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1. INTRODUCTION

We consider a map u : R® — R™ | n,m > 1 solution to a nonlinear system of partial differential
equations, or minimizer of a functional of the calculus of variations. It is well known that either the
global or the local boundedness of u cannot be obtained through truncation methods. This is due
to the lack of the maximum principle for general systems. Nevertheless in this paper we present a
method for local boundedness of « without assuming any condition on the boundary datum.

More precisely, we consider a minimizer u :  C R" — R™ u € WHL(Q;R™), withn > 2, m > 1,
of the integral

I(v):/Qf(a:,Dv)dx (1.1)

(the framework is similar for a solution to a nonlinear system in divergence form). We assume that
the integrand f = f(z,§), x € Q C R™, £ € R™*"  is a measurable function with respect to z,
convex and of class C'' with respect to ¢ and satisfying the following anisotropic behaviour: for

some exponents p; ,i =1,...,n, and ¢ with 1 < p; <g¢
n n
STl < f(a,6) < c{l +> W} (1.2)
=1 =1
for a.e. z € Q and every £ € R™*™ and for a constant ¢ > 0. Here &, ¢ = 1,...,n, is the i-column
of the m x n matrix { = (§%),i=1,...,n,a=1,...,m; ie.,
g4 g
&§ & .. &
§=(&8- &)= . . . .
&' & - &
In particular, when & = Du, then & = (uglcl, . ,uZZL_)T.

The following result is a particular case of Theorem 2.1, proved in the next sections.
Theorem 1.1. Let f = f (x,§) satisfy (1.2) and the conditions
f(@,8) = F(x, |&l, - [&l, - [€al), (1.3)
flx, X)) < M f(x,€),  for some p > 1 and for every X > 1. (1.4)
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If ¢ < p*, where p* is the Sobolev exponent of p (p is the harmonic average of {p;}, i.e. % =
%Z?:l ]%), then every local minimizer u of (1.1) is locally bounded. Morover, for every ball B, (z)

compactly contained in €, there exists C > 0, depending on the data, such that

146
P

(o)

P*(q—p)
p(P*—q)

where u, denotes the average of u in the ball B.(x¢) and 6 =

Notice that, by the examples in Giaquinta [13] and Marcellini [16], the condition ¢ < p* is nearly
optimal, since the boundedness of minimizers may fail if ¢ > p*. Actually the regularity result is
proved under some more general assumptions on f, see Theorem 2.1. In particular, the convexity
with respect to £ and the structure assumptions (1.3),(1.4) are assumed only at infinity, i.e. for
€] > to.

This context of non-standard growth have been intensely investigated in recent years and it is
quite impossible to give an exhaustive and comprehensive list of references; see e.g. Boccardo-
Marcellini-Sbordone [5], Fusco-Sbordone [12], Marcellini [17] and [18], Marcellini-Papi [19] and see
also Mingione [21] for an overview on the subject and a detailed bibliography. Anisotropic elliptic
equations have been considered under many different aspects, for instance with respect to the
maximum principle and to the multiplicity of solutions; see e.g. P. Pucci, V. Radulescu et al. [6],
[11] and [20].

In the vector-valued case, as suggested by well known counterexamples by de Giorgi [10], Giusti-
Miranda [14] Necas [22], Sverak-Yan [24], generally some structure conditions on the integrand,
more specific than (1.3), are required for everywhere regularity. A boundedness result in the
vectorial framework is proved by Dall’Aglio-Mascolo [9], assuming f(x, Du) = g(x, |Dul|). Recently
in [8] the authors studied the boundedness of solutions for a class of quasilinear systems, which - in
the variational case - may correspond to integrals as in (1.1) with a more restrictive growth than
n (1.2). Other related results in the p, ¢ case are in [8] and in Leonetti-Mascolo [15].

The main novelties of our Theorem 1.1 are the new form of the structure condition (1.3) and the
anisotropic behaviour of the integrand (1.2). The main ingredients of the proof are the derivation
of the Euler’s equation and the Moser’s iteration technique. This completes the study in [7] given
for the scalar case m = 1. However we point out that the proof here in the vectorial case cannot be
regarded as simple generalization of the scalar case, also for the lack of convexity near the origin.
Moreover our analysis allows us to consider, as an assumption, only the asymptotic behaviour at
infinity (|{] — +o00) of f(z,£). In this context we quote Scheven-Schmidt [23].

It is worth to point out that in some recent paper by Bildhauer, Fuchs et al. (see [2],[3],[4])
regularity results are proved by assuming a-priori the local boundedness of minimizers, obtaining,
for instance, the higher integrability of the gradient of w for the so called splitting variational
integrals

f(Du) = (1+ [Dul’)? + (1 + |ug, [*)?

where Du = (Ugyyeeny Uz, 1), 1 <D <gq.

