1,∞ because the classical Agmon-Douglis-Nirenberg estimates
do not hold in these cases. In fact, the generation results in L∞ follow from the Lp case
through a clever passage to the limit and Sobolev embedding known as Masuda-Stewart
technique, see [18], [19], [12]. The known approaches relative to the L1 case are based either
on an integral representation of the semigroup and suitable estimates on the kernel, see e.g.
[20], or on duality arguments. In order to deduce L1 results from L∞, duality arguments
have been developed both for the adjoint semigroups, see [2], and their generators in the
case of Dirichlet boundary conditions, see [14], [7], [24] and [9], where also elliptic systems
are studied. The generation result in L1 has been proved also in [3] under L∞ conditions on
the diffusion coefficients. In this paper Dirichlet, Neumann or mixed boundary conditions
are considered, and the fact that the resulting operator is symmetric seems to be essential.
In this paper, we apply duality arguments to general (non-tangential) boundary conditions
involving first order derivatives. Moreover, we prove gradient estimates for the solution
of the resolvent equation and for the semigroup solution of the parabolic initial-boundary
value problem. The parabolic estimates are deduced from the elliptic ones, while the elliptic
estimates are obtained through a discussion of the sectoriality of the generator in Sobolev
spaces of negative order. In this part, we follow ideas from [22], [13].

Let us come to a more technical description of the results. Throughout this paper, Ω
denotes an open (possibly unbounded) domain in Rn with uniformly C3 boundary ∂Ω (see
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Remark 2.1). We denote by ν(x) the outward normal unit vector to ∂Ω at x. We consider
the uniformly elliptic second order operator in divergence form:

(1.1) A(x,D) =
n∑

i,j=1

Di(aij(x)Dj) +
n∑
i=1

bi(x)Di + c(x)

with real coefficients satisfying the following assumptions

(1.2) aij = aji ∈W 1,∞(Ω), bi, c ∈ L∞(Ω)

and the following uniform ellipticity condition: there exists µ ≥ 1 such that for any x ∈ Ω
and ξ ∈ Rn

(1.3) µ−1|ξ|2 ≤
n∑

i,j=1

aij(x)ξiξj ≤ µ|ξ|2.

We also consider a linear first order differential operator with real coefficients defined for
x ∈ ∂Ω:

(1.4) B(x,D) =
n∑
i=1

βi(x)Di + γ(x)

with βi, γ and their first derivatives uniformly continuous and bounded, and assume that
the uniform non-tangentiality condition

(1.5) inf
x∈∂Ω

∣∣∣∣∣
n∑
i=1

βi(x)νi(x)

∣∣∣∣∣ > 0

holds. We are looking for the solution of the following problem

(1.6)

 ∂tu−Au = 0 in (0,∞)× Ω
u(0) = u0 in Ω
Bu = 0 in (0,∞)× ∂Ω

with initial datum u0 ∈ L1(Ω). In the language of semigroups, this leads us to consider the
realization A1 : D(A1) ⊂ L1(Ω)→ L1(Ω) of A in L1(Ω), where the domain D(A1) takes into
account the boundary conditions. We prove that (A1, D(A1)) is sectorial in L1(Ω), hence it
is the generator of an analytic semigroup (T (t))t≥0 in L1(Ω).

The plan of the paper is as follows: in the second section we prove the generation result
in L1(Ω) and in the third one we prove the estimates on the gradient of the resolvent and of
the semigroup. This last section relies on the analysis of the resolvent equation in Sobolev
spaces of negative order.

Acknowledgment The authors thank the anonymous referee for many precious sugges-
tions.
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2 Preliminary results in L1(Ω)

In this section we prove that the realization of A with boundary conditions Bu = 0 is
sectorial in L1(Ω). Since we would like to solve the problem in L1 by duality from L∞, we
point out that the assumptions (2.2) on the regularity of the coefficients guarantee that the
realization in L∞(Ω) of the adjoint (A∗,B∗), as defined in (2.3) and (2.4) below, generates
an analytic semigroup in L∞(Ω). In this section we could simplify the presentation by
considering first bi = c = 0 and then recovering the general case by a perturbation argument.
However, we discuss the duality theory for general bi, c because we shall use it in Section
3. Let us start from the elliptic problem

(2.1)
{
λu−Au = f in Ω
Bu = 0 in ∂Ω

and let us temporarily assume some more regularity on the coefficients bi, namely

(2.2) aij = aji, aij , bi ∈W 1,∞(Ω), c ∈ L∞(Ω),

setting
M1 = max

i,j
{‖aij‖W 1,∞(Ω), ‖bi‖W 1,∞(Ω), ‖c‖L∞(Ω)}.

