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Abstract. We study the regularity problem for sub-Riemannian geodesics, i.e., for

those curves that minimize length among all curves joining two fixed endpoints and

whose derivatives are tangent to a given, smooth distribution of planes with constant

rank. We review necessary conditions for optimality and we introduce extremals and

the Goh condition. The regularity problem is nontrivial due to the presence of

the so-called abnormal extremals, i.e., of certain curves that satisfy the necessary

conditions and that may develop singularities. We focus, in particular, on the case

of Carnot groups and we present a characterization of abnormal extremals, that was

recently obtained in collaboration with E. Le Donne, G. P. Leonardi and R. Monti,

in terms of horizontal curves contained in certain algebraic varieties. Applications

to the problem of geodesics’ regularity are provided.

1. Introduction

A sub-Riemannian manifold is a smooth, connected n-dimensional manifold M en-

dowed with a smooth, bracket-generating sub-bundle ∆ ⊂ TM (called horizontal),

having constant rank r, and with a smooth metric g on ∆. In these notes, we give a

brief overview on the problem of the regularity of length minimizers, i.e., of the short-

est (with respect to g) curves among all curves that join two fixed endpoints and are

horizontal, i.e., tangent to ∆. We also present some results on the problem recently

obtained, in the framework of Carnot groups, in collaboration with E. Le Donne, G. P.

Leonardi and R. Monti [19, 20]. These notes are based on a course given by the author

on the occasion of the ERC School Geometric Measure Theory and Real Analysis held

at the Centro De Giorgi, Pisa, in October 2013.

It is well-known (see e.g. the basic references [3, 4, 27]) that length minimizers are

extremals, i.e., satisfy certain necessary conditions given by the Pontryagin Maximum

Principle of Optimal Control Theory. Extremals may be either normal or abnormal:

while normal extremals are always smooth, abnormal ones may develop singularities.

Hence, the regularity problem for length minimizers is reduced to the regularity of

abnormal minimizers.

Let us spend a few words about the literature and the state of the art on the problem.

We do not claim to be exhaustive and we refer to the beautiful introductions in [23, 30]

for a more comprehensive account.

The author is supported by PRIN 2010-11 Project “Calculus of Variations” of MIUR (Italy),

GNAMPA of INdAM (Italy), University of Padova, and Fondazione CaRiPaRo Project “Nonlinear

Partial Differential Equations: models, analysis, and control-theoretic problems”.
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It was originally claimed in [35] that length minimizing curves are smooth, all of

them being normal extremals. The wrong argument relied upon an incorrect applica-

tion of Pontryagin Maximum Principle, ignoring the possibility of abnormal extremals;

see also [13]. A correction to [35] appeared in [36], where it was proved that minimizers

in strong bracket-generating distributions are always normal and, hence, smooth.

The first example of a strictly abnormal length minimizer was provided by R. Mont-

gomery in [26]. Other examples in the same vein are studied in [22, 37]. Distributions

of rank 2 are rich of abnormal geodesics: in [23], W. Liu and H. J. Sussmann in-

troduced a class of abnormal extremals, called regular abnormal extremals, that are

always locally length minimizing. Strictly abnormal length minimizers appear also in

the setting of Carnot groups, see [11]. Notice, however, that all known examples of

abnormal minimizers are smooth, so that the regularity problem is widely open.

As we said, abnormal extremals may have singularities. In the paper [16], G. P.

Leonardi and R. Monti developed an elaborate cutting-the-corner technique (see also

[2]) to show that, when the horizontal bundle satisfies a certain technical condition,

length minimizers do not have corner-type singularities. In several interesting struc-

tures (among them, Carnot groups of rank 2 and nilpotency step at most 4), this

is enough to conclude that length minimizers are smooth. More recently, R. Monti

[29] was able to exclude certain singularities of higher order for length minimizers in

structures satisfying the same condition introduced in [16].

Finally, a complete characterization of extremals in Carnot groups was recently ob-

tained in [19, 20]. In particular, abnormal extremals in this setting are characterized

as horizontal curves contained in certain algebraic varieties; the key tool here is rep-

resented by extremal polynomials. This allows for several applications; let us only

mention the results discussed in these notes. First, one can give a very short proof

of the regularity of length minimizers in Carnot groups of step not greater than 3

(a result first proved in [38]). Second, we describe a new technique for proving the

negligibility of the endpoints of abnormal extremals; for the motivations behind this

problem, which are only sketched in Remark 3.23, see [27, Section 10.2] and [2]. This

technique cannot be applied to general Carnot groups; however, it is likely to work in

many specific examples.

A few words about the organization of these notes. In Section 2, we introduce

the sub-Riemannian (or Carnot-Carathéodory) distance. In Section 3, we derive the

necessary conditions of extremality for length minimizers; the properties of normal

and abnormal extremals are briefly described in Sections 3.3 and 3.4. In Section 4,

we introduce Carnot groups and present the characterization of extremals obtained

in [19, 20]. In Section 5, we apply our results to prove the smoothness of minimizers

in Carnot groups of step at most 3. Finally, in Section 6 we describe the technique

connected with the negligibility problem for the endpoints of abnormal extremals.

Acknowledgements. It is a pleasure to thank R. Monti for many invaluable com-

ments, remarks and suggestions. We have to thank G. P. Leonardi for suggesting the
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characterization of normal extremals in Carnot groups contained in Theorem 4.12. We

are indebted with E. Le Donne and E. Pasqualetto for their careful reading of a pre-

liminary version of these notes. Finally, we want to thank the organizers G. Alberti,

L. Ambrosio and C. De Lellis, as well as all the participants, for the nice time and the

pleasant atmosphere during the ERC School on Geometric Measure Theory and Real

Analysis.

2. The Carnot-Carathéodory distance

2.1. Definition of Carnot-Carathéodory distance. A sub-Riemannian manifold

is a smooth, connected n-dimensional manifold M endowed with a smooth, bracket-

generating sub-bundle ∆ ⊂ TM (called horizontal sub-bundle) of constant rank r and

with a smooth metric g on ∆. Without loss of generality, the regularity problem for

length minimizers can be localized. Namely, we can assume that M = Rn and that

the horizontal bundle ∆ is generated by smooth, linearly independent vector fields

X1, . . . , Xr which form an orthonormal system with respect to g.

A Lipschitz continuous curve γ : [0, 1] → Rn is said to be horizontal if γ̇(t) ∈ ∆γ(t)

for a.e. t ∈ [0, 1], i.e., if

(2.1) γ̇(t) =
r∑
j=1

hj(t)Xj(γ(t)) for a.e. t ∈ [0, 1]

for suitable functions h = (h1, . . . , hr) ∈ L∞([0, 1],Rr). We will refer to the functions

hj as to the controls associated with γ. The length of γ is

L(γ) :=

ˆ 1

0

|h(t)| dt .

The fact that the length L is defined by integrating |h(t)| := (h1(t)2 + · · ·+ hr(t)
2)1/2

corresponds to the fact that X1, . . . , Xr are orthonormal.

Definition 2.1. The Carnot-Carathéodory (CC) distance between x, y ∈ Rn is defined

as

(2.2) d(x, y) := inf {L(γ) : γ is horizontal, γ(0) = x and γ(1) = y} .

The structure induced by the Carnot-Carathéodory distance is often called sub-

Riemannian because, intuitively speaking, the “allowed” directions form only a sub-

space of the whole tangent bundle.

Exercise 2.2. Given γ and h as above, define L2(γ) :=
( ´ 1

0
|h(t)|2 dt

)1/2
; prove that,

for any x, y ∈ Rn, the CC distance d(x, y) is equal to

d2(x, y) := inf {L2(γ) : γ is horizontal, γ(0) = x and γ(1) = y} .
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2.2. The Chow-Rashevski theorem. The family of curves in the right hand side

of (2.2) might be empty (i.e., no horizontal curve joins x and y), hence d is not nec-

essarily a distance. Consider, for instance, R3 with horizontal distribution generated

by the vector fields X1 := (1, 0, 0) and X2 := (0, 1, 0): clearly, in this case there is no

horizontal curve joining the origin and the point (0, 0, 1).

On the contrary, it is immediate to check that d is a distance whenever we can

guarantee that any couple of points can be connected by horizontal curves. Sufficient

conditions for connectivity are well-known; they are usually based on the following

observation, which is a consequence of the Baker-Campbell-Hausdorff formula (see

e.g. [40]). Here and in the sequel, we adopt the standard identification between vector

fields and first-order derivations.