The paper is organized as follows. In the next section we state the regularity results. In Section 3
we prove some preliminary properties, mainly consequence of the convexity and of the Ay condition
and some higher integrability results. Section 4 is devoted to the proof of the Euler system, which
is a main step in the proof of Theorem 2.1, given in the last section.
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2. ASSUMPTIONS AND STATEMENT OF THE MAIN RESULTS

Let us define the integral functional
Flu) = / (@, Du(z)) dz, (2.1)
Q

where (2 is an open bounded subset of R”, n > 2, and u € WH1(Q;R™), m € N.

We denote Ry the set [0, +00), By(xp) the ball in R centered at xo with radius r and By the
ball in R™" of radius ¢ centered at the origin.
We need some notations. From now on, i,j € {1,...,n} and o, € {1,....,m}. If £ € R™ we
write & = (&1,...,&), where & = (&,...,&™)T € R™. In particular, Du = (ugy, ..., uz, )’ and

! T i’
Uz, = (Ugy s ooy Ut )"

We assume that f : Q x R™ — R, is a Carathéodory function, of class C' with respect to
& € R™" and that there exists tg > 0 such that
(H1) f(z,8) = f**(x,&) if |€] > to, where f**(x,-) is the greatest convex function lower than
f(x7 ')7
(H2) there exists F': Q x (R4)™ — Ry such that f(z,§) = F(x, |&], ..., [&ls -, [En]) i [€] > to,
(H3) there exists p > 1 such that f(xz, ) < M f(z,£) for every A > 1 and for a.e. x and

every |£| > to,
(H4) supje|<y, ‘%(-,5)‘ € L2 () for every i and c.

Moreover, a growth condition on f is assumed:

HS5) there exist k1,ko >0and 1 <p; <gq,7=1,...,n, such that
p q

—k1 + Z €77 < f(x,&) < ko {1 + Z |§i|q} for a.e. x and every £ € R, (2.2)

=1 i=1

We define
WhH (G R™) := {u € WHHQLR™) @ F(u) < 400}
and we denote Wol’f(Q;Rm) the space Wol’l(Q;]Rm) N WL (Q;R™).
A function u is a local minimizer of (2.1) if u € WU/ (Q;R™) and F(u) < F(u + ), for all
© € WhI(Q;R™) with supp ¢ € Q.

To prove the local boundedness of local minimizers of (2.1) we need a restriction on the exponents

{pi} and q1 Le‘f P dencite min{p;} and, as in the introduction, let p be the harmonic average of
n

pi}, e, =:==>"" . - and p* be the Sobolev exponent of p, i.e.
p n £<i=1 p;
Lﬁ -
e e (2.3)
any p>p if p>n.
Our main theorem is the following.

Theorem 2.1. Assume (H1)-(H5) and let ¢ < p*. Then a local minimizer u of (2.1) is locally
bounded. Moreover, for every B,.(xo) € § the following estimates hold true:

(1) there exists ¢ > 0, depending on the data, such that

1+6
q

[elloe (B, 5(20)) < 0{1 +/ juffde (2.4)
BT(IO)
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(2) there exists ¢ > 0, depending on the data, such that

1+6
P

lu = urllLoo(m, ) m (w0)) < € {1 + /B f(z, Du) dﬂ?} : (2.5)

_ p*(a=p) 1
where 0 = bo—g) @d up = g fBr(:co) udzx.

(T0)

3. PRELIMINARY RESULTS

Trivial consequences of (H1), (H2) and (H5) are the following properties (that hold true possibly
with a larger ¢o):

r— f(z,7€) is increasing in (1, +00) for every |{| = to, (3.1)

F(z, |1,y 1&l, -y [€n])  1s increasing w.r.t. each variable |§;| when |£] > to, (3.2)

and f(z,£) > 0 for all £ with || > to.
The following elementary lemma, whose proof is trivial, holds true.

Lemma 3.1. Consider h : Ry — R, of class C'. Suppose that there exist to > 0 and v > 0 such
that

h(At) < X7h(t) for all A > 1 and t > ty. (3.3)
Then
B ()t <~vh(t)  forallt>t. (3.4)

If f is as in the previous section, then W1/ (Q;R™) is a vector space; this is a consequence of
the following lemma.

Lemma 3.2. By (H1), (H3) and (H5) we have that
(i) f(z,AE) <max{1, '} {rk+ f(z,&)} for every A > 0 and every & € R™",
(i) f(z,&+n) <2072k + f(,€) + f(a,n)} for every &n € R™
with k = ko {1+ ntl}.
Proof. Let us prove (i). If £ € R™ and |A{| < to then (2.2) gives f(z, A¢) < k and the conclusion
follows.