The hypothesis b ∈ W 1,∞ will be removed in Theorem 3.6 by a perturbation argument.
Following the notation in [2], we consider the formally adjoint operators A∗ and B∗ given
by

(2.3) A∗ =
n∑

i,j=1

Dj(a∗ijDi) +
n∑
j=1

b∗jDj + c∗,

with
a∗ij = aij b∗i = −bi c∗ = c− divb,

and

(2.4) B∗ = 〈β∗, D〉+ γ∗.

Setting

νa := a · ν = (
n∑
j=1

aijνj)i=1...,n ρ(x) :=
〈νa(x), ν(x)〉
〈β(x), ν(x)〉

, τ := νa − ρβ,

the coefficients β∗, γ∗ are given by

ρβ∗ := νa + τ, ργ∗ := ργ − 〈b, ν〉+ div∂Ωτ,

where div∂Ω denotes the tangential divergence along ∂Ω. Then by the divergence theorem
we obtain ∫

Ω

vAu dx =
∫

Ω

uA∗v dx+
∫
∂Ω

ρ(vBu− uB∗v) dHn−1

for every u, v ∈ C2(Ω) ∩ C1(Ω̄).
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Remark 2.1. The C3 regularity hypothesis on ∂Ω ensures that the function τ , and then
β∗, is uniformly C1. If β = a · ν and γ = 0, we get the conormal boundary conditions, and
in this case the (uniform) C2 regularity of ∂Ω is sufficient for our purposes because τ = 0.
This is the case in [3], [4], [5].

Assumption (2.2) is needed to apply the classical L∞ theory also to A∗, but (1.2) is sufficient
to guarantee generation results for the realization of (A,B) in Lp with 1 < p ≤ ∞. For
every 1 < p <∞ the operator ABp : D(ABp ) ⊆ Lp(Ω)→ Lp(Ω) defined by{

D(ABp ) = {u ∈W 2,p(Ω), Bu = 0 in ∂Ω}

ABp u = Au

is the infinitesimal generator of an analytic semigroup in Lp(Ω), see [12, Chapter 3]. In
particular, there exists ω ∈ R depending on n, p, µ,Ω such that for each λ ∈ C with
Reλ ≥ ω and for each f ∈ Lp(Ω) the equation

(λ−A)u = f

has a unique solution u ∈ D(ABp ) satisfying

(2.5) |λ|‖u‖Lp(Ω) + |λ| 12 ‖Du‖Lp(Ω) + ‖D2u‖Lp(Ω) ≤ C‖f‖Lp(Ω).

Moreover, let AB∞ : D(AB∞) ⊆ L∞(Ω)→ L∞(Ω) be the operator defined by{
D(AB∞) = {u ∈

⋂
p≥1W

2,p
loc (Ω); u, Au ∈ L∞(Ω), Bu|∂Ω = 0},

AB∞u = Au.

Let us present the L∞ results that will be exploited later, see [18], [19], and also [12].

Theorem 2.2. The following hold:

(i ) There exist ω0, M0 ∈ R and ϕ0 ∈ (π/2, π) such that the sector

Σϕ0 = {λ ∈ C : |arg(λ− ω0)| < ϕ0}

belongs to the resolvent set of AB∞. Moreover for each λ ∈ Σϕ0 we have

|λ− ω0|‖R(λ,AB∞)‖L(L∞(Ω)) ≤M0

where R(λ,AB∞) = (λ−AB∞)−1.

(ii ) There exist ω′0 ≥ ω0, M ≥ M0 and ϕ ∈ (π/2, ϕ0) such that for each λ verifying
|arg(λ− ω′0)| < ϕ we have

|λ− ω′0|1/2‖DR(λ,AB∞)‖L(L∞(Ω)) ≤M.

In order to deduce a result of generation in L1(Ω) we set

DA = {u ∈ L1(Ω) ∩ C2(Ω̄); Au ∈ L1(Ω),Bu = 0 in ∂Ω}.

Lemma 2.3. A : DA ⊂ L1(Ω)→ L1(Ω) is closable in L1(Ω).
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Proof. Let (uj) be a sequence in DA such that uj → 0 and Auj → v in L1(Ω). Then,
integrating by parts,∫

Ω

ϕv dx = lim
j→∞

∫
Ω

ϕAuj dx = lim
j→∞

∫
Ω

ujA
∗ϕdx = 0

for every ϕ ∈ C∞c (Ω). Hence v = 0, which implies the assertion.

By Lemma 2.3 we can define the realization of A in L1 with boundary condition Bu = 0,
that will be denoted by (A1, D(A1)) as the closure of A|DA

in L1(Ω), that is, the smallest
closed extension of A|DA

in L1(Ω). Then D(A1) is the closure of DA with respect to the
graph norm in L1. Now we are in a position to prove the following result.

Theorem 2.4. Under the assumption (2.2) there exist C > 0 and ω1 ∈ R, depending on
n, µ,M1 and Ω, such that for Reλ ≥ ω1 and f ∈ L1(Ω) the equation

(2.6) λu−Au = f in Ω

has a unique solution u ∈ D(A1) and

(2.7) |λ|‖u‖L1(Ω) ≤ C‖f‖L1(Ω).

