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Introduction.

Many variational problems involve geometric objects, both problems essentially geometric
in nature and problems where a set is one of the unknowns, such as for instance free bound-
ary problems, which are by now classical, and (more recently studied) free discontinuity
problems (see [2], [3]). This leads to the introduction of objects more general than the clas-
sical differential manifolds, in order to be able to describe various phenomena not allowed
in the classical context, or also to get a (suitably defined) weak solution to be hopefully
regularized. Examples of such generalized manifolds are the sets of finite perimeter, the
varifolds, various classes of currents, whose introduction is mainly motivated by least area
type problems. It has an obvious interest to try to compare such classes (see for instance
[6]), and a considerable effort has been constantly produced in this direction.
More recently, new classes of geometric objects have been introduced in order to study
variational problems involving curvature depending functionals. In particular, we refer
to r-dimensional varifolds with second fundamental form in Lp (here denoted by W 2,p

r )
introduced by J.E.Hutchinson in [7] via an integration by parts formula (see also [4]), and
Sobolev classes proposed by E.De Giorgi as weak limits (with Lp bounds on the second
fundamental form) of functions which are locally the sum of characteristic functions of
graphs of regular functions of r variables (denoted FrC

κ).
In this paper we introduce a different notion of Sobolev type manifolds, closer to De
Giorgi’s FrC

κ classes and denoted by FrW
2,p (with p > r), whose members are (locally)

sums of characteristic functions of graphs of W 2,p functions of r variables, and attempt
a comparison between some of these classes. Our first motivation is the following: on
the one hand, a regularity result of Hutchinson’s states that a r-dimensional varifold with
second fundamental form in Lp, p > r, is locally the sum of graphs of C1,α multiple-valued
functions. On the other hand, it can be proved that any varifold in the Sobolev classes
belongs to the corresponding Hutchinson’s class. The natural questions is: are these two
classes equal? We will see that in general the answer is no (Example 4.4), because Sobolev
classes satisfy a stronger local regularity property.
A related question concerns the closure of FrC

κ(Ω) and FrW
2,p(Ω) classes in W 2,p

r (Ω) with
respect to the natural topology, i.e. weak∗ convergence of the corresponding measures in
Ω with Lp bounds on the second fundamental form. In particular, we address the question
whether the closure of FrC

κ(Ω) is contained in FrW
2,p(Ω). The answer is yes if (Theorems

2.3 and 2.4) and only if (§4) κ = ω (case of analytic regularity) or r = 1.
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The outline of the paper is the following: in §1 we recall the main definitions needed in
the paper, such as rectifiable sets and integer valued functions, and describe the classes
W 2,p

r

(

Ω
)

, FrC
κ
(

Ω
)

, FrW
2,p(Ω). In §2, after discussing some properties of W 2,p

r

(

Ω
)

, we
present the main results and deduce some consequences of the monotonicity formula (see
the Appendix for the statement and a short proof) which will be useful in proving theorems
2.3 and 2.4; such proofs occupy the whole of §3. Finally, §4 is devoted to explain some
geometric properties that the various classes may (or may not) share, in order to clarify the
precise bounds of our results. The discussion therein depends on the comparison between
the notions of local decomposability and global decomposability of an integer valued function.
In particular, we show that, except for the analytic case, local decomposability does not
imply global decomposability, even if the domain is simply connected. We also show that
for any p > r > 1 there exists a function f ∈ W 2,p

r which is approximable by FrC
∞

functions but does not belong to FrW
2,p.

1. Preliminaries.

In this section we introduce some classes of piecewise Cκ manifolds with multiplicities, and
we describe how the divergence theorem on manifolds leads to a “distributional” definition
of the second fundamental form (see [7], [8]).
Let n ≥ 2 and 1 ≤ r < n be integers. We denote by O(r, n) the set of (unoriented)
r-dimensional subspaces of Rn (henceforth r-planes), and use the same notation P for an
element of O(r, n), the orthogonal projection P : Rn → Rn which maps Rn onto P and
the associated matrix, whose entries are in turn denoted Pij ; the orthogonal complement
of P is denoted by P⊥ and the distance |P − Q| is that one induced over O(r, n) as a

subset of Rn2

. We shall use the notation Br
ρ(x) for {y ∈ Rr : |x− y| < ρ}, drop x if x = 0

and put ωr = Hr
(

Br
1

)

, for Hr the r-dimensional Hausdorff measure. Moreover, G(ϕ)
denotes the graph of the function ϕ, G(ϕ) = {(z, y) : y = ϕ(z)} and charS(x) denotes the
characteristic function of the set S evaluated at x. Notice also that when repeated indices
are present the sum is understood.
In the following definition we introduce the well known notions of rectifiability, approximate
tangent space, and tangential differential operators (see [5], [13]).

Definition 1.1. Let S ⊂ Rn. We say that S is countably Hr-rectifiable if there exists a
sequence of C1 submanifolds Γi of dimension r such that

Hr

(

S \
∞
⋃

i=1

Γi

)

= 0.

Let Ω ⊂ Rn be an open set and f : Ω → N. We set Sf = {x ∈ Ω : f(x) 6= 0}, and
we say that f is Hr-rectifiable in Ω if f−1(i) is countably Hr-rectifiable for any i ≥ 1
and

∫

Ω
fdHr < +∞. If f is Hr-rectifiable then for fHr-a.e. x ∈ Ω there is a unique

P ∈ O(r, n) such that
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(1.1) lim
ρ→0+

ρ−r

∫

Bn
ρ (x)

φ

(

y − x

ρ

)

f(y)dHr(y) = f(x)

∫

P

φ(y) dHr(y) ∀φ ∈ C1
0

(

Rn
)

.

If (1.1) holds, we say that P is the approximate tangent space to f and we denote it by
Pf (x). To any Hr-rectifiable function f : Ω → N we associate the varifold measure µf in
Ω ×O(r, n) by the formula

∫

Ω×O(r,n)

ϕ(x, P ) dµf =

∫

Ω

ϕ
(

x, Pf (x)
)

fdHr ∀ϕ ∈ C0
0

(

Ω ×O(r, n)
)

.

Finally, if x satisfies (1.1) and φ is a C1 function defined in a neighbourhood of x we define
the tangential gradient of φ at x

δfφ(x) =
(

δf
1φ(x), . . . , δf

nφ(x)
)

as the projection of ∇φ(x) on Pf (x).

We now introduce the classes FrC
κ
(

Ω
)

whose members are locally the sum of the charac-
teristic functions of a finite number of r-dimensional graphs of Cκ functions (see [3]).