Assume |\| > to. We separately consider the case A > 1 and A < 1.
Let A > 1. If |¢] < o then (3.1), (H3) and (2.2) imply

F26) < f(a?,Atoé) < A"f(:c,to‘;) < s,
If instead |£| > to then (H3) implies f(z, A&) < M f(x,§).
Let us consider A < 1. By |X¢]| > tg and (3.1), we get f(x,\§) < f(z,€) and the conclusion
follows.
Let us prove (ii).
If € +n| < to then f(z,{+n) <k by (2.2).
Suppose |€ + 1| > ty. Then

Pl €)= (6 ) < 3 (£ @,20) 4 1 (. 20)] < 5 (£, 26) + (. 20)]
By (i) f(z,28) + f(z,2n) < 2* {2k + f(z,&) + f(x,n)} and we conclude. O

By Lemma 3.2 it easily follows that W1/ (Q;R™) is a vector space.
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Consider now the anisotropic Sobolev space
WhELP) (Q:R™) = {u € WH(Q;R™) g, € LPH(Q;R™), forall i =1,...,n}

endowed with the norm

i=1

Sometimes, when no misunderstanding may arise, we will not indicate the target space R™. Denote

Wol’(pl""’p")(Q; R™) in place of WOI’I(Q; R™) N WL PLPa) (Q: R™). These spaces are studied in [25],

see also [1]. We remind an embedding theorem for this class of spaces (see [25]).

Theorem 3.3. Let Q C R™ be a bounded open set and consider u € Wol’(pl""’p")(Q;Rm), p; > 1
foralli=1,...,n. Let max{p;} <P*, with p* as in (2.3). Then u € LP (Q;R™). Moreover, there
exists ¢ depending on n,pi,...,Pn if D <mn, and also on Q if p > n, such that

n

||u||2§*(Q;IRm) < CH HuziHLPi(Q;Rm)-

i=1
The following embedding result is proved in [1].

Theorem 3.4. Let Q C R™ be a cube with edges parallel to the coordinate axes and consider
u € WhPLpn) (Q;R™), p; > 1 for alli = 1,...,n. Let max{p;} < B*, with p* as in (2.3). Then
u € L7 (Q;R™). Moreover, there exists ¢ depending on n,py,...,pn if p < n, and also on Q if
D > n, such that

[ull (@) < € {HUHLl(Q) + IIUIiIILm(Q)} :
i=1

A consequence of the above result is the following corollary.

Corollary 3.5. Assume (H5), with ¢ <7*. If u € W' (Q:R™), then |u| € LT (;R™).

loc

4. THE EULER’S EQUATION

In this section we prove the Euler’s equation, our starting point of the proof of Theorem 2.1.
Theorem 4.1. Assume (H1)-(H3) and (H5) and let u be a local minimizer of (2.1). Then

/szagia(ffaDU) (¢*)e; da =0

i=1 a=1
for all o € WHI(Q;R™), supp ¢ € Q.
Proof. Let ¢ € WHI(Q;R™), supp ¢ € Q. We aim to prove that

d

d
= ; @f@, Du(x) +tDy(x)) dx.

t=0 t=0

To prove this, we need to prove that

1> fealw, Du+tDe)pl | < H(z)  Vte(-1,1) (4.1)

i=1 a=1
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with H € L1(Q). By the convexity,

n m

P €0) = £ (@, 260 - ©) < 30 S (e (@, 60) (€ — (60)7) < F77(w,€) — £ (2, &0).

i=1 a=1

If & = Du(z) + tDy(x), £ = Du(x) + (1 +t)Dp(z), we have 2§y — & = Du(x) + (t — 1)Dp(x) and

f* (2, Du+tDp) = f**(z, Du+ (t = 1)Dg) < D > (f*)eo(, Du+ D)5,

=1 a=1

< f(z,Du+ (1+t)Dy) — f*(x, Du+ tDy).

Therefore, since f** is non-negative,

YD (£ e (@, Du+tD@)gs, | < f** (2, Du+ (14 1)Dp) + [** (2, Du + (t — 1) Dy).

i=1 a=1

Using again the convexity we get

™ (x, Du+ (14 t)Dyp) tf*(x, Du+2Dy) + (1 —t)f*(x, Du+ Do)

[ (z, Du+2Dy) + f*(z, Du+ Do)
and

S (@, Du+(t —1)De) tf*(z, Du) + (1 = 1) f* (2, Du— Dy)

<

Lemma 3.2 obviously holds true also with f replaced by f**, therefore
J7(x, Du— Do) < f*(x, Du) + f*(x, D).