Proof. First of all we prove that the range of (λ−A1) contains the space of functions
L∞c (Ω) = {ψ ∈ L∞(Ω); suppψ ⊂⊂ Ω} which is dense in L1(Ω).
Indeed, let π ∈ C2(Ω) be such that

∑n
i,j=1 |Dijπ|+

∑n
i=1 |Diπ|2 ≤ c

e−π ∈ L1(Ω)∑
i βiDiπ = 0 in ∂Ω

If Ω is bounded we don’t need to consider compactly supported functions and we can simply
take π = 0. If Ω is unbounded, we require that lim|x|→∞,x∈Ω π(x) = +∞. Such a π exists,
for instance, when Ω = Rn one can choose π(x) =

√
1 + |x|2. In the general case one can

adapt the previous example modifying π near the boundary in a suitable way. Starting e.g.
from π(x) =

√
1 + |x|2 in Ωδ = {x ∈ Ω : dist(x, ∂Ω) ≤ δ}, and fixing y ∈ ∂Ω, consider the

line R 3 t → y + tβ(y). Call x the nearest point belonging to ∂Ωδ that intersects this line
(this point exists thanks to the non-tangentiality condition (1.5)) and extend the function
π on the segmnent [x, y] by assigning the constant value π(x). The final step consists in
regularizing the function obtained in this way. Once π has been constructed, let us define
Π(x) = exp[π(x)]. Then, for every function ψ ∈ L∞c (Ω), we get Πψ ∈ L∞c (Ω) and{

λu−Au = ψ ∈ L∞c (Ω)
Bu = 0 in ∂Ω

if and only if

(2.8)
{
λΠu−Aπ(Πu) = Πψ ∈ L∞c (Ω)
B(Πu) = 0 in ∂Ω

where

Aπ = A− 2
n∑

i,j=1

aijDiπDj +
n∑

i,j=1

[
Di(aijDjπ)− aijDiπDjπ

]
+

n∑
i=1

biDiπ.
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As it is easily seen, the operator Aπ satisfies the assumptions (1.2)-(1.3), therefore, by
applying Theorem 2.2 we get that there exists Πu ∈ D((Aπ)B∞) ⊆ L∞(Ω) solution of (2.8).
Hence u ∈ {v ∈ C1(Ω̄) ∩ L1(Ω); Av ∈ L1(Ω)}, then ψ is in the range of (λ − A1) and
consequently (2.6) has a solution for every f ∈ L1(Ω). Now we prove (2.7). Consider a
solution u of λu−Au = f ∈ L1(Ω) and let

A∗ =
n∑

i,j=1

Dj(aijDi)−
n∑
j=1

bjDj + (c− div b)

Then, from Theorem 2.2, it follows that A∗B
∗

∞ generates an analytic semigroup in L∞(Ω)
and so the elliptic problem

(2.9)
{
λw −A∗w = ϕ ∈ L∞(Ω)
B∗w = 0 in ∂Ω

for Re λ sufficiently large has a unique solution w ∈ D(A∗B
∗

∞ ) satisfying

|λ|‖w‖L∞(Ω) ≤ K̃‖ϕ‖L∞(Ω).

Now we can apply the method used in [14] to obtain

‖u‖L1(Ω) = sup
{∫

u(x)ϕ(x)dx; ϕ ∈ L∞c (Ω), ‖ϕ‖L∞(Ω) ≤ 1
}

≤ sup
{∫

u(x)(λ−A∗)wϕdx; wϕ ∈ L∞(Ω) solution of (2.9), ‖ϕ‖L∞(Ω) ≤ 1
}

≤ sup
{∫

wϕ(λ−A)udx; wϕ ∈ L∞(Ω) solution of (2.9), ‖ϕ‖L∞(Ω) ≤ 1
}

in particular,
‖u‖L1(Ω) ≤ K̃|λ|−1‖f‖L1(Ω).

So, (λ−A1) is an injective operator with closed range in L1(Ω) and the proof is complete.
As a consequence of the previous theorem (A1, D(A1)) generates an analytic semigroup

in L1(Ω) if we assume (2.2). The following result is a consequence of [12, Proposition 2.1.11].

Proposition 2.5. Under assumption (2.2) there exist K,ω1 ∈ R and θ1 ∈ (π/2, π) such
that

Σθ1,ω1 = {λ ∈ C; λ 6= ω1, |arg (λ− ω1)| < θ1} ⊂ ρ(A1)

and
‖R(λ,A1)‖L(L1(Ω)) ≤

K

|λ− ω1|

holds for each λ ∈ Σθ1,ω1 . Therefore (A1, D(A1)) generates an analytic semigroup in L1(Ω).

