Approximation problems for curvature varifolds

L. Ambrosio* M. Gobbino** D. Pallara***

Introduction.

Many variational problems involve geometric objects, both problems essentially geometric
in nature and problems where a set is one of the unknowns, such as for instance free bound-
ary problems, which are by now classical, and (more recently studied) free discontinuity
problems (see [2], [3]). This leads to the introduction of objects more general than the clas-
sical differential manifolds, in order to be able to describe various phenomena not allowed
in the classical context, or also to get a (suitably defined) weak solution to be hopefully
regularized. Examples of such generalized manifolds are the sets of finite perimeter, the
varifolds, various classes of currents, whose introduction is mainly motivated by least area
type problems. It has an obvious interest to try to compare such classes (see for instance
[6]), and a considerable effort has been constantly produced in this direction.

More recently, new classes of geometric objects have been introduced in order to study
variational problems involving curvature depending functionals. In particular, we refer
to r-dimensional varifolds with second fundamental form in LP (here denoted by W2P)
introduced by J.E.Hutchinson in [7] via an integration by parts formula (see also [4]), and
Sobolev classes proposed by E.De Giorgi as weak limits (with LP bounds on the second
fundamental form) of functions which are locally the sum of characteristic functions of
graphs of regular functions of r variables (denoted F,.C*).

In this paper we introduce a different notion of Sobolev type manifolds, closer to De
Giorgi’s F.C* classes and denoted by F,.W?? (with p > r), whose members are (locally)
sums of characteristic functions of graphs of WP functions of r variables, and attempt
a comparison between some of these classes. Our first motivation is the following: on
the one hand, a regularity result of Hutchinson’s states that a r-dimensional varifold with
second fundamental form in LP, p > r, is locally the sum of graphs of C*® multiple-valued
functions. On the other hand, it can be proved that any varifold in the Sobolev classes
belongs to the corresponding Hutchinson’s class. The natural questions is: are these two
classes equal? We will see that in general the answer is no (Example 4.4), because Sobolev
classes satisfy a stronger local regularity property.

A related question concerns the closure of F.C*(Q) and F,W?2P(Q) classes in W2P () with
respect to the natural topology, i.e. weak™ convergence of the corresponding measures in
Q) with LP bounds on the second fundamental form. In particular, we address the question
whether the closure of F,.C* () is contained in F,,W?2P(€2). The answer is yes if (Theorems
2.3 and 2.4) and only if (§4) K = w (case of analytic regularity) or r = 1.

* Scuola Normale Superiore, P.za Cavalieri 7, I-56126 Pisa
** Ist. Mat. Appl. “U. Dini”, Via Bonanno 25 bis, I-56100 Pisa
% Dipartimento di Matematica, Universita di Lecce, I-73100 Lecce.

1



The outline of the paper is the following: in §1 we recall the main definitions needed in
the paper, such as rectifiable sets and integer valued functions, and describe the classes
W2 (Q), EF.Cr (Q), F,W2P(Q). In §2, after discussing some properties of W 2P (Q), we
present the main results and deduce some consequences of the monotonicity formula (see
the Appendix for the statement and a short proof) which will be useful in proving theorems
2.3 and 2.4; such proofs occupy the whole of §3. Finally, §4 is devoted to explain some
geometric properties that the various classes may (or may not) share, in order to clarify the
precise bounds of our results. The discussion therein depends on the comparison between
the notions of local decomposability and global decomposability of an integer valued function.
In particular, we show that, except for the analytic case, local decomposability does not
imply global decomposability, even if the domain is simply connected. We also show that
for any p > r > 1 there exists a function f € W2P which is approximable by F,.C>
functions but does not belong to F,W?2P.

1. Preliminaries.

In this section we introduce some classes of piecewise C'* manifolds with multiplicities, and
we describe how the divergence theorem on manifolds leads to a “distributional” definition
of the second fundamental form (see [7], [8]).

Let n > 2 and 1 < r < n be integers. We denote by O(r,n) the set of (unoriented)
r-dimensional subspaces of R™ (henceforth r-planes), and use the same notation P for an
element of O(r,n), the orthogonal projection P : R™ — R™ which maps R™ onto P and
the associated matrix, whose entries are in turn denoted P;;; the orthogonal complement
of P is denoted by P+ and the distance |P — @] is that one induced over O(r,n) as a
subset of R™". We shall use the notation B)(z) for {y e R": [z —y| < p}, drop z if x =0
and put w, = H" (B{), for H" the r-dimensional Hausdorff measure. Moreover, G(¢p)
denotes the graph of the function ¢, G(¢) = {(2,y) : y = ¢(z)} and charS(z) denotes the
characteristic function of the set S evaluated at x. Notice also that when repeated indices
are present the sum is understood.

In the following definition we introduce the well known notions of rectifiability, approximate
tangent space, and tangential differential operators (see [5], [13]).