If [Dp(z)| < to then f**(x,—Dp(z)) < k (see Lemma 3.2 for the definition of k); if instead
|Dp()| > to then f*(x, —Do(x)) = f**(z, Dp(x)) by (H2).
Thus, the above inequalities, (H1), (H2), (H5), and Lemma 3.2 imply

YN (F™)ex (@, Du+ D) | < e(n, ko, q, poto) (1+ f**(x, Du) + f** (2, D)) =: ha(x)

i=1 a=1

with hy € LY(Q) since f** < f and u, o € WhI (Q; R™).
Now, if x € {[Du +tDyp| > to} then by (H1) feo(z, Du+tDy) = (f**)ea(x, Du + tDy) and if
x € {|Du+tDyp| <t}

NS fee(, Du+ D)2 | < ST

i=1 a=1 i=1 a=1

sup [ fee (2,6)] - o, | = ha(z)
geBto

with hy € LY(Q) since ¢ € WHL(Q), supp ¢ € Q and (H4) holds. We have so proved that (4.1)
holds true with H = hy + ho. O

5. PROOF OF THE BOUNDEDNESS OF LOCAL MINIMIZERS

In the following we define a class of suitable test functions for the Euler’s equation (4.1).
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Let us approximate the identity function id : R, — R, with an increasing sequence of C*
functions hy : Ry — Ry, with the following properties:

1
9 E]a
Fixed k,7 € N, ¢ < n, and v > 0, let @,(5’7) : Ry — R4 be the increasing function defined as
follows

hi(t)=0 Vte|0 he(t) =k Vtelk+1,+o0], 0 < hy(t) <2 inR;. (5.1)

O (1) i= hy(£77). (5.2)
The following lemma holds.

Lemma 5.1. Assume (H1)-(H3) and (H5), with ¢ < 7*. Let u € W (Q), fir a ball Br(xo) € Q
and let n € C°(Bgr(xo)) be a cut-off function, satisfying the following assumptions

0<n<1, n=1in B,(xg) for some p <R, |Dn| <

— (5.3)

Fized k € N and v > 0, define ¢, : Br(xzo) = R™,

or(z) = @217)(\u(x)\)u($)[77(x)]5 for every x € Br(xo), (5.4)
with § > 1. Then ¢y, is in WhI (Bg(zo)), supp ¢ € Bgr(xo).

Proof. From now on, we omit the dependence of ®; on i and v, i.e. ®f = CIJI(;"Y). We have that @,
is in C*(R, ), bounded and with bounded derivative. Precisely, define a; and by, positive, such that
ayl = % and b)"" =k + 1. In particular,
0 ifseR ag, b o Y
() = { pivh)(sPiT)sPiTL ifs € [a:,ék[] o o 1R ey < 2py max{al? T BRTT < oo,
(5.5)
As a consequence, taking into account that u € W11(Q; R™) we have that @ (Ju|)u is in W1(Q;R™)
which implies that o (z) € WH(Q; R™), too.
By Lemma 3.2 (i) we conclude if we prove that

o / 5 / U(x) 5
A= [ i (mkuub ) 1o W () 1 ) ) dr < 400

B = /BR 7 (. @eju) Dun’) de < +oo

Ci=|[ f (:c,@k(!w)wn‘s’lnm, -.-,<I>k(|u!)u5n5’1nxn) dz < +00.
Br

Of course, by (H5) fBRﬁ{IuIeZ[ak,bk]} f(z,0)dz < ka| Bp| < +o00.
First we estimate A. By Lemma 3.2 (i) we get

a< | e {1 0o} { ot 1 (s 2 ) )
Brn{ar<ul<by} |ul |ul

u

< [l Ll ceeey T .
< max {1, ||(Dk?”L°°(]R+)} /BRm{ak<|u|<bk} {K/ + f <SU, ’u| <U; Ux1>7 9 ’u| <U, an>> } dﬂf

Now, denoting v(z) = (ﬁg;‘ (Uy Uy )y oeee,s %(u, uz,)) and using (H2)

u

u
f <x, Uy Ugy Yy oeeey — (U, umn>> dx
Tty (2 gt
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< / f (x,u<u,uwl),....,u(u,uzn)> dx
Brn{ax<ul<bp}n{|v|<to} || |ul

+/ F (2, |, 1)y ooy [ (0 100, )]) d
Brnf{ax<lul<by}n{jo|>to}

The first integral is obviously bounded by the continuity of f; as far as the second one is concerned
we use the monotonicity property on F, see (3.2), (H2) and Lemma 3.2 (i) obtaining

/ F (2, |, 1) s oo (1 100, )])
Brnfar<lul<bo}n{o]>to}

<

/ F (2, by, |, oo bt ) dee
BRﬁ{ak<|u|<bk}ﬁ{\v\>to}

< / [ (x,bpDu) do < max{l,b’,:}/ {k+ f(z,Du)} dx
BrO{lv[>to} Br

and this integral is bounded by the assumption v € Wh/.
To prove that B is bounded we use Lemma 3.2 (i) obtaining