3 The generation result and gradient estimates in L1(Ω)

In this section, assuming (2.2), we prove gradient estimates for the solution of the resolvent
equation (2.1) and the semigroup solution of problem (1.6). Finally, using these estimates
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and a perturbation result, we show the generation result in L1(Ω) under the weaker as-
sumption (1.2). Following, with significant modifications, ideas from [22], [23], [13], the first
step is to get suitable estimates for the weak solution of elliptic boundary value problems in
some negative Sobolev spaces. For 1 < p ≤ ∞, we denote by p′ the conjugate exponent of p
(we set ∞′ = 1) and consider the Banach space W−1,p

∗ (Ω), defined as the dual of W 1,p′(Ω).
This space can be defined as the completion of C∞(Ω) ∩ Lp(Ω) with respect to the norm

‖u‖W−1,p
∗ (Ω) = sup

{∫
Ω

uvdx : v ∈ C∞(Ω) ∩W 1,p′(Ω), ‖v‖W 1,p′ (Ω) ≤ 1
}
.

The action of an element f ∈W−1,p
∗ (Ω) on u ∈W 1,p′(Ω) can be written as

(3.1) 〈f, u〉 =
∫

Ω

f0u dx+
n∑
i=1

∫
Ω

fiDiu dx u ∈W 1,p′(Ω)

where fi ∈ Lp(Ω), i = 0, . . . , n and f = f0 +
∑n
i=1Difi in a distributional sense.

The norm can be expressed also as follows:

‖f‖W−1,p
∗ (Ω) = inf

{
n∑
i=0

‖fi‖Lp(Ω) : f0, . . . , fn as in (3.1)

}
.

In the following lemma we prove a property of this function space that extends analogous
estimates proved in [23] for the norm of the dual space of W 1,p′

0 (Ω).

Lemma 3.1. For each p > n there exist two constants c1, c2 such that for each x0 ∈ Ω,
r > 0 and u ∈ Lp(Ω) with support in Ω ∩B(x0, r),

(3.2) ‖u‖W−1,p
∗ (Ω) ≤ c1r‖u‖Lp(Ω)

(3.3) ‖u‖W−1,∞
∗ (Ω) ≤ c2r

1−n/p‖u‖Lp(Ω)

Proof. Let ϕ ∈ W 1,p′(Ω) be such that ‖ϕ‖W 1,p′ (Ω) ≤ 1. Then by Sobolev embedding
ϕ ∈ Lq(Ω) with q = (np′)/(n− p′) and ‖ϕ‖Lq(Ω) ≤ c where c depends only on Ω. Hence

‖u‖W−1,p
∗ (Ω) = sup

{∫
Ω

uϕdx ; ϕ ∈W 1,p′(Ω), ‖ϕ‖W 1,p′ (Ω) ≤ 1
}

and, using Hölder’s inequality, the following estimate holds∫
Ω

uϕdx ≤ ‖u‖Lq′ (Ω∩B(x0,r))
‖ϕ‖Lq(Ω) ≤ c r‖u‖Lp(Ω)

and (3.2) is proved. In a similar way one can prove (3.3).

Now we consider the realization of A with homogeneous boundary condition given by B as
in (1.4) in the Banach space W−1,p

∗ , 1 < p <∞, so defined

Ep : D(Ep) ⊂W−1,p
∗ (Ω)→W−1,p

∗ (Ω)

Epu := Au u ∈ D(Ep).
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where by D(Ep) we mean the completion of the set {u ∈ W 2,p(Ω) : Bu = 0} with respect
to the topology induced by the norm ‖u‖ = ‖u‖W−1,p

∗ (Ω) + ‖Au‖W−1,p
∗ (Ω). Analogously one

could define Ep′ the realization of A∗ with homogeneous boundary conditions given by B∗

in W−1,p′

∗ . We start with two technical results involving Lp estimates that are true both for
Ep and Ep′ and that for simplicity are stated only in the first case.

Theorem 3.2. For every 1 < p <∞ the operator Ep is sectorial in W−1,p
∗ (Ω). In particular

there is a constant ωp ∈ R depending on n, µ,M1,Ω such that for each λ ∈ C with Reλ > ωp
and for each f ∈W−1,p

∗ (Ω) the solution u ∈ D(Ep) of the equation (λ−A)u = f satisfies

(3.4) |λ|‖u‖W−1,p
∗ (Ω) + |λ|1/2‖u‖Lp(Ω) + ‖u‖W 1,p(Ω) ≤ K1‖f‖W−1,p

∗ (Ω)

where K1 > 0 is a constant independent of λ and f .

Proof. Let f ∈ W−1,p
∗ (Ω). By [15, Corollary 2.2] we deduce that there is a weak

solution u ∈ Lp(Ω) of the problem

(3.5)
{
λu−Au = f in Ω
Bu = 0 in ∂Ω .