Fact. Given a point p ∈ Rn, two vector fields X, Y and a positive real number

t� 1, one has

(2.3) e−tY e−tXetY etX(p) = et
2[X,Y ](p) + o(t2) ,

where we define etX(p) := c(t) as the curve c solving the problem ċ = X(c), c(0) = p,

and where the commutator (or bracket) [X, Y ] is the vector field XY − Y X.

Roughly speaking, if we are allowed to move along both X and Y , then we are also

allowed to move in the direction of their commutator. This holds also for iterated

brackets and suggests the following result, which we state without proof. Here and

in the sequel, we denote by L(X1, . . . , Xr) the Lie algebra of vector fields (with Lie

product [·, ·]) generated by X1, . . . , Xr.

Theorem 2.3. Assume that the bracket-generating condition

(2.4) rank L(X1, . . . , Xr)(x) = n ∀x ∈ Rn

holds. Then, for any x, y ∈ Rn there exists a horizontal curve joining x and y; in

particular, the Carnot-Carathéodory distance d is an actual distance.

Theorem 2.3 was proved independently by W. L. Chow [10] and P. K. Rashevski

[33]; see also [8].

Condition (2.4) is also known as Hörmander condition, as it was used by L. Hörman-

der in the seminal paper [14] on hypoelliptic equations. In what follows, we will always

assume that (2.4) is satisfied.

2.3. The Ball-Box Theorem. In this section, we state the classical Ball-Box Theo-

rem by A. Nagel, E. M. Stein and S. Wainger [32], that allows to compare (small) CC

balls B(x, r) with suitable anisotropic boxes. See also [31].

If Ω ⊂ Rn is an open bounded set, then there exists an integer κ such that condition

(2.4) is verified at every x ∈ Ω by commutators of X1, . . . , Xr with length at most

κ (the length of a commutator [· · · [Xj1 , Xj2 ], Xj3 ], . . . , Xjm ] is by definition m). Let

Y1, . . . , Yq be a fixed enumeration of all the commutators of length at most κ and let

d(Yk) ∈ {1, . . . , κ} denote the length of Yk.
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Given x ∈ Rn and a multi-index I = (i1, . . . , in) ∈ {1, . . . , q}n, define

d(I) := d(Yi1) + · · ·+ d(Yin)

λI(x) := det col
[
Yi1(x) |Yi2(x) | · · · |Yin(x)

]
and the map

EI(x, h) := eh1Yi1+h2Yi2+···+hnYin (x), h ∈ Rn.

Let us define the box

BI(x, r) := {EI(x, h) : h ∈ Rn and max
k=1,...,n

|hk|1/d(Yik ) < r} .

We can then state the following result.

Theorem 2.4. Let K ⊂ Ω be a compact set; then, there exist positive numbers r̂, α, β,

with β < α < 1, such that the following holds. If x ∈ K, r ∈ (0, r̂) and I are such that

(2.5) |λI(x)|rd(I) > 1
2

max
J
|λJ (x)|rd(J ),

then

B(x, βr) ⊂ BI(x, αr) ⊂ B(x, r).

In particular, there exists C = C(K) > 0 such that d(x, y) 6 C|x − y|1/κ for any

x, y ∈ K.

Remark 2.5. As an important consequence, one can deduce from Theorem 2.4 that

the topology induced by d is the standard one on Rn.

3. Length minimizers and extremals

This section is devoted to the derivation of necessary conditions for length mini-

mizing curves. Usually, such conditions are obtained by making use of the Pontryagin

Maximum Principle of Optimal Control Theory; however, we will not directly refer to

it. Our presentation is not meant to be exhaustive; the basic references [3, 4, 27] can

be consulted for a more detailed account on these and related topics.

3.1. Length minimizers, existence and non-uniqueness.

Definition 3.1. A horizontal curve γ : [0, 1]→ Rn is a length minimizer if it realizes

the distance between its endpoints, i.e., if L(γ) = d(γ(0), γ(1)).

As a preliminary result, we prove the local existence of minimizers.

Theorem 3.2. For any x ∈ Rn, there exists ρ > 0 with the following property: if

d(x, y) < ρ, then there exists a length minimizer connecting x and y.

Proof. Let x ∈ Rn be fixed and let ρ > 0 be such that the CC ball B(x, ρ) is a bounded

open subset of Rn. The existence of such a ρ is guaranteed by Remark 2.5. We are

going to prove that, for any point y ∈ B(x, ρ), there exists a length minimizer from x

to y.
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Let then x, ρ, y be as above and consider a sequence of horizontal curves γk : [0, 1]→
Rn, k ∈ N, such that

γk(0) = x, γk(1) = y and L(γk)→ d(x, y) as k →∞ .

In particular, for large k we have Im γk ⊂ B(x, ρ) b Rn. Let hk : [0, 1] → Rr be the

controls associated with γk; we can assume that, for any k, |hk| ≡ L(γk) is constant

on [0, 1]. Thus, for large k, the Euclidean norm ‖γ̇k‖L∞ is bounded uniformly in k; by

Ascoli-Arzelà’s Theorem we deduce that, up to a subsequence, there exists a Lipschitz

curve γ : [0, 1]→ B(x, ρ) such that γk → γ uniformly on [0, 1]. Now, by the Dunford-

Pettis theorem, up to a further subsequence we have that hk ⇀ h in L1([0, 1],Rr). For

any t ∈ [0, 1] there holds

γk(t) =

ˆ t

0

r∑
j=1

hkj (s)Xj(γ
k(s)) ds .

Taking into account the uniform convergence of γk and the weak convergence of hk,

on passing to the limit as k →∞ we get

γ(t) =

ˆ t

0

r∑
j=1

hj(s)Xj(γ(s)) ds ,

i.e., the curve γ is horizontal with associated controls h. In particular we have

γ(0) = x, γ(1) = y and L(γ) = ‖h‖L1 6 lim inf
k→∞

‖hk‖L1 = d(x, y) ,

i.e., γ is a length minimizer connecting x and y. This concludes the proof. �

Unlike Riemannian geodesics, sub-Riemannian length minimizers are not unique,

even locally. To illustrate this situation, we consider the sub-Riemannian Heisen-

berg group, i.e., the space R3 with horizontal distribution generated by the linearly

independent vector fields

X1 := ∂1 −
x2

2
∂3, X2 := ∂2 +

x1

2
∂3 .

Notice that the bracket-generating condition is trivially satisfied because [X1, X2] = ∂3.

Our aim it to describe length minimizers starting from the origin; a more detailed study

can be found in [5].

It can be easily checked that a Lipschitz curve γ = (γ1, γ2, γ3) : [0, 1] → R3 is

horizontal if and only if

γ̇3 = −γ2

2
γ̇1 +

γ1

2
γ̇2 a.e. on [0, 1].

In particular, if c denotes the planar curve c(t) := (γ1(t), γ2(t)) and Σ is the planar

region bounded by c and by the (oriented) segment σ joining c(1) to the origin, one

can recover γ3(1) as

γ3(1) =

ˆ
c

(
−x2

2
dx1 +

x1

2
dx2

)
=

ˆ
c∪σ

(
−x2

2
dx1 +

x1

2
dx2

)
=

ˆ
Σ

dx1 ∧ dx2 ,
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where we have used Stokes’ theorem. Hence, the problem of connecting the origin

(0, 0, 0) to (x, y, t) with a length minimizing horizontal curve amounts to the problem

of connecting (0, 0) to (x1, x2) with the shortest planar curve enclosing (algebraic)

area x3. This is (a version of) Dido’s problem and it is well-known that, if x3 6= 0,

its solutions are arcs of circles. The corresponding horizontal curves are spirals which

can be parametrized by arclength by the formulae

(3.1)



x1(t) =
A(1− cosϕt) +B sinϕt

ϕ

x2(t) =
−B(1− cosϕt) + A sinϕt

ϕ

x3(t) = −ϕt− sinϕt

2ϕ2

for suitable (A,B) ∈ S1 ⊂ R2 and ϕ 6= 0. If x3 = 0 we have instead the straight lines

γ(t) = (Bt,At, 0).

It can be proved that the spirals in (3.1) are length minimizing up to time t = 2π/ϕ,

when they reach the point (0, 0, π/ϕ2). In particular, for any ε > 0 there exists a

family of length minimizers joining the origin and (0, 0, ε): this family is parametrized

by (A,B) ∈ S1 with the choice ϕ =
√
π/ε.

