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Abstract. In this paper we prove rigidity results on critical metrics for quadratic curvature
functionals, involving the Ricci and the scalar curvature, on the space of Riemannian metrics
with unit volume. It is well-known that Einstein metrics are always critical points. The
purpose of this article is to show that, under some curvature conditions, a partial converse is
true. In particular, for a class of quadratic curvature functionals, we prove that every critical
metric with non-negative sectional curvature must be Einstein.

1. Introduction

Let Mn be a closed smooth manifold of dimension n ≥ 3 and let M1(M
n) denote the space of

equivalence classes of smooth Riemannian metrics of volume one on Mn. As usual, metrics are
identified if they are related by the action of the diffeomorphism group. To fix the notation,
we recall the decomposition of the Riemann curvature tensor of a metric g into the Weyl,
Ricci and scalar curvature component

Rm = W +
1

n− 2
Ric©∧ g − 1

(n− 1)(n− 2)
Rg©∧ g ,

where©∧ denotes the Kulkarni-Nomizu product. It is well known [9] that Einstein metrics are
critical points for the Einstein-Hilbert functional

H =

∫
RdV

on M1(M
n). From this perspective, it is natural to study canonical metrics which arise as so-

lutions of the Euler-Lagrange equations for more general curvature functionals. In [3], Berger
commenced the study of Riemannian functionals which are quadratic in the curvature (see [4,
Chapter 4] and [15] for surveys). A basis for the space of quadratic curvature functionals is
given by

W =

∫
|W |2dV ρ =

∫
|Ric|2dV S =

∫
R2dV

and, from the decomposition of the Riemann tensor, one has

R =

∫
|Rm|2dV =

∫ (
|W |2 +

4

n− 2
|Ric|2 − 2

(n− 1)(n− 2)
R2

)
dV .

We recall that, in dimension three, the Weyl curvature vanishes, and in dimension four, the
Chern-Gauss-Bonnet formula∫ (

|W |2 − 2|Ric|2 +
2

3
R2

)
dV = 32π2χ(M)

implies that the Weyl functional W can be written as a linear combination of the other two
(with the addition of a topological term). All such functionals, which also arise naturally as
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total actions in certain gravitational fields theories in physics, have been deeply studied in
the last years by many authors. As it will be clear in Section 6, in dimension greater than
four, the Euler-Lagrange equation of the Weyl functional W has a different structure in the
zero order curvature terms. In particular, if n > 4, it is not true that Einstein metrics are
always critical points for this functional on M1(M

n).
For these reasons, following the notation in [7], in the first part of the paper, we will

consider only the curvature functional

Ft =

∫
|Ric|2dV + t

∫
R2dV ,

defined for some constant t ∈ R (with t = −∞ formally corresponding to the functional
S). Since in dimensions greater than four Ft is not scale-invariant, it is natural to restrict
the functional on M1(M

n). Equivalently, one can consider a modified functional properly
normalized with the volume of the manifold (see [7]).

It was already observed in [4] that every Einstein metric is critical for Ft on M1(M
n), for

every t ∈ R. The first basic question is whether all critical metrics are necessarily Einstein. Of
course, generally this is false. For instance, in dimension four, every Bach-flat metric is critical
for F−1/3 and every Weyl and scalar flat metric is critical F−1/4 on M1(M

4) (see [4, Chapter
4]). Moreover, Lamontagne in [14] constructed a homogeneous non-Einstein critical metric for
R = 4F−1/4 on M1(S3). From this point of view, it is natural to ask under which conditions
a critical metric for Ft must be Einstein. Typically, one assume some curvature conditions (of
pointwise or integral type, positivity or negativity of the curvature, etc.) on the critical metric
in order to prove rigidity properties. For instance, for S on M1(M

3) in [1, Proposition 1.1] the
author assumed that the scalar curvature of the critical metric has definite sign (actually this
holds in every dimension [5, Proposition 3.1]); for F−1/3 on M1(M

4) (variationally equivalent
to R) in [13] it is proved that every critical metric with non-positive sectional curvature is
Einstein; for F−1/3 on M1(M

3) in [16] the author assumed a pointwise pinching condition

on the Ricci curvature; finally, for F−3/8 on M1(M
3) (variationally equivalent to the σ2-

functional) in [6] the authors proved that every critical metric must be Einstein (hence a
space form), just assuming an integral condition, namely F−3/8 ≤ 0 (this result was extended
in dimension greater than four in the locally conformally flat case in [10]). As it will be clear
from Corollary 2.3 and Corollary 2.4, for some specific values of the parameter t, critical
metrics for Ft inherit additional properties from the Euler-Lagrange equation which implies
more constraints on the variational solution. For instance, every critical metric has constant
scalar curvature if t 6= −1/3 and n = 4 and it has constant σ2-curvature if t = −n/4(n − 1)
and n 6= 4. The results just quoted [13, 6, 10] belong to these cases.

In this paper we will prove some new rigidity results on critical metrics for Ft on M1(M
n).

Our first theorem characterizes critical metrics with non-negative sectional curvature.

Theorem 1.1. Let Mn be a closed manifold of dimension n ≥ 3. If g is a critical metric
for Ft on M1(M

n) for some t < −1/2 with non-negative sectional curvature, then g is an
Einstein metric.