/BR 7 (. @4((ul) o’ Du) de < /BR max{1, [@c(lul)n’}"} {x + f(z, Du)} da

<i [ {nt fla Du)} do
Br

and the last integral is finite.
Let us consider C. Using Lemma 3.2 (i) once more,

|1 (e ullal) 0t~ ey ), ) d
R

S maX{l, [ké]#} (/i + f (:1;7 unxla “eey Unxn)) d.fC
Br

Now, by (H5) and (H2)

f (@, uney, oy une,, ) de < k[ BrO{ful-|Dn| < to}!+/ F (@ [ul[ng]; oo [ul[ne, |) de.

Br Br{|ul-|Dn|>to}

The last integral can be majorized, using (5.3) and (3.2), as follows:

2|ul 2|u|
F ol ol ) de < [ | ) d.

/BRO{Iu~|Dn>to} BrN{|u|-|Dn|>to} R—p R—p

Therefore, by (H2), Lemma 3.2 (i) and (H5) we get

2 2 92 I
/ F <x, |ul v |ul ) dr < rnax{l, <) }/ (k + ko{n|u|? +1}) dz,
BrO{lul| Dnl>to} R—p " R-p R—p By

which is finite by Corollary 3.5 since ¢ < p*. O

Now, we turn to the proof of our main result.

Proof of Theorem 2.1. Let u be a local minimizer of (2.1) and consider zy € 2 and Ry > 0, such
that Br, := Br,(20) € Q. In particular, by Corollary 3.5 |u| € LP" (Bg,). Fixalso0 < p < R < Ry.
We split the proof into steps.
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Step 1. Assume that |u| € LIOTD(Bg) for some v > 0. Fixed i € {1,...,n} we prove the
following estimate

C
Ug, [P up”n“dxg/ ul? + 1)|ulP da 5.6
s gy [, (D (5.6

for some ¢ depending on n, u, p, q, k1, ka2, to and Ry, but independent of 4, v, u, R and p. The
function 7 is a cut-off function satisfying (5.3),

Let us consider the Euler’s equation (4.1) with test function
o (@) = 2 (Ju() yu()

with <I>,(f’7) as in (5.2), k € N. From now on, we write ¢, and ®; in place of 4,0,(;’7) and <I),(:’7),
respectively. We obtain

uﬁ
(@, Du) ug; ®x(|ul) n* dz + (x, Du u? @ (Jul) n* d
9 Y S SRVIEE NI RTED b Dl A ST AR IIY

j=la=1 j=1qa,B=1

<u ZZ/ 8{0‘ (z, Du) ®p(u|) u® nwj dx

j=1la=1

that implies

I + 1 —ZZ/ (%O‘xDuu Dy (|u|) nt dx

j=1a=1
0 B
/ 8§f (z, Du) u® |u—|u ) (Ju]) n* dz
j= laﬁ 1 BrN{|Du|>to} u
(5.7)
ZZ/ e o D) ),
j=la=1
B
QU
Z Z / 8§f (x, Du) u® Tl ugj O (|u)) n* dz| =: I3 + I4.
j=1a,f=1 Brn{|Du|<to}
Now, we separately estimate I,...,14.
ESTIMATE OF I
To estimate I; we separately consider the case {|Du| < ¢y} and {|Du| > to}. Precisely,
of
L= / 9 (5, Duyus. @y (Jul) n* da
jzlazl Brn{|Dul<to} O
(5.8)
+ZZ/ ];({L‘ Du) ug, @y (|ul) n** dz =: Il + I3
o =1 Brn{IDul>te) O

Of course,

> —1// | Du| @ (|u]) n* dz > —tou/ D (|u|) dx
BrN{|Du|<to} BrM{|Du|<to}

with v = Z] 1 Za 1 Haga (x7§)||L°°(BR,O><BtO)'
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As far as I? is concerned, we use that f(z,-) is convex in any radial direction outside the ball
centered at 0 and radius tg, see (H1). Thus,

toug,
11>ZZ/ f(acD>|0 ot Bl da

o & Brn{IDul> 10} 9EF (5.9)

Du
+/ f(x, Du) <I)k(|u])n”da:—/ f <.’L‘, t0> D (|ul) n* da.
BrO{|Dul>to} BrO{|Dul>to} | Dul

The first integral in the right hand side is non-negative since ).