Definition 1.1. Let S C R". We say that S is countably H"-rectifiable if there exists a
sequence of C'! submanifolds I'; of dimension 7 such that

w5\ 0r) =

Let & C R™ be an open set and f : @ — N. We set Sy = {z € Q: f(z) # 0}, and
we say that f is H"-rectifiable in Q if f~1(i) is countably H"-rectifiable for any i > 1
and fQ fdH" < 4o00. If f is H"-rectifiable then for fH"-a.e. x € () there is a unique
P € O(r,n) such that



)t [ g(x)qb(y_x)f(y)dHT(y)zf(:v) [omat)  voeci®).

p—0t p

If (1.1) holds, we say that P is the approximate tangent space to f and we denote it by
P¢(x). To any H"-rectifiable function f : 2 — N we associate the varifold measure py in
Q x O(r,n) by the formula

/ o(x, P)duy = / o(z, Pr(z)) fdH" Vo € Cy (2 x O(r,n)).
QxO(r,n) Q

Finally, if x satisfies (1.1) and ¢ is a C?* function defined in a neighbourhood of x we define
the tangential gradient of ¢ at x

67 ¢(x) = (6] 6(x),...,60(x))
as the projection of V¢(x) on Pr(x).

We now introduce the classes F,.C" (Q) whose members are locally the sum of the charac-
teristic functions of a finite number of r-dimensional graphs of C* functions (see [3]).

Definition 1.2. Let Q C R™ be an open set, k € NU {oco,w}, f: Q@ — N. We say that
feF.Cr (Q) if for any x € Sy we can find a neighbourhood U of x in €, a positive integer
q and r-dimensional C* (analytic if x = w) manifolds I'; (not necessarily distinct) such
that

q
f(x) = Zcharfi(x) Ve e U.
i=1

Remark 1.3. In an analogous way, we can define the class F,W?2?P (Q) by requiring that
each I'; in Definition 1.2 is locally the graph of a Lipschitz continuous function of r variables
belonging to the class W?2P. Notice that the Sobolev embedding theorem yields

EW?P(Q) C F.CH(Q)

for any p > r. Since graphs of Lipschitz continuous functions are (locally) rectifiable, the
condition f € F,W?2P (Q) implies that f is locally H"-rectifiable in 2. From now on, we
shall be interested only to the case p > 7.

Let us assume that Q = Q' x R™™" with ' C R". We now define the C*-local decompos-
ability property by requiring that the surfaces I'; of Definition 1.2 are graphs of C* maps
defined on the same r-plane.

Definition 1.4. Let K € NU{oo,w}. Let ' C R" be an open set and let f : @' xR"™" —
N. The function f is said to be C*-locally decomposable if for any z € € there exist an
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open neighbourhood U, of z in £, an integer ¢(z) > 0, and functions 909 e C*"(U,,R"T),
i=1,...,q(z) such that

q(z)
f(z) = ZcharG(gogi))(x) Vee U, x R"™".

=1

Remark 1.5. It is clear that any C"-locally decomposable function belongs to F,.C* (Q’ X
R”_’“). Conversely, any f € F,.C" (Q’ X R”_’“) is C"-locally decomposable if the tangent
planes to the surfaces I'; are nowhere vertical with respect to the r-plane R" x {0}.

The function ¢(z) does not depend on the local decomposition. Indeed,

q(z) = Z f(z,9) Vze Q.

yeRn—T
Furthermore, ¢ is locally constant in €’ and therefore ¢ is constant if €2’ is connected.
Let us now recall the divergence theorem on curved manifolds (see [13], 7.1). For any

r-dimensional manifold without boundary M C R™ of class C? and any ¢ € C§ (R”), the
following integration by parts formula holds:

(1.2) /@M(bdwz—/ OH;dH™ i=1,...,n,
M M

where H is the mean curvature vector of M. Inserting in (1.2) a test function ¢(z) =
go(x, PM(x)), where ¢ (depending both on z € R™ and P € O(r,n)) has compact support
with respect to z, we get

/M [(5fw<p(x,PM(x)) + Djkgo(x, PM(x))Af\fk(x)} dH"™ =

(1.3)
- / (i, Py () Hi () dH,
M
where
Mp(z, P) = 6M (-, P)(z) and Djpp(z, P) = Dol ) (P),
OPj,
and Af‘fk(:v) = oM (Py)j(z) = 5ZM(5§W:B;€. The coefficients Af‘fk and the second fundamental

form of M are each expressible in terms of the other and

— AM -
(]_.4) HZ —AJJZ VZ — ].,...,n



(see [7], [8]). These remarks led Hutchinson to give in [7] a definition of sets (with multi-
plicities) with p-summable weak second fundamental form equivalent (in an obvious sense)
to the following one, which is expressed in terms of integer valued functions.

Definition 1.6. Let 2 C R"™ be an open set, let f : 2 — N be a H"-rectifiable function,
and let p > 1. We say that f € W2P (Q) if and only if for 7,5,k = 1,...,n there are Borel

functions A{J i - £ — R such that

/
0= ([l a) < v i<

i,5,k
|A7[| oo = ess supx{ Z‘Azyk ‘} < 4oo if p= o0,
1,7,k

and

/ F(2) (6 (2, Pr()) + Djnep(r, P() AL () dH” =
(1.5) @

=~ | et Pl @) art

for any ¢ € C} (Q X R”z) and any i € {1,...,n}. For any f € Wf’p(Q) and any x € 2 we
define

Tan,(f) = {P € O(r,n) : (x, P) € supp(uys)}.