In the case t = −1/2, we can show the following result.

Theorem 1.2. Let Mn be a closed manifold of dimension n ≥ 3. If g is a critical metric
for F−1/2 on M1(M

n) with non-negative sectional curvature, then g is either Einstein or the
following possibilities occur
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(i) If n = 3, then the universal cover (M̃3, g̃) is isometric to
(
S2 × R, a gS2 + b gR

)
, for

some positive constant a, b > 0.
(ii) If n = 4, then the universal cover (M̃4, g̃) is either isometric to

(
S2×S2, a gS2 + b gS2

)
or to

(
S2 × R2, a gS2 + b gR2

)
, for some positive constant a, b > 0.

(iii) If n > 4, then the universal cover (M̃n, g̃) is isometric to
(
S2×Rn−2, a gS2 + b gRn−2

)
,

for some positive constant a, b > 0.

Remark 1.3. We notice that the condition t < −1/2 in Theorem 1.1 is optimal. In fact,
for every t > −1/2, following [14], one can construct non-Einstein critical metrics gt for Ft

on M1(S3) (see [7, Section 7]). It turns out that these metrics have non-negative sectional
curvature if −1/2 < t ≤ 3/4. On the other hand, a condition on the sectional curvature is
necessary too. In fact, recently Gursky and Viaclovsky in [8] constructed critical metrics for
Ft on M1(M

4) for t “close” to a given value which depends on the topology of the Einstein
building blocks. In particular, they found solutions for t close to −1/2 and in some cases
for t < −1/2 (for precise estimates on the critical values see [18]). As it is clear from the
construction, all these metrics have changing sign sectional curvature.

Concerning critical metrics with non-positive sectional curvature, we can extend Lamon-
tagne result [13] in dimension four, proving the following

Theorem 1.4. Let M4 be a closed manifold of dimension four. If g is a critical metric for Ft

on M1(M
4) for some t ≥ −1/4 with non-positive sectional curvature, then g is an Einstein

metric.

In Section 5 we provide a rigidity result on critical metrics for Ft on M1(M
3) for t > −1/2.

As we have previously observed, one has to assume a stronger condition than non-negative
sectional curvature to exclude the non-Einstein examples. Moreover, the estimates used in
the proof of Theorem 1.1 are not sufficient in this regime of t, due to the presence of bad
terms with the wrong sign. We were able to overcome this difficulties by “weighting” the
Euler-Lagrange equation, and trying to compensate these quantities. Our result reads as
follows

Theorem 1.5. Let M3 be a closed manifold of dimension three. If g is a critical metric for
Ft on M1(M

3) for some −1/3 ≤ t < −1/6 with non-negative scalar curvature, then g has
constant positive sectional curvature if

|E|2 < (1 + 6t)2

24
R2 .

Remark 1.6. In the cases t = −1/3 (trace-less Ricci functional) and t = −5/16 (Schouten
functional), our result considerably improves the ones in [16] and in [11, Theorem 4.2], re-
spectively. Moreover, for t = −1/4 (Riemann functional), Theorem 1.5 gives a first answer to
a basic question posed by Anderson [1, Section 6] concerning the rigidity of critical metrics
for the L2-norm of the Riemann curvature tensor R.

Remark 1.7. We notice that the result in Theorem 1.5 also holds when t ≤ −1/2. In fact, the
pinching assumption implies that g has positive sectional curvature and Theorems 1.1 and 1.2
apply. Formally, in the case t = −∞, we recover part of a result in [1] on critical metrics for
S.
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In the last part of the paper (Section 6), we will compute the Euler-Lagrange equation
satisfied by critical metrics for a general quadratic curvature functional of the form

Ft,s =

∫
|Ric|2dV + t

∫
R2dV + s

∫
|Rm|2dV ,

defined for some constants t, s ∈ R. As we have already observed, from the variational point
of view this functional differs from Ft only in dimension greater than four. As one would
expect, space form metrics are critical for Ft,s on M1(M

n), whereas, due to the presence of
the full curvature tensor, in general Einstein metrics are not. Hence, a basic question would
be to find variational characterization of space form metrics as critical points for Ft,s on
M1(M

n), in the spirit of the work of Gursky and Viaclovsky [6] on critical metrics for

F−n/4(n−1) = −2(n− 2)2
∫
σ2(A) dV ,

where σ2(A) denotes the second elementary symmetric function of the Schouten tensor (see [17]).
As we have already observed (see Corollary 2.4), in dimension n 6= 4, a critical metric g for
this functional satisfy the Yamabe-type equation

σ2(Ag) = const .

We will show in Corollay 6.4 that, for every t ∈ R, the functional

F
t,−n+4(n−1)t

4

naturally extend the σ2-functional (which correspond exactly to the case s = 0). More
precisely, we will prove that for every t ∈ R, a critical metric g for F

t,−n+4(n−1)t
4

on M1(M
n),

n > 4, satisfies the Yamabe-type equation(
1 + 2(n− 1)t

)
σ2(Ag)− n+ 4(n− 1)t

16(n− 2)
|Wg|2 = const .

We hope that this property could help in proving some new variational characterizations of
space forms as critical metrics of these functionals.