Definition 1.2. Let Ω ⊂ Rn be an open set, κ ∈ N ∪ {∞, ω}, f : Ω → N. We say that
f ∈ FrC

κ
(

Ω
)

if for any x ∈ Sf we can find a neighbourhood U of x in Ω, a positive integer
q and r-dimensional Cκ (analytic if κ = ω) manifolds Γi (not necessarily distinct) such
that

f(x) =

q
∑

i=1

charΓi(x) ∀x ∈ U.

Remark 1.3. In an analogous way, we can define the class FrW
2,p

(

Ω
)

by requiring that
each Γi in Definition 1.2 is locally the graph of a Lipschitz continuous function of r variables
belonging to the class W 2,p. Notice that the Sobolev embedding theorem yields

FrW
2,p

(

Ω
)

⊂ FrC
1
(

Ω
)

for any p > r. Since graphs of Lipschitz continuous functions are (locally) rectifiable, the
condition f ∈ FrW

2,p
(

Ω
)

implies that f is locally Hr-rectifiable in Ω. From now on, we
shall be interested only to the case p > r.

Let us assume that Ω = Ω′ ×Rn−r with Ω′ ⊂ Rr. We now define the Cκ-local decompos-
ability property by requiring that the surfaces Γi of Definition 1.2 are graphs of Cκ maps
defined on the same r-plane.

Definition 1.4. Let κ ∈ N∪{∞, ω}. Let Ω′ ⊂ Rr be an open set and let f : Ω′×Rn−r →
N. The function f is said to be Cκ-locally decomposable if for any z ∈ Ω′ there exist an
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open neighbourhood Uz of z in Ω′, an integer q(z) > 0, and functions ϕ
(i)
z ∈ Cκ(Uz,R

n−r),
i = 1, . . . , q(z) such that

f(x) =

q(z)
∑

i=1

charG(ϕ(i)
z )(x) ∀x ∈ Uz × Rn−r.

Remark 1.5. It is clear that any Cκ-locally decomposable function belongs to FrC
κ
(

Ω′×

Rn−r
)

. Conversely, any f ∈ FrC
κ
(

Ω′ × Rn−r
)

is Cκ-locally decomposable if the tangent
planes to the surfaces Γi are nowhere vertical with respect to the r-plane Rr × {0}.
The function q(z) does not depend on the local decomposition. Indeed,

q(z) =
∑

y∈Rn−r

f(z, y) ∀z ∈ Ω′.

Furthermore, q is locally constant in Ω′ and therefore q is constant if Ω′ is connected.

Let us now recall the divergence theorem on curved manifolds (see [13], 7.1). For any
r-dimensional manifold without boundary M ⊂ Rn of class C2 and any φ ∈ C1

0

(

Rn
)

, the
following integration by parts formula holds:

(1.2)

∫

M

δM
i φdHr = −

∫

M

φHi dH
r i = 1, . . . , n,

where H is the mean curvature vector of M . Inserting in (1.2) a test function φ(x) =
ϕ
(

x, PM(x)
)

, where ϕ (depending both on x ∈ Rn and P ∈ O(r, n)) has compact support
with respect to x, we get

(1.3)

∫

M

[

δM
i ϕ

(

x, PM (x)
)

+Djkϕ
(

x, PM (x)
)

AM
ijk(x)

]

dHr =

=

∫

M

ϕ
(

x, PM (x)
)

Hi(x) dH
r,

where

δM
i ϕ(x, P ) = δM

i ϕ(·, P )(x) and Djkϕ(x, P ) =
∂ϕ(x, ·)

∂Pjk
(P ),

and AM
ijk(x) = δM

i (PM )jk(x) = δM
i δM

j xk. The coefficients AM
ijk and the second fundamental

form of M are each expressible in terms of the other and

(1.4) Hi = AM
jji ∀i = 1, . . . , n
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(see [7], [8]). These remarks led Hutchinson to give in [7] a definition of sets (with multi-
plicities) with p-summable weak second fundamental form equivalent (in an obvious sense)
to the following one, which is expressed in terms of integer valued functions.

Definition 1.6. Let Ω ⊂ Rn be an open set, let f : Ω → N be a Hr-rectifiable function,
and let p ≥ 1. We say that f ∈W 2,p

r

(

Ω
)

if and only if for i, j, k = 1, . . . , n there are Borel

functions Af
ijk : Ω → R such that

‖Af‖p =
(

∫

Ω

f
∑

i,j,k

∣

∣Af
ijk

∣

∣

p
dHr

)1/p

< +∞ if p <∞,

‖Af‖∞ = ess supx

{

f(x)
∑

i,j,k

∣

∣Af
ijk(x)

∣

∣

}

< +∞ if p = ∞,

and

(1.5)

∫

Ω

f(x)
(

δf
i ϕ(x, Pf (x)) +Djkϕ(x, Pf (x))Af

ijk(x)
)

dHr =

= −

∫

Ω

f(x)ϕ(x, Pf(x))Af
jji(x) dH

r

for any ϕ ∈ C1
0

(

Ω×Rn2)

and any i ∈ {1, . . . , n}. For any f ∈W 2,p
r

(

Ω
)

and any x ∈ Ω we
define

Tanx(f) =
{

P ∈ O(r, n) : (x, P ) ∈ supp(µf )
}

.

Remark 1.7. Let f ∈ FrW
2,p

(

Ω
)

. Then, by (1.3), f ∈ W 2,p
r

(

B
)

for any open set
B ⊂⊂ Ω, and

Af
ijk = δf

i δ
f
j xk. fHr−a.e. in Ω.

Moreover, if p > r, Tanx(f) consists of the tangent r-planes to the sheets of Sf at x.
The converse implication does not hold. Indeed, FrW

2,p
(

Ω
)

is in general strictly contained

in W 2,p
r

(

Ω
)

(see Example 4.4).

2. The main results.

It is natural to endow the set W 2,p
r

(

Ω
)

with the metrizable topology given by the weak∗

convergence of the Hausdorff measures associated to f , namely fh converges to f if and
only if
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lim
h→+∞

∫

Ω

φfh dH
r =

∫

Ω

φf dHr

for any φ ∈ C0
0

(

Ω
)

. In the following theorem we recall useful properties of FrC
κ
(

Ω
)

and

W 2,p
r

(

Ω
)

.