L (2, Du)u ug, is equal to

Jrex 35’”
g—g(m‘, Du)|Du| with ¢ = |D > and this last quantity is non-negative by (3.1).
By (2.2) we can majorize the last integral in (5.9) taking into account that

£l 2 <k 1+zn: [t )"
e 24

"[Dul?) =" —\ |Dul =
Thus, (5.9) implies

2> / F(z, D) By ((ul) * d — s / By (Jul) dx
BrN{|Du|>to}

Bgr

We have so proved that

L > / f(z, Du) @k (|ul) n dx — (/<c—|—t01/)/ D (Jul) de. (5.10)
Brn{|Du|>to}

Br
ESTIMATE OF Iy
We claim that Iy > 0. Indeed, by (H2), if |{| > to then f(z,&) = F(x,|&], ..., |€n]) and, using
(3.2),

2
>3 R bwui il =3 S )

=1 a,f=1 85;’ ! = 9% |tz |
Thus, by the monotonicity of ®; we have
2
n «
oF (Za:l u ux)
I, = / 8—(x, [ty |y oeey [t |) ’ ) (Jul) n* dz > 0. (5.11)
=/ Ban{Dul>10} 9% |tz [ul
ESTIMATE OF I3
As above, we split I3 into two integrals-
S| O (0. D) el s, d
I 21 Brn{iDul<to} 96
) (5.12)
f 1
+ 1 / —(x, Du) ®y(|ul) u® n* n,, do =: I3 + I2
Z Z Br{|Dul>to} 08 " Y

Let us consider I1. Defining v as above, that is v = D i1 Yot Haga ($7£)||L°0(BROXBzO)’ using
(5.3) and (H4) we get
2uv /

R —p JBan{iDul<to}

<

i (ful) (|ul?+1) da
(5.13)

2uy
d dr < d
() ol e < 2 [ i)

Br
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with ¢; depending on u, v and t;.
Consider now I3. Notice that if [¢] > ¢y then %(w,g) = g—i(x, |§1|,...,|§n|)%. Moreover,
J

g—i(az, |€1], -+, |€n]) 1s positive by (H2), thus, using also (5.3) we have

2mp OF _
I3 < R—Z/ . g(x,lum!,,!uzn!)IU@k(IUDW ' da (5.14)
szl AR JUAL - OFj
where
Ay = Brn{|Du| >t} N{n#0,| |<2m"L|“|
= U Up. | < —————
fog R T L= @R =)
and 1l
2muL|u
+
AR,j = BRm {|DU’ > t()} N {?7 7£ 0, |Ux]’ > M}

with L > 0 to be chosen later.
For a.e. x € Ay, ; define Hj(z, ) : [\/tg + [Du(x)]? — |uq, (x)]2,+oo> — Ry,

Hj(x7 3) = F(xa ’uﬂﬁl (1‘)|, T ’uwj—1 (1‘)|, 3, ‘ul'j+1 (‘T)|7 t ’uﬂfn (1‘)’),

of class C! w.r.t. s. By (H1), (H2) and the assumption € Ap,; the following inequality follows:

OF 2myplul 1 0H; < 2muL!u|> 2mpL|ul
—(z, |ugy |y ey Uy, <= x, : (5.15)
aza'( sl ol = = T 0s " aR=p)) (R =)
Since (3.3) holds, by (3.4) we get
1 0H, 2mulL 2mulL 2mulL
108, ( s ru|) mullul _ gy (;,; s |u|> | 516)
L 0s nR—p)) n(R—p) ~ L n(R —p)
Now, denote with e; the vector (1,0,...,0) in R™.
By definition of Hj, (3.2) and (H2)
2muL]u> < { 2muL|u]
Hi|x,————— | S F |z, |ugl| o [ta, ||tz | +max < to,———— ¢, |Uziiq]y ey [z, |
]< (R — p) U, | | T .| T n(R — p) $J+1‘ |z (5.17)
ok 2mpuL|u) ’
=7 2 Uy s ey Uy | U, | + max 4 to, m €1, Ugjyys oo Uy | -
Since
2muL|u|
Ugyy ooy U,y | |Us;| + max to,m €1, Uz jyqs s Uy,
= 5(2uml, vy 2y, 20Uy €1, 2Ug s ey 2Ug,,)
1 dmpL|ul B 1
+§ 0 yoeey 0 ,maX{Qto,Tl(}%_p) €1, 0 s s 0 = §V+§W,
S S €R™ €Rm
by the convexity of f** we get
ok dmuL|u
f <a:,ux1, oy Uy <|ux]| -+ max {27&0, “H}) &1, U,y ,uxn>
n(R - p) (5.18)

™ (x,v)+ %f**(m,w).
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Of course, by (H1), z € Ay ; and (H3)