To conclude, we mention that the problem of finding conditions that guarantee rigidity
of critical metrics for quadratic curvature functionals also has a lot of interest in the non-
compact setting. For instance, Anderson in [2] proved that every complete three-dimensional
critical metric for the Ricci functional ρ with non-negative scalar curvature is flat, whereas
in [5] we showed a characterization of complete critical metrics for S with non-negative scalar
curvature in every dimension.

2. The Euler-Lagrange equation for Ft

In this section we will compute the Euler-Lagrange equation satisfied by critical metrics for
Ft on M1(M

n) (see also [7]). The gradients of the functionals ρ and S are given by (see [4,
Proposition 4.66])

(∇ρ)ij = −∆Rij − 2RikjlRkl +∇2
ijR−

1

2
(∆R)gij +

1

2
|Ric|2gij ,

(∇S)ij = 2∇2
ijR− 2(∆R)gij − 2RRij +

1

2
R2gij .
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Hence, the gradient of Ft reads

(∇Ft)ij = −∆Rij +(1+2t)∇2
ijR−

1 + 4t

2
(∆R)gij +

1

2

(
|Ric|2+ tR2

)
gij−2RikjlRkl−2tRRij .

Moreover, g is critical for Ft on M1(M
n) if and only if (∇Ft) = c g, for some Lagrange

multiplier c ∈ R (see [4]). Tracing this equation, we obtain

n− 4

2

(
|Ric|2 + tR2

)
− n+ 4(n− 1)t

2
∆R = nc .

From these, we get that g is critical for Ft on M1(M
n) if and only if

−∆Rij + (1 + 2t)∇2
ijR−

2t

n
(∆R)gij +

2

n

(
|Ric|2 + tR2

)
gij − 2RikjlRkl − 2tRRij = 0 , (2.1)

and (
n+ 4(n− 1)t

)
∆R = (n− 4)

(
|Ric|2 + tR2 − λ

)
,

where λ = Ft(g). Defining the tensor E to be the trace-less Ricci tensor, Eij = Rij − 1
nRgij ,

we obtain the Euler-Lagrange equation of critical metrics for Ft on M1(M
n).

Proposition 2.1. Let Mn be a closed manifold of dimension n ≥ 3. A metric g is critical
for Ft on M1(M

n) if and only if it satisfies the following equations

∆Eij = (1 + 2t)∇2
ijR−

1 + 2t

n
(∆R)gij − 2RikjlEkl −

2 + 2nt

n
REij +

2

n
|E|2gij , (2.2)(

n+ 4(n− 1)t
)

∆R = (n− 4)
(
|Ric|2 + tR2 − λ

)
, (2.3)

where λ = Ft(g).

In particular, it follows that Einstein metrics are critical (see [4, Corollary 4.67]).

Corollary 2.2. Any Einstein metric is critical for Ft on M1(M
n).

From equation (2.3), if n = 4 and t 6= −1/3, we immediately get the following result.

Corollary 2.3. Let M4 be a closed manifold of dimension four. If g is a critical metric for
Ft on M1(M

4) for some t 6= −1/3, then g has constant scalar curvature.

Notice that, in dimension four, Gauss-Bonnet formula implies that F−1/3 is proportional
(plus a constant term) to the Weyl functional W. Hence, critical metrics are Bach-flat and,
in general, do not have constant scalar curvature. On the other hand, if t = −n/4(n−1), one
has

|Ric|2 − n

4(n− 1)
R2 = −2(n− 2)2σ2(A) ,

where σ2(A) denotes the second elementary symmetric function of the Schouten tensor

A =
1

n− 2

(
Ric− 1

2(n− 1)
Rg
)
.

Hence, when n 6= 4 and t = −n/4(n− 1), we have

F−n/4(n−1) = −2(n− 2)2
∫
σ2(A) dV

and equation (2.3) implies the following
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Corollary 2.4. Let Mn be a closed manifold of dimension n 6= 4. If g is a critical metric
for F−n/4(n−1) on M1(M

n), then g has constant σ2-curvature.

Now, contracting equation (2.2) with E we obtain the following Weitzenböck formula.

Proposition 2.5. Let Mn be a closed manifold of dimension n. If g is a critical metric for
Ft on M1(M

n), then the following formula holds

1

2
∆|E|2 = |∇E|2 + (1 + 2t)Eij∇2

ijR− 2RikjlEijEkl −
2 + 2nt

n
R|E|2 . (2.4)

Corollary 2.6. Let Mn be a closed manifold of dimension n. If g is a critical metric for Ft

on M1(M
n), then∫ (
|∇E|2 − (n− 2)(1 + 2t)

2n
|∇R|2

)
dV = 2

∫ (
RikjlEijEkl +

1 + nt

n
R|E|2

)
dV .

Proof. We simply integrate by parts equation (6.4) and use the second Bianchi identity

∇iEij = ∇iRij −
1

n
∇jR =

n− 2

2n
∇jR .

�

3. Critical metrics with non-negative sectional curvature

In this section we will prove Theorem 1.1 and Theorem 1.2. The first key observation is
the following pointwise estimate which is satisfied by every metric with non-negative sectional
curvature.

Proposition 3.1. Let (Mn, g) be a Riemannian manifold of dimension n ≥ 3 with non-
negative sectional curvature. Then, the following estimate holds

RikjlEijEkl ≤
n− 2

2n
R|E|2 .