Actually more regularity for the solution u can be deduced, in fact by [16, Theorem 3.1] we
get that it belongs to W 1,p(Ω) and

‖u‖W 1,p(Ω) ≤ C‖f‖W−1,p
∗ (Ω)

for some positive constant C. Now, in order to deduce (3.4) we denote by ABp the realiza-
tion of A in Lp with homogeneous boundary conditions Bu = 0 and analogously A∗B

∗

p′ the
realization of A∗ in Lp

′
with homogeneous boundary conditions B∗u = 0. We know that

D(ABp ) = {u ∈ W 2,p(Ω) : Bu = 0 in ∂Ω}. Then for each u ∈ D(A∗B
∗

p′ ) and v ∈ Lp(Ω),
we have 〈A∗B

∗

p′ u, v〉 = 〈u, (A∗B
∗

p′ )∗v〉. Here (A∗B
∗

p′ )∗ is the adjoint of A∗B
∗

p′ and belongs
to L(Lp(Ω), (D(A∗B

∗

p′ ))′), where (D(A∗B
∗

p′ ))′ is the dual space of D(A∗B
∗

p′ ). Note that the
restriction of (A∗B

∗

p′ )∗ to D(ABp ) coincides with ABp . Therefore, from the complex interpo-
lation theory, we have that (A∗B

∗

p′ )∗ is a bounded linear operator from [Lp(Ω), D(ABp )]1/2
to [(D(A∗B

∗

p′ ))′, Lp(Ω)]1/2 where [·, ·]1/2 is the complex interpolation space of order 1/2,
(see [21] for the relevant definitions and results). Using [17, Theorem 4.1], which holds for
domains with uniformly smooth boundary, we can characterize the complex interpolation
spaces in the following way:

(3.6)
[Lp(Ω), D(ABp )]1/2 = W 1,p(Ω)

[(D(A∗B
∗

p′ ))′, Lp(Ω)]1/2 =
(
[Lp

′
(Ω), D(A∗B

∗

p′ )]1/2
)′ = (W 1,p′(Ω))′ = W−1,p

∗ (Ω)

where in the second line in (3.6) we have used that under our assumptions [X,Y ]′θ =
[Y ′, X ′]1−θ, see [21, section 1.11.3]. Therefore the restriction of (A∗B

∗

p′ )∗ to the space D(Ep)
is a bounded linear operator from D(Ep) to W−1,p

∗ (Ω) and coincides with Ep. Now, since
ABp and A∗B

∗

p′ are sectorial operators, there exist λ1, λ2 ∈ R and k1, k2 > 0 such that

(3.7) ‖(λ−ABp )−1‖L(Lp,D(AB
p )) ≤ k1 for Reλ > λ1
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and analogously

(3.8) ‖(λ−A∗B
∗

p′ )−1‖L(Lp′ ,D(A∗B∗
p′ )) ≤ k2 for Reλ > λ2.

Using (3.8) we get that

[(λ−A∗B
∗

p′ )−1]∗ = [(λ−A∗B
∗

p′ )∗]−1 ∈ L((D(A∗B
∗

p′ ))′, Lp),

hence an argument similar to the previous one yields that the operator [(λ − A∗B
∗

p′ )−1]∗

belongs to L(W−1,p
∗ (Ω), D(Ep)) and coincides with (λ− Ep)−1.

Set K = k1 + k2 and ωp > max{λ1, λ2}; then, for every λ with Reλ > ωp and for every
f ∈W−1,p

∗ (Ω) we have that ‖u‖W 1,p(Ω) ≤ K‖f‖W−1,p
∗ (Ω) where u = (λ−Ep)−1f . Then, for

every v ∈W 1,p′(Ω),
〈f, v〉 = λ〈u, v〉 − 〈Epu, v〉.

Thus

|〈u, v〉| ≤ |λ|−1 (|〈Epu, v〉|+ |〈f, v〉|)

≤ c|λ|−1
(
‖u‖W 1,p(Ω)‖v‖W 1,p′ (Ω) + ‖f‖W−1,p

∗ (Ω)‖v‖W 1,p′ (Ω)

)
≤ c|λ|−1

(
‖f‖W−1,p

∗ (Ω)‖v‖W 1,p′ (Ω)

)
where we have used that ‖Epu‖W−1,p

∗ (Ω) ≤ c‖u‖W 1,p(Ω) since (A∗B
∗

p′ )∗ is a bounded linear

operator from W 1,p(Ω) to W−1,p
∗ (Ω) and its restriction to D(Ep) coincides with Ep.

Hence we have proved that

(3.9) |λ|‖u‖W−1,p
∗ (Ω) + ‖u‖W 1,p(Ω) ≤ c‖f‖W−1,p

∗ (Ω).

Therefore, (3.4) is consequence of (3.9), of the equality

(W−1,p(Ω),W 1,p(Ω))1/2,p = Lp(Ω)

for 1 < p <∞ where W−1,p(Ω) is the dual space of W 1,p′

0 (Ω) (see [21, Section 2.4.2, Theorem
1; Section 4.2.1, Definition 1]) and of the continuous embedding W−1,p

∗ (Ω) ↪→W−1,p(Ω).