3.2. First-order necessary conditions. We want to derive necessary conditions for

a horizontal curve to be length minimizing. To this end, we fix a length minimizer

γ : [0, 1]→ Rn with associated optimal controls h. Without loss of generality, we may

assume that γ(0) = 0 and that γ is parametrized by constant speed, i.e., that |h| = c

a.e. on [0, 1]. In particular, by Exercise 2.2, γ is also a minimizer for the problem

inf {L2(γ̃) : γ̃ is horizontal, γ̃(0) = γ(0) and γ̃(1) = γ(1)} .

For any fixed x ∈ Rn, let γx : [0, 1]→ Rn be the solution of{
γ̇x = h ·X(γx)

γx(0) = x ,

where we write h ·X(γx) to denote the function
∑r

j=1 hjXj(γx) defined on [0, 1].

For any fixed t ∈ [0, 1], let us define the diffeomorphism Ft : Rn → Rn by

(3.2) Ft(x) := γx(t) .

Given another control k ∈ L∞([0, 1],Rr) we denote by qk the horizontal curve solving

(3.3)

{
q̇k = k ·X(qk)

qk(0) = 0 ,

Finally, given v ∈ L∞([0, 1],Rr), we define the (extended) endpoint map ϕv : R→ Rn+1

(3.4) ϕv(s) :=
(
F−1

1 (qh+sv(1)),
´ 1

0
(h+ sv)2

)
.

The first component of ϕv(s) is (up to a diffeomorphism) the endpoint of the horizontal

curve qh+sv, while the last component is (the square of) its 2-length L2(qh+sv).
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Lemma 3.3. If γ is length minimizing and parametrized by constant speed, then there

exists ξ ∈ Rn+1 \ {0} such that

(3.5) 〈ξ, ϕ′v(0)〉 = 0 ∀v ∈ L∞([0, 1],Rr) .

Proof. Assume not: then, there exist v1, . . . , vn+1 ∈ L∞([0, 1],Rr) such that the vectors

ϕ′v1(0), . . . , ϕ′vn+1
(0) ∈ Rn+1 are linearly independent. Writing s · v := s1v1 + · · · +

sn+1vn+1, it follows that the map

Φ :Rn+1 → Rn+1

Φ(s1, . . . , sn+1) :=
(
F−1

1 (qh+s·v(1)), L2(qh+s·v)
2
)

is such that ∇Φ(0) is invertible because ∂Φ
∂si

(0) = ϕ′vi(0). In particular, Φ is an open

map (in a neighbourhood of 0), hence one can find s̄ ∈ Rn+1 such that the control

h̄ := h+ s̄1v1 + · · ·+ s̄n+1vn+1 satisfies

F−1
1 (qh̄(1)) = F−1

1 (qh(1))

L2(qh̄)
2 < L2(qh)

2 .

Since F1 is a diffeomorphism, if s̄ is close enough to 0, the first equality above implies

that qh̄(1) = qh(1). This contradicts the minimality of γ = qh. �

Remark 3.4. An important role in the derivation of the necessary conditions in

Theorem 3.6 will be played by the previous lemma. A key point in its proof is the

fact that the extended endpoint map cannot be an open map in any neighbourhood of

length minimizers. This suggests a sort of recipe to produce necessary conditions for

optimality: in principle, any open mapping theorem might be used to derive necessary

conditions. Also the Goh condition in the subsequent Theorem 3.20 is obtained by

exploiting a suitable open mapping theorem.

Lemma 3.5. If v ∈ L∞([0, 1],Rr) is fixed and ϕv is as in (3.4), then

(3.6) ϕ′v(0) =

(ˆ 1

0

JFt(0)−1(v ·X(γ(t))) dt, 2

ˆ 1

0

〈h(t), v(t)〉 dt
)
∈ Rn × R ,

where JFt is the Jacobian matrix of Ft and, again, v ·X = v1X1 + · · ·+ vrXr.

Proof. Let s ∈ R be fixed and, for any t ∈ [0, 1], define xh+sv(t) := F−1
t (qh+sv(t));

equivalently,

(3.7) qh+sv(t) = Ft(xh+sv(t)) .

In particular, the first n components in the definition of ϕv(s) are equal to xh+sv(1).

We can differentiate (3.7) with respect to t to obtain

(h+ sv) ·X(qh+sv) = h ·X(qh+sv) + JFt(xh+sv)ẋh+sv ,

hence

ẋh+sv = s JFt(xh+sv)
−1[v ·X(qh+sv)] .
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It follows that

xh+sv(t) = s

ˆ t

0

JFτ (xh+sv(τ))−1[v ·X(Fτ (xh+sv(τ)))] dτ ,

i.e.,

ϕ′v(0) =

(
∂xh+sv(1)

∂s

∣∣∣∣
s=0

, 2

ˆ 1

0

〈h(τ), v(τ)〉 dτ
)

=

(ˆ 1

0

JFτ (xh(τ))−1[v ·X(Fτ (xh(τ)))] dτ, 2

ˆ 1

0

〈h(τ), v(τ)〉 dτ
)
.

The desired equality (3.6) easily follows on noticing that xh(τ) = F−1
τ (qh(τ)) =

F−1
τ (γ(τ)) = 0. �

We can now pass to the main result of this section.

Theorem 3.6 (First-order necessary conditions). Let γ : [0, 1] → Rn be a length

minimizer with γ(0) = 0 and with associated controls h; assume that γ is parametrized

by constant speed, i.e., |h| ≡ c. Then, there exist ξ0 ∈ {0, 1} and ξ ∈ Lip([0, 1],Rn)

such that

(i) (ξ(t), ξ0) 6= 0 for any t ∈ [0, 1];

(ii) for any j = 1, . . . , r, the equality ξ0hj + 〈ξ,Xj(γ)〉 = 0 holds a.e. on [0, 1];

(iii) ξ̇ = −(
∑r

j=1 hj JXj(γ))T ξ a.e. on [0, 1],

where JXj denotes the n× n Jacobian matrix of Xj : Rn → Rn and the superscript T

denotes matrix transposition.

Proof. Let ξ ∈ Rn+1 \{0} be as in Lemma 3.3; write ξ =: (ξ(0), ξ0/2) ∈ Rn×R. Using

Lemma 3.5, we deduce from (3.5) the following necessary condition:

0 =

ˆ 1

0

r∑
j=1

vj(t)
{
〈ξ(0), JFt(0)−1(Xj(γ(t)))〉+ ξ0hj

}
dt

=

ˆ 1

0

r∑
j=1

vj(t)
{
〈[JFt(0)−1]T ξ(0), Xj(γ(t))〉+ ξ0hj

}
dt ∀v ∈ L∞([0, 1],Rr) .

Upon defining ξ(t) := [JFt(0)−1]T ξ(0), the Fundamental lemma of the Calculus of

Variations immediately implies statement (ii).

Statement (i) is clearly true if ξ0 6= 0 (notice that, in this case, one can also normalize

ξ to have ξ0 = 1); on the contrary, if ξ0 = 0 we have ξ(0) 6= 0, hence ξ(t) 6= 0 for all

t ∈ [0, 1] because JFt(0)−1 is invertible. Hence, also (i) is proved.

We are left with statement (iii). By definition of ξ(t), we have ξ(0) = JFt(0)T ξ(t)

and, on differentiating with respect to t,

(3.8) 0 =

(
d

dt
JFt(0)T

)
ξ(t) + JFt(0)T ξ̇(t) a.e. on [0, 1] .
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Let us compute

d

dt
JFt(0) = J

d

dt
Ft(x)

∣∣∣∣
x=0

= J

(
r∑
j=1

hj(t)Xj(Ft(x))

)∣∣∣∣
x=0

=
r∑
j=1

hj(t) JXj(Ft(0)) JFt(0)

=

( r∑
j=1

hj(t) JXj(γ(t))

)
JFt(0) a.e. on [0, 1] .

Recalling (3.8) and the fact that JFt(0)T is invertible, we obtain

ξ̇(t) = −
( r∑

j=1

hj(t) JXj(γ(t))

)T
ξ(t) for a.e. t ∈ [0, 1] ,

as desired. �

Definition 3.7. A horizontal curve γ : [0, 1]→ Rn with γ(0) = 0 and with associated

controls h is said to be an extremal if there exist ξ0 ∈ {0, 1} and ξ ∈ Lip([0, 1],Rn)

such that statements (i), (ii) and (iii) in Theorem 3.6 hold. The function ξ is called

dual curve (or dual variable).