Proof. Let {ei}, i = 1, . . . , n, be the eigenvectors of E and let λi be the corresponding
eigenvalues. Moreover, let σij be the sectional curvature defined by the two-plane spanned
by ei and ej . We want to prove that the quantity

RikjlEijEkl −
n− 2

2n
R|E|2 =

n∑
i,j=1

λiλjσij −
n− 2

2n
R

n∑
k=1

λ2k

is non-positive if σij ≥ 0 for all i, j = 1, . . . , n. The scalar curvature can be written as

R = gijgklRikjl =

n∑
i,j=1

σij = 2
∑
i<j

σij .

Hence, one has the following
n∑

i,j=1

λiλjσij −
n− 2

2n
R

n∑
k=1

λ2k = 2
∑
i<j

λiλjσij −
n− 2

n

∑
i<j

σij

n∑
k=1

λ2k

=
∑
i<j

(
2λiλj −

n− 2

n

n∑
k=1

λ2k

)
σij .
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On the other hand, one has
n∑

k=1

λ2k = λ2i + λ2j +
∑
k 6=i,j

λ2k .

Moreover, using the Cauchy-Schwarz inequality and the fact that
∑n

k=1 λk = 0, we obtain∑
k 6=i,j

λ2k ≥
1

n− 2

( ∑
k 6=i,j

λk

)2
=

1

n− 2

(
λi + λj

)2
.

Hence, the following estimate holds
n∑

k=1

λ2k ≥
n− 1

n− 2

(
λ2i + λ2j

)
+

2

n− 2
λiλj .

Using this, since σij ≥ 0, it follows that

n∑
i,j=1

λiλjσij −
n− 2

2n
R

n∑
k=1

λ2k ≤ n− 1

n

∑
i<j

(
2λiλj −

(
λ2i + λ2j

))
σij

= −n− 1

n

∑
i<j

(λi − λj)2σij ≤ 0 .

This concludes the proof of the proposition. �

From Corollary 6.7, we have that if g is a critical metric for Ft on M1(M
n), then∫ (

|∇E|2 − (n− 2)(1 + 2t)

2n
|∇R|2

)
dV = 2

∫ (
RikjlEijEkl +

1 + nt

n
R|E|2

)
dV .

If t ≤ −1/2, the left-hand side is nonnegative and is zero if and only if |∇E| = 0. On the
other hand, if g has non-negative sectional curvature, Proposition 3.1, implies that

RikjlEijEkl +
1 + nt

n
R|E|2 ≤

(
t+

1

2

)
R|E|2 .

In particular, if g is a critical metric g for Ft on M1(M
n) with non-negative sectional curva-

ture, we have ∫ (
|∇E|2 − (n− 2)(1 + 2t)

2n
|∇R|2

)
dV ≤ (1 + 2t)

∫
R|E|2dV .

Hence, if t < −1/2, then g has to be scalar flat or Einstein. If R ≡ 0, then g must be flat,
since it has non-negative sectional curvature. This concludes the proof of Theorem 1.1.

If t = −1/2, we have that ∇E = 0 on Mn. In particular, g has constant scalar curvature,
and, from the de Rham decomposition theorem, is locally a product of Einstein metrics.
Again, if R ≡ 0, then g has to be flat. So, from now on, we will assume that g has constant
positive scalar curvature R > 0. From the critical equation (2.1) we get

1

n

(
|Ric|2 − 1

2
R2
)
gij −RikjlRkl +

1

2
RRij = 0

Moreover, since g has parallel Ricci tensor, the commutation rule of covariant derivatives,
implies

0 = ∇p∇jRik −∇j∇pRik = RlijpRkl +RlkjpRil .
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Tracing with gpk, we get RikjlRkl = RikRjk. Hence, the Ricci tensor satisfies the quadratic
condition

1

n

(
2|Ric|2 −R2

)
gij − 2RikRjk +RRij = 0

In particular, every eigenvalue µ of the Ricci tensor, satisfies the equation

1

n

(
2|Ric|2 −R2

)
− 2µ2 +Rµ = 0 ,

which implies that

2µ2 −Rµ− 2

n

(
|E|2 − n− 2

2n
R2
)

= 0 .

Solving this equation, we get that every eigenvalue satisfies

µ =
1

4
R±

√
(n− 4)2

16n2
R2 +

1

n
|E|2 .

Now, let us assume that for some N 3 m ≥ 1, we have

µ1 = . . . = µm =
1

4
R+

√
(n− 4)2

16n2
R2 +

1

n
|E|2

and

µm+1 = . . . = µn =
1

4
R−

√
(n− 4)2

16n2
R2 +

1

n
|E|2

Clearly, if m = 1, we have that µ1 = 0 on Mn and µ2 = . . . = µn = 1
2R. If this is the case,

then n = 3 and we are exactly in case (i) of Theorem 1.2. On the other hand, if m = n
then the metric is Einstein. So, from now on we will assume that 2 ≤ m < n. Moreover, by
summing all the eigenvalues, we get the identity

n− 4

4
R = (n− 2m)

√
(n− 4)2

16n2
R2 +

1

n
|E|2 .

Since R > 0, we have that m = 2 if n = 3 or n = 4, and m < n/2 if n > 4. Thus, if n = 4,
we have that

µ1 = µ2 =
1

4
R+

1

2
|E| and µ3 = µ4 =

1

4
R− 1

2
|E| .