Theorem 2.1. Let n ≥ 2, 1 ≤ r ≤ n− 1 be integers, and let p > 1.
(1) If fh converges to f in W 2,p

r

(

Ω
)

and

(2.1)

∫

Ω

∣

∣Hh
∣

∣fh dH
r ≤ Γ ∀h ∈ N

for some Γ ≥ 0 (with Hh
i = Afh

jji), then µfh
weakly converges to µf in Ω ×O(r, n).

(2) For any Γ ≥ 0, the set

{

f ∈ W 2,p
r

(

Ω
)

:

∫

Ω

f dHr + ‖Af‖p ≤ Γ

}

is compact.
(3) If f ∈W 2,p

r

(

Ω
)

for some p > r, then for any x ∈ Sf ∩Ω we can find a finite number of
r-planes P1, . . . , PN ∈ O(r, n) and positive integers q1, . . . , qN such that

Tanx(f) =
{

P1, . . . , PN

}

and

(2.2) lim
ρ→0+

ρ−r

∫

Bn
ρ (x)×O(r,n)

ψ(P ) dµf(y, P ) = ωr

N
∑

i=1

qiψ(Pi)

for any continuous function ψ : O(r, n) → R. Moreover, Tanx(f) coincides with the
tangent cone to Sf at x.

(4) Let f ∈ FrC
κ
(

Ω
)

for some κ > 0, and let us assume that there is a finite number of
pairwise disjoint compact sets C1, . . . , CN ⊂ O(r, n) such that

supp(µf ) ⊂ Ω ×
N
⋃

i=1

Ci.

Then, we can find f1, . . . , fN in FrC
κ
(

Ω
)

such that

µfi
(B) = µf

(

B ∩ (Ω × Ci)
)

for any Borel set B ⊂ Ω ×O(r, n) and any i = 1, . . . , N , and (for p < +∞)

N
∑

i=1

‖Afi‖p
p = ‖Af‖p

p.
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Proof. (1) The upper bound (2.1) and the Allard compactness theorem (see e.g. [13],
Theorem 42.7 and Remark 42.8) yield a locally Hr-rectifiable function f ′ : Ω → N such
that (possibly passing to a subsequence) µfh

weakly converges to µf ′ . In particular, by
taking ϕ(x, P ) = φ(x) we infer

∫

Ω

φf dHr =

∫

Ω

φf ′ dHr ∀φ ∈ C1
0

(

Ω
)

,

hence f = f ′ Hr-a.e. and Pf , Pf ′ are equal Hr-almost everywhere in Ω.

(2) See [7], Theorem 4.4.2 or [9], Theorem 4.

(3) See [8], Theorem 3.4 and [13], Lemma 17.11.

(4) The construction of fi is simply obtained by selecting (locally) the graphs whose tangent
r-planes belong to Ci.

Remark 2.2. The decomposition property of Theorem 2.1(4) is also valid for f ∈
W 2,p

r

(

Ω
)

. By using this property and (2.2), Hutchinson proved in [8] that, for p > r,

any f ∈W 2,p
r

(

Ω
)

can be locally described as the graph of a multi-valued C1,α function in
the sense of Almgren (see [1]).

The main results of our paper are the following theorems.

Theorem 2.3. Let Ω ⊂ Rn be an open set, let r ∈ [2, n− 1] be an integer, and let p > r.
For any Γ > 0 we define

E =
{

f ∈ FrC
ω
(

Ω
)

: ‖Af‖p ≤ Γ
}

Then, the closure of E is a compact set strictly contained in

{

f ∈ FrW
2,p

(

Ω
)

: ‖Af‖p ≤ Γ
}

,

hence strictly contained in W 2,p
r

(

Ω
)

.

The characterization of the closure of E is still an open problem. We also note that,
because of the Lp bound on the second fundamental form, we cannot expect that the
functions whose graphs locally represent f ∈ E are better than W 2,p. Our proof, based
on a monotonicity formula, crucially depends on the assumption p > r and the case p = r
is, to our knowledge, open. In the case p = r = 2 related Lipschitz approximation results
have been proved in [11] and [14].
If we replace ω by ∞ in the definition of E then, by Example 4.5, E is not contained in
FrW

2,p
(

Ω
)

, but it is still contained in W 2,p
r

(

Ω
)

.
The following theorem deals with the one dimensional case.
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Theorem 2.4. Let Ω ⊂ Rn be an open set and let p > 1. Then, for any Γ ≥ 0 the closure
of the set

{

f ∈ F1C
2
(

Ω
)

: ‖Af‖p ≤ Γ
}

is contained in F1W
2,p

(

Ω
)

.

We now recall some facts which will be useful in the proof of Theorems 2.3, 2.4 presented
in §3. Let be A = Br

ρ1
×Bn−r

ρ2
, f : A→ N a locally Hr-rectifiable function, let

P0 =
{

x ∈ Rn : xr+1 = . . . = xn = 0
}

,

and let

m(z) =
∑

{

f(x) : x ∈ A, P0(x) = z
}

.

For any P ∈ O
(

r, n
)

we define

Jr

(

P, P0) = Hr
(

P0(QP )
)

where QP ⊂ P is any unit cube. We remark that 0 ≤ Jr

(

P, P0

)

≤ 1. Then, the area
formula (see e.g. [5], 3.2.3) yields

∫

Br
ρ1

m(z) dz =

∫

A

f(x)Jr

(

Pf (x), P0

)

dHr.

Let us check that for any δ < 1 we can choose ǫ > 0 so small that

(2.3) |P − P0| < ǫ =⇒ Jr

(

P, P0

)

≥ δ.

In fact, (2.3) holds if ǫ < 1/(r + 1) and δ are tied by the following relation:

δ =
[1 − (r + 1)ǫ

1 − ǫ

]r

.

Indeed, let (v1, . . . , vr) be an orthonormal basis of P , and set γi = P0(vi), and

γ′1 = γ1, γ′2 = γ2 − 〈γ2,
γ1

|γ1|
〉
γ1

|γ1|
, . . .

Then, Jr

(

P, P0

)

is the r-dimensional measure of the r-simplex generated by γ1, . . . , γr,

hence Jr

(

P, P0

)

=
∏r

i=1 |γ
′
i|. From the inequality

|P⊥
0 v| = |P⊥

0 v − P⊥v| ≤ |P⊥
0 − P⊥| = |P − P0| < ǫ,

(which holds for any v ∈ P ) it readily follows |γi| ≥ (1 − ǫ), |〈γi, γj〉| ≤ ǫ2 for i 6= j, and

|γ′i| ≥ (1 − ǫ) − (i− 1)
ǫ

1 − ǫ
≥

1 − (r + 1)ǫ

1 − ǫ
,

which proves our statement.
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The following lemma, whose proof is based on the monotonicity formula (see [8], and also
the Appendix below) is fundamental to estimate the oscillation of the tangent planes.