If ξ0 = 1, we say that γ is a normal extremal.

If ξ0 = 0, we say that γ is an abnormal extremal.

Theorem 3.6 states that length minimizers parametrized by constant speed are also

extremals; on the contrary, there exist extremals that are not minimizers, see Section

3.5. We do not require extremals to be parametrized by constant speed because this

is automatically satisfied for normal extremals (see Exercise 3.11), while for abnormal

extremals the parametrization plays essentially no role (see Exercise 3.17).

We will review the main properties of normal and abnormal extremals in Sections

3.3 and 3.4; now, a few observations are in order.

Remark 3.8. An extremal γ might be normal and abnormal at the same time, in the

sense that it could possess two different dual curves that make γ normal and abnormal.

An example of this phenomenon is given in Exercise 4.5. An extremal which is normal

but not abnormal is called strictly normal; on the contrary, we call strictly abnormal

an extremal which is abnormal but not also normal.

Exercise 3.9. Prove that, if γ is strictly normal, then it possesses a unique dual curve

ξ(t).

Hint: assume that ξ1(t), ξ2(t) are dual curves making γ normal; prove that γ is

abnormal with associated dual curve ξ1 − ξ2.

Theorem 3.6 possesses also an Hamiltonian formulation. Define the Hamiltonian

H(x, ξ) :=
r∑
j=1

〈Xj(x), ξ〉2 x, ξ ∈ Rn .
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Then, the following result holds.

Exercise 3.10. If γ is a normal extremal with dual variable ξ, then the couple (γ, ξ)

solves the system of Hamiltonian equations
γ̇ = −1

2

∂H

∂ξ
(γ, ξ)

ξ̇ =
1

2

∂H

∂x
(γ, ξ) .

If γ is an abnormal extremal with dual variable ξ, then H(γ, ξ) ≡ 0.

3.3. Normal extremals. In this section we deal with basic properties and facts about

normal extremals. We begin with the following exercise.

Exercise 3.11. Let γ be a normal extremal; then, γ is parametrized by constant

speed.

Hint: use Exercise 3.10 and the fact that, if h denotes the controls associated with

γ, then |h(t)|2 = H(γ(t), ξ(t)).

The most important result in this subsection is the following one.

Proposition 3.12. Normal extremals are C∞ smooth.

Proof. Let γ : [0, 1] → Rn be a normal extremal with associated controls h and dual

curve ξ. Using (2.1) and (ii), (iii) in Theorem 3.6 we easily obtain the following chain

of implications

γ, ξ ∈ C0([0, 1])
(ii)

=⇒ hj ∈ C0([0, 1]) ∀j = 1, . . . , r
(2.1),(iii)

=⇒ γ, ξ ∈ C1([0, 1])
(ii)

=⇒ hj ∈ C1([0, 1]) ∀j = 1, . . . , r
(2.1),(iii)

=⇒ γ, ξ ∈ C2([0, 1])
(ii)

=⇒ hj ∈ C2([0, 1]) ∀j = 1, . . . , r

=⇒ . . .

�

Exercise 3.13. Prove that, if γ is a normal extremal with dual curve ξ, then condition

(ii) in Theorem 3.6 holds on the whole interval [0, 1] (and not only almost everywhere).

The following results, as well as the Proposition 3.12, show that normal minimiz-

ers/extremals share several common features with Riemannian geodesics.

Remark 3.14. When r = n (i.e., the CC structure is indeed Riemannian), any length

minimizer/extremal γ is strictly normal. Otherwise, there would exist a dual curve ξ

such that 〈ξ,Xj(γ)〉 = 0 for any j = 1, . . . , n. Since X1, . . . , Xn now form a basis of

Rn, we obtain that ξ ≡ 0, which contradicts (i) in Theorem 3.6.

Exercise 3.15. Assume again that we are in the Riemannian case r = n. Then, by

(2.1) and (ii) in Theorem 3.6, there is a natural way of identifying γ̇, h and ξ, in the

sense that any of the three uniquely determines the others. Prove that equation (iii)

in Theorem 3.6 corresponds to the ODE of Riemannian geodesics.
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The following important result is a special case of more general results in Optimal

Control Theory, see for instance [7, 15, 13] and [23, Appendix C].

Theorem 3.16. Every normal extremal is locally length minimizing.

On the contrary, strictly abnormal extremals might not be length minimizers, see

Section 3.5.

3.4. Abnormal extremals. By Theorem 3.6 (ii), an abnormal extremal γ and its

dual variable ξ satisfy

(3.9) 〈ξ,Xj(γ)〉 = 0 on [0, 1] ∀j = 1, . . . , r .

The compact notation ξ ⊥ ∆γ will often be used to abbreviate the previous formula.

When dealing with abnormal extremals, it is not necessary to require that they are

parametrized by constant speed; this is justified by the following fact.

Exercise 3.17. Assume that γ̃ : [0, 1]→ Rn is an abnormal extremal parametrized by

constant speed and with dual curve ξ̃. Let γ be a different parametrization of the same

curve; namely, let γ := γ̃ ◦ f for an increasing, Lipschitz continuous homeomorphism

f : [0, 1]→ [0, 1]. Then, γ satisfies (i), (ii) and (iii) in Theorem 3.6 with ξ := ξ̃ ◦ f .

Exercise 3.18. Prove that, if γ is an abnormal extremal with dual curve ξ, then

condition (ii) in Theorem 3.6 holds on the whole interval [0, 1] (and not only almost

everywhere).

Abnormal extremals are often introduced in the literature as singular points of the

endpoint map; a few comments on this viewpoint are in order.

Going back to Section 3.2, let γ : [0, 1] → Rn be an extremal with γ(0) = 0

and associated optimal controls h ∈ L∞([0, 1],Rr). Define the endpoint map End :

L∞([0, 1],Rr)→ Rn by

End(k) := qk(1), k ∈ L∞([0, 1],Rr) ,

the curve qk being defined as in (3.3). For any v ∈ L∞([0, 1],Rr), the map ϕv(s) in

(3.4) can then be rewritten as

ϕv(s) =
(
F−1

1 ◦ End(h+ sv), L2(qh+sv)
2
)
,

where the diffeomorphism F1 is defined as in (3.2).

Now, if γ is an abnormal extremal, then the vector ξ = (ξ(0), ξ0/2) ∈ Rn×R provided

by Lemma 3.3 is such that ξ0 = 0. Hence (again by Lemma 3.3), the vector ξ(0) 6= 0

is such that

ξ(0) ⊥ d

ds

(
F−1

1 ◦ End(h+ sv)
)∣∣∣∣
s=0

∀v ∈ L∞([0, 1],Rr) .

Since F−1
1 is a diffeomorphism, there exists also a vector η 6= 0 such that

η ⊥ d

ds

(
End(h+ sv)

)∣∣∣∣
s=0

= dEnd(h)[v] ∀v ∈ L∞([0, 1],Rr) ,
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where dEnd(h)[v] denotes the differential of End at h in direction v. In particular, the

image of dEnd(h) does not contain the vector η; equivalently, h is a point where the

differential of the endpoint map is not surjective.

We have proved that (the controls associated with) abnormal extremals are singular

points of End; the following exercise shows that the converse is also true.

Exercise 3.19. Prove that, if the differential of the endpoint map End is not surjective

at some controls h associated with an horizontal curve γ, then γ is an abnormal

extremal.

As already pointed out in Remark 3.8, an extremal might be normal and abnormal

at the same time. By Proposition 3.12 any minimizer/extremal is C∞ smooth unless

it is strictly abnormal; hence, the relevant curves in the regularity problem for length

minimizers are precisely the strictly abnormal ones. For such minimizers, a further

necessary condition, the so-called Goh condition, can be proved.

Theorem 3.20 (Goh condition). Let γ : [0, 1] → Rn be a strictly abnormal length

minimizer. Then, there exists an associated dual curve ξ that satisfies

(3.10) 〈ξ, [Xi, Xj](γ)〉 = 0 on [0, 1] for any i, j = 1, . . . , r.

We refer to [4, Chapter 20] for the proof of Theorem 3.20. The proof is in the spirit

of Remark 3.4: if (3.10) does not hold for any dual curve ξ, then a suitable open

mapping theorem allows to conclude that a certain mapping of endpoint-type is open

at γ, contradicting its minimality.

Corollary 3.21. If the horizontal distribution X1, . . . , Xr is of step 2, i.e., if

dim span {Xi, [Xi, Xj] : i, j ∈ {1, . . . , r}}(x) = n ∀x ∈ Rn ,

then any length minimizer is C∞ smooth.