On the other hand, if n 6= 4, one has

|E|2 =
m(n−m)(n− 4)2

4n(n− 2m)2
R2 .

Thus, if n = 3, we have proved that

µ1 = µ2 =
1

2
R and µ3 = 0 ,

whereas, for n > 4, one has that

µ1 = . . . = µm =
n−m− 2

2(n− 2m)
R and µm+1 = . . . = µn =

2−m
2(n− 2m)

R .

Since g has non-negative Ricci curvature, if n > 4 the only admissible case is m = 2, so

µ1 = µ2 =
1

2
R and µ3 = . . . = µn = 0 .
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In conclusion, as a consequence of the de Rham decomposition theorem, we have shown that
if g is a critical metric for F−1/2 on M1(M

n) with non-negative sectional curvature, then g
is either Einstein or the following possibilities occur

(i) If n = 3, then the eigenvalues of the Ricci tensor are equal to µ1 = µ2 = 1
2R and

µ3 = 0, where R is a positive constant. In particular, the universal cover (M̃3, g̃) is
isometric to

(
S2 × R, a gS2 + b gR

)
, for some positive constant a, b > 0.

(ii) If n = 4, then the eigenvalues of the Ricci tensor are equal to µ1 = µ2 = 1
4R + 1

2 |E|
and µ3 = µ4 = 1

4R −
1
2 |E|, where R and |E| are positive constants. Now, there are

two possibilities: either µ3 = µ4 > 0 or µ3 = µ4 = 0. Hence, the universal cover
(M̃4, g̃) is either isometric to

(
S2 × S2, a gS2 + b gS2

)
or to

(
S2 ×R2, a gS2 + b gR2

)
, for

some positive constant a, b > 0.
(iii) If n > 4, then the eigenvalues of the Ricci tensor are equal to µ1 = µ2 = 1

2R and
µ3 = . . . = µn = 0, where R is a positive constant. Since g has non-negative sectional
curvature, the Ricci flat part has to be flat. Hence, the universal cover (M̃n, g̃) is
isometric to

(
S2 × Rn−2, a gS2 + b gRn−2

)
, for some positive constant a, b > 0.

This concludes the proof of Theorem 1.2.

4. Critical metrics with non-positive sectional curvature

In this section we will prove Theorem 1.4. First of all we show some useful estimates which
hold for every n-dimensional Riemannian manifold. We recall the definition of the Cotton
tensor

Cijk = ∇kRij −∇jRik −
1

2(n− 1)

(
∇kRgij −∇jRgik

)
.

We have the following formula (see [6, Section 4] for this formula in dimension three).

Proposition 4.1. Let (Mn, g) be a Riemannian manifold of dimension n ≥ 3. Then, the
following integral formula holds∫ (

|∇E|2 − (n− 2)2

4n(n− 1)
|∇R|2 − 1

2
|C|2

)
dV =

∫ (
RikjlEijEkl − EijEikEjl −

1

n
R|E|2

)
dV .

Proof. A simple computation shows that

1

2
|C|2 = |∇E|2 − (n− 2)2

4n2(n− 1)
|∇R|2 −∇kEij∇jEik . (4.1)

Integrating by parts the last term, we get∫
∇kEij∇jEik dV = −

∫
Eij∇k∇jEik dV

= −
∫ (

Eij∇j∇kEik +RkjilEijEkl + EijEikEjl +
1

n
R|E|2

)
dV

= −
∫ (n− 2

2n
Eij∇i∇jR−RikjlEijEkl + EijEikEjl +

1

n
R|E|2

)
dV

=

∫ ((n− 2)2

4n2
|∇R|2 +RikjlEijEkl − EijEikEjl −

1

n
R|E|2

)
dV .

Using this identity and integrating equation (4.1) we get the desired result. �
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Proposition 4.2. Let (Mn, g) be a Riemannian manifold of dimension n ≥ 3 with non-
positive sectional curvature. Then, the following estimate holds

RikjlEijEkl +
1

n
R|E|2 + EijEikEjl ≤ 0 .

Moreover, if n = 4, equality occurs if and only if |E| = 0.

Proof. As in the proof of Proposition 3.1, we let {ei}, i = 1, . . . , n, be the eigenvectors of E
and Ric and let λi and µi be the corresponding eigenvalues. Moreover, let σij be the sectional
curvature defined by the two-plane spanned by ei and ej . We want to prove that the quantity

RikjlEijEkl +
1

n
R|E|2 + EijEikEjl =

n∑
i,j=1

λiλjσij +
1

n
R

n∑
k=1

λ2k +
n∑

k=1

λ3k

is non-positive if σij ≤ 0 for all i, j = 1, . . . , n. First of all, we notice that

n∑
i,j=1

λiλjσij +
1

n
R

n∑
k=1

λ2k +

n∑
k=1

λ3k = 2

n∑
i<j

λiλjσij +

n∑
k=1

µkλ
2
k ,

since µk = λk + 1
nR. Moreover, for every k, µk =

∑
i 6=k σik and

n∑
k=1

µkλ
2
k =

∑
i<j

(λ2i + λ2j )σij .