[ (@, v) = f(,v) = f(z,2Du(z)) < 2" f(z, Du(z)). (5.19)
Let us deal with f**(z,w). Since |w| > 2ty and (H2) and (H5) hold,

dmul
[ (x,w) = F(z,0,...,0, max {2t0, mMM} ,0,...,0)
s,l_/ n(R—p) ~——
J— n—j
dmul dmul dmpl a
< F | x,max {2750, mMW} , .oy INAX {Qto, mM’u‘} < kon {[Qto]q + [mu!u\] + 1} .
n(R — p) n(R — p) n(R - p)

n

4m“ L 1, therefore

Without loss of generality we can assume L large so that

(@, w) < kan {[2750]" + [max{l, M}] Jul + 1} <ot [n(RL—p)r ul?. (5.20)

Collecting (5.15)-(5. 20) we get

2mu —
Z / O o DIl () i

—1 n
<CQZ/ (2, Du)®y(Ju)n “dm+03(RLip)uZ/A_ (ul? + 1 @(u)dr (5.21)
j=1 R,j

~1 n
<" f(x,Du)q>k(yu|)nﬂdx+C3mL”p)#Z[BR{|uyq+1}¢k(yu|)dx

Br
Let us now deal with A+ For a.e. z € AEJ, by (H2) it follows

2muplu| OF 1 0F 1
o o ) < LG ot o s D | <  F Do),

n(R — p)azj
thus
2mu 1 .,
R- pZ/A+ 92; (@ el s [z, Diula(ful) ™ de < 7 / f (@, Du)y(|jul)n dz.  (5.22)

By (5.14), (5.21) and (5.22) we obtain

-1
B[ s onerdr e [ Qs e 623)

By (5.12), (5.13) and (5.23) and using R — p > ( 2" we get
0

[ w1y e 5 g DUl ds

LH q
+C4M/BR (lul? + 1} B ((u]) dz (5.24)

c -1 ¢
gy, Bl 1y § g D i

ESTIMATE OF Iy
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As in the proof of Lemma 5.1, for every k& € N define a; and b positive, such that ai” = % and

W =k +1. By (5.5)

I, < toy/ ) (|u]) |u| n dex = tgy/ ) (|u]) |u| n* d (5.25)
Br B

rMar<|u|<bg}

0
where v = Z;’L:I ZZL:I ||%(l‘a €)||L°°(BR0><B1:O)‘
For a.e. € Br N{ax < |u| < b} we have that @) (|u(x)|) |u(z)] < piyhy (Ju(z)|P)|u(z)|P.
Therefore, since p; < ¢ and recalling that |h/(s)| < 2 by (5.1) we obtain

O (Ju(@)]) [u(z) |7 < 2ugylu(z)["?  for all k € N.
Thus, by (5.25)

I, < 06/ |ulPi7 dx (5.26)
Br
with cg = 2ugytor.
Collecting (5.10), (5.11), (5.24) and (5.26) we obtain

/ f(z, Du) @k (Ju|) n* dz — (k —|—t01/)/ D (|u]) dx
BrN{|Du|>to}

Br

141
< S | f(z, Du)®k(Ju]) dz + c5(+)/ O ([ul) {]ul? + 1}d$+cﬁ/ P da.
L Br (R— p)# Br B

that implies
/ P, Dw) @y e < 2 [ o, D)yl o de
BrN{|Du|>to}

Br (5.27)

L1141
C7(+)/ <I)k(|u]){|u|q—|—1}d:z—i—66/ |u|P7 da.
(R—p)  Jpg Bg

Taking into account that by definition (5.2) the increasing sequence (®,(t)); converges to tP*7, by
the monotone convergence theorem we obtain

/ £z, Du) [ufp ot dz < 2 / £, Du) [ufP o da
Brn{|Du|>to} L Jp,

L+ 41
palrm+l )/ |u\p”{\u|q+1}d9:+06/ ulPi? da.
(R=p)*  Jpg Br

Filling the hole and using (2.2) we obtain

fa. D) de < [ o, Du) a7 do
Bgr L Br

C7(Lu_1 + 1)

(R— ) / |ulP7 {|u|? + 1} dx + (c6 + n)/ |ulPY da.

Bgr Bgr

yn
Choosing L greater than max{1,2c5} and noticing that 1 < (R]Eif;))u we get

) CgL“il )
flx, Du) |ulP™ “d:z:ﬁ/ w|P {ul? + 1) dx. 5.28
- ( ) [ulP"n R— ) BRl P {ul } (5.28)
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By the first inequality in (2.2)

n
f@,Du) >~k + Y g [P > —ky + [ug, [P
j=1

and we get (5.6). From now on, the proof goes as in the proof of Theorem 2.1 in [7], even if there
scalar valued minimizers where considered. However, we sketch the remain steps for the reader’s
convenience.