Lemma 2.5. Let n ≥ 2 and 1 ≤ r ≤ n− 1 be integers, Ω ⊂ Rn, and let p > r. Let fh be
converging to f in W 2,p

r

(

Ω
)

and let us assume that

‖Afh‖p ≤ Γ < +∞ ∀h ∈ N.

Then, the following implication holds:

(2.4) Ph ∈ Tanxh
(fh), (xh, Ph) → (x, P ) =⇒ P ∈ Tanx(f).

Proof. Let (xh, Ph), (x, P ) as in (2.4). Let ψ ∈ C1
(

Rn2)

be any Lipschitz function such
that ψ(P ) = 1 and 0 < δ ≤ ψ ≤ 1 for some δ > 0. By Theorem 2.1(3) we infer

lim inf
σ→0+

σ−r

∫

Bn
σ (xh)×O(r,n)

ψ(Q) dµfh
≥ ψ(Ph)ωr

because Ph ∈ Tanxh
(fh). By letting σ → 0+ in the monotonicity formula we get

[

ρ−r

∫

B
n

ρ (xh)×O(r,n)

ψ(Q) dµfh

]1/p

≥
[

ψ(Ph)ωr

]1/p
−

Γ

1 − r/p

(

1 + δ−1‖Dψ‖∞
)

ρ1−r/p,

so that, passing to the limit as h→ +∞ we find

ρ−r

∫

B
n

ρ (x)×O(r,n)

ψ(Q) dµf ≥

(

ω1/p
r −

Γ

1 − r/p

(

1 + δ−1‖Dψ‖∞
)

ρ1−r/p

)p

.

By letting ρ→ 0+ and using Theorem 2.1(3) we obtain

∑

Qi∈Tanx(f)

qiψ(Qi) ≥ 1.

Since ψ is arbitrary, this inequality can be true only if P is a member of Tanx(f).

3. Proof of Theorems 2.3, 2.4.

The proof of Theorem 2.3 and Theorem 2.4 is achieved in several steps, in which we first
control the cardinality of tangent planes, then their oscillation and finally the number of
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sheets. After these estimates, the crucial step consists in finding a global representation
of fh as a sum of characteristic functions of graphs (Step 5). This can be achieved (see
Theorem 4.4) only in the case of analytic regularity, corresponding to Theorem 2.3, and
in the one dimensional case, corresponding to Theorem 2.4. Since the proof of the two
theorems are essentially the same, we confine ourselves to Theorem 2.3.
Let an integer r ∈ [2, n − 1] be given, and let us assume that there exist an open set
Ω ⊂ Rn, p ∈ ]r,+∞[ and a sequence (fh) ⊂ FrC

ω
(

Ω
)

converging to f and such that

Γ = sup
h∈N

(

‖Afh‖p

)

< +∞.

We have to show that f ∈ FrW
2,p

(

Ω
)

. By Theorem 2.1(2), f ∈ W 2,p
r

(

Ω
)

. We fix x0 ∈

Ω∩ Sf and we construct a finite number of graphs of W 2,p functions which represent f in
a neighbourhood of x0. For simplicity we assume x0 = 0.

Step 1. We claim that it is not restrictive to assume that Tan0(f) is a singleton. Let
P1, . . . , PN be the members of Tan0(f) and let

ǫ =
1

3
inf

{

|Pi − Pj | : 1 ≤ i < j ≤ N

}

.

By Lemma 2.5, we can find R > 0 so small and h0 ∈ N such that Bn
R ⊂ Ω and

supp(µfh
) ∩Bn

R ×O(r, n) ⊂ Bn
r ×

N
⋃

i=1

Bn2

ǫ (Pi)

for any h ≥ h0. We apply the decomposition property of Theorem 2.1(4) to fh, getting
(fh,i) ∈ FrW

2,p
(

Bn
R

)

converging (up to subsequences) as h → +∞ to fi ∈ W 2,p
r

(

Bn
R

)

for
any i = 1, . . . , N . Since

µfh
=

N
∑

i=1

µfh,i
,

we get

µf =

N
∑

i=1

µfi
.

Hence, we need only to show that fi ∈ FrW
2,p

(

Bn
R

)

for any i. By the inclusion

supp(µfh,i
) ∩Bn

R ×O(r, n) ⊂ Bn
R × Ci,

and Theorem 2.1(1) we infer

supp(µfi
) ∩Bn

R ×O(r, n) ⊂ Bn
R × Ci,

so that Tan0(fi) = {Pi}.
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In the following we assume (up to a rotation in Rn) that Tan0(f) = {P0}, where we recall
that P0 is the projection on the first r coordinates. By Theorem 2.1(3) we get an integer
q ≥ 1 such that

(3.1) lim
ρ→0+

ρ−r

∫

Bn
ρ

fdHr = qωr.

Finally, Theorem 2.1(3) implies that we can find a sufficiently small R > 0 such that

(3.2) P0(x) 6= 0 ∀x ∈ Sf ∩Bn
R ⊂ Ω, x 6= 0.

Step 2. (height estimate) We claim that there exist R1 ∈ ]0, R[ and h1 ∈ N such that

h ≥ h1, x ∈
(

Br
R1

×Bn−r
R/2

)

, fh(x) 6= 0 ⇒ |P⊥
0 (x)| < R/4.

Let us show by contradiction that the statement holds true for R1 small enough. Indeed,
were it false, it would be possible to find sequences hk → +∞ and xk such that fhk

(xk) 6= 0,
P0(xk) → 0 and

R/2 > |P⊥
0 (xk)| ≥ R/4.

We can assume with no loss of generality that xk converges as k → +∞ to x∞ ∈ P⊥
0 ∩

B
n

R/2 \ {0}. By choosing ρ < R/2, ψ ≡ 1 and letting σ → 0+ in the monotonicity formula
(see the Appendix) we get

[

ρ−r

∫

B
n

ρ (xk)

fhk
dHr

]1/p

≥ ω1/p
r −

Γ

1 − r/p
ρ1−r/p,

so that

ρ−r

∫

B
n

ρ (x∞)

f dHr ≥

(

ω1/p
r −

Γ

1 − r/p
ρ1−r/p

)p

.

Since ρ > 0 is arbitrary, this shows that x∞ ∈ Sf , and this contradicts (3.2).