Hence
n∑

i,j=1

λiλjσij +
1

n
R

n∑
k=1

λ2k +
n∑

k=1

λ3k =
∑
i<j

(
2λiλj + λ2i + λ2j

)
σij =

∑
i<j

(λi + λj)
2σij ≤ 0 ,

since σij ≤ 0, and the inequality is proved.
Now we will analyze the equality case in dimension four. If equality occurs, then, choosing

(i, j, k, l) as a permutation of (1, 2, 3, 4), we get

0 =
4∑

i,j=1

(λi + λj)
2σij =

4∑
i,j=1

(
µi + µj −

1

2
R
)2
σij

=
4∑

i,j=1

(µi + µj
2

− µk + µl
2

)2
σij

=

4∑
i,j=1

(σij − σkl)2σij

= (σ12 − σ34)2(σ12 + σ34) + (σ13 − σ24)2(σ13 + σ24) + (σ14 − σ23)2(σ14 + σ23) .

This implies that σ12 = σ34, σ13 = σ24 and σ14 = σ23, since g has non-positive sectional
curvatures. Now, if we compute λ1, we get

λ1 = µ1 −
1

4
R =

4∑
j=2

σ1j −
1

2

∑
i<j

σij = 0 .

A similar argument shows that λi = 0 for every i, so the metric must be Einstein. �
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Now we can prove Theorem 1.4. Let M4 be a compact manifold of dimension four and g be
a critical metric for Ft on M1(M

4) for some t ≥ −1/4 with non-positive sectional curvature.
By Corollary 2.3, we know that g has constant scalar curvature. Moreover, since g is critical,
then, Corollary 6.7 implies that∫

|∇E|2dV = 2

∫ (
RikjlEijEkl +

1 + 4t

4
R|E|2

)
dV ≤ 2

∫
RikjlEijEkl dV ,

since R ≤ 0 and t ≥ 1/4. Using Propositions 4.1, we obtain

1

2

∫
|C|2dV ≤

∫ (
RikjlEijEkl +

1

n
R|E|2 + EijEikEjl

)
dV .

From Proposition 4.2, it follows that the right hand side is non-positive, so it must be zero
and the metric must be Einstein. This concludes the proof of Theorem 1.4.

5. Three dimensional critical metrics with positively pinched curvature

In this section we will prove Theorem 1.5. Let M3 be a closed manifold of dimension three
and g be a critical metric for Ft on M1(M

3) for some −1/3 ≤ t < −1/6. We will assume
that g has non-negative scalar curvature and it satisfies the piching condition

|E|2 < (1 + 6t)2

24
R2 . (5.1)

To prove that g must be Einstein, i.e. a constant sectional curvature metric, one would like
to follow the proof of Theorem 1.1. Unfortunately, it is easy to observe that, if t > −1/2, the
left-hand side of the integral formula in Corollary 6.7 could be non-positive. This observation
leads us to find a different strategy in order to deal with the gradient terms of the Euler-
Lagrange equation. In dimension three, the Riemann curvature tensor decomposes as

Rikjl = Eijgkl − Eilgjk + Eklgij − Ekjgil +
1

6
R (gijgkl − gilgjk) .

Hence, the equation (6.4) for critical metrics reads

1

2
∆|E|2 = |∇E|2 + (1 + 2t)Eij∇2

ijR+ 4EijEikEkj −
1 + 6t

3
R|E|2 .

Multiplying this latter with the scalar curvature R and integrating by parts over M3, we
obtain ∫ (

1

2
〈∇|E|2,∇R〉+R|∇E|2 − 1 + 2t

6
R|∇R|2 − (1 + 2t)E(∇R,∇R)

)
dV (5.2)

=

∫ (
1 + 6t

3
R2|E|2 − 4REijEikEkj

)
dV ,

where we used the second Bianchi identity ∇iEij = ∇jR/6. First of all we observe that,
under the assumption of Theorem 1.5, the right-hand side is non-positive. In fact, since E is
a symmetric traceless two-tensor, then one has the following sharp inequality [6, Lemma 4.2]

|EijEikEkj | ≤
1√
6
|E|3 .
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Thus, since R > 0, from the pinching assumption (5.1), we get

1 + 6t

3
R2|E|2 − 4REijEikEkj ≤ R|E|2

(
1 + 6t

3
R− 4√

6
|E|
)
≤ 0 . (5.3)

To conclude the proof, we have to estimate the left-hand side of equation (5.2). We have the
following

Lemma 5.1. Under the assumption of Theorem 1.5, one has∫ (
1

2
〈∇|E|2,∇R〉+R|∇E|2 − 1 + 2t

6
R|∇R|2 − (1 + 2t)E(∇R,∇R)

)
dV ≥ 0 .

Proof. From Bochner formula, one has

1

2
∆|∇R|2 = |∇2R|2 +Ric(∇R,∇R) + 〈∇∆R,∇R〉

= |∇2R|2 + E(∇R,∇R) +
1

3
R|∇R|2 + 〈∇∆R,∇R〉 .

Integrating by parts, we get∫
E(∇R,∇R) dV = −

∫ (
|∇2R|2 − |∆R|2 +

1

3
R|∇R|2

)
dV

≤
∫ (

2

3
|∆R|2 − 1

3
R|∇R|2

)
dV ,

where we have used the algebraic inequality |∇2R|2 ≥ |∆R|2/3. On the other hand, from the
traced equation of critical metrics

∆R = − 1

3 + 8t

(
|Ric|2 + tR2 − λ

)
, (5.4)

one has∫
|∆R|2dV =

∫
R∆2RdV = − 1

3 + 8t

∫
R∆|Ric|2dV − t

3 + 8t

∫
R∆R2dV

=

∫ (
1

3 + 8t
〈∇|Ric|2,∇R〉+

2t

3 + 8t
R|∇R|2

)
dV

=

∫ (
1

3 + 8t
〈∇|E|2,∇R〉+

2 + 6t

3(3 + 8t)
R|∇R|2

)
dV .