Proof. Assume by contradiction that there exists a length minimizer γ that is not of

class C∞; then, by Proposition 3.12, γ is strictly abnormal. By (3.9) and Theorem

3.20, there exists a dual variable ξ that is orthogonal (at points of γ) to Xi and [Xi, Xj]

for any i, j ∈ {1, . . . , r}. Since, by assumption, these elements generates all the tangent

space at any point, then we have necessarily ξ ≡ 0, which contradicts Theorem 3.6

(i). �

We stress the fact that the minimality assumption is crucial in Theorem 3.20. In

general, (3.10) might not hold for strictly abnormal extremals, with the following

remarkable exception concerning general abnormal extremals in structures with rank

2.

Remark 3.22. If the horizontal distribution has rank r = 2, then any abnormal

extremal γ : [0, 1]→ Rn and any associated dual curve ξ satisfy

(3.11) 〈ξ(t), [X1, X2](γ(t))〉 = 0 ∀t ∈ [0, 1]
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Let us prove (3.11); we claim that it is enough to show that

(3.12)

〈ξ(t), [X1, X2](γ(t))〉 = 0 for a.e. t ∈ [0, 1] such that γ̇(t) exists and γ̇(t) 6= 0 .

Indeed, (3.12) and the continuity of ξ imply (3.11) for any γ such that γ̇ 6= 0 a.e.

on [0, 1]; for instance, whenever γ is parametrized by constant speed. For different

parametrizations of γ, it is enough to reason as in Exercise 3.17.

Let us prove (3.12). By equation (iii) in Theorem 3.6 and the abnormality of γ, we

get

0 =
d

dt
〈ξ,X1(γ)〉

= −〈(h1 JX1(γ) + h2 JX2(γ))T ξ,X1(γ)〉+ 〈ξ, JX1(γ)[γ̇]〉
= −〈ξ, (h1 JX1(γ) + h2 JX2(γ))[X1(γ)]〉+ 〈ξ, JX1(γ)[h1X1(γ) + h2X2(γ)]〉
= h2〈ξ,−JX2(γ)[X1(γ)] + JX1(γ)[X2(γ)]〉
= −h2〈ξ, [X1, X2](γ)〉 a.e. on [0, 1].

With similar computations one gets

0 =
d

dt
〈ξ,X2(γ)〉 = h1〈ξ, [X1, X2](γ)〉 a.e. on [0, 1].

In particular, if t ∈ [0, 1] is such that γ̇(t) 6= 0, then either h1(t) 6= 0 or h2(t) 6= 0, and

this is enough to obtain (3.12).

As done before, for notational convenience we write ξ ⊥ (∆ ∪ [∆,∆])γ whenever

the Goh condition holds for the couple (γ, ξ), to mean that the dual variable ξ is

orthogonal to both horizontal vectors and brackets of horizontal vector fields. With a

slight change of notation, we could also introduce the time-dependent 1-form

(3.13) ξ∗(t) := ξ1(t)dx1 + · · ·+ ξn(t)dxn

and write ξ∗ ∈ ∆⊥γ (for abnormal extremals) or ξ∗ ∈ ∆⊥γ ∩ [∆,∆]⊥γ (when the Goh

condition is in force). The 1-form ξ∗ is going to appear again later in these notes.

Remark 3.23. Another important fact about abnormal minimizers has been proved

in [1] (see also [34]) in connection with the smoothness problem for the CC distance

d: if the horizontal vectors X1, . . . , Xr are analytic, then the set Σ of point in Rn

that can be connected to the origin (or to any other base point) with abnormal length

minimizers is a closed set with empty interior. An important open question is the

following Morse-Sard problem for the endpoint map: does Σ have measure zero? We

refer to [27, Section 10.2] and to the recent preprint [2] for more detailed discussions

on this and other topics.

3.5. An interesting family of extremals. An interesting sub-Riemannian structure

was proposed by A. Agrachev and J. P. Gauthier during the meeting “Geometric
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control and sub-Riemannian geometry” held in Cortona in May 2012. Consider the

CC structure of rank 2 induced on R4 by the vector fields

X1(x) := ∂1 + 2x2∂3 + x2
3∂4, X2(x) := ∂2 − 2x1∂3 .

It can be easily checked that the bracket-generating condition holds and that, for any

α ∈ R, the curve γα(t) := (t, α|t|, 0, 0), t ∈ R, is a strictly abnormal extremal with

dual curve ξ(t) = (0, 0, 0, 1). It is fairly easy to show that γ0 is a minimizer; R.

Monti has proved with a cutting-the-corner technique that γα is not a minimizer when

α /∈ {0, 1,−1}. Using a different and much simpler argument, the remaining case

α = ±1 was recently settled in [21], where it is also proved that all length minimizers

in the CC structure under consideration are smooth.

Exercise 3.24. Prove that γ0 is uniquely length minimizing.

4. Carnot groups

4.1. Stratified groups. In this section we are going to describe a few basic facts

on stratified groups. Recall that the Lie algebra g associated with a Lie group G is

defined as the Lie algebra of left-invariant vector fields on G. A vector field X on G
is said to be left-invariant if

X(p) = d`p(X(0)) ∀p ∈ G ,

where d`p denotes the differential of the left-translation `p(z) = p · z by p, · denotes

the group product and 0 denotes the identity of G. Equivalently, X is left-invariant if

(Xf)(`p(x)) = X(f ◦ `p)(x) for any p, x ∈ G and any f ∈ C∞(G).

Definition 4.1. A stratified group G is a connected, simply connected and nilpotent

Lie group whose Lie algebra g admits a stratification, i.e., a decomposition

g = V1 ⊕ V2 ⊕ · · · ⊕ Vs
with the properties that Vi = [V1, Vi−1] for any i = 2, . . . , s and [V1, Vs] = {0}.

A few comments are in order:

• the Lie algebra g is nilpotent of step s;

• one can easily see that [Vi, Vj] ⊂ Vi+j for any i, j > 1 such that i+ j 6 s;

• if i+ j > s+ 1, then [Vi, Vj] = {0}.
Moreover, the exponential map exp : g→ G induces a diffeomorphism between G and

Rn ≡ g, n being the dimension of g. However, in the sequel we will identify G with

Rn by means of a different set of coordinates, the so-called exponential coordinates of

the second-type (see (4.1) and (4.2) below).

Let us fix an adapted basis of g, i.e., a basis X1, . . . , Xn whose order is coherent with

the stratification:

X1, . . . , Xr︸ ︷︷ ︸
basis of V1

, Xr+1, . . . , Xr2︸ ︷︷ ︸
basis of V2

, Xr2+1, . . .︸ ︷︷ ︸
basis of V3

. . . . . . . . . , Xn︸ ︷︷ ︸
basis of Vs

.
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The integer r2 := dimV1 +dimV2 will be used also in the sequel. We can then identify

G with Rn by introducing exponential coordinates of the second type

(4.1) Rn 3 (x1, . . . , xn)←→ exp(xnXn) · exp(xn−1Xn−1) · · · exp(x1X1) ∈ G

or, equivalently, by using flows of vector fields

(4.2) Rn 3 (x1, . . . , xn)←→ ex1X1 ◦ · · · ◦ exn−1Xn−1 ◦ exnXn(0) ∈ G .

As a matter of fact (see e.g. [20]), one can prove that in these coordinates

X1 = ∂1

Xi(x) = ∂i +
∑n

j=r+1 fij(x)∂j ∀i = 2, . . . , r
(4.3)

for suitable analytic functions fij : Rn → R.

The stratification of g allows to define a family of intrinsic dilations on G. For any

i = 1, . . . , r, let us define its degree d(i) ∈ {1, . . . , s} by

d(i) = k ⇐⇒ Xi ∈ Vk .

One can define a one-parameter family of dilations on g in the following way. For any

r > 0, let δr : g→ g be the unique linear map such that

δr(Xi) = rd(i)Xi.

Then, by the stratification assumption, δr is a Lie algebra isomorphism. One can also

define dilations on the group (in coordinates) by

δr(x1, . . . , xn) := (rx1, . . . , r
d(i)xi, . . . , r

sxn) .

Clearly, δr : G→ G defines a one-parameter family of group isomorphisms.

Example 4.2. The Heisenberg group (see also Section 3.1, where it is presented in a

different set of coordinates) is the stratified group associated with the Lie algebra of

step 2 g := V1 ⊕ V2, where V1 = span {X1, X2}, V2 = span {X3} and

[X2, X1] = X3, [X3, X1] = [X3, X2] = 0 .