Lemma 3.3. Let p > n and f ∈W−1,p
∗ (Ω) with fi ∈ Lp(Ω) as in (3.1); then for each λ ∈ C

with Reλ > ωp, for each x0 ∈ Ω and for each r > 0, the solution u ∈ D(Ep) of the equation
λu−Au = f satisfies the following estimate

(3.10) ‖u‖W 1,p(Br) ≤ K2

( n∑
i=0

‖fi‖Lp(B2r) + r−1‖u‖Lp(B2r)

)
where we have set B% = B(x0, %) ∩ Ω and K2 is a constant independent of λ and f .

Proof. For x0 ∈ Ω and r < 1 we consider θ ∈ C2(Rn) with θ(x) = 1 for |x − x0| ≤ r,
θ(x) = 0 for |x−x0| ≥ 2r, |Dθ| ≤ cr−1, |D2θ| ≤ cr−2 and

∑
i βiDiθ = 0 on ∂Ω. In this way

the function w := θu satisfies the problem

(3.11)
{
λw −Aw = g
Bw = 0 in ∂Ω

9



where

g = θf −
n∑

i,j=1

u[DiaijDjθ + aijDijθ]− u
n∑
i=1

biDiθ − 2
n∑

i,j=1

aijDjuDiθ.(3.12)

By Theorem 3.2 applied to the function θu, we get

‖u‖W 1,p(Br) ≤‖θu‖W 1,p(B2r) ≤ K1‖g‖W−1,p
∗ (B2r)

≤K1

[ n∑
i=0

‖fi‖Lp(B2r) + r−1
( n∑
i,j=1

‖aij‖W 1,∞ +
n∑
i=1

‖bi‖L∞
)
‖u‖Lp(B2r)

+
n∑

i,j=1

‖aijDjuDiθ‖W−1,p
∗ (B2r) +

n∑
i,j=1

‖uaijDijθ‖W−1,p
∗ (B2r)

]
.

By Lemma 3.1, we get

‖aijDjuDiθ‖W−1,p
∗ (B2r) ≤ cr‖aijDjuDiθ‖Lp(B2r)(3.13)

≤ c‖aij‖∞‖Du‖Lp(B2r) ≤ c‖aij‖∞
n∑
i=0

‖fi‖Lp(B2r),

(3.14) ‖uaijDijθ‖W−1,p
∗ (B2r) ≤ cr‖uaijDijθ‖Lp(B2r) ≤ cr−1‖aij‖∞‖u‖Lp(B2r),

where c depends on n, p,Ω and may change from a line to the other. Summing up we find

‖θu‖W 1,p(B2r) ≤ K2

( n∑
i=0

‖fi‖Lp(B2r) + r−1‖u‖Lp(B2r))

)
.

Since θu = u on Br we get the statement.

The following estimate is proved by using a modification of Stewart’s technique (see [18],
[19]). It will be useful in order to obtain the estimate of the gradient of the solution of (2.6)
in L1(Ω).

Theorem 3.4. Let p > n, f ∈ W−1,∞
∗ (Ω) ∩W−1,p

∗ (Ω); then, there exists ω∞ > ωp such
that for every λ ∈ C with Reλ > ω∞ the solution u ∈ D(Ep) of λu − Au = f belongs to
W 1,p(Ω) and satisfies

(3.15) |λ|1/2‖u‖L∞(Ω) ≤ K3‖f‖W−1,∞
∗ (Ω),

where K3 is a constant independent of λ, u and f .

Proof. Let x0 ∈ Ω, r > 0 to be fixed later, and let θ be a cut-off function as that
considered in proof of Lemma 3.3: θ ∈ C2(Rn), θ(x) = 1 on B(x0, r) ∩ Ω, θ(x) = 0 outside
B(x0, 2r),

∑
i βiDiθ = 0 on ∂Ω and with ‖Dαθ‖L∞(Ω) ≤ cr−|α| for each |α| ≤ 2. As f

belongs to W−1,∞
∗ (Ω), it admits a distributional representation as in (3.1), with fi ∈ L∞(Ω)

for each i = 0, 1, . . . , n and

(3.16) ‖f‖W−1,∞
∗ (Ω) ≤

n∑
i=0

‖fi‖L∞(Ω) ≤ 2‖f‖W−1,∞
∗ (Ω).
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Note that u ∈ W 1,p(Ω) for p > n by Theorem 3.2, therefore w = θu ∈ W 1,p(Ω) ∩ D(Ep)
and solves

λw −Aw = g,

where g is defined in (3.12). By (3.13) and (3.14) we get (we confine to considering r ≤ 1
and set B% = B(x0, %) ∩ Ω)

‖g‖W−1,p
∗ (Ω) ≤ K4

{
n∑
i=0

‖fi‖Lp(B4r) + r−1‖u‖Lp(B4r)

}
(3.17)