Putting all together, we have showed that∫
E(∇R,∇R)dV ≤

∫ (
2

3(3 + 8t)
〈∇|E|2,∇R〉 − 5 + 12t

9(3 + 8t)
R|∇R|2

)
dV .

We are now in the position to prove the lemma. We want to estimate the following quantity∫ (
1

2
〈∇|E|2,∇R〉+R|∇E|2 − 1 + 2t

6
R|∇R|2 − (1 + 2t)E(∇R,∇R)

)
dV .

Since t ≥ −1/3, from the previous inequality, we obtain
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∫ (
1

2
〈∇|E|2,∇R〉+R|∇E|2 − 1 + 2t

6
R|∇R|2 − (1 + 2t)E(∇R,∇R)

)
dV

≥
∫ (

5 + 16t

6(3 + 8t)
〈∇|E|2,∇R〉+R|∇E|2 +

1 + 2t

18(3 + 8t)
R|∇R|2

)
dV .

Now, since R > 0, then from Cauchy-Schwartz and Kato inequalities, we have

5 + 16t

6(3 + 8t)
〈∇|E|2,∇R〉 ≥ − |5 + 16t|

3(3 + 8t)
|E||∇E||∇R|

≥ − |5 + 16t|
3(3 + 8t)

εR|∇R|2 − |5 + 16t|
12(3 + 8t)ε

|E|2

R
|∇E|2 ,

for every ε > 0. Choosing ε = (1 + 2t)/(6|5 + 16t|), we have

5 + 16t

6(3 + 8t)
〈∇|E|2,∇R〉 ≥ − 1 + 2t

18(3 + 8t)
R|∇R|2 − (5 + 16t)2

2(1 + 2t)(3 + 8t)

|E|2

R
|∇E|2 .

Hence, the integrand we want to estimate is bounded by

5 + 16t

6(3 + 8t)
〈∇|E|2,∇R〉+R|∇E|2+ 1 + 2t

18(3 + 8t)
R|∇R|2 ≥ |∇E|

2

R

(
R2 − (5 + 16t)2

2(1 + 2t)(3 + 8t)
|E|2

)
.

Finally, using the pinching assumption (5.1), it is easy to prove that the right-hand side is
non-negative, since

(1 + 6t)2

24
≤ 2(1 + 2t)(3 + 8t)

(5 + 16t)2
,

if −1/3 ≤ t < −1/6. This concludes the proof of the lemma. �

Combining this latter with equation (5.2) and inequality (5.3), under the assumption of
Theorem 1.5, we have showed that∫

R|E|2
(

1 + 6t

3
R− 4√

6
|E|
)
dV = 0 .

Hence, E ≡ 0 on M3 since R > 0 and the pinching assumption (5.1) holds.
This concludes the proof of Theorem 1.5.

6. The Euler-Lagrange equation for Ft,s

In this section we will compute the Euler-Lagrange equation satisfied by critical metrics
for

Ft,s(g) =

∫
|Ric|2dV + t

∫
R2dV + s

∫
|Rm|2dV ,

on M1(M
n). As we have already observed in the introduction, this functional substantially

differs from Ft only in dimension greater than four.
To compute the Euler-Lagrange equation for Ft,s, we follow the computations in Section 2.

The gradients of the functionals ρ, S and R are given by (see [4, Proposition 4.66] and [4,
Proposition 4.70])

(∇ρ)ij = −∆Rij +∇2
ijR−

1

2
(∆R)gij − 2RikjlRkl +

1

2
|Ric|2gij ,
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(∇S)ij = 2∇2
ijR− 2(∆R)gij − 2RRij +

1

2
R2gij ,

and

(∇R)ij = −4∆Rij + 2∇2
ijR− 2RikpqRjkpq +

1

2
|Rm|2gij − 4RikjlRkl + 4RikRjk .

Hence, the gradient of Ft,s reads

(∇Ft,s)ij = −(1 + 4s)∆Rij + (1 + 2t+ 2s)∇2
ijR−

1 + 4t

2
(∆R)gij − 2RikjlRkl − 2tRRij

+
1

2

(
|Ric|2 + tR2 + s|Rm|2

)
gij − 2sRikpqRjkpq − 4sRikjlRkl + 4sRikRjk .

Moreover, g is critical for Ft,s on M1(M
n) if and only if (∇Ft,s) = c g, for some c ∈ R.

Tracing this equation, we obtain

n− 4

2

(
|Ric|2 + tR2 + s|Rm|2

)
− n+ 4(n− 1)t+ 4s

2
∆R = nc .