Remark 1.7. Let f € F,W??(Q). Then, by (1.3), f € W2P(B) for any open set
B cc Q, and

Al =6l6lap.  fH'—ae inQ.

Moreover, if p > r, Tan,(f) consists of the tangent r-planes to the sheets of Sy at .
The converse implication does not hold. Indeed, F, W 2P (Q) is in general strictly contained
in W2P(Q) (see Example 4.4).

2. The main results.

It is natural to endow the set W2P (Q) with the metrizable topology given by the weak*
convergence of the Hausdorff measures associated to f, namely fj converges to f if and
only if



Jlim /Q o dHT = /Q of dH"

for any ¢ € C3 (Q) In the following theorem we recall useful properties of F,.C* (Q) and
w2 (9).

Theorem 2.1. Let n > 2,1 <r <n —1 be integers, and let p > 1.
(1) If f, converges to f in W2P () and

(2.1) /\Hh\fhdwgr Vh e N
Q

for some I" > 0 (with Hih = Al

i5i), then py, weakly converges to piy in 2 x O(r,n).
(2) For any I" > 0, the set

{f e W2r(Q) / Fan + A7), < r}
Q

is compact.

(3) If f € WP (Q) for some p > r, then for any x € Sy N we can find a finite number of
r-planes Py, ..., Py € O(r,n) and positive integers qi,...,qn such that

Tanx(f) = {Pl, .. .,PN}

and

N
(2.2) A $(P) iy (s, P) = wn 3 qito(P)
B (z)xO(r,n) i1

p—0T

for any continuous function ¢ : O(r,n) — R. Moreover, Tan,(f) coincides with the
tangent cone to Sy at x.

(4) Let f € F,C*(Q) for some £ > 0, and let us assume that there is a finite number of

pairwise disjoint compact sets C1,...,Cn C O(r,n) such that
N
supp(py) C £ x U C;.
i=1

Then, we can find f1,..., fy in F.C" (Q) such that

ps(B) = s (BN (Qx C))
for any Borel set B C 2 x O(r,n) and any i = 1,..., N, and (for p < +00)

N
Z HAfi
i=1

b= 1A%,
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Proof. (1) The upper bound (2.1) and the Allard compactness theorem (see e.g. [13],
Theorem 42.7 and Remark 42.8) yield a locally H"-rectifiable function f’: Q — N such
that (possibly passing to a subsequence) jy, weakly converges to puy . In particular, by
taking ¢(z, P) = ¢(x) we infer

/qbdeT:/gbf’dHT Vo € Cy(9),
Q Q

hence f = f' H"-a.e. and Py, Py are equal H"-almost everywhere in .
(2) See [7], Theorem 4.4.2 or [9], Theorem 4.
(3) See [8], Theorem 3.4 and [13], Lemma 17.11.

(4) The construction of f; is simply obtained by selecting (locally) the graphs whose tangent
r-planes belong to C;.

Remark 2.2. The decomposition property of Theorem 2.1(4) is also valid for f €
W2p (Q) By using this property and (2.2), Hutchinson proved in [8] that, for p > r,
any f € W2P (Q) can be locally described as the graph of a multi-valued C** function in
the sense of Almgren (see [1]).

The main results of our paper are the following theorems.

Theorem 2.3. Let QQ C R" be an open set, let r € [2,n — 1] be an integer, and let p > r.
For any I" > 0 we define

E= {f € F.C%(Q) : AT, < r}

Then, the closure of E is a compact set strictly contained in
{ferw?r(@) 4|, <1},

hence strictly contained in WP ().

The characterization of the closure of E is still an open problem. We also note that,
because of the LP bound on the second fundamental form, we cannot expect that the
functions whose graphs locally represent f € E are better than W?2P. Our proof, based
on a monotonicity formula, crucially depends on the assumption p > r and the case p = r
is, to our knowledge, open. In the case p = r = 2 related Lipschitz approximation results
have been proved in [11] and [14].

If we replace w by oo in the definition of E then, by Example 4.5, E is not contained in
F,W?*P(Q), but it is still contained in W2? ().

The following theorem deals with the one dimensional case.
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Theorem 2.4. Let €2 C R" be an open set and let p > 1. Then, for any I' > 0 the closure
of the set

{fernc@) )4, <r}
is contained in FyW?27P (Q)

We now recall some facts which will be useful in the proof of Theorems 2.3, 2.4 presented
in §3. Let be A= Bj x B)™", f: A— N alocally H"-rectifiable function, let

PO:{a:ER”:xH_l =...:xn:O},
and let
m(z) = Z{f(x) Lz €A, Plx) = z}.
For any P € O(r, n) we define
JT(P, P) :HT(PO(QP))

where (Qp C P is any unit cube. We remark that 0 < J,. (P, PO) < 1. Then, the area
formula (see e.g. [5], 3.2.3) yields

/ m(z)dz = / f(@)J, (Ps(x), Py) dH".