The Heisenberg group can be represented in exponential coordinates of the second

type as R3 with

X1 = ∂1, X2 = ∂2 − x1∂3, X3 = ∂3 .

Group dilations read as δr(x1, x2, x3) = (rx1, rx2, r
2x3).

Example 4.3. The Engel group is the stratified group associated with the Lie algebra

of step 3 g := V1⊕V2⊕V3, where V1 = span{X1, X2}, V2 = span{X3}, V3 = span{X4}
and

[X2, X1] = X3, [X3, X1] = X4, [X3, X2] = [X4, X1] = [X4, X2] = [X4, X3] = 0 .

The Engel group can be represented in exponential coordinates of the second type as

R4 with

X1 = ∂1, X2 = ∂2 − x1∂3 +
x2

1

2
∂4, X3 = ∂3 − x1∂4, X4 = ∂4 .
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Group dilations read as δr(x1, x2, x3, x4) = (rx1, rx2, r
2x3, r

3x4).

4.2. Carnot groups. Stratified groups can be endowed with a canonical CC struc-

ture induced by a basis X1, . . . , Xr of the first layer V1. Notice that the horizontal

sub-bundle ∆ := V1 is left-invariant and bracket-generating (by the stratification as-

sumption), hence the CC distance d is well defined. We refer to [17] for a metric

characterization of Carnot groups and to [18] for an introduction to sub-Riemannian

geometry on groups.

Exercise 4.4. Prove that, for any p, x, y ∈ G and any r > 0, there holds

d(p · x, p · y) = d(x, y) and d(δrx, δry) = rd(x, y) .

Exercise 4.5. Prove that the horizontal curve γ(t) = (0, t, 0, 0) in the Engel group

(represented in the coordinates of Example 4.3) is an extremal that is normal and

abnormal at the same time.

Our interest in Carnot groups is motivated by the well-known fact that the tangent

metric space (in the Gromov-Hausdorff sense) to a CC space at a “generic” point is

a Carnot group: roughly speaking, Carnot groups are the infinitesimal models of CC

spaces. See e.g. [25, 24, 6].

4.3. The dual curve and extremal polynomials. Let γ : [0, 1]→ G be an extremal

with associated controls h ∈ L∞([0, 1],Rr) and dual curve ξ ∈ Lip([0, 1],Rn); assume

that γ(0) = 0. Recall that ξ induces a time-dependent 1-form ξ∗ as in (3.13); we are

going to write ξ∗ in a different system of coordinates for 1-forms.

The group structure allows to define a frame θ1, . . . , θn of left-invariant 1-forms, dual

to the adapted basis X1, . . . , Xn, by imposing that

(4.4) θi(Xj) = δij on G ,

δij denoting the Kronecker delta. We can therefore define λ ∈ Lip([0, 1],Rn) by im-

posing that

(4.5) ξ∗(t) = ξ1(t)dx1 + · · ·+ ξn(t)dxn =
(
λ1(t)θ1 + · · ·+ λn(t)θn

)
(γ(t)) ∀ t ∈ [0, 1] .

We use the term dual curve also for the function λ. One can immediately notice that,

by (4.4), statement (iii) in Theorem 3.6 is equivalent to

(4.6) ξ0hi + λi = 0 a.e. on [0, 1], ∀ i = 1, . . . , r .

Moreover, the differential equation (iii) of Theorem 3.6 is equivalent to the following

ODE for λ (we refer to [19, Theorem 2.6] for details). For any i = 1, . . . , n, there holds

(4.7) λ̇i = −
r∑
j=1

n∑
k=1

ckijhjλk a.e. on [0, 1] ,

where the constants ckij are the structure constants of the Lie algebra g defined by

[Xi, Xj] =
n∑
k=1

ckijXk ∀ i, j = 1, . . . , n .
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Exercise 4.6. Prove the implication

(4.8) d(k) 6= d(i) + d(j)⇒ ckij = 0 ∀i, j, k = 1, . . . , n .

Hint: recall that [Xi, Xj] ∈ Vd(i)+d(j).

Deduce, as a consequence, that (4.7) is equivalent to

(4.9) λ̇i = −
r∑
j=1

∑
k=1,...,n

d(k)=d(i)+1

ckijhjλk a.e. on [0, 1] .

From the technical viewpoint, the main achievement of [19, 20] is an explicit formula

for the dual curve λ as a function of γ, see Theorem 4.11 below. This is obtained

through the integration of the ODE (4.7), which is in turn based on the following

result.

Lemma 4.7. Let γ : [0, 1] → G be an extremal with γ(0) = 0; let h ∈ L∞([0, 1],Rr)

be the associated controls and λ ∈ Lip([0, 1],Rn) be its dual curve. Suppose that there

exist functions Pi ∈ C1(G), i = 1, . . . , n, such that

(4.10) Pi(0) = λi(0) and XjPi =
n∑
k=1

ckjiPk on G

for any i, j = 1, . . . , n. Then, for any i = 1, . . . , n, there holds

(4.11) λi(t) = Pi(γ(t)) ∀ t ∈ [0, 1].

Proof. The proof is based on a reverse-order inductive argument on i; we start by

proving (4.11) for i = n. Since Xn ∈ Vs is in the kernel of g, we have [Xj, Xn] = 0 for

any j = 1, . . . , n, i.e., ckjn = −cknj = 0. In particular, by (4.7) and (4.10)

• λ̇n = −
∑r

j=1

∑n
k=1 c

k
njhjλk = 0, hence λn is constant on [0, 1];

• for any j = 1, . . . , n, XjPn =
∑n

k=1 c
k
jnPk = 0, hence Pn is constant on G.

Since, by assumption, Pn(0) = λn(0), we obtain that λn(t) = Pn(γ(t)) for any t ∈ [0, 1].

Assume now that λk = Pk(γ) for any k > i + 1; recalling that γ̇ =
∑r

j=1 hjXj(γ),

we have

d

dt
(Pi ◦ γ) =

r∑
j=1

hj XjPi(γ) =
r∑
j=1

n∑
k=1

hjc
k
jiPk(γ)

(4.8)
=

r∑
j=1

∑
k=1,...,n

d(k)=d(i)+1

hjc
k
jiPk(γ) .

We can now use the inductive assumption together with the equality ckji = −ckij to get

d

dt
(Pi ◦ γ) = −

r∑
j=1

∑
k=1,...,n

d(k)=d(i)+1

hjc
k
ijλk(γ)

(4.9)
= λ̇i .
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In particular, the Lipschitz functions λi and Pi ◦ γ have the same derivative and, by

assumption, they coincide at time t = 0. This is sufficient to conclude the validity of

(4.11). �

The integration of the dual variable λ is thus reduced to the search for functions Pi
satisfying (4.10); these functions are provided by the extremal polynomials introduced

below in Definition 4.8. Let us introduce some preliminary notation. Given a multi-

index α = (α1, . . . , αn) ∈ Nn and x ∈ Rn ≡ G, we write

xα = xα1
1 x

α2
2 · · ·xαn

n

|α| = α1 + · · ·+ αn

α! = α1!α2! · · · αn! .

For the sake of precision: we agree that 0 ∈ N, hence the null multi-index α = 0 is

admissible. If x = 0 and α = 0, we agree that xα = 1.

Definition 4.8. For any v ∈ Rn and i = 1, . . . , n, we define the extremal polynomial

P v
i : G→ R by

(4.12) P v
i (x) =

∑
α∈Nn

n∑
k=1

(−1)|α|

α!
ckiα vk x

α ,

where the symbols ckiα denote the generalized structure constants of g defined by

[· · · [Xi, X1], X1], . . . X1]︸ ︷︷ ︸
α1 times

, X2], . . . X2]︸ ︷︷ ︸
α2 times

, X3], . . . ] . . . ] =
n∑
k=1

ckiαXk .

Exercise 4.9. Prove that the summation in (4.12) is finite and, more precisely, that

P v
i is a polynomial of both degree and homogeneous degree (see e.g. [19, Remark 4.2])

at most s− d(i).

Hint: define d(α) :=
∑n

j=1 αid(i) and prove the implication

d(k) 6= d(i) + d(α)⇒ ckiα = 0 .

As already mentioned, extremal polynomials satisfy (4.10) in Lemma 4.7.