From these, we get that g is critical for Ft,s on M1(M
n) if and only if

−(1 + 4s)∆Rij + (1 + 2t+ 2s)∇2
ijR−

2t− 2s

n
(∆R)gij +

2

n

(
|Ric|2 + tR2 + s|Rm|2

)
gij +

−2(1 + 2s)RikjlRkl − 2tRRij − 2sRikpqRjkpq + 4sRikRjk = 0 , (6.1)

coupled with the scalar equation(
n+ 4(n− 1)t+ 4s

)
∆R = (n− 4)

(
|Ric|2 + tR2 + s|Rm|2 − λ

)
,

where λ = Ft,s(g). Substituting Eij = Rij − 1
nRgij , we obtain the Euler-Lagrange equation

of critical metrics for Ft,s on M1(M
n).

Proposition 6.1. Let Mn be a closed manifold of dimension n ≥ 3. A metric g is critical
for Ft,s on M1(M

n) if and only if it satisfies the following equations

(1 + 4s)∆Eij = (1 + 2t+ 2s)∇2
ijR−

1 + 2t+ 2s

n
(∆R)gij − 2(1 + 2s)RikjlEkl (6.2)

−2 + 2nt− 4s

n
REij +

2

n

(
|E|2 + s|Rm|2

)
gij − 2sRikpqRjkpq + 4sEikEjk ,

(
n+ 4(n− 1)t+ 4s

)
∆R = (n− 4)

(
|Ric|2 + tR2 + s|Rm|2 − λ

)
, (6.3)

where λ = Ft,s(g).

In particular, any Einstein critical metric must satisfy the following pointwise condition
(see also [4, Corollary 4.67])

Corollary 6.2. An Einstein metric is critical for Ft,s on M1(M
n) if and only if it satisfies

RikpqRjkpq =
1

n
|Rm|2gij .

Corollary 6.3. Any space form metric is critical for Ft,s on M1(M
n).
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In the case n 6= 4 and

s = −n+ 4(n− 1)t

4
one has the constancy of the following quantity

|Ric|2 + tR2 − n+ 4(n− 1)t

4
|Rm|2 .

Since the norm of the Riemann curvature tensor is given by

|Rm|2 = |W |2 +
4

n− 2
|Ric|2 − 2

(n− 1)(n− 2)
R2 ,

we obtain the following

Corollary 6.4. Let Mn be a closed manifold of dimension n > 4. If g is a critical metric g
for F

t,−n+4(n−1)t
4

on M1(M
n), then the quantity

−n+ 4(n− 1)t

4
|W |2 + 4(n− 2)

(
1 + 2(n− 1)t

)
σ2(A)

is constant on Mn.

Moreover, we notice that, when t = s = −1/4, Corollary 6.4 applies, In this case, the
integrand of the curvature functional F− 1

4
,− 1

4
vanishes if n = 3 and it corresponds (in fact,

it is proportional) to the Gauss-Bonnet integrand if n = 4. Furthermore, it follows from
equation (6.2) that all the second order terms in the Euler-Lagrange equation vanish. More
precisely, one has the following remarkable fact, which, in part, was already observed by
Berger in [3, Section 7] (see also [12]).

Corollary 6.5. Let Mn be a closed manifold of dimension n > 4. A metric g is critical for
F− 1

4
,− 1

4
on M1(M

n) if and only if it satisfies the following equation.

−RikjlEkl +
n− 6

2n
REij +

1

2n

(
4|E|2 − |Rm|2

)
gij +

1

2
RikpqRjkpq − EikEjk = 0 .

Moreover, the quantity

|W |2 + 2(n− 2)(n− 3)σ2(A)

is constant on Mn.

As already suggested by Berger, it will be interesting to have a complete classification of
these critical metrics. For the sake of completeness, we compute the pointwise and integral
Weitzenböck formulas of critical metrics for Ft,s.

Proposition 6.6. Let Mn be a closed manifold of dimension n > 4. If g is a critical metric
g for Ft on M1(M

n), then the following formula holds

1 + 4s

2
∆|E|2 = (1 + 4s)|∇E|2 + (1 + 2t+ 2s)Eij ∇2

ijR− 2(1 + 2s)RikjlEijEkl (6.4)

−2 + 2nt− 4s

n
R|E|2 − 2sEijRikpqRjkpq + 4sEijEikEjk .

Integrating by parts and using second Bianchi identity, we obtain
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Corollary 6.7. Let Mn be a closed manifold of dimension n > 4. If g is a critical metric
for Ft,s on M1(M

n), then∫ (
(1 + 4s)|∇E|2 − (n− 2)(1 + 2t+ 2s)

2n
|∇R|2

)
dV =

2

∫ (
(1 + 2s)RikjlEijEkl +

1 + nt− 2s

n
R|E|2 + sEijRikpqRjkpq − 2sEijEikEjk

)
dV .

In particular, if g is a critical metric for F
t,−n+4(n−1)t

4

on M1(M
n), then

−(n− 1)(1 + 4t)

∫ (
|∇E|2 − (n− 2)2

4n(n− 1)
|∇R|2

)
dV =

2

∫ (
− n− 2 + 4(n− 1)t

2
RikjlEijEkl +

n+ 2 + 2(3n− 2)t

2n
R|E|2 +

−n+ 4(n− 1)t

4
EijRikpqRjkpq +

n+ 4(n− 1)t

2
EijEikEjk

)
dV .
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