By, A

Let us check that for any § < 1 we can choose € > 0 so small that

(2.3) |P-Py|<e = J.(P,R) >0

In fact, (2.3) holds if € < 1/(r 4+ 1) and ¢ are tied by the following relation:

5— [1— (r+1)e]r‘

1—e€
Indeed, let (v1,...,v,) be an orthonormal basis of P, and set v; = Py(v;), and
/ / TN
N=7 Yo=Y~V
! ? 71l Il
Then, J, (P, PO) is the r-dimensional measure of the r-simplex generated by ~1,..., 7,

hence J, (P, Py) = [];_, |7|- From the inequality
|Ps-v| = |Pj-v — Pto| < |Py- — P = |P — Py| < e,
(which holds for any v € P) it readily follows |y;| > (1 —€), [{(7i,7;j)| < € for i # j, and

€ < 1—(r+1)e,
1—€— 1—e€

il = (1 —¢) = (i-1)

which proves our statement.



The following lemma, whose proof is based on the monotonicity formula (see [8], and also
the Appendix below) is fundamental to estimate the oscillation of the tangent planes.

Lemma 2.5. Let n > 2 and 1 <r <n — 1 be integers, 0 C R", and let p > r. Let f} be
converging to f in W2P (Q) and let us assume that

A, <T < +o0  VheN.

Then, the following implication holds:

(2.4) Py, € Tang, (fn), (xn, Pn) — (z, P) = P € Tan,(f).

Proof. Let (zp,, P,), (x, P) as in (2.4). Let ¢ € C* (an) be any Lipschitz function such
that ¥ (P)=1and 0 < <1 <1 for some 6 > 0. By Theorem 2.1(3) we infer

oc—0t

lim inf 0" / Q) dug, > b(Pr)or
B7(xzp)xO(r,n)

because Pj, € Tang, (f5). By letting 0 — 07 in the monotonicity formula we get

T
—r/p

1/p
b @] =[] - (45 D)
B, (zr)xO(r,n) 1

so that, passing to the limit as h — 400 we find

F p
| H(Q) duy > (wi/p - —(Hé—luwuw)pl—”p) .
EZ(w)XO(r,n) 1- T’/p

By letting p — 0T and using Theorem 2.1(3) we obtain

Z (Qi) > 1.

QieTaHZ(f)

Since 1) is arbitrary, this inequality can be true only if P is a member of Tan,(f). L]

3. Proof of Theorems 2.3, 2.4.

The proof of Theorem 2.3 and Theorem 2.4 is achieved in several steps, in which we first
control the cardinality of tangent planes, then their oscillation and finally the number of
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sheets. After these estimates, the crucial step consists in finding a global representation
of fr as a sum of characteristic functions of graphs (Step 5). This can be achieved (see
Theorem 4.4) only in the case of analytic regularity, corresponding to Theorem 2.3, and
in the one dimensional case, corresponding to Theorem 2.4. Since the proof of the two
theorems are essentially the same, we confine ourselves to Theorem 2.3.

Let an integer r € [2,n — 1] be given, and let us assume that there exist an open set
Q CR", p €]r,+oo] and a sequence (f;,) C F,.C*¥(Q) converging to f and such that

I' = sup <||Afh||p) < ~00.
heN

We have to show that f € F,W??(Q). By Theorem 2.1(2), f € W2?(2). We fix zy €
NSy and we construct a finite number of graphs of W2 functions which represent f in
a neighbourhood of xg. For simplicity we assume zy = 0.

Step 1. We claim that it is not restrictive to assume that Tang(f) is a singleton. Let
Py, ..., Py be the members of Tang(f) and let

1

By Lemma 2.5, we can find R > 0 so small and hg € N such that B} C {2 and

N
supp(pys,) N Bx x O(r,n) C B X U B?Z (F;)

=1

for any h > hg. We apply the decomposition property of Theorem 2.1(4) to fp, getting
(fni) € E,W2P (Bﬁ) converging (up to subsequences) as h — +o0o to f; € W2P (B}%) for
any ¢ =1,...,N. Since

N
B, = Z Hfn s
=1

we get

N
nE= D he
i=1

Hence, we need only to show that f; € F,.W?2P (Bg) for any ¢. By the inclusion

supp(uy, ) N Bg x O(r,n) C By x Cj,

and Theorem 2.1(1) we infer

supp(pys,) N B x O(r,n) C By x C;,
so that Tang(f;) = {F;}. ]
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In the following we assume (up to a rotation in R™) that Tang(f) = { Py}, where we recall
that Py is the projection on the first r coordinates. By Theorem 2.1(3) we get an integer
q > 1 such that

p—0F

(3.1) lim p_r/ fdH" = qu,.
By

Finally, Theorem 2.1(3) implies that we can find a sufficiently small R > 0 such that

(3.2) Py(z) #0 Ve S;NBLCQ, z#0.
Step 2. (height estimate) We claim that there exist Ry €]0, R[ and h; € N such that

h>hi, z € (By, x Byg), fu(z) #0 = |Fy(z)| < R/4.

Let us show by contradiction that the statement holds true for R; small enough. Indeed,
were it false, it would be possible to find sequences hy, — +o00 and xy, such that f, (z) # 0,
Py(z) — 0 and

R/2 > |Pi-(z1)| > R/4.