Step 2. We prove now that

u + 1 q—pi
/ {lulug, | 9} da < 09{H’ LA R, {/ (Jup ™t +1)7 d:r} (5.29)
Br (R — p)» Br

2|3

for some ¢y independent of ~.
Indeed, (5.6) implies

/ {|u] |ug,| "} da < / {Ju] Jug, | Yt dz < C/ {|ul? + 1} ulP" dz
Br Br (R—p)* /By

where we used that n < 1. As far as the right hand side is concerned, notice that by the Holder
inequality there exists ¢, depending on Ry, such that

Py

/ lu|PY da < / (Ju Tt +1)" dz < c {/ (Ju["* +1)7 dw} " (5.30)
BR BR BR

Moreover, using the Holder inequality once more, see [7, Lemma 6.2], we get the existence of a
positive constant ¢, independent of , such that

P

/ ‘u|q+pn dr < c{A+1}97P {/ (|u|”y+1 + 1)(1 dx} q ’
Br

Br

where A := ||UHL‘1(BRO) is finite by Corollary 3.5 and the assumption ¢ < p*. So, (5.29) follows.

Step 3. From Step 2, it follows that if |u| € LY°(Bgr) for some B > 1, then there exists c,
independent of 5, R and p, such that

/BR [77“(|“|B+1)} P dr < (;10_6[; {H’LLHLq(BRO) +1}qu . {/B

with A = max{u, ¢}. We refer to Step 2, proof of Theorem 2.1 in [7] for the details.
Step 4. We claim that if G(z) := max{1, |u(x)|}, and |u| € L9%(Bg) for some § > 1, then

{ [, 16w das}pl* < {R'fp} Iullacoy) + 137 { [ 66 da:};. (5.32)

Indeed, the assumption |u| € L% (Bg) for some 3 > 1 and Step 3 imply that o — n#(z){|u(x)|®+
1} is in WOL(pl’”"p")(BR). Multiplying (5.31) on ¢ and using p; > p, we get

1 n\ n

n Di i 3 nd= q

I1{/ o} <en {2t Ul +15 { [ ul? 10}
Bgr -p Br

i=1
with ¢11 independent of 8, R and p.

Py
q

(u|ﬁ+1)4dx} . (5.31)

Zg R

(7l +1))

2
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By Theorem 3.3 we get

(o) ac)

P

A 1
B r3 a-p B q
< {72 il + 107 {/BR(“' F1)tde

and, defining G(x) := max{1, |u(x)|}, we obtain (5.32).

Y-

Step 5. Now, we prove the boundedness of u and the estimate (1), using the Moser’s iteration
technique.

o\ h—1

For all h € N define 3, = (%) . pn = Ro/2 + Ro/2"" and Ry, = Ro/2 + Ro/2". By (5.32),
replacing 3, R and p with B, Rj, and pp, respectively, we have that G € LP»4 (Br,) implies
G e LthHq(BRhH). Precisely,

1
Bh

2h+1 ﬁ* h—1) p a—p
HGHLB*L“‘Z(BRHI) < 9 2¢i2 Ro — {HuHLq(BRO) + 1} 7 ||GHLth(BRh) (5.33)

q

holds true for every h. Corollary 3.5 and the inequality ¢ < p* imply G € LY(Bg,). An iterated
use of (5.33) implies the existence of a constant c;3 such that

ﬁ*jz—p)
Gl Lo (B, ja(zo)) < 18 {l[tllLagpg,) + 1377 =0 |Gl Lo, (o))

Therefore, by the very definition of G,

5:,(3*”;-%1
pp"—q
[l oo (B o (o)) < C14 {HUHL‘I(BRO(:EO)) + 1}

The inequality above implies that u is in L>(Bg, 2(70); R™) and estimate (2.4).

Step 6. Here we prove estimate (2.5). Fix B,(xg) € . Notice that if Qs(zp) denotes the
cube with edges parallel to the coordinate axes, centered at xy and with side length 2s, then
B, m(x0) € Q) m(w0) € Br(zo).

Let u € W/ (Q; R™) be a local minimizer of F and define u, := JCBT(
local minimizer, too, then by (2.4) and the Hélder inequality

wdx. Since u — u, is a
z0)

5:,(3‘1’;4-1
p(P™—q
e = el oo, gy o < € {1+ lu = el (5, oo }

By Theorem 3.4

Ju— UTHLF*(BT/ﬁ(xO)) < lu-— UrHLE*(QT/ﬁ(xO)) <
n
<c {1 = el 2B, @) + Hul?iHLpi(Br(a:o))}
i=1
and by the Poincaré inequality
n
|w = wr|l (B, (w0)) < € {1 +)° Huﬂ?z‘HLl(BT(wo))} :
i=1

Thus, using the above estimates and (2.2) we get (2.5). O
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