≤ K5r
n/p

{
n∑
i=0

‖fi‖L∞(Ω) + r−1‖u‖L∞(Ω)

}
,

where K4 and K5 are constants independent of r, λ, f and u. Since

W 1,p(B2r) ↪→ C0(B2r) ↪→ Lp(B2r)

for p > n and the first injection is compact, then for each ε > 0 we get

(3.18) ‖θu‖L∞(Ω) ≤ εr1−n/p‖θu‖W 1,p(Ω) + c(ε)r−n/p‖θu‖Lp(Ω),

where c(ε) is independent of r, λ, u and f (see Lemma 5.1 of [11]). Moreover, (3.3) and the
Hölder inequality imply

(3.19) ‖θu‖W−1,∞
∗ (B2r) ≤ c2r

1−n/p‖θu‖Lp(B2r) ≤ c2r‖θu‖L∞(Ω).

Therefore, from (3.18) and (3.19) we get

(3.20) r−2‖θu‖W−1,∞
∗ (Ω) + r−1‖θu‖L∞(Ω) ≤ εr−n/p‖θu‖W 1,p(Ω) + c(ε)r−1−n/p‖θu‖Lp(Ω).

On the other hand, from Theorem 3.2

(3.21) |λ|‖θu‖W−1,p
∗ (Ω) + |λ|1/2‖θu‖Lp(Ω) + ‖θu‖W 1,p(Ω) ≤ K1‖g‖W−1,p

∗ (Ω).

Therefore, by (3.20), (3.21) and (3.17) we deduce

r−2‖θu‖W−1,∞
∗ (Ω) + r−1‖θu‖L∞(Ω)

≤ K1K5

(
ε+ c(ε)r−1|λ|−1/2

)(
r−1‖u‖L∞(Ω) +

n∑
i=0

‖fi‖L∞(Ω)

)
.

Set K6 = 4K1K5 and choose ω∞ ≥ ωp and ε = K−1
6 , r = K6c(K−1

6 )|λ|−1/2 = K7|λ|−1/2.
Then, if x0 is a maximum point for the function |u| (which exists because u ∈W 1,p(Ω) with
p > n implies that u is continuous and vanishes at infinity by the Sobolev embedding if Ω
is unbounded) using (3.16) we obtain

K−2
7 |λ|‖θu‖W−1,∞

∗ (Ω) +
1
2
K−1

7 |λ|1/2‖u‖L∞(Ω) ≤
1
2

n∑
i=0

‖fi‖L∞(Ω) ≤ ‖f‖W−1,∞
∗ (Ω).

Thus (3.15) is proved.

11



Theorem 3.5. Under the assumptions of Theorem 2.4, there exist ω′1 ≥ ω1, depending on
n, µ,M1 and Ω such that for every λ with Reλ > ω′1 the solution u ∈ D(A1) of equation
(2.6) satisfies

|λ|1/2‖Du‖L1(Ω) ≤ K3‖f‖L1(Ω),

where K3 is the constant in Theorem 3.4.

Proof. Let φ = divψ ∈ W−1,∞
∗ (Ω) ∩ W−1,p

∗ (Ω) for some p > n as the datum f in
Theorem 3.4. By the estimate (3.15) we know that for λ with Reλ > ω∞, the solution of
the following problem

(3.22)
{
λv −A∗v = φ
B∗v = 0 on ∂Ω

satisfies

(3.23) |λ|1/2‖v‖L∞(Ω) ≤ K3‖φ‖W−1,∞
∗ (Ω).

We notice that

‖φ‖W−1,∞
∗

= ‖divψ‖W−1,∞
∗

= sup{〈divψ,ϕ〉 : ϕ ∈W 1,1(Ω), ‖ϕ‖W 1,1(Ω) ≤ 1} ≤ ‖ψ‖L∞ .

Now, if u ∈ D(A1) is the solution of (2.6), we get

‖Du‖L1(Ω) = sup
{∫

Ω

〈Du(x), ψ(x)〉dx : ψ ∈ C∞c (Ω; Rn), ‖ψ‖L∞(Ω) ≤ 1
}

= sup
{∫

Ω

u(x) divψ(x)dx : ψ ∈ C∞c (Ω; Rn), ‖ψ‖L∞(Ω) ≤ 1
}

≤ sup
{∫

Ω

u(x) divψ(x)dx : ψ ∈ C∞c (Ω; Rn), ‖divψ‖W−1,∞
∗ (Ω) ≤ 1

}
= sup

{∫
Ω

u (λ−A∗) vψ dx : vψ solution of (3.22), ‖divψ‖W−1,∞
∗ (Ω) ≤ 1

}
= sup

{∫
Ω

[(λ−A)u] vψ dx : vψ solution of (3.22), ‖divψ‖W−1,∞
∗ (Ω) ≤ 1

}
≤ sup

{
‖f‖L1(Ω)‖vψ‖L∞(Ω) : vψ solution of (3.22), ‖divψ‖W−1,∞

∗ (Ω) ≤ 1
}
.(3.24)

Now, taking into account (3.23), we get

‖Du‖L1(Ω) ≤ K3|λ|−1/2‖f‖L1(Ω),

for Reλ > max{ω1, ω∞}.