We can assume with no loss of generality that zj converges as k — +00 t0 ¥ € P n
Bg/z \ {0}. By choosing p < R/2, ¢ =1 and letting ¢ — 07 in the monotonicity formula
(see the Appendix) we get

1/p T
[p—r/ i dHT] > wi/p _ 7p1—7“/p7
B (21 1—r/p
so that
T p
p" /_ fdH" > <w7}/p _ 7p1—r/p) )
B (v00) L—r/p
Since p > 0 is arbitrary, this shows that z,, € Sy, and this contradicts (3.2). []

Step 3. (continuity of tangent planes) For any e > 0 there exist hy > hy and Ry €0, Ry
such that

h>hsy, € (B;h X Bg?;), fh(flf) 7& 0, Pe Tanx(fh) = |P— P()| < €.

Indeed, if the statement were not true it would exist € > 0 and sequences hy, xx, Py such
that

kll}l’_{loo hp = “+00, P, € Tanxk (fhk)7 kll)l’_{loo Po(.ﬁl,‘k) =0

and |Py — Py| > €. By using the same argument of Step 2 and (3.2), we can show that xj
converges to 0. Since Tang(f) = { Py}, the contradiction follows by Lemma 2.5. []
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Notation: We set D = B X B1272T'

Let 0 < 1 be such that (¢—1) < ¢d (this choice will be useful in step 4) and let € > 0 satisfy
(2.3). By using this step, possibly replacing Ry by Rs and hy by hs, it is not restrictive to
assume that

h>hy, x €D, fh(IE) #0, Pe Tanx(fh) = |P—P0| < €.

Since, by (2.3), J(P, Py) > 6 > 0 for x € D, P € Tan,(fs) and h > hy, it follows that the
tangent planes are not vertical with respect to Py. By Remark 1.5 and the height estimate
the functions fpcharD are C*-locally decomposable in By x R"™" and the functions

qn(z) = Z{fh(x) cx €D, Py(z) = z}
are constant in B, .
Step 4. (estimate on the number of sheets) We now claim that there exists hy > hy such
that ¢, = ¢ for any h > hy, where ¢ is given by (3.1).

Indeed, let ¢o be a limit point of the sequence ¢, let us choose Ry €]0, Ri[ and let
A= Bj, X 3272’“ . Since H" (S N 8A) = 0, by weak convergence of measures we get

lim /fhdHT:/deT.

The area formula yields

Qherg — /
B

so that, recalling our choice of e,

qndz = / 3, (Py, (z), Po) fr dH",
A

»
Ro

5 / FrdH" < queor RS < / frdH
A A

and passing to the limit as h — +o00 we get

5/ dergqooergg/ fdH".
A A

Since (¢ —1)/§ < g and Ry can be so small that

11
¢ <

dH" 1
5 erg/Af Ho<g+l

we find that ¢ = q.
Step 5 For h > hy we can find ¢ analytic functions
1 T n—r
gpg),...,gpgq) : BRl — B

R/2
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such that
ZcharG (‘7) () Va € D.

Indeed, since fpcharD are C*-locally decomposable for h > hi and ¢, = q for h > ho, the
statement will follow by Theorem 4.4, to be proven below.

Step 6 The functions <p(‘7) are equibounded in W?2? (B;h) forh>ho,j=1,...,q
First, we remark that by choosing € small enough in Step 3 we can assume that the Lipschitz

constants of <p(‘7 ) don’t exceed 1. Fix h and Jj, drop these indices, let g = charG(y) with
0= (gpl,...,gon r) € W2’p(B}“{1), and let 4,1 € {1,...,r}. For any k =r+1,...,n the
equality (P;; and Ay, are evaluated at x = (2, ¢(2)) and P = Py)

830k:—r
Ay, = 07 (6] i) 259 (Ps—5—— o-. )

690/4 r 6290/4—7“
A PP, ———
Z i " Z 202

holds almost everywhere in By . Summing in ¢, [ and using the Lipschitz estimate we get

< 2r?||AY||; H" —a.e. in By,

(3.3) Z ZBSt ‘

k=r+1s,t=1

where

> PuPs|.

il=1

Since the mapping P — Bg(P) is continuous and Bg;(FPy) = 1, by a suitable choice of €
in Step 3 we can assume that

Bs(P) > Vs, t € {1,...,r}

N[ —

©)) (J)

for any tangent r-plane P to the graph of g = ¢;”’. Hence, the boundedness of ¢
WP (B, ) follows by integrating (3.3) with ¢ = gpm.

Step 7. Conclusion. Possibly passing to a subsequence, we can assume that gp(‘] ) weakly
converges to some function ¢ in W2 p(BRl) for any j = 1,...,q. It is then easy to see

that f,gj) converges in WP (D) to fU), where f,gj) = charG(gpglj)), fU) = charG(pW)).
Since
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q .
/D o(@) fo dH" = 2_; /D o(z) 1D dHr Vo € C9(D),

passing to the limit as h — 400 we get

/D d(x) faH" = ; /D d(w) fOdH” Vo € (D),
so that in D the equality f = Zg: ) U = 23:1 charG(¢")) holds. This shows that
EC {f e F,W2r(Q) : |Af]|, < r}.
Equality cannot hold because the set
{ferw2r(Q):|a’|, <T}

is not closed (see Example 4.5).