Theorem 4.10. For any v ∈ Rn and i = 1, . . . , n, the extremal polynomials satisfy

(4.13) P v
i (0) = vi and XjP

v
i =

n∑
k=1

ckjiP
v
k on G.

While the first equality in (4.13) can be easily checked, the formulae for the deriva-

tives of the P v
i ’s are not trivial at all. Their proof is however beyond the scopes of

these notes. In the framework of free Carnot groups, the second equality in (4.13)

was first proved in [19] as a consequence of certain algebraic identities obtained along

the proof of [19, Theorem 4.6]. The latter is nothing but Theorem 4.11 below (in the

special case of free groups), but its proof follows a completely different line from the

one presented here, being based on explicit formulae for the horizontal vector fields

(see [12]) rather than on Lemma 4.7. For general Carnot groups, the proof of (4.13)
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was achieved in [20] with an argument of a differential-geometric flavour involving also

non-trivial algebraic identities.

Lemma 4.7 and Theorem 4.10 have the following, immediate consequence.

Theorem 4.11. Let γ : [0, 1]→ G be an extremal with γ(0) = 0; let λ ∈ Lip([0, 1],Rn)

be an associated dual curve and set v := λ(0) ∈ Rn. Then,

λi(t) = P v
i (γ(t)) for any t ∈ [0, 1] .

4.4. Extremals in Carnot groups. Theorem 4.11 is our main result from a technical

viewpoint. Its consequences, however, are probably even more interesting; let us start

by discussing its implications in the case of normal extremals.

Theorem 4.12 (Characterization of normal extremals in Carnot groups). Let γ :

[0, 1] → G be an horizontal curve with γ(0) = 0. Then, the following conditions are

equivalent:

(a) γ is a normal extremal;

(b) there exists v ∈ Rn such that γ̇ = −
∑r

i=1 P
v
i (γ)Xi(γ).

In particular, the sum P v
1 (γ)2 + · · ·+ P v

r (γ)2 is constant on [0, 1].

Proof. Let us begin with the implication (a)⇒(b). Let h be the controls associated

with γ and λ be the dual variable; set v := λ(0) ∈ Rn. By (4.6) and Theorem 4.11,

we have

hi = −λi = −P v
i (γ) on [0, 1], ∀i = 1, . . . , n ,

and (b) immediately follows. The fact that P v
1 (γ)2 + · · ·+P v

r (γ)2 is constant is equiv-

alent to |h| being constant.

Concerning the implication (b)⇒(a), notice that the controls hi = −P v
i (γ), together

with the functions λi := P v
i (γ), satisfy (4.6) (with ξ0 = 1) and (4.7), because

λ̇i =
d

dt
(P v

i (γ))
(b)
= −

r∑
j=1

P v
j (γ)XjP

v
i (γ)

(4.13)
=

r∑
j=1

n∑
k=1

(−P v
j (γ))ckjiP

v
k (γ) = −

r∑
j=1

n∑
k=1

ckij hj λk .

This proves that γ is a normal extremal with dual curve λ, as desired. �

Theorem 4.12 characterizes normal extremals as solutions to a certain ODE: notice

that we have reduced the 2n-variables Hamiltonian system of Exercise 3.10 to a system

of ODEs in n variables.

Recalling that left-invariant vector fields are analytic, by Theorem 4.12 one can

improve Proposition 3.12 on the regularity of normal extremals.

Corollary 4.13. Let γ : [0, 1]→ G be a normal extremal; then, γ is analytic regular.
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Let us now examine the case of abnormal extremals. If λ is the dual curve associated

with an abnormal extremal γ, then (4.6) and Theorem 4.11 imply that

λi = P v
i (γ) = 0 on [0, 1] ∀i = 1, . . . , r,

provided v := λ(0) ∈ Rn. Moreover, by (4.4), (4.5) and the fact that the basis

X1, . . . , Xn is adapted to the stratification, the Goh condition (3.10) is equivalent to

λi = P v
i (γ) = 0 on [0, 1] for any i = r + 1, . . . , r2 .

Recall that the integer r2 has been defined as dimV1 + dimV2. We have therefore

Theorem 4.14 (Characterization of abnormal extremals in Carnot groups). Let γ :

[0, 1] → G be an horizontal curve with γ(0) = 0. Then, the following conditions are

equivalent:

(a) γ is an abnormal extremal;

(b) there exists v ∈ Rn \ {0} such that P v
1 (γ) = · · · = P v

r (γ) = 0.

Moreover, the Goh condition (3.10) holds if and only if P v
r+1(γ) = · · · = P v

r2
(γ) = 0.

The proof is left as an exercise to the reader, who will also notice that the parameter

v ∈ Rn is equal to λ(0), which is not zero due to Theorem 3.6 (i).

Remark 4.15. The fact that v 6= 0 implies that there exist at least one index i ∈
{1, . . . , r} and another index j ∈ {r + 1, . . . , r2} such that neither P v

i nor P v
j are

the null polynomial; see [20, Proposition 2.6] for more details. In particular, any

abnormal extremal γ belongs to an algebraic variety (the one defined by the equalities

in Theorem 4.14 (b)) that is not trivial.

The characterization of abnormal extremals in Carnot groups allows for several

applications; here, we are going to recall a few of those presented in [19] and [20].

It is possible to construct very irregular abnormal extremals satisfying also the Goh

condition. For instance, there exists a 32-dimensional Carnot group G such that, for

any Lipschitz function φ : [0, 1] → G, there exists a Goh abnormal extremal of the

form

γ(t) = (t2, t, φ(t), ∗, . . . , ∗) .
See [19, Section 6.4] for more details. In the same spirit, a “spiral-like” abnormal Goh

extremal has been provided in [20, Section 5]. These examples somehow suggest that

a finer analysis of necessary conditions is needed if one aims at proving smoothness

of minimizers, since even second-order necessary conditions (the Goh one) are not

enough to ensure regularity.

W. Liu and H. J. Sussman have proved in [23] that, if γ is an abnormal extremal in

a CC structure of rank r = 2 with dual curve ξ satisfying

ξ(t) 6⊥ [[∆,∆],∆]γ(t) for any t ∈ [0, 1] ,

then γ is smooth. Abnormal extremals satisfying the previous condition are called

regular abnormal and are somehow “generic”; let us recall that the Goh condition

ξ ⊥ (∆ ∪ [∆,∆])γ holds for abnormal extremals because of Remark 3.22. When
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working in Carnot groups of rank 2, the regularity of such extremals can be proved

in a plain way by using extremal polynomials, see [19, Section 6.2]. The results in

[23] are anyway much finer, as they show (in a more general framework) that regular

abnormal extremals are also locally minimizing.

In the following sections we analyze with more details two further applications of

our machinery.

5. Minimizers in step 3 Carnot group

In this section, we review the proof given in [19, Section 6.1] of the following result,

that was first proved by K. Tan and X. Yang in [38].

Theorem 5.1. Any minimizer in a Carnot group of step 3 is C∞ smooth.

Proof. By contradiction, assume that there exists a length minimizing curve γ :

[0, 1] → G that is not of class C∞; then, γ is a strictly abnormal minimizer and

satisfies the Goh condition. By left invariance, we can assume that γ(0) = 0. By

Theorem 4.14 and Remark 4.15, there exist v ∈ Rn \ {0} and j ∈ {r + 1, . . . , r2} such

that P v
j is not the null polynomial and

(5.1) P v
j (γ) = 0 on [0, 1].

By Exercise 4.9, P v
j has homogeneous degree at most 1, hence there exists (a1, . . . , ar) ∈

Rr \ {0} such that

(5.2) P v
j (x) = a1x1 + · · ·+ arxr ,

where we have also used the fact that P v
j (0) = 0. Define the left-invariant horizontal

vector field Y1 := a1X1 + · · ·+ arXr and complete it to a basis Y1, . . . , Yr of V1. Using

(4.3), (5.1) and (5.2), we obtain that γ̇ is of the form

γ̇ = h2Y2(γ) + · · ·+ hrYr(γ) .

Hence, γ is contained in the subgroup of G associated with the Lie subalgebra of g

generated by Y2, . . . , Yr and, in particular, it is contained in a Carnot group of rank

r − 1 and step (at most) 3. An easy argument by induction on the rank of the group

allows to conclude. �

6. On the negligibility of the abnormal set

In this Section we review the results contained in [20, Section 4]; to this end, we

have to introduce some preliminary notions.