Theorem 3.6. Under the hypotheses (1.2), the operator (A1, D(A1)) generates an analytic
semigroup in L1(Ω).

Proof. Suppose ω1 = 0, otherwise consider A1 − ω1. Assume first that bi = 0, so that
(2.2) holds. Consider the first order perturbation C =

∑n
i=1 biDi with bi ∈ L∞(Ω). Let

C1 be the realization of C in L1(Ω) with domain D(C1) = W 1,1(Ω). The operator C1 is
A1-bounded with A1 bound 0 (we refer to [8, Chapter III] for the relevant definitions), i.e.,
for every ε > 0 there exists c(ε) > 0 such that

‖C1u‖L1(Ω) ≤ ε‖A1u‖L1(Ω) + c(ε)‖u‖L1(Ω)
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holds for every u ∈ D(A1). Indeed let u ∈ D(A1), then u = R(λ,A1)f for every λ ∈ C with
Re λ > 0 and f ∈ L1(Ω). Thus, for λ > 0 and using Theorem 3.5, we get

‖DR(λ,A1)f‖L1(Ω) ≤ c
1√
λ
‖f‖L1(Ω) = c

1√
λ
‖λu−A1u‖L1(Ω)

≤ c
[√

λ‖u‖L1(Ω) +
1√
λ
‖A1u‖L1(Ω)

]
.

This implies that D(A1) ↪→ W 1,1(Ω). By minimizing over λ > 0, we get ‖Du‖L1(Ω) ≤
c‖u‖1/2L1(Ω)‖A1u‖1/2L1(Ω) from which we derive

(3.25) ‖Du‖L1(Ω) ≤ ε‖A1u‖L1(Ω) +
c

ε
‖u‖L1(Ω)

and by [8, Theorem III.2.10] we conclude. Moreover from the classical theory of semigroups,
there exist ci = ci(Ω, µ,M1), i = 0, 1 such that

(3.26) ‖T (t)‖L(L1(Ω)) ≤ c0, and t‖A1T (t)‖L(L1(Ω)) ≤ c1, t > 0.

In the general case estimates (3.26) become

(3.27) ‖T (t)‖L(L1(Ω)) ≤ c0eω1t, and t‖A1T (t)‖L(L1(Ω)) ≤ c1eω1t, t > 0.

Finally, since D(A1) is dense in L1(Ω) by construction, T (t) is strongly continuous in L1(Ω).

The following estimate for the gradient of the semigroup follows by a standard argument,
we present the proof for completeness.

Proposition 3.7. Let T (t) be the semigroup generated by (A1, D(A1)) and assume (1.2).
Then, there exists c2 depending on Ω, µ,M1 such that for t > 0,

(3.28) t1/2‖DT (t)‖L(L1(Ω)) ≤ c2eω1t.

Proof. Suppose first ω1 = 0, and let S(t) be the semigroup generated by Ã1 = A1−C1

in L1(Ω) where C =
∑n
i=1 biDi. Using (3.25) with S(t)u in place of u and ε =

√
t, and

(3.26), we get

‖DS(t)u‖L1(Ω) ≤
√
t‖Ã1S(t)u‖L1(Ω) +

c√
t
‖S(t)u‖L1(Ω) ≤

c2√
t
‖u‖L1(Ω)

for every u ∈ L1(Ω). Now, let T (t) be the semigroup generated by A1 in L1(Ω) and take
u ∈ L1(Ω). For every ε > 0, set uε = T (ε)u ∈W 1,1(Ω), so that

T (t)uε = S(t)uε +
∫ t

ε

S(t− s)C1T (s)uεds.

Therefore, we may differentiate under the integral sign and get

DT (t)uε = DS(t)uε +
∫ t

ε

DS(t− s)C1T (s)uεds,
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whence

‖DT (t)uε‖L1(Ω) ≤
(
c2√
t
‖uε‖L1(Ω) + ‖b‖L∞(Ω)

∫ t

ε

1√
t− s

‖DT (s)uε‖L1(Ω)ds

)
.

By using Gronwall’s generalized inequality (see for instance [10, Lemma 7.1.1]) we deduce

‖DT (t)uε‖L1(Ω) ≤ c
1√
t
‖uε‖L1(Ω)

and then

‖DT (t)u‖L1(Ω) ≤ lim inf
ε→0

‖DT (t)uε‖L1(Ω) ≤ lim inf
ε→0

c
1√
t
‖uε‖L1(Ω) = c

1√
t
‖u‖L1(Ω).

Finally, if ω1 6= 0 (3.28) follows by applying estimates (3.27) instead of (3.26).
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