4. Global decomposability and examples.

In this section we discuss the notion of global decomposability of an integer valued function,
a crucial step in the proof of Theorems 2.3, 2.4. Let 2 C R" be a connected open set, and
let f:Q xR™ — N be a C"-locally decomposable function according to Definition 1.4
(with m = n — r and  in place of ).

Definition 4.1. The function f is said to be C*-globally decomposable in € if there exist
an integer ¢ > 0 and functions ¢ € C"(Q,R™),i=1,...,q such that

q
flx) = ZcharG(go(i))(x) Ve € Q x R™.
i=1

Remark 4.2. If f: 2 x R™ — N is a C"-locally decomposable function with x # 0, then
we can define a function

ffOxR™xR™ = N
in the following way. If U € Q and ¢ € C*(U,R™), i = 1,...,q, are functions such that

q
flx) = Z charG (™) (z) Ve e U x R™,
i=1
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then we set
q .
flx,p) = charG(¢W)(z,p) Vo eUxR™, peR™,
i=1

where ¢ (2) = (p;(2), Dpi(z)) € R™ x R™ for any z € . This definition does not
depend on the choice of a local decomposition. Indeed, it can be easily seen that f'(z,p)
is the greatest integer j such that there are C"-surfaces I'y,...,I'; of dimension r (not
necessarily distinct) such that

f> XJ: charl’;

=1

in a neighbourhood of = and Tan,(I';) = {P,} for any ¢, where, if we think of p € R™™ as
a linear operator from R” into R™, the r-plane P, C R"™™ is given by

Py :={(z,p(2)) : z € R"}.

We call the function f’ the blow-up of f. It is immediate from the definition that f’ is
a C"1ocally decomposable function if x € N, a C*-locally decomposable function if
k€ {oo,w}.

Lemma 4.3. Let k € N U {oc}, let f : Q x R™ — N be a C"-locally decomposable
function and let {oM), ... @} {pM) 4@} be two C*-decompositions of f in an
open neighourhood U of zy € §). Then, there is a permutation o of {1,...,q} such that

D*oW(z0) = DMy D (2)  VEk <k, Vi=1,...,q.

Proof. We argue by induction on k. The thesis is trivial if K = 0. If &K > 0 is an
integer we consider the blow up f’ of f. The function f’ is C*~!-locally decomposable,
and &) := (o) D), T = () D) are two local decompositions in U. By the
inductive hypothesis there exists a permutation o of {1,..., ¢} such that

DR®@(z)) = DFU°D(z))  Vk<k—1,i=1,...,q,
but this is equivalent to

DFp® (zg) = DFyp7@) () VkE<k,i=1,...,q.

Finally, if K = oo we can find for any integer p a permutation o, such that

D ) (z0) = DM () Vk<p,i=1,....q

Since the set of permutations is finite, at least one of them satisfies the above formula for
infinitely many p. L]
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Theorem 4.4. Let ) C R" be an open set, and let f :  x R™ — N be C"-locally
decomposable in 2. Then, f is C"-globally decomposable in ) if at least one of the
following conditions is satisfied:

(1) k = w and ) is simply connected;

(2) k=0 and m = 1;

(3) r=1.

Proof. (1) We argue by induction on the number of sheets ¢q. If ¢ = 1, the thesis is
trivial. If ¢ > 1, we fix a point zy €  and a C¥ local decomposition 1), ... ©(@ of f in
a neighbourhood U of zj.

First of all, we claim that ¢() can be analitically continued (in the sense of [12]) along
any continuous curve 7 : [0, 1] — Q starting at zo, i.e., there exists a finite number of pairs
(D, fi) (i=0,...,p) such that:

e each D; is a open ball contained in 2 and Dy C U,

e charG(f;) < f on D; x R™ and ~([0,1]) € U_, D;

e D;ND; 1 #Pforanyi=1,...,p;

o fo(2) =W (2) Vz € Dy and fi(2) = fi_1(2) V2 € D;ND;_y, i=1,...,p.

In order to show that such an extension exists, let us consider a finite cover of v([0, 1]) by a
finite number of balls Dy, ..., D, such that Dy C U, D;ND;_y # @ fori=1,...,pand fis
decomposable over D;. Now let z € D; N Dy and let (1), ... 4(® be a C¥ decomposition
of fin D;. By Lemma 4.3 we can find a permutation ¢ such that

DFeW (2) = DFypM(2) Yk e N,

hence, by analiticity, ¥ = ¥ on D; N Dy. Therefore (Dy, ") is an extension of
(Do, ¢™M)). Proceeding in the same way with Dy N Dy, Dy N D3, ..., in a finite number of
steps we have constructed the required extension along ~.