The Tanaka prolongation Prol g of a stratified Lie algebra g = V1 ⊕ · · · ⊕ Vs is the

largest stratified Lie algebra which can be written in the form

Prol g = · · · ⊕ V−1 ⊕ V0 ⊕ V1 ⊕ · · · ⊕ Vs
and with the property that [Vi, Vj] ⊂ Vi+j for any i 6 s, j 6 s. Here, “largest” means

that any other extension of g with these properties is (isomorphic to) a sub-algebra

of Prol g. The explicit construction of Prol g was provided by N. Tanaka in [39]. The
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prolongation is never trivial, in the sense that Prol g 6= g; indeed, it can be proved

that dimV0 > 1. Notice that the number of layers in Prol g in not necessarily finite;

when Prol g is infinite dimensional we say that G is nonrigid.

Let X1, . . . , Xn be an adapted basis of g; let us extend it to an adapted basis of

Prol g

. . . . . . , X−j, . . .︸ ︷︷ ︸
basis of V−1

, . . . , X−1, X0︸ ︷︷ ︸
basis of V0

, X1, . . . , Xr︸ ︷︷ ︸
basis of V1

, . . . . . . , . . . , Xn︸ ︷︷ ︸
basis of Vs

.

With a slight abuse of notation, we denote this basis by (Xi)i6n, where the notation

“i 6 n” means

• either −∞ < i 6 n, if dim Prol g =∞;

• or −m 6 i 6 n, if m ∈ N is such that dim Prol g = m+ n+ 1.

We will adopt a similar convention for notations like “i 6 r” and “i 6 0”.

The Lie algebra Prol g possesses its own structure constants and generalized struc-

ture constants. We still denote these constants (that are defined for i, j, k 6 n

and α ∈ Nn) by ckij and ckiα because they clearly coincide with those of g when

1 6 i, j, k 6 n. Hence, as in Definition 4.8, for any fixed v ∈ Rn and any i 6 n

(i.e., also for i 6 0) one can define the extremal polynomial

(6.1) P v
i (x) :=

∑
α∈Nn

n∑
k=1

(−1)|α|

α!
ckiα vk x

α, x ∈ G,

where we agree that vk = 0 whenever k 6 0. As in Theorem 4.10, one can prove that

P v
i (0) = vi for any i 6 n

XjP
v
i =

∑
k6n

ckjiP
v
k for any i 6 n, 1 6 j 6 n.(6.2)

These formulae are key tools in the proof of the following result; see [20] for more

details.

Theorem 6.1. Let γ : [0, 1]→ G be an abnormal extremal with γ(0) = 0. Then, there

exists v ∈ Rn such that

(6.3) P v
i (γ) = 0 on [0, 1] for any i 6 r .

If the Goh condition holds, then the previous formula holds for any i 6 r2.

Proof. Given the formulae (6.2), the proof is quite elementary and similar to that of

Lemma 4.7. We prove (6.3) by reverse induction on the homogeneous degree1 d(i) of

i. We set again v := λ(0), λ being the dual curve associated with γ.

The base of the induction is the case d(i) = 1, where (6.3) holds by Theorem 4.14.

1Clearly, the homogeneous degree is defined by d(i) = k ⇔ Xi ∈ Vk also for i 6 0.
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Assume then that P v
k (γ) ≡ 0 for any k such that d(i) < d(k) 6 1. Let h ∈

L∞([0, 1],Rr) be the controls associated with γ, so that γ̇ =
∑r

j=1 hjXj(γ). Then

d

dt
P v
i ◦ γ =

r∑
j=1

hj XjP
v
i (γ)

(6.2)
=

r∑
j=1

∑
k6n

hjc
k
jiP

v
k (γ)

=
r∑
j=1

∑
k6n

d(k)=d(i)+1

hjc
k
jiP

v
k (γ) = 0 ,

i.e., P v
i (γ) is constant and equal to P v

i (γ(0)) = 0. �

Theorem 4.14 states that abnormal extremals in Carnot groups are contained in

certain algebraic varieties (of a very specific type). Theorem 6.1 improves it because it

states that these algebraic varieties can be made smaller, as there are more polynomials

(than in Theorem 4.14) that vanish along γ.

We show an application of our techniques to the Morse-Sard problem for abnormal

extremals. In our opinion, the strategy we follow has chances to be adapted to many

Carnot groups; however, we present it only in a specific group.

Let us consider the free2 Carnot group G of rank 2 and step 4, i.e., the group

associated with the stratified Lie algebra

g = V1 ⊕ V2 ⊕ V3 ⊕ V4

with

V1 = span{X1, X2}, V2 = span{X3},
V3 = span{X4, X5}, V4 = span{X6, X7, X8}

and commutation relations

[X2, X1] = X3

[X3, X1] = X4, [X3, X2] = X5

[X4, X1] = X6, [X4, X2] = [X5, X1] = X7, [X5, X2] = X8 .

Using exponential coordinates of the second type (see [12]), G can be identified with

R8 in such a way that

X1 = ∂1

X2 = ∂2 − x1∂3 +
x2

1

2
∂4 + x1x2∂5 −

x3
1

6
∂6 −

x2
1x2

2
∂7 −

x1x
2
2

2
∂8 .

We are going to prove the following result.

2Free means, roughly speaking, that it is the Carnot group with largest dimension among those

with rank 4 and step 2; equivalently, that any other such group is (isomorphic to) a quotient of the

free one.
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Theorem 6.2. Let G ≡ R8 be the free Carnot group of rank 2 and step 4. Then, there

exists a non-zero polynomial in 8 variables Q : R8 → R such that the following holds:

if p ∈ G is the endpoint of an abnormal extremal starting from 0, then Q(p) = 0.

In particular, the set of points in G that can be connected to the origin with abnormal

extremals is contained in the algebraic variety {x ∈ R8 : Q(x) = 0} and has measure

zero.

Remark 6.3. Theorems 4.14 and 6.1 show that any abnormal extremal is contained in

an algebraic variety whose definition depends on a parameter v, i.e., on the extremal

itself. On the contrary, by Theorem 6.2 there exists a universal algebraic variety

containing all abnormal extremals.

Proof. As proved in [41], the Tanaka prolongation of G is of the form Prol g = V0 ⊕ g

with dimV0 = 4. Let us extend X1, . . . , X8 to an adapted basis {Xi}−36i68 of Prol g.

By Theorem 6.1 we know that, for any abnormal extremal γ : [0, 1]→ G with γ(0) = 0,

there exists v ∈ R8 such that

(6.4) P v
i (γ) = 0 on [0, 1] for any i = −3, . . . , 3 .

We have also used Remark 3.22, i.e., the fact that the Goh condition holds. In partic-

ular,

vi = P v
i (0) = 0 for i = 1, 2, 3.

Therefore, recalling (6.1), any P v
i can be written in the form

P v
i (x) =

8∑
k=4

vkQik(x), i = −3, . . . , 8

for suitable polynomials Qik(x) that are independent from v. For any i = −3, . . . , 3,

let us define the map Qi : G→ R5 by

Qi(x) =
(
Qi4(x), Qi5(x), Qi6(x), Qi7(x), Qi8(x)

)
,

so that P v
i (x) = 〈(v4, . . . , v8), Qi(x)〉. Hence, (6.4) can be rewritten as

Qi(γ(t)) ⊥ (v4, . . . , v8) ∀t ∈ [0, 1], ∀ i = −3, . . . , 3 .

In particular, for any t ∈ [0, 1], the seven 5-dimensional vectors Qi(γ(t)),−3 6 i 6 3,

belong to the vector space (v4, . . . , v8)⊥ ⊂ R5; this vector space has dimension 4

because (v4, . . . , v8) 6= 0 due to Theorem 3.6 (i). Hence, any 5 of these 7 vectors are

linearly dependent, i.e., any 5× 5 minor of the 5× 7 matrix

(6.5) (Qik(x))−36i63
46k68

= col
[
Q−3|Q−2| · · · |Q3

]
(x)

has determinant 0 at any point x on γ. In particular, the determinant of the minor

col
[
Q−1|Q0|Q1|Q2|Q3

]
(x)

is a polynomial Q(x) (independent from v) which vanish along γ.

It is now a boring task to prove that Q is not the null polynomial; we refer to the

proof of [20, Theorem 4.1] for details. This concludes the proof. �
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Remark 6.4. The determinant of any 5 × 5 minor of the matrix in (6.5) has to

vanish along abnormal extremals; hence, in principle, one could produce
(

7
5

)
= 21

polynomials as in the statement of Theorem 6.2. See [20, Remark 4.2.] for a more

detailed discussion on these and other considerations.
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