Step 3. (continuity of tangent planes) For any ǫ > 0 there exist h2 ≥ h1 and R2 ∈ ]0, R1[
such that

h ≥ h2, x ∈
(

Br
R2

×Bn−r
R/2

)

, fh(x) 6= 0, P ∈ Tanx(fh) ⇒ |P − P0| < ǫ.

Indeed, if the statement were not true it would exist ǫ > 0 and sequences hk, xk, Pk such
that

lim
k→+∞

hk = +∞, Pk ∈ Tanxk
(fhk

), lim
k→+∞

P0(xk) = 0

and |Pk − P0| ≥ ǫ. By using the same argument of Step 2 and (3.2), we can show that xk

converges to 0. Since Tan0(f) = {P0}, the contradiction follows by Lemma 2.5.

11



Notation: We set D = Br
R1

×Bn−r
R/2 .

Let δ < 1 be such that (q−1) < qδ (this choice will be useful in step 4) and let ǫ > 0 satisfy
(2.3). By using this step, possibly replacing R1 by R2 and h1 by h2, it is not restrictive to
assume that

h ≥ h1, x ∈ D, fh(x) 6= 0, P ∈ Tanx(fh) ⇒ |P − P0| < ǫ.

Since, by (2.3), Jr(P, P0) > δ > 0 for x ∈ D, P ∈ Tanx(fh) and h ≥ h1, it follows that the
tangent planes are not vertical with respect to P0. By Remark 1.5 and the height estimate
the functions fhcharD are Cω-locally decomposable in Br

R1
×Rn−r and the functions

qh(z) =
∑

{

fh(x) : x ∈ D, P0(x) = z
}

are constant in Br
R1

.

Step 4. (estimate on the number of sheets) We now claim that there exists h2 ≥ h1 such
that qh = q for any h ≥ h2, where q is given by (3.1).
Indeed, let q∞ be a limit point of the sequence qh, let us choose R2 ∈ ]0, R1[ and let
A = Br

R2
×Bn−r

R/2 . Since Hr
(

Sf ∩ ∂A
)

= 0, by weak convergence of measures we get

lim
h→+∞

∫

A

fh dH
r =

∫

A

f dHr.

The area formula yields

qhωrR
r
2 =

∫

Br
R2

qh dz =

∫

A

Jr

(

Pfh
(x), P0

)

fh dH
r,

so that, recalling our choice of ǫ,

δ

∫

A

fh dH
r ≤ qhωrR

r
2 ≤

∫

A

fh dH
r

and passing to the limit as h→ +∞ we get

δ

∫

A

f dHr ≤ q∞ωrR
r
2 ≤

∫

A

f dHr.

Since (q − 1)/δ < q and R2 can be so small that

q − 1

δ
<

1

ωrRr
2

∫

A

f dHr < q + 1,

we find that q∞ = q.

Step 5 For h ≥ h2 we can find q analytic functions

ϕ
(1)
h , . . . , ϕ

(q)
h : Br

R1
→ Bn−r

R/2

12



such that

fh(x) =

q
∑

j=1

charG
(

ϕ
(j)
h

)

(x) ∀x ∈ D.

Indeed, since fhcharD are Cω-locally decomposable for h ≥ h1 and qh = q for h ≥ h2, the
statement will follow by Theorem 4.4, to be proven below.

Step 6 The functions ϕ
(j)
h are equibounded in W 2,p

(

Br
R1

)

for h ≥ h2, j = 1, . . . , q.
First, we remark that by choosing ǫ small enough in Step 3 we can assume that the Lipschitz

constants of ϕ
(j)
h don’t exceed 1. Fix h and j, drop these indices, let g = charG(ϕ) with

ϕ =
(

ϕ1, . . . , ϕn−r

)

∈ W 2,p
(

Br
R1

)

, and let i, l ∈ {1, . . . , r}. For any k = r + 1, . . . , n the
equality (Pil and Ailk are evaluated at x = (z, ϕ(z)) and P = Pg)

Ag
ilk = δg

i

(

δg
l xk

)

=
r

∑

s=1

δg
i

(

Pls
∂ϕk−r

∂zs

)

=
r

∑

s=1

Ag
ils

∂ϕk−r

∂zs
+

r
∑

s,t=1

PitPls
∂2ϕk−r

∂zt∂zs

holds almost everywhere in Br
R1

. Summing in i, l and using the Lipschitz estimate we get

(3.3)

n
∑

k=r+1

r
∑

s,t=1

Bst(P )

∣

∣

∣

∣

∂2ϕk−r

∂zt∂zs

∣

∣

∣

∣

≤ 2r2‖Ag‖1 Hr − a.e. in Br
R1
,

where

Bst(P ) =

∣

∣

∣

∣

r
∑

i,l=1

PitPls

∣

∣

∣

∣

.

Since the mapping P 7→ Bst(P ) is continuous and Bst(P0) = 1, by a suitable choice of ǫ
in Step 3 we can assume that

Bst(P ) ≥
1

2
∀s, t ∈ {1, . . . , r}

for any tangent r-plane P to the graph of g = ϕ
(j)
h . Hence, the boundedness of ϕ

(j)
h in

W 2,p
(

Br
R1

)

follows by integrating (3.3) with ϕ = ϕ
(j)
h .

Step 7. Conclusion. Possibly passing to a subsequence, we can assume that ϕ
(j)
h weakly

converges to some function ϕ(j) in W 2,p
(

BR1

)

for any j = 1, . . . , q. It is then easy to see

that f
(j)
h converges in W 2,p

r

(

D
)

to f (j), where f
(j)
h = charG(ϕ

(j)
h ), f (j) = charG(ϕ(j)).

Since

13



∫

D

φ(x)fh dH
r =

q
∑

j=1

∫

D

φ(x) f
(j)
h dHr ∀φ ∈ C0

0

(

D
)

,

passing to the limit as h→ +∞ we get

∫

D

φ(x) fdHr =

q
∑

j=1

∫

D

φ(x) f (j)dHr ∀φ ∈ C0
0

(

D
)

,

so that in D the equality f =
∑q

j=1 f
(j) =

∑q
j=1 charG(ϕ(j)) holds. This shows that

E ⊂
{

f ∈ FrW
2,p

(

Ω
)

: ‖Af‖p ≤ Γ
}

.

Equality cannot hold because the set

{

f ∈ FrW
2,p

(

Ω
)

: ‖Af‖p ≤ Γ
}

is not closed (see Example 4.5).

4. Global decomposability and examples.

In this section we discuss the notion of global decomposability of an integer valued function,
a crucial step in the proof of Theorems 2.3, 2.4. Let Ω ⊂ Rr be a connected open set, and
let f : Ω × Rm → N be a Cκ-locally decomposable function according to Definition 1.4
(with m = n− r and Ω in place of Ω′).

Definition 4.1. The function f is said to be Cκ-globally decomposable in Ω if there exist
an integer q > 0 and functions ϕ(i) ∈ Cκ(Ω,Rm), i = 1, . . . , q such that

f(x) =

q
∑

i=1

charG(ϕ(i))(x) ∀x ∈ Ω × Rm.

Remark 4.2. If f : Ω×Rm → N is a Cκ-locally decomposable function with κ 6= 0, then
we can define a function

f ′ : Ω × Rm × Rrm → N

in the following way. If U ⊂ Ω and ϕ(i) ∈ Cκ(U,Rm), i = 1, . . . , q, are functions such that

f(x) =

q
∑

i=1

charG(ϕ(i))(x) ∀x ∈ U ×Rm,

14



then we set

f ′(x, p) =

q
∑

i=1

charG(φ(i))(x, p) ∀x ∈ U × Rm, p ∈ Rrm,

where φ(i)(z) =
(

ϕi(z), Dϕi(z)
)

∈ Rm × Rrm for any z ∈ Ω. This definition does not
depend on the choice of a local decomposition. Indeed, it can be easily seen that f ′(x, p)
is the greatest integer j such that there are Cκ-surfaces Γ1, . . . ,Γj of dimension r (not
necessarily distinct) such that

f ≥

j
∑

i=1

charΓi

in a neighbourhood of x and Tanx(Γi) = {Pp} for any i, where, if we think of p ∈ Rrm as
a linear operator from Rr into Rm, the r-plane Pp ⊂ Rr+m is given by

Pp :=
{

(z, p(z)) : z ∈ Rr
}

.

We call the function f ′ the blow-up of f . It is immediate from the definition that f ′ is
a Cκ−1-locally decomposable function if κ ∈ N, a Cκ-locally decomposable function if
κ ∈ {∞, ω}.

Lemma 4.3. Let κ ∈ N ∪ {∞}, let f : Ω × Rm → N be a Cκ-locally decomposable
function and let {ϕ(1), . . . , ϕ(q)}, {ψ(1), . . . , ψ(q)} be two Cκ-decompositions of f in an
open neighourhood U of z0 ∈ Ω. Then, there is a permutation σ of {1, . . . , q} such that

Dkϕ(i)(z0) = Dkψσ(i)(z0) ∀k ≤ κ, ∀i = 1, . . . , q.

Proof. We argue by induction on κ. The thesis is trivial if κ = 0. If κ > 0 is an
integer we consider the blow up f ′ of f . The function f ′ is Cκ−1-locally decomposable,
and Φ(i) := (ϕ(i), Dϕ(i)), Ψ(i) := (ψ(i), Dψ(i)) are two local decompositions in U . By the
inductive hypothesis there exists a permutation σ of {1, . . . , q} such that

DkΦ(i)(z0) = DkΨσ(i)(z0) ∀k ≤ κ− 1, i = 1, . . . , q,

but this is equivalent to

Dkϕ(i)(z0) = Dkψσ(i)(z0) ∀k ≤ κ, i = 1, . . . , q.

Finally, if κ = ∞ we can find for any integer p a permutation σp such that

Dkϕ(i)(z0) = Dkψσp(i)(z0) ∀k ≤ p, i = 1, . . . , q.

Since the set of permutations is finite, at least one of them satisfies the above formula for
infinitely many p.
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Theorem 4.4. Let Ω ⊂ Rr be an open set, and let f : Ω × Rm → N be Cκ-locally
decomposable in Ω. Then, f is Cκ-globally decomposable in Ω if at least one of the
following conditions is satisfied:
(1) κ = ω and Ω is simply connected;
(2) κ = 0 and m = 1;
(3) r = 1.

Proof. (1) We argue by induction on the number of sheets q. If q = 1, the thesis is
trivial. If q > 1, we fix a point z0 ∈ Ω and a Cω local decomposition ϕ(1), . . . , ϕ(q) of f in
a neighbourhood U of z0.
First of all, we claim that ϕ(1) can be analitically continued (in the sense of [12]) along
any continuous curve γ : [0, 1] → Ω starting at z0, i.e., there exists a finite number of pairs
(Di, fi) (i = 0, . . . , p) such that:
• each Di is a open ball contained in Ω and D0 ⊂ U ;
• charG(fi) ≤ f on Di × Rm and γ([0, 1]) ⊂

⋃p
i=0Di;

• Di ∩Di−1 6= ∅ for any i = 1, . . . , p;
• f0(z) = ϕ(1)(z) ∀z ∈ D0 and fi(z) = fi−1(z) ∀z ∈ Di ∩Di−1, i = 1, . . . , p.
In order to show that such an extension exists, let us consider a finite cover of γ([0, 1]) by a
finite number of balls D0, . . . , Dp such that D0 ⊂ U , Di∩Di−1 6= ∅ for i = 1, . . . , p and f is
decomposable over Di. Now let z ∈ D1 ∩D0 and let ψ(1), . . . , ψ(q) be a Cω decomposition
of f in D1. By Lemma 4.3 we can find a permutation σ such that

Dkϕ(1)(z) = Dkψσ(1)(z) ∀k ∈ N,

hence, by analiticity, ϕ(1) ≡ ψσ(1) on D1 ∩ D0. Therefore (D1, ψ
σ(1)) is an extension of

(D0, ϕ
(1)). Proceeding in the same way with D1 ∩D2, D2 ∩D3, . . ., in a finite number of

steps we have constructed the required extension along γ.
Since Ω is simply connected, by the construction of Theorem 16.15 of [12] the function
ϕ(1) can be analytically extended to a function φ defined in Ω such that f ≥ charG(φ).
Now, exploiting once more the analiticity of f and φ, it is easy to see that f − charG(φ)
is a Cω-locally decomposable function with q − 1 sheets, and so the thesis follows by the
inductive hypothesis.

(2) Let us fix a covering Uβ of Ω such that f can be decomposed over each Uβ. Since we are
interested only in C0 decompositions, we can assume that on each Uβ the decomposition

is given by functions ϕ
(1)
β , . . . , ϕ

(q)
β such that

ϕ
(1)
β (z) ≤ ϕ

(2)
β (z) . . . ≤ ϕ

(q)
β (z) ∀z ∈ Uβ .

Since the sets
{

ϕ
(1)
β (z), . . . , ϕ

(q)
β (z)

}

,
{

ϕ(1)
γ (z), . . . , ϕ(q)

γ (z)
}

are equal for any z ∈ Uβ ∩ Uγ , it follows that ϕ
(i)
β (z) = ϕ

(i)
γ (z) for any z ∈ Uβ ∩ Uγ and

any i = 1, . . . , q. This obviously leads to a global C0 decomposition.

(3) If κ = ω the thesis follows by (1). If κ ∈ N ∪ {∞}, let us consider the maximal open
interval I ⊂ Ω where f can be decomposed, and let ϕ(1), . . . , ϕ(q) be such a decomposition.
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Let us assume by contradiction that I 6= Ω, e.g. z0 := sup I < sup Ω. Let ψ(1), . . . , ψ(q) be
a local decomposition in an open neighbourhood U0 of z0, and let z ∈ U0 ∩ I. By Lemma
4.3, up to a permutation of the functions ψ(i), we can assume that

Dkϕ(i)(z) = Dkψ(i)(z) ∀k ≤ κ, ∀i = 1, . . . , q.

This equality easily leads to a decomposition of f in I ∪ U0, and this contradicts the
maximality of I. If inf I > inf Ω we follow a similar argument.

Now we show that if all the conditions (1), (2), (3) of Theorem 4.4 fail to be true, then
there exist functions f which are locally but not globally decomposable.

Example 4.1. In this example we exhibit a function f : R2 ×R2 → N that is C0-locally
decomposable but not C0-globally decomposable. This example can be easily generalized
to Cκ functions, with κ ∈ N ∪ {∞}, defined on Rr × Rm with r, m ≥ 2.
Let R4 = C2, and let

Γ1 :=
{

(z, 0) ∈ C2 : |z| ≤ 1
}

, Γ2 :=
{

(ψ(w), w) ∈ C2 : w 6= 0
}

,

where ψ : C \ {0} → C is defined in polar coordinates by

ψ(ρ, θ) = (ρ+ 1, 2θ), ρ > 0, θ ∈ R.

Let f = 2charΓ1 + charΓ2; we claim that f is locally decomposable with respect to the

plane C × {0}. Indeed, if z ∈ B1(0) then we can take Uz = B1(0) and ϕ
(1)
z = ϕ

(2)
z = 0. If

z /∈ B1(0), then z belongs to an open sector Sαβ of the form

Sαβ :=
{

(ρ, θ) ∈ C : ρ > 0, α < θ < β
}

with |α− β| < 2π. We set Uz = Sαβ and

ϕ1(ρ, θ) =

{

0 if ρ ≤ 1;
(ρ− 1, θ/2) if ρ > 1;

and

ϕ2(ρ, θ) =

{

0 if ρ ≤ 1;
(ρ− 1, π + θ/2) if ρ > 1;

for any (ρ, θ) ∈ Sαβ . Let us check that f is the sum of the graphs of ϕ1 and ϕ2 in Sαβ ×C.
Indeed, let z ∈ Sαβ and assume that (z, w) ∈ Γ1 ∪Γ2 for some w ∈ C. If (z, w) ∈ Γ1, then
w = 0 and |z| ≤ 1, hence

(z, w) = (z, ϕ1(z)) = (z, ϕ2(z)).
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If (z, w) ∈ Γ2, then z = ψ(w), with w 6= 0. Setting z = (ρz, θz) and w = (ρw, θw) we have

(ρz, θz) = ψ(w) = (ρw + 1, 2θw),

so that ρw = ρz + 1 and either θw = θz/2 or θw = θz/2 + π, i.e., either w = ϕ1(z) or
w = ϕ2(z).
Now we claim that f is not globally C0-decomposable. Indeed, let us assume that there
exists ϕ : C → C such that G(ϕ) ⊂ Γ1 ∪ Γ2 and let D = {z ∈ C : |z| > 1}; since
(z, ϕ(z)) ∈ Γ2 for any z ∈ D we get ψ(ϕ(z)) = z in D. This is impossible because
ψ : C \ {0} → D is a covering space of degree two (see [10], Theorem 5.1).

Remark 4.5 In order to have C∞ regularity in Example 4.1, it is enough to substitute ψ
with

ψ̄(ρ, θ) =
(

| log ρ|−
1
2 + 1, 2θ

)

and ρ − 1 with exp{(ρ − 1)−2} in the definition of ϕ1 and ϕ2. In higher dimensions, we
can consider the function g = f ◦ p, where

p(x1, . . . , xr; y1, . . . , ym) = (x1, x2; y1, y2).

Example 4.2. Let us consider the restriction of the function f of Example 4.1 to Ω×C,
where Ω := {z ∈ C : |z| > 1}. In this case Ω is not simply connected, f is a Cω-locally
decomposable function, and the same argument of Example 4.1 shows that f is not even
C0-globally decomposable.

Example 4.3. Let us consider the function g : R2 ×R → N defined by

g(x, y, z) = f(x, y, z, 0),

where f is the locally C∞-decomposable function of Remark 4.5. It is easy to see that also g
is locally C∞-decomposable. Furthermore, g is C0-globally decomposable because of The-
orem 4.4, but not C1-globally decomposable. Indeed, arguing as in the construction of the
blow up, f can be recovered from g by adding the θ derivative, hence C1-decomposability
of g implies C0-decomposability of f . As in Remark 4.5, this example can be extended to
higher dimensions.

Example 4.4. In this example we show that if n ≥ 3, and r ∈ [2, n− 1] are integers and
Ω ⊂ Rn is an open set, then the class FrW

2,p
(

Ω
)

is strictly contained in W 2,p
r

(

Ω
)

for any
p > r. It is not restrictive to take Ω = Bn

1 . We first consider the case n = 3 and r = 2.
We define

Γ :=
{

(ρ cos 2θ, ρ sin2θ, e
−

1

ρ2 cos θ) : ρ > 0, θ ∈ R
}

,

and the function f = charΓ. We claim that f ∈ W 2,∞
2

(

B3
1

)

. Indeed, a direct calculation

shows that Af
ijk = δf

i δ
f
j xk are bounded in B3

1 . Since f ∈ F2C
∞

(

B3
1 \ {0}

)

, by (1.3) and
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(1.4) we infer that (1.5) holds for any ϕ(x, P ) whose support does not touch {0} × R9.
Taking into account that

lim
ρ→0+

H2
(

B3
ρ ∩ Γ

)

πρ2
= 2,

a standard approximation argument shows that (1.5) remains valid for any ϕ ∈ C1
0

(

B3
1 ×

R9
)

.
On the other hand, Γ cannot be described in any neighbourhood of the origin as the union
of the graphs of two C1 functions, and therefore f /∈ F2W

2,p
(

B3
1

)

for any p > 2. In the
general case (n ≥ 4, r ∈ [2, n − 1]) the argument above may be applied to f = charT ,
where T is the cylinder T = Γ ×Rr−2 ×

{

0Rn−r−1

}

⊂ Rn.

Example 4.5. In this example we show that in general the closure of FrC
∞

(

Ω
)

is not

contained in FrW
2,p

(

Ω
)

. Let Γ(∞) ⊂ C2 be defined, in polar coordinates, by

Γ(∞) :=
{(

(| log ρ|−
1
2 , 2θ), (ρ, 3θ)

)

: ρ > 0, θ ∈ R
}

∪ {0}.

Let

Γ
(n)
1 :=

{

(z, 0) ∈ C2 : |z| ≤ 1/n
}

, Γ
(n)
2 :=

{

(ϕn(z), ψ(z)) ∈ C2 : z 6= 0
}

,

where ϕn, ψ are defined in C \ {0} by

ϕn(ρ, θ) = (| log ρ|−
1
2 +

1

n
, 2θ), ψ(ρ, θ) = (ρ, 3θ).

Finally, we set

fn := 2charΓ
(n)
1 + charΓ

(n)
2 , f∞ = charΓ(∞).

It is easy to see that the same argument of Example 4.1 shows that fn ∈ F2C
∞(C2).

Furthermore, a direct computation shows that Afn

ijk are equi-bounded in L∞ on compact

sets, and fnH
2 weakly converges to f∞H2. However, f∞ /∈ F2C

0(C2).

Appendix. The monotonicity formula.

In this appendix we state and prove the monotonicity formula for curvature varifolds which
we have exploited in the paper. Notice that here all the balls are n-dimensional, hence we
omit the dimension index.

Theorem. Let Ω ⊂ Rn open, p > r, f ∈W 2,p
r

(

Ω
)

, and let

Γ =

(
∫

Ω

∑

i,j,k

∣

∣Af
ijk

∣

∣

p
f dHr

)1/p

.
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Then, we have

(A.1)

[

ρ−r

∫

Bρ(x0)

ψ
(

Pf (x)
)

fdHr

]1/p

−

[

σ−r

∫

Bσ(x0)

ψ
(

Pf (x)
)

fdHr

]1/p

≥

≥
Γ
(

1 + λ
)

p− r

[

σ1−r/p − ρ1−r/p
]

,

whenever ψ ∈ C1
(

Rn2)

, 0 ≤ ψ ≤ 1, |Dψ| ≤ λψ and

Bσ(x0) ⊂ Bρ(x0) ⊂ Ω.

Proof. Let x0 ∈ Ω, R = dist(x0, ∂Ω), S = {x ∈ Ω : f(x) 6= 0}, δ = δf , let ψ as in the
statement of the theorem and let

E =
{

s ∈ ]0, R[ : Hr
(

S ∩ ∂Bs(x0)
)

> 0
}

.

For any 0 < σ < ρ < R we set

ϕσ,ρ(x) = (x− x0)
[

inf{σ−r, |x− x0|
−r} − ρ−r

]+
,

and

ϕ(x, P ) = ϕσ,ρ(x)ψ(P ).

Since ϕ : Rn ×Rn2

→ Rn is continuously differentiable outside the set

(

∂Bσ(x0) ∪ ∂Bρ(x0)
)

× Rn2

,

and globally Lipschitz continuous, a standard approximation argument shows that the
integration by parts formula is valid for each component of ϕ, provided neither σ nor ρ
belong to E.
We remark that E is at most countable and

supp(ϕσ,ρ) ⊂ Bρ(x0), ϕσ,ρ(x) = (x− x0)
(

σ−r − ρ−r
)

∀x ∈ Bσ(x0).

Taking into account the identity

n
∑

i,j=1

(xi − x0i)δi(xj − x0j)
2 = 2|πx(x− x0)|

2

where πx denotes the orthogonal projection on Pf (x), we find

divfϕσ,ρ(x, P ) =
n

∑

i,j=1

(δixi)
(

|x− x0|
−r − ρ−r

)

− r
(xi − x0i)δi(xj − x0j)

2

2|x− x0|r+2
=

= −rρ−r + r|x− x0|
−r + r

|πx(x− x0)|
2

|x− x0|r+2
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for any x ∈ Bρ(x0) \Bσ(x0) where Pf (x) is defined. Similarly

divfϕσ,ρ(x) = r
(

σ−r − ρ−r
)

for any x ∈ Bσ(x0) where Pf (x) is defined. Inserting ϕ = ϕσ,ρψ in the integration by parts
formula, we get

r

[

ρ−r

∫

Bρ(x0)

ψ
(

P (x)
)

fdHr

]

− r

[

σ−r

∫

Bσ(x0)

ψ
(

P (x)
)

fdHr

]

≥

≥ −

∫

Bρ(x0)

∑

i,j,k

(

Af
ijk(ϕσ,ρ)iDjkψ + Af

jji(ϕσ,ρ)iψ
)

fdHr.

By using our assumptions on ψ, the Hölder inequality and the estimate

|ϕσ,ρ| ≤ ρ(σ−r − ρ−r)

we obtain

(A.2)

r

[

ρ−r

∫

Bρ(x0)

ψ
(

P (x)
)

fdHr

]

− r

[

σ−r

∫

Bσ(x0)

ψ
(

P (x)
)

fdHr

]

≥

≥ −Γ(1 + λ)ρ
(

σ−r − ρ−r
)

[
∫

Bρ(x0)

ψ
(

P (x)
)

fdHr

]1−1/p

.

By approximation, the same inequality is true for any 0 < σ < ρ < R. Denoting by
γ :]0, R[→ R the function

γ(s) =

[

s−r

∫

Bs(x0)

ψ
(

P (x)
)

fdHr

]

,

dividing both sides by ρ− σ in (A.2) and letting σ ↑ ρ we get

γ′(ρ) ≥ −Γ(1 + λ)ρ−r
[

γ(ρ)ρr
]1−1/p

,

which is equivalent to

p
[

γ1/p
]′

(ρ) ≥ −Γ(1 + λ)ρ−r/p.

Taking into account that the negative part of the distributional derivative of γ is absolutely
continuous, (A.1) follows by integration between σ and ρ.
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