Since ) is simply connected, by the construction of Theorem 16.15 of [12] the function
o) can be analytically extended to a function ¢ defined in Q such that f > charG(¢).
Now, exploiting once more the analiticity of f and ¢, it is easy to see that f — charG(¢)
is a C'“-locally decomposable function with ¢ — 1 sheets, and so the thesis follows by the
inductive hypothesis.

(2) Let us fix a covering Ug of €2 such that f can be decomposed over each Ug. Since we are

interested only in C° decompositions, we can assume that on each U, 3 the decomposition

is given by functions go(ﬂl), ceey go(;) such that

2
() <P (). <P () VzeUs
Since the sets " @
{og'(2),- 0’ (2)},  {P(2),....09(2)}
are equal for any z € Ug N U,, it follows that go(ﬂi)(z) = gpgi)(z) for any z € Ug N U, and
any i = 1,...,q. This obviously leads to a global C° decomposition.

(3) If k = w the thesis follows by (1). If K € N U {o0}, let us consider the maximal open
interval I C Q where f can be decomposed, and let o1, ... ©(@ be such a decomposition.

16



Let us assume by contradiction that I # €, e.g. zp :=sup ] < supQ. Let (), ... (@ be
a local decomposition in an open neighbourhood Uy of zg, and let z € Uy N I. By Lemma
4.3, up to a permutation of the functions (¥, we can assume that

DFp®)(z) = DFy®(2) Vk <k, Vi=1,...,q.

This equality easily leads to a decomposition of f in I U Uy, and this contradicts the
maximality of I. If inf I > inf  we follow a similar argument. ]

Now we show that if all the conditions (1), (2), (3) of Theorem 4.4 fail to be true, then
there exist functions f which are locally but not globally decomposable.

Example 4.1. In this example we exhibit a function f : R? x R? — N that is C%-locally
decomposable but not C°-globally decomposable. This example can be easily generalized
to C* functions, with K € N U {oc}, defined on R" x R™ with r, m > 2.

Let R* = C?, and let

Iy = {(2,0) € C*: || < 1}, Iy = {(Y(w),w) € C*: w # 0},
where ¢ : C \ {0} — C is defined in polar coordinates by
V(p,0)=(p+1,20), p>0,0€cR.

Let f = 2charl'; + charl's; we claim that f is locally decomposable with respect to the
plane C x {0}. Indeed, if z € B1(0) then we can take U, = B;(0) and gpgl) = @(ZQ) =0. If
z ¢ B1(0), then z belongs to an open sector S,z of the form

Sag::{(p,G)EC:p>O, o<<9<ﬁ}

with |a — 8| < 2m. We set U, = S, and

0 if p <1;
wﬂmQZ{ P>

(p—1,0/2) if p>1;

and
(0 if p<1;
902(P79)—{(p_1,7r+9/2) ifp>1§

for any (p,0) € S,3. Let us check that f is the sum of the graphs of ¢ and ¢9 in S,3 x C.
Indeed, let z € S, 3 and assume that (z,w) € I'1 Uy for some w € C. If (z,w) € 'y, then
w =0 and |z| < 1, hence

(z,w0) = (2,91(2)) = (2,92(2)).
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If (z,w) € 'y, then z = ¥ (w), with w # 0. Setting z = (p,,0,) and w = (py, 0) We have

(pz,02) = (W) = (pw + 1, 204),

so that p, = p, + 1 and either 6,, = 6,/2 or 0, = 0,/2 + 7, i.e., either w = p1(z) or
w = pa(2).

Now we claim that f is not globally C°-decomposable. Indeed, let us assume that there
exists ¢ : C — C such that G(p) C I'1' UT'; and let D = {z € C : |z| > 1}; since
(z,0(2)) € T'y for any z € D we get ¥(¢p(z)) = z in D. This is impossible because
1 : C\ {0} — D is a covering space of degree two (see [10], Theorem 5.1).

Remark 4.5 In order to have C'*° regularity in Example 4.1, it is enough to substitute
with B )
P(p,0) = (|logp|™2 +1,26)

and p — 1 with exp{(p — 1)72} in the definition of ¢; and 5. In higher dimensions, we
can consider the function g = f o p, where

P(T1s e Ty Y1y Ym) = (T1, T2 Y1, Y2)-

Example 4.2. Let us consider the restriction of the function f of Example 4.1 to 2 x C,
where Q := {2z € C : |z| > 1}. In this case  is not simply connected, f is a C*¥-locally
decomposable function, and the same argument of Example 4.1 shows that f is not even
CY-globally decomposable.

Example 4.3. Let us consider the function ¢ : R? x R — N defined by

9(z,y,2) = f(x,9,2,0),

where f is the locally C'*°-decomposable function of Remark 4.5. It is easy to see that also g
is locally C*°-decomposable. Furthermore, g is C°-globally decomposable because of The-
orem 4.4, but not C''-globally decomposable. Indeed, arguing as in the construction of the
blow up, f can be recovered from g by adding the @ derivative, hence C*-decomposability
of g implies C°-decomposability of f. As in Remark 4.5, this example can be extended to
higher dimensions.

Example 4.4. In this example we show that if n > 3, and r € [2,n — 1] are integers and
) C R" is an open set, then the class F,.W?2P (Q) is strictly contained in W2? (Q) for any
p > r. It is not restrictive to take (2 = BT. We first consider the case n = 3 and r = 2.
We define .

I:={(pcos26,psin2f,e #* cosf):p >0, § € R},

and the function f = charl'. We claim that f € W22 e (Bi”) Indeed, a direct calculation
shows that Alfjk = 55(5]’-0:1% are bounded in B}. Since f € F,C> (B3} \ {0}), by (1.3) and
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(1.4) we infer that (1.5) holds for any ¢(z, P) whose support does not touch {0} x R?.

Taking into account that
H2(B3NT
lim —< p 5 ) =2,
p—0~t T

a standard approximation argument shows that (1.5) remains valid for any ¢ € C§ (B} x
RY).

On the other hand, I' cannot be described in any neighbourhood of the origin as the union
of the graphs of two C! functions, and therefore f ¢ F,W?2P (B{’) for any p > 2. In the
general case (n > 4, r € [2,n — 1]) the argument above may be applied to f = charT,
where T is the cylinder T =T x R"72 x {ORTL*'I‘*l} Cc R".

Example 4.5. In this example we show that in general the closure of F,.C*® (Q) is not
contained in F, W?2P (Q) Let I'(>) ¢ C2 be defined, in polar coordinates, by

1) = {((|logp|~%,26), (p,30)) : p >0, 6 € R} U{0}.
Let
= {(2,00€ C*: [z < 1/n},  TY = {(pnl(2),9(2)) € C?: 2 £ 0},

where ¢, 1 are defined in C \ {0} by

L1
pn(p,0) = ([logp| ™= + —.20),  P(p.6) = (p, 30).

Finally, we set
n 1= 2charl'{" + charF(n), o = charT(*).
[ 1 2

It is easy to see that the same argument of Example 4.1 shows that f, € FhC>®(C?).
Furthermore, a direct computation shows that A{J’Fk are equi-bounded in L on compact
sets, and f,H? weakly converges to fooH2. However, fo, ¢ FoC?(C?).

Appendix. The monotonicity formula.

In this appendix we state and prove the monotonicity formula for curvature varifolds which
we have exploited in the paper. Notice that here all the balls are n-dimensional, hence we
omit the dimension index.

Theorem. Let  C R" open, p >, f € W2P (Q), and let

i i 1/p
v ([ Slalra)

Z’j7k
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Then, we have

1/p 1/p
{p_r/ ¢(Pf(x)) der} — {O'_T/ ¢(Pf(x)) fdH" >
(A1) By (zo) Bo (o)
L T+ [ol=r/p _ pier/r),
p—r

whenever ¢ € C'(R™), 0 <4 < 1, |Dy| < M and

BU(ZL'()) C Bp(l'o) C Q.

Proof. Let zg € Q, R = dist(z9,09), S = {x € Q : f(x) # 0}, § = 6/, let ) as in the
statement of the theorem and let

E ={s€]0,R[: H" (SN dBs(x0)) > 0}.
For any 0 < 0 < p < R we set
Pop(x) = (@ = 20) [mf{0 ™", |z — o[} = p~7]

Y

and

o(x, P) = @o,p(x)(P).

Since ¢ : R™ x R — R" is continuously differentiable outside the set

(0B, (w0) U OB, (w0)) x R,

and globally Lipschitz continuous, a standard approximation argument shows that the
integration by parts formula is valid for each component of ¢, provided neither ¢ nor p
belong to F.

We remark that F is at most countable and

supp(¢o,p) C Ep(xo), Pop(z) = (T — xO)(U_T - p_r> Vi € By (o).
Taking into account the identity

n

> (@i — woi)diw; — wo;)? = 2|ma(x — x0)|?

ij=1
where 7, denotes the orthogonal projection on Py(x), we find

n

divi oo (2, P) = > (6im:)(Jz — x| " —p7") — 7
i,j=1

(% — w0i)di(w; — x0j)? _
2|z — xo|"+?




for any @ € B,(z0) \ B, (o) where Pf(z) is defined. Similarly

div’ ¢, ,(x) = r(c™"=p™")

for any = € B, (xo) where P¢(x) is defined. Inserting ¢ = ¢, ,% in the integration by parts
formula, we get

vy —dlo [ st e >

= _/B ( )Z(Azfjk:(gpo,p)iDjkdj+A§ji(@07p)i¢) FaH".

1,5,k
By using our assumptions on 1), the Holder inequality and the estimate

|900,p| <plc™"=p7")

we obtain

" r{ﬂ‘r /BP(%)WP(@) der] _r{g—r /feg(mo)¢<P<x)) der] .

> T(1+ Np(o" —p7) UB »(P(x)) der} o

p(wO)

By approximation, the same inequality is true for any 0 < ¢ < p < R. Denoting by
v :]0, R[— R the function

CEI (P pare |,

dividing both sides by p — ¢ in (A.2) and letting o T p we get

v'(p) > -T(1+ A)P_T[’y(p)p’“}l_l/p7

which is equivalent to

p[*](p) = —T(1+ )"/,

Taking into account that the negative part of the distributional derivative of « is absolutely
continuous, (A.1) follows by integration between o and p